Vai al contenuto

Epsilon zero

Da Wikipedia, l'enciclopedia libera.
Disambiguazione – Se stai cercando la costante fisica, vedi costante dielettrica del vuoto.

In matematica, ε0 è il più piccolo numero transfinito che non può essere raggiunto partendo da 0 ed eseguendo un numero finito di operazioni di addizioni di numeri ordinali più l'operazione α→ωα, dove ω è il numero ordinale transfinito più piccolo.

È dato da

ovvero il limite della sequenza

La sua forma normale di Cantor è

I numeri che hanno questa caratteristica (cioè i tali che ) sono detti numeri epsilon; il più piccolo di questi è appunto , mentre il -esimo è denotato da .

L'ordinale ε0 è numerabile (esistono anche ordinali non numerabili).

Questo ordinale è importante in molte dimostrazioni per induzione, in quanto in molti casi l'induzione transfinita è richiesta solamente fino a ε0 (come ad esempio nel teorema di Goodstein). È stato usato da Gerhard Gentzen per dimostrare la coerenza dell'aritmetica di Peano: insieme al secondo teorema di incompletezza di Gödel, questo dimostra che l'aritmetica di Peano non può provare la sua fondatezza (è l'ultimo ordinale con questa proprietà: per questo nell'analisi degli ordinali è usata come misura della forza della teoria dell'aritmetica di Peano).

Questo simbolo fu ideato dal matematico tedesco Georg Cantor.

Alberi con radice

[modifica | modifica wikitesto]

Gli alberi finiti con radice possono essere usati per rappresentare tutti gli ordinali inferiori a ε0 nel seguente modo. Un albero finito con radice T rappresenta l'ordinale dove α1≥....≥αn sono gli ordinali rappresentati dagli n≥0 alberi con radice ottenuti cancellando la radice di T e gli archi ad essa collegati.

Voci correlate

[modifica | modifica wikitesto]