Keras 3 API documentation / Keras Applications / InceptionResNetV2

InceptionResNetV2

[source]

InceptionResNetV2 function

keras.applications.InceptionResNetV2(
    include_top=True,
    weights="imagenet",
    input_tensor=None,
    input_shape=None,
    pooling=None,
    classes=1000,
    classifier_activation="softmax",
    name="inception_resnet_v2",
)

Instantiates the Inception-ResNet v2 architecture.

Reference

This function returns a Keras image classification model, optionally loaded with weights pre-trained on ImageNet.

For image classification use cases, see this page for detailed examples.

For transfer learning use cases, make sure to read the guide to transfer learning & fine-tuning.

Note: each Keras Application expects a specific kind of input preprocessing. For InceptionResNetV2, call keras.applications.inception_resnet_v2.preprocess_input on your inputs before passing them to the model. inception_resnet_v2.preprocess_input will scale input pixels between -1 and 1.

Arguments

  • include_top: whether to include the fully-connected layer at the top of the network.
  • weights: one of None (random initialization), "imagenet" (pre-training on ImageNet), or the path to the weights file to be loaded.
  • input_tensor: optional Keras tensor (i.e. output of layers.Input()) to use as image input for the model.
  • input_shape: optional shape tuple, only to be specified if include_top is False (otherwise the input shape has to be (299, 299, 3) (with 'channels_last' data format) or (3, 299, 299) (with 'channels_first' data format). It should have exactly 3 inputs channels, and width and height should be no smaller than 75. E.g. (150, 150, 3) would be one valid value.
  • pooling: Optional pooling mode for feature extraction when include_top is False.
    • None means that the output of the model will be the 4D tensor output of the last convolutional block.
    • 'avg' means that global average pooling will be applied to the output of the last convolutional block, and thus the output of the model will be a 2D tensor.
    • 'max' means that global max pooling will be applied.
  • classes: optional number of classes to classify images into, only to be specified if include_top is True, and if no weights argument is specified.
  • classifier_activation: A str or callable. The activation function to use on the "top" layer. Ignored unless include_top=True. Set classifier_activation=None to return the logits of the "top" layer. When loading pretrained weights, classifier_activation can only be None or "softmax".
  • name: The name of the model (string).

Returns

A model instance.