r
=
x
2
a
2
{\displaystyle r={\sqrt {x^{2} a^{2}}}}
を含む無理関数
編集
∫
r
d
x
=
1
2
(
x
r
a
2
ln
(
x
r
)
)
{\displaystyle \int r\;dx={\frac {1}{2}}\left(xr a^{2}\,\ln \left(x r\right)\right)}
∫
r
3
d
x
=
1
4
x
r
3
3
8
a
2
x
r
3
8
a
4
ln
(
x
r
)
{\displaystyle \int r^{3}\;dx={\frac {1}{4}}xr^{3} {\frac {3}{8}}a^{2}xr {\frac {3}{8}}a^{4}\ln \left(x r\right)}
∫
r
5
d
x
=
1
6
x
r
5
5
24
a
2
x
r
3
5
16
a
4
x
r
5
16
a
6
ln
(
x
r
)
{\displaystyle \int r^{5}\;dx={\frac {1}{6}}xr^{5} {\frac {5}{24}}a^{2}xr^{3} {\frac {5}{16}}a^{4}xr {\frac {5}{16}}a^{6}\ln \left(x r\right)}
∫
x
r
d
x
=
r
3
3
{\displaystyle \int xr\;dx={\frac {r^{3}}{3}}}
∫
x
r
3
d
x
=
r
5
5
{\displaystyle \int xr^{3}\;dx={\frac {r^{5}}{5}}}
∫
x
r
2
n
1
d
x
=
r
2
n
3
2
n
3
{\displaystyle \int xr^{2n 1}\;dx={\frac {r^{2n 3}}{2n 3}}}
∫
x
2
r
d
x
=
x
r
3
4
−
a
2
x
r
8
−
a
4
8
ln
(
x
r
)
{\displaystyle \int x^{2}r\;dx={\frac {xr^{3}}{4}}-{\frac {a^{2}xr}{8}}-{\frac {a^{4}}{8}}\ln \left(x r\right)}
∫
x
2
r
3
d
x
=
x
r
5
6
−
a
2
x
r
3
24
−
a
4
x
r
16
−
a
6
16
ln
(
x
r
)
{\displaystyle \int x^{2}r^{3}\;dx={\frac {xr^{5}}{6}}-{\frac {a^{2}xr^{3}}{24}}-{\frac {a^{4}xr}{16}}-{\frac {a^{6}}{16}}\ln \left(x r\right)}
∫
x
3
r
d
x
=
r
5
5
−
a
2
r
3
3
{\displaystyle \int x^{3}r\;dx={\frac {r^{5}}{5}}-{\frac {a^{2}r^{3}}{3}}}
∫
x
3
r
3
d
x
=
r
7
7
−
a
2
r
5
5
{\displaystyle \int x^{3}r^{3}\;dx={\frac {r^{7}}{7}}-{\frac {a^{2}r^{5}}{5}}}
∫
x
3
r
2
n
1
d
x
=
r
2
n
5
2
n
5
−
a
3
r
2
n
3
2
n
3
{\displaystyle \int x^{3}r^{2n 1}\;dx={\frac {r^{2n 5}}{2n 5}}-{\frac {a^{3}r^{2n 3}}{2n 3}}}
∫
x
4
r
d
x
=
x
3
r
3
6
−
a
2
x
r
3
8
a
4
x
r
16
a
6
16
ln
(
x
r
)
{\displaystyle \int x^{4}r\;dx={\frac {x^{3}r^{3}}{6}}-{\frac {a^{2}xr^{3}}{8}} {\frac {a^{4}xr}{16}} {\frac {a^{6}}{16}}\ln \left(x r\right)}
∫
x
4
r
3
d
x
=
x
3
r
5
8
−
a
2
x
r
5
16
a
4
x
r
3
64
3
a
6
x
r
128
3
a
8
128
ln
(
x
r
)
{\displaystyle \int x^{4}r^{3}\;dx={\frac {x^{3}r^{5}}{8}}-{\frac {a^{2}xr^{5}}{16}} {\frac {a^{4}xr^{3}}{64}} {\frac {3a^{6}xr}{128}} {\frac {3a^{8}}{128}}\ln \left(x r\right)}
∫
x
5
r
d
x
=
r
7
7
−
2
a
2
r
5
5
a
4
r
3
3
{\displaystyle \int x^{5}r\;dx={\frac {r^{7}}{7}}-{\frac {2a^{2}r^{5}}{5}} {\frac {a^{4}r^{3}}{3}}}
∫
x
5
r
3
d
x
=
r
9
9
−
2
a
2
r
7
7
a
4
r
5
5
{\displaystyle \int x^{5}r^{3}\;dx={\frac {r^{9}}{9}}-{\frac {2a^{2}r^{7}}{7}} {\frac {a^{4}r^{5}}{5}}}
∫
x
5
r
2
n
1
d
x
=
r
2
n
7
2
n
7
−
2
a
2
r
2
n
5
2
n
5
a
4
r
2
n
3
2
n
3
{\displaystyle \int x^{5}r^{2n 1}\;dx={\frac {r^{2n 7}}{2n 7}}-{\frac {2a^{2}r^{2n 5}}{2n 5}} {\frac {a^{4}r^{2n 3}}{2n 3}}}
∫
r
d
x
x
=
r
−
a
ln
|
a
r
x
|
=
r
−
a
arsinh
a
x
{\displaystyle \int {\frac {r\;dx}{x}}=r-a\ln \left|{\frac {a r}{x}}\right|=r-a\,\operatorname {arsinh} {\frac {a}{x}}}
∫
r
3
d
x
x
=
r
3
3
a
2
r
−
a
3
ln
|
a
r
x
|
{\displaystyle \int {\frac {r^{3}\;dx}{x}}={\frac {r^{3}}{3}} a^{2}r-a^{3}\ln \left|{\frac {a r}{x}}\right|}
∫
r
5
d
x
x
=
r
5
5
a
2
r
3
3
a
4
r
−
a
5
ln
|
a
r
x
|
{\displaystyle \int {\frac {r^{5}\;dx}{x}}={\frac {r^{5}}{5}} {\frac {a^{2}r^{3}}{3}} a^{4}r-a^{5}\ln \left|{\frac {a r}{x}}\right|}
∫
r
7
d
x
x
=
r
7
7
a
2
r
5
5
a
4
r
3
3
a
6
r
−
a
7
ln
|
a
r
x
|
{\displaystyle \int {\frac {r^{7}\;dx}{x}}={\frac {r^{7}}{7}} {\frac {a^{2}r^{5}}{5}} {\frac {a^{4}r^{3}}{3}} a^{6}r-a^{7}\ln \left|{\frac {a r}{x}}\right|}
∫
d
x
r
=
arsinh
x
a
=
ln
(
x
r
a
)
{\displaystyle \int {\frac {dx}{r}}=\operatorname {arsinh} {\frac {x}{a}}=\ln \left({\frac {x r}{a}}\right)}
∫
d
x
r
3
=
x
a
2
r
{\displaystyle \int {\frac {dx}{r^{3}}}={\frac {x}{a^{2}r}}}
∫
x
d
x
r
=
r
{\displaystyle \int {\frac {x\,dx}{r}}=r}
∫
x
d
x
r
3
=
−
1
r
{\displaystyle \int {\frac {x\,dx}{r^{3}}}=-{\frac {1}{r}}}
∫
x
2
d
x
r
=
x
2
r
−
a
2
2
arsinh
x
a
=
x
2
r
−
a
2
2
ln
(
x
r
a
)
{\displaystyle \int {\frac {x^{2}\;dx}{r}}={\frac {x}{2}}r-{\frac {a^{2}}{2}}\,\operatorname {arsinh} {\frac {x}{a}}={\frac {x}{2}}r-{\frac {a^{2}}{2}}\ln \left({\frac {x r}{a}}\right)}
∫
d
x
x
r
=
−
1
a
arsinh
a
x
=
−
1
a
ln
|
a
r
x
|
{\displaystyle \int {\frac {dx}{xr}}=-{\frac {1}{a}}\,\operatorname {arsinh} {\frac {a}{x}}=-{\frac {1}{a}}\ln \left|{\frac {a r}{x}}\right|}
s
=
x
2
−
a
2
{\displaystyle s={\sqrt {x^{2}-a^{2}}}}
を含む無理関数
編集
u
=
a
2
−
x
2
{\displaystyle u={\sqrt {a^{2}-x^{2}}}}
を含む無理関数
編集
∫
u
d
x
=
1
2
(
x
u
a
2
arcsin
x
a
)
(
|
x
|
≤
|
a
|
)
{\displaystyle \int u\;dx={\frac {1}{2}}\left(xu a^{2}\arcsin {\frac {x}{a}}\right)\qquad {\mbox{(}}|x|\leq |a|{\mbox{)}}}
∫
x
u
d
x
=
−
1
3
u
3
(
|
x
|
≤
|
a
|
)
{\displaystyle \int xu\;dx=-{\frac {1}{3}}u^{3}\qquad {\mbox{(}}|x|\leq |a|{\mbox{)}}}
∫
x
2
u
d
x
=
−
x
4
u
3
a
2
8
(
x
u
a
2
arcsin
x
a
)
(
|
x
|
≤
|
a
|
)
{\displaystyle \int x^{2}u\;dx=-{\frac {x}{4}}u^{3} {\frac {a^{2}}{8}}(xu a^{2}\arcsin {\frac {x}{a}})\qquad {\mbox{(}}|x|\leq |a|{\mbox{)}}}
∫
u
d
x
x
=
u
−
a
ln
|
a
u
x
|
(
|
x
|
≤
|
a
|
)
{\displaystyle \int {\frac {u\;dx}{x}}=u-a\ln \left|{\frac {a u}{x}}\right|\qquad {\mbox{(}}|x|\leq |a|{\mbox{)}}}
∫
d
x
u
=
arcsin
x
a
(
|
x
|
≤
|
a
|
)
{\displaystyle \int {\frac {dx}{u}}=\arcsin {\frac {x}{a}}\qquad {\mbox{(}}|x|\leq |a|{\mbox{)}}}
∫
x
2
d
x
u
=
1
2
(
−
x
u
a
2
arcsin
x
a
)
(
|
x
|
≤
|
a
|
)
{\displaystyle \int {\frac {x^{2}\;dx}{u}}={\frac {1}{2}}\left(-xu a^{2}\arcsin {\frac {x}{a}}\right)\qquad {\mbox{(}}|x|\leq |a|{\mbox{)}}}
∫
u
d
x
=
1
2
(
x
u
−
sgn
x
arcosh
|
x
a
|
)
(for
|
x
|
≥
|
a
|
)
{\displaystyle \int u\;dx={\frac {1}{2}}\left(xu-\operatorname {sgn} x\,\operatorname {arcosh} \left|{\frac {x}{a}}\right|\right)\qquad {\mbox{(for }}|x|\geq |a|{\mbox{)}}}
∫
x
u
d
x
=
−
u
(
|
x
|
≤
|
a
|
)
{\displaystyle \int {\frac {x}{u}}\;dx=-u\qquad {\mbox{(}}|x|\leq |a|{\mbox{)}}}
R
=
a
x
2
b
x
c
{\displaystyle R={\sqrt {ax^{2} bx c}}}
を含む無理関数
編集
(ax 2 bx c )は、任意のp , q に対して(px q )2 より小さくなることはないということを前提とする。
∫
d
x
R
=
1
a
ln
|
2
a
R
2
a
x
b
|
(for
a
>
0
)
{\displaystyle \int {\frac {dx}{R}}={\frac {1}{\sqrt {a}}}\ln \left|2{\sqrt {a}}R 2ax b\right|\qquad {\mbox{(for }}a>0{\mbox{)}}}
∫
d
x
R
=
1
a
arsinh
2
a
x
b
4
a
c
−
b
2
(for
a
>
0
,
4
a
c
−
b
2
>
0
)
{\displaystyle \int {\frac {dx}{R}}={\frac {1}{\sqrt {a}}}\,\operatorname {arsinh} {\frac {2ax b}{\sqrt {4ac-b^{2}}}}\qquad {\mbox{(for }}a>0{\mbox{, }}4ac-b^{2}>0{\mbox{)}}}
∫
d
x
R
=
1
a
ln
|
2
a
x
b
|
(for
a
>
0
,
4
a
c
−
b
2
=
0
)
{\displaystyle \int {\frac {dx}{R}}={\frac {1}{\sqrt {a}}}\ln |2ax b|\quad {\mbox{(for }}a>0{\mbox{, }}4ac-b^{2}=0{\mbox{)}}}
∫
d
x
R
=
−
1
−
a
arcsin
2
a
x
b
b
2
−
4
a
c
(for
a
<
0
,
4
a
c
−
b
2
<
0
,
|
2
a
x
b
|
<
b
2
−
4
a
c
)
{\displaystyle \int {\frac {dx}{R}}=-{\frac {1}{\sqrt {-a}}}\arcsin {\frac {2ax b}{\sqrt {b^{2}-4ac}}}\qquad {\mbox{(for }}a<0{\mbox{, }}4ac-b^{2}<0{\mbox{, }}\left|2ax b\right|<{\sqrt {b^{2}-4ac}}{\mbox{)}}}
∫
d
x
R
3
=
4
a
x
2
b
(
4
a
c
−
b
2
)
R
{\displaystyle \int {\frac {dx}{R^{3}}}={\frac {4ax 2b}{(4ac-b^{2})R}}}
∫
d
x
R
5
=
4
a
x
2
b
3
(
4
a
c
−
b
2
)
R
(
1
R
2
8
a
4
a
c
−
b
2
)
{\displaystyle \int {\frac {dx}{R^{5}}}={\frac {4ax 2b}{3(4ac-b^{2})R}}\left({\frac {1}{R^{2}}} {\frac {8a}{4ac-b^{2}}}\right)}
∫
d
x
R
2
n
1
=
2
(
2
n
−
1
)
(
4
a
c
−
b
2
)
(
2
a
x
b
R
2
n
−
1
4
a
(
n
−
1
)
∫
d
x
R
2
n
−
1
)
{\displaystyle \int {\frac {dx}{R^{2n 1}}}={\frac {2}{(2n-1)(4ac-b^{2})}}\left({\frac {2ax b}{R^{2n-1}}} 4a(n-1)\int {\frac {dx}{R^{2n-1}}}\right)}
∫
x
R
d
x
=
R
a
−
b
2
a
∫
d
x
R
{\displaystyle \int {\frac {x}{R}}\;dx={\frac {R}{a}}-{\frac {b}{2a}}\int {\frac {dx}{R}}}
∫
x
R
3
d
x
=
−
2
b
x
4
c
(
4
a
c
−
b
2
)
R
{\displaystyle \int {\frac {x}{R^{3}}}\;dx=-{\frac {2bx 4c}{(4ac-b^{2})R}}}
∫
x
R
2
n
1
d
x
=
−
1
(
2
n
−
1
)
a
R
2
n
−
1
−
b
2
a
∫
d
x
R
2
n
1
{\displaystyle \int {\frac {x}{R^{2n 1}}}\;dx=-{\frac {1}{(2n-1)aR^{2n-1}}}-{\frac {b}{2a}}\int {\frac {dx}{R^{2n 1}}}}
∫
d
x
x
R
=
−
1
c
ln
(
2
c
R
b
x
2
c
x
)
{\displaystyle \int {\frac {dx}{xR}}=-{\frac {1}{\sqrt {c}}}\ln \left({\frac {2{\sqrt {c}}R bx 2c}{x}}\right)}
∫
d
x
x
R
=
−
1
c
arsinh
(
b
x
2
c
|
x
|
4
a
c
−
b
2
)
{\displaystyle \int {\frac {dx}{xR}}=-{\frac {1}{\sqrt {c}}}\operatorname {arsinh} \left({\frac {bx 2c}{|x|{\sqrt {4ac-b^{2}}}}}\right)}
S
=
a
x
b
{\displaystyle S={\sqrt {ax b}}}
を含む無理関数
編集
∫
S
d
x
=
2
S
3
3
a
{\displaystyle \int S{dx}={\frac {2S^{3}}{3a}}}
∫
d
x
S
=
2
S
a
{\displaystyle \int {\frac {dx}{S}}={\frac {2S}{a}}}
∫
d
x
x
S
=
{
−
2
b
a
r
c
o
t
h
(
S
b
)
(for
b
>
0
,
a
x
>
0
)
−
2
b
a
r
t
a
n
h
(
S
b
)
(for
b
>
0
,
a
x
<
0
)
2
−
b
arctan
(
S
−
b
)
(for
b
<
0
)
{\displaystyle \int {\frac {dx}{xS}}={\begin{cases}-{\frac {2}{\sqrt {b}}}\mathrm {arcoth} \left({\frac {S}{\sqrt {b}}}\right)&{\mbox{(for }}b>0,\quad ax>0{\mbox{)}}\\-{\frac {2}{\sqrt {b}}}\mathrm {artanh} \left({\frac {S}{\sqrt {b}}}\right)&{\mbox{(for }}b>0,\quad ax<0{\mbox{)}}\\{\frac {2}{\sqrt {-b}}}\arctan \left({\frac {S}{\sqrt {-b}}}\right)&{\mbox{(for }}b<0{\mbox{)}}\\\end{cases}}}
∫
S
x
d
x
=
{
2
(
S
−
b
a
r
c
o
t
h
(
S
b
)
)
(for
b
>
0
,
a
x
>
0
)
2
(
S
−
b
a
r
t
a
n
h
(
S
b
)
)
(for
b
>
0
,
a
x
<
0
)
2
(
S
−
−
b
arctan
(
S
−
b
)
)
(for
b
<
0
)
{\displaystyle \int {\frac {S}{x}}\,dx={\begin{cases}2\left(S-{\sqrt {b}}\,\mathrm {arcoth} \left({\frac {S}{\sqrt {b}}}\right)\right)&{\mbox{(for }}b>0,\quad ax>0{\mbox{)}}\\2\left(S-{\sqrt {b}}\,\mathrm {artanh} \left({\frac {S}{\sqrt {b}}}\right)\right)&{\mbox{(for }}b>0,\quad ax<0{\mbox{)}}\\2\left(S-{\sqrt {-b}}\arctan \left({\frac {S}{\sqrt {-b}}}\right)\right)&{\mbox{(for }}b<0{\mbox{)}}\\\end{cases}}}
∫
x
n
S
d
x
=
2
a
(
2
n
1
)
(
x
n
S
−
b
n
∫
x
n
−
1
S
d
x
)
{\displaystyle \int {\frac {x^{n}}{S}}dx={\frac {2}{a(2n 1)}}\left(x^{n}S-bn\int {\frac {x^{n-1}}{S}}dx\right)}
∫
x
n
S
d
x
=
2
a
(
2
n
3
)
(
x
n
S
3
−
n
b
∫
x
n
−
1
S
d
x
)
{\displaystyle \int x^{n}Sdx={\frac {2}{a(2n 3)}}\left(x^{n}S^{3}-nb\int x^{n-1}Sdx\right)}
∫
1
x
n
S
d
x
=
−
1
b
(
n
−
1
)
(
S
x
n
−
1
(
n
−
3
2
)
a
∫
d
x
x
n
−
1
S
)
{\displaystyle \int {\frac {1}{x^{n}S}}dx=-{\frac {1}{b(n-1)}}\left({\frac {S}{x^{n-1}}} \left(n-{\frac {3}{2}}\right)a\int {\frac {dx}{x^{n-1}S}}\right)}
S. Gradshteyn (И.С. Градштейн), I.M. Ryzhik (И.М. Рыжик); Alan Jeffrey, Daniel Zwillinger, editors. Table of Integrals, Series, and Products, seventh edition. Academic Press, 2007. ISBN 978-0-12-373637-6 . Errata. (Several previous editions as well.)