본문으로 이동

전집합

위키백과, 우리 모두의 백과사전.

함수해석학에서 전집합(全集合, 영어: total set)은 모든 벡터들을 선형 생성을 통하여 근사할 수 있는, 위상 벡터 공간부분 집합이다.

정의

[편집]

위상체 에 대한 위상 벡터 공간 부분 집합 가 다음 조건을 만족시키면, 전집합이라고 한다.

  • 선형 생성 조밀 집합이다. 즉, 임의의 및 영벡터의 근방 에 대하여, 인 유한 개의 벡터 및 스칼라 가 존재한다.

[편집]

모든 흡수 집합은 전집합이다. 특히, 영벡터의 근방은 항상 전집합이다.[1]:11, Definition 1, Example (1)

복소수 바나흐 공간 에서,

는 전집합이다 (스톤-바이어슈트라스 정리).[1]:11, Definition 1, Example (2)

마찬가지로, 복소수 바나흐 공간 에서,

는 전집합이다.[1]:11, Definition 1, Example (2)

참고 문헌

[편집]
  1. Bourbaki, Nicolas (2003). 《Elements of mathematics. Topological vector spaces. Chapters 1–5》 (영어) Softcover printing ofe 1 English of 1987판. Berlin: Springer. doi:10.1007/978-3-642-61715-7. ISBN 978-3-540-42338-6. Zbl 1115.46002.