Lompat ke isi

Tian Gang

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas

Tian Gang
Tian di Oberwolfach pada 2005
Lahir24 November 1958 (umur 66)
Nanjing, Jiangsu, Tiongkok
KebangsaanTiongkok
AlmamaterUniversitas Harvard
Universitas Peking
Universitas Nanjing
Dikenal atasKonjektur Yau-Tian-Donaldson
K-stabilitas
PenghargaanVeblen Prize (1996)
Alan T. Waterman Award (1994)
Karier ilmiah
BidangMatematika
InstitusiUniversitas Princeton
Universitas Peking
DisertasiKähler Metrics on Algebraic Manifolds (1988)
Pembimbing doktoralShing-Tung Yau
Mahasiswa doktoralNataša Šešum
Tian Gang
Hanzi tradisional: 田剛
Hanzi sederhana: 田刚

Tian Gang (Hanzi: 田刚; lahir 24 November 1958)[1] adalah seorang matematikawan asal Tiongkok. Ia menjadi profesor matematika di Universitas Peking dan Higgins Professor Emeritus di Universitas Princeton.

Publikasi pilihan

[sunting | sunting sumber]

Artikel riset

T87a. Tian, Gang. Smoothness of the universal deformation space of compact Calabi-Yau manifolds and its Petersson-Weil metric. Mathematical aspects of string theory (San Diego, Calif., 1986), 629–646, Adv. Ser. Math. Phys., 1, World Sci. Publishing, Singapore, 1987.
T87b. Tian, Gang. On Kähler-Einstein metrics on certain Kähler manifolds with c1(M) > 0. Invent. Math. 89 (1987), no. 2, 225–246.
TY87. Tian, Gang; Yau, Shing-Tung. Kähler-Einstein metrics on complex surfaces with C1>0. Comm. Math. Phys. 112 (1987), no. 1, 175–203.
T90a. Tian, Gang. On a set of polarized Kähler metrics on algebraic manifolds. J. Differential Geom. 32 (1990), no. 1, 99–130.
T90b. Tian, G. On Calabi's conjecture for complex surfaces with positive first Chern class. Invent. Math. 101 (1990), no. 1, 101–172.
TY90. Tian, G.; Yau, Shing-Tung. Complete Kähler manifolds with zero Ricci curvature. I. J. Amer. Math. Soc. 3 (1990), no. 3, 579–609.
TY91. Tian, Gang; Yau, Shing-Tung. Complete Kähler manifolds with zero Ricci curvature. II. Invent. Math. 106 (1991), no. 1, 27–60.
DT92. Ding, Wei Yue; Tian, Gang. Kähler-Einstein metrics and the generalized Futaki invariant. Invent. Math. 110 (1992), no. 2, 315–335.
DT95. Ding, Weiyue; Tian, Gang. Energy identity for a class of approximate harmonic maps from surfaces. Comm. Anal. Geom. 3 (1995), no. 3-4, 543–554.
RT95. Ruan, Yongbin; Tian, Gang. A mathematical theory of quantum cohomology. J. Differential Geom. 42 (1995), no. 2, 259–367.
ST97. Siebert, Bernd; Tian, Gang. On quantum cohomology rings of Fano manifolds and a formula of Vafa and Intriligator. Asian J. Math. 1 (1997), no. 4, 679–695.
T97. Tian, Gang. Kähler-Einstein metrics with positive scalar curvature. Invent. Math. 130 (1997), no. 1, 1–37.
LT98a. Li, Jun; Tian, Gang. Virtual moduli cycles and Gromov-Witten invariants of general symplectic manifolds. Topics in symplectic 4-manifolds (Irvine, CA, 1996), 47–83, First Int. Press Lect. Ser., I, Int. Press, Cambridge, MA, 1998.
LT98b. Li, Jun; Tian, Gang. Virtual moduli cycles and Gromov-Witten invariants of algebraic varieties. J. Amer. Math. Soc. 11 (1998), no. 1, 119–174.
LT98c. Liu, Gang; Tian, Gang. Floer homology and Arnold conjecture. J. Differential Geom. 49 (1998), no. 1, 1–74.
T00a. Tian, Gang. Gauge theory and calibrated geometry. I. Ann. of Math. (2) 151 (2000), no. 1, 193–268.
TZ06. Tian, Gang; Zhang, Zhou. On the Kähler-Ricci flow on projective manifolds of general type. Chinese Ann. Math. Ser. B 27 (2006), no. 2, 179–192.
ST07. Song, Jian; Tian, Gang. The Kähler-Ricci flow on surfaces of positive Kodaira dimension. Invent. Math. 170 (2007), no. 3, 609–653.
CT08. Chen, X.X.; Tian, G. Geometry of Kähler metrics and foliations by holomorphic discs. Publ. Math. Inst. Hautes Études Sci. 107 (2008), 1–107.
T15. Tian, Gang. K-stability and Kähler-Einstein metrics. Comm. Pure Appl. Math. 68 (2015), no. 7, 1085–1156.

Buku

T00b. Tian, Gang. Canonical metrics in Kähler geometry. Notes taken by Meike Akveld. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 2000. vi 101 pp. ISBN 3-7643-6194-8
MT07. Morgan, John; Tian, Gang. Ricci flow and the Poincaré conjecture. Clay Mathematics Monographs, 3. American Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA, 2007. xlii 521 pp. ISBN 978-0-8218-4328-4
MT14. Morgan, John; Tian, Gang. The geometrization conjecture. Clay Mathematics Monographs, 5. American Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA, 2014. x 291 pp. ISBN 978-0-8218-5201-9

Referensi

[sunting | sunting sumber]
  1. ^ "1996 Oswald Veblen Prize" (PDF). AMS. 1996. 

Pranala luar

[sunting | sunting sumber]