
graphile.org @GraphileHQ graphile team@graphile.org

PostGraphile instantly builds a best-practices GraphQL API from your PostgreSQL database.
By converting each GraphQL query tree into a single SQL statement, PostGraphile solves server-side under-
and over-fetching and eliminates the N+1 problem, leading to an incredibly high-performance GraphQL API.

PostGraphile is open source on GitHub, try it out today.

1

Row Level Security (RLS) was introduced in
PostgreSQL v9.5 (2015), finally giving the
database a much more flexible and granular
security model suitable for supporting any
number of users. With RLS, row access is
determined by policies containing SQL
expression, these policies run against each
database row and define if it can be seen
and/or written.

You can use "transaction variables" (local settings, cleared
when the transaction exits) to indicate the current user. It's
advisable to use a helper function ("viewer_id()") to avoid
repetition:

If there's a risk of someone gaining access to your DB, it's
advisable to use a session identifier rather than the user ID to
identify the user, this prevents the attacker from impersonating
another user.

CREATE FUNCTION viewer_id() RETURNS int AS $$
 SELECT nullif(
 current_setting('my_app.user_id', TRUE),
 ''
)::int;
$$ LANGUAGE sql STABLE;

CREATE POLICY name ON table_name
 [AS { PERMISSIVE | RESTRICTIVE }]
 [FOR { ALL | SELECT | INSERT | UPDATE | DELETE }
 [TO { role_name | PUBLIC | CURRENT_USER
|SESSION_USER } [, ...]]
 [USING (using_expression)]
 [WITH CHECK (check_expression)]

GRANT
 SELECT,
 INSERT (name, public),
 UPDATE (name, public),
 DELETE
ON albums
TO graphql_role;

Creating a policy: syntax
 The less commonly used parts are in green text.

AS determines how policies combine; all RESTRICTIVE
policies and at least one PERMISSIVE policy must pass for
a row to be accessed; PERMISSIVE is assumed by default.

FOR specifies which operations the policy applies to.

TO specifies the database roles this policy applies to;
by default it applies to PUBLIC (all roles).

USING acts as a hidden "WHERE" clause determining
which rows can be "seen" by the operation; it applies to
SELECT,UPDATE and DELETE.

WITH CHECK is similar to USING, but it is performed on
the new/updated row before it is written to the database;
it applies to INSERT and UPDATE. If WITH CHECK is omitted,
the USING clause will be used in its place.

Permissive policies - only one policy
must pass
Permissive RLS policies are effectively combined with boolean
OR, meaning only one needs to pass for a row to be operated
on. If there is no policy covering a table/operation then no
rows can be operated on. (Restrictive policies do the same,
but all must pass for a row to be operated on.)

Enabling RLS on a table
Once RLS is enabled on a table, only superusers and the table
owner may operate on rows within that table until a policy
grants access.

One role, millions of users
With RLS, one additional database role (e.g. our unprivileged
"graphql_role") can represent any number of users. We
still need to grant this role the ability to interact with the table:

(Note this role still cannot view or write rows until policies are
in place.)

ALTER TABLE albums ENABLE ROW LEVEL SECURITY;

PostgreSQL Row Level Security (RLS) Infosheet

graphile.org @GraphileHQ graphile team@graphile.org

PostGraphile instantly builds a best-practices GraphQL API from your PostgreSQL database.
By converting each GraphQL query tree into a single SQL statement, PostGraphile solves server-side under-
and over-fetching and eliminates the N+1 problem, leading to an incredibly high-performance GraphQL API.

PostGraphile is open source on GitHub, try it out today.

2

USING and WITH CHECK expressions
These SQL expressions run against each row to determine access,
they may contain subqueries and function calls.

-- Everyone can see public albums:
CREATE policy select_public ON albums
FOR SELECT USING (public IS TRUE);

-- You can always see your own albums:
CREATE policy select_own ON albums
FOR SELECT USING (owner_id = viewer_id());

-- You can see a photo if you can see
-- its album
CREATE POLICY select_where_album_visible
 ON photos FOR SELECT USING(
 EXISTS(
 SELECT 1
 FROM albums
 WHERE albums.id = photos.album_id
)
);

Beware stack exhaustion!
Subqueries in RLS policies respect the RLS policies of the
tables they reference. Cyclic dependencies risk infinite
recursion. To solve, use a function marked as SECURITY
DEFINER to bypass RLS. (This technique can also be used
to improve RLS policy performance.)

PostGraphile

PostgreSQL Row Level Security (RLS) Infosheet
Continued...

CREATE FUNCTION viewer_member_album_ids()
RETURNS SETOF int AS $$
 SELECT album_id
 FROM album_members
 WHERE user_id = viewer_id();
$$ LANGUAGE sql STABLE
SECURITY DEFINER; -- Bypass RLS

CREATE POLICY select_members ON albums
 FOR SELECT
 USING (
 id IN (SELECT viewer_member_album_ids())
);

BEGIN;
SET LOCAL role TO graphql_role;
SET LOCAL my_app.user_id TO '3';
SELECT viewer_id();
SELECT * FROM photos;
COMMIT;

Trying it out
You can see the effects of RLS in a simple transaction. Become
the unprivileged role ("graphql_role"), set your transaction
variables, and then perform your operations.

Notes...

