コンテンツにスキップ

うなり

出典: フリー百科事典『ウィキペディア(Wikipedia)』

うなり(唸り)とは、

  • 力んだり苦しんだりするときに喉元から出る、低く長い
  • 感心したときに、思わず、または意識的に発する低い声。→「大向うを唸らせる
  • 謡曲浪曲浄瑠璃などで、意図的に声を絞るようにして、低音で唄ったり語ったりするときの声。→白声も参照のこと
  • 物理学において、波動干渉により生じる現象。以下で詳述。

物理学におけるうなり英語: beat)とは、振動数(または周波数)がわずかに異なる2つの干渉して、振幅がゆっくり周期的に変わる合成波を生ずる現象を言う[1]

たとえば、ピッチがわずかに異なる二つの音波が鳴っているとき、各々の基音の周波数の差に相当する周期で音の強弱が聞かれる。このとき二つの音はひとつの音であるように聞こえるが、ピッチがある程度まで離れると両者は別の二音として聞こえる。

数学的な説明

[編集]

最も簡単な場合として、強さも位相も等しい二つのサイン波の合成を考える。角振動数ω[注 1]を中心に、前後に幅 2αだけ角振動数がずれた二つの音 sin (ω-α)t と sin (ω α)tt は時間)を合成すると、合成音は次のようになる(式の変形は三角関数を参照)。

この結果、合成音は角振動数ωの音の振幅が、角振動数 2αで変動するような波形となる[注 2]

[編集]

例えば、周波数が440 Hzの音に対し、人間にはひとつひとつの音圧の変化を聞き分けることはできない。しかし、438 Hzと442 Hzのうなりの周波数は4 Hz(1秒間に4回)であるので容易に聞き分けることができる。

上図では赤が周波数110 Hzの波、緑が周波数104 Hzの波、青が重ね合わせた波であり6 Hzのうなりが見られる。

脚注

[編集]

注釈

[編集]
  1. ^ ここでは数式が見やすくなるように角振動数ωを使ったが、周波数f は角振動数と ω = 2πf の関係があるので、周波数で考えても同じである。
  2. ^ cos の因子が正でも負でも振幅としては同じ効果を示すことに注意。

出典

[編集]
  1. ^ 徳岡善助 編『物理学概論 下』学術図書出版社、1988年、31頁。ISBN 4-87361-022-2 

参考文献

[編集]
  • Serway, R. A., Vuille, C. College Physics. Volume 1, Ninth Edition, Cengage Learning, 2011, p. 499.

関連項目

[編集]