Tian, Gang. Smoothness of the universal deformation space of compact Calabi-Yau manifolds and its Petersson-Weil metric. Mathematical aspects of string theory (San Diego, Calif., 1986), 629–646, Adv. Ser. Math. Phys., 1, World Sci. Publishing, Singapore, 1987.
T87b.
Tian, Gang. On Kähler-Einstein metrics on certain Kähler manifolds with c1(M) > 0. Invent. Math. 89 (1987), no. 2, 225–246.
TY87.
Tian, Gang; Yau, Shing-Tung. Kähler-Einstein metrics on complex surfaces with C1>0. Comm. Math. Phys. 112 (1987), no. 1, 175–203.
T90a.
Tian, Gang. On a set of polarized Kähler metrics on algebraic manifolds. J. Differential Geom. 32 (1990), no. 1, 99–130.
T90b.
Tian, G. On Calabi's conjecture for complex surfaces with positive first Chern class. Invent. Math. 101 (1990), no. 1, 101–172.
TY90.
Tian, G.; Yau, Shing-Tung. Complete Kähler manifolds with zero Ricci curvature. I. J. Amer. Math. Soc. 3 (1990), no. 3, 579–609.
TY91.
Tian, Gang; Yau, Shing-Tung. Complete Kähler manifolds with zero Ricci curvature. II. Invent. Math. 106 (1991), no. 1, 27–60.
DT92.
Ding, Wei Yue; Tian, Gang. Kähler-Einstein metrics and the generalized Futaki invariant. Invent. Math. 110 (1992), no. 2, 315–335.
DT95.
Ding, Weiyue; Tian, Gang. Energy identity for a class of approximate harmonic maps from surfaces. Comm. Anal. Geom. 3 (1995), no. 3-4, 543–554.
RT95.
Ruan, Yongbin; Tian, Gang. A mathematical theory of quantum cohomology. J. Differential Geom. 42 (1995), no. 2, 259–367.
ST97.
Siebert, Bernd; Tian, Gang. On quantum cohomology rings of Fano manifolds and a formula of Vafa and Intriligator. Asian J. Math. 1 (1997), no. 4, 679–695.
Li, Jun; Tian, Gang. Virtual moduli cycles and Gromov-Witten invariants of general symplectic manifolds. Topics in symplectic 4-manifolds (Irvine, CA, 1996), 47–83, First Int. Press Lect. Ser., I, Int. Press, Cambridge, MA, 1998.
LT98b.
Li, Jun; Tian, Gang. Virtual moduli cycles and Gromov-Witten invariants of algebraic varieties. J. Amer. Math. Soc. 11 (1998), no. 1, 119–174.
LT98c.
Liu, Gang; Tian, Gang. Floer homology and Arnold conjecture. J. Differential Geom. 49 (1998), no. 1, 1–74.
T00a.
Tian, Gang. Gauge theory and calibrated geometry. I. Ann. of Math. (2) 151 (2000), no. 1, 193–268.
TZ06.
Tian, Gang; Zhang, Zhou. On the Kähler-Ricci flow on projective manifolds of general type. Chinese Ann. Math. Ser. B 27 (2006), no. 2, 179–192.
ST07.
Song, Jian; Tian, Gang. The Kähler-Ricci flow on surfaces of positive Kodaira dimension. Invent. Math. 170 (2007), no. 3, 609–653.
CT08.
Chen, X.X.; Tian, G. Geometry of Kähler metrics and foliations by holomorphic discs. Publ. Math. Inst. Hautes Études Sci. 107 (2008), 1–107.
T15.
Tian, Gang. K-stability and Kähler-Einstein metrics. Comm. Pure Appl. Math. 68 (2015), no. 7, 1085–1156.
Buku
T00b.
Tian, Gang. Canonical metrics in Kähler geometry. Notes taken by Meike Akveld. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 2000. vi 101 pp. ISBN3-7643-6194-8
MT07.
Morgan, John; Tian, Gang. Ricci flow and the Poincaré conjecture. Clay Mathematics Monographs, 3. American Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA, 2007. xlii 521 pp. ISBN978-0-8218-4328-4
MT14.
Morgan, John; Tian, Gang. The geometrization conjecture. Clay Mathematics Monographs, 5. American Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA, 2014. x 291 pp. ISBN978-0-8218-5201-9