
MAWK(1) User commands MAWK(1)

NAME
mawk − pattern scanning and text processing language

SYNOPSIS
mawk [−W option] [−F value] [−v var=value] [− −] ’program text’ [file ...]
mawk [−W option] [−F value] [−v var=value] [−f program-file] [− −] [file ...]

DESCRIPTION
mawk is an interpreter for the AWK Programming Language. The AWK language is useful for manipula-
tion of data files, text retrieval and processing, and for prototyping and experimenting with algorithms.
mawk is a new awk meaning it implements the AWK language as defined in Aho, Kernighan and Wein-
berger, The AWK Programming Language, Addison-Wesley Publishing, 1988 (hereafter referred to as the
AWK book.) mawk conforms to the POSIX 1003.2 (draft 11.3) definition of the AWK language which
contains a few features not described in the AWK book, and mawk provides a small number of extensions.

An AWK program is a sequence of pattern {action} pairs and function definitions. Short programs are en-
tered on the command line usually enclosed in ’ ’ to avoid shell interpretation. Longer programs can be
read in from a file with the −f option. Data input is read from the list of files on the command line or from
standard input when the list is empty. The input is broken into records as determined by the record separa-
tor variable, RS. Initially, RS = “\n” and records are synonymous with lines. Each record is compared
against each pattern and if it matches, the program text for {action} is executed.

OPTIONS
−F value sets the field separator, FS, to value.

−f file Program text is read from file instead of from the command line. Multiple −f options are
allowed.

−v var=value assigns value to program variable var.

− − indicates the unambiguous end of options.

The above options will be available with any POSIX compatible implementation of AWK. Implementation
specific options are prefaced with −W. mawk provides these:

−W dump
writes an assembler like listing of the internal representation of the program to stdout and exits 0
(on successful compilation).

−W exec file

Program text is read from file and this is the last option.

This is a useful alternative to −f on systems that support the #! “magic number” convention for
executable scripts. Those implicitly pass the pathname of the script itself as the final parameter,
and expect no more than one “−” option on the #! line. Because mawk can combine multiple −W

options separated by commas, you can use this option when an additional −W option is needed.

−W help
prints a usage message to stderr and exits (same as “−W usage”).

−W interactive
sets unbuffered writes to stdout and line buffered reads from stdin. Records from stdin are lines
regardless of the value of RS.

−W posix
modifies mawk’s behavior to be more POSIX-compliant:

• forces mawk not to consider ’\n’ to be space.

The original “posix_space” is recognized, but deprecated.

−W random=num

calls srand with the given parameter (and overrides the auto-seeding behavior).

Version 1.3.4 2024-09-05 1

MAWK(1) User commands MAWK(1)

−W sprintf=num

adjusts the size of mawk’s internal sprintf buffer to num bytes. More than rare use of this option
indicates mawk should be recompiled.

−W traditional
Omit features such as interval expressions which were not supported by traditional awk.

−W usage
prints a usage message to stderr and exits (same as “−W help”).

−W version
mawk writes its version and copyright to stdout and compiled limits to stderr and exits 0.

mawk accepts abbreviations for any of these options, e.g., “−W v” and “−Wv” both tell mawk to show its
version.

mawk allows multiple −W options to be combined by separating the options with commas, e.g.,
−Wsprint=2000,posix. This is useful for executable #! “magic number” invocations in which only one ar-
gument is supported, e.g., −Winteractive,exec.

THE AWK LANGUAGE
1. Program structure

An AWK program is a sequence of pattern {action} pairs and user function definitions.

A pattern can be:
BEGIN

END

expression
expression , expression

One, but not both, of pattern {action} can be omitted. If {action} is omitted it is implicitly { print }. If pat-

tern is omitted, then it is implicitly matched. BEGIN and END patterns require an action.

Statements are terminated by newlines, semi-colons or both. Groups of statements such as actions or loop
bodies are blocked via { ... } as in C. The last statement in a block doesn’t need a terminator. Blank lines
have no meaning; an empty statement is terminated with a semi-colon. Long statements can be continued
with a backslash, \ . A statement can be broken without a backslash after a comma, left brace, &&, ||, do,
else, the right parenthesis of an if, while or for statement, and the right parenthesis of a function definition.
A comment starts with # and extends to, but does not include the end of line.

The following statements control program flow inside blocks.

if (expr) statement

if (expr) statement else statement

while (expr) statement

do statement while (expr)

for (opt_expr ; opt_expr ; opt_expr) statement

for (var in array) statement

continue

break

2. Data types, conversion and comparison

There are two basic data types, numeric and string. Numeric constants can be integer like −2, decimal like
1.08, or in scientific notation like −1.1e4 or .28E−3. All numbers are represented internally and all compu-
tations are done in floating point arithmetic. So for example, the expression 0.2e2 == 20 is true and true is
represented as 1.0.

String constants are enclosed in double quotes.

Version 1.3.4 2024-09-05 2

MAWK(1) User commands MAWK(1)

"This is a string with a newline at the end.\n"

Strings can be continued across a line by escaping (\) the newline. The following escape sequences are rec-
ognized.

\\ \
\" "
\a alert, ascii 7
\b backspace, ascii 8
\t tab, ascii 9
\n newline, ascii 10
\v vertical tab, ascii 11
\f formfeed, ascii 12
\r carriage return, ascii 13
\ddd 1, 2 or 3 octal digits for ascii ddd
\xhh 1 or 2 hex digits for ascii hh

If you escape any other character \c, you get \c, i.e., mawk ignores the escape.

There are really three basic data types; the third is number and string which has both a numeric value and a
string value at the same time. User defined variables come into existence when first referenced and are ini-
tialized to null, a number and string value which has numeric value 0 and string value "". Non-trivial num-
ber and string typed data come from input and are typically stored in fields. (See section 4).

The type of an expression is determined by its context and automatic type conversion occurs if needed. For
example, to evaluate the statements

y = x + 2 ; z = x "hello"

The value stored in variable y will be typed numeric. If x is not numeric, the value read from x is converted
to numeric before it is added to 2 and stored in y. The value stored in variable z will be typed string, and
the value of x will be converted to string if necessary and concatenated with "hello". (Of course, the value
and type stored in x is not changed by any conversions.) A string expression is converted to numeric using
its longest numeric prefix as with atof(3). A numeric expression is converted to string by replacing expr

with sprintf(CONVFMT, expr), unless expr can be represented on the host machine as an exact integer
then it is converted to sprintf("%d", expr). Sprintf() is an AWK built-in that duplicates the functionality of
sprintf(3), and CONVFMT is a built-in variable used for internal conversion from number to string and
initialized to "%.6g". Explicit type conversions can be forced, expr "" is string and expr+0 is numeric.

To evaluate, expr
1

rel-op expr
2
, if both operands are numeric or number and string then the comparison is

numeric; if both operands are string the comparison is string; if one operand is string, the non-string oper-
and is converted and the comparison is string. The result is numeric, 1 or 0.

In boolean contexts such as, if (expr) statement, a string expression evaluates true if and only if it is not
the empty string ""; numeric values if and only if not numerically zero.

3. Regular expressions

In the AWK language, records, fields and strings are often tested for matching a regular expression. Regu-
lar expressions are enclosed in slashes, and

expr ˜ /r/

is an AWK expression that evaluates to 1 if expr “matches” r, which means a substring of expr is in the set
of strings defined by r. With no match the expression evaluates to 0; replacing ˜ with the “not match” oper-
ator, !˜ , rev erses the meaning. As pattern-action pairs,

/r/ { action } and $0 ˜ /r/ { action }

Version 1.3.4 2024-09-05 3

MAWK(1) User commands MAWK(1)

are the same, and for each input record that matches r, action is executed. In fact, /r/ is an AWK expres-
sion that is equivalent to ($0 ˜ /r/) anywhere except when on the right side of a match operator or passed as
an argument to a built-in function that expects a regular expression argument.

AWK uses extended regular expressions as with the −E option of grep(1). The regular expression
metacharacters, i.e., those with special meaning in regular expressions are

\ ˆ $. [] | () * + ? { }

If the command line option -W traditional is used, these are omitted:

{ }

are also regular expression metacharacters, and in this mode, require escaping to be a literal character.

Regular expressions are built up from characters as follows:

c matches any non-metacharacter c.

\c matches a character defined by the same escape sequences used in string constants or the
literal character c if \c is not an escape sequence.

. matches any character (including newline).

ˆ matches the front of a string.

$ matches the back of a string.

[c
1
c
2
c
3
...] matches any character in the class c

1
c
2
c
3
... . An interval of characters is denoted c

1
−c

2
inside a class [...].

[ˆc
1
c
2
c
3
...] matches any character not in the class c

1
c
2
c
3
...

Regular expressions are built up from other regular expressions as follows:

r
1
r
2

matches r
1

followed immediately by r
2

(concatenation).

r
1

| r
2

matches r
1

or r
2

(alternation).

r* matches r repeated zero or more times.

r+ matches r repeated one or more times.

r? matches r zero or once. (repetition).

(r) matches r (grouping).

r{n} matches r exactly n times.

r{n,} matches r repeated n or more times.

r{n,m} matches r repeated n to m (inclusive) times.

r{,m} matches r repeated 0 to m times (a non-standard option).

The increasing precedence of operators is:

alternation concatenation repetition grouping

For example,

/ˆ[_a−zA−Z][_a−zA−Z0−9]*$/ and

Version 1.3.4 2024-09-05 4

MAWK(1) User commands MAWK(1)

/ˆ[−+]?([0−9]+\ .?|\ .[0−9])[0−9]*([eE][−+]?[0−9]+)?$/

are matched by AWK identifiers and AWK numeric constants respectively. Note that “.” has to be escaped
to be recognized as a decimal point, and that metacharacters are not special inside character classes.

Any expression can be used on the right hand side of the ˜ or !˜ operators or passed to a built-in that expects
a regular expression. If needed, it is converted to string, and then interpreted as a regular expression. For
example,

BEGIN { identifier = "[_a−zA−Z][_a−zA−Z0−9]*" }

$0 ˜ "ˆ" identifier

prints all lines that start with an AWK identifier.

mawk recognizes the empty regular expression, // , which matches the empty string and hence is matched
by any string at the front, back and between every character. For example,

echo abc | mawk ’{ gsub(//, "X")’ ; print }
XaXbXcX

4. Records and fields

Records are read in one at a time, and stored in the field variable $0. The record is split into fields which
are stored in $1, $2, ..., $NF. The built-in variable NF is set to the number of fields, and NR and FNR are
incremented by 1. Fields above $NF are set to "".

Assignment to $0 causes the fields and NF to be recomputed. Assignment to NF or to a field causes $0 to
be reconstructed by concatenating the $i’s separated by OFS. Assignment to a field with index greater than
NF, increases NF and causes $0 to be reconstructed.

Data input stored in fields is string, unless the entire field has numeric form and then the type is number and
string. For example,

echo 24 24E |
mawk ’{ print($1>100, $1>"100", $2>100, $2>"100") }’
0 1 1 1

$0 and $2 are string and $1 is number and string. The first comparison is numeric, the second is string, the
third is string (100 is converted to "100"), and the last is string.

5. Expressions and operators

The expression syntax is similar to C. Primary expressions are numeric constants, string constants, vari-
ables, fields, arrays and function calls. The identifier for a variable, array or function can be a sequence of
letters, digits and underscores, that does not start with a digit. Variables are not declared; they exist when
first referenced and are initialized to null.

New expressions are composed with the following operators in order of increasing precedence.

assignment = += −= *= /= %= ˆ=

conditional ? :

logical or ||

logical and &&

array membership in

matching ˜ !˜

relational < > <= >= == !=

concatenation (no explicit operator)

add ops + −

Version 1.3.4 2024-09-05 5

MAWK(1) User commands MAWK(1)

mul ops * / %

unary + −

logical not !

exponentiation ˆ

inc and dec ++ − − (both post and pre)

field $

Assignment, conditional and exponentiation associate right to left; the other operators associate left to right.
Any expression can be parenthesized.

6. Arrays

Awk provides one-dimensional arrays. Array elements are expressed as array[expr]. Expr is internally
converted to string type, so, for example, A[1] and A["1"] are the same element and the actual index is "1".
Arrays indexed by strings are called associative arrays. Initially an array is empty; elements exist when first
accessed. An expression, expr in array evaluates to 1 if array[expr] exists, else to 0.

There is a form of the for statement that loops over each index of an array.

for (var in array) statement

sets var to each index of array and executes statement. The order that var transverses the indices of array

is not defined.

The statement, delete array[expr], causes array[expr] not to exist. mawk supports the delete array fea-
ture, which deletes all elements of array.

Multidimensional arrays are synthesized with concatenation using the built-in variable SUBSEP. ar-

ray[expr
1
, expr

2
] is equivalent to array[expr

1
SUBSEP expr

2
]. Testing for a multidimensional element

uses a parenthesized index, such as

if ((i, j) in A) print A[i, j]

7. Builtin-variables

The following variables are built-in and initialized before program execution.

ARGC number of command line arguments.

ARGV array of command line arguments, 0..ARGC−1.

CONVFMT

format for internal conversion of numbers to string, initially = "%.6g".

ENVIRON

array indexed by environment variables. An environment string, var=value is stored as EN-

VIRON[var] = value.

FILENAME

name of the current input file.

FNR current record number in FILENAME.

FS splits records into fields as a regular expression.

NF number of fields in the current record.

NR current record number in the total input stream.

OFMT format for printing numbers; initially = "%.6g".

OFS inserted between fields on output, initially = " ".

ORS terminates each record on output, initially = "\n".

Version 1.3.4 2024-09-05 6

MAWK(1) User commands MAWK(1)

RLENGTH

length set by the last call to the built-in function, match().

RS input record separator, initially = "\n".

RSTART

index set by the last call to match().

SUBSEP

used to build multiple array subscripts, initially = "\034".

8. Built-in functions

String functions

gsub(r,s,t) gsub(r,s)
Global substitution, every match of regular expression r in variable t is replaced by string s.
The number of replacements is returned. If t is omitted, $0 is used. An & in the replace-
ment string s is replaced by the matched substring of t. \& and \\ put literal & and \, respec-
tively, in the replacement string.

index(s,t)
If t is a substring of s, then the position where t starts is returned, else 0 is returned. The
first character of s is in position 1.

length(s)
Returns the length of string or array s.

match(s,r)
Returns the index of the first longest match of regular expression r in string s. Returns 0 if
no match. As a side effect, RSTART is set to the return value. RLENGTH is set to the
length of the match or −1 if no match. If the empty string is matched, RLENGTH is set to
0, and 1 is returned if the match is at the front, and length(s)+1 is returned if the match is at
the back.

split(s,A,r) split(s,A)
String s is split into fields by regular expression r and the fields are loaded into array A.
The number of fields is returned. See section 11 below for more detail. If r is omitted, FS

is used.

sprintf(format,expr-list)
Returns a string constructed from expr-list according to format. See the description of
printf() below.

sub(r,s,t) sub(r,s)
Single substitution, same as gsub() except at most one substitution.

substr(s,i,n) substr(s,i)
Returns the substring of string s, starting at index i, of length n. If n is omitted, the suffix of
s, starting at i is returned.

tolower(s)
Returns a copy of s with all upper case characters converted to lower case.

toupper(s)
Returns a copy of s with all lower case characters converted to upper case.

Time functions

These are available on systems which support the corresponding C mktime and strftime functions:

mktime(specification)
converts a date specification to a timestamp with the same units as systime. The date speci-
fication is a string containing the components of the date as decimal integers:

Version 1.3.4 2024-09-05 7

MAWK(1) User commands MAWK(1)

YYYY

the year, e.g., 2012

MM

the month of the year starting at 1

DD

the day of the month starting at 1

HH

hour (0-23)

MM

minute (0-59)

SS

seconds (0-59)

DST

tells how to treat timezone versus daylight savings time:

positive
DST is in effect

zero (default)
DST is not in effect

negative
mktime() should (use timezone information and system databases to) attempt to
determine whether DST is in effect at the specified time.

strftime([format [, timestamp [, utc]]])
formats the given timestamp using the format (passed to the C strftime function):

• If the format parameter is missing, "%c" is used.

• If the timestamp parameter is missing, the current value from systime is used.

• If the utc parameter is present and nonzero, the result is in UTC. Otherwise local time is
used.

systime()
returns the current time of day as the number of seconds since the Epoch (1970-01-01
00:00:00 UTC on POSIX systems).

Arithmetic functions

atan2(y,x)
Arctan of y/x between −π and π.

cos(x) Cosine function, x in radians.

exp(x) Exponential function.

int(x) Returns x truncated towards zero.

log(x) Natural logarithm.

rand() Returns a random number between zero and one.

sin(x) Sine function, x in radians.

sqrt(x) Returns square root of x.

srand(expr)

srand() Seeds the random number generator, using the clock if expr is omitted, and returns the value
of the previous seed. Srand(expr) is useful for repeating pseudo random sequences.

Version 1.3.4 2024-09-05 8

MAWK(1) User commands MAWK(1)

Note: mawk is normally configured to seed the random number generator from the clock at
startup, making it unnecessary to call srand(). This feature can be suppressed via condi-
tional compile, or overridden using the −Wrandom option.

9. Input and output

There are two output statements, print and printf.

print writes $0 ORS to standard output.

print expr
1
, expr

2
, ..., expr

n
writes expr

1
OFS expr

2
OFS ... expr

n
ORS to standard output. Numeric expressions are

converted to string with OFMT.

printf format, expr-list

duplicates the printf C library function writing to standard output. The complete ANSI C
format specifications are recognized with conversions %c, %d, %e, %E, %f, %g, %G, %i,
%o, %s, %u, %x, %X and %%, and conversion qualifiers h and l.

The argument list to print or printf can optionally be enclosed in parentheses. Print formats numbers using
OFMT or "%d" for exact integers. "%c" with a numeric argument prints the corresponding 8 bit character,
with a string argument it prints the first character of the string. The output of print and printf can be redi-
rected to a file or command by appending > file, >> file or | command to the end of the print statement.
Redirection opens file or command only once, subsequent redirections append to the already open stream.
By convention, mawk associates the filename

• "/dev/stderr" with stderr,

• "/dev/stdout" with stdout,

• "−" and "/dev/stdin" with stdin.

The association with stderr is especially useful because it allows print and printf to be redirected to stderr.
These names can also be passed to functions.

The input function getline has the following variations.

getline reads into $0, updates the fields, NF, NR and FNR.

getline < file

reads into $0 from file, updates the fields and NF.

getline var

reads the next record into var, updates NR and FNR.

getline var < file

reads the next record of file into var.

command | getline
pipes a record from command into $0 and updates the fields and NF.

command | getline var

pipes a record from command into var.

Getline returns 0 on end-of-file, −1 on error, otherwise 1.

Commands on the end of pipes are executed by /bin/sh.

The function close(expr) closes the file or pipe associated with expr. Close returns 0 if expr is an open file,
the exit status if expr is a piped command, and −1 otherwise. Close is used to reread a file or command,
make sure the other end of an output pipe is finished or conserve file resources.

The function fflush(expr) flushes the output file or pipe associated with expr. Fflush returns 0 if expr is an
open output stream else −1. Fflush without an argument flushes stdout. Fflush with an empty argument
("") flushes all open output.

The function system(expr) uses the C runtime system call to execute expr and returns the corresponding
wait status of the command as follows:

Version 1.3.4 2024-09-05 9

MAWK(1) User commands MAWK(1)

• if the system call failed, setting the status to -1, mawk returns that value.

• if the command exited normally, mawk returns its exit-status.

• if the command exited due to a signal such as SIGHUP, mawk returns the signal number plus 256.

Changes made to the ENVIRON array are not passed to commands executed with system or pipes.

10. User defined functions

The syntax for a user defined function is

function name(args) { statements }

The function body can contain a return statement

return opt_expr

A return statement is not required. Function calls may be nested or recursive. Functions are passed expres-
sions by value and arrays by reference. Extra arguments serve as local variables and are initialized to null.
For example, csplit(s, A) puts each character of s into array A and returns the length of s.

function csplit(s, A, n, i)
{
n = length(s)
for(i = 1 ; i <= n ; i++) A[i] = substr(s, i, 1)
return n

}

Putting extra space between passed arguments and local variables is conventional. Functions can be refer-
enced before they are defined, but the function name and the ’(’ of the arguments must touch to avoid con-
fusion with concatenation.

A function parameter is normally a scalar value (number or string). If there is a forward reference to a
function using an array as a parameter, the function’s corresponding parameter will be treated as an array.

11. Splitting strings, records and files

Awk programs use the same algorithm to split strings into arrays with split(), and records into fields on FS.
mawk uses essentially the same algorithm to split files into records on RS.

Split(expr, A, sep) works as follows:

(1) If sep is omitted, it is replaced by FS. Sep can be an expression or regular expression. If it is an
expression of non-string type, it is converted to string.

(2) If sep = " " (a single space), then <SPACE> is trimmed from the front and back of expr, and sep

becomes <SPACE>. mawk defines <SPACE> as the regular expression /[\t\n]+/. Otherwise sep

is treated as a regular expression, except that meta-characters are ignored for a string of length 1,
e.g., split(x, A, "*") and split(x, A, /*/) are the same.

(3) If expr is not string, it is converted to string. If expr is then the empty string "", split() returns 0
and A is set empty. Otherwise, all non-overlapping, non-null and longest matches of sep in expr,
separate expr into fields which are loaded into A. The fields are placed in A[1], A[2], ..., A[n]
and split() returns n, the number of fields which is the number of matches plus one. Data placed
in A that looks numeric is typed number and string.

Splitting records into fields works the same except the pieces are loaded into $1, $2,..., $NF. If $0 is empty,
NF is set to 0 and all $i to "".

mawk splits files into records by the same algorithm, but with the slight difference that RS is really a termi-
nator instead of a separator. (ORS is really a terminator too).

E.g., if FS = “:+” and $0 = “a::b:” , then NF = 3 and $1 = “a”, $2 = “b” and $3 = "", but if “a::b:” is

Version 1.3.4 2024-09-05 10

MAWK(1) User commands MAWK(1)

the contents of an input file and RS = “:+”, then there are two records “a” and “b”.

RS = " " is not special.

If FS = "", then mawk breaks the record into individual characters, and, similarly, split(s,A,"") places the
individual characters of s into A.

12. Multi-line records

Since mawk interprets RS as a regular expression, multi-line records are easy. Setting RS = "\n\n+",
makes one or more blank lines separate records. If FS = " " (the default), then single newlines, by the rules
for <SPACE> above, become space and single newlines are field separators.

For example, if

• a file is "a b\nc\n\n",

• RS = "\n\n+" and

• FS = " ",

then there is one record “a b\nc” with three fields “a”, “b” and “c”:

• using FS = “\n”, gives two fields “a b” and “c”;

• using FS = “”, gives one field identical to the record.

If you want lines with spaces or tabs to be considered blank, set RS = “\n([\t]*\n)+”. For compatibility
with other awks, setting RS = "" has the same effect as if blank lines are stripped from the front and back of
files and then records are determined as if RS = “\n\n+”. POSIX requires that “\n” always separates records
when RS = "" reg ardless of the value of FS. mawk does not support this convention, because defining “\n”
as <SPACE> makes it unnecessary.

Most of the time when you change RS for multi-line records, you will also want to change ORS to “\n\n”
so the record spacing is preserved on output.

13. Program execution

This section describes the order of program execution. First ARGC is set to the total number of command
line arguments passed to the execution phase of the program.

• ARGV[0] is set to the name of the AWK interpreter and

• ARGV[1] ... ARGV[ARGC−1] holds the remaining command line arguments exclusive of options and
program source.

For example, with

mawk −f prog v=1 A t=hello B

ARGC = 5 with
ARGV[0] = "mawk",
ARGV[1] = "v=1",
ARGV[2] = "A",
ARGV[3] = "t=hello" and
ARGV[4] = "B".

Next, each BEGIN block is executed in order. If the program consists entirely of BEGIN blocks, then exe-
cution terminates, else an input stream is opened and execution continues. If ARGC equals 1, the input
stream is set to stdin, else the command line arguments ARGV[1] ... ARGV[ARGC−1] are examined for
a file argument.

The command line arguments divide into three sets: file arguments, assignment arguments and empty
strings "". An assignment has the form var=string. When an ARGV[i] is examined as a possible file argu-
ment, if it is empty it is skipped; if it is an assignment argument, the assignment to var takes place and i

skips to the next argument; else ARGV[i] is opened for input. If it fails to open, execution terminates with
exit code 2. If no command line argument is a file argument, then input comes from stdin. Getline in a

Version 1.3.4 2024-09-05 11

MAWK(1) User commands MAWK(1)

BEGIN action opens input. “−” as a file argument denotes stdin.

Once an input stream is open, each input record is tested against each pattern, and if it matches, the associ-
ated action is executed. An expression pattern matches if it is boolean true (see the end of section 2). A
BEGIN pattern matches before any input has been read, and an END pattern matches after all input has
been read. A range pattern, expr1, expr2 , matches every record between the match of expr1 and the match
expr2 inclusively.

When end of file occurs on the input stream, the remaining command line arguments are examined for a file
argument, and if there is one it is opened, else the END pattern is considered matched and all END actions

are executed.

In the example, the assignment v=1 takes place after the BEGIN actions are executed, and the data placed
in v is typed number and string. Input is then read from file A. On end of file A, t is set to the string
"hello", and B is opened for input. On end of file B, the END actions are executed.

Program flow at the pattern {action} level can be changed with the

next

nextfile

exit opt_expr

statements:

• A next statement causes the next input record to be read and pattern testing to restart with the first pat-

tern {action} pair in the program.

• A nextfile statement tells mawk to stop processing the current input file. It then updates FILENAME to
the next file listed on the command line, and resets FNR to 1.

• An exit statement causes immediate execution of the END actions or program termination if there are
none or if the exit occurs in an END action. The opt_expr sets the exit value of the program unless over-
ridden by a later exit or subsequent error.

ENVIRONMENT
Mawk recognizes these variables:

MAWKBINMODE
(see COMPATIBILITY)

MAWK_LONG_OPTIONS
If this is set, mawk uses its value to decide what to do with GNU-style long options:

allow Mawk allows the option to be checked against the (small) set of long options it recog-
nizes.

The long names from the −W option are recognized, e.g., −−version is derived from
−Wversion.

error Mawk prints an error message and exits. This is the default.

ignore Mawk ignores the option, unless it happens to be one of the one it recognizes.

warn Print an warning message and otherwise ignore the option.

If the variable is unset, mawk prints an error message and exits.

WHINY_USERS
This is a gawk 3.1.0 feature, removed in the 4.0.0 release. It tells mawk to sort array indices before
it starts to iterate over the elements of an array.

COMPATIBILITY
MAWK 1.3.3 versus POSIX 1003.2 Draft 11.3

The POSIX 1003.2(draft 11.3) definition of the AWK language is AWK as described in the AWK book
with a few extensions that appeared in SystemVR4 nawk. The extensions are:

Version 1.3.4 2024-09-05 12

MAWK(1) User commands MAWK(1)

• New functions: toupper() and tolower().

• New variables: ENVIRON[] and CONVFMT.

• ANSI C conversion specifications for printf() and sprintf().

• New command options: −v var=value, multiple −f options and implementation options as arguments
to −W.

• For systems (MS-DOS or Windows) which provide a setmode function, an environment variable
MAWKBINMODE and a built-in variable BINMODE. The bits of the BINMODE value tell mawk

how to modify the RS and ORS variables:

0 set standard input to binary mode, and if BIT-2 is unset, set RS to "\r\n" (CR/LF) rather than "\n"
(LF).

1 set standard output to binary mode, and if BIT-2 is unset, set ORS to "\r\n" (CR/LF) rather than
"\n" (LF).

2 suppress the assignment to RS and ORS of CR/LF, making it possible to run scripts and generate
output compatible with Unix line-endings.

POSIX AWK is oriented to operate on files a line at a time. RS can be changed from "\n" to another single
character, but it is hard to find any use for this — there are no examples in the AWK book. By convention,
RS = "", makes one or more blank lines separate records, allowing multi-line records. When RS = "", "\n"
is always a field separator regardless of the value in FS.

mawk, on the other hand, allows RS to be a regular expression. When "\n" appears in records, it is treated
as space, and FS always determines fields.

Removing the line at a time paradigm can make some programs simpler and can often improve perfor-
mance. For example, redoing example 3 from above,

BEGIN { RS = "[ˆA−Za−z]+" }

{ word[$0] = "" }

END { delete word[""]
for(i in word) cnt++
print cnt

}

counts the number of unique words by making each word a record. On moderate size files, mawk executes
twice as fast, because of the simplified inner loop.

The following program replaces each comment by a single space in a C program file,

BEGIN {
RS = "/ *([ˆ*] | *+[ˆ/*])**+/"

comment is record separator
ORS = " "
getline hold

}

{ print hold ; hold = $0 }

END { printf "%s" , hold }

Buffering one record is needed to avoid terminating the last record with a space.

With mawk, the following are all equivalent,

Version 1.3.4 2024-09-05 13

MAWK(1) User commands MAWK(1)

x ˜ /a\+b/ x ˜ "a\+b" x ˜ "a\\+b"

The strings get scanned twice, once as string and once as regular expression. On the string scan, mawk ig-
nores the escape on non-escape characters while the AWK book advocates \c be recognized as c which ne-
cessitates the double escaping of meta-characters in strings. POSIX explicitly declines to define the behav-
ior which passively forces programs that must run under a variety of awks to use the more portable but less
readable, double escape.

POSIX AWK does not recognize "/dev/std{in,out,err}". Some systems provide an actual device for this, al-
lowing AWKs which do not implement the feature directly to support it.

POSIX AWK does not recognize \x hex escape sequences in strings. Unlike ANSI C, mawk limits the
number of digits that follows \x to two as the current implementation only supports 8 bit characters.

POSIX explicitly leaves the behavior of FS = "" undefined, and mentions splitting the record into characters
as a possible interpretation, but currently this use is not portable across implementations.

Some features were not part of the POSIX standard until long after their introduction in mawk and other
implementations. These were published in IEEE 1003.1-2024 (The Open Group Base Specifications Issue
8):

• The built-in fflush first appeared in a 1993 AT&T awk released to netlib. It was approved for the POSIX
standard in 2012.

• The built-in nextfile first appeared in gawk in 1988, was adopted by BWK in 1996, and by mawk in
2012. It was approved for the POSIX standard in 2012.

• Aggregate deletion with delete array was approved in 2018.

Random numbers

POSIX does not prescribe a method for initializing random numbers at startup.

In practice, most implementations do nothing special, which makes srand and rand follow the C runtime
library, making the initial seed value 1. Some implementations (Solaris XPG4 and Tru64) return 0 from the
first call to srand, although the results from rand behave as if the initial seed is 1. Other implementations
return 1.

While mawk can call srand at startup with no parameter (initializing random numbers from the clock), this
feature may be suppressed using conditional compilation.

Extensions added for compatibility for GAWK and BWK

Mktime, strftime and systime are gawk extensions.

The "/dev/stdin" feature was added to mawk after 1.3.4, for compatibility with gawk and BWK awk. The
corresponding "-" (alias for /dev/stdin) was present in mawk 1.3.3.

Interval expressions, e.g., a range {m,n} in Extended Regular Expressions (EREs), were not supported in
awk (or even the original “nawk”):

• Gawk provided this feature in 1991 (and later, in 1998, options for turning it off, for compatibility with
“traditional awk”).

• Interval expressions, were introduced into awk regular expressions in IEEE 1003.1-2001 (also known as
Unix 03), along with some internationalization features.

• Apple modified its copy of the original awk in April 2006, making this version of awk support interval
expressions.

The updated source provides for compatibility with older “legacy” versions using an environment vari-
able, making this “Unix 2003” feature (perhaps meant as Unix 03) the default.

• NetBSD developers copied this change in January 2018, omitting the compatibility option, and then ap-
plied it to BWK awk.

• The interval expression implementation in mawk is based on changes proposed by James Parkinson in
April 2016.

Version 1.3.4 2024-09-05 14

MAWK(1) User commands MAWK(1)

Mawk also recognizes a few gawk-specific command line options for script compatibility:

−−help, −−posix, −r, −−re−interval, −−traditional, −−version

Subtle Differences not in POSIX or the AWK Book

Finally, here is how mawk handles exceptional cases not discussed in the AWK book or the POSIX draft.
It is unsafe to assume consistency across awks and safe to skip to the next section.

• substr(s, i, n) returns the characters of s in the intersection of the closed interval [1, length(s)] and the
half-open interval [i, i+n). When this intersection is empty, the empty string is returned; so sub-
str("ABC", 1, 0) = "" and substr("ABC", −4, 6) = "A".

• Every string, including the empty string, matches the empty string at the front so, s ˜ // and s ˜ "", are
always 1 as is match(s, //) and match(s, ""). The last two set RLENGTH to 0.

• index(s, t) is always the same as match(s, t1) where t1 is the same as t with metacharacters escaped.
Hence consistency with match requires that index(s, "") always returns 1. Also the condition, in-
dex(s,t) != 0 if and only t is a substring of s, requires index("","") = 1.

• If getline encounters end of file, getline var, leaves var unchanged. Similarly, on entry to the END

actions, $0, the fields and NF have their value unaltered from the last record.

BUGS
mawk implements printf() and sprintf() using the C library functions, printf and sprintf, so full ANSI
compatibility requires an ANSI C library. In practice this means the h conversion qualifier may not be
available.

Also mawk inherits any bugs or limitations of the library functions.

Implementors of the AWK language have shown a consistent lack of imagination when naming their pro-
grams.

EXAMPLES
1. emulate cat.

{ print }

2. emulate wc.

{ chars += length($0) + 1 # add one for the \n
words += NF

}

END{ print NR, words, chars }

3. count the number of unique “real words”.

BEGIN { FS = "[ˆA−Za−z]+" }

{ for(i = 1 ; i <= NF ; i++) word[$i] = "" }

END { delete word[""]
for (i in word) cnt++
print cnt

}

4. sum the second field of every record based on the first field.

$1 ˜ /credit | gain/ { sum += $2 }

Version 1.3.4 2024-09-05 15

MAWK(1) User commands MAWK(1)

$1 ˜ /debit | loss/ { sum −= $2 }

END { print sum }

5. sort a file, comparing as string

{ line[NR] = $0 "" } # make sure of comparison type
in case some lines look numeric

END { isort(line, NR)
for(i = 1 ; i <= NR ; i++) print line[i]

}

#insertion sort of A[1..n]
function isort(A, n, i, j, hold)
{
for(i = 2 ; i <= n ; i++)
{
hold = A[j = i]
while (A[j−1] > hold)
{ j− − ; A[j+1] = A[j] }
A[j] = hold

}
sentinel A[0] = "" will be created if needed

}

AUTHORS
Mike Brennan (brennan@whidbey.com).
Thomas E. Dickey <dickey@invisible-island.net>.

SEE ALSO
grep(1)

Aho, Kernighan and Weinberger, The AWK Programming Language, Addison-Wesley Publishing, 1988,
(the AWK book), defines the language, opening with a tutorial and advancing to many interesting programs
that delve into issues of software design and analysis relevant to programming in any language.

The GAWK Manual, The Free Software Foundation, 1991, is a tutorial and language reference that does not
attempt the depth of the AWK book and assumes the reader may be a novice programmer. The section on
AWK arrays is excellent. It also discusses POSIX requirements for AWK.

mawk-arrays(7) discusses mawk’s implementation of arrays.

mawk-code(7) gives more information on the −W dump option.

awk – pattern scanning and processing language

The Open Group Base Specifications Issue 8
IEEE Std 1003.1-2024
https://pubs.opengroup.org/onlinepubs/9799919799/utilities/awk.html

Version 1.3.4 2024-09-05 16

