Lompat ke isi

Asam deoksiribonukleat

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
(Dialihkan dari ADN)
Struktur heliks ganda DNA. Atom-atom pada struktur tersebut diwarnai sesuai dengan unsur kimianya dan struktur detail dua pasangan basa ditunjukkan oleh gambar kanan bawah
Gambaran tiga dimensi DNA

Asam deoksiribonukleat, lebih dikenal dengan singkatan DNA (bahasa Inggris: deoxyribonucleic acid), adalah salah satu jenis asam nukleat yang memiliki kemampuan pewarisan sifat. Keberadaan asam deoksiribonukleat ditemukan di dalam nukleoprotein yang membentuk inti sel. James Dewey Watson dan Francis Crick merupakan ilmuwan pertama yang mengajukan model struktur DNA pada tahun 1953 dengan bentuk pilinan ganda. Setiap DNA tersusun dari dua buah rantai polinukleotida.[1] DNA merupakan sejenis biomolekul yang menyimpan dan menyandi instruksi-instruksi genetika setiap organisme dan banyak jenis virus. Instruksi-instruksi genetika ini berperan penting dalam pertumbuhan, perkembangan, dan fungsi organisme dan virus. DNA merupakan asam nukleat; bersamaan dengan protein dan karbohidrat, asam nukleat adalah makromolekul esensial bagi seluruh makhluk hidup yang diketahui. Kebanyakan molekul DNA terdiri dari dua unting biopolimer yang berpilin satu sama lainnya membentuk heliks ganda. Dua unting DNA ini dikenal sebagai polinukleotida karena keduanya terdiri dari satuan-satuan molekul yang disebut nukleotida. Tiap-tiap nukleotida terdiri atas salah satu jenis basa nitrogen (guanina (G), adenina (A), timina (T), atau sitosina (C)), gula monosakarida yang disebut deoksiribosa, dan gugus fosfat. Nukleotida-nukelotida ini kemudian tersambung dalam satu rantai ikatan kovalen antara gula satu nukleotida dengan fosfat nukelotida lainnya. Hasilnya adalah rantai punggung gula-fosfat yang berselang-seling. Menurut kaidah pasangan basa (A dengan T dan C dengan G), ikatan hidrogen mengikat basa-basa dari kedua unting polinukleotida membentuk DNA unting ganda

Dua unting DNA bersifat anti-paralel, yang berarti bahwa keduanya berpasangan secara berlawanan. Pada setiap gugus gula, terikat salah satu dari empat jenis nukleobasa. Urutan asam nukleat empat nukleobasa di sepanjang rantai punggung DNA inilah yang menyimpan kode informasi biologis. Melalui proses biokimia yang disebut transkripsi, unting DNA digunakan sebagai templat untuk membuat unting RNA. Unting RNA ini kemudian ditranslasikan untuk menentukan urutan asam amino protein yang dibangun.

Struktur kimia DNA yang ada membuatnya sangat cocok untuk menyimpan informasi biologis setiap makhluk hidup. Rantai punggung DNA resisten terhadap pembelahan kimia, dan kedua-dua unting dalam struktur unting ganda DNA menyimpan informasi biologis yang sama. Karenanya, informasi biologis ini akan direplikasi ketika dua unting DNA dipisahkan. Sebagian besar DNA (lebih dari 98% pada manusia) bersifat non-kode, yang berarti bagian ini tidak berfungsi menyandikan protein.

Dalam sel, DNA tersusun dalam kromosom. Semasa pembelahan sel, kromosom-kromosom ini diduplikasi dalam proses yang disebut replikasi DNA. Organisme eukariotik (hewan, tumbuhan, fungi, dan protista) menyimpan kebanyakan DNA-nya dalam inti sel dan sebagian kecil sisanya dalam organel seperti mitokondria ataupun kloroplas.[2] Sebaliknya organisme prokariotik (bakteri dan arkaea) menyimpan DNA-nya hanya dalam sitoplasma. Dalam kromosom, protein kromatin seperti histon berperan dalam penyusunan DNA menjadi struktur kompak. Struktur kompak inilah yang kemudian berinteraksi antara DNA dengan protein lainnya, sehingga membantu kontrol bagian-bagian DNA mana sajakah yang dapat ditranskripsikan.

Para ilmuwan menggunakan DNA sebagai alat molekuler untuk menyingkap teori-teori dan hukum-hukum fisika, seperti misalnya teorema ergodik dan teori elastisitas. Sifat-sifat materi DNA yang khas membuatnya sangat menarik untuk diteliti bagi ilmuwan dan insinyur yang bekerja di bidang mikrofabrikasi dan nanofabrikasi material. Beberapa kemajuan di bidang material ini misalnya origami DNA dan material hibrida berbasis DNA.[3]

Sifat-sifat DNA

[sunting | sunting sumber]
Struktur kimia DNA; ikatan hidrogen ditunjukkan oleh garis putus-putus

DNA merupakan sebuah polimer yang terdiri dari satuan-satuan berulang yang disebut nukleotida.[4][5][6] Tiap-tiap nukleotida terdiri dari tiga komponen utama, yakni gugus fosfat, gula deoksiribosa, dan basa nitrogen (nukleobasa).[7] Pada DNA, nukleobasa yang ditemukan adalah Adenina (A), Guanina (G), Sitosina (C) dan Timina (T). Nukleobasa yang terhubung dengan sebuah gugus gula disebut sebagai nukleosida, dan nukleosida yang terhubung dengan satu atau lebih gugus fosfat disebut sebagai nukleotida. Polimer yang terdiri dari nukleotida yang saling terhubung menjadi satu rantai disebut sebagai polinukleotida.[8] Sehingga DNA termasuk pula ke dalam polinukleotida.

Rantai punggung unting DNA terdiri dari gugus fosfat dan gula yang berselang-seling.[9] Gula pada DNA adalah gula pentosa (berkarbon lima), yaitu 2-deoksiribosa. Dua gugus gula terhubung dengan fosfat melalui ikatan fosfodiester antara atom karbon ketiga pada cincin satu gula dan atom karbon kelima pada gula lainnya. Ikatan yang tidak simetris ini membuat DNA memiliki arah atau orientasi tertentu. Pada struktur heliks ganda, orientasi rantai nukleotida pada satu unting berlawanan dengan orientasi nukleotida unting lainnya. Hal ini disebut sebagai antiparalel. Kedua ujung asimetris DNA disebut sebagai 5' (lima prima) dan 3' (tiga prima). Ujung 5' memiliki gugus fosfat terminus, sedangkan ujung 3' memiliki gugus hidroksi terminus. Salah satu perbedaan utama DNA dan RNA adalah gula penyusunnya, yakni gula 2-deoksiribosa pada DNA digantikan gula ribosa pada RNA.[10]

Dalam organisme hidup, DNA biasanya ditemukan dalam bentuk berpasangan dan terikat kuat.[10][11] Dua unting DNA saling berpilin membentuk heliks ganda. Heliks ganda ini distabilisasi oleh dua ikatan hidrogen antar nukleotida dan interaksi tumpukan antar nukleobasa aromatik.[12] Dalam lingkungan sel yang berair, ikatan π konjugasi antar basa nukleotida tersusun tegak lurus terhadap sumbu pilinan DNA. Hal ini meminimalisasi interaksi dengan cangkang solvasi, dan sehingganya menurunkan energi bebas Gibbs.

Struktur DNA semua jenis spesies terdiri dari dua rantai heliks yang berpilin dengan jarak antar putaran heliks 34 Å (3,4 nanometer) dan jari-jari 10 Å (1.0 nanometer).[13] Menurut kajian lainnya, ketika diukur menggunakan larutan tertentu, rantai DNA memiliki lebar 22-26 Å (2,2-2,6 nanometer) sedangkan satu satuan nukleotida memiliki panjang 33 Å (0,33 nm).[14] Walaupun satuan nukleotida ini sangatlah kecil, polimer DNA dapat memiliki jutaan nukleotida yang terangkai seperti rantai. Misalnya, kromosom 1 yang merupakan kromosom terbesar pada manusia mengandung sekitar 220 juta pasangan basa.[15]

Nukleobasa DNA

[sunting | sunting sumber]

Nukleobasa diklasifikasikan ke dalam dua jenis: purina (A dan G) yang berupa fusi senyawa heterolingkar beranggota lima dengan senyawa heterolingkar beranggota enam, dan pirimidina (C dan T) yang berupa cincin beranggota enam.[10] Pirimidina lainnya, urasil (U), biasanya menggantikan timina pada RNA. Perbedaan urasil dengan timina terletak pada ketiadaan gugus metil pada cincin urasil. Selain kelima nukleobasa tersebut, terdapat pula sejumlah besar analog asam nukleat buatan yang telah disintesis untuk mengkaji sifat-sifat asam nukleat dan digunakan dalam bioteknologi.[16]

Urasil biasanya tidak ditemukan dalam DNA (ditemukan dalam sel hanya sebagai produk uraian sitosina). Namun pada sejumlah bakteriofag– bakteriofag PBS1 dan PBS2 Bacillus subtilis dan bakteriofag piR1-37 Yersinia– timina telah digantikan oleh urasil.[17] Fag lainnya - fag S6 Staphylococcus - juga telah diidentifikasi mempunyai urasil pada genomnya.[18]

Basa J (beta-d-glukopiranosiloksimetilurasil) yang merupakan bentuk modifikasi dari urasil juga dapat ditemukan pada sejumlah organisme: flagellata Diplonema dan Euglena, dan seluruh organisme marga kinetoplastid[19] Biosintesis basa J terjadi dalam dua tahap: pada tahap pertama, basa timina spesifik pada DNA diubah menjadi hidroksimetildeoksiuridina (HOMedU); pada tahap kedua HOMedU diglikosilasi menjadi basa J.[20] Protein-protein yang mengikat basa J ini juga telah berhasil diidentifikasi.[21][22][23] Protein-protein ini tampaknya merupakan kerabat jauh dari onkogen Tet1 yang terlibat dalam patogenesis leukemia myeloid akut.[24] Basa J tampaknya bekerja sebagai sinyal terminasi untuk RNA polimerase II.[25][26]

Alur mayor dan minor DNA. Alur minor merupakan tapak pengikatan untuk Hoechst 33258.

Pada struktur heliks ganda DNA, terdapat ruang antar unting DNA yang juga berbentuk alur heliks. Ruang kosong ini bersebelahan dengan pasangan basa dan merupakan tapak ikatan yang potensial. Dikarenakan kedua unting DNA tidak berposisi secara simetris satu sama lainnya, alur yang dihasilkan jugalah tidak berukuran sama. Satu alur yang disebut alur mayor, memiliki lebar 22 Å, sedangkan alur lainnya yang disebut alur minor, memiliki lebar 12 Å.[27] Lebarnya alur mayor berarti bahwa tepi-tepi basa nukleotida dapat lebih mudah diakses melalui alur mayor daripada melalui alur minor. Akibatnya, protein-protein seperti faktor-faktor transkripsi yang mengikat pada urutan basa tertentu biasanya melakukan kontak dengan basa melalui alur mayor.[28] Situasi ini dapat bervariasi pada konformasi DNA yang tak lazim dalam sel, walaupun alur mayor dan minor selalu dinamai demikian untuk menrefleksikan perbedaan ukuran yang terlihat apabila DNA dipuntir balik menjadi bentuk lazim B.

Pasangan basa

[sunting | sunting sumber]

Dalam heliks ganda DNA, setiap basa pada satu untai berpasangan dengan basa tertentu pada untai yang lain, suatu proses yang dikenal sebagai pasangan basa komplementer. Purin selalu berpasangan dengan pirimidin: adenin (A) berpasangan dengan timin (T) menggunakan dua ikatan hidrogen, dan sitosin (C) berpasangan dengan guanin (G) menggunakan tiga ikatan hidrogen. Pasangan ini, yang disebut pasangan basa Watson-Crick, membantu mempertahankan struktur DNA. Untaian DNA dengan lebih banyak pasangan G-C lebih stabil karena adanya ikatan hidrogen ekstra.

Terkadang, terbentuk variasi langka yang disebut pasangan basa Hoogsteen, di mana ikatan hidrogen menghubungkan berbagai bagian cincin pada basa.[29] Karena ikatan hidrogen lemah dan non-kovalen, untaian DNA dapat dengan mudah dipisahkan, seperti membuka ritsleting, dengan menggunakan panas atau kekuatan mekanis.[30] Kemampuan untuk memisahkan dan menyatukan kembali untaian ini sangat penting untuk proses seperti replikasi DNA, di mana informasi dalam satu untai disalin dari untai komplementernya. Pasangan basa yang spesifik dan terbalikkan ini sangat penting untuk peran DNA dalam sel.[5]

Atas, pasangan basa GC dengan tiga ikatan hidrogen. Bawah, pasangan basa AT dengan dua ikatan hidrogen. Ikatan hidrogen non-kovalen ditunjukkan oleh garis putus-putus.

Sebagian besar molekul DNA terdiri dari dua untai polimer yang berpilin bersama dalam struktur heliks, yang dipegang oleh ikatan nonkovalen. Bentuk DNA untai ganda (dsDNA ) ini dipertahankan terutama melalui interaksi penumpukan basa, terutama yang kuat antara pasangan guanin (G) dan sitosin (C). Ketika untaian DNA terpisah, prosesnya disebut peleburan (melting), menghasilkan DNA untai tunggal (ssDNA). Hal ini terjadi dalam kondisi seperti suhu tinggi, garam rendah, atau pH tinggi (meskipun pH rendah jarang digunakan karena ketidakstabilan DNA).

Stabilitas dsDNA bergantung pada faktor-faktor seperti kandungan GC, urutan, dan panjang molekul DNA. Stabilitas DNA sering diukur dengan suhu lelehnya (Tm), yaitu suhu di mana 50% DNA menjadi untai tunggal. Kandungan GC yang lebih tinggi dan untaian DNA yang lebih panjang meningkatkan stabilitas, sementara sekuens yang kaya AT (seperti yang ada di kotak TATAAT Pribnow dari beberapa promotor) lebih mudah dipisahkan,[31] membantu proses seperti transkripsi.[32]

Di laboratorium, Tm digunakan untuk mengukur kekuatan interaksi antara untaian DNA. Ketika DNA meleleh sepenuhnya, untaiannya ada sebagai dua molekul untai tunggal yang terpisah, yang tidak mengadopsi bentuk umum tertentu, meskipun beberapa konformasi mungkin lebih stabil.[33]

Pada manusia, jumlah total DNA dalam sel diploid wanita adalah sekitar 6,37 pasangan gigabasa (Gbp), yang panjangnya sekitar 208,23 cm dan beratnya 6,51 pikogram (pg).[34] Untuk laki-laki, nilainya sedikit lebih rendah, yaitu 6,27 Gbp, 205,00 cm, dan 6,41 pg. Setiap untai DNA mengandung jutaan nukleotida, dengan kromosom 1 sebagai kromosom manusia terbesar, mengandung sekitar 220 juta pasangan basa dan membentang sepanjang 85 mm jika diluruskan.[35]

Selain DNA inti, eukariota seperti manusia juga memiliki DNA mitokondria (mtDNA), yang mengkodekan protein yang digunakan oleh mitokondria. mtDNA manusia jauh lebih kecil daripada DNA nuklir dan terdiri dari 16.569 pasangan basa dalam bentuk melingkar tertutup. Setiap mitokondria mengandung sekitar 5 salinan mtDNA, dan karena sel manusia biasanya memiliki 100 mitokondria, ini menghasilkan sekitar 500 molekul mtDNA per sel. Namun, jumlah mitokondria bervariasi tergantung pada jenis sel. Sebagai contoh, sel telur dapat memiliki 100.000 mitokondria, yang menghasilkan hingga 1,5 juta salinan genom mitokondria, yang dapat membentuk sebanyak 90% dari total DNA dalam sel tersebut.

Sense dan antisense

[sunting | sunting sumber]

Urutan DNA disebut urutan “sense” jika cocok dengan urutan RNA pembawa pesan (mRNA) yang akan diubah menjadi protein.[36] Urutan pada untai DNA lainnya dikenal sebagai urutan “antisense”. Baik urutan sense maupun antisense dapat ditemukan pada bagian yang berbeda dari untai DNA yang sama, yang berarti bahwa setiap untai dapat memiliki kedua jenis urutan tersebut.

Pada prokariota (seperti bakteri) dan eukariota (seperti tanaman dan hewan), urutan RNA antisense dibuat, tetapi peran pastinya masih belum sepenuhnya dipahami.[37] Salah satu gagasannya adalah bahwa RNA antisense membantu mengatur ekspresi gen dengan cara berpasangan dengan RNA.[38]

Dalam beberapa kasus, terutama pada prokariota dan eukariota, serta yang lebih umum terjadi pada plasmid dan virus, batas antara untai sense dan antisense dapat menjadi kabur karena gen yang tumpang tindih.[39] Ini berarti bahwa urutan DNA tertentu dapat memiliki dua tujuan: mereka dapat mengkodekan satu protein ketika dibaca dalam satu arah pada satu untai dan protein lain ketika dibaca dalam arah yang berlawanan pada untai yang lain. Pada bakteri, tumpang tindih ini dapat membantu mengontrol transkripsi gen,[40] sedangkan pada virus, hal ini memungkinkan lebih banyak informasi untuk dikemas ke dalam genom yang lebih kecil.[41]

Supercoiling

[sunting | sunting sumber]

Supercoiling mengacu pada puntiran DNA seperti tali. Dalam keadaan normal atau “rileks”, untaian DNA membuat satu lingkaran penuh di sekitar heliks ganda untuk setiap 10,4 pasangan basa. Ketika DNA terpelintir, untaiannya bisa menjadi lebih rapat atau lebih longgar.[42]

Jika puntiran berjalan ke arah yang sama dengan heliks, ini disebut supercoiling positif, yang menyebabkan basa-basa terikat lebih erat. Jika puntirannya berlawanan arah, ini disebut supercoiling negatif, yang membuat basa-basa lebih mungkin terpisah.

Di alam, sebagian besar DNA memiliki sedikit superkoil negatif, yang ditambahkan oleh enzim yang disebut topoisomerase.[43] Enzim ini juga membantu meringankan ketegangan puntiran yang terbentuk dalam DNA selama proses seperti transkripsi (membuat RNA dari DNA) dan replikasi DNA (menyalin DNA).[44]

Dari kiri ke kanan, struktur DNA A, DNA B, dan DNA Z

Struktur alternatif DNA

[sunting | sunting sumber]

Terdapat banyak kemungkinan konformasi-konformasi DNA yang dapat kita temukan, di antaranya A-DNA, B-DNA, dan Z-DNA, walaupun hanya B-DNA dan Z-DNA saja yang telah diamati secara langsung pada organisme fungsional.[9] Konformasi-konformasi yang diadopsi oleh DNA bergantung pada tingkat hidrasi DNA, urutan DNA, tingkat dan arah pilinan kumparan DNA, modifikasi kimiawi pada basa DNA, jenis dan konsentrasi ion-ion logam, maupun keberadaan poliamina dalam larutan.[45]

Basa buatan

[sunting | sunting sumber]

Beberapa nukleobasa buatan telah berhasil disintesis, dan berhasil dimasukkan ke dalam analog DNA berbasa delapan bernama DNA Hachimoji.

Fungsi biologis

[sunting | sunting sumber]

DNA biasanya berbentuk kromosom linier pada eukariota dan kromosom melingkar pada prokariota. Kumpulan kromosom yang lengkap dalam sebuah sel dikenal sebagai genom. Pada manusia, genom mengandung sekitar 3 miliar pasangan basa DNA yang tersusun dalam 46 kromosom. Informasi genetik dalam DNA disimpan dalam segmen yang disebut gen, dan informasi ini diteruskan melalui pasangan basa komplementer.

Misalnya, selama transkripsi, urutan gen disalin ke dalam urutan RNA komplementer dengan memasangkan nukleotida RNA yang benar dengan DNA. RNA ini biasanya digunakan untuk membuat protein yang sesuai melalui proses yang disebut translasi, yang juga bergantung pada pasangan basa. Sebagai alternatif, sel dapat menduplikasi materi genetiknya melalui replikasi DNA.

Gen dan genom

[sunting | sunting sumber]

DNA genom dikemas dengan rapat dalam proses yang disebut kondensasi DNA agar muat dalam ruang sel yang terbatas. Pada eukariota, sebagian besar DNA disimpan di dalam nukleus, dengan jumlah yang lebih kecil ditemukan di dalam mitokondria dan, pada tanaman, kloroplas. Pada prokariota, DNA terkandung dalam wilayah sitoplasma yang disebut nukleoid.

Informasi genetik dalam DNA diatur ke dalam gen, dan seluruh rangkaian materi genetik dalam suatu organisme disebut genotipe. Gen adalah segmen DNA yang memengaruhi karakteristik tertentu, dan berisi kerangka bacaan terbuka yang dapat ditranskripsi, bersama dengan daerah pengatur seperti promotor dan enhancer yang mengontrol proses ini. Beberapa DNA non-kode memainkan peran struktural dalam kromosom, seperti dalam telomer dan sentromer, yang sangat penting untuk fungsi dan stabilitas kromosom, tetapi mengandung sedikit gen.

Pada manusia, banyak urutan DNA, termasuk pseudogen (salinan gen yang tidak aktif), tidak mengkode protein. Pseudogen ini sering dianggap sebagai fosil molekuler, tetapi kadang-kadang mereka dapat menyediakan bahan baku untuk gen baru melalui duplikasi dan divergensi gen. Menariknya, pada spesies seperti manusia, hanya sekitar 1,5% genom yang mengkode protein, sementara lebih dari 50% terdiri dari urutan non-kode yang berulang. Pertanyaan mengapa genom eukariotik mengandung begitu banyak DNA yang tidak dikodekan dan mengapa ukuran genom sangat bervariasi dikenal sebagai teka-teki nilai-C. Namun, beberapa DNA nonkode menghasilkan molekul RNA nonkode fungsional, yang berperan dalam mengatur ekspresi gen.

Transkripsi dan translasi

[sunting | sunting sumber]

Gen adalah bagian dari DNA yang membawa instruksi untuk membuat protein dan dapat memengaruhi sifat organisme. Urutan basa (A, T, C, G) dalam DNA suatu gen menentukan urutan messenger RNA (mRNA), yang pada gilirannya menentukan urutan asam amino dalam protein. Proses ini dikendalikan oleh kode genetik, seperangkat aturan yang menerjemahkan urutan DNA menjadi urutan protein. Kode genetik terdiri dari kombinasi tiga huruf yang disebut kodon (seperti ACT, CAG, atau TTT), di mana setiap kodon mewakili asam amino tertentu.

Selama transkripsi, RNA polimerase menyalin kodon dari DNA ke dalam mRNA. mRNA kemudian dibaca oleh ribosom, yang mencocokkan setiap kodon mRNA dengan RNA transfer (tRNA) yang sesuai yang membawa asam amino yang benar. Karena ada 4 basa DNA dan kodon terdiri dari 3 basa, maka ada 64 kemungkinan kodon. Kodon-kodon ini mengkodekan 20 asam amino standar, dengan sebagian besar asam amino diwakili oleh lebih dari satu kodon. Selain itu, ada tiga kodon khusus (TAG, TAA, dan TGA dalam DNA, atau UAG, UAA, dan UGA dalam mRNA) yang menandakan akhir dari sintesis protein-ini disebut kodon “berhenti” atau “non-sense”.

Replikasi

[sunting | sunting sumber]
Pada replikasi DNA, rantai DNA baru dibentuk berdasarkan urutan nukleotida pada DNA yang digandakan.

Replikasi merupakan proses pelipatgandaan DNA. Proses replikasi ini diperlukan ketika sel akan membelah diri. Pada setiap sel, kecuali sel gamet, pembelahan diri harus disertai dengan replikasi DNA supaya semua sel turunan memiliki informasi genetik yang sama. Pada dasarnya, proses replikasi memanfaatkan fakta bahwa DNA terdiri dari dua rantai dan rantai yang satu merupakan "konjugat" dari rantai pasangannya. Dengan kata lain, dengan mengetahui susunan satu rantai, maka susunan rantai pasangan dapat dengan mudah dibentuk.

Terdapat beberapa teori yang mencoba menjelaskan bagaimana proses replikasi DNA ini terjadi. Salah satu teori yang paling populer menyatakan bahwa pada masing-masing DNA baru yang diperoleh pada akhir proses replikasi; satu rantai tunggal merupakan rantai DNA dari rantai DNA sebelumnya, sedangkan rantai pasangannya merupakan rantai yang baru disintesis. Rantai tunggal yang diperoleh dari DNA sebelumnya tersebut bertindak sebagai "cetakan" untuk membuat rantai pasangannya.

Proses replikasi memerlukan protein atau enzim pembantu; salah satu yang terpenting dikenal dengan nama DNA polimerase, yang merupakan enzim pembantu pembentukan rantai DNA baru yang merupakan suatu polimer. Proses replikasi diawali dengan pembukaan untaian ganda DNA pada titik-titik tertentu di sepanjang rantai DNA. Proses pembukaan rantai DNA ini dibantu oleh enzim helikase yang dapat mengenali titik-titik tersebut, dan enzim girase yang mampu membuka pilinan rantai DNA.

Setelah cukup ruang terbentuk akibat pembukaan untaian ganda ini, DNA polimerase masuk dan mengikat diri pada kedua rantai DNA yang sudah terbuka secara lokal tersebut. Proses pembukaan rantai ganda tersebut berlangsung disertai dengan pergeseran DNA polimerase mengikuti arah membukanya rantai ganda. Monomer DNA ditambahkan di kedua sisi rantai yang membuka setiap kali DNA polimerase bergeser. Hal ini berlanjut sampai seluruh rantai telah benar-benar terpisah.

Proses replikasi DNA ini merupakan proses yang rumit namun teliti. Proses sintesis rantai DNA baru memiliki suatu mekanisme yang mencegah terjadinya kesalahan pemasukan monomer yang dapat berakibat fatal. Karena mekanisme inilah kemungkinan terjadinya kesalahan sintesis amatlah kecil.

Asam nukleat ekstraseluler

[sunting | sunting sumber]

DNA ekstraseluler (eDNA) adalah DNA yang mengambang bebas yang ditemukan di luar sel, biasanya dilepaskan ketika sel mati. DNA ini tersebar luas di alam, dengan konsentrasi mencapai 2 μg/L di tanah dan 88 μg/L di air. eDNA memiliki beberapa peran potensial: eDNA dapat memfasilitasi transfer gen antar organisme (transfer gen horizontal), berfungsi sebagai sumber nutrisi, atau membantu menetralkan ion dan antibiotik. Dalam biofilm bakteri, eDNA berperan sebagai komponen struktural, membantu bakteri menempel dan membentuk biofilm, dan memperkuat ketahanan biofilm terhadap tekanan lingkungan.

Pada manusia, DNA janin bebas sel ditemukan dalam darah ibu dan dapat dianalisis untuk mengumpulkan informasi tentang janin. Dalam ekologi, DNA lingkungan (eDNA) digunakan untuk memantau keberadaan dan pergerakan spesies di lingkungan yang berbeda, seperti air, udara, atau tanah, dan berguna untuk menilai keanekaragaman hayati.

Perangkap ekstraseluler neutrofil

[sunting | sunting sumber]

Perangkap ekstraseluler neutrofil (NET) adalah struktur seperti jaring yang sebagian besar terbuat dari DNA yang dilepaskan oleh neutrofil, suatu jenis sel kekebalan tubuh. Struktur ini menjebak dan membunuh patogen berbahaya di luar sel, sehingga membantu melawan infeksi. NET dirancang untuk menargetkan patogen sekaligus membatasi kerusakan pada jaringan tubuh sendiri. Hal ini memungkinkan neutrofil menetralkan ancaman secara lebih efektif tanpa menyebabkan kerusakan yang luas pada sel-sel sehat di sekitarnya.

Penggunaan DNA dalam teknologi dan riset ilmiah

[sunting | sunting sumber]

DNA dalam forensik

[sunting | sunting sumber]

Ilmuwan forensik dapat menggunakan DNA yang terdapat dalam darah, sperma, kulit, liur atau rambut yang tersisa di tempat kejadian kejahatan untuk mengidentifikasi kemungkinan tersangka, sebuah proses yang disebut fingerprinting genetika atau pemprofilan DNA (DNA profiling). Dalam pemprofilan DNA panjang relatif dari bagian DNA yang berulang seperti short tandem repeats dan minisatelit, dibandingkan. Pemprofilan DNA dikembangkan pada 1984 oleh genetikawan Inggris Alec Jeffreys dari Universitas Leicester, dan pertama kali digunakan untuk mendakwa Colin Pitchfork pada 1988 dalam kasus pembunuhan Enderby di Leicestershire, Inggris.

Banyak yurisdiksi membutuhkan terdakwa dari kejahatan tertentu untuk menyediakan sebuah contoh DNA untuk dimasukkan ke dalam basis data komputer. Hal ini telah membantu investigator menyelesaikan kasus lama di mana pelanggar tidak diketahui dan hanya contoh DNA yang diperoleh dari tempat kejadian (terutama dalam kasus pemerkosaan antar orang tak dikenal). Metode ini adalah salah satu teknik paling tepercaya untuk mengidentifikasi seorang pelaku kejahatan, tetapi tidak selalu sempurna, misalnya bila tidak ada DNA yang dapat diperoleh, atau bila tempat kejadian terkontaminasi oleh DNA dari banyak orang.

DNA dalam komputasi

[sunting | sunting sumber]

DNA memainkan peran penting dalam ilmu komputer, baik sebagai masalah riset dan sebagai sebuah cara komputasi.

Riset dalam algoritme pencarian string, yang menemukan kejadian dari urutan huruf di dalam urutan huruf yang lebih besar, dimotivasi sebagian oleh riset DNA, di mana algoritme ini digunakan untuk mencari urutan tertentu dari nukleotida dalam sebuah urutan yang besar. Dalam aplikasi lainnya seperti editor text, bahkan algoritme sederhana untuk masalah ini biasanya mencukupi, tetapi urutan DNA menyebabkan algoritme-algoritme ini untuk menunjukkan sifat kasus-mendekati-terburuk dikarenakan jumlah kecil dari karakter yang berbeda.

Teori database juga telah dipengaruhi oleh riset DNA, yang memiliki masalah khusus untuk menaruh dan memanipulasi urutan DNA. Database yang dikhususkan untuk riset DNA disebut database genomik, dam harus menangani sejumlah tantangan teknis yang unik yang dihubungkan dengan operasi pembandingan kira-kira, pembandingan urutan, mencari pola yang berulang, dan pencarian homologi.

DNA dalam kajian Islam

[sunting | sunting sumber]

DNA memainkan peran penting dalam kajian Islam seperti studi tafsir Al-Qur'an, terutama ketika mengkaji tema-tema yang terkait dengan nasab, genealogi, silsilah dan sejarah. Ilmuwan yang ahli di bidang DNA dan memadukan kajiannya dengan kajian Al-Qur'an adalah Shohibul Faroji Al-Azhmatkhan [46] dengan karyanya Tafsir Midadurrahman sebanyak 115 jilid dan menjadi mufassir yang mendapatkan penghargaan MURI sebagai penulis tafsir terpanjang dan tertebal di seluruh dunia.[47], dalam tafsir ini dikaji secara detail tentang DNA dari Nabi Adam sampai dikaji juga DNA dari 3110 Fam keturunan Nabi Muhammad dari 1555 fam keturunan Hasan bin Ali dan 1555 Fam keturunan Husain bin Ali di 199 Negara seluruh dunia.

DNA pertama kali berhasil dimurnikan pada tahun 1868 oleh ilmuwan Swiss Friedrich Miescher di Tubingen, Jerman, yang menamainya nuclein berdasarkan lokasinya di dalam inti sel. Namun, penelitian terhadap peranan DNA di dalam sel baru dimulai pada awal abad 20, bersamaan dengan ditemukannya postulat genetika Mendel. DNA dan protein dianggap dua molekul yang paling memungkinkan sebagai pembawa sifat genetis berdasarkan teori tersebut.

Dua eksperimen pada dekade 40-an membuktikan fungsi DNA sebagai materi genetik. Dalam penelitian oleh Avery dan rekan-rekannya, ekstrak dari sel bakteri yang satu gagal men-transform sel bakteri lainnya kecuali jika DNA dalam ekstrak dibiarkan utuh. Eksperimen yang dilakukan Hershey dan Chase membuktikan hal yang sama dengan menggunakan pencari jejak radioaktif (bahasa Inggris: radioactive tracers).

Misteri yang belum terpecahkan ketika itu adalah: "bagaimanakah struktur DNA sehingga ia mampu bertugas sebagai materi genetik". Persoalan ini dijawab oleh Francis Crick dan koleganya James Watson berdasarkan hasil difraksi sinar X pada DNA oleh Maurice Wilkins dan Rosalind Franklin.

Pada tahun 1953, James Watson dan Francis Crick mendefinisikan DNA sebagai polimer yang terdiri dari 4 basa dari asam nukleat, dua dari kelompok purina:adenina dan guanina; dan dua lainnya dari kelompok pirimidina:sitosina dan timina. Keempat nukleobasa tersebut terhubung dengan glukosa fosfat.[48]

Maurice Wilkins dan Rosalind Franklin menemukan bahwa molekul DNA berbentuk heliks yang berputar setiap 3,4 nm, sedangkan jarak antar molekul nukleobasa adalah 0,34 nm, hingga dapat ditentukan bahwa terdapat 10 molekul nukleobasa pada setiap putaran DNA. Setelah diketahui bahwa diameter heliks DNA sekitar 2 nm, baru diketahui bahwa DNA terdiri bukan dari 1 rantai, melainkan 2 rantai heliks.

Crick, Watson, dan Wilkins mendapatkan hadiah Nobel Kedokteran pada 1962 atas penemuan ini. Franklin, karena sudah wafat pada waktu itu, tidak dapat dianugerahi hadiah ini.

Konfirmasi akhir mekanisme replikasi DNA dilakukan lewat percobaan Meselson-Stahl yang dilakukan tahun 1958.

Referensi

[sunting | sunting sumber]
  1. ^ Susilawati dan Bachtiar, N. (2018). Biologi Dasar Terintegrasi (PDF). Pekanbaru: Kreasi Edukasi. hlm. 141. ISBN 978-602-6879-99-8. 
  2. ^ Russell, Peter (2001). iGenetics. New York: Benjamin Cummings. ISBN 0-8053-4553-1. 
  3. ^ Mashaghi A, Katan A (2013). "A physicist's view of DNA". De Physicus. 24e (3): 59–61. arXiv:1311.2545v1alt=Dapat diakses gratis. Bibcode:2013arXiv1311.2545M. 
  4. ^ Saenger, Wolfram (1984). Principles of Nucleic Acid Structure. New York: Springer-Verlag. ISBN 0-387-90762-9. 
  5. ^ a b Alberts, Bruce; Johnson, Alexander; Lewis, Julian; Raff, Martin; Roberts, Keith; Walters, Peter (2002). Molecular Biology of the Cell; Fourth Edition. New York and London: Garland Science. ISBN 0-8153-3218-1. OCLC 145080076 48122761 57023651 69932405 Periksa nilai |oclc= (bantuan). 
  6. ^ Butler, John M. (2001). Forensic DNA Typing. Elsevier. ISBN 978-0-12-147951-0. OCLC 223032110 45406517 Periksa nilai |oclc= (bantuan).  pp. 14–15.
  7. ^ (Inggris) "All Cells Replicate Their Hereditary Information by Templated Polymerization". Bruce Alberts, et al. Diakses tanggal 2010-03-19. 
  8. ^ Abbreviations and Symbols for Nucleic Acids, Polynucleotides and their Constituents IUPAC-IUB Commission on Biochemical Nomenclature (CBN). Retrieved 3 January 2006.
  9. ^ a b Ghosh A, Bansal M (2003). "A glossary of DNA structures from A to Z". Acta Crystallogr D. 59 (4): 620–6. doi:10.1107/S0907444903003251. PMID 12657780. 
  10. ^ a b c Berg J., Tymoczko J. and Stryer L. (2002) Biochemistry. W. H. Freeman and Company ISBN 0-7167-4955-6
  11. ^ Watson JD, Crick FH (1953). "A Structure for Deoxyribose Nucleic Acid" (PDF). Nature. 171 (4356): 737–738. Bibcode:1953Natur.171..737W. doi:10.1038/171737a0. PMID 13054692. Diakses tanggal 4 May 2009. 
  12. ^ Yakovchuk P, Protozanova E, Frank-Kamenetskii MD (2006). "Base-stacking and base-pairing contributions into thermal stability of the DNA double helix". Nucleic Acids Res. 34 (2): 564–74. doi:10.1093/nar/gkj454. PMC 1360284alt=Dapat diakses gratis. PMID 16449200. 
  13. ^ Watson JD, Crick FH (1953). "A Structure for Deoxyribose Nucleic Acid" (PDF). Nature. 171 (4356): 737–738. Bibcode:1953Natur.171..737W. doi:10.1038/171737a0. PMID 13054692. 
  14. ^ Mandelkern M, Elias JG, Eden D, Crothers DM (1981). "The dimensions of DNA in solution". J Mol Biol. 152 (1): 153–61. doi:10.1016/0022-2836(81)90099-1. PMID 7338906. 
  15. ^ Gregory S, et. al. (2006). "The DNA sequence and biological annotation of human chromosome 1". Nature. 441 (7091): 315–21. PMID 16710414. 
  16. ^ Verma S, Eckstein F (1998). "Modified oligonucleotides: synthesis and strategy for users". Annu. Rev. Biochem. 67: 99–134. doi:10.1146/annurev.biochem.67.1.99. PMID 9786384. 
  17. ^ Kiljunen S, Hakala K, Pinta E, Huttunen S, Pluta P, Gador A, Lönnberg H, Skurnik M (2005). "Yersiniophage phiR1-37 is a tailed bacteriophage having a 270 kb DNA genome with thymidine replaced by deoxyuridine". Microbiology. 151 (12): 4093–4102. doi:10.1099/mic.0.28265-0. PMID 16339954. 
  18. ^ Uchiyama J, Takemura-Uchiyama I, Sakaguchi Y, Gamoh K, Kato SI, Daibata M, Ujihara T, Misawa N, Matsuzaki S (2014) Intragenus generalized transduction in Staphylococcus spp. by a novel giant phage. ISME J. 2014 Mar 6. doi:10.1038/ismej.2014.29
  19. ^ Simpson L (1998). "A base called J". Proc Natl Acad Sci USA. 95 (5): 2037–2038. Bibcode:1998PNAS...95.2037S. doi:10.1073/pnas.95.5.2037. PMC 33841alt=Dapat diakses gratis. PMID 9482833. 
  20. ^ Borst P, Sabatini R (2008). "Base J: discovery, biosynthesis, and possible functions". Annual review of microbiology. 62: 235–51. doi:10.1146/annurev.micro.62.081307.162750. PMID 18729733. 
  21. ^ Cross M, Kieft R, Sabatini R, Wilm M, de Kort M, van der Marel GA, van Boom JH, van Leeuwen F, Borst P (1999). "The modified base J is the target for a novel DNA-binding protein in kinetoplastid protozoans". The EMBO Journal. 18 (22): 6573–6581. doi:10.1093/emboj/18.22.6573. PMC 1171720alt=Dapat diakses gratis. PMID 10562569. 
  22. ^ DiPaolo C, Kieft R, Cross M, Sabatini R (2005). "Regulation of trypanosome DNA glycosylation by a SWI2/SNF2-like protein". Mol Cell. 17 (3): 441–451. doi:10.1016/j.molcel.2004.12.022. PMID 15694344. 
  23. ^ Vainio S, Genest PA, ter Riet B, van Luenen H, Borst P (2009). "Evidence that J-binding protein 2 is a thymidine hydroxylase catalyzing the first step in the biosynthesis of DNA base J". Molecular and biochemical parasitology. 164 (2): 157–61. doi:10.1016/j.molbiopara.2008.12.001. PMID 19114062. 
  24. ^ Iyer LM, Tahiliani M, Rao A, Aravind L (2009). "Prediction of novel families of enzymes involved in oxidative and other complex modifications of bases in nucleic acids". Cell Cycle. 8 (11): 1698–1710. doi:10.4161/cc.8.11.8580. PMC 2995806alt=Dapat diakses gratis. PMID 19411852. 
  25. ^ van Luenen HG, Farris C, Jan S, Genest PA, Tripathi P, Velds A, Kerkhoven RM, Nieuwland M, Haydock A, Ramasamy G, Vainio S, Heidebrecht T, Perrakis A, Pagie L, van Steensel B, Myler PJ, Borst P (2012). "Leishmania". Cell. 150 (5): 909–921. doi:10.1016/j.cell.2012.07.030. PMC 3684241alt=Dapat diakses gratis. PMID 22939620. 
  26. ^ Hazelbaker DZ, Buratowski S (2012). "Transcription: base J blocks the way". Curr Biol. 22 (22): R960–2. doi:10.1016/j.cub.2012.10.010. PMC 3648658alt=Dapat diakses gratis. PMID 23174300. 
  27. ^ Wing R, Drew H, Takano T, Broka C, Tanaka S, Itakura K, Dickerson RE (1980). "Crystal structure analysis of a complete turn of B-DNA". Nature. 287 (5784): 755–8. Bibcode:1980Natur.287..755W. doi:10.1038/287755a0. PMID 7432492. 
  28. ^ Pabo CO, Sauer RT (1984). "Protein-DNA recognition". Annu Rev Biochem. 53: 293–321. doi:10.1146/annurev.bi.53.070184.001453. PMID 6236744. 
  29. ^ Nikolova, Evgenia N.; Zhou, Huiqing; Gottardo, Federico L.; Alvey, Heidi S.; Kimsey, Isaac J.; Al-Hashimi, Hashim M. (2013-12). "A historical account of Hoogsteen base-pairs in duplex DNA". Biopolymers. 99 (12): 955–968. doi:10.1002/bip.22334. ISSN 1097-0282. PMC 3844552alt=Dapat diakses gratis. PMID 23818176. 
  30. ^ Clausen-Schaumann H, Rief M, Tolksdorf C, Gaub HE (2000). "Mechanical stability of single DNA molecules". Biophys J. 78 (4): 1997–2007. Bibcode:2000BpJ....78.1997C. doi:10.1016/S0006-3495(00)76747-6. PMC 1300792alt=Dapat diakses gratis. PMID 10733978. 
  31. ^ Chalikian TV, Völker J, Plum GE, Breslauer KJ (1999). "A more unified picture for the thermodynamics of nucleic acid duplex melting: A characterization by calorimetric and volumetric techniques". Proc Natl Acad Sci USA. 96 (14): 7853–8. Bibcode:1999PNAS...96.7853C. doi:10.1073/pnas.96.14.7853. PMC 22151alt=Dapat diakses gratis. PMID 10393911. 
  32. ^ deHaseth PL, Helmann JD (1995). "Open complex formation by Escherichia coli RNA polymerase: the mechanism of polymerase-induced strand separation of double helical DNA". Mol Microbiol. 16 (5): 817–24. doi:10.1111/j.1365-2958.1995.tb02309.x. PMID 7476180. 
  33. ^ Isaksson J, Acharya S, Barman J, Cheruku P, Chattopadhyaya J (2004). "Single-stranded adenine-rich DNA and RNA retain structural characteristics of their respective double-stranded conformations and show directional differences in stacking pattern". Biochemistry. 43 (51): 15996–6010. doi:10.1021/bi048221v. PMID 15609994. 
  34. ^ Piovesan, Allison; Pelleri, Maria Chiara; Antonaros, Francesca; Strippoli, Pierluigi; Caracausi, Maria; Vitale, Lorenza (2019-02-27). "On the length, weight and GC content of the human genome". BMC research notes. 12 (1): 106. doi:10.1186/s13104-019-4137-z. ISSN 1756-0500. PMC 6391780alt=Dapat diakses gratis. PMID 30813969. 
  35. ^ Gregory, S. G.; Barlow, K. F.; McLay, K. E.; Kaul, R.; Swarbreck, D.; Dunham, A.; Scott, C. E.; Howe, K. L.; Woodfine, K. (2006-05-18). "The DNA sequence and biological annotation of human chromosome 1". Nature (dalam bahasa Inggris). 441 (7091): 315–321. doi:10.1038/nature04727. ISSN 0028-0836. 
  36. ^ Designation of the two strands of DNA JCBN/NC-IUB Newsletter 1989. Retrieved 7 May 2008
  37. ^ Hüttenhofer A, Schattner P, Polacek N (2005). "Non-coding RNAs: hope or hype?". Trends Genet. 21 (5): 289–97. doi:10.1016/j.tig.2005.03.007. PMID 15851066. 
  38. ^ Munroe SH (2004). "Diversity of antisense regulation in eukaryotes: multiple mechanisms, emerging patterns". J Cell Biochem. 93 (4): 664–71. doi:10.1002/jcb.20252. PMID 15389973. 
  39. ^ Makalowska I, Lin CF, Makalowski W (2005). "Overlapping genes in vertebrate genomes". Comput Biol Chem. 29 (1): 1–12. doi:10.1016/j.compbiolchem.2004.12.006. PMID 15680581. 
  40. ^ Johnson ZI, Chisholm SW (2004). "Properties of overlapping genes are conserved across microbial genomes". Genome Res. 14 (11): 2268–72. doi:10.1101/gr.2433104. PMC 525685alt=Dapat diakses gratis. PMID 15520290. 
  41. ^ Lamb RA, Horvath CM (1991). "Diversity of coding strategies in influenza viruses". Trends Genet. 7 (8): 261–6. doi:10.1016/0168-9525(91)90326-L. PMID 1771674. 
  42. ^ Benham CJ, Mielke SP (2005). "DNA mechanics". Annu Rev Biomed Eng. 7: 21–53. doi:10.1146/annurev.bioeng.6.062403.132016. PMID 16004565. 
  43. ^ Champoux JJ (2001). "DNA topoisomerases: structure, function, and mechanism". Annu Rev Biochem. 70: 369–413. doi:10.1146/annurev.biochem.70.1.369. PMID 11395412. 
  44. ^ Wang JC (2002). "Cellular roles of DNA topoisomerases: a molecular perspective". Nature Reviews Molecular Cell Biology. 3 (6): 430–40. doi:10.1038/nrm831. PMID 12042765. 
  45. ^ Basu HS, Feuerstein BG, Zarling DA, Shafer RH, Marton LJ (1988). "Recognition of Z-RNA and Z-DNA determinants by polyamines in solution: experimental and theoretical studies". J Biomol Struct Dyn. 6 (2): 299–309. doi:10.1080/07391102.1988.10507714. PMID 2482766. 
  46. ^ Internasional, Asyraf. "Tentang Profil Shohibul Faroji". 
  47. ^ MURI, Tafsir Midadurrahman. "Tentang Tafsir Midadurrahman". 
  48. ^ (Inggris) Geoffrey M. Cooper (2000). The Cell - A Molecular Approach. Boston University (edisi ke-2). Sunderland (MA): Sinauer Associates. hlm. Heredity, Genes, and DNA. ISBN 0-87893-106-6. Diakses tanggal 2010-08-12.