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Abstract—As an important carrier of human productive 

activities, the extraction of buildings is not only essential for urban 
dynamic monitoring but also necessary for suburban construction 
inspection. Nowadays, accurate building extraction from remote 
sensing images remains a challenge due to the complex 
background and diverse appearances of buildings. The 
convolutional neural network (CNN) based building extraction 
methods, although increased the accuracy significantly, are 
criticized for their inability for modelling global dependencies. 
Thus, this paper applies the Vision Transformer for building 
extraction. However, the actual utilization of the Vision 
Transformer often comes with two limitations. First, the Vision 
Transformer requires more GPU memory and computational 
costs compared to CNNs. This limitation is further magnified 
when encountering large-sized inputs like fine-resolution remote 
sensing images. Second, spatial details are not sufficiently 
preserved during the feature extraction of the Vision Transformer, 
resulting in the inability for fine-grained building segmentation. 
To handle these issues, we propose a novel Vision Transformer 
(BuildFormer), with a dual-path structure. Specifically, we design 
a spatial-detailed context path to encode rich spatial details and a 
global context path to capture global dependencies. Besides, we 
develop a window-based linear multi-head self-attention to make 
the complexity of the multi-head self-attention linear with the 
window size, which strengthens the global context extraction by 
using large windows and greatly improves the potential of the 
Vision Transformer in processing large-sized remote sensing 
images. The proposed method yields state-of-the-art performance 
(75.74% IoU) on the Massachusetts building dataset. Code will be 
available. 

Index Terms—Vision Transformer, building extraction, remote 
sensing, attention mechanism. 

I. INTRODUCTION 
uilding extraction using fine-resolution remote sensing 

images, i.e., the task of identifying building and non-
building pixels in an image [1], plays a crucial role in a wide 
range of application scenarios such as urban planning, 
population statistic, economic assessment and disaster 
management [2-6].  

Conventional methods for building extraction commonly 
extract hand-craft features (e.g., spectral, spatial, textural) and 
apply traditional machine learning methods (e.g., Support 
Vector Machine and Random Forest) to recognize buildings [7-
9]. However, the empirically designed hand-craft features 
restrict the generalization ability of these traditional methods. 

In the past few years, Deep Learning (DL) has become a 
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popular approach for automatic feature learning [10] and 
achieved great breakthroughs in the computer vision (CV) 
domain [11]. In the field of remote sensing, DL methods, 
especially the convolutional neural network (CNN) [12], have 
been introduced and implemented in many geospatial tasks [13-
15], especially for building extraction [16]. In comparison with 
conventional methods, CNN-based methods can capture 
various kinds of information including textures, spectrums, 
spatial context, and the interactions among geo-objects. 

Since the pioneer CNN structure, i.e., Fully Convolutional 
Neural Network (FCN), was proposed for pixel-level dense 
prediction, a series of researches were carried out on automatic 
building extraction from remote sensing images [17-20]. 
Subsequently, the encoder-decoder structure was proposed to 
address the coarse-resolution segmentation of FCN-based 
networks by constructing a symmetrical decoder. Typical 
methods like UNet and SegNet restored the spatial resolution of 
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Fig. 1. Illustration of the global context and local context. The squares 

represent the receptive view of the convolution. The yellow regions represent 
the blurry building pixels where the local context is indistinguishable. 

mailto:wanglibo@whu.edu.cn;%20shfang@whu.edu.cn
mailto:xmeng@whu.edu.cn
mailto:rui.li.4@warwick.ac.uk


 2 

extracted features progressively for fine-resolution feature 
representation [21, 22]. The results of these CNN-based 
methods, although encouraging, encounter bottlenecks in 
building extraction. To be specific, the CNN is designed to 
extract the local context and thus lacks the ability to model 
global context in its nature. However, the local context is often 
ambiguous for identifying building pixels, while the extraction 
will become much simpler if the global context from the whole 
remote sensing image is available, as illustrated in Fig.1. 

For capturing the global context, the most popular way is to 
incorporate attention mechanisms into networks. For example, 
the non-local module [23], the dual attention module [24], the 
criss-cross attention block [25] and the object context block 
[26], obtained great improvements in semantic segmentation 
thanks to their ability in modelling global dependencies by 
attention mechanisms. In the field of building extraction, 
several attempts were made to introduce attention mechanisms 
for stronger feature representation, which differentiates 
heterogeneous buildings from complex backgrounds in fine-
resolution remote sensing images [6, 27]. However, these 
methods still follow the CNN structure, restricting the global 
feature representation. 

Recently, the Transformer [28], originally designed for 
natural language processing (NLP) tasks, comprises a hot topic 
in the computer vision domain, namely Vision Transformer 
(ViT) [29]. Different from the CNN structure, the ViT translates 
2D image-based tasks into 1D sequence-based tasks. Due to the 
strong sequence-to-sequence modelling ability, the ViT 
demonstrates superior characterization of extracting global 
context than attention-based CNNs, obtaining numerous 
breakthroughs on fundamental vision tasks, such as image 
classification [29] and object detection [30] as well as semantic 
segmentation [31]. 

However, the actual utilization of ViTs often comes with 
huge memory requirements and computational costs [32, 33], 
which seriously affects its potential for downstream tasks like 
building extraction. Even though the Swin Transformer adopts 
the hierarchical structure and designs a window-based multi-
head self-attention mechanism to improve efficiency, its 
complexity still increases quadratically along with the 
increasing size of the window [34]. Furthermore, ViTs mainly 
focus on capturing the global context while ignoring preserving 
the spatial-detailed context, but spatial details are also essential 
for fine-grained building segmentation in fine-resolution 
remote sensing images [35]. 

In this paper, we propose a novel Vision Transformer, 
namely BuildFormer, for building extraction from fine-
resolution remote sensing images to address the existing issues 
of ViTs. Specifically, we adopt a dual-path structure to 
construct the BuildFormer, i.e. a global context path and a 
spatial-detailed context path. In the global context path, we 
develop a novel Transformer block to construct a Vision 
Transformer backbone, enhancing the ability for global context 
extraction. In the spatial-detailed context path, we utilize 
stacked convolutional layers to preserve rich spatial details. The 
major contributions of this paper are as follows: 

 

1) We propose a novel Vision Transformer (BuildFormer) 
based on the dual-path structure, which can capture the 
global context while preserving spatial-detailed 
features. 

2) We present a novel Transformer block to construct the 
global context path, namely BuildFormer Block (BFB), 
which is mainly composed of a window-based linear 
multi-head self-attention (W-LMHSA) and a 
convolutional multilayer perceptron (C-MLP).  

3) The W-LMHSA reduces the complexity of the window-
based multi-head self-attention (W-MHSA) [34] to 
linear complexity. Benefiting from this, the 
BuildFormer can apply larger windows to extract global 
features from large inputs without resulting in high 
computations, which is more suitable for large-scale 
fine-resolution remote sensing images. The C-MLP 
strengthens the cross-window interactions, which 
further enhances the ability of the BuildFormer for 
global information modelling. 

II. RELATED WORK 

A. CNN-based Building Extraction Methods 
With the rapid development of Deep Learning, the 

convolutional neural network (CNN) has become the 
mainstream method for the automatic remote sensing building 
extraction task. In comparison with the conventional methods 
that design hand-crafted feature operators (colour, texture, 
shallow, etc.) [37-42] or those using active remote sensing data 
(LiDAR and SAR) [5, 43-46], the CNN-based methods have 
advantages in hierarchical feature extraction and efficiency [9, 
47-50]. Although the CNN-based methods achieve many 
breakthroughs, their weaknesses in global information 
modelling limit further improvements in accuracy, as global 
information is crucial for detecting buildings from low-
interclass and high-intraclass remote sensing images [51-53]. 
To address it, several studies have introduced attention 
mechanisms to strengthen the global feature representation for 
building extraction [54-57]. For example, Deng et al. [58] 
developed a grid-based attention gate module to extract 
semantic features with a global receptive field, further boosting 
the accuracy. Guo et al. [6] introduced the parallel attention to 
capturing global scene information, which further improved the 
accuracy of building segmentation. Pan et al. [59] combined 
spatial and channel attention mechanisms into the generative 
adversarial network and achieved advanced results. Cai et al [60] 
proposed a multipath hybrid attention network to enhance the 
performance of extracting small buildings. Since these 
attention-based methods relied too much on convolution 
operations, they failed to liberate the network from the CNN 
structure and have certain limitations in global information 
modelling. 
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B. ViT-based Building Extraction Methods 
ViT-based methods have brought tremendous progress and 

evolution for semantic segmentation [31, 61, 62]. The structure 
of the ViT is completely different from the CNN, which treats 
the 2D image as the 1D ordered sequence and applies the self-
attention mechanism for global dependency modelling, 
demonstrating stronger global feature extraction. Driven by this, 
many researchers in the field of remote sensing introduced ViTs 
for segmentation-related tasks, such as land cover classification 
[63-68], urban scene parsing [69-74], change detection [75, 76], 
road extraction [77] and especially building extraction [78]. For 
example, Chen et al. [79] proposed a sparse token Transformer 
to learn the global dependency of tokens in both spatial and 
channel dimensions, achieving state-of-the-art accuracy on 
benchmark building extraction datasets. Yuan et al [80] 
introduced the widely used Swin Transformer [34] as the 
encoder and design a scale-adaptive decoder for multi-scale 
feature representation. Compared with the CNN-based methods,  
the global information is fully extracted by ViT-based methods. 
However, the spatial detailed context, meanwhile, is ignored. 

III. METHODOLOGY 

A. Overview 
The structure of the proposed BuildFormer is illustrated in 

Fig. 2 with a Global Context Path (GCP) and a Spatial-detailed 
Context Path (SCP). In GCP, four BuildFormer Blocks are 
designed to extract four global feature maps at different scales. 
Meanwhile, the high-resolution spatial-detailed feature map 
will be generated by SCP. Finally, the four global feature maps 
and the spatial-detailed feature map are fed into the contextual 
aggregation module to generate the final semantic feature. 

B. Spatial-detailed Context Path 
It is very challenging to reconcile the demand for spatial-

detailed features with global dependencies simultaneously in 
the Vision Transformer. However, both of them are essential 
for obtaining high accuracy of building segmentation. To 
address this issue, in the proposed BuildFormer, we adopt a 
dual-path structure [36], which introduces a spatial-detailed 
context path to produce a high-resolution feature map for 

preserving spatial details. Concretely, we apply six 
(Convolution-BatchNorm-ReLU6) CBR blocks to construct 
this path and expand their channel dimensions progressively to 
encode sufficient spatial-detailed information, as shown in Fig. 
2. Specifically, six standard 33 convolutional layers are 
employed and each layer is equipped with a batch normalization 
operation and a ReLU6 activation function. To ensure sufficient 
spatial details, the size of the output feature map is designed as 
1/4 of the original input image. 

C. Global Context Path 
The global context path is a novel self-designed Vision 

Transformer. The main basic modules of this path include the 
BuildFormer Block, Patch Embedding, and Patch Merging, as 
shown in Fig. 2. Due to its linear complexity, this path is more 
suitable for capturing global context from large-scale remote 
sensing images.  

Patch Embedding: The original ViT [29] utilizes linear 
projections to split the input image into non-overlapping 
patches directly. However, this scheme has limitations in 
modelling the structure information within patches. To 
overcome it, we apply convolutional layers to split the input 
image into overlapping patches. As shown in Fig. 3 (a), we use 
two 33 convolutional layers with a stride of 2 and a padding 
value of 1, while each layer is followed by a batch 

 
Fig. 2. The structure of the proposed BuildFormer. 

 
Fig. 3. (a) the Patch Embedding module, (b) the Patch Merging module. 
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normalization operation and a ReLU6 activation function. 
Proceed by the two convolutional layers, the channel dimension 
of patches is expanded to 96 and the resolution is reduced to 1/4. 
In addition, a standard 33 depth-wise convolution and a 
residual connection are employed to enhance the relative 
location priors of patches. 

Patch Merging: To obtain the hierarchical feature 
representation, four Patch Merging modules are employed and 
each module reduces the resolution of intermediate patches and 
expands the channel dimension. As shown in Fig. 3. (b), we first 
use the batch normalization operation to normalize the patches 
then apply a 22 convolutional layer to down-sampling it to 
1/2 and expand its channel dimension to 2 times. Similar to the 
Patch Embedding module, we utilize a standard 33 depth-
wise convolution and a residual connection to strengthen the 
location information extraction.  

BuildFormer Block: Each BuildFormer Block is composed 
of a Window-based Linear Multi-Head Self-Attention module 
(W-LMHSA), a convolutional multilayer perceptron, two batch 
normalization operations and two residual connections, as 
illustrated in Fig. 4.  

In Swin Transformer [34], the Window-based Multi-Head 
Self-Attention (W-MHSA) splits the input into non-
overlapping windows and performs the standard Multi-Head 
Self-Attention (MHSA) [28] in each local window. Benefiting 
from the window partition operation, the W-MHSA saves much 
computational burden compared to the MHSA. Even though, 
the computational complexity of each local window is still 
𝑂𝑂(𝑁𝑁2) due to the application of the MHSA. N is the square of 
the window size. Thus, the W-MHSA comes with huge 
computations and memory requirements if using large windows. 

By contrast, the proposed W-LMHSA further eliminate the 
high demand of W-MHSA in computations and memory based 
on our previous work on the linear attention mechanism [52], 
which makes the computational complexity linear with the 
window size. For each local window, the multi-head self-
attention can be defined as: 

MHSA(𝑿𝑿) = Concat(head1, … , headℎ)𝑾𝑾𝒐𝒐 (1) 

Here, X is the input vector and h is the number of heads. 𝑾𝑾𝒐𝒐 ∈
ℝ𝑁𝑁×𝐷𝐷 is a projected matrix, where D is the dimension of the 
input vector. Each head denotes a self-attention operation which 
can be defined as: 

Attention(𝑸𝑸,𝑲𝑲,𝑽𝑽) = Softmaxrow �
𝑸𝑸𝑲𝑲𝑻𝑻

𝑠𝑠
�𝑽𝑽 (2) 

𝑸𝑸 = 𝑿𝑿𝒎𝒎𝑾𝑾𝒒𝒒 ∈ ℝ𝑁𝑁×𝑑𝑑 (3) 

𝑲𝑲 = 𝑿𝑿𝒎𝒎𝑾𝑾𝒌𝒌 ∈ ℝ𝑁𝑁×𝑑𝑑 (4) 

𝑽𝑽 = 𝑿𝑿𝒎𝒎𝑾𝑾𝒗𝒗 ∈ ℝ𝑁𝑁×𝑑𝑑 (5) 

where 𝑿𝑿𝒎𝒎 is the input vector of the m-th head. Q, K and V are 
the query feature, key feature and value feature, which are 
generated by the three projected matrixs 𝑾𝑾𝒒𝒒, 𝑾𝑾𝒌𝒌 and 𝑾𝑾𝒗𝒗, 
respectively. d denotes the dimension of the m-th head and 
d=D/h. s represents the scale factor and s is set to 1 by default. 
Softmaxrow(𝑸𝑸𝑲𝑲𝑻𝑻)  computes the similarities between each 
pair of pixels of the input vector and applies the softmax 
normalization function along each row of the similarity matrix 
𝑸𝑸𝑲𝑲𝑻𝑻 , which is the key step to model global dependencies. 
However, the product between 𝑸𝑸 ∈ ℝ𝑁𝑁×𝑑𝑑  and 𝑲𝑲𝑻𝑻 ∈ ℝ𝑑𝑑×𝑁𝑁 
belongs to ℝ𝑁𝑁×𝑁𝑁 , which leads to the 𝑂𝑂(𝑁𝑁2) computational 
costs and memory requirements. As N is the square of the 
window size, the resource-demanding of the W-MHSA can 
increase significantly when using large windows. To address 
this, we simplify Eq. (2) by replacing the softmax normalization 
function with the first-order approximation of the Taylor 
expansion. Specifically, when using the softmax normalization 
function, the i-th row of the result matrix generated by Eq. (2) 
can be written as: 

Attention𝑖𝑖(𝑸𝑸,𝑲𝑲,𝑽𝑽) =
∑ 𝑒𝑒𝒒𝒒𝑖𝑖

𝑇𝑇𝒌𝒌𝑗𝑗𝑁𝑁
𝑗𝑗=1 𝒗𝒗𝑗𝑗
∑ 𝑒𝑒𝒒𝒒𝑖𝑖

𝑇𝑇𝒌𝒌𝑗𝑗𝑁𝑁
𝑗𝑗=1

 (6) 

 Here, 𝒒𝒒𝑖𝑖𝑇𝑇 ∈ ℝ𝑑𝑑 is the i-th query feature. 𝒌𝒌𝑗𝑗 and 𝒗𝒗𝑗𝑗 are the 
j-th key feature and value feature, respectively. Please note that 
the vectors in this research are column vectors by default. 
Actually, Eq. (6) can be generalized to any normalization 
function as: 

Attention𝑖𝑖(𝑸𝑸,𝑲𝑲,𝑽𝑽) =
∑ 𝑠𝑠𝑠𝑠𝑠𝑠(𝒒𝒒𝑖𝑖 ,𝒌𝒌𝑗𝑗)𝑁𝑁
𝑗𝑗=1 𝒗𝒗𝑗𝑗
∑ 𝑠𝑠𝑠𝑠𝑠𝑠(𝒒𝒒𝑖𝑖 ,𝒌𝒌𝑗𝑗)𝑁𝑁
𝑗𝑗=1

 (7) 

𝑠𝑠𝑠𝑠𝑠𝑠�𝒒𝒒𝑖𝑖 ,𝒌𝒌𝑗𝑗� = 𝜙𝜙(𝒒𝒒𝑖𝑖)𝑇𝑇𝜑𝜑�𝒌𝒌𝑗𝑗� (8) 

𝑠𝑠𝑠𝑠𝑠𝑠(𝒒𝒒𝑖𝑖 ,𝒌𝒌𝑗𝑗) can measure the similarity between 𝒒𝒒𝑖𝑖  and 𝒌𝒌𝑗𝑗 . 
The normalization functions 𝜙𝜙(∙)  and 𝜑𝜑(∙)  are used to 
ensure  𝑠𝑠𝑠𝑠𝑠𝑠�𝒒𝒒𝑖𝑖 ,𝒌𝒌𝑗𝑗� ≥ 0 . According to the first-order 
approximation of the Taylor expansion: 

𝑒𝑒𝒒𝒒𝑖𝑖
𝑇𝑇𝒌𝒌𝑗𝑗 ≈ 1 + 𝒒𝒒𝑖𝑖𝑇𝑇𝒌𝒌𝑗𝑗 (9) 

We set 𝜙𝜙(∙) and 𝜑𝜑(∙)  as the L2 normalization function to 
guarantee 𝒒𝒒𝑖𝑖𝑇𝑇𝒌𝒌𝑗𝑗 ≥ −1: 

𝑠𝑠𝑠𝑠𝑠𝑠�𝒒𝒒𝑖𝑖 ,𝒌𝒌𝑗𝑗� = 1 + �
𝒒𝒒𝑖𝑖

‖𝒒𝒒𝑖𝑖‖2
�
𝑇𝑇
�

𝒌𝒌𝑗𝑗
�𝒌𝒌𝑗𝑗�2

� (10) 

 
Fig. 4. Details of the BuildFormer Block. 
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Thus, Eq. (6) can be rewritten as Eq. (11), simplified as Eq. (12) 
and further turned into Eq. (13): 

Attention𝑖𝑖(𝑸𝑸,𝑲𝑲,𝑽𝑽) =

∑ �1 + � 𝒒𝒒𝑖𝑖
‖𝒒𝒒𝑖𝑖‖2

�
𝑇𝑇
�

𝒌𝒌𝑗𝑗
�𝒌𝒌𝑗𝑗�2

��𝑁𝑁
𝑗𝑗=1 𝒗𝒗𝑗𝑗

∑ �1 + � 𝒒𝒒𝑖𝑖
‖𝒒𝒒𝑖𝑖‖2

�
𝑇𝑇
�

𝒌𝒌𝑗𝑗
�𝒌𝒌𝑗𝑗�2

��𝑁𝑁
𝑗𝑗=1

 (11) 

Attention𝑖𝑖(𝑸𝑸,𝑲𝑲,𝑽𝑽) =

∑ 𝒗𝒗𝑗𝑗𝑁𝑁
𝑗𝑗=1 + � 𝒒𝒒𝑖𝑖

‖𝒒𝒒𝑖𝑖‖2
�
𝑇𝑇
∑ �

𝒌𝒌𝑗𝑗
�𝒌𝒌𝑗𝑗�2

�𝒗𝒗𝑗𝑗𝑇𝑇𝑁𝑁
𝑗𝑗=1

𝑁𝑁 + � 𝒒𝒒𝑖𝑖
‖𝒒𝒒𝑖𝑖‖2

�
𝑇𝑇
∑ �

𝒌𝒌𝑗𝑗
�𝒌𝒌𝑗𝑗�2

�𝑁𝑁
𝑗𝑗=1

 (12) 

Attention(𝑸𝑸,𝑲𝑲,𝑽𝑽) =
∑ 𝑽𝑽𝑖𝑖,𝑗𝑗𝑗𝑗 + � 𝑸𝑸

‖𝑸𝑸‖2
� �� 𝑲𝑲

‖𝑲𝑲‖2
�
𝑇𝑇
𝑽𝑽�

𝑁𝑁 + � 𝑸𝑸
‖𝑸𝑸‖2

�∑ � 𝑲𝑲
‖𝑲𝑲‖2

�
𝑖𝑖,𝑗𝑗

𝑇𝑇

𝑗𝑗

 (13) 

Since ∑ � 𝒌𝒌𝑗𝑗
�𝒌𝒌𝑗𝑗�2

� 𝒗𝒗𝑗𝑗𝑇𝑇𝑁𝑁
𝑗𝑗=1  and ∑ � 𝒌𝒌𝑗𝑗

�𝒌𝒌𝑗𝑗�2
�𝑁𝑁

𝑗𝑗=1  can be calculated and 
reused for each query, the time and memory complexity of the 
proposed attention based on Eq. (13) is the 𝑂𝑂(𝑑𝑑𝑁𝑁)  linear 
complexity. 

The cross-window interaction is crucial for global 
dependencies modelling when using the W-MHSA. The Swin 
Transformer [34] introduces a shifted window operation to 
strengthen the cross-window interaction. This scheme, although 
very effective, increases the complexity of the network due to 
adding another shifted-window Transformer block. In this 
paper, we provide a convolutional multilayer perceptron (C-
MLP) to strengthen the interaction within windows. In 
comparison with the Swin Transformer, the employment of the 
C-MLP can maintain competitive accuracy while improving 
efficiency. The detailed components of the C-MLP are 
illustrated in Fig. 4. 

D. Context Aggregation Module 

The output features from GCP and SCP are complementary. 
The feature from the SCP mainly encodes rich detailed 
information, while the four features generated by the GCP 
provide high-level global semantic information. To better fuse 
them, we adopt the feature fusion strategy like the feature 
pyramid feature (FPN) [81], as shown in Fig. 5. Specifically, 
the four global feature maps from the GCP are first proceeded 
by four 11 convolution layers to unify the channel dimension 
to 384. Then, we apply four CBR blocks as well as upsampling 
and addition operations to perform multi-level feature fusion. 
Finally, the fused global feature is further aggregated with the 

spatial-detailed feature from the SCP to generate the final fused 
feature. 

E. Loss Function 
Improving the accuracy of building boundaries is vital for 

high-precision building extraction [35, 82-84]. Thus, we 
introduce the boundary supervision technology and adopt a 
joint loss to train the BuildFormer. The joint loss function 𝐿𝐿 
can be defined as: 

𝐿𝐿 = 𝐿𝐿𝑐𝑐𝑐𝑐�𝑌𝑌,𝑌𝑌�� + 𝐿𝐿𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝑌𝑌,𝑌𝑌�� + 𝐿𝐿𝑏𝑏𝑐𝑐𝑐𝑐�ℒ(𝑌𝑌),ℒ(𝑌𝑌�)� (14) 

where 𝑌𝑌 and 𝑌𝑌�  denote the predicted label and the true label, 
respectively. 𝐿𝐿𝑐𝑐𝑐𝑐  is the cross-entropy loss. 𝐿𝐿𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  is the dice 
loss. ℒ represents the Laplacian convolution [85] with a kernel 

of �
−1 −1 −1
−1 8 −1
−1 −1 −1

� that extracts the building boundaries of 

the predicted label and the true label. The binary cross-entropy 
loss (denoted by 𝐿𝐿𝑏𝑏𝑐𝑐𝑐𝑐) is employed on the extracted building 
boundaries. 

IV. EXPERIMENTAL SETTINGS AND DATASETS 

A. Datasets 
To evaluate the performance of the proposed BuildFormer, 

three publicly available building datasets are considered 
comprehensively for conducting experiments, including the 
Massachusetts building dataset, WHU building dataset and 
Inria Aerial Image Labeling dataset. The details are as follows. 

1) Massachusetts: The Massachusetts building dataset is 
composed of 151 aerial images of the Boston area with a size 
of 15001500 pixels and a ground sampling distance of 1 m. 
The dataset involves urban and suburban scenes, where the 
buildings are varied in sizes, shapes, textures and colours. Thus, 
this dataset is very challenging and suitable to verify the 
effectiveness of modules. We follow the official partition 
provided by the dataset and use data augmentation technologies 
like vertical and horizontal flip to further expand the training 
set. As a result, we use 411 images for training, 4 images for 
validation, and 10 images for testing. In the training phase, we 
randomly crop the images and labels into 10241024 pixels as 
the input. In the validation and testing phase, the images and 
labels are padded to a size of 15361536 pixels to ensure it is 
divisible by 32 (the downsampling factor of the BuildFormer). 
The padded parts are ignored when computing evaluation 
metrics. 

2) WHU: The WHU building dataset [18] includes two types 
of images, i.e. satellite imagery and aerial imagery. We only use 
aerial images in our experiments. The aerial imagery subset 
covers over 450 km2 and includes 22000 buildings. The spatial 
resolution of the RGB aerial images is 0.3 m and the size of 
each image is 512512 pixels. There are 8189 image tiles in 
this dataset, where 4736 tiles for training, 1036 tiles for 
validation and 2416 tiles for testing. We follow the official 
partition in our experiments. 

3) Inria: The Inria Aerial Image Labeling Dataset [86] 
contains 360 fine-resolution aerial images collected from five 
cities (Austin, Chicago, Kitsap, Tyrol and Vienna). Since the 
labels of the test set are publicly available, we only use the 
original training set in our experiments. Suggested by the 

 
Fig. 5. Details of the Context Aggregation Module. 
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official partition, the 1 to 5 tiles of each city are selected for 
validation and the rest for training. We first pad the original 
50005000 images to 51205120 pixels, then crop them into 
512512 pixels image tiles. The image tiles, which do not 
contain buildings, are removed for efficient training. As a result, 
9737 and 1942 image tiles are used for training and validation, 
respectively. 

B. Evaluation Metrics 
We use the intersection over union (IoU), F1 score, precision 

and recall to evaluate the performance of models. These metrics 
are widely used in the field of building extraction [27, 35], 
which can be defined as follows: 

Precision =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 (15) 

Recall =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 (16) 

F1 =
2 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

 (17) 

IoU =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹
 (18) 

TP, FP, and FN represent the true positive, the false positive, 
and the false negative, respectively. 

C. Experimental Setting 
All models in the experiments were implemented with the 

PyTorch framework on a single NVIDIA GTX 3090 GPU with 
24GB RAM. The AdamW optimizer and the cosine strategy 
were employed to train all models in the experiments. The 
random horizontal and vertical flipping were selected as data 
augmentation strategies. For the WHU building dataset, we 
trained the BuildFormer from scratch for 105 epochs. The base 
learning rate was set to 1e-3 and the batch size was set to 8. For 
the Massachachusets building dataset and the Inria Aerial 
Image Labelling dataset, we used BuildFormer’s weight trained 
on the WHU building dataset, then fine-tuned it for 105 epochs 
with a learning rate of 5e-4. In the testing phase, we applied the 
data augmentation technologies like horizontal and vertical 
flipping, which is also known as test-time augmentation (TTA). 

V. EXPERIMENTAL RESULTS AND ANALYSIS 

A. Ablation Study 
To verify the effectiveness of the proposed modules, we 

conducted ablation experiments on the Massachachusets 
building dataset. 

TABLE I 
THE ABLATION EXPERIMENTAL RESULTS OF SPATIAL-DETAILED CONTEXT 

PATH ON THE MASSACHUSETTS BUILDING DATASET. 
Method IoU F1 

BuidFormer without SCP 74.38 85.30 
BuildFormer with SCP 75.74 86.19 

 
1) The effectiveness of the spatial-detailed context path (SCP): 

In the proposed BuildFormer, the spatial-detailed context path 
aims to encode rich spatial-detailed information for fine-
grained building segmentation. To test its effectiveness, we 
remove it from BuildFormer. As listed in Table I, the utilization 
of the spatial-detailed context path provides an increase of 1.36% 
in IoU, which demonstrates its effectiveness and necessity. 

Furthermore, this result also illustrates the superiority of the 
dual-path structure over than single-path structure for fine-
grained building extraction. 

2) The superiority of the global context path (GCP): The 
global context path in the proposed BuildFormer is a Vision 
Transformer backbone. To demonstrate its superiority in 
building extraction, we replace it with other backbones for 
comparison. The results show that our method yields an 
improvement of 2.04% in IoU compared to the Swin-Small [34] 
and surpassed the classical convolutional backbone ResNet101 
[87] by 5.01% in IoU (Table II). 

TABLE II 
THE ABLATION EXPERIMENTAL RESULTS OF THE GLOBAL CONTEXT PATH ON 

THE MASSACHUSETTS BUILDING DATASET. 
Method IoU Parameter (M) 

ResNet101 70.73 49.35 
Swin-Small 73.70 61.54 

ours 75.74 40.52 
 

3) The effectiveness of the convolutional multilayer 
perceptron (C-MLP): The C-MLP aims to strengthen the cross-
window interaction, improving the ability of the BuildFormer 
Block for capturing global context. To demonstrate its 
contribution to accuracy, we replace it with the standard 
multilayer perceptron (MLP) for ablation experiments. As 
illustrated in Table III, the employment of the C-MLP increases 
the IoU metric and the F1 score by 5.16% and 3.36%, 
respectively, demonstrating its effectiveness and essential. 

TABLE ⅡI 
THE ABLATION EXPERIMENTAL RESULTS OF SPATIAL-DETAILED CONTEXT 

PATH ON THE MASSACHUSETTS BUILDING DATASET. 
Method IoU F1 

BuidFormer with MLP 70.58 82.75 
BuildFormer with C-MLP 75.74 86.19 

 
4) The advantages of the window-based linear multi-head 

self-attention (W-LMHSA): To better demonstrate the 
improvements of the proposed W-LMHSA, we conduct 
comprehensive experiments in comparison with the window-
based multi-head self-attention (W-MHSA). We apply the W-
LMHSA and W-MHSA to construct the BuildFormer, 
respectively. As shown in Table IV, the computational 
complexities of the W-MHSA and W-LMHSA under different 
window sizes are measured by the floating-point operation 
count (Flops) in M. The speed of the network (FPS) is measured 
by a 10241024 pixels image tile on a single NVIDIA GTX 
3090 GPU. The results reveal that the proposed W-LMHSA has 
advantages in both accuracy and efficiency compared to the W-
MHSA. Specifically, the proposed W-LMHSA can provide an 
improvement of 2% IoU while saving about 25% computational 
complexity. Besides, the W-LMHSA maintains the GPU 
memory requirement and the speed stable even with a large 
window, while the W-MHSA increases memory requirements 
and reduces the speed significantly. 



 7 

B. Comparison of State-of-the-art Methods 
To further verify the effectiveness of the proposed method, 

we compare it with state-of-the-art methods on three publicly 
available datasets, i.e. the Massachusetts building dataset, 
WHU building dataset and Inria Aerial Image Labeling dataset. 
The selected methods include convolutional networks, such as 
U-Net [21], Deeplabv3+ [88], SRI-Net [16], DS-Net [49], 
BRRNet [20], SiU-Net [18], CU-Net [19], EU-Net [89], DE-
Net [90], MA-FCN [48], MANet [53], MAP-Net [27], Bias-
UNet [57], CBRNet [35], and ViT-based networks like 
SwinUperNet [34], Sparse Token Transformer (STT) [79], 
MSST-Net [80], BANet [72], DC-Swin [69]. 

For the Massachusetts building dataset, the proposed method 
yields a 75.74% IoU and outperforms the recent method 
CBRNet by 1.19% (Table V). To our knowledge base, this 
score is state-of-the-art on this dataset. Notably, our method 
achieves the highest Recall (87.52%) and surpasses other 
networks by a significant gap (more than 2.33%). Higher Recall 
means fewer building pixels missed. As shown in Fig. 6, our 
approach outperforms other networks in recognizing hard 
building pixels and maintaining the integrity of buildings, 
which benefits from the dual-path structure and the aggregation 
of the global context and spatial-detailed context. 

TABLE V 
QUANTITATIVE COMPARISON WITH STATE-OF-THE-ART METHODS ON THE 

MASSACHUSETTS BUILDING DATASET. 
Method IoU Precision Recall F1 
U-Net 67.61 79.13 82.29 80.68 

DeepLab V3+ 69.23 84.73 79.10 81.82 
MA-FCN 73.80 87.07 82.89 84.93 
BRRNet 73.25 - - 84.56 

Bias-UNet 73.49 83.34 86.15 84.72 
CBRNet 74.55 86.50 84.36 85.42 
MANet 70.76 82.00 83.77 82.88 
BANet 72.20 83.07 84.66 83.86 

DC-Swin 72.59 83.07 85.19 84.12 
BuildFormer 75.74 84.90 87.52 86.19 

 
TABLE VI 

QUANTITATIVE COMPARISON WITH STATE-OF-THE-ART METHODS ON THE WHU 
BUILDING DATASET. 

Method IoU Precision Recall F1 
CU-Net 87.10 94.60 91.70 93.13 
SiU-Net 88.40 93.80 93.90 93.85 
SRI-Net 89.23 95.67 93.69 94.51 
DE-Net 90.12 95.00 94.60 94.08 
EU-Net 90.56 94.98 95.10 95.04 

MA-FCN 90.70 95.20 95.10 95.15 
MAP-Net 90.86 95.62 94.81 95.21 
MSST-Net 88.00 - - 88.20 

STT 90.48 - - 94.97 
BuildFormer 91.44 95.40 95.65 95.53 

 
TABLE VⅡ 

QUANTITATIVE COMPARISON WITH STATE-OF-THE-ART METHODS ON THE 
INRIA AERIAL IMAGE LABELING DATASET. 

Method IoU Precision Recall F1 
U-Net 70.78 85.18 80.72 82.89 

SRI-Net 76.84 - - 86.32 
DS-Net 80.73 - - - 
BRRNet 77.05 - - 86.61 
SiU-Net 71.40 84.60 82.10 83.33 
CBRNet 81.10 89.93 89.20 89.56 

STT 79.42 - - 87.99 
SwinUperNet 79.53 87.55 89.67 88.60 
BuildFormer 81.44 88.81 90.75 89.77 

 
For the WHU building dataset, the proposed method yields 

the best IoU (91.44%), which not only exceeds the advanced 
CNN-based building extraction methods by more than 0.58% 
but also outperforms the recent Sparse Token Transformer 
(STT) by 0.96% (Table VI). For the Inria Aerial Image Labeling 
dataset, our approach still maintains the most advanced 
performance with 81.44% IoU and 89.77% F1 score (Table VII). 
The predicted results on these two datasets are shown in Fig.7. 
All results reveal the importance of global context for building 
extraction and the superiority of dual-path structure for Vision 
Transformer. 

VI. CONCLUSION 
In this paper, we proposed a novel Vision Transformer for 

building extraction from fine-resolution remote sensing images, 
namely the BuildFormer. Since both global context and spatial-
detailed context were crucial for precise building segmentation, 
we designed the BuildFormer based on the dual-path structure 
which could capture the global information and spatial details 
simultaneously. Furthermore, we proposed a window-based 
linear multi-head self-attention to reduce the complexity of the 
window-based multi-head self-attention into 𝑂𝑂(𝑁𝑁). Benefiting 
from this, the BuildFormer could apply large windows to 
enhance the global context modelling without resulting in high 
computation. An extensive ablation study evaluated the impact 
of each component of the BuildFormer and experimental results 
on the Massachusetts, WHU, and Inria building datasets 
demonstrated the superiority of the proposed method in 
comparison with state-of-the-art methods. 

TABLE Ⅳ 
THE ABLATION STUDY OF THE W-LMHSA WITH DIFFERENT WINDOW SIZES. * MEANS THE NETWORK RUNS OUT OF MEMORY. 

Global contextual path Window Size Complexity (M) Memory (MB) Parameter (M) Speed (FPS) IoU 

W-MHSA 

8 2.39 7477.36 

40.52 

16.73 72.70 
16 9.56 9301.36 14.98 73.56 
32 38.24 16597.36 10.28 * 
64 152.96 * * * 

W-LMHSA (ours) 

8 1.77 7060.89 

40.52 

17.03 74.83 
16 7.08 7032.99 17.17 75.74 
32 28.31 7024.14 17.18 75.59 
64 113.25 7022.16 17.04 75.36 
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