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Abstract. Around 1980, G. Mason announced the classification of the qua-
sithin finite simple groups of characteristic 2-type in which all proper simple
sections are known; but he neither completed nor published his work. We pro-

vide a proof of a stronger theorem classifying those groups, which is indepen-
dent of Mason. In particular we close this gap in the proof of the classification
of the finite simple groups. We also prove a corollary classifying quasithin
groups of even type: providing a bridge to the program of Gorenstein, Lyons,
and Solomon; their program seeks to produce a new, simplified proof of the
classification of the finite simple groups.
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Preface

The classification of the quasithin simple groups of even characteristic can be
thought of as roughly one fourth of the classification of the finite simple groups.
The two volumes in this series provide the first proof that each group in this class
is a known simple group. This result closes a gap in the classification of the finite
simple groups which has existed for over twenty years.

In addition the series is part of an ongoing effort to reorganize and simplify the
original proof of the classification of the finite simple groups, and to write the proof
down carefully in a relatively short number of pages (e.g., less than ten thousand).
The effort includes the “GLS” series of Gorenstein, Lyons, and Solomon, which at
the moment consists of the five volumes [GLS94]–[GLS02], but it also includes
smaller projects such as [Asc94] and [BG94].

A detailed discussion of these matters appears in the introductions to each
of the two volumes in our series. Roughly speaking, the first volume consists of
fairly general results on finite groups (with emphasis on quasithin groups) which
serve as the foundation for the classification of the quasithin groups. The second
volume consists of a proof that the groups listed in our Main Theorem are the
simple quasithin groups of even characteristic, all of whose proper simple sections
are known simple groups.

We would be remiss if we did not acknowledge the assistence of a number of
people:

During the many years we have worked on this project, each of us visited and
benefited from the hospitality of many universities and faculties, whose assistance
we gratefully acknowledge.

In particular, we would like to thank Ulrich Meierfrankenfeld for calling our
attention to Stellmacher’s qrc-Lemma, and stating it in the form we use heavily
as our Theorem D.1.5. Ulrich also read portions of the manuscript and suggested
various simplifications.

We thank Robert Guralnick and Gunter Malle, whose work in [GM02] and
[GM04] establishes important results on representations of finite simple groups
related to failure of factorization, some of which have been unpublished for years.
They relieved us of the need to prove those results; we thank them for providing
us with prepublication copies of their work, and also for reading over the parts of
our work which apply their work.

Similarly we would like to thank Richard Lyons and Ronald Solomon, who read
over and helped improve our final chapter, which proceeds under the hypothesis of
the GLS series.
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We also thank the University of Florida group theory seminar (including Chat
Ho and Peter Sin) for reading other parts of the manuscript, correcting various
errors, and suggesting simplifications.

Most importantly, we would like to thank John Thompson for reading large
portions of the two volumes and suggesting numerous improvements and simplifi-
cations. The authors, and indeed the finite group theory community, owe him a
great debt of gratitute for his selfless work benefiting us all.



Volume I: Structure of strongly
quasithin K-groups



The proof of our Main Theorem classifying QTKE-groups appears in Volume
II of this series. In Volume I we collect results which are used in that proof, but
which are not explicitly about QTKE-groups. We have chosen to place such results
here, so as to not interupt the flow of the proof of the main theorems. Some of the
results are known and fairly general. Others are more specialized and are proved
here for the first time.



Introduction to Volume I

The treatment of the “quasithin groups of even characteristic” is one of the
major steps in the Classification of the Finite Simple Groups. (for short, the
Classification). As a part of the original Classification program, Geoff Mason an-
nounced a classification of a subclass of the quasithin groups in about 1980, but he
never published his work, and the preprint he distributed [Mas] is incomplete in
various ways. In two lengthy volumes, we now treat the quasithin groups of even
characteristic; in particular, we close that gap in the proof of the Classification.

In this first volume, we record and develop the machinery necessary to prove our
Main Theorem, which classifies the simple quasithin K-groups of even characteristic.
The second volume implements that proof. Each volume contains an Introduction
discussing its contents, and each contains a statement of the Main Theorem with
some definitions and discussion to help the reader understand the statement of the
theorem and place it in context.

Section 0.1 of this Introduction to Volume I contains the statement of the
Main Theorem. Section 0.2 consists of a brief overview of the most important
general topics in Volume I. Then the subsequent sections give more details about
what we prove in each of the general categories. The final section 0.13 of the
Introduction describes the references we appeal to during the course of the proof;
these “background references” consist of texts, and a small number of papers in the
literature which have the same small controlled set of background references.

The Introduction to Volume II contains an extended discussion of the proof
of the Main Theorem and some discussion of the history of the quasithin group
problem.

0.1. Statement of Main Results

We begin by defining the class of groups considered in our Main Theorem;
since the definitions are somewhat technical, we also supply some motivation. For
definitions of more basic group-theoretic notation and terminology, the reader is
directed to [Asc86a].

The quasithin groups are the “small” groups in that part of the Classification
where the actual examples are primarily the groups of Lie type defined over a field
of characteristic 2. We first translate the notion of the “characteristic” of a linear
group into the setting of abstract groups: Let G be a finite group, T ∈ Syl2(G),
and let M denote the set of maximal 2-local subgroups of G. 1 We define G to be
of even characteristic if

CM (O2(M)) ≤ O2(M) for all M ∈M containing T .

1A 2-local subgroup is the normalizer of a nonidentity 2-subgroup.

3



4 INTRODUCTION TO VOLUME I

The class of simple groups of even characteristic contains some families in addition
to the groups of Lie type in characteristic 2. In particular it is larger than the class
of simple groups of characteristic 2-type (CM (O2(M)) ≤ O2(M) for all M ∈ M),
which played the analogous role in the original proof of the Classification.

The Classification proceeds by induction on the group order. Thus if G is a
minimal counterexample to the Classification, then each proper subgroup H of G
is a K-group: that is, all composition factors of each subgroup of H lie in the set K
of known finite simple groups.

Finally quasithin groups are “small” by a measure of size introduced by Thomp-
son in the N-group paper [Tho68]: Define

e(G) := max{mp(M) :M ∈M and p is an odd prime}

where mp(M) is the p-rank of M (the maximum rank of an elementary abelian p-
subgroup of M). When G is of Lie type in characteristic 2, e(G) is a good abstract
approximation of the Lie rank of G. Janko called the groups with e(G) ≤ 1 “thin”
groups, leading Gorenstein to define G to be quasithin if e(G) ≤ 2. The groups of
Lie type of characteristic 2 and Lie rank 1 or 2 are the “generic” simple quasithin
groups of even characteristic.

Define a finite group H to be strongly quasithin if mp(H) ≤ 2 for all odd primes
p. Thus the 2-locals of quasithin groups are strongly quasithin.

We combine the three principal conditions into a single hypothesis:

Hypothesis 0.1.1 (Main Hypothesis). Define G to be a QTKE-group if

(QT) G is quasithin,
(K) all proper subgroups of G are K-groups, and
(E) G is of even characteristic.

We prove:

Theorem 0.1.2 (Main Theorem). The finite nonabelian simple QTKE-groups
consist of:

(1) (Generic case) Groups of Lie type of characteristic 2 and Lie rank at most
2, but U5(q) only for q = 4.

(2) (Certain groups of rank 3 or 4) L4(2), L5(2), Sp6(2).
(3) (Alternating groups) A5, A6, A8, A9.
(4) (Lie type of odd characteristic) L2(p), p a Mersenne or Fermat prime,

Lε3(3), L
ε
4(3), G2(3).

(5) (Sporadic) M11, M12, M22, M23, M24, J2, J3, J4, HS, He, Ru.

We recall that there is an “original” or “first generation” proof of the Classifi-
cation made up by and large of work done before 1980, and a “second generation”
program in progress, whose aim is to produce a somewhat different and simpler
proof of the Classification. The two programs take the same general approach, but
often differ in detail. Our paper is a part of both efforts.

In particular Gorenstein, Lyons, and Solomon (GLS) are in the midst of a
major program to revise and simplify the proof of part of the Classification. We
also prove a corollary to our Main Theorem, which supplies a bridge between that
result and the GLS program. The corollary is discussed in detail in Volume II.
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0.2. An overview of Volume I

In this section, we briefly describe in general terms the main topics covered in
Volume I. Then in the remaining sections of the Introduction, we give more details
about each topic.

We have made some attempt to collect subtopics of the same flavor together
in chapters. However, linear exposition sometimes makes this difficult. Also the
complexity and duration of the project has contributed to less than optimal orga-
nization.

Many of the results in this volume are known or even “well known”. Sometimes
proofs appear in the literature, but just as often the results are part of the “folklore”.
One important contribution of this volume is to collect these basic facts and lemmas
about finite groups in one place, and in many cases write down the first published
proof of a lemma. We also prove a number of new results which are of interest
outside of the context of quasithin groups. At the end of this section, we indicate
some of the results in Volume I which we regard as most interesting in their own
right.

Volume I records and proves results in the following general categories:
We record, for the convenience of the reader, the statements of some basic

lemmas from texts appearing in our list of background references. We also establish
more specialized corollaries which are fairly immediate consequences of these basic
results.

We record and prove many facts about quasithin K-groups. The quasithin
hypothesis is not inherited by all relevant sections of a quasithin group, but the
K-group hypothesis is inherited. Thus an important early step is to determine all
quasithin and strongly quasithin semisimple K-groups. Then we list and establish
many facts about the automorphism groups, Schur multipliers, subgroup structure,
and F2-representations of such groups, which are crucial to the proof of the Main
Theorem, and in many cases of independent interest.

Another crucial early step is to give a qualitative description of the structure
of strongly quasithin K-groups. This work builds on the earlier results on the
semisimple groups.

An important tool in the proof of the Main Theorem is Thompson factorization
(see section 0.6) and various related notions. There are lemmas about Thompson
factorization scattered through the literature, and other results exist in the folklore.
We collect and reprove some of these lemmas, and also establish new results related
to Thompson factorization.

An (abstract) “minimal parabolic” is a finite group G such that a Sylow 2-
subgroup of G is not normal in G and is contained in a unique maximal subgroup
of G. The notion was first considered by P. McBride. We give proofs of known facts
about minimal parabolics, and prove many new results about strongly quasithin
minimal parabolics.

The notion of “pushing up” is not well defined in the literature. Roughly
speaking, one kind of pushing up involves finding a common nontrivial normal 2-
subgroup U of some pair G1, G2 of 2-locals in a finite group G, given that some large
2-subgroup R is embedded in G1 and G2 in some suitable way; if we can produce U
then we have “pushed up” the pair G1, G2 by embedding it in the 2-local NG(U).
For example, R might be normal in G1 and Sylow in G2 with F ∗(G2) = O2(G2),
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in which case it suffices to find a nontrivial characteristic subgroup of R normal in
G2.

Another type of pushing up considers the following setup: Let R be a 2-
subgroup of G and define

C(G,R) := 〈NG(C) : 1 6= C char R〉.

In this pushing up problem, the object is to determine those groupsG with F ∗(G) =
O2(G) and C(G,R) < G for suitable “‘large” 2-subgroups R of G.

There are many pushing up results in the literature. We record some of these,
give proofs of others, and prove some new pushing up theorems; see section 0.8.

Weak closure is another important tool for analyzing groups of even character-
istic. Weak closure originated in the work of Thompson, and was used by him to
good effect in the N-group paper. We give a treatment of weak closure, and include
proofs of a few new lemmas; see section 0.9.

Yet another important tool in the theory of groups of even characteristic is
the so-called “amalgam method.” These techniques go back to Tutte [Tut47] and
Sims [Sim67], and were first used in the context of groups of even characteristic
by Thompson in the N-group paper. The modern amalgam method was begun by
Goldschmidt in [Gol80], and was extended by various authors such as Delgado,
Meierfrankenfeld, and Stellmacher. Our approach is a bit different from the
standard approach, and is described briefly in section 0.10.

Finally to prove the Main Theorem, or almost any classification theorem in
finite simple group theory, one needs ”recognition theorems”: Results which say
that if Ḡ ∈ K and G is a finite group such that some family of subgroups of G
“closely resembles” a suitable family in Ḡ, then G is isomorphic to Ḡ. Sometimes we
prove our own recognition theorems, and sometimes we appeal to a theorem already
in the literature. In particular, Volume I contains proofs of several recognition
theorems, including results on groups of Lie type of Lie rank 2, and on the Rudvalis
sporadic group Ru. These results are of independent interest.

As promised, we close this initial section with a short list of results from Volume
I which be believe are of particular interest in contexts other than that of the
quasithin groups:

(1) Theorem F.4.8 and its corollaries F.4.24, F.4.26, and F.4.31, which supply
recognition theorems for extensions of groups of Lie type of Lie rank 2. We believe
that the approach in Theorem F.4.8, of characterizing completions of amalgams via
the existence of short cycles in the coset complex, deserves more attention.

(2) Theorem J.1.1 which provides a 2-local recognition theorem for the Rudvalis
group Ru. Chapter J also contains a proof that the standard list of subgroups of
Ru of prime order, and their normalizers, is correct.

(3) Our extension of Stellmacher’s qrc-Lemma for QTKE-groups. Formally the
result appears as Theorem 3.1.6 in Volume II; however, all but a few details of the
proof appear in Volume I. The result states:

Theorem 0.2.1. Let G be a simple QTKE-group, T ∈ Syl2(G), T ≤ M0 ≤
M ∈ M, and H a subgroup of G minimal subject to T ≤ H 6≤M and O2(H) 6= 1.
Assume that V is a normal elementary abelian 2-subgroup of M0 which satisfies
O2(M0/CM0(V )) = 1, O2(M0) = CT (V ), and H ∩M normalizes V or O2(M0).
Then either O2(〈M0, H〉) 6= 1 or q̂(M0/CM0(V ), V ) ≤ 2.
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The parameter q̂ is defined in section 0.6.3. It should be possible to remove the
quasithin hypothesis from the Theorem.

(4) In section C.1, we supply a proof of the Local C(G, T )-Theorem for K-
groups. The K-group hypothesis makes possible a proof which is much simpler
than the original.

(5) The statement and proof of “Baumann’s Argument” in lemma B.2.18, and
of “Glauberman’s Argument” in lemma C.1.21. To our knowledge, this is the first
time these important results in local group theory have been written down explicitly.

(6) The basic inheritance properties of “offenders in 2F-modules” in section
D.2.

(7) Theorem G.11.2 in section G.11, which lists the possible actions of the
normalizer of a large extraspecial 2-subgroup of a QTKE-group on the Frattini
quotient of the 2-group. It should be possible to extend this result to arbitary
K-groups.

0.3. Basic results on finite groups

Section A.1.2 contains basic results on finite groups. Some results are listed
without proof, with references to texts in our background references where proofs
can be found. Many of these results are known to finite group theorists by standard
names such as the Three Subgroup Lemma, the Baer-Suzuki Theorem, etc. When
we refer to such results, we sometimes do so via the standard name and the lemma
number, or sometimes just via the standard name.

Section A.1.2 also contains some more specialized corollaries to the basic lem-
mas; for example, corollaries which hold only in strongly quasithin groups. We
supply the easy proofs of such corollaries.

Lemma A.1.21 gives properties of supercritical subgroups of p-groups of odd
order. The term “supercritical subgroup” is not used in the literature; it is a
term we have coined. However, the notion certainly already exists in the folklore,
extending the notion of “critical subgroup” due to Thompson.

0.4. Semisimple quasithin and strongly quasithin K-groups

In section A.2, we determine the simple quasithin and strongly quasithin K-
groups in Theorems B (A.2.2)and C (A.2.3), respectively. Since the quasithin
hypothesis is not inherited by enough proper sections, it is these results which
give us control of the composition factors of proper subgroups of QTKE-groups.
Moreover Theorem A (A.2.1) essentially extends Theorems B and C to semisimple
groups, so we also have control over semisimple sections of proper subgroups of
QTKE-groups.

Much of the rest of Volume I is devoted to establishing various properties of
the groups appearing in Theorem C; we will say more about this later.

0.5. The structure of SQTK-groups

An SQTK-group is a strongly quasithin K-group. In particular the 2-local
subgroups of QTKE-groups are SQTK-groups.

In section A.3, we establish qualitative results about the structure of SQTK-
groups. The description is in terms of C-components of the group, a notion intro-
duced and defined in that section; here is a summary:
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A C-component of a finite group G is a subgroup of G minimal subject to being
nontrivial, perfect, and subnormal in G. We write O∞(G) for the largest solvable
normal subgroup of G. From A.3.3, for each C-component L of G, L/O∞(L) is a
nonabelian simple group; and the map L 7→ LO∞(G)/O∞(G) is a bijection between
the set of C-components of G and the set of components of G/O∞(G).

Assume G is an SQTK-group and write G∞ for the last term in the derived
series of G. In section A.3, we establish four important facts about G: First,
G∞ is the product of the C-components of G. Second, if L is a C-component of
G, then aside from a special class of exceptions described in proposition A.3.6,
L/O2(L) is quasisimple. Third, if K is a C-component of G distinct from L, then
[L,K] ≤ O2(G); that is, distinct C-components of G commute modulo O2(G).
Fourth, either L is normal in G, or L is one of a number of special exceptions listed
in lemma A.3.8.3, and LG is of order 2.

Section A.1.2 also contains more specialized results about the structure of
SQTK-groups.

0.6. Thompson factorization and related notions

As is the case with so many notions crucial to the study of groups of even
characteristic, Thompson factorization was introduced by Thompson. We begin our
discussion in subsection 0.6.1, with the most basic setup for Thompson factorization
and its translation into the language of F2-representation theory. We also discuss
lemmas which extend the basic setup. Then in subsections 0.6.2 and 0.6.3, we
move on to generalizations of Thompson factorization and corresponding problems
in representation theory.

0.6.1. Thompson factorization. Let G be a finite group. The Thompson
subgroup of G (at the prime 2) is the subgroup J(G) of G generated by the ele-
mentary abelian 2-subgroups of G of maximal rank. We will be most interested
in the Thompson subgroups of 2-groups, and in particular in J(T ) for T a Sylow
2-group of a finite group G. Assume that F ∗(G) = O2(G) and let Z := Ω1(Z(T )),
V := 〈ZG〉, and G∗ := G/CG(V ). Then O2(G

∗) = 1, and the theory of Thompson
factorization (cf. B.2.7) tells us that either

(a) We have Thompson factorization: G = NG(J(T ))CG(V ) = NG(J(T ))CG(Z),
or

(b) V is an FF-module for G∗: that is, there is a nontrivial elementary abelian
2-subgroup A∗ of G∗ such that

rA∗,V :=
m(V/CV (A

∗)))

m(A∗)
≤ 1.

In case (a), Thompson factorization gives us information about G in terms of
NG(J(T )) and CG(Z) or CG(V ), and can allow us to “push up” G inside some
larger group: For example G = C(G, T ) since Z and J(T ) are characteristic in T ;
and if CG(V ) is 2-closed, then J(T ) E G.

In case (b), we are led to the study of faithful FF-modules for finite groups G∗

with O2(G
∗) = 1. It develops (cf. the discussion in subsection 0.11.2) that such

modules are rare, and hence we also have strong information about G in case (b),
which can also be used to push up G.
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Indeed it is not necessary to restrict attention to Sylow 2-groups of G; similar
results hold for 2-subgroups R such that CR(V ) ∈ Syl2(CG(V )). Another extension
was initiated by Baumann: Define the Baumann subgroup of a 2-group R to be

Baum(R) := CR(Ω1(Z(J(R)))).

Under suitable restrictions on R and G, Baumann’s analysis shows that if Thomp-
son factorization fails, and we set B := Baum(R) and L := 〈BG〉, then CB(V ) ∈
Syl2(CL(V )), so we can apply the theory of Thompson factorization and pushing
up to the pair B,L.

In sections B.1 and B.2, we record and prove basic facts from the theory of
Thompson factorization and FF-modules. In addition we state and prove “Bau-
mann’s Argument” in B.2.18. This is the argument Baumann used in [Bau76] to
prove “Baumann’s Lemma” (see B.6.10). It is part of the folklore that this ar-
gument applies in much greater generality; but to our knowledge, lemma B.2.18
constitutes the first instance in the literature where an extension is stated explictly,
much less proved.

0.6.2. Extensions of Thompson factorization. One can also define higher
Thompson subgroups as follows: Let T ∈ Syl2(G), m := m(T ), and for i a nonneg-
ative integer, define Ji(T ) to be the subgroup generated by all elementary abelian
2-subgroups of T of rank at least m− i. Thus J0(T ) = J(T ).

Under suitable hypotheses on G and nonnegative integers i and j, one can
establish analogues of Thompson factorization of the form

G = NG(Ji(T ))CG(Ω1(Z(Ji+j(T ))));

see for example 5.53 in Thompson [Tho68].
In his preprint on quasithin groups, Mason establishes some extensions of this

lemma of Thompson. Using our theory involving the parameter n(G) discussed
in section 0.9, in section E.5 we establish other extensions of Thompson’s lemma,
suggested by Mason’s generalization. This theory is again useful in pushing up,
and also in conjunction with weak closure.

0.6.3. An extension of Stellmacher’s qrc-Lemma. In [Ste92], Stellmacher
introduces an innovative and very useful variation on Thompson factorization: the
qrc-Lemma. However the qrc-Lemma as stated in [Ste92] is probably a bit opaque
to anyone who has not already seen it applied. The version we state and prove
in section D.1 as D.1.5 was communicated to us by Meierfrankenfeld; its value is
also probably unclear to the uninitiated, so here is an overview: In D.1.5 we have a
pair of subgroups G1 and G2 of a group G with a common Sylow 2-subgroup, and
an elementary abelian normal 2-subgroup V of G1 such that O2(G

∗
1) = 1, where

G∗ := G1/CG1(V1)). Then, subject to some extra constraints, D.1.5 says that one
of five restrictive conclusions holds, which are discussed briefly below.

We go on to prove an extension of the qrc-Lemma which appears as Theorem
3.1.6 in Volume II, (and is reproduced as Theorem 0.2.1 in section 0.2); but is
really proved in Volume I, as we now indicate: In cases (2) and (4) of D.1.5,
q(G∗1, V ) ≤ 2, where q(G∗1, V ) is the minimum value of rA∗,V , as A

∗ ranges over
the nontrivial elementary abelian 2-subgroups of G∗1 with [V,A∗, A∗] = 0. By
Thompson Replacement (cf. B.1.4.5), V is an FF-module iff q(G∗1, V ) ≤ 1, so the
condition that q(G∗1, V ) ≤ 2 can be viewed as a generalization of the condition
that V is an FF-module. In case (3) of D.1.5, the dual of V is an FF-module
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for G∗1; we show in B.5.13 that if G1 is an SQTK-group, then in this case again
q(G∗1, V ) ≤ 2. In case (1), lemma E.2.15 tells us that q̂(G∗1, V ) < 2, where q̂(G∗1, V )
is the minimum value of rA∗,V , as A

∗ ranges over the nontrivial elementary abelian
2-subgroups ofG∗1 with [V,A∗, A∗, A∗] = 0. Finally in case (5) in the proper context,
Theorem C.5.8 shows that if G is a QTKE-group, then 〈G1, G2〉 is contained in
a 2-local subgroup of G, so we have pushed up the pair G1, G2. Now visibly
q̂(G∗1, V ) ≤ q(G∗, V ), so that ultimately the qrc-Lemma says that (in the proper
context in a QTKE-group) we can push up the pair G1, G2 unless q̂(G∗1, V ) ≤ 2.

Meierfrankenfeld and Stellmacher refer to F2G
∗
1-modules V with q̂(G∗1, V ) ≤

2 as 2F-modules. Thus 2F-modules are generalizations of FF-modules, and our
extension of the qrc-Lemma says that such modules are an obstruction to pushing
up in QTKE-groups. It is not unreasonable to expect that this extension of the
qrc-Lemma holds in general without our QTKE-hypotheses.

0.7. Minimal parabolics

An (abstract) “minimal parabolic” is a finite group G such that a Sylow 2-
subgroup of G is not normal in G and is contained in a unique maximal subgroup
of G. The notion was first considered by P. McBride. The general structure of a
minimal parabolic is well known; cf. B.6.8. In section E.2, we go on to establish
more detailed results about minimal parabolics which are SQTK-groups. In one
such result (see E.2.15) we show that in case (1) of the qrc-Lemma, when G2 is an
SQTK-group then q̂(G∗1, V ) < 2, as discussed in the previous section.

0.8. Pushing up

Having developed the basics of Thompson factorization, the most important
tool in pushing up, we begin our formal study of pushing up in chapter C.

The obstructions to pushing up in a finite group G with F ∗(G) = O2(G) are
the blocks of G: The subnormal subgroups L = O2(L) of G such that L/O2(L)
is quasisimple or Z3, U(L) := [O2(L), L] ≤ Z(O2(L)), and L is irreducible on

Ũ(L) := U(L)/CU(L)(L).
A block L is of type L2(2

n) for n > 1 an integer if L/O2(L) ∼= L2(2
n) and

Ũ(L) is the natural module for L/O2(L). Similarly for m ≥ 3 an integer, the block

L is of type Am if L/O2(L) ∼= Am and Ũ(L) is the natural module for L/O2(L).
Thus for example a block of type A3 is isomorphic to A4; by convention we also
refer to such blocks as blocks of type L2(2), since A3

∼= Z3
∼= L2(2)

′.
Blocks of type L2(2

n) and blocks of type Am withm odd are the most important
obstruction to pushing up. This is already evident in the case of solvable 2-locals in
the N-group paper, where Thompson produces blocks of type L2(2) via an appeal
to a theorem of Sims. In his work on thin groups, Aschbacher used early work of
Glauberman to produce L2(2

n)-blocks, and “Glauberman’s Argument” to produce
A5-blocks (cf. 5.3 in Aschbacher [Asc78a]). Glauberman’s work eventually led to
the Glauberman-Niles/Campbell Theorem, which we record as Theorem C.1.18,
with a reference to the paper [GN83] of Glauberman and Niles for a proof.

The argument of Glauberman used to produce A5-blocks has been used in the
literature in other pushing up problems. In lemma C.1.21 we formalize and prove a
version of “Glauberman’s Argument”; as far as we know this is the first time such
a generalization has been written down explictly and proved.
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In Theorem C.1.29 we give a new proof of the “Local C(G, T )-Theorem” for
K-groups. The Local C(G, T )-Theorem says that if F ∗(G) = O2(G), T ∈ Syl2(G),
and C(G, T ) ≤ M ≤ G, then G = ML1 · · ·Lr, where Li is an L2(2

ni) or A2ni+1-
block. The K-group assumption makes possible a proof which is much simpler than
Aschbacher’s original proof in [Asc81a].

We also record in Theorems C.1.32 and C.1.34, a pushing up theorem of Meier-
frankenfeld and Stellmacher (with a reference to their original proof in [MS93])
which applies to certain 2-radical subgroups of a group G such that G/O2(G) is
essentially a group of Lie type in characteristic 2 of Lie rank 2.

Recall a 2-subgroup R of G is radical if R = O2(NG(R)). In sections C.2
through C.4, we develop a theory of pushing up for radical subgroups of SQTK-
groups satisfying some extra properties. This theory is a special case of work in
[Asc81b], although we supply our own proofs except in the case of some easy
lemmas.

0.9. Weak closure

Weak closure originated in the work of Thompson, particularly in the N-group
paper. Chapter E contains a discussion of weak closure, much of which comes from
[Asc81c]. Theorem E.6.3 is the deepest result; in a sense it extends Theorem 11.1
in [Asc81c] from groups of characteristic 2-type to QTKE-groups, in that it relaxes
the hypothesis in [Asc81c] that G is of characteristic 2-type to the hypothesis that
G is of even characteristic, although the quasithin hypothesis is added.

Most of the remaining theory of weak closure in chapter E is formal and fairly
easy to establish; see section E.3.

Section E.1 contains a discussion of the parameter n(G) of a finite group G,
which roughly speaking measures the maximum of the 2-ranks m2(F/O2(F )) of
subgroups F in a certain family of subgroups associated to some fixed Sylow 2-
subgroup T of G. This family is critical in weak closure and other pushing up
situations. The family appeared first in [Asc81c], and the lemmas in section E.1
come from that reference.

0.10. The amalgam method

In the amalgam method, one focuses attention on a pair G1, G2 of finite sub-
groups of a group G sharing a common Sylow 2-subgroup T , such that no nontrivial
subgroup of T is normal in G0 := 〈G1, G2〉. Assume also that F ∗(Gi) = O2(Gi)
for i = 1, 2. The amalgam method concentrates on the coset graph Γ with vertices
G0/G1 ∪ G0/G2, and two cosets adjacent if their intersection is nonempty. Write
γi, i = 0, 1, for Gi+1 regarded as a vertex of Γ.

Our version of the method is not standard: we also give ourselves a normal
elementary abelian 2-subgroup V of G1 such that CT (V ) = O2(CG1(V )) and
O2(Ḡ1) = 1, where Ḡ1 := G1/CG1(V ). For γ0g ∈ Γ, let Vγ0g := V g. In our
version of the amalgam method, we consider the parameter b, which is the greatest
positive integer such that V fixes each vertex of Γ at distance b from γ0. Typically
in the amalgam method, one considers the normal closure Vγ1 of V under G2; for
γ1h ∈ Γ, let Vγ1h := V hγ1 . The usual amalgam method analyzes the relationship be-
tween Vα and Vβ for various α, β ∈ Γ, particularly the relationship between V and
Vγ for γ ∈ Γ at distance b from γ0 such that V does not fix some vertex adjacent
to γ. Section F.7 contains the basic lemmas necessary for this analysis.
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In our approach, the normal closure U in G2 of a suitable subgroup V+ of V is
often of more interest. We choose V+ to contain a nontrivial normal subgroup V1
of G2, and so that G1 ∩G2 is irreducible on V+/V1. In most cases where we apply
the amalgam method, V1 is of order 2, so we assume that |V1| = 2 in the remainder
of this exposition.

We usually partition our analysis into two cases: U nonabelian and U abelian.
In the first case, U is “almost extraspecial”: that is, Φ(U) = V1 is of order 2 and
U = U0Z(U), where U0 is an extraspecial 2-group. This allows us to use some
of the techniques for studying groups with a large extraspecial 2-subgroup; see for
example section G.2 and the discussion below of the related F2-representations.

The case where U is abelian is more subtle and difficult. We develop some
machinery in sections F.8 and F.9 to handle this case. Ultimately we achieve some
control over G2 by showing that q(G1/CG1(U/V1), U/V1) ≤ 2.

0.11. Properties of K-groups

Most of the results discussed above depend upon various properties of the
simple quasithin and strongly quasithin groups L in K that appear in Theorems B
and C. In this section we discuss some of these properties.

0.11.1. Schur multipliers, covering groups, and 1-cohomology. In sec-
tion I.1, we list the Schur multipliers of the quasithin K-groups, and some 1-
cohomology groups of small F2-modules for those groups; these results come from
the literature. We also prove various facts about the covering groups of the groups
for which there is no convenient reference. In B.4.9 and in section I.1, we prove that
certain F2-extensions split when appropriate noncyclic elementary abelian 2-groups
act quadratically.

0.11.2. FF-modules and 2F-modules. In [GM02] and [GM04], Gural-
nick and Malle determine all pairs (L, V ) such that L is a quasisimple K-group with
O2(G) = 1 and V is a faithful 2F-module for a finite group G such that F ∗(G) = L.
We consider the cases where G is a SQTK-group, and determine which modules
are FF-modules, which satisfy q(G, V ) ≤ 2, and which satisfy q̂(G, V ) < 2. In
many cases we determine the offending subgroups: that is, the nontrivial elemen-
tary abelian 2-subgroups A such that (essentially) rA,V = q(G, V ) or q̂(G, V ). The
pairs that arise are listed in Theorems B.4.2 and B.4.5. Also FF-offenders are de-
scribed in Theorm B.4.2, and some information about q and q̂ is given in Theorem
B.4.5. Proofs of many of the facts appearing in these theorems can be found in
chapter K.

Offenders for the alternating groups on their natural modules are discussed
in detail in section B.3. Detailed information about some of the less accessible
modules for various groups appears in chapter H, in particular for the code and
cocode modules of the Mathieu groups.

The literature contains a fairly well developed theory describing the general
structure of FF-modules. This literature is summarized in section B.1. No such
literature exists for 2F-modules, so section D.2 introduces the necessary conceptual
base and proves various basic facts about such modules.

In section B.5, we determine the representations ϕ : G → GL(V ) of SQTK-
groups G such that O2(Gϕ) = 1 and V is an FF-module for Gϕ. This treatment



0.12. RECOGNITION THEOREMS 13

uses the list of possiblities with F ∗(G) quasisimple and irreducible on V as well as
the theory from section B.1.

In section D.3, we determine the representations ϕ : G → GL(V ) of SQTK-
groups G such that O2(Gϕ) = 1 and V is an 2F-module for Gϕ satisfying suitable
minimality conditions. Again we use the results on the case F ∗(G) quasisimple and
irreducible on V , and the theory from section D.2.

0.11.3. F2-representations on extraspecial groups. As is well known,
many finite simple groups G contain a large extraspecial 2-subgroup; that is, G
possesses an involution z such that F ∗(G) is an extraspecial 2-subgroup. Recall
a somewhat weaker condition arose in our approach to the amalgam method as
described in section 0.10, where in our simple QTKE-group G we produce an “al-
most extraspecial” subgroup U in the centralizer of some involution z: that is,
U E CG(z) and U = U0Z(U) with U0 extraspecial and 〈z〉 = Φ(U).

The literature contains a classification of simple groups with a large extraspecial
subgroup due to Timmesfeld, S. Smith, and others. We do not appeal to this
literature, but we do borrow some of the elementary arguments from the literature.
We use our K-group hypothesis to avoid the most difficult parts of the analysis of
large extraspecial subgroups. Most particularly, we consider the representation of
CG(z) on the quotient U/Z(U), and translate elementary notions from the theory
of large extraspecial subgroups into restrictions on this representation. Then in
sections G.6–G.11, we classify the F2-modules for SQTK-groups satisfying those
restrictions. The groups and representations that survive are all realized via some
large extraspecial subgroup of some group, although not always in a simple QTKE-
group.

Presumably it is possible to extend this approach to arbitrary finite simple
groups G.

0.11.4. Permutation modules. We determine the structure and special prop-
erties of various permutation modules over F2. Most of this information is well
known, and all but some of the specialized information is at least in the folklore.
For example the structure of the permutation module of degree n for Sn (cf. section
B.3) and the multiply transitive permutation modules of degree m for the Mathieu
groups Mm are certainly well known and decribed in detail in the literature. On
the other hand, chapter H contains some specialized information about the modules
for the Mathieu groups that may be new.

We also obtain detailed information about the 7-dimensional and 21-dimensional
modules for L3(2) in sections H.5 and H.6, and the 15-dimensional modules for A6

in section G.5.

0.12. Recognition theorems

Recall a “recognition theorem” is a result which says that if G and Ḡ are groups
such that the subgroup structure of G “resembles” that of Ḡ, then G ∼= Ḡ. Volume
I proves a number of recognition theorems which are of interest independent of the
study of quasithin groups.

0.12.1. Amalgams. The notion of an “amalgam” supplies one set of hypothe-
ses which makes possible group recognition.
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An amalgam

α := (Xa, (αa,b : Xa → Xb) : a, b ∈ D, a ≤ b),

is a functor from some poset D (regarded as a small category) to the category of
groups. For example if D is a collection of subgroups of G partially ordered by in-
clusion, then the inclusion maps among these subgroups define a subgroup amalgam
on D. There is an obvious notion of morphisms of amalgams. A completion of α is
a morphism ξ = (ξd : Xd → Gd) of α with some subgroup amalgam (Gd : d ∈ D)
such that ξd is surjective for each d ∈ D and G = 〈Gd : d ∈ D〉. The completion is
faithful if the maps are injective.

Moreover there is a universal completion grp(α). See section F.2 for more
details.

Associated to each completion G is a simplical complex Γ(G), the coset complex
on

∐
d∈D G/Gd. Under weak constraints on D, G = grp(α) iff Γ(G) is simply

connected. Then if also F ∗(G) is simple, there is a unique faithful completion of α,
so we can recognize G via the family α of subgroups.

By now this approach is a well understood tool in the group theoretic literature.
However many subtleties have not been written down explicitly; we write out proofs
of some of these facts (presumably for the first time) in section F.2.

0.12.2. Groups of Lie type of Lie rank 2. Let G be an extension of a finite
group of Lie type of Lie rank 2, and α = (G1, G1,2, G2) the amalgam of parabolics
over a fixed Borel subgroup of G. The universal completion of α is infinite, and its
coset complex is an infinite regular tree, so the approach of the previous subsection
is not sufficient here. Instead we must introduce extra constraints on a completion
Ĝ of α or its bipartite graph Γ̂, to prove that G ∼= Ĝ.

The graph Γ of G is a Moufang (see F.4.17) generalized 2m-gon for some integer

m. Define the completion Ĝ to be small if for some pair x, x′ of vertices at distance
2m in Γ̂, there is more than one geodesic from x to x′. We prove in Theorem
F.4.8 that if Ĝ is small, then Ĝ ∼= G. The proof uses the Tits-Weiss classification
[TW02] of Moufang generalized polygons, and is not difficult when G is Moufang
on Γ. However the theorem is also true when G is the Tits group 2F4(2)

′ or
G2(2)

′ ∼= U3(3), where G is not Moufang on Γ, and hence Tits-Weiss can not be
applied directly. In these two cases the proof is more subtle.

Theorem F.4.8 and its corollaries F.4.24 and F.4.26 are of interest as recognition
theorems independent of the study of quasithin groups. For example they are
used to prove 2-local recognition theorems in [Asc02a] and [Asc02b]. We also
use Theorem F.4.8 to prove Theorem F.4.31, a 2-local recognition theorem for
extensions of groups of Lie type, Lie rank 2, and characteristic 2. In addition
Theorem F.4.8 is used in the proof of our recognition theorem for the sporadic
group Ru, discussed in the next subsection.

0.12.3. The Rudvalis group Ru. In chapter J we prove a 2-local recognition
theorem for the Rudvalis group Ru. This recognition theorem is also of independent
interest. Moreover we prove that the usual list of conjugacy classes of subgroups of
Ru of prime order and their normalizers is correct. See section J.1 for a discussion
of the history of this problem and an exact statement of the theorem.
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0.13. Background References

The “original proof” of the Classification requires the theorem that each QTK-
group of characteristic 2-type is isomorphic to a group in K. Our Main Theorem
includes the first proof of this latter result, so it is part of the original proof of
the Classification. However it is also part of an ongoing program to produce a
simplified, self-contained proof of the Classification. Work in this program should
meet a different standard from that for work in the “original proof”. In particular, it
should be made clear which references the work depends on, and these “background
references” should be either standard texts, or papers in the literature which have
the same small controlled set of background references.

We have borrowed the term “background references” from GLS, although our
collection of background references is different from that of the GLS series. On
the one hand, we appeal to a few papers not included in the GLS background, but
on the other, we do not use all of the GLS background. Also we explicitly list
references for the recognition theorems which we do not prove, whereas in the case
of sporadic groups, GLS takes recognition as an axiom—that is, they regard their
treatment of a case involving a sporadic group to be complete when they produce
a suitable family of subgroups, leaving it to others to provide a body of recognition
theorems for the sporadics meeting the standards alluded to above.

Moreover we have divided our bibliography into two parts: The first part con-
tains our list of background references; this is further subdivided into those used
in the GLS series, and those used by us but not by GLS. The second part consists
of “expository references” (again following the terminology of GLS) and is much
lengthier—but our work does not depend on these expository references; instead
they are mentioned either for comparison, or in our discussion of the history of
various parts of the work.

Volume I contains most of the technical machinery needed for the proof of
the Main Theorem. Often the theorems we require do not exist in the literature,
although sometimes the results do appear in the literature, but do not meet the
standards outlined above for background references.

Our basic elementary reference is the text of Aschbacher [Asc86a]; other
texts on finite groups are also used on occasion, like those of Gorenstein [Gor80],
Huppert-Blackburn [Hup67] [HB85], and Suzuki [Suz86], as well as Aschbacher’s
more advanced texts [Asc94] and [Asc97]. For the convenience of the reader, we
have stated the results from these texts that we use most often in section A.1.2 and
chapter I. We also make frequent appeals to results in the GLS series; see [GLS94]
and the succeeding numbers (through 5 so far) of that series in the bibliography.
Many of these results are elementary, but there are appeals to some deep results
proved there, like the Bender-Suzuki classification of groups with a strongly embed-
ded subgroup (see Theorems SE and ZD on pp. 20 and 21 of [GLS99]). In lemma
16.2.10 in Volume II, we appeal to lemma 3.4 from [Asc75]; but that result is a
fairly easy corollary to Theorem ZD in [GLS99], so the appeal could be removed
without too much effort.

We use the Odd Order Theorem of Feit-Thompson [FT63] that a finite group
of odd order is solvable. We follow the convention of GLS in our Background
References by quoting the modern revision of Bender-Glauberman [BG94] as our
reference for the proof of this result.
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We need either the Fong-Seitz papers [FS73] on split BN-pairs of rank 2, or
the Tits-Weiss book [TW02] on Moufang generalized polygons, to identify groups
of Lie type of characteristic 2 and Lie rank 2. We regard the latter as our primary
approach, and correspondingly list [TW02] in our Background References. We
also use the “Green Book” [DGS85] of Goldschmidt, Delgado, and Stellmacher for
the classification of the amalgams of parabolics in those groups, supplemented by
papers of Goldschmidt [Gol80] and Fan [Fan86]. This makes possible an appeal
to Theorem F.4.31 for the final identification.

Various other appeals to recognition theorems in the literature are listed in
section I.4, so we do not repeat that list here.

We use the Glauberman-Niles Theorem [GN83]; there is also a different proof
of this result due to Campbell in [Cam79]. We use the difficult paper of Meier-
frankenfeld and Stellmacher [MS93] on pushing up suitable subgroups of rank-2
groups. Actually we need only a special case of their result, so that some simpli-
fication of our work might be possible here. We use more elementary pushing up
results from [Asc81b] and [Asc81a], particularly in sections C.1 and C.2.

We need various facts about the subgroup structure and F2-representations of
almost-quasisimple groups whose nonabelian simple sections appear in Theorem C.
The remainder of the section lists the major sources of such information:

We appeal to work of Guralnick and Malle in [GM02] and [GM04] for a
list of the pairs (G, V ) where G is a nearly simple SQTK-group and V a faithful
irreducible F2G-module such that q̂(G, V ) ≤ 2.

We use [Asc80] (only invoked in the case of SQTK-groups) and [Asc86b] to
determine which groups listed in Theorem C are abstract minimal parabolics (see
Definition B.6.1) We occasionally use [GLS98] (e.g. 6.3.1) and [Asc86b] for other
facts about subgroup structure of the groups in Theorem C.

We use James’ paper [Jam73] for facts on the irreducible F2-representations
of the Mathieu groups. We appeal to [Asc87] and [Asc88] for some detailed facts
about the Weyl module for G2(2

n).
We appeal to [Asc81a] for knowledge of FF-offenders on the natural modules

for the alternating groups, but this is easy to work out independently. Similarly we
appeal to [Asc82a] for some specialized facts about F2-representations in section
E.4. The material in section E.1 comes from [Asc81c] and [Asc82a].

We need some facts about the 1-cohomology of certain F2-modules for the
groups in Theorem C; see I.1.6 and the references there, primarily the paper [JP76]
by Jones and Parshall on representations of groups of Lie type.

We also need the list of Schur multipliers of the simple groups in Theorem C;
see I.1.3, and the reference there to [GLS98].

Section I.8 contains some material from the literature, including statements,
proofs, and discussion of relationships among the references.

Finally we list some references used occasionally for particular facts, most of
which are “well known”:

We appeal several times to the classical paper of Zsigmondy [Zsi92].
At one point we quote the theory of fundamental subgroups in a group of Lie

type and odd characteristic from [Asc80].
We use [AS76a] for facts about centralizers of involutions in groups of Lie

type in characteristic 2. Also in the proof of our corollary to the Main Theorem



0.13. BACKGROUND REFERENCES 17

that supplies a bridge to the GLS program, we quote [AS76b] for the structure of
certain involution centralizers in sporadic groups.

We use [Asc82b] for some facts about the Tits group.
At one point we quote [AS85] for a result on 1-cohomology of modules, but

this could be proved by ad hoc arguments in that special case.





CHAPTER A

Elementary group theory and the known quasithin

groups

In this initial chapter of Volume I, we first collect some standard, elementary
results from the literature, and derive various easy consequences of these results.

We also prove some basic facts about the structure of quasithin K-groups; for
example in Theorem C (A.2.3) of section A.2, we give the list of simple SQTK-
groups. Since these groups are the nonabelian simple sections in 2-local subgroups
of simple QTKE-groups, this list will be used throughout our work. In particular,
a main theme of the subsequent chapters of Volume I is the development of more
detailed properties on the structure and representations of the groups in Theorem
C, and of more general SQTK-groups; details which will be needed in the proof of
the Main Theorem.

A.1. Some standard elementary results

In this section, for convenience and in order to maintain a reasonably self-
contained treatment, we provide the statements (and references to proofs) of certain
fairly standard elementary results from the literature. We concentrate on those
results we use most frequently. This section provides reference numbers for such
results, though in the main text of the paper we may often reference the results
just by the standard name indicated here.

We also include some other results which appear to be well-known, but do not
seem to be proved in the literature. We supply proofs of these results.

Furthermore we mention certain elementary results which we do not formally
reference by a number or a citation in the main text—since they are probably
familiar (e.g. by name like Sylow’s Theorem) to most readers.

In this section G denotes a finite group.

A.1.1. Basic group theory.
Here are several results that we do not formally reference by a number in the main
text:

(Dedekind) Modular Law—1.14 in [Asc86a]
Frattini Argument—6.2 in [Asc86a]
Hall’s Theorem on solvable groups (extending the theory of Sylow subgroups

for a prime to Hall subgroups for a set of primes)—18.5 in [Asc86a]

We also make frequent use, without reference, of the standard properties of the
generalized Fitting subgroup F ∗(G) of a group G, particularly its self-centralizing
property:

CG(F
∗(G)) = Z(F ∗(G)) ≤ F ∗(G).

19
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(See chapter 11 of [Asc86a]). Of course if G is solvable, then F ∗(G) = F (G) is the
usual Fitting subgroup. In particular we often concentrate on the situation where
F ∗(G) = Op(G) for some prime p; observe that

F ∗(G) = Op(G) iff Op(F ∗(G)) = 1 iff CG(Op(G)) ≤ Op(G).

Lemma A.1.1 (Three-Subgroup Lemma). Let X, Y , Z be subgroups of a group
G with [X,Y, Z] = [Y, Z,X ] = 1. Then [Z,X, Y ] = 1.

Proof. See 8.7 in [Asc86a]. ¤

Recall that a group generated by two involutions is dihedral.

Lemma A.1.2 (Baer-Suzuki Theorem). Let X be a p-subgroup of G. Then
either X ≤ Op(G), or there exists g ∈ G with 〈X,Xg〉 not a p-group. In particular
if X is of order 2, then X inverts an element of odd order in G.

Proof. See 39.6 in [Asc86a]. ¤

Lemma A.1.3 (Dickson’s Theorem (on subgroups of L2(q))). The subgroups of
L2(p

f ) = PSL2(p
f ) are of the form:

(1) Elementary abelian p-groups of rank at most f .
(2) Cyclic groups of order z dividing (pf ± 1)/k where k := (pf − 1, 2).
(3) Dihedral groups of order 2z where z is as in (2).
(4) The alternating group A4 for p = 2 and f even.
(5) The symmetric groups S4 for p

f − 1 ≡ 0 mod 16.
(6) The alternating group A5 for p

2f − 1 ≡ 0 mod 5.
(7) Semidirect products of an elementary abelian p-group of rank m with a

cyclic subgroup of order t, where t divides pm − 1 and (pf − 1)/k.
(8) L2(p

m) for m dividing f , and PGL2(p
m) for 2m dividing f .

Proof. See II.8.27 in [Hup67, I]. ¤

As usual π(X) denotes the set of primes dividing the order of the group X .

Lemma A.1.4. Suppose that K is solvable, and for all p ∈ π(F (K)) =: π that
Op(K) ≤ CK(Op(K)). Then K is a π-group and K = F (K) is nilpotent.

Proof. The hypothesis that Op(K) ≤ CK(Op(K)) for all p ∈ π = π(F (K))
implies Oπ(K) ≤ CK(F (K)) = Z(F (K)) as K is solvable. Hence K is a π-group.

Applying the hypothesis for each q 6= p gives Op
′

(K) ≤ CK(Op(F (K)) =: Y . Then
the hypothesis shows that

Op(Y ) ≤ Op(CY (Op(K))) = Op(CY (F (K))) = Op(Y ∩ Z(F (K))) ≤ Z(Y ).

Therefore Y is p-closed, and hence Op(Y ) = Op
′

(K) is Sylow in K for each p ∈ π,
so K is nilpotent. ¤

Lemma A.1.5 (Thompson’s Dihedral Lemma). If X is a group of odd order
admitting the faithful action of an elementary abelian 2-group A of rank n, then
A ≤ Y ≤ AX with Y = Y1 × · · · × Yn and Yi ∼= D2pi for suitable odd primes pi.

Proof. This lemma of Thompson appears in [Tho68, 5.34]; we prove a slightly
stronger version later in G.8.8. ¤

Lemma A.1.6. Suppose T ≤ H ≤ G with T ∈ Syl2(G). Then O2(G) ≤ O2(H).
Further if F ∗(G) = O2(G), then F

∗(H) = O2(H).
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Proof. As T ∈ Syl2(G), O2(G) ≤ T ≤ H , so O2(G) E H and hence O2(G) ≤
O2(H). If F ∗(G) = O2(G), then CG(O2(G)) ≤ O2(G), so that CH(O2(H)) ≤
O2(H). ¤

Recall X is a TI-set in G if X ∩Xg = 1 for g ∈ G−NG(X).

Lemma A.1.7. Let x ∈ X ≤ G. Then

(1) xG ∩X = xNG(X) iff CG(x) is transitive on {Y ∈ XG : x ∈ Y }.
(2) If xG ∩X = xNG(X) and CG(x) ≤ NG(X), then x is contained in a unique

member of XG.
(3) Assume that X is a TI-set in M ≤ G, xG ∩X = xNG(X), and CG(x) ≤M .

Then x is in a unique member of XG.

Proof. Each of the two statements in (1) is equivalent to the transitivity of
G on pairs {(Y, y) ∈ XG × xG : y ∈ Y }, so (1) holds. Then (1) implies (2), and (2)
implies (3), since then CG(x) = CM (x) ≤ NM (X) as X is a TI-set in M . ¤

Lemma A.1.8. If F ∗(G) = Op(G) and X ≤ Z(G), then F ∗(G/X) = Op(G/X).

Proof. Set Ḡ := G/X . The preimage Y of Op(F ∗(Ḡ)) centralizes the factors
of the series Op(G)X ≥ X ≥ 1, and hence by Coprime Action (cf. the next
subsection) lies in CG(Op(G)) = Z(Op(G)), so that Ȳ = 1. ¤

Lemma A.1.9. If a p-group P normalizes a group Y with Op(Y ) = 1, and P
centralizes F ∗(Y ), then P centralizes Y .

Proof. By hypothesis P centralizes F ∗(Y ), so [Y, P ] ≤ CY (F
∗(Y )) ≤ F ∗(Y ),

and hence Y acts on Op(F
∗(Y )P ) = P since Op(Y ) = 1. Therefore [Y, P ] ≤

Y ∩ P ≤ Op(Y ) = 1. ¤

Lemma A.1.10. Let L E G = LM with F ∗(L) = O2(L) and F
∗(M) = O2(M).

Assume M contains a Sylow 2-subgroup T of G, and NG(Q) ≤ M for some Q ≤
O2(M). Then F ∗(G) = O2(G).

Proof. Assume otherwise; then there is X ≤ F ∗(G) such that either X is
a component of G, or X is a normal p-subgroup of G for some odd prime p. By
hypothesis, F ∗(M) = O2(M), soX 6≤M , and similarlyX 6≤ L. IfX is a component
of G, then as X 6≤ L, X centralizes L by 31.4 in [Asc86a]. If X is a p-group, then
X ≤ Op(LX), so [L,X ] ≤ X ∩ L ≤ Op(LX) ∩ L ≤ Op(L) = 1, so LX = L × X .
Thus in either case, X centralizes L.

Let Y := M ∩ LX . As G = LM , LX = LX ∩ LM = LY using the Dedekind
Modular Law. Then as L centralizes X , for U ≤ X , [U,X ] = [U,LX ] = [U,LY ] =
[U, Y ].

Suppose first that X is a component of G. As T ∈ Syl2(G) and X is subnormal
inG, T∩X ∈ Syl2(X). Hence asX is quasisimple,X = [X,T∩X ], soX = [Y, T∩X ]
by the previous paragraph. But then X ≤ M as Y and T lie in M , contrary to
paragraph one.

Therefore X is a normal p-subgroup of G with p odd, and LX = L ×X . Let
π : Y → X be the projection with respect to this decomposition; as LX = LY , π is
a surjection. Now [O2(M), Y ] ≤ O2(M)∩Y , so as π is M -equivariant, [O2(M), yπ]
is a 2-group for each y ∈ Y . Then as X ≤ Op(G) for p odd and π is a surjection,
O2(M) centralizes X . Therefore X ≤ CG(Q) ≤ M , again contrary to paragraph
one, which completes the proof. ¤
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Recall from Definition B.2.11 and B.2.12 that R2(G) is the product of the
members of R2(G); that is, of all the 2-reduced subgroups of G. In particular,
R2(G) ≤ Ω1(Z(O2(G))).

Lemma A.1.11. Assume T ∈ Syl2(G) with F ∗(G) = O2(G), and T ≤ H ≤ G.
Then R2(H) ≤ R2(G).

Proof. By A.1.6, O2(G) ≤ O2(H), so O2(G) centralizes R2(H) =: R. Then
as F ∗(G) = O2(G), R ≤ CG(O2(G)) = Z(O2(G)), so S := 〈RG〉 ≤ Ω1(Z(O2(G))).
Set Ḡ := G/CG(S), and let Q denote the preimage in G of O2(Ḡ). Then Q E G,
so P := T ∩Q ∈ Syl2(Q) and hence Q̄ = P̄ . Therefore Q = CG(S)P , so as T ≤ H ,
Q = CG(S)(H ∩Q), and hence (H ∩ Q)/CH(S) ∼= Q/CG(S) = Q̄ is a 2-group. As
R ≤ S, CH(S) ≤ CH(R), so (H ∩ Q)/CH(R) is a 2-group. Thus as H ∩ Q E H
and O2(H/CH(R)) = 1, H ∩ Q centralizes R, so Q = CG(S)(H ∩ Q) centralizes
R. Then since S = 〈RG〉 and Q E G, Q = CG(S), so S ∈ R2(G), and therefore
R ≤ S ≤ R2(G). ¤

Recall that for a prime p, mp(G) denotes the p-rank of G: the largest dimension
of an elementary abelian p-subgroup of G, regarded as an Fp-space.

Lemma A.1.12. Let V be a finite-dimensional vector space over F2, X a cyclic
subgroup of G := GL(V ) regular 1 on V #, and Y an overgroup of X of odd order
in G. Then X E Y .

Proof. As Y is of odd order, Y is solvable by the Odd Order Theorem, so
CY (F (Y )) = Z(F (Y )). Let n := dim(V ); if n = 1 then G is cyclic, so the lemma
is trivial. Thus we may assume n > 1, so by Zsigmondy’s Theorem [Zsi92], either

(i) n = 6, or
(ii) there is a Zsigmondy prime divisor r of 2n − 1; that is there is a subgroup

R of order r in X which is irreducible on V .

Assume case (ii) holds. Then R is irreducible on V , and EndF2R(V ) ∼= F2n , so
|CG(R)| = 2n − 1 = |X |, and hence CG(R) = X . Thus mr(G) = 1. Suppose that
R ≤ F (Y ). Then as mr(G) = 1, R E Y , so X = CG(R) E Y , and hence the
lemma holds in this case. Thus we may assume that R 6≤ F (Y ), and hence as R
is of prime order and mr(G) = 1, F (Y ) is an r′-group and R is faithful on F (Y ).
Then as Y is of odd order and CV (R) = 0, we contradict 36.2 in [Asc86a].

Thus we may take n = 6. Here let W ≤ X be of order 7. Again using 36.2
in [Asc86a], W centralizes O7(F (Y )), so as a Sylow 7-subgroup of G is abelian,
W ≤ CY (F (Y )) = Z(F (Y )). As X ≤ CG(W ), GW := CG(W ) is irreducible on
V , so by Schur’s Lemma (cf. subsection A.1.4), EndF2GW (V ) is a finite field, and
the subfield generated by W is F8. Thus GW lies in the subgroup GL2(8) of units
of EndF2W (V ). By Dickson’s Theorem A.1.3, X is maximal among subgroups of
GL2(8) of odd order, so X = CY (W ). Therefore W = O7(Y ) E Y , so X =
CY (W ) E Y , completing the proof. ¤

Recall A is weakly closed in B with respect to G if Ag ≤ B for some g ∈ G
implies A = Ag .

Lemma A.1.13. Suppose the p-subgroup X of G is not weakly closed in NG(X).
Then there exists g ∈ G such that Xg 6= X, with Xg ≤ NG(X) and X ≤ NG(X

g).

1We follow the usage in the permutation-group literature, so that by “regular” we mean not
just “free” but also “transitive”.
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Proof. If each member of XG ∩ T is normal in T ∈ Sylp(G), then the lemma
holds, so we may assume S := NT (X) < T . Thus there is g ∈ NT (S) − S, and X
and Xg are distinct and normal in S, so again the result holds. ¤

Recall that for V a vector space of dimension n over a field F of characteristic 2,
with V1 ≤ Vn−1 subspaces of dimension 1 and n−1, the group of transvections with
center V1 and axis Vn−1 consists of those involutions a ∈ GL(V ) with [V, a] = V1
and CV (a) = Vn−1.

Lemma A.1.14. Let G be a finite group, E4
∼= V ≤ G, v1 and v2 distinct

involutions in V , Qi := O2(CG(vi)), and Y := 〈Q1, Q2〉. Assume [V,Qi] = 〈vi〉 for
i = 1 and 2. Then

(1) Y induces GL(V ) on V with kernel O2(Y ) = CQ1(V )CQ2(V ).

(2) Y = 〈Q
NG(V )
1 〉 E NG(V ).

(3) NG(V )/O2(Y ) = Y/O2(Y )× CG(V )/O2(Y ).
(4) If G is quasithin, then m3(CG(V )) ≤ 1.

Proof. Let M := NG(V ) and M∗ := M/CM (V ). By hypothesis, Q∗i is the
group of transvections in GL(V ) with center 〈vi〉, so Y ∗ = 〈Q∗1, Q

∗
2〉 = GL(V ).

Thus Y is transitive on V #, so QM1 = QY1 ⊆ Y and hence (2) holds.
Let P := CQ1(V )CQ2 (V ). Now CG(V ) ≤ CG(vi) ≤ NG(Qi), so CQi(V ) E

CG(V ), and hence P is a normal 2-subgroup of CG(V ). Further [CG(V ), Qi] ≤
CQi(V ) ≤ P , so Y = 〈Q1, Q2〉 acts on P . Let Y + := Y/P . As |Qi : CQi(V )| =
|Q∗i | = 2, |Q+

i | = 2, so Y + = 〈Q+
1 , Q

+
2 〉
∼= D2n for some n. As [CY (V ), Qi] ≤ P ,

CY (V )+ ≤ Z(Y +), so as Y + ∼= D2n, |CY (V )+| ≤ 2. Then as Y ∗ ∼= D6, n = 3 or 6,
and as Q+

1 is conjugate to Q+
2 in Y +, n 6= 6, so P = CY (V ) = O2(Y ), completing

the proof of (1).
As M = CG(V )Y , as Y and CM (V ) are normal in M , and as CY (V ) = O2(Y ),

(3) holds. By (3), m3(M) = m3(CM (V )) +m3(Y ), while m3(Y ) = 1 by (1); thus
(4) holds. ¤

Here is a group-theoretic Krull-Schmidt Theorem:

Lemma A.1.15 (Krull-Schmidt Theorem). If X is a direct product of indecom-
posable groups Xi, then Aut(X) permutes the groups XiZ(X).

Proof. See 1.6.18.ii and 2.4.8 in [Suz86, 1] ¤

Lemma A.1.16. Assume that Y E G, and set Ḡ := G/Y . Let Y ≤ D ≤ G
and C ≤ G. Then

(1) C ∩D is the preimage in C of C̄ ∩ D̄ = C ∩D.
(2) If C ∈ Syl2(G) and C̄ ∩ D̄ ∈ Syl2(D̄), then C ∩D ∈ Syl2(D).

Proof. Part (1) is easy. Assume the hypothesis of (2). By (1), C ∩D ∈
Syl2(D̄), and as Y E G, C ∩Y ∈ Syl2(Y ). Thus |C ∩D| = |C ∩D||C ∩Y | = |D|2,
establishing (2). ¤

A.1.2. Coprime action, critical subgroups, and p-groups of small
rank. This subsection primarily contains a discussion of coprime action, and espe-
cially of critical subgroups; and applications of such results to SQTK-groups.
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A.1.2.1. Coprime action and supercritical subgroups. Some standard results
not formally referenced by number in the main text:

Coprime Action—we use this name (capitalized) to refer to various standard
results, such as 18.7, 24.1, 24.3, 24.4–24.6, 24.8 in [Asc86a], and 4.3ii, 11.5 , 11.13
in [GLS96].

Lemma A.1.17 (Generation by Centralizers of Hyperplanes ). Assume A is an
abelian r-group acting on an r′-group G and

B := {B ≤ A : A/B is cyclic and CG(B) 6= 1}.

Then G = 〈CG(B) : B ∈ B〉, and if G is abelian and G = [G,A], then G =⊕
B∈B CG(B).

Proof. Standard; cf., Exercise 4.1 or 6.5 or 8.1 in [Asc86a], or 11.13 in
[GLS96]. ¤

Lemma A.1.18 (Thompson A×B Lemma). Let AB be a finite group represented
as a group of automorphisms of a p-group G, with [A,B] = 1, B a p-group, and
A = Op(A).

(1) If [CG(B), A] = 1 then [G,A] = 1.
(2) If A is faithful on G and Op(A) = 1, then A is faithful on CG(B).

Proof. See 24.2 in [Asc86a] for (1). Next assume the hypotheses of (2) hold.
Then Op(CA(CG(B))) ≤ CA(G) = 1, so that CA(CG(B)) ≤ Op(A) = 1. ¤

Lemma A.1.19. If K E G and U is a normal elementary abelian 2-subgroup
of G with CK(U) = O2(K), then CK(R2(G)) = O2(K).

Proof. Pick U minimal subject to the hypotheses of the lemma, and let G∗ :=
G/CG(U). As CK(U) = O2(K), O2(K

∗) = 1. Thus as K E G, F ∗(K∗) centralizes
O2(G

∗). Then by the Thompson A × B-Lemma A.1.18.2, F ∗(K∗) is faithful on
CU (O2(G

∗)), so U = CU (O2(G
∗)) by minimality of U , and hence O2(G

∗) = 1. Thus
U ∈ R2(G), so CK(R2(G)) ≤ CK(U) = O2(K), and of course O2(K) centralizes
R2(G). ¤

Given an odd prime p and a p-group P , recall (e.g. Section 24 of [Asc86a])
that a critical subgroup of P is a characteristic subgroup Y of P such that Φ(Y ) ≤
Z(Y ) ≥ [Y, P ] and CP (Y ) ≤ Y .

Definition A.1.20. Define a supercritical subgroup of P to be a characteristic
subgroup X of P such that Φ(X) ≤ Z(X) ≥ [X,P ], X is of exponent p, and X
contains all elements of order p in CP (X).

Lemma A.1.21 (Supercritical Subgroups Lemma). Let p be an odd prime and
P a p-group. Then

(1) P possesses a supercritical subgroup X.
(2) X is of class at most 2.
(3) Each p′-automorphism of P acts faithfully on X/Φ(X).
(4) If mp(P ) > 1, then mp(X) > 1.

Proof. By 24.9 in [Asc86a], P possesses a critical subgroup Y such that
Ω1(Y ) contains each element of order p in CP (Ω1(Y )). Set X := Ω1(Y ). We claim
X is a supercritical subgroup of P . First Φ(X) ≤ Φ(Y ) ∩X ≤ Z(Y ) ∩X ≤ Z(X),
and [P,X ] ≤ [P, Y ]∩X ≤ Z(Y )∩X ≤ Z(X). In particular (2) holds. Then as X =
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Ω1(X) and X is of class at most 2, X is of exponent p by 23.11 in [Asc86a]. Hence
X is supercritical in P , so (1) holds. By 24.9 in [Asc86a], each p′-automorphism
α of P is faithful on X . Then by Coprime Action, α is faithful on X/Φ(X), so (3)
holds. As X contains each element of order p in CP (X), (4) holds. ¤

A.1.2.2. Lemmas on small p-rank. In this subsubsection we establish some
technical lemmas. As our quasithin hypothesis restricts the rank of certain p-
subgroups for odd primes p, we concentrate on p-groups of rank at most 2. The
lemmas in this subsection are used throughout the work, but the most immediate
applications will be made in the next sections A.2 and A.3 on quasithin K-groups.

First we recall that in a p-group of rank 2, elements of order p can generate
only a few possible p-groups. Throughout the work, we use the convention:

Notation A.1.22. For odd p, p1+2 denotes the extra-special group of order
p3 and exponent p.

For this and other extraspecial groups we often use the standard fact 23.8 in
[Asc86a]:

Lemma A.1.23. Assume P is an extraspecial p-group for some prime p. Then
Inn(P ) = CAut(P )(P/Φ(P )).

Lemma A.1.24. Let p be an odd prime, and P = Ω1(P ) a p-group of p-rank 2
and class at most 2. Then P ∼= Ep2 or p

1+2.

Proof. By 23.11 in [Asc86a], P is of exponent p. Thus a normal subgroup
E of P of order p2 is isomorphic to Ep2 and E = CP (E). As |P : CP (E)| ≤ p, the
lemma follows. ¤

Lemma A.1.25. Let p be an odd prime and P a p-group with mp(P ) ≤ 2. Then

(1) X ∼= Zp, Ep2 , or p
1+2 for each supercritical subgroup X of P , and mp(X) =

mp(P ).
(2) Aut(P )/Op(Aut(P )) is a subgroup of GL2(p).
(3) If p = 3, then Aut(P ) is a {2, 3}-group.

Proof. Let X be a supercritical subgroup of P and set X̄ := X/Φ(X). By
definition, X is of exponent p, and by A.1.21.2, X is of class at most 2. By
hypothesis, mp(X) ≤ 2, so mp(X) = mp(P ) using A.1.21.4. Therefore (1) follows
from A.1.24.

Let A := Aut(P ) and B := Op(A). By A.1.21.3, CA(X̄) ≤ B. On the other
hand by (1), X̄ is of rank m ≤ 2, so A/CA(X̄) ≤ GLm(p) ≤ GL2(p). Thus (2)
holds. Finally (2) implies (3). ¤

Lemma A.1.26. Assume X = O2(X) ≤ H and V = [V,X ] is a 2-subgroup of
H. Then

(1) If mp(Op(H)) ≤ 2 for all odd primes p and Φ(V ) = 1, then V centralizes
O(H).

(2) If H is a solvable SQTK-group and X = O{2,3}(X), then V ≤ O2(H).

Proof. Assume the hypotheses of (1) or (2), and [O(H), V ] 6= 1. Then
[Op(H), V ] 6= 1 for some odd prime p by A.1.9. Let P := Op(H), H̄ := H/CH(P ),
and H∗ := H̄/Op(H̄). As mp(Op(H)) ≤ 2, A.1.25.2 says

1 6= V ∗ = [V ∗, X∗] ≤ H∗ ≤ GL2(p).
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This is impossible, as using Dickson’s Theorem A.1.3, O2(NGL2(p)(A)) centralizes

A for each elementary abelian 2-subgroup A of GL2(p), and O{2,3}(NGL2(p)(S))
centralizes S for each 2-subgroup S of GL2(p). Thus V centralizes O(H). In
particular, (1) holds. Similarly under the hypotheses of (2), mp(H/O2(H)) ≤ 2 for
each odd prime p, so passing to H/O2(H), we may assume O2(H) = 1. Then as H
is solvable and V centralizes O(H), V = 1, establishing (2). ¤

We sometimes use the following result without explicit reference:

Lemma A.1.27. Let X be an SQT-group, p an odd prime, and Ep2 ∼= P ≤ X.

(1) If P acts on H ≤ X and P ∩H = 1, then H is a p′-group.
(2) If P acts faithfully on an elementary abelian 2-subgroup U of X, then

CX(U) is a p′-group.

Proof. If (1) fails then P centralizes some subgroup Q of H of order p, so
mp(PQ) = 3, contradicting the hypothesis that X is an SQT-group. Thus (1)
holds, while (2) is the special case of (1) where H = CX(U). ¤

Recall for an odd prime p that m2,p(G) denotes the 2-local p-rank of G: that is
the maximum of mp(X) over 2-locals X of G. In a quasithin group, m2,p(G) ≤ 2
for all odd primes P , but the p-rank of subgroups which are not 2-locals can exceed
2. Still we obtain restrictions on such subgroups; see for example the next lemma
and A.1.31.

Lemma A.1.28. Let p be an odd prime, and G a finite group with m2,p(G) ≤ 2.
Suppose H ≤ G with mp(Op(H)) > 2. Then m2(H) ≤ 3, and in case of equality
Z∗(H) 6= 1.

Proof. This is 3.4 in [Asc81d]; we reproduce the proof here for completeness:
By A.1.21.1, we may choose a supercritical subgroup P of Q := Op(H). Pick an

elementary abelian 2-subgroup A of H with m2(A) = m2(H) =: n. As mp(Q) > 2
but m2,p(G) ≤ 2, CH (Q) is of odd order. Thus CH(P ) is of odd order by A.1.21.3,
so CH(P ) ≤ O(H). In particular A is faithful on P . Therefore by A.1.5, there is
a subgroup of AP which is a direct product of n copies of a dihedral group D2p.
Then as m2,p(G) ≤ 2, n ≤ 3.

Suppose n = 3; we will show that some a ∈ A inverts P ∗ := P/Φ(P ). Then
aCH(P ) ∈ Z(H/CH(P )), so as CH (P ) ≤ O(H), Z∗(H) 6= 1, completing the proof
of the lemma.

Let R := [P,A]. Then by Generation by Centralizers of Hyperplanes A.1.17,

R∗ =
⊕

D∈∆

CR∗(D),

where ∆ := {Di : 1 ≤ i ≤ r} is the set of hyperplanes of A with CR∗(D) 6= 1. Let
〈ai,j〉 := Di ∩Dj for i 6= j. Then

2 ≤ mp(CR∗(Di)) +mp(CR∗(Dj)) ≤ mp(CR∗(ai,j)),

while mp(CR∗(ai,j)) ≤ 2 using A.1.24 since m2,p(G) ≤ 2. Thus all inequalities are
equalities, so |CR∗(Di)| = p and hence P = R, mp(P

∗) = |∆| = r, and each ai,j
is in exactly two members of ∆. If r = 3, then a := a1,2a1,3a2,3 inverts P ∗, and
we are done as mentioned earlier; so we may take r > 3. Then for 1 ≤ i < j ≤ 3,
ai,j /∈ Dk for k > 3, so Dk = 〈a1,2a2,3, a1,2a1,3〉 as Dk is a hyperplane of A. Hence
r = 4, and again a inverts P ∗. ¤
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Lemma A.1.29. Let p be an odd prime and G a finite group. Assume P =
Ω1(P ) is a normal p-subgroup of G of class at most 2 with mp(P ) = 2. Assume
H = H∞ ≤ G with [P,H ] 6= 1. Then

(1) H/CH(P/Φ(P )) ∼= SL2(p), or possibly SL2(5) if p ≡ ±1 mod 5.
(2) If H/O(H) is quasisimple, then O(H) = CH(P/Φ(P )); in particular,

m2(H) = 1.

Proof. By A.1.24, P ∼= Ep2 or p1+2, so H̄ := H/CH(P/Φ(P )) is a subgroup
of GL2(p). Then as H is perfect by hypothesis, H̄ ≤ SL2(p). From Dickson’s
Theorem A.1.3, the only possible perfect proper subgroup of SL2(p) is SL2(5),
which occurs when p ≡ ±1 mod 5. Thus H̄ ∼= SL2(r), for r = p or 5, establishing
(1).

Therefore we may assume H/O(H) is quasisimple, and it remains to show that
CH(P/Φ(P )) = O(H). As H̄ ∼= SL2(r), O(H̄) = 1, so that O(H) ≤ CH (P/Φ(P )).
So H̄ ∼= SL2(r) is a homomorphic image of H/O(H), which is quasisimple by
hypothesis. However the the Schur multiplier of SL2(r) for r prime is trivial by
I.1.3, completing the proof. ¤

The next lemma will be used to simplify the structure of members of C(H) and
L(G, T ) in A.3.6 and 1.2.1.4.

Lemma A.1.30. Let p > 3 be prime and P ∼= Zp2 × Zp2 . Then each element
of order p in Aut(P ) centralizes Ω1(P ), so in particular Aut(P ) has no SL2(p)-
subgroup.

Proof. This is Lemma 4.9 in [MS]; we reproduce their proof here for com-
pleteness.

Write P additively, and set Q := Ω1(P ); then pP = Q. Let t ∈ Aut(P ) be of
order p, and set θ := t − 1 ∈ End(P ). Then t is quadratic on P/Q, so θ2 = 0 on
P/Q. Similarly θ2 = 0 on Q, so θ4 = 0. Then as p ≥ 5:

(a) θp = 0.

As pP = Q and θ2 = 0 on Q:

(b) pθ2 = 0.

Set f(x) := (xp − 1)/(x− 1) ∈ Z[x]; then f(1) = p. Now xp − 1 ≡ (x− 1)p mod p,
so xp − 1 = (x − 1)p + pG(x) for some G(x) ∈ Z[x] such that G(x) = (x − 1)g(x)
for some g(x) ∈ Z[x]. Thus f(x) = (x − 1)p−1 + pg(x), so p = f(1) = pg(1),
and hence g(1) = 1. Next g(x) = (x − 1)h(x) + g(1) for some h(x) ∈ Z[x], so
g(x) = (x− 1)h(x) + 1. Therefore

(c) xp − 1 = (x− 1)p + p(x− 1)2h(x) + p(x− 1).

Evaluating (c) at x = t:

(d) 0 = tp − 1 = θp + pθ2h(t) + pθ,

so 0 = pθ by (a) and (b). Hence t centralizes pP = Q. As p′-automorphisms of P are

faithful onQ by Coprime Action, while SL2(p) = Op
′

(SL2(p)) and Op(SL2(p)) = 1,
the lemma follows. ¤

The next technical result is crucial for restricting the structure of solvable
sections of strongly quasithin groups, at many points in our analysis.

Lemma A.1.31. Let G be a group and p an odd prime with mp(G) ≤ 2.
Let H EG, set Ḡ := G/H, and assume F ∗(Ḡ) = Op(Ḡ). Then
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(1) COp(Ḡ)(T̄ ) is cyclic for each nontrivial 2-subgroup T̄ of Ḡ.

(2) m2(Ḡ) ≤ 2.
(3) If Op(Ḡ) ∼= Ep3 and m2(Ḡ) > 1, then Ḡ is not irreducible on Op(Ḡ).

Proof. First observe that if m2(Ḡ) > 2, then there exists an involution t̄ ∈ Ḡ
with COp(Ḡ)(t̄) noncyclic: Namely since F ∗(Ḡ) = Op(Ḡ), an E8-subgroup Ā of Ḡ

is faithful on Op(Ḡ), so A.1.5 says ĀOp(Ḡ) contains a direct product of 3 dihedral
groups. Thus (1) implies (2), so it remains to prove (1) and (3).

Let r be a prime divisor of |H | and R ∈ Sylr(H). By a Frattini Argument, G =
HNG(R) with NG(R)/NH(R) ∼= Ḡ. If NG(R) < G, we may apply induction on the
order of G to NG(R) to obtain the conclusions of (1) and (3) for NG(R)/NH(R)—
which suffices, since (1) and (3) are statements about Ḡ ∼= NG(R)/NH(R). Thus
we may assume that H is nilpotent. Similarly if r 6= p then (G/R)/(H/R) ∼= Ḡ
and mp(G/R) = mp(G) ≤ 2, so again by induction on |G|, we may assume H is a
p-group. Therefore as F ∗(Ḡ) = Op(Ḡ), also F ∗(G) = Op(G) =: P , say.

We now prove (1). Without loss T = 〈t〉, where t is an involution. As CP̄ (t)
is noncyclic, so is CP (t). As F ∗(G) = P , t is faithful on P , so by the Thompson
A×B-Lemma A.1.18, t is also faithful on CP (CP (t)). But then t inverts Y of order
p in CP (CP (t)), so Y CP (t) = Y × CP (t) is of p-rank at least 3, contradicting the
hypothesis that mp(G) ≤ 2. This establishes (1) and hence (2).

Thus we may assume G is a counterexample to (3). Here we may take T ∼= E4

and set G∗ := G/P , so that G∗ ∼= Ḡ/P̄ . By (1), CP̄ (t̄) is cyclic for each t̄ ∈ T̄#, so
as P̄ ∼= Ep3 , we conclude from Generation by Centralizers of Hyperplanes A.1.17
that CP̄ (t̄)

∼= Zp for each t̄. In particular as Ḡ is irreducible on P̄ , t∗ /∈ Z(G∗).

Let Q be a supercritical subgroup of P , Q̃ := Q/Φ(Q), and G+ := G/CG(Q̃).

As P = F ∗(G), CG(Q̃) ≤ P by A.1.21.3; thus G∗ = G+/P+ and as T ∗∩Z(G∗) = 1,

T+ ∩Z(G+) = 1. Also T is faithful on Q̃, so Q̃ is noncyclic, and hence Q̃ ∼= Ep2 by

A.1.24. Then as T is faithful on Q̃, some t ∈ T# inverts Q̃. Therefore t+ ∈ Z(G+),
contrary to T+ ∩ Z(G+) = 1. This completes the proof of (3). ¤

Lemma A.1.32. Let r, p be odd primes, G a finite group, and R = Ω1(R) a
normal r-subgroup of G of class at most 2 with mr(R) ≤ 2. Assume P = Ω1(P )
is a p-subgroup of G of class at most 2, with mp(P ) = 2 and NG(P ) irreducible on
P/Φ(P ). Then

(1) Either [R,P ] = 1, or p = r, R ∼= p1+2, and P ≤ RCG(R).
(2) If r = p and mp(G) = 2, then either R = P , or R ∼= Zp, P ∼= p1+2, and

R = Z(P ).

Proof. By A.1.24, R ∼= Zr, Er2 , or r
1+2, and P ∼= Ep2 or p1+2. In particular

Ḡ := G/CG(R/Φ(R)) is a subgroup of GL(R/Φ(R)) ∼= GLk(r), k ≤ 2. Let H̄ :=
Ḡ ∩ SL(R/Φ(R)) and observe Ḡ/H̄ is cyclic and mp(H̄) ≤ 1.

Suppose P̄ 6= 1. By hypothesis NG(P ) is irreducible on P/Φ(P ), so it follows
that CP (R/Φ(R)) ≤ Φ(P ), and so P̄ ∼= Ep2 or p1+2. Hence as Ḡ/H̄ is cyclic
and mp(H̄) ≤ 1, we conclude |P̄ : P̄ ∩ H̄ | = p = |P̄ ∩ H̄ |, contradicting NG(P )
irreducible on P̄ /Φ(P̄ ).

So P̄ = 1. Thus if r 6= p, then [R,P ] = 1 by Coprime Action, and (1) holds.
So we may assume r = p. If Φ(R) = 1, then P̄ = 1 just says P ≤ CG(R) and again
(1) holds. Otherwise R ∼= p1+2, and as Inn(R) = CAut(R)(R/Φ(R)) by A.1.23, at
least P ≤ RCG(R), completing the proof of (1).
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Thus it remains to establish (2), so we assume mp(G) = 2. If [R,P ] = 1 then
R ≤ Ω1(CRP (P )) ≤ P since mp(G) = 2; then as NG(P ) is irreducible on P/Φ(P )
while R is normal in G and central in P , either R = P is abelian, or P ∼= p1+2 and
R = Z(P ), so (2) holds. Thus we may assume [R,P ] 6= 1, so R ∼= p1+2 by (1). This
time Ω1(CRP (R)) ≤ R as mp(G) = 2. If P ≤ R, then as NG(P ) is irreducible on
P/Φ(P ), R = P and (2) holds. Thus we may assume there is x ∈ P − R. By (1),
RP = RCRP (R), so x = yz with y ∈ R and z ∈ CRP (R) − R. Then as R and P
are of exponent p, 1 = xp = (yz)p = ypzp = zp, so z ∈ Ω1(CRP (R)) ≤ R, contrary
to the choice of z. This contradiction completes the proof of (2). ¤

Lemma A.1.33. Let p be an odd prime and P E L with P ∼= p1+2. Then each
of the following imply mp(L) > 2:

(1) There exists t ∈ L inverting P/Z(P ) such that CL(t) contains an element
of order p nontrivial on P/Z(P ).

(2) p > 3 and L/P ∼= SL2(p).
(3) p = 3, L/P ∼= SL2(3), and an involution in L is nontrivial on P and

centralizes a subgroup of L of order 3 distinct from Z(L).

Proof. Let Z := Z(P ), V := P/Z(P ), and identify V with Inn(P ). Then

A := Op
′

(Aut(P )) is the split extension of V by SL2(p) acting naturally on V .
Assume the hypotheses of (1); then there is X of order p in CL(t) nontrivial

on V . Let P1 denote the preimage of CV (X) in P . Then

Ep2 ∼= P1 = [P1, t]× Z(P ) = CP (X),

and as X centralizes t, X acts on [P1, t], so XP1 ∼= Ep3 and hence mp(L) ≥ 3,
establishing (1).

Next assume L/P ∼= SL2(p), and let t be an involution in L. By a Frattini
Argument, L = PLt, where Lt := CL(t) and Lt/Z ∼= SL2(p). Suppose p > 3. Then
K := L∞t

∼= SL2(p) contains an element of order p, so if K centralizes P , then
mp(L) > 2. On the other hand if K does not centralize P , then K is faithful on V
by paragraph one, so mp(L) > 2 by (1).

Finally assume the hypotheses of (3) and let t be an involution in L. As t
is nontrivial on P and L/P ∼= SL2(3), t inverts V by paragraph one, and again
mp(L) > 2 by (1). ¤

We record the next result here, although its proof involves an appeal to The-
orems A (A.2.1) and C (A.2.3) from the following section A.2; however the result
will not be applied until section A.3, after those Theorems are established.

Lemma A.1.34. Assume G is quasithin and H is a K-subgroup of G such that
H contains distinct isomorphic components L1 and L2. Then

(1) There exists an odd prime r dividing the order of a 2-local subgroup of
L1/Z(L1), and for each such r either

(i) L1L2 = Or
′

(H), or
(ii) r = 3, G is not a quotient of an SQTK-group, L1

∼= SU3(8), and
CG(L1L2) is of odd order.

(2) If L is a component of H isomorphic to L1, then L = L1 or L2.
(3) Either

(a) L1/Z(L1) ∼= L2(2
n), Sz(2n), J1, or L2(p

e) for some prime p > 3 and
positive integer e ≤ 2, or
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(b) G is not a quotient of an SQTK-group, m3(L1L2) = 3, L1
∼= SU3(8),

and Z(L1) = Z(L2).

Proof. Set L1L2 := L1L2/Z(L1L2). As L̄1 centralizes involutions in L̄2, L̄1 is
described in Theorem C (A.2.3) in the following section, whose proof is independent
of this lemma.

Let R be the set of odd primes r dividing the order of a 2-local subgroup of L̄1;
i.e., m2,r(L̄1) > 0. Then R 6= ∅ by the Frobenius Normal p-Complement Theorem
(39.4 in [Asc86a]) for p = 2. Let r ∈ R. Since L2

∼= L1 and H is a quasithin K-
group, Theorem A (A.2.1) in the following section says that either L̄1L̄2 is quasithin
and hence mr(L̄2) = 1, or (3b) holds. Further in the latter case m3(L1L2) = 3,
so as G is quasithin, CG(L1L2) is of odd order; hence (1.ii) and (2) of the lemma
hold.

Thus in the remainder of the proof we may assume:

For each r ∈ R, m2,r(L̄1) = 1. (∗)

By (*) and I.1.2, Z(Li) is an r
′-group, so CH (L1L2) is an r

′-group since m2,r(H) ≤
2. By inspection of the list of groups in Theorem C, either L̄1 containsA4 or SL2(3),
so that m2,3(L̄1) > 0; or L̄1 is L2(2

n), Sz(2n), or U3(2
n), for suitable odd n. But if

L̄1
∼= U3(2

n), then there is a prime divisor q of 2n+1 with m2,q(L̄1) = 1 < mq(L̄1),
contrary to (*). Assume next that m2,3(L̄1) > 0. Then m3(L̄1) = 1 by (*), so
appealing to the list of Theorem C, we conclude that L̄1

∼= L2(2
n), Sz(2n), L2(q

e),
Lε3(q), for some prime q > 3 and e ≤ 2, or J1. However if L̄1

∼= Lε3(q), then the
q-rank of the centralizer of an involution in L̄1 is 1 so that m2,q(L̄1) > 0, while
mq(L̄2) = 2, contrary to (*). Thus we are left with the groups appearing in (3.a),
so (3) is established.

Next if L1L2 < Or
′

(H), then as CH(L1L2) is an r′-group, some r-element x
induces an outer automorphism on L1L2. But then from the structure of Aut(L1)
for L1 described in (3.a), L̄1

∼= L2(2
n) or Sz(2n), and we may choose x to induce

a field automorphism of order r on at least one Li, say L1. Then x acts on a Borel
subgroup B of L1 and centralizes an element of order r in B. But x also centralizes
an element of order r in L2, so m2,r(BL2〈x〉) ≥ 3, contrary to G quasithin. Thus
(1) is established.

Assume the hypothesis of (2). Then L ≤ Or
′

(H) = L1L2 by (1.i), so that (2)
holds. ¤

A.1.3. Transfer and Fusion.

Lemma A.1.35 (Burnside’s Fusion Lemma). Let p be a prime, T ∈ Sylp(G),
W ≤ T with W weakly closed in T with respect to G, and D := CG(W ). Then
NG(W ) controls G-fusion of subsets of G normalized by W , and in particular of
elements of D.

Proof. See 37.6 in [Asc86a], or 16.2 and 16.9 in [GLS96]. ¤

Lemma A.1.36 (Thompson Transfer Lemma). Assume that P ∈ Syl2(X), Q is
of index 2 in P , and u is an involution in X with uX ∩Q = ∅. Then u /∈ O2(X).

Proof. See 15.16 in [GLS96]. ¤

We ordinarily apply the following extension of the previous result with p = 2
and H ∈ Syl2(G):
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Lemma A.1.37 (Generalized Thompson Transfer). Let G be a finite group, p a
prime, H ≤ G with (p, |G : H |) = 1, K E H with H/K abelian, and g a p-element
in H −K.

(1) If gma ∈ gmK for all integers m, and all a ∈ G such that gma ∈ H, then
g 6∈ [G,G].

(2) If p = 2 and g is an involution such that gG ∩H ⊆ gK, then g /∈ [G,G].

Proof. See 37.4 in [Asc86a]. ¤

Lemma A.1.38 (Cyclic Sylow 2-Subgroups). If p is the smallest prime divisor
of the order of G, and G has cyclic Sylow p-subgroups, then G has a normal p-
complement.

Proof. See 39.2 in [Asc86a]. ¤

A.1.4. Representation Theory.
Some results not formally referenced by number in the main text:

Schur’s Lemma—12.4 in [Asc86a]
Maschke’s Theorem—12.9 in [Asc86a]
Clifford’s Theorem—12.13 in [Asc86a]

Lemma A.1.39 (Gaschütz’s Theorem). Let p be a prime, V an abelian normal
p-subgroup of a finite group G, and P ∈ Sylp(G). Then G splits over V if and only
if P splits over V .

Proof. See 10.4 and 12.8 in [Asc86a]. ¤

Let G be a finite group, V an F2G-module, X = O2(X) ≤ G, and Ṽ :=
V/CV (X). We record some basic definitions:

Definition A.1.40. Irr(X,V ) consists of the irreducible X-submodules of V .
Let Irr+(X,V ) consist of the X-submodules I of V such that I = [I,X ] and X
is irreducible on I/CI(X). For Y ≤ NG(X), let Irr+(X,V, Y ) consist of those

I ∈ Irr+(X,V ) such that Ĩ is an X-homogeneous component of 〈ĨY 〉.

When Y is a 2-group, A.1.42.3 below says there exists I ∈ Irr+(X,V, Y ),

and the modules 〈ĨY 〉 are the irreducible XY -submodules of Ṽ containing an X-

submodule isomorphic to Ĩ .

Lemma A.1.41. Let I ∈ Irr+(X,V ) with O2(AutX (I)) = 1, and set Ĩ :=

I/CI(X). Then CGL(I)(AutX (I)) is isomorphic to a subgroup of CGL(Ĩ)(AutX (Ĩ))

= EndX(Ĩ)
#, and EndX(Ĩ) is a finite field of characteristic 2, so CGL(I)(AutX (I))

is cyclic of odd order.

Proof. Without loss, V = I and G = GL(V ); thus O2(X) = 1 by hypothesis.
Let S ∈ Syl2(CG(X)). By the Thompson A× B-Lemma, O2(CX(CV (S))) = 1, so
CX(CV (S)) ≤ O2(X) = 1, and hence X is faithful on CV (S). So as X is irreducible

on Ṽ , V = CV (S). Thus S = 1, so CG(X) is of odd order. Let Y := CCG(X)(Ṽ ). As
Y is of odd order, V = CV (Y )⊕[V, Y ] by Coprime Action. Then as [V, Y ] ≤ CV (X),

V = [V,X ] ≤ CV (Y ), so Y = 1. Thus CG(X) is faithful on Ṽ , so the lemma follows
from Schur’s Lemma and Wedderburn’s Theorem that a finite division ring is a
field. ¤
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Lemma A.1.42. Let T ∈ Syl2(NG(X)), I ∈ Irr+(X,V ), IT := 〈IT 〉, and
Ṽ := V/CV (X). Then

(1) The stabilizer in T of the X-equivalence class of Ĩ acts on I iff I ∈
Irr+(X,V, T ).

(2) Irr+(X, IT , T ) 6= ∅.
(3) If I ∈ Irr+(X, IT , T ) then distinct T -conjugates of Ĩ are not isomorphic,

and ĨT is the direct sum of these conjugates.

Proof. Let S be the stabilizer in T of the X-equivalence class of Ĩ . Assume S
acts on I . Then Ĩt is notX-isomorphic to Ĩr whenever t, r ∈ T with St 6= Sr. But as
ĨT = 〈ĨT 〉 and Ĩ is simple, ĨT is semisimple and the direct sum of some subset ∆ of
these conjugates. As each simple submodule is isomorphic to some member of ∆, ∆
is the set of all conjugates, and the conjugates are the homogeneous components, so
I ∈ Irr+(X,V, T ), proving one implication in (1). The other implication is trivial,
so (1) is established, as is (3).

Let J̃ be the homogeneous component of ĨT containing Ĩ . Let Fq := EndX(Ĩ)

and e := dim(J̃)/ dim(Ĩ). Then J̃ is the direct sum of e copies of Ĩ , and N :=

(qe − 1)/(q − 1) = |Irr+(X, ĨT )|. In particular as N is odd, NT (J̃) acts on some
I ′ ∈ Irr+(X, J), so (2) follows from (1). ¤

Lemma A.1.43. Assume G is irreducible on V and S ⊆ V is G-invariant with
|S| > 1. Then any hyperplane W of V contains a member of S.

Proof. If S ⊆ V −W , then as m(V/W ) = 1, W contains the G-invariant set
{s+ s′ : s, s′ ∈ S}, which is nonzero since |S| > 1, contradicting G irreducible on
V . ¤

Lemma A.1.44. Assume G is dihedral of twice odd order, generated by distinct
involutions t and u. Let x := tu and V a faithful F2G-module. Then V = W ⊕
CV (x), where [V, x] =:W = [W, t]⊕ [W,u] and CW (t) = [W, t].

Proof. First V = W ⊕ CV (x) by Coprime Action. Next as G = 〈t, u〉 and
W = [W,G], W = [W, t] + [W,u]. As [W, t] ≤ CW (t) and [W,u] ≤ CW (u), CW (t) ∩
[W,u] ≤ CW (x) = 0, so W = CW (t)⊕ [W,u] and [W, t] = CW (t). ¤

A.2. The list of quasithin K-groups: Theorems A, B, and C

In this section G is a finite group. We discuss K-groups G satisfying hypothe-
ses related to the quasithin hypothesis, but without any reference to the even-
characteristic hypothesis (E).

Recall from the Introduction to Volume I that G is quasithin if

(QT) e(G) ≤ 2 ,

and that we define G to be strongly quasithin if

(SQT) mp(G) ≤ 2 for all odd primes p.

Of course G is quasithin iff all its 2-locals are strongly quasithin.

In this section we prove three related theorems (simultaneously). First, we will
need to know that the conditions (QT) and (SQT) are preserved in semisimple
sections:
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Theorem A.2.1 (Theorem A). Let G be a quasithin K-group, and assume
S = E(S) is a semisimple section of G. Then for each odd prime p:

(1) Either

(a) m2,p(S) ≤ m2,p(G) ≤ 2, or
(b) p = 3, S = H/Z(H) for some subgroup H of G such that m3(H) = 3,

H = H1H2 where each Hi is a component of H, Hi
∼= SU3(2

ni) with ni ≥ 3 odd,
Z(H1) = Z(H2), and (n1, n2) = 1 or 3.

(2) If mp(G) ≤ 2, then mp(S) ≤ mp(G). In particular if G is strongly quasithin,
then so is S.

Second, under the hypotheses of our Main Theorem, arbitrary proper sections will
be known QT-groups, but not necessarily QTKE-groups. We determine the list of
simple QTK-groups in the following theorem.

Theorem A.2.2 (Theorem B (QTK-list)). Let G be a simple quasithin K-group.
Then one of the following holds:

(1) G ∼= An for n ≤ 9.
(2) G ∼= L2(q), q odd; L

ε
3(p

e), PSp4(p), G2(p), p an odd prime, e ≤ 2; L4(r),
r = 2a + 1 a Fermat prime; or U4(s), s = 2b − 1 a Mersenne prime.

(3) G is a group of Lie type, characteristic 2, and Lie rank at most 2, but G is
U5(q) only when q = 4.

(4) G ∼= L4(2), L5(2), or Sp6(2).
(5) G is a Mathieu group, a Janko group, HS, He, Ru, or Mc.

Third, in a quasithin K-group, 2-local subgroups H will satisfy

(SQTK) H is a K-group satisfying (SQT),

although simple sections of H will not necessarily satisfy (E); we will need to refer
to the corresponding list below frequently:

Theorem A.2.3 (Theorem C (SQTK-list)). Let G be a simple strongly qua-
sithin K-group. Then one of the following holds:

(1) G ∼= An for n ≤ 8.
(2) G ∼= L2(p

e) or Lε3(p), p an odd prime, e ≤ 2.
(3) G is group of Lie type, characteristic 2, and Lie rank at most 2, but not

U4(q) or U5(q).
(4) G ∼= L4(2) or L5(2).
(5) G is a Mathieu group, J1, J2, J4, HS, He, or Ru.

Remark A.2.4. The Lie types appearing in (C.3) are: The groups of rank 1
are the Bender groups, namely of type A1 = L2,

2A2 = U3,
2B2 = Sz; the groups

of rank 2 are of type A2 = L3, B2 = Sp4, G2,
3D4, or

2F4. In (B.3), one adds rank
2 groups of type 2A3 = U4 and 2A4(4) = U5(4).

Notation A.2.5. As indicated in Notation 16.1.3, for outer automorphisms of
groups of Lie type in characteristic 2, we follow the convention of Definition 2.5.13
in [GLS98]—which differs from the widely-used original convention of Steinberg,
in which twisted groups have no graph automorphisms. Instead in the convention
of [GLS98], a graph automorphism of odd order of a twisted group does occur for
order 3 in type 3D4; and we show in the corollary below that this automorphism
cannot arise in an SQTK-group.
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Corollary A.2.6. Assume G is a strongly quasithin K-group and L E G
such that L/O2(L) is a quasisimple group of Lie type and characteristic 2. Then if
x ∈ G is of odd order, x induces an automorphism on L/Z(L) which is the product
of inner-diagonal and field automorphisms.

Proof. Set G∗ := G/O2,Z(L). Then by (2) of Theorem A, L∗ appears in
Theorem C. If x is an element of odd order which does not satisfy the conclusion
of the lemma, then by 2.5.12 in [GLS98], L∗ ∼= 3D4(2

n) and xL contains a 3-
element inducing a graph automorphism on L∗, which we may take to be x. By
I.1.3, Z(L/O2(L)) = 1, so as m3(L) = 2 and G is strongly quasithin, CG(L

∗) is a
3′-group. But then x is of order 3 and m3(CL(x)〈x〉) = 3, contradicting G strongly
quasithin. ¤

We will eventually prove Theorems A, B, and C together by induction on the
order of G, but first we establish some reductions needed to establish Theorem A;
see especially Remark A.2.14 below.

Lemma A.2.7. Let K E G, T := G/K, and p an odd prime. Then

(1) If mp(G) ≤ 1 then mp(T ) ≤ mp(G).
(2) If m2,p(G) ≤ 1 then m2,p(T ) ≤ m2,p(G).
(3) If mp(T ) ≤ 2 then mp(T ) ≤ mp(G).
(4) If m2,p(T ) ≤ 2 then m2,p(T ) ≤ m2,p(G).
(5) If mp(T ) ≤ 2 then mp(T ) ≤ mp(G) and m2,p(T ) ≤ m2,p(G).

Proof. Let J E H ≤ G, H∗ := H/J , and P ∈ Sylp(H). Then P ∗ ∈ Sylp(H
∗).

If mp(H) = 0 then P = 1, so P ∗ = 1 and hence mp(H
∗) = 0. If mp(H) = 1 then

P is cyclic, so P ∗ is cyclic and hence mp(H
∗) ≤ 1. Thus

if mp(H) ≤ 1 then mp(H
∗) ≤ mp(H), (∗)

and (*) implies:

if mp(H
∗) ≤ 2 then mp(H

∗) ≤ mp(H). (∗∗)

Applying (*) and (**) in the case G = H and J = K, we get (1) and (3). If M/K
is a 2-local of T , let U be a Sylow 2-group of the preimage of O2(M/K) in M ; then
by a Frattini Argument, M = KNM (U) and M/K ∼= NM (U)/NK(U), so applying
(*) and (**) to H = NM (U) and J = NK(U) for the various choices of M/K, we
get (2) and (4). Finally as m2,p(T ) ≤ mp(T ), (3) and (4) imply (5). ¤

In our next three lemmas we work under the following hypothesis:

In lemmas A.2.8 through A.2.11: (G,S, p) is a counterexample to Theorem A
which is minimal in the following sense: Theorem A holds in each proper quasithin
section of G.

Lemma A.2.8. G is minimal subject to covering the section S. In particular S
is a quotient of G.

Proof. Suppose S = H/K withH < G. AsG is a counterexample to Theorem
A, either m2,p(S) > m2,p(G) and S does not satisfy conclusion (b) of part (1) of
Theorem A, or mp(G) ≤ 2 and mp(S) > mp(G). Then H is a quasithin K-group
with m2,p(H) ≤ m2,p(G) and mp(H) ≤ mp(G), so S also exhibits the failure of
Theorem A for H . Thus minimality of G supplies a contradiction. ¤
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Notation A.2.9. By A.2.8, there is K E G with G∗ := G/K ∼= S.

Lemma A.2.10. O2(G) = 1.

Proof. Assume O2(G) 6= 1 and let Ḡ := G/O2(G). Note that

mp(Ḡ) = mp(G) = m2,p(G) ≤ 2, (a)

as G is quasithin. Now T := Ḡ/K̄ ∼= G/KO2(G) ∼= S/S0, where S0 ≤ O2(S). Thus
as S is semisimple, so is T , and

mp(S) = mp(T ). (b)

By (a), Ḡ is a proper quasithin section of G, so by minimality of G:

mp(T ) ≤ mp(Ḡ) ≤ 2. (c)

Now by (b) and (c), mp(S) ≤ 2, so A.2.7.5 contradicts the choice of S, G as a
counterexample. ¤

Lemma A.2.11. G/Op(G) = S/Z(S) for p the prime exhibiting the failure of
Theorem A.

Proof. Let H be the preimage of Z(S) in G, and Q ∈ Sylq(H) for some prime
q. By a Frattini Argument, G = HNG(Q). Thus S = G∗ = H∗NG(Q)∗, while as
S is semisimple, H∗ = Z(S) ≤ Φ(S), so S = NG(Q)∗. Therefore NG(Q) covers
S, so by A.2.8, Q E G. Suppose 1 6= Q and q 6= p. By A.2.10, q is odd. Set
Ĝ := G/Q. Then mp(Ĝ) = mp(G) and m2,p(Ĝ) = m2,p(G), and Ṡ := S/Oq(S)

is a semisimple section of Ĝ with mp(Ṡ) = mp(S) and m2,p(Ṡ) = m2,p(S). Hence

by minimality of G and A.2.8, Ṡ = Ĝ/Z(Ĝ) with Ĝ in the role of “H” satisfying
conclusion (b) of part (1) of Theorem A. Let X := G∞. Observe then as ni ≥ 3,
that m2(X) = m2(S) ≥ 6, so mq(Q) ≤ 2 by A.1.28. Thus X centralizes Q by
A.1.25, so X = E(X). But now G = XQ, contrary to A.2.8.

Thus H is a p-group, so H = Op(G) since S = E(S). ¤

At this point, we begin our parallel proof of the three Theorems by induction
on the group order so we assume:

In the remainder of the section, G is a minimal counterexample to the union of
Theorems A, B, and C; that is, Theorems A, B, and C hold in each proper section
of G satisfying the hypotheses of the respective theorem.

Observe that if G is a counterexample to Theorem A, then G is a minimal
counterexample to Theorem A in our earlier sense. Thus choosing a section S and
a prime p exhibiting that failure, we may apply the earlier results to (G,S, p).

Proposition A.2.12. If the counterexample G is to Theorem A, then G is
quasisimple.

Proof. Adopt Notation A.2.9. Then S = G∗ is the product of n components
G∗i , 1 ≤ i ≤ n; set Gi := H∞i where Hi is the preimage of G∗i in G, so that
Gi = G∞i E G. By A.2.8, G = G1 · · ·Gn. We need to show that n = 1, and each
Gi is quasisimple, so we assume otherwise and derive a contradiction.

Set mi := m2(Gi) and let Ai ≤ Gi be an elementary abelian 2-group of rank
mi. By A.2.11, Gi/Op(Gi) is simple, so mi = m2(G

∗
i ) > 1, and we can choose

notation so that
A := 〈Ai : 1 ≤ i ≤ n〉 = A1 × · · · ×An.
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By A.1.21, there is a supercritical subgroup P of Op(G). As G/Op(G) = S/Z(S)
by A.2.11, CG(Op(G)) ≤ Op(G)E(G), and then CG(P/Φ(P )) ≤ Op(G)E(G) by
A.1.21.

We show next that G = E(G)—that is, G is semisimple. Assume otherwise;
then we can assume G1 6≤ CG(P ) and hence A1 is faithful on P . We apply A.1.29.2
with G1 in the role of “H”: If mp(P ) ≤ 2 the lemma says that m1 = 1, contrary to
the previous paragraph, so we conclude that mp(P ) > 2. Then as m2,p(G) ≤ 2, A
is faithful on P/Φ(P ), so m2(G) ≤ 3 by A.1.28; indeed since G/Op(G) = S/Z(S)
is a product of simple groups, we see that Z∗(G) = 1, so m2(G) ≤ 2 by A.1.28. As
m1 > 1, we conclude that n = 1, G = G1, and m1 = 2. As mp(G) ≥ mp(P ) > 2,
part (2) of Theorem A is vacuous, so part (1) fails. Hence m2,p(S) > 2 by A.2.7.4.
Since m2(G

∗) = m1 = 2, we can refer to lists of groups in K of 2-rank 2. This
information can be deduced from tables of p-ranks such as in 5.2.10 and 5.6.1 in
[GLS98], but it may be quicker just to quote the list (not the proof, as we are
assuming that G is a K-group) from the general 2-rank 2 classification 48.1 in
[Asc86a] to conclude that S/Z(S) is one of: L2(q) or L

ε
3(q), q odd; M11, U3(4), or

A7.
2 Hence as m2,p(S) > 2, S ∼= Lε3(q) with q = pe and e > 2. But then there is a

quasisimple section SL2(p
e) ∼= L∗ < G∗, with m2,p(L

∞) > 2, exhibiting failure of
Theorem A in the preimage L of L∗ which is proper in G, and hence contradicting
the minimality of G.

This contradiction shows that G = E(G), so it remains to assume that n > 1,
and derive a contradiction.

Let Tj be a nontrivial 2-subgroup of Gj . For i 6= j, Gi ≤ NG(Tj), so as G
is quasithin, mr(Gi) ≤ 2 for each odd prime r. Thus Gi is strongly quasithin, so
by minimality of G, mr(G

∗
i ) ≤ 2 for each odd prime r, and G∗i is on the list of

Theorem C.
We claim:
(I) If Z(Gi) 6= 1 for some i, then p = 3, |Z(Gi)| = 3, Gi ∼= Â6, Â7, M̂22, or

SLε3(q) for q an odd prime or a power of 2, with q ≡ ε mod 3, m3(Gi) = m3(G
∗
i ) =

2, and either

(i) 1 ≤ m2,3(G
∗
i ) ≤ m2,3(Gi) = 2, or

(ii) Gi ∼= SU3(2
ni) with ni ≥ 3 odd, and m2,3(G

∗
i ) ≤ m2,3(Gi) = 1.

(Recall that Ĥ denotes the perfect central extension of Z3 by H , as defined in
Notation A.3.5). Namely if Z(Gi) 6= 1, then inspecting the list I.1.3 of Schur
multipliers for the groups in Theorem C, and keeping in mind that Z(Gi) is a
p-group with p odd, we conclude that p = 3, |Z(Gi)| = 3, and Gi is one of the
groups in the initial assertion of (I). Further m3(G

∗
i ) = 2 = m3(Gi) using I.2.2.2. In

particularm2,3(G
∗
i ) ≤ 2; but on the other hand, for each groupGi in (I) (other than

SU3(2
m) for suitable odd m, which would appear in (I.ii)), G∗i contains a subgroup

isomorphic to A4 or SL2(3), so that 1 ≤ m2,3(G
∗
i ). Hence (I.i) holds whenever

m2,3(Gi) > 1: since then m2,3(Gi) = 2 as G is quasithin, ans m2,3(G
∗
i ) = 1. So we

may assume that m2,3(Gi) ≤ 1; and hence as Z(Gi) is of order 3 that m2,3(Gi) = 1.

Now if Gi ∼= Â6, Â7, or M̂22, then a Sylow 3-subgroup P of Gi is isomorphic to 31+2

of exponent 3; so asm2,3(G
∗
i ) ≥ 1,m2,3(Gi) > 1, contrary to our assumption. SoGi

is SLε3(q) for q an odd prime or a power of 2, with q ≡ ε mod 3. Now Gi contains
an SL2(q)-subgroup L, which in particular has a center of order 2. Unless q = 2ni

2A7 was inadvertently omitted from the list in 48.1 of [Asc86a].
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with ni ≥ 3 odd, L has 3-rank 1 so that m2,3(L) = 1; and then m2,3

(
LZ(Gi)

)
= 2,

so that m2,3(Gi) > 1, contrary to our assumption. Therefore Gi = SLε3(2
ni) with

ni ≥ 3 odd. As q ≡ ε mod 3, Gi = SU3(2
ni), and m2,3(G

∗
i ) ≤ m2,3(Gi) by A.2.7.5;

so as m2,3(Gi) = 1 by our assumption, (I.ii) holds, completing the proof of (I).
We next claim:
(II) If Z(Gi) 6= 1, then Z(Gj) = 1 for each j 6= i.

Assume otherwise. Without loss, Z(Gr) 6= 1 for r = 1, 2. By (I), p = 3, Zr :=
Z(Gr) is of order 3, and m3(Gr) = m3(G

∗
r) = 2. Hence if m2,3(Gr) > 1 or Z1 6= Z2,

then m2,3(GrP ) > 2 for P ∈ Syl3(G3−r), contradicting G quasithin. Therefore
m2,3(Gr) = 1 for each r and Z1 = Z2, and (ii) rather than (i) of (I) holds, so that
Gr ∼= SU3(2

nr) for r = 1, 2. Now m3(G1G2) = 3, so as G is quasithin, CG(G1G2)
is of odd order, and hence n = 2 and G = G1G2.

If d := (n1, n2) is not 1 or 3, then there is a prime divisor s > 3 of 2d + 1 such
that m2,s(G1) = 1 and ms(G2) = 2. Thus m2,s(G) > 2, contradicting G quasithin.
Thus d = 1 or 3, so (1.b) of Theorem A holds, contrary to the choice of G as a
counterexample to Theorem A. This completes the proof of (II).

Finally observe:

(III) For all j, mp(Gj) = mp(G
∗
j ) and m2,p(Gj) ≥ m2,p(G

∗
j ).

For (III) is trivial when Z(Gj) = 1, and (III) follows from (I) when Z(Gj) 6= 1.
By (II), the semisimple group G is not just the central product, but in fact

the direct product of the subgroups Gj , and hence S is either G or G/Z(Gi) using
A.2.11. As the product is direct, (III) says that mp(G) = mp(S) and m2,p(G) ≥
m2,p(S), contrary to our choice of G, S as a counterexample to Theorem A. ¤

Remark A.2.13. In view of Proposition A.2.12, we have the following di-
chotomy:

Case I. G is simple and G is a counterexample to Theorem B or C.
Case II. G is quasisimple but not simple, and (G,S, p) is a counterexample to
Theorem A, where S := G/Z for some 1 6= Z ≤ Z(G) and Z(G) is a p-group.

For Theorem A is trivial when G = S, so A.2.11 says that G is not simple if
G is a counterexample to Theorem A. Further in that event, G is quasisimple by
A.2.12. Also by A.2.11, there is a unique prime p for which Theorem A fails, Z(G)
is a p-group, and S = G/Z for some subgroup Z of Z(G). On the other hand if G
is not simple, then Theorems B and C hold vacuously, so G is simple when G is a
counterexample to Theorem B or C.

In the remainder of the section, set G∗ := G/Z(G).

Remark A.2.14. In Case II, mp(S) > 2 by A.2.7.5. Thus if |Z(G)| = p, then
mp(G

∗) > 2.

Lemma A.2.15. Assume that M < G, R = E(R) is a semisimple section of
M , and r is an odd prime. Then

(1) mr(R) ≤ mr(M) ≤ mr(G) if mr(G) ≤ 2.
(2) mr(R) ≤ mr(M) ≤ m2,r(G) ≤ 2 if M is a 2-local subgroup of G.
(3) If R is simple, then R is on the list of Theorem B; if in addition M is a

2-local subgroup of G, then R is on the list of Theorem C.

Proof. We invoke the minimality of G as a counterexample to the union of
the three Theorems: As G is quasithin, so is M , so that Theorem A holds in M by
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minimality of G. Further if mr(G) ≤ 2, then mr(M) ≤ 2, so (1) follows as (2) of
Theorem A holds in M . The inequality mr(M) ≤ m2,r(G) in (2) holds since M is
a 2-local; of course m2,r(G) ≤ 2 as G is quasithin. Thus again mr(R) ≤ mr(M) as
(2) of Theorem A holds in M , completing the proof of (2).

Suppose R is simple. Then R is quasithin as Theorem A holds in M . Further
if M is a 2-local, then R is strongly quasithin by (2). Thus (3) follows from the
minimality of G. ¤

In the remainder of the section, we complete the proof of our three Theo-
rems, by considering the possible choices for G∗ from the various families of simple
K-groups: alternating groups, groups of Lie type, and sporadic groups. Our stan-
dard reference for the structure of these groups is [GLS98]. In particular for the
structure of parabolic subgroups of Lie-type groups, see section 2.6 of [GLS98]
or section 43 of [Asc86a]. For the sporadic groups, we will appeal to the list of
maximal overgroups of a Sylow 2-subgroup in [Asc86b]; for further reference we
mention also the Atlas [C+85], and the list of references for the 2-radical subgroups
(B2(G)) recently given by Yoshiara [Yos, Table 3]. In Case II of Remark A.2.13 the
p-part of the Schur multiplier of G∗ is nontrivial, so we frequently quote the list of
Schur multipliers of simple K-groups in Definition 6.1.1 and Tables 6.1.2 and 6.1.3
of [GLS98]. In the remainder of this section, we will abbreviate this reference by
using the (capitalized) phrase “the LIST” (of multipliers).

Lemma A.2.16. G∗ is not an alternating group.

Proof. Assume G∗ ∼= An. First assume G is not simple. Then we are in Case
II of Remark A.2.13, so Z(G) is a nontrivial p-group for the unique odd prime p
exhibiting the failure of Theorem A. From the LIST of multipliers for the alternating
groups, n = 6 or 7 and |Z(G)| = p = 3. But then m3(G

∗) = 2, contrary to Remark
A.2.14.

Therefore G∗ = G is simple, so G is a counterexample to Theorem B or C. If
n > 10, then G has a proper A10-subgroup, contradicting A.2.15.3. If n = 10, G
has an A4 × A6-subgroup of 3-rank 3, contradicting m2,3(G) ≤ 2. If n = 9, then
G appears in Theorem B and m3(G) = 3, so G is not strongly quasithin; thus G is
a counterexample to neither Theorem B nor Theorem C. Thus n ≤ 8, so again G
appears in Theorems B and C, contrary to the choice of G as a counterexample. ¤

Lemma A.2.17. G∗ is not of Lie type and odd characteristic.

Proof. Assume otherwise, so that G∗ is defined 3 over Fq where q = re for
an odd prime r and e ≥ 1. We exclude the case G∗ ∼= 2G2(3)

′ ∼= L2(8), as it is
treated in the next lemma.

We first consider the cases where G∗ is L2(q) or
2G2(q). By A.2.16, G∗ is not

A6
∼= L2(9). Then from the LIST, the multiplier of G∗ is a 2-group, so G∗ = G is

simple, and a counterexample to Theorem B or C. Now if G ∼= 2G2(q), then G has
a Z2 × L2(q)-subgroup, so as q > 3 is an odd power of 3 and G is quasithin, we
have a contradiction. Next if G ∼= L2(q), then G appears in Theorem B, while if G
is also strongly quasithin, then e ≤ 2, so that G also appears in Theorem C. This
completes the treatment of G ∼= L2(q) or

2G2(q).

3For twisted groups, we follow the usual convention of writingX(q), with the field of definition
Fq given by the fixed field of the underlying field automorphism; cf. definition 2.2.4 in [GLS98].



A.2. THE LIST OF QUASITHIN K-GROUPS: THEOREMS A, B, AND C 39

We claim that Or(G) = 1. Assume otherwise. Then Case II holds with r = p
and the p-part of the multiplier of G∗ is nontrivial, so we conclude from the LIST
of multipliers of G∗ that p = 3 and G∗ is G2(3), U4(3), or Ω7(3). However in each
case m2,3(G) > 2 by I.2.1, a contradiction.

As G∗ is not L2(q) or a Ree group, G∗ has a proper fundamental subgroup
K∗0

∼= SL2(q) (see [Asc80, p.401]). Let K0 be the preimage of K∗0 in G. By

the claim, Or(G) = 1, so K := Or
′

(K0) ∼= SL2(q) and K∗0 = K∗. Let z be the
involution generating Z(K). As K ≤ CG(z) and m2,3(G) ≤ 2,

e ≤ 2.

Let J := Or
′

(CG(K)); asK = Or
′

(K) and Z(G) is an r′-group, J∗ = Or
′

(CG∗(K
∗))

by Coprime Action. Thus J∗ is (essentially) described in Theorem 1 of [Asc80,
p.402]. As Z(K) = 〈z〉 is of order 2, for each odd prime s ∈ π(K), 2 ≥ m2,s(G) ≥
ms(KJ) = 1 +ms(J), so that ms(J) ≤ 1. Thus a Sylow s-subgroup of J is cyclic,
so that

ms(J
∗) ≤ 1 for s ∈ {3, r} . (∗)

We first consider those cases where G∗ is classical.
Assume that G∗ ∼= Lεn(q). Then n > 2 and J∗ ∼= SLεn−2(q) (by the reference

mentioned above). Hence by (*), either n = 3, or n = 4 and q = r.
Suppose first that n = 3. Then ms(G

∗) ≤ 2 for each odd prime s, and from the
LIST, |Z(G)| = 1 or 3, so Case I holds by Remark A.2.14. As e ≤ 2, G appears in
Theorem B. Further if G is strongly quasithin, then mr(G) ≤ 2, so that e = 1 and
hence G also appears in Theorem C. Thus G is not a counterexample to Theorems
B or C, contrary to the choice of G in Case I.

Therefore we may suppose that n = 4 and q = r is prime. As Or(G) = 1, the
LIST says G is simple, so Case I holds. Now a maximal torus H of G of maximal
rank centralizes z, and ms(H) = 3 for all primes s dividing r − ε. Thus as G is
quasithin, r − ε is a power of 2, so G ∼= Lε4(r) is not a counterexample to Theorem
B. Further mr(G) > 2, so G is not strongly quasithin, and hence G is also not a
counterexample to Theorem C. This contradiction completes our treatment of the
case G∗ ∼= Lεn(q).

Next suppose that G∗ ∼= PSp2n(q); we may take n > 1 as PSp2(q) ∼= L2(q).
From the LIST the multiplier of G∗ is a 2-group, so Case I holds. Then J ∼=
Sp2n−2(q), so we conclude from (*) that n = 2, and e = 1 so that q = r. But
then G ∼= PSp4(r) appears in Theorem B, and mr(G) = 3, so that G is also not a
counterexample to Theorem C.

Finally suppose that G∗ ∼= PΩεn(q). We may take n ≥ 7, since for n ≤ 6, G∗

is isomorphic to one of the groups already eliminated. In this case J∗ ∼= SL2(q) ∗
Ωεn−4(q), so as n ≥ 7, m3(J

∗) ≥ 2, contrary to (*).
At this stage we have shown that G∗ is not classical. In case G∗ ∼= F4(q),

J∗ ∼= Sp6(q), so that m3(J
∗) > 1, contrary to (*). Further

F4(q) <
2E6(q) and F4(q) < E6(q) < E7(q) < E8(q),

so A.2.15.3 shows that G∗ is none of these groups. This leaves the cases where
G∗ ∼= G2(q) or 3D4(q). As Or(G) = 1, we conclude from the LIST that the
multiplier of G∗ is trivial, so Case I holds. Now J ∼= SL2(q) or SL2(q

3) when
G ∼= G2(q) or

3D4(q), respectively, so we conclude from (*) that G = G2(r). Then
G appears in Theorem B, and as mr(G2(r)) > 2, G is also not a counterexample
to Theorem C. ¤
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Lemma A.2.18. G∗ is not of Lie type and characteristic 2.

Proof. Assume otherwise. By A.2.15.3, nonabelian simple sections of proper
parabolic subgroups of G∗ appear in Theorem C. This restriction rules out all
groups of Lie rank greater than 3, except possibly Ln(2) for n ≤ 6; it also rules out
U6(q), U7(q), and Ω−8 (q) of Lie rank 3.

Suppose first that G∗ is of Lie rank 3; hence G∗ is L4(q) or Sp6(q) by the
previous paragraph. Then from the LIST, the multiplier of G∗ is a 2-group, so
Case I of Remark A.2.13 holds. Further as G is quasithin, a Cartan subgroup H
of G satisfies mr(H) ≤ 2 for all odd primes r; so as ms(H) = 3 for all odd primes
s dividing q − 1, we conclude that q = 2, and hence G = L4(2) or Sp6(2). We
already eliminated the case G ∼= A8

∼= L4(2), while Sp6(2) appears in Theorem B,
and m3(Sp6(2)) = 3 so that G is not a counterexample to Theorem C. Therefore
G∗ is not of Lie rank 3.

Next assume that G∗ ∼= Ln(2), so that 3 ≤ n ≤ 6. Again from the LIST, the
multiplier of G∗ is a 2-group, so Case I holds. Further n = 5 or 6, since otherwise
G is isomorphic to a group L3(2) ∼= L2(7) or L4(2) ∼= A8 already eliminated. Next
G has a parabolic with Levi complement L2(2)× Ln−2(2), so as the 3-rank of this
Levi subgroup is at most m2,3(G) ≤ 2, we conclude that n 6= 6. Finally L5(2)
appears in Theorems B and C.

This leaves the cases where G∗ is of Lie rank at most 2. Assume for the moment
that G is not simple. Then from the LIST, the multiplier of G∗ is a 2-group unless
Sp4(2)

′ ∼= A6 (a case already eliminated in A.2.16), or:

(i) G∗ ∼= Lε3(q), q ≡ ε mod 3, Z(G) ∼= Z3, and G ∼= SLε3(q), or
(ii) G∗ ∼= U5(q), q ≡ −1 mod 5, Z(G) ∼= Z5, and G ∼= SU5(q).

We now treat the cases G∗ ∼= Lε3(q) or U5(q) in both Case I and Case II.
First assume G∗ is U5(q). Then there is a parabolic of G∗ containing a subgroup

L∗ ∼= Z(q+1)/d × SU3(q), where d := (q + 1, 5).

If Z(G) = 1 then L ∼= L∗, while if Z(G) 6= 1 then L ∼= Zq+1 × SU3(q). Thus in
each case mr(L) > 2 for every prime divisor r of (q + 1)/d, so q + 1 = d = 5.
Moreover if Z(G) 6= 1 then m5(L) > 2, contrary to m2,5(L) ≤ 2; therefore Case I
holds. But U5(4) appears in Theorem B, and as m5(U5(4)) > 2, U5(4) is also not
a counterexample to Theorem C.

Assume G ∼= (S)Lε3(q). Then mr(G
∗) ≤ 2 for all odd primes r and |Z(G)| = 1

or 3, so Case I holds by Remark A.2.14. As L3(q) appears in Theorems B and C,
this contradicts the choice of G in Case I.

We have shown that G is simple of Lie rank at most 2, but G is not U5(q)
or Lε3(q). If G is U4(q), then G appears in Theorem B, and mr(G) > 2 for r a
prime divisor of q + 1, so that G is not a counterexample to Theorem C. Finally
the remaining groups of Lie rank at most 2 appear in both Theorems B and C,
contrary to G a counterexample. ¤

Lemma A.2.19. G∗ is not a sporadic group.

Proof. Assume otherwise. We use the list of centralizers of involutions of spo-
radics (see [GLS98, Sec 5.3]) and A.2.15.3 to eliminate the eleven sporadic groups
with an involution centralizer having a nonabelian simple section not appearing in
Theorem C. We are left with the thirteen sporadics in Theorem B, as well as O′N
and F5.
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If G∗ is F5, then G
∗ contains an A12-subgroup, contrary to A.2.15.3. So suppose

G∗ is O′N . Then G∗ has an E9 × A6 subgroup containing an E9 × A4 subgroup
L∗, so m2,3(G

∗) > 2. As G is assumed to be quasithin, we conclude that G is not
simple; thus Case II of Remark A.2.13 holds. But by I.2.1, m2,3(G) > 2, so G∗ is
not O′N . Therefore we have shown that G∗ is on the list of Theorem B.

Suppose Case II holds. From the LIST (or I.1.3, as G∗ appears in Theorem
B), G∗ is M22, J3, or Mc, and |Z(G)| = 3. If G∗ ∼= M22 then |Z(G)| = 3 and
m3(G

∗) = 2, contrary to A.2.14. In the remaining two cases, m2,3(G) > 2 by I.2.1,
again a contradiction.

Therefore Case I holds. But as G ∼= G∗ is on the list of Theorem B, G must
be a counterexample to Theorem C. If G ∼= J3 or Mc, then m3(G) = 3 or 4,
respectively, so that G is not a counterexample to Theorem C. The remaining
eleven possibilities for G appear in both Theorems B and C, contrary to the choice
of G as a counterexample. This completes the proof. ¤

Notice that lemmas A.2.16 through A.2.19 cover all possible choices for a simple
group G∗ in K, so the proof of our three theorems is complete.

A.3. A structure theory for Strongly Quasithin K-groups

In this section, we define the notion of a C-component, which generalizes the
usual notion of component. Some of the properties depending on subnormality go
back to Wielandt. Also C-components of 2-locals in thin groups were exploited
by Aschbacher in [Asc78b]. As mentioned in the Introduction to Volume I, we
analyze 2-locals in QTKE-groups in terms of their C-components, and also use
these C-components to produce uniqueness subgroups in chapter 1. In the present
section, we will see that an SQTK-group G with O2(G) = 1 has a very restricted
structure, which can be described in terms of its C-components. Then we “pull
back” this structure to a general 2-local in a QTKE-group in chapter 1.

We will begin by developing some purely formal properties of C-components,
independent of the hypothesis that G is quasithin. Thus until our second lemma
A.3.6, G can be any finite group.

The following definition of C-component includes the usual notions both of
component and p-component for a prime p:

Definition A.3.1. Let C(G) be the set of subgroups L of G minimal subject
to

1 6= L = L∞ E E G.

The members of C(G) are called the C-components of G.

Observe that Proposition A.3.3 provides a partial analogue of the usual the-
ory of ordinary components, such as in [Asc86a, Sec 31]; in particular, compare
A.3.3 to [Asc86a, 31.3,31.4,31.6]. Indeed in A.3.3 we obtain a characterization of
O∞,E(G)—which in view of terminology in the literature, we might think of as the
∞-layer of G.

Recall that O∞(G) denotes the largest normal solvable subgroup of G. Also we
use a brief but technically abusive notation for intersections, for C(G) and indeed
for other sets of subgroups we will define:

Notation A.3.2. If H is a subgroup of G, let C(G) ∩ H denote the set of
members of C(G) lying in H .
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Proposition A.3.3. (1) For each L ∈ C(G), O∞(L) is the unique maximal
proper subnormal subgroup of L, and L/O∞(L) is a nonabelian simple group. In
particular, L is the unique member of C(L).

(2) If H ≤ G then C(G) ∩H ⊆ C(H). If H E E G, then C(G) ∩H = C(H).
(3) If L ∈ C(G) and N is an L-invariant solvable subgroup of G, then [L,N ] ≤ L

and (LN)∞ = L.

(4) Let N be a solvable normal subgroup of G and Ḡ := G/N . Then C(G) =
C(Ḡ), and the map L 7→ L̄ is a 1:1 correspondence between C(G) and C(Ḡ).

(5) C(G/O∞(G)) is the set of components of G/O∞(G), so 〈C(G)〉 = O∞,E(G)
∞.

(6) L E 〈C(G)〉 for each L ∈ C(G).
(7) If X ≤ G and L ∈ C(G), then either [L,X ] ≤ O∞(G) so that [L,X ] is

solvable, or [L,X ] = 〈LX〉.

Proof. Throughout the proof, L denotes a C-component of G, if C(G) is
nonempty. If N is a proper subnormal subgroup of L, then as the subnormal-
ity relation is transitive, we conclude that N∞ = 1 from the minimality of L.
In particular O∞(L) is the unique maximal proper subnormal subgroup of L, so
L/O∞(L) is simple and (1) holds.

Suppose L ≤ H ≤ G; then also LE E H . If L ≥ N with 1 6= N = N∞E E H ,
then alsoNE E L, soN contains a member of C(L), and hence N = L by (1). Thus
L ∈ C(H), so C(G)∩H ⊆ C(H). Let K ∈ C(H) and assume that HE E G. Then K
is a minimal subnormal perfect subgroup of G by transitivity of the subnormality
relation, so K ∈ C(G) and hence C(H) ⊆ C(G) ∩H , completing the proof of (2).

Assume (3) is false, and let G be a minimal counterexample. Then L < G.
By (2), L ∈ C(LN), so G = LN by minimal order of G, and hence N E G.
Set H := 〈LG〉. As L < G and L E E G, H < G. Further by the Dedekind
Modular Law, H = L(H ∩N) with H ∩N a solvable normal subgroup of H , so by
minimality of G, L = H∞ E G. Now G/L = LN/L ∼= N/(N ∩ L) is solvable, so
(LN)∞ = G∞ = L, proving (3).

Assume the hypotheses of (4). As N is solvable but L is not, L 6≤ N , so L̄ 6= 1.
As L E E G, L̄ E E Ḡ and as L = L∞, L̄ = L̄∞. If 1 6= K̄ = K̄∞ ≤ L̄ with
K̄ E E Ḡ, then the preimage K of K̄ in G lies in LN and 1 6= K∞ E E G. By
(3), K∞ ≤ L, so by minimality of L, L = K∞. Thus K̄ = K̄∞ = L̄, so L̄ ∈ C(Ḡ).

Let ϕ be the map in (4). If L̄ = L̄1 for some L1 ∈ C(G), then by (3),

L = (LN)∞ = (L1N)∞ = L1,

so ϕ is injective. To see ϕ is onto, pick K̄ ∈ C(Ḡ); as above K∞ E E G and
K∞ 6= 1, so there exists some L ≤ K∞ minimal subject to 1 6= L = L∞ E E G,
and then L ∈ C(G). We just saw that L̄ ∈ C(Ḡ), so (2) applied in Ḡ shows that
L̄ ∈ C(K̄), and hence L̄ = K̄ by (1). Thus ϕ is surjective, completing the proof of
(4).

Now specialize to the case N := O∞(G). As the first part of (5) is a statement
about Ḡ, in proving that part we may take O∞(G) = 1. Thus for L ∈ C(G),
O∞(L) ≤ O∞(G) = 1, so L is a simple subnormal subgroup of G by (1) and hence
L is a component of G. Conversely if K is a component of G, then K is a minimal
nontrivial subnormal subgroup of G and K is perfect, so K ∈ C(G), completing the
proof of the first part of (5). By (4) and the first part of (5), the components of
E(Ḡ) have preimages LO∞(G) for L ∈ C(G), so the second part of (5) follows from
(3).
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In particular the components of Ḡ commute and so are normal in the group
E(Ḡ) they generate. We conclude from (4) and (5) that LN E 〈C(G)〉N . Then
(6) follows from (3).

It remains to prove (7), so assume [L̄, X̄ ] 6= 1. Then [X̄, L̄, L̄] 6= 1 by 8.9 in
[Asc86a]. So as L̄ is a component of Ḡ, and [L̄, X̄] E 〈L̄, X̄〉, L̄ is a component of

[L̄, X̄] by 31.4 in [Asc86a]. Then 〈L̄X̄〉 ≤ [L̄, X̄]; while as 〈L̄X̄〉 E 〈L̄, X̄〉, [L̄, X̄] ≤

〈L̄X̄〉. That is, [L̄, X̄ ] = 〈L̄X̄〉. Hence [L,X ]N = 〈LX〉N . As 〈LX〉 E 〈L,X〉,
[L,X ] ≤ 〈LX〉. Therefore as 〈LX〉 ≤ [L,X ]N , 〈LX〉 = [L,X ](〈L,X〉 ∩ N) by the
Dedekind Modular Law. So asN is solvable and [L,X ] E 〈L,X〉, 〈LX〉 = 〈LX〉∞ ≤
[L,X ]. This completes the proof of (7). ¤

With these general facts about C-components in place, we can obtain stronger
results in strongly quasithin K-groups G. Passing to G/O2(G), it makes sense to
first study groups with no nontrivial normal 2-subgroup. So for the remainder of
this section, we assume

Hypothesis A.3.4. G is a strongly quasithin finite K-group, with O2(G) = 1.

Then in chapter 1, we will apply these results to H/O2(H), to obtain informa-
tion about 2-local subgroups H of QTKE-groups.

We first use Theorems A (A.2.1), B (A.2.2), and C (A.2.3) of the previous
section to see how the SQT hypothesis restricts the possible structure of the C-
components of G.

Notation A.3.5. For L ∈ {A6, A7,M22}, write L̂ for the quasisimple group

with center of order 3, such that L̂/Z(L̂) ∼= L.

Proposition A.3.6. Assume L ∈ C(G). Then one of the following holds:

(1) L is a simple component of G appearing in Theorem C.
(2) L is a quasisimple component of G, Z(L) ∼= Z3, and L is SLε3(q) for

q = 2e ≡ ε mod 3 or q an odd prime, Â6, Â7, or M̂22.
(3) F ∗(L) = F (L) ∼= Ep2 for some prime p > 3, and L/F ∗(L) ∼= SL2(p) acts

naturally on F ∗(L).
(4) F ∗(L) = F (L) is nilpotent with L/F ∗(L) ∼= SL2(5), and for each p ∈

π(F ∗(L)),

(a) Either p ≡ ±1 mod 5, or p = 5; and
(b) Either Op(L) ∼= p1+2, or Op(L) is homocyclic of rank 2.

In each of the cases (1)–(4), F (L) = O(L), L/F (L) is quasisimple, and either

(i) F (L) = F ∗(L) and F (L) is of index 2 in O∞(L), or
(ii) F (L) = Z(L) = O∞(L) has order 1 or 3.

Thus O∞(L)′ = [F (L), L], and L/O∞(L)′ is quasisimple.

Proof. If L centralizes F (L), then F ∗(L) > F (L), so L = E(L) is quasisimple
by A.3.3.1. Now (2) of Theorem A guarantees that L/Z(L) is also strongly qua-
sithin, so L/Z(L) appears on the list of Theorem C. Then by inspection of the list
I.1.3 of multipliers of the groups appearing in Theorem C, we conclude that either
(1) or (2) holds.

So we may assume that L does not centralize Op(L) for some prime p. As
O2(G) = 1 by Hypothesis A.3.4, p is odd. As L = L∞, L acts nontrivially on a
supercritial subgroup P of Op(G) by A.1.21. Set K := CL(P/Φ(P )). As L = L∞
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is nontrivial on P , P is not cyclic; so by A.1.24, P ∼= Ep2 or p1+2. By A.1.29.1,
either L/K ∼= SL2(p), or p ≡ ±1 mod 5 and L/K ∼= SL2(5). In particular if
L/K ∼= SL2(p) for p 6= 5, then L centralizes Op(F (L)). Further in either case,
P/Φ(P ) = [P/Φ(P ), L], so P = [P,L]. As K is a proper normal subgroup of L, K
is solvable by A.3.3.1. As Op(L/K) = 1, Op(K) = Op(L).

Let π := {p1, · · · , pn} be the set of primes q ∈ π(F (G)) with L nontrivial on
Oq(L), let Pi be a supercritical subgroup of Opi(L), and set Ki := CL(Pi/Φ(Pi)).
We claim Ki = Kj for all i, j: First if L/O∞(L) is L2(p) for p > 5, then we showed
that π = {p}, so we may assume that L/O∞(L) is L2(5). Now |O∞(L) : Ki| = 2 as
L/Ki

∼= SL2(5). Thus ifKi 6= Kj , then L/(Ki∩Kj) is a perfect central extension of
Z2
∼= Ki/(Ki∩Kj) by L/Ki

∼= SL2(5), impossible as the Schur multiplier of SL2(5)
is trivial. So as claimed, K := Ki = Kj is independent of i. As |O∞(L) : K| = 2
and O2(G) = 1, F (L) ≤ K, so F (L) = F (K).

Consider any p ∈ π. Recall P ∼= Ep2 or p1+2, with L irreducible on P/Φ(P ).
Further K centralizes P/Φ(P ), so that K = CK(P )P by A.1.23. Therefore Op(K)
centralizes P , so that Op(K) ≤ CK(Op(K)) by A.1.21. This also holds for any
prime p ∈ π(F (K))− π, since L centralizes Op(L) for such a prime p by definition.

Applying A.1.4 to K, we conclude that K = F (K) = F (L) is a nilpotent
π(F (K))-group. We next establish:

If N E L and K = Z(L)N , then N = K. (∗)

Set L∗ := L/N ; we want to show that K∗ = 1. As K = Z(L)N , K∗ = Z(L)∗; and
as O2(G) = 1, Z(L) is of odd order. Now K+ := O∞(L) is the preimage in L of
Z(L/K). As |K+ : K| = 2 and K∗ = Z(L)∗, K∗+ is abelian. But then the Sylow
2-group of K∗+ of order 2 is normal, and hence central, in L∗, so K∗+ = F (L∗)
is central in L∗. It follows that L∗ is a covering group of L/K+

∼= L2(r); so as
L/K ∼= SL2(r) for r prime has trivial Schur multiplier, we have established (*).

Now K is nilpotent, and [Oπ′(F (L)), L] = 1 by definition of π, so K =
Z(L)Oπ(F (K)), and then (*) yields

F (L) = K = Oπ(F (K)). (∗∗)

Consider the case where L/K ∼= SL2(p) for p > 5. Here by earlier remarks
π = {p}, so by (**), K = Op(L). Also as noted earlier,

K = CK(P )P. (∗∗∗)

Suppose first that P ∼= p1+2. As P is supercritical, P contains each element
of order p in CK(P ), so by (***), Ω1(K) = P . Therefore Ω1(CK(P )) = Z(P ) is
of order p, so CK(P ) is cyclic and hence CK(P ) = Z(L) as L is perfect. Thus
K = Z(L)P , so K = P by (*). Then L/P ∼= SL2(p), so that mp(L) = 3 by A.1.33,
contradicting our hypothesis that G is strongly quasithin.

Therefore P ∼= Ep2 . Let t denote an involution of L. Then t inverts P , so
CK(t)P = CK(t) × P , and hence CK(t) = 1 as G is strongly quasithin. Therefore
t inverts K, so K is abelian—and of rank 2 as G is strongly quasithin. Thus
P = Ω1(K), so as L is irreducible on P , K is homocyclic of rank 2. If K > P ,
applying A.1.30 to Ω2(K), we obtain a contradiction. That is, (3) holds.

This leaves the case where L/K ∼= SL2(5). Here K = Oπ(F (K)) by (**), and
as noted earlier, K = CK(Pi)Pi for each prime pi in π, so

K = CK(P0)P0, (!)

where P0 := P1 × · · · × Pn.
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If P ∼= p1+2, an earlier argument using (!) in place of (***) shows that Op(L) =
P . However this time we do not obtain a contradiction, as SL2(5) does not contain
a subgroup X of order p when p > 5. When P ∼= Ep2 , another earlier argument
shows that Op(L) is homocyclic abelian of rank 2. Again for p > 5 we cannot apply
A.1.30 to conclude that Op(L) is elementary abelian. However, we have established
all the assertions of (4), so the proof of A.3.6 is complete. ¤

Of course distinct components of G commute (e.g., 31.5 in [Asc86a]). Using
the restrictions on the structure ofG in the previous two lemmas, we next obtain the
analogue of that fact: Distinct C-components of our group G commute. To see that
both parts of Hypothesis A.3.4 are actually needed for this result, consider a group
H which is the extension of an elementary abelian p-group V by the direct product
of two copies of SL3(p) acting on V as the tensor product of natural modules, for
p = 2, 3; the two C-components commute only modulo Op(H).

Proposition A.3.7. If L1 and L2 are distinct members of C(G) then [L1, L2] =
1. So 〈C(G)〉 is the central product of the members of C(G).

Proof. By A.3.3.6, L1 and L2 are normal in 〈C(G)〉, so L1L2 is a subnor-
mal subgroup of G. Then as O2(G) = 1, also O2(L1L2) = 1. By A.3.3.2,
L1, L2 ∈ C(L1L2), so without loss G = L1L2. Then by A.3.3.6, Li E G. As
distinct components of G commute, we may assume that some Li, say L1, is not a
component of G. Thus L1 is described in case (3) or (4) of A.3.6, so L1/F1 ∼= SL2(p)
for some prime p, where F1 := F ∗(L1) is nilpotent of odd order.

Let Ḡ := G/O(G), q ∈ π(O(L1)), Q := Oq(L1), and Q̃ := Q/Φ(Q). Then Q̃ ∼=
Eq2 , and SL2(p) ∼= AutL1(Q̃) = NGL(Q̃)(AutL1(Q̃))∞, so G = CG(Q̃)L1. By A.3.6,

L̄i is a component of Ḡ. Thus as Ḡ = L̄1CG(Q̃), and CG(Q̃) E Ḡ, L̄2 ≤ CG(Q̃). By
Coprime Action, L2 centralizes Q. As this holds for each q ∈ π(F1), L2 centralizes
F1 = F ∗(L1), so L2 centralizes L1, completing the proof. ¤

The condition in A.3.7 that distinct C-components of an SQTK-group G com-
mute allows us to conclude that there are at most two conjugates of a C-component
of G:

Proposition A.3.8. Let H be a quasithin K-group and K a component of H,
with O2(K) = 1 and K not normal in H. Then

(1) |KH | = 2 and 〈KH〉 = KKt for t ∈ H −NH(K), and
(2) K is L2(2

n), Sz(2n), J1, L2(p
e) for a prime p > 3 and e ≤ 2, or SU3(8).

(3) If L ∈ C(G) then either L E G, or L is L2(2
n), Sz(2n), J1, or L2(p)

for a prime p > 3, and 〈LG〉 is the direct product of two copies of L. Thus for
T ∈ Syl2(G), either

(i) L E G, so LT = {L} = C(〈L, T 〉) and 〈L, T 〉 = LT , or
(ii) LT = {L,Lt} = C(〈L, T 〉) for t ∈ T −NT (L), and 〈L, T 〉 = (L×Lt)T .

Proof. Notice we assume only that H is quasithin, rather than that H is
strongly quasithin. On the other hand, we are assuming that K is an ordinary
component of H , not a more general C-component.

Let X := 〈KH〉. As distinct components of H commute, X is the central
product of the conjugates of K. By hypothesis, |XH | > 1, so |XH | = 2 by A.1.34.2.
Thus (1) holds, and as O2(H) = 1, (2) follows from A.1.34.3 and I.1.3, which shows
that the multiplier of K/Z(K) is a 2-group in case (a) of A.1.34.3.
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Assume the hypotheses of (3), and let L ∈ C(G); thus G is strongly quasithin
by Hypothesis A.3.4. By A.3.7, 〈LG〉 is the central product of the G-conjugates
L1, . . . , LN of L, and we may assume that N > 1. Thus N = 2 as G is strongly
quasithin. Hence L1 ∩ L2 ≤ Z(L1). Thus if L is not quasisimple, A.3.6 implies
mp(Op(L1)Op(L2)) > 2 for each prime divisor p of |O(L)|, contrary to G strongly
quasithin. Therefore L is quasisimple, and hence an ordinary component of G.
Further O2(L) = 1 as O2(G) = 1 by Hypothesis A.3.4. Now (1) and (2) complete
the proof of (3)—noting that e 6= 2 in (2), and L is not SU3(8) as G is strongly
quasithin. ¤

In a general finite group, the induced permutation action of G on C(G) can
be quite complicated; but for a strongly quasithin group, A.3.8.3 shows that the
orbits of G on its C-components are of length 1 or 2. This leads to a very strong
restriction: G/〈C(G)〉 is solvable.

Proposition A.3.9. (1) 〈C(G)〉 = G∞.
(2) 〈C(G)〉/O(〈C(G)〉) = E(〈C(G)〉/O(〈C(G)〉)).

Proof. Let L ∈ C(G), and set H := 〈C(G)〉 and H̄ := H/O(H). As L E E G,
O(L) ≤ O(H), so by A.3.6, L̄ is quasisimple. Thus L̄ is a component of H̄ , so (2)
is established.

By A.3.8.3, |LG| ≤ 2, G∞ fixes LG pointwise. Therefore

H = H∞ ≤ G∞ ≤ G0 :=
⋂

L∈C(G)

NG(L).

We must prove H = G∞, so without loss we may assume G = G∞. Thus also
G = G0. Now by A.3.6, L/O(L) is quasisimple, so asG = G0 we haveG = NG(L) =
LCG(L/O(L)), using the Schreier property (i.e., Out(L) is solvable, which holds
for groups in K) for the last equality. Then by induction on |C(G)|, G = HCG(H̄).
If CG(H̄) is not solvable, pick L1 ≤ CG(H̄) minimal subject to 1 6= L1 = L∞1
subnormal in G. Then L1 ∈ C(G) ⊆ H , so L̄1 ≤ Z(H̄) and hence L1 ≤ O∞(H).
But this contradicts L1 = L∞1 . We conclude CG(H̄) is solvable, so

G∞ = H∞CG(H̄)∞ = H

as asserted. ¤

We next put in place some machinery to begin the study of the family L(H,T )
(described in the Introduction to Volume II) of subgroups of a QTKE-group H
determined by a Sylow 2-subgroup T of H . (Cf. chapter 1). As a first step, we
define an analogue of that family (using that same notational convention) in our
SQTK-group G with O2(G) = 1.

Definition A.3.10. So for the remainder of the section let T ∈ Syl2(G) and
define L(G, T ) to be the set of subgroups B of G such that B ∈ C(〈B, T 〉).

We use (typically without reference) the following elementary relation between
C and L:

Lemma A.3.11. If T ≤ H ≤ G, then C(H) ⊆ L(G, T ).

Proof. Given L ∈ C(H), we have 〈L, T 〉 ≤ H , so L ∈ C(〈L, T 〉) by A.3.3.2. ¤
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The next result says that each member of L(G, T ) embeds in a unique mem-
ber of C(G), and determines the possible proper embeddings by examining the
overgroups of Sylow 2-subgroups of the groups in Theorem C. This result is used
frequently throughout the proof of the Main Theorem.

Proposition A.3.12. Let B ∈ L(G, T ). Then B ≤ L for a unique L ∈ C(G),
and one of the following holds:

(1) B = L; that is B ∈ C(G).
(2) B/O2(B) ∼= L2(2

n), L is a rank-2 group of Lie type of characteristic 2 in
Theorem C, and B = P∞ for some maximal parabolic P of L.

(3) B/O2(B) ∼= Sz(q), L ∼= 2F 4(q), and B = P∞ for some parabolic P of L.
(4) B/O2(B) ∼= L3(2), L ∼= L4(2) or L5(2), and B = P∞ for some parabolic

P of L.
(5) B/O2(B) ∼= L4(2), L ∼= L5(2), and B = P∞ for some parabolic P of L.

(6) B ∼= A5 or L3(2), and L ∼= A7 or Â7.

(7) B ∼= A6 and L ∼= A7, or B ∼= Â6 and L ∼= Â7.
(8) B ∼= L2(p) and L ∼= L2(p

2) for an odd prime p > 3; or B ∼= A5 and
L ∼= L2(p) when p

2 ≡ 1 mod 5 and p ≡ ±3 mod 8.
(9) B ∼= SL2(p) and L ∼= Lε3(p) or SL

ε
3(p) for an odd prime p > 3; B ∼= A6

and L ∼= U3(5); or B ∼= Â6 and L ∼= SU3(5).
(10) B ∼= SL2(p)/Ep2 and L ∼= L3(p) or SL3(p) for an odd prime p > 3.
(11) B ∼= A6 and L ∼=M11.

(12) B ∼= A5/E16 or A6/E16 and L ∼= M22; or B ∼= A5/E16 or Â6/E16 and

L ∼= M̂22.
(13) B ∼=M22, L3(4), A7/E16, L3(2)/E16, L3(2)/E8, A6/E16, or A5/E16; and

L ∼=M23.
(14) B ∼= L4(2)/E16, L3(2)/E64, L3(2)/2

1+6, or Â6/E64; and L ∼=M24.
(15) B ∼= A5 and L ∼= J1.
(16) B ∼= A5/2

1+4 and L ∼= J2.

(17) L ∼= J4 and B ∼= M̂22/2
1+12 or M24/E211 , or B/O2(B) ∼= A5, Â6, L4(2),

or L3(2).
(18) B ∼= A5/(Z4 ∗ 21+4) or L3(2)/Z

3
4, and L

∼= HS.

(19) B ∼= L3(2)/2
1+6 or Â6/E64, and L ∼= He.

(20) B/O2(B) ∼= A5 or L3(2), with |O2(B)| = 211, and L ∼= Ru.
(21) [O(L), L] 6= 1, L = BO(L), and L/O(L) ∼= SL2(p) for an odd prime p.
(22) [O(L), L] 6= 1, L/O(L) ∼= SL2(p) for an odd prime p with p2 ≡ 1 mod 5

and p ≡ ±3 mod 8, and BO(L)/O(L) ∼= SL2(5).

Proof. Let M := 〈B, T 〉 and A := 〈BM 〉. By definition of L(G, T ), B ∈
C(M), so we conclude from A.3.8.3 that M = AT , and A is either B, or BBt for
t ∈ T −NT (B). As B E E M and T ∈ Syl2(M), TB := T ∩ B ∈ Syl2(B). Thus
[B, TB] 6≤ O∞(B) as B/O∞(B) is simple by A.3.3.1. Therefore B = [B, TB ] by
A.3.3.7.

Let H := 〈C(G)〉 and H̄ := H/O∞(H). By A.3.3.4, H̄ is the direct product of
the groups L̄, L ∈ C(G). Also B = B∞ ≤ G∞ = H by A.3.9.1. Thus there is some
L ∈ C(G) such that B̄, and hence also T̄B, projects nontrivially on L̄. Let T̄0 be
the projection of T̄B on L̄. For K ∈ C(G), K E E G, so TK := T ∩K ∈ Syl2(K)
and T ∩ H =

∏
K∈C(G) TK . Thus for t ∈ TB , t =

∏
K tK with tK ∈ TK , so t̄L is

the projection of t̄ on L̄, and hence T̄0 ≤ T̄L; therefore we can choose a preimage
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T0 of T̄0 in TL. Next B ≤ H ≤ NG(L) by A.3.3.6, so [TL, B] ≤ L. As B = [B, TB]
and T̄0 ≤ T̄L, [B̄, T̄L] contains the projection B̄L of B̄ on L̄, and hence [B̄, T̄L] is
nonsolvable. Therefore as B ∈ C(M) and TL ≤ T ≤M , B ≤ [TL, B] by A.3.3.7, so
B ≤ [TL, B] ≤ L. Further by A.3.7, L is unique, establishing the first assertion of
the proposition.

During the remainder of the proof, which determines the possible proper em-
beddings B < L, we may as well replace G by L, so that now TL = T ; that is
B ∈ C(〈B, TL〉) using A.3.3.2, so B ∈ L(L, TL).

Assume first that L is simple. Then L is one of the simple groups in Theorem
C. Furthermore B is described in A.3.6, and in particular B/O∞(B) also appears
in Theorem C.

Now overgroups of Sylow 2-groups in known simple groups are described in
results in the literature; indeed in most cases, they can be obtained from suitable
tables in our Background References:

For example, for L a group of Lie type and characteristic 2, each such over-
group contains O2′(P ) for some parabolic subgroup P , so that B ∈ C(P ). Further
parabolic subgroups are indexed by, and can be described in terms of, subdiagrams
of the Dynkin diagram, as in standard references such as [Car72].

Suppose L is an alternating group An. Then 5 ≤ n ≤ 8; and A5
∼= L2(4),

A6
∼= Sp4(2)

′, and A8
∼= L4(2) are groups of Lie type of characteristic 2, so we

may assume n = 7. Next B is a subgroup of A7 iff B has a faithful permutation
representation of degree 7, in which case B̄ has dihedral Sylow 2-groups of order 4
or 8 as Sylow 2-groups of A7 of dihedral of order 8. Finally it is easy to determine
all such representations for candidates for B with such Sylow 2-groups.

When L is sporadic we appeal to [Asc86b], which specifically describes the
overgroups of TL.

For the groups L2(p
e) with p an odd prime, Dickson’s Theorem A.1.3 describes

all subgroups. The condition p ≡ ±3 mod 8 in (8) (and then also in (9), (10), and
(22)) comes from the fact that B is TL-invariant.

Thus of the groups in Theorem C, only Lε3(p) with p an odd prime seems
not to have a convenient reference. We determine the possible embeddings of our
candidates for B in Lε3(p) in lemma A.3.21; we postpone that lemma to the end of
the section.

If L is quasisimple but not simple, then L is one of the groups described in
A.3.6.2, and the embedding of B̄ appears on the list in our lemma from the dis-
cussion above. We use the description of covering groups of L̄ in I.1.3 and I.2.2.1
(observe that M̂22 contains Â6) to lift B̄ to B, and hence complete the treatment
of the case L quasisimple. We remark that the references for overgroups which we
are quoting typically give just the maximal overgroups; but chains of embeddings
can be recovered by an inductive argument, and such chains are few and short.

Now assume instead that L is not quasisimple. Then case (3) or (4) of A.3.6
holds, so that L/O(L) ∼= SL2(p) or SL2(5). As B = B∞, B 6≤ O∞(L). If BO(L) =
L, then conclusion (21) holds, so we may assume that BO(L) < L. Then B̄ is a
proper T̄L-invariant subgroup of L̄ ∼= L2(p), so as p is prime, (8) says that B̄ ∼= A5,
p ≡ ±1 mod 5, and p ≡ ±3 mod 8. Hence case (22) holds. ¤
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The last two conclusions of A.3.12 summarize several types of proper inclusions
B < L, which we describe in more detail in the following lemma. In particular we
classify the cases where both B and L satisfy (3) or (4) of A.3.6.

Lemma A.3.13. Assume that B ∈ L(G, T ), and B < L ∈ C(G) such that L is
not quasisimple. Then L/O(L) ∼= SL2(p) for some prime p > 3; BO(L)/O(L) ∼=
SL2(r); either r = p, or r = 5 with p ≡ ±1 mod 5 and p ≡ ±3 mod 8; and one
of the following holds:

(1) B ∼= SL2(r) is quasisimple.
(2) B is not quasisimple, and either:

(i) L = BO(L), O(B) < O(L), and r = p = 5, or
(ii) L > BO(L), L ∼= SL2(p)/Ep2 with p > r = 5, and O(B) = O(L).

Proof. As L is not quasisimple, the embedding of B in L is described in case
(21) or (22) of A.3.12. Recall that B/O2(B) appears in A.3.6; In particular the
initial conclusions of the lemma hold and L appears in case (3) or (4) of A.3.6. We
may assume B is not quasisimple, so B also appears in case (3) or (4) of A.3.6.

Suppose L = BO(L). Then B/O(B) ∼= L/O(L) ∼= SL2(p), so that r = p, and
as B < L, O(B) < O(L) so O(L) is not Ep2 . Therefore L satisfies case (4) rather
than (3) of A.3.6, so that p = 5 and (2i) holds.

Therefore we may assume case (22) of A.3.12 holds. Then r = 5 < p, so L
satisfies case (3) rather than (4) of A.3.6. Thus Ep2 ∼= O(L), so O(L) = O(B), and
hence (2ii) holds. ¤

Embeddings of B in L with B/O∞(B) ∼= A5 arise frequently in our work, and
many such embeddings appear in A.3.12. Thus in the next lemma, we provide the
sublist of those embeddings for easy reference.

The definition and properties of blocks are given in section C.1 on pushing up;
in particular for the notion of L2(4)-block, see definition C.1.12.

Lemma A.3.14. Let B ∈ L(G, T ) with B/O∞(B) ∼= A5, and suppose B < L
for some L ∈ C(G). Then one of the following holds:

(1) F ∗(B) = O2(B) = O∞(B), L ∼= (S)L3(4), Sp4(4), G2(4), or
3D4(4), and

B = P∞ for some maximal parabolic P of L.
(2) B ∼= A5, L ∼= A7 or Â7, and NL(B) is the global stabilizer of 5 points in

the representation of L on 7 points.
(3) B ∼= A5; and either L ∼= L2(25), or L ∼= L2(p) for p

2 ≡ 1 mod 5 and
p ≡ ±3 mod 8.

(4) B ∼= SL2(5), L ∼= (S)Lε3(5), and B = CL(O2(B))∞.
(5) B ∼= SL2(5)/E25, L ∼= L3(5), and B = P∞ for some maximal parabolic P

of L.

(6) B ∼= A5/E16 is an L2(4)-block, and L ∼=M22 or M̂22.
(7) B ∼= A5/E16 is an L2(4)-block and L ∼=M23.
(8) B ∼= A5, L ∼= J1, and B = CL(z)

∞ for some involution z ∈ L.
(9) B ∼= A5/Q8D8, L ∼= J2, and B = CG(z) for z a 2-central involution in L.
(10) B/O2(B) ∼= A5 with F

∗(B) = O2(B) and L ∼= J4.
(11) B ∼= A5/(Z4 ∗ Q8D8), L ∼= HS, and B = CL(z)

∞ for some 2-central
involution z ∈ L.

(12) B/O2(B) ∼= A5, |O2(B)| = 211, L ∼= Ru, and B = CL(z)
∞ for some

2-central involution z ∈ L.
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(13) B/O(B) ∼= SL2(5) and L = BO(L).
(14) B/O(B) ∼= SL2(5) and L/O(L) ∼= SL2(p), p

2 ≡ 1 mod 5 and p ≡ ±3
mod 8.

Proof. This follows by extracting from A.3.12 the cases with B/O∞(B) ∼=
A5. ¤

The next result allows us to control the embedding of certain T -invariant solv-
able subgroups of G. Control of such embeddings is useful for studying the family
Ξ(H,T ) of subgroups of a QTKE-groupH determined by a Sylow 2-group T , which
is discussed in the Introduction to Volume II and has properties described in 1.3.4.
More generally, we use the result in various situations where a group of odd order
permutes with a Sylow 2-subgroup of an almost-simple SQT-group. We remark
that 3-groups are explicitly excluded in the lemma, because of their frequent oc-
currence inside parabolic subgroups (but outside the Cartan subgroup) of groups
of Lie type defined over F2, and in sporadic groups.

Lemma A.3.15. Let F ∗(G) = L be simple, and B a subgroup of G of odd order
such that BT = TB and O3(B) 6= 1. In addition assume either

(a) B is abelian, or
(b) B is an r-group for some prime r and B ≤ L.

Then one of the following holds (where p denotes a suitable odd prime):

(1) L ∼= L2(p
e), for p an odd prime and e ≤ 2, B ≤ L, B is cyclic, |B| divides

pe − ε, where ε = ±1 ≡ pe mod 4, and B is inverted in T ∩ L.
(2) L ∼= L3(p), B ≤ L, B ∼= Ep2 , and T acts irreducibly on B.

(3) L ∼= Lδ3(p), B ≤ L, B = (B ∩K)CB(K), where SL2(p) ∼= K ≤ L, B ∩K
and CB(K) are cyclic, CB(K) is a Cartan subgroup of L with order dividing p− δ
and |B ∩ K| dividing p − ε, where ε = ±1 ≡ p mod 4, and B ∩ K is inverted in
T ∩K.

(4) L ∼= J1 and B ≤ NL(T ) is of order 7.
(5) L is of Lie type over F2n , n > 1, and B ≤ FH ≤ Aut(L), where F is cyclic

of order f dividing n and induces field automorphisms on L, H is an F -invariant
Cartan subgroup of NI(T ∩ L), and I is the subgroup of FBL = HBL inducing
inner-diagonal automorphisms on L.

(6) L = 3D4(2) and either B is a Cartan subgroup D of L of order 7, or
B = D ×A where A is of order 3.

(7) L is the Tits group 2F4(2)
′ and B is of order 5.

Proof. As G is strongly quasithin, the possibilities for L are listed in Theorem
C.

First assume L is of Lie type over F2n in Theorem C. Since G is strongly
quasithin by Hypothesis A.3.4, Corollary A.2.6 says that BL is contained in the
subgroup I0 of Aut(L) generated by inner-diagonal and field automorphisms, in the
convention of Notation A.2.5 for these terms. Let FL/L and HL/L be the projec-
tions of BL/L on the field and diagonal automorphisms of Out(L), respectively:
we may choose F to induce a group of field automorphisms on L of order f dividing
n, and H to be a Cartan subgroup of NI(TL), where TL := T ∩ L, and I is the
subgroup of FHL inducing inner-diagonal automorphisms on L. By construction,
FBL = HBL. Let D := B∩ I . Then DTL = TLD, so as the only subgroups of DL
containing TL are of the form O2′(P )H0 for some parabolic P of L and H0 ≤ H ,
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either we may choose H so that D ≤ H , or P is a solvable parabolic of G distinct
from a Borel subgroup so that G is defined over F2. In the former case either (5)
holds, or the first possibility of (6) holds with B = D of order 7. By hypothesis
O3(B) 6= 1, so in the latter case, either (7) holds, or the Cartan subgroup of L is
not a 3-group, in which case L is 3D4(2) and B is of order 7 or 21, so one of the
possibilities in (6) holds.

So we may assume L is not of Lie type and characteristic 2. By 6.1 in [Asc80],
L is not an alternating group in Theorem C. If L is a sporadic group in Theorem
C, we appeal to the list of maximal overgroups of T in [Asc86b], and use induction
on the order of G (that is, appeal to smaller cases treated earlier in this result), to
see which such subgroups can have a subgroup like B permuting with T . The only
case with O3(B) 6= 1 is J1 as in (4).

If L ∼= Lδ3(p), p an odd prime, then in case (a) we appeal to 6.2.4 in [Asc80] to
conclude that (2) or (3) holds; the condition that |B ∩K| divides p− ε selects the
split or nonsplit torus of SL2(p) permuting with T . In case (b), we may assume
B is not abelian; further r > 3 as O3(B) 6= 1. But then BT 6= TB, contrary to
hypothesis. Finally if L ∼= L2(p

e), p an odd prime, e = 1 or 2, then (1) holds from
the list of subgroups of L in Dickson’s Theorem A.1.3.

This completes the proof of A.3.15. ¤

Notation A.3.16. Consider L := L3(2
6n), A := Aut(L), identify L with

Inn(L), and set A∗ := A/L = Out(L). From 2.5.12 in [GLS98], a Sylow 3-
group of A∗ is of the form 〈f∗0 〉×〈d

∗〉, where d∗ is of order 3 and induces a diagonal
automorphism on L, and f0 is a field automorphism of L of order n3 = |f∗0 |. Let

f be one of the two elements of order 3 in 〈f0〉, and write L◦3(2
6n) or L+,◦

3 (26n)
for the preimage A◦ of 〈f∗d∗〉 in A. As d∗ is inverted by a field automorphism
in A centralizing f∗, the isomorphism type of the extension is independent of the
choice of f . If there were a of order 3 in fdL, then by 4.9.1.d in [GLS98], a and f
would be conjugate in A, impossible as f∗ ∈ Z(A∗). Thus the extension is nonsplit.

Finally let σ ∈ A be a graph-field automorphism and write U◦3 (2
3n) or L−,◦3 (23n)

for the extension CA◦(σ) of CL(σ) ∼= U3(2
3n). As L◦3(2

6n) is nonsplit, so is U◦3 (2
3n).

We often (but not always) use the notation θ(H) for the following group:

Definition A.3.17. Let θ(H) denote the subgroup generated by all elements
of order 3 in H .

We use the next two results frequently; they show that in most cases, a C-
component of p-rank 2 for an odd prime p of a 2-local H contains all p-elements of
H .

Lemma A.3.18. Let H be an SQTK-group and L ∈ C(H) with L/O2(L) qua-
sisimple. Assume p is an odd prime with mp(L) > 1, and set H∗ := H/Op′(H).
Then one of the following holds:

(1) L = Op
′

(H).

(2) p = 3, L∗ ∼= Lε3(q) with q ≡ ε mod 3, and either O3′(H∗) ∼= PGLε3(q) or

q = 23m and O3′(H∗) ∼= Lε,◦3 (q).

(3) p = 3, L∗ ∼= SLε3(q), q ≡ ε mod 3, Â6, Â7, or M̂22. Further either

(a) L is the subgroup θ(H) generated by all elements of H of order 3, or

(b) L∗ ∼= SLε3(q), O
3′ (H∗) is the split extension of L∗ by x∗ of order 3

inducing a diagonal outer automorphism on L∗, CL∗(x
∗) is cyclic of order q2+εq+1,
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and each subgroup of H∗ of order 3 not contained in L∗ is conjugate to 〈x∗〉 under
L∗.

Proof. As the lemma is a statement about H∗, to simplify notation during
the proof we assume Op′(H) = 1. Thus L is quasisimple. As mp(L) > 1, L E H
by A.3.8.3. We first observe:

(*) L contains each subgroup of CH (L) of order p.

For as mp(L) > 1, there is Ep2 ∼= E ≤ L, so if X is of order p in CH (L), then X
centralizes E, so X ≤ E ≤ L as mp(H) = 2 by hypothesis.

Assume first that Z(L) = 1. Then by (*), CH (L) is a p′-group, so CH(L) ≤
Op′(H) = 1; thus L = F ∗(H) is simple and hence H ≤ Aut(L). Thus if (1)
fails, some nontrivial p-element x ∈ H induces an outer automorphism on L. In
particular p is an odd prime divisor of |Out(L)|, so from the structure of Aut(L)
for the groups L in Theorem C with mp(L) > 1, either L is of Lie type and even
characteristic, or L ∼= Lε3(q) for some odd prime q and so (2) holds. Of course we
may assume the former, so by Corollary A.2.6, x = fd, where f induces a field
automorphism on L and d induces an inner-diagonal automorphism. When f 6= 1,
we must show O3′(H) ∼= Lε,◦3 (23m), so replacing x by a suitable power we may take
f of order p; and if d is inner, replacing x by f , we may take x = f . Next by 2.5.12
in [GLS98], Outdiag(L) = 1 (the subgroup of diagonal outer automorphisms)
unless L ∼= Lε3(q) with q ≡ ε mod 3, in which case |Outdiag(L)| = 3. Recalling
the discussion in Notation A.3.16, we conclude that either L is of some Lie type
X(qp) for q a power of 2 with x inducing a field automorphism of order p on L; or

O3′(H) ∼= PGLε3(q) or Lε,◦3 (q) with q ≡ ε mod 3. Again we may assume that (2)
fails, so the former case holds. Then by 4.9.1.a in [GLS98], CL(x) ∼= X(q) with
mp(X(q)) = mp(X(qp)) > 1, contradicting mp(H) = 2.

Therefore we may assume that Z := Z(L) 6= 1. Thus as Op′ (H) = 1, Z is a
nontrivial p-group, so A.3.6 says that p = 3 and L is one of the groups listed in
(3). In this case we will show that (3) holds, so we may assume that (3a) fails with
x ∈ H − L of order 3, and it remains to show that (3b) holds.

Suppose first that x induces an inner automorphism on L. Then x = yc for
some 3-elements y ∈ L and c ∈ CH (L). As x /∈ L, c /∈ Z, so Z = Ω1(〈c〉) by (*).
Thus |c| > 3 and y ∈ L−Z. Now 1 = x3 = y3c3, so c3 = y−3 ∈ L∩CH(L) = Z and
therefore Z = 〈c3〉 as |Z| = 3. Hence |y| = |c| = 9, so that a Sylow 3-group P of L is
not of exponent 3. When |P | = 27, P ∼= 31+2 is of exponent 3, so L ∼= SLε3(q) with
|P | > 27. Now |L| = (q3−ε)q3(q2−1) with q = 3r+ε, so |L|3 = (q2+εq+1)3(q−ε)

2
3.

Also

q2 + εq + 1 = 9r2 + 9rε+ 3 ≡ 3 mod 9

so |L|3 = 3(q−ε)23. As |P | > 27, q ≡ ε mod 9. Thus if V is the natural module for L
over the field F := Fq or Fq2 for ε = 1 or −1, respectively, then F contains elements
of order 9, so y is diagonalizable on V . Indeed if ε = −1, then as q ≡ ε mod 9,
the eigenspaces for y on V are nondegenerate. So in either case, y is contained in
a maximal torus T of L of order (q − ε)2. In particular T ≤ CL(y) = CL(x) and
m3(T ) = 2, contradicting m3(H) = 2.

Therefore x induces an outer automorphism on L. From the structure of
Aut(L), this again reduces us to the case where L ∼= SLε3(q). Further x induces
a field or diagonal automorphism on L since the extension Lε,◦3 (23m) is nonsplit
from the discussion in Notation A.3.16. We eliminate the case where x induces
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a field automorphism just as we did when Z(L) = 1. Thus x induces a diagonal

automorphism, and L〈x〉 := L〈x〉/Z ∼= PGLε3(q).
Define F and the natural module V for L over F as above, and setG := GLε(V ),

ZG := Z(G), and Ĝ := G/ZG. Thus L = SLε(V ), Ĝ = L̂〈x̂〉 ∼= L̄〈x̄〉, and we can

work in Ĝ rather than in L̄〈x̄〉, which will be more convenient.
Let γ ∈ G be a Singer cycle, of order q3 − ε and α ∈ 〈γ〉 of order 3(q − ε)3;

then α ∈ G − ZGL and α3 ∈ ZG, so α̂ is of order 3 and induces a diagonal outer
automorphism on L. Let β and δ denote elements of order 3 in G such that β has
a single nontrivial eigenvalue ζ on V and δ has eigenvalues 1, ζ, ζ−1. Observe that

δ ∈ L; while β̂ ∈ L̂ iff β ∈ ZGL iff q ≡ ε mod 9. Thus β induces a diagonal outer
automorphism on L iff q 6≡ ε mod 9.

We claim there are one or two orbits of L̂ with representatives α̂ or α̂, β̂, for

q ≡ ε mod 9 or q 6≡ ε mod 9, respectively. By the previous paragraph, α̂L̂ is an

orbit of L̂ on the set X of elements of order 3 in the coset L̂x̂, and β̂L̂ ⊆ X iff q 6≡ ε
mod 9.

Let TG be a maximal torus of G of order (q − ε)3, and X := Ω1(O3(TG)). The

Weyl group of TG has two orbits on subgroups of order 3 in X̂ with representatives

〈β̂〉 and 〈δ̂〉, so by the previous paragraph, the set X2 of members of X fused into

T̂G is nonempty iff q 6≡ ε mod 9, in which case X2 = β̂L̂.
Observe that 1 6= ĝ ∈ Ĝ is of order 3 iff g3 ∈ ZG, and we may take g to be a 3-

element. Let Yi for i = 1, 2 consist of those ĝ such that |g| = 3(q−ε)3, |g| ≤ (q−ε)3,
respectively. Observe that Y1 ∪Y2 is an L-invariant partition of the set of elements

in Ĝ of order 3, α̂ ∈ Y1, and β̂ ∈ Y2. Thus by the previous paragraph, to complete
the proof of the claim it suffices to show that Y2 consists of those elements of order
3 fused into T̂G, and Y1 is the set of elements conjugate to either α̂ or α̂−1.

Let ĝ ∈ Y2. Then g3 = z3 for some 3-element z ∈ ZG, so that gz−1 has order
3 in GLε3(q) = G, and hence lies in X . On the other hand let ĝ ∈ Y1. Then 〈g〉 is
irreducible on V , with E := EndF 〈g〉(V ) a cubic extension of F , so CL(g) = E ∩L
is cyclic of order q2 + εq + 1. Then as L is transitive on E-structures on V , ĝ is
conjugate to α̂, completing the proof of the claim.

We observe next that we may take x̂ = α̂: For by the claim, the only other

possibility is that q 6≡ ε mod 9 and x̂ = β̂. Then CL̂(x̂)
∞ = CL̂(β̂)

∞ ∼= SL2(q), so
CL(x)

∞ ∼= SL2(q) contains an element of order 3 not in Z. But nowm3(CL(x)) > 1,
contradicting m3(H) = 2.

Next we show that CH(L) = Z. Let Q be an x-invariant Sylow 3-subgroup of
CH(L). It suffices to show that Q = Z, for then CH (L) = Z × O3′(CH(L)) = Z
since O3′(H) = 1. So assume that Q > Z. By (*), Q is cyclic. Thus if q ≡ ε
mod 9, then there is y of order 9 in L with y3 ∈ Z, so 〈y,Q〉 contains an element
of order 3 not in L inducing an inner automorphism on L, contrary to an earlier

reduction. Therefore q 6≡ ε mod 9, so there is u ∈ xL with û = β̂, and hence by an
argument in the previous paragraph, Z is the unique subgroup of order 3 in 〈u,Q〉.
But this is impossible, as 〈u,Q〉 is not cyclic since u3 ∈ L.

To complete the proof that (3b) holds, it remains to show that L〈x〉 = O3′(H).

By the previous paragraph L = O3′(LCH (L)), so if L〈x〉 < O3′(H) then some 3-
element h ∈ H induces a field automorphism of order 3 on L. Let J := NL〈x〉(〈h〉Z).

Then J̄ ∼= PGLε3(q
1/3). As O3(J) centralizes h and is of 3-rank 2, h has order 9

and Z = 〈h3〉. But applying the arguments above to J in the role of L〈x〉, there



54 A. ELEMENTARY GROUP THEORY AND THE KNOWN QUASITHIN GROUPS

is j of order 9 in J with Z = 〈j3〉; so as 〈h, j〉 is noncyclic, there is k of order 3 in
〈h, j〉 − L inducing a field automorphism on L, again a case already eliminated.

Thus (3b) holds, and the proof of the lemma is complete. ¤

However before we end this analysis, observe that:

Lemma A.3.19. Assume H is an SQTK-group, L ∈ C(H) with L/O2(L) ∼=
SL3(2

n), n even, and V is a normal elementary abelian 2-subgroup of H such that

V is the sum of s ≤ 2 isomorphic natural modules for L/O2(L). Then L = O3′ (H).

Proof. Assume the lemma fails, let H∗ := H/O3′(H), H̄ := H/O2(H), Z̄ :=
Z(L̄), as in Definition A.3.17 write θ(Y ) for the subgroup of Y generated by all
elements of Y of order 3. As Z̄ 6= 1, conclusion (3) of A.3.18 holds. Let J be the

set of subgroups K of H containing L such that |K : L| = 3. As L < O3′(H), J
is nonempty. Pick K ∈ J . As m3(H̄) = 2, Z̄ = θ(CK̄(L̄), so as V E H and L̄ is
faithful on V , K̄ is faithful on V . Indeed L has 1 or 2n + 1 irreducibles on V for
s := 1 or 2, respectively, and as n is even, (3, 2n + 1) = 1, so K̄ acts faithfully on
some irreducible I for L in V .

Continue the notation established during the proof of A.3.18. Using that dis-
cussion, we will establish the claims that:

(i) Z(L∗) = CH∗(L
∗).

(ii) K̄/Z̄ ∼= PGL3(2
n).

(iii) K̄ splits over L̄, 2n 6≡ 1 mod 9, and β ∈ K̄.

First assume that K̄ induces inner automorphisms on L̄. Then Z < Z(K̄), so as
Z(K̄) is faithful on I , 2n ≡ 1 mod 9. Then an argument in the proof of A.3.18
shows that m3(K̄) > 2, a contradiction. This establishes claim (i), and shows that
F ∗(K̄) = L̄.

If x ∈ K − L induces a field automorphism of L̄, then x has order 3, whereas
there is no such element in the two cases in conclusion (3) of A.3.18. Thus K̄/Z̄ ∼=
PGL3(2

n) or L◦3(2
n).

Assume the latter case holds. Then n = 6m for suitable m. Let q := 4m, ξ ∈ F
of order (q3 − 1)3, and Y the stabilizer in G := GL(I) of the three points Fvi,
1 ≤ i ≤ 3 determined by a basis {v1, v2, v3} of I . Let h, k, z ∈ Y have eigenvalues
(ξ, ξ, 1), (ξ, ξ−1, 1), (ξ, ξ, ξ) with eigenvectors v1, v2, v3, respectively. Let f be a field
automorphism of order 3 fixing the eigenvectors; then for j ∈ Y , jf = jq = jj0,
where j30 = 1 and f centralizes j0. Further

L̄ZG ∩ Y = 〈h3, k, z〉,

so we may take x̄ ∈ fh〈h3, k, z〉. Thus x̄ = fi, i := h1+3akbzc, and if = ii0, so

x̄3 = f3if
2

if i = i3i30 = i3.

Therefore as x̄3 ∈ L̄, i3 ∈ L̄ ∩ Y = 〈k, h3z−2〉, which is visibly not the case. This
establishes claim (ii).

From claim (ii) and the proof of A.3.18 there is a 3-element k̄ ∈ K̄ whose image
in K̄/Z̄ lies in Y1; that is, |k̄| = 3(2n − 1)3 and k̄3 ∈ Z(GL(I)). As |Z(GL(V ))| =
2n − 1, 〈k̄3〉 = O3(Z(GL(I))), so as Z̄ = O3(Z(GL(I))) ∩ K̄, 2n 6≡ 1 mod 9. Thus
from the proof of A.3.18, β ∈ K̄ − L̄ has order 3, and so K̄ splits over L̄. Thus (iii)
is established.
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By (ii), K̄/Z̄ ∼= PGL3(2
n), and by (iii), K̄ > L̄ is split, so conclusion (3b) of

A.3.18 holds. This is a contradiction as β ∈ K̄ by (iii), which is explicitly excluded
in (3b). This contradiction completes the proof. ¤

Lemma A.3.20. Let H be an SQTK-group and L ∈ C(H) with L E H and
m3(L) ≥ 1. Then

(1) m3(CH (L/O∞(L))) ≤ 1.
(2) If m3(L) = 2, then CH (L/O∞(L)) has no S3-section.

Proof. Set C := CH (L/O∞(L)) and H̄ := H/O2(H). As L ∈ C(H), L̄ is
described in A.3.6, and in all cases where m3(L) ≥ 1, there is a subgroup X of
order 3 in L−O∞(L). In particular X̄ 6≤ L̄ ∩ C̄ = Z(L̄), so since H is an SQTK-
group, we conclude m3(C) ≤ 1, establishing (1). Now assume that m3(L) = 2, and
(2) fails. Then a 2-element t̄ ∈ C̄ inverts a 3-element ȳ of C̄, and hence inverts
Ȳ := Ω1(〈ȳ〉). Thus Ȳ 6≤ L̄, so as m3(L) = 2, m3(Y L) > 2, contradicting H an
SQTK-group. This contradiction completes the proof. ¤

Recall that to complete the proof of A.3.12, we needed certain information
about the subgroup structure of Lε3(p) for p an odd prime, which we promised to
provide at the end of this section. The final result of the section supplies that
information:

Lemma A.3.21. Assume L is quasisimple with L/Z(L) ∼= Lε3(p) for p an odd
prime, T ∈ Syl2(L), and B ∈ L(L, T ) with B < L. Then B is described in case
(9) or (10) of A.3.12.

Proof. The result can be retrieved from Mitchell [Mit11], but to keep our
treatment self-contained, we supply our own proof, omitting some of the elmentary
details.

Set L∗ := L/Z(L). By I.1.3, either L is simple, or Z(L) is of order 3 and
L ∼= SLε3(p). Let F := Fp or Fp2 , for ε = +1 or −1, respectively. We assume
L = SLε(V ) for some 3-dimensional F -space; the result for the projective group
follows immediately from this case. As B ∈ L(L, TL), T acts on B, so TB :=
T ∩ B ∈ Syl2(B), and B/O2(B) is described in A.3.6, so in particular B/O∞(B)
appears in Theorem C.

We appeal to the following properties of SLε(V ):

(a) L has one conjugacy class zL of involutions, and Lz := Op
′

(CL(z)) ∼=
SL2(p), with CL(z)

∞ ≤ Lz.
(b) T is semidihedral or wreathed, so m2(T ) = 2.
(c) If q 6= p is an odd prime and Q is a q-subgroup of L, then either Q is abelian

with AutL(Q) ≤ S3; or q = 3, p ≡ ε mod 3, and AutL(Q) is solvable.

Let R := O2(BT ) and let z be an involution in Z(T ). By (b), Z(T ) is cyclic, so
as T acts on B, z ∈ B, and if R 6= 1, then z ∈ E := Ω1(Z(R)) and m2(E) ≤ 2.
Suppose R 6= 1. As m2(E) ≤ 2, B centralizes E. Thus B ≤ CL(z)

∞, so B ≤ Lz
by (a), and B ∈ L(LzT, T ). Then applying A.3.12 to the embedding of B in Lz,
either conclusion (9) of A.3.12 holds as required, or p > 5 and B ∼= SL2(5). The
latter is impossible as TLz/O2(TLz) ∼= PGL2(p), so T acts on no A5-subgroup of
Lz/〈z〉.

Thus we may assume R = 1, so T is faithful on B and B is described in A.3.6.
Assume B is not quasisimple; then by A.3.6, B/O(B) ∼= SL2(r) for some odd
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prime r. Then as z ∈ B, B = O(B)Bz , where Bz := CB(z)
∞. By the previous

paragraph, Bz = Lz. By A.3.6, O(B) is nilpotent and Bz is faithful on Oq(B) for
each q ∈ π(O(B)). Therefore O(B) is a p-group by (c). Then O(B) ∼= Ep2 by
A.3.6, so conclusion (10) of A.3.12 holds in this case, as required.

Therefore we may assume B is quasisimple. As TB is a subgroup of a semidi-
hedral or wreathed 2-group, and as TB is Sylow in the group B/Z(B) appearing in
Theorem C, we conclude TB is dihedral, semidihedral, or wreathed, and B/Z(B) is
A7, M11, L2(q

e), or Lµ3 (q) for some odd prime q and e ≤ 2. As T is faithful on B
and semidihedral or wreathed, B/Z(B) is not A7 or L2(q). As M11 has Frobenius
subgroups of order 55 and 20, B/Z(B) is not M11 by (c).

Suppose B/Z(B) is Lµ3 (q). Applying (c) to the prime q, either q = p, or
q = 3 with p ≡ ε mod 3. In the first case B = L, contrary to the hypotheses of
the lemma. In the second there is 31+2 ∼= Q ≤ B, and as Q is faithful on V of
dimension 3, a generator of Z(Q) induces scalar action on V . This is impossible as
Z(Q) 6≤ Z(B).

Therefore B/Z(B) ∼= L2(q
2). Applying (c) to the prime q, either q = p, or

q = 3 and p ≡ ε mod 3. In the first case, (q4 − 1)/2 divides |B| but not |L|, so
the second case holds. As T is semidihedral or wreathed and acts faithfully on B,
we conclude that T is semidihedral of order 16 and BT ∼= M10. Therefore BT
has a Frobenius subgroup of order 20, so p = 5 by (c). Then as 5 ≡ ε mod 3,
L ∼= SU3(5) and Z(L) is of order 3. As m3(L) = 2, BZ(L) does not split over

Z(L), so Z(L) = Z(B) and B ∼= Â6. Therefore conclusion (9) of A.3.12 holds, as
required.

This completes the proof of A.3.21, and hence also of A.3.12. ¤

A.4. Signalizers for groups with X = O2(X)

Recall that the families L(H,T ) and Ξ(H,T ) of subgroups of a QTKE-groupH
determined by a Sylow 2-subgroup T of H , defined in chapter 1, play a central role
in our analysis of QTKE-groups. If X is a member of either of these families, then
X = O2(X) is subnormal in 〈X,T 〉, F ∗(X) = O2(X), and all noncentral 2-chief
factors of X are contained in O2(X). In this section, we investigate subgroups of a
finite group sharing some of these properties, and then apply our results in other
sections to QTKE-groups.

The first lemma consists of some fairly elementary properties of 2-signalizers for
a subgroup X—that is, 2-groups invariant under X . The characterization A.4.2.4
of maximal signalizers is one that we use frequently throughout the work.

We mention also that the proof of most of the results goes through with 2
replaced by any prime p, but we have no need for the results for odd primes.

In this section G is just a finite group; that is, we don’t require G to be
quasithin.

Definition A.4.1. Recall that IM (X, 2) denotes the set of 2-subgroups of M
invariant under X ; and I∗M (X, 2) denotes the maximal members of that set.

In the literature the members of IM (X, 2) are often called 2-signalizers for X
in M . (This relaxes the original definition of Thompson, which would require that
the invariant subgroups intersect X trivially).

Lemma A.4.2. Assume X = O2(X)E E M ≤ G and let R be a 2-subgroup of
M . Then
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(1) R ∈ IM (X, 2) iff [X,R] ≤ R.
(2) If RX = XR, then X = O2(XR), so X E XR.
(3) If R ∈ IM (X, 2), then [X,R] ≤ O2(X).
(4) I∗M (X, 2) = Syl2(CM (X/O2(X))).
(5) If T ∈ Syl2(NM (X)), then O2(XT ) ∈ I∗M (X, 2).
(6) Assume R ∈ I∗M (X, 2). If |NG(R) : NM (R)| is odd, then R = O2(NG(R)),

and if NG(R) ≤M , then R ∈ I∗G(X, 2).
(7) Assume X E M , T ∈ Syl2(M), R := O2(XT ), and NG(R) ≤ M . Then

R ∈ Syl2(CG(X/O2(X))) ⊆ I∗G(X, 2), R ∈ I∗M (X, 2) = Syl2(CM (X/O2(X)),
R = O2(NG(R)), and R ∈ Syl2(〈RM 〉).

Proof. First R ∈ IM (X, 2) iff X ≤ NM (R) iff [X,R] ≤ R, so (1) holds.
Assume RX = XR. As X E E M by hypothesis, there is a series

X = X0 E · · · E Xn = RX.

We showX = O2(Xi) by induction on i; the assertion holds at i = 0 by the hypothe-
sisX = O2(X). Suppose the assertion holds at i−1; thenX = O2(Xi−1) char Xi−1

soX E Xi. But X ≤ Xi ≤ XR, so by the Dedekind Modular Law, Xi = X(Xi∩R).
As Xi ∩ R is a 2-group, O2(Xi) ≤ X ; then X = O2(Xi) using the hypothesis
X = O2(X). So (2) holds.

Let R ∈ IM (X, 2). In general [X,R]/〈X,R〉, and 〈X,R〉 = XR by hypothesis.
By (2), [X,R] ≤ X , so [X,R] E X . Further by (1), [X,R] is a 2-group, so
[X,R] ≤ O2(X). That is, (3) holds.

Let R ∈ I∗M (X, 2). By (3), R ≤M0 := CM (X/O2(X)), so R ≤ S ∈ Syl2(M0).
As S ≤ M0, [X,S] ≤ O2(X), while O2(X) ≤ M0, so O2(X) ≤ S by A.1.6. Hence
[S,X ] ≤ S, so S ∈ IM (X, 2) by (1). Therefore R = S by maximality of R, so
I∗M (X, 2) ⊆ Syl2(M0). On the other hand if S1 ∈ Syl2(M0), then we’ve seen
S1 ∈ IM (X, 2), so S1 ≤ R1 ∈ I∗M (X, 2) ⊆ Syl2(M0), and hence S1 = R1 as
R1 ≤M0. This proves the opposite inclusion, establishing (4).

Assume the hypotheses of (5). As T ∈ Syl2(NM (X)), TC := T ∩ M0 ∈
Syl2(M0), so TC ∈ I∗M (X, 2) by (4). In particular TC E XTC , so as TC E T ,
we have TC ≤ O2(XT ). Conversely O2(XT ) ∈ IM (X, 2), so O2(XT ) = TC by
maximality of TC , establishing (5).

Next let R ∈ I∗M (X, 2). Then X ≤ NG(R) ≤ NG(O2(NG(R))), and so
RO2(NG(R)) ∈ IG(X, 2). Now if |NG(R) : NM (R)| is odd then O2(NG(R)) ≤M ,
so RO2(NG(R)) ∈ IM (X, 2) and thus O2(NG(R)) ≤ R by maximality of R—giving
the first assertion of (6). Similarly if NG(R) ≤ M and R ≤ S ∈ I∗G(X, 2) then
NS(R) ∈ IM (X, 2), so R = NS(R) by maximality of R, and hence R = S by
standard properties of nilpotent groups. This establishes the second assertion of
(6).

Finally assume the hypotheses of (7). By (4) and (5), R ∈ I∗M (X, 2) =
Syl2(M0), and then by (6), R = O2(NG(R)) and R ∈ I∗G(X, 2). Then R ∈
Syl2(CG(X/O2(X))) by (4) applied to NG(X) in the role of “M”. As X E M ,

also M0 E M , so 〈RM 〉 = O2′ (M0) and in particular R ∈ Syl2(〈RM 〉), the final
assertion of (7).

This completes the proof of A.4.2. ¤

Lemma A.4.3. Assume X = O2(X) E E M ≤ G, and let Y ≤ M with
Y = (X ∩ Y )O2(Y ) and X = (Y ∩X)O2(X). Then

(1) IM (Y, 2) ⊆ CM (X/O2(X)) and Y ≤ NM (X).
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(2) I∗M (Y, 2) ⊆ I∗M (X, 2).

Proof. Let B ∈ IM (Y, 2) and set Y+ := Y ∩ X . Now O2(X) ≤ O2(M) as
X E E M , and C := 〈O2(X), B〉 is a 2-group. Both O2(X) and B are invariant
under Y+ = Y ∩ X , and C is O2(X)-invariant as O2(X) ≤ C. Thus as X =
Y+O2(X), C ∈ IM (X, 2). Now B ≤ C, and by A.4.2.3, C ≤M0 := CM (X/O2(X)),
giving the first assertion of (1). Specializing to the case B := O2(Y ), we conclude
O2(Y ) normalizes X , so Y = Y+O2(Y ) ≤ NM (X), completing the proof of (1).

If B ∈ I∗M (Y, 2) then B ≤ S ∈ Syl2(M0) by (1). Also by (1) both B and Y nor-
malize O2(X), so that O2(X)B ∈ IM (Y, 2), and hence O2(X) ≤ B by maximality
of B. Next

[Y+, S] ≤ [X,S] ≤ O2(X) ≤ B ≤ S,

so Y+ ≤ NM (S). By maximality of B, O2(Y ) ≤ B, so that O2(Y ) ≤ S. Then the
hypothesis Y = Y+O2(Y ) gives S ∈ IM (Y, 2), which forces S = B by maximality
of B. Thus (2) holds, as S ∈ I∗M (X, 2) by A.4.2.4. ¤

The next result will be applied in conjunction with A.4.3 in various pushing up
arguments; cf. section 4.1 for example.

Recall C(A,B) from Definition C.1.5, and that M denotes the set of maximal
2-locals of G.

Lemma A.4.4. Let H,K ≤ G, set H∗ := H/O2(H), define Θ(H∗) as in G.8.9,
and suppose O2(H) ≤ X ≤ H ∩K such that either

(a) X∗ ∈ Θ(H∗), or
(b) X∗ is subnormal in F ∗(H∗), and contains each element of prime order in

CF∗(H∗)(X
∗).

Then

(1) O2(H) = O2(H ∩K).
(2) If H ∈M, then C(K,O2(H ∩K)) ≤ H ∩K.
(3) If H,K ∈M and O2,F∗(K) ≤ H, then H = K.

Proof. Set L := H ∩ K and Q := O2(H ∩ K). By hypothesis X ≤ L and
O2(H) ≤ K, so O2(H) ≤ Q. In (a), X∗ E E F ∗(H∗) by definition of Θ(H∗)
in G.8.9, and in (b) this holds by hypothesis. Thus X∗ = O2(X∗) E E H∗, so
O2(X

∗) = 1, and hence X∗ centralizes each member of IH∗(X
∗, 2) by A.4.2.3, so

[Q∗, X∗] = 1. Then in (a), G.8.9.2 says Q∗ = 1, while in (b), Q∗ = 1 by G.8.9.1.
Thus in either case (1) holds.

Assume the hypothesis of (3). Then using symmetry between H and K, we
apply (1) to get O2(K) = Q = O2(H). Then as H,K ∈ M, (3) holds. Finally if
H ∈ M, then H = NG(C) for each nontrivial normal 2-subgroup C of H , so as
Q = O2(H) by (1), C(G,Q) = H , establishing (2). ¤

As in the Introduction to Volume II:

Definition A.4.5. We define X to be the set of non-trivial subgroups Y =
O2(Y ) of G such that F ∗(Y ) = O2(Y ).

The bulk of the analysis in the proof of the Main Theorem consists of analyzing
nontrivial internal F2-modules for such subgroups, so we develop some notation to
discuss some of these modules.
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Definition A.4.6. For Y ∈ X and R ∈ ING(Y )(Y, 2), define

V (Y,R) := [Ω1(Z(R)), Y ].

Some basic properties are immediate from the definitions: by hypothesis both
Y and R are normal in Y R, so

V (Y,R) ≤ Y ∩ Ω1(Z(R)).

As Y = O2(Y ), Coprime Action says

V (Y,R) = [V (Y,R), Y ]. (∗)

As O2(Y ) ∈ ING(Y )(Y, 2), we can define

Definition A.4.7.
V (Y ) := V (Y,O2(Y )).

In our applications, Y/O2(Y ) usually acts faithfully on V (Y ) if V (Y ) 6= 1, so we
write Xf for the set of all Y ∈ X such that V (Y ) 6= 1; that is, the subscript f
stands for “faithful”.

The next lemma does not actually make any direct use of the hypothesis that
F ∗(X) = O2(X)—it is just that we chose to define V (Y,R) only for Y ∈ X , rather
than under the less restrictive hypothesis Y = O2(Y ).

The lemma supplies criteria for X to act nontrivially on abelian 2-groups; its
corollary A.4.9 will often be used to show that suitable members of X are in Xf .

Lemma A.4.8. Let X ∈ X , with X E E M ≤ G. Assume R,S ∈ IM (X, 2)
with V (X,S) ≤ R ≤ S ≥ O2(X), and set X∗S∗ := XS/CXS(V (X)). Then

(1) O2(X) centralizes V (X), and R∗ centralizes X∗.
(2) If all noncentral 2-chief factors of X are in O2(X), then O2(X

∗) ≤ Z(X∗);
and if all 2-chief factors are in O2(X), then O2(X

∗) = 1.
(3) V (X,S) = [CV (X,R)(S), X ].
(4) V (X,S) = [CV (X)(S), X ].
(5) V (X,S) 6= 1 iff V (X) 6= 1.

Proof. As X E E M , A.4.2.3 says [X,R] ≤ O2(X) ≥ [X,S] and hence
R,S ≤ NM (X), so that V (X,R) and V (X,S) are indeed defined. By definition,
V (X) ≤ Z(O2(X)), so O2(X) ≤ CX(V (X)). As [X,R] ≤ O2(X) ≤ CXR(V (X)),
[X∗, R∗] = 1, completing the proof of (1).

Under the hypothesis of (2), the noncentral 2-chief factors of X∗ are in O2(X)∗,
while by (1), O2(X)∗ = 1. Thus O2(X

∗) ≤ Z(X∗) by Coprime Action as X∗ =
O2(X∗). Similarly the second statement of (2) holds.

By hypothesis, V (X,S) ≤ R ≤ S, so V (X,S) ≤ Z(S)∩R ≤ Z(R). Then using
(*) above

V (X,S) = [V (X,S), X ] ≤ [Ω1(Z(R)), X ] = V (X,R).

Then as V (X,S) ≤ Z(S), (*) says

V (X,S) = [V (X,S), X ] ≤ [CV (X,R)(S), X ].

By hypothesis R ≤ S, so CV (X,R)(S) ≤ Z(S), and hence [CV (X,R)(S), X ] ≤
V (X,S), so that (3) holds.

Next V (X,S) = [V (X,S), X ] ≤ [X,S] ≤ O2(X) ≤ S, so we can apply (3) to
O2(X) in the role of R, to conclude (4) holds. By (1), X∗ centralizes S∗, so by the
Thompson A× B-Lemma, 1 6= [V (X), X ] iff 1 6= [CV (X)(S), X ]. Then (4) and (*)
imply (5). ¤



60 A. ELEMENTARY GROUP THEORY AND THE KNOWN QUASITHIN GROUPS

Lemma A.4.9. Assume that X ∈ X is subnormal in some finite groupM . Then
[Ω1(Z(O2(M))), X ] 6= 1 iff [Ω1(Z(O2(X))), X ] 6= 1.

Proof. Apply A.4.8.5 with S = R = O2(M). ¤

We use the next result in 1.2.9 and 1.3.9 to control chains of inclusions in
L(H,T ) ∪ Ξ(H,T ) in a QTKE-group H .

Lemma A.4.10. Let X ≤ Y ≤ G with X,Y ∈ X . Assume T normalizes Y and
T ∈ Syl2(Y T ), with O2(Y T ) ≤ NT (X) ∈ Syl2(NY T (X)). Then

(1) CT (X/O2(X)) := S ∈ I∗NY T (X)(X, 2).

(2) V (X,S) ≤ V (Y,O2(Y T )).
(3) If X ∈ Xf , then Y ∈ Xf .

Proof. As NT (X) ∈ Syl2(NY T (X)), S := NT (X) ∩ CG(X/O2(X)) is Sylow
in CY T (X/O2(X)) = CNY T (X)(X/O2(X)). Then we apply A.4.2.4 with NY T (X)
in the role of M to obtain S ∈ I∗NY T (X)(X, 2). Thus (1) holds.

By hypothesis SX ≤ NY T (X) normalizes O2(Y T ), and of course X normalizes
S by definition of CG(X/O2(X)), so O2(Y T )S ∈ INY T (X)(X, 2); thus O2(Y T ) ≤ S
by (1). As Y ∈ X , F ∗(Y T ) = O2(Y T ), so Z(S) ≤ CY T (O2(Y T )) ≤ Z(O2(Y T )).
Then using (*),

V (X,S) = [V (X,S), X ] ≤ [Ω1(Z(O2(Y T ))), Y ] = V (Y,O2(Y T )),

establishing (2). Further as V (Y,O2(Y T )) ≤ V (Y ) by A.4.8.4, also V (X,S) ≤
V (Y ). Finally if X ∈ Xf , then V (X) 6= 1. By (1), S contains O2(X), and it
contains V (X,S) by definition. Now we apply A.4.8.5 (again with NY T (X) in the
role of M) to conclude V (X,S) 6= 1. Then as V (X,S) ≤ V (Y ), V (Y ) 6= 1, so
Y ∈ Xf . This establishes (3). ¤

Our final lemma will be used in 1.2.10 to get a criterion for a faithful, 2-reduced
action.

We recall Definition B.2.11: A normal elementary abelian 2-group V of M is
2-reduced if O2(M/CM (V )) = 1, R2(M) denotes the set of 2-reduced subgroups
of M , and R2(M) = 〈R2(M)〉. In fact R2(M) is the unique maximal member of
R2(M) by B.2.12.

Lemma A.4.11. Let F ∗(M) = O2(M). Suppose X = O2(X) E E M , and all
non-central 2-chief factors of X lie in O2(X). Then the following are equivalent:

(1) X ∈ Xf .
(2) There exists V ∈ R2(M) with [V,X ] 6= 1.
(3) [R2(M), X ] 6= 1.

Proof. We will see that the hypothesis on the 2-chief factors of X is needed
only for the proof that (1) implies (2).

By B.2.12, (2) and (3) are equivalent.
By hypothesis X = O2(X), X E E M , and F ∗(M) = O2(M). Thus (cf.

1.1.3.1) F ∗(X) = O2(X)—so in particular, X ∈ X .
We first show that (2) implies (1): Assume (2), and set M̄ := M/CM (V ). As

X E E M , O2(X) ≤ O2(M), while O2(M̄) = 1 as V is 2-reduced. Then O2(X) ≤
CM (V ), so if we set S := O2(X)V then V ≤ Ω1(Z(S)) and S ∈ IM (X, 2), so
[V,X ] ≤ V (X,S). By hypothesis, 1 6= [V,X ], so as [V,X ] ≤ V (X,S), V (X,S) 6= 1.
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We have the hypotheses of A.4.8 with R = S. Therefore A.4.8 says V (X) 6= 1, so
X ∈ Xf . This completes the proof that (2) implies (1).

Conversely assume (1); that is, V (X) 6= 1. Set R := O2(M) and U :=
Ω1(Z(R)). Applying A.4.9, we conclude that [U,X ] 6= 1. Thus U is a member
of the set V of subgroups 1 6= V E M with V ≤ U and [V,X ] 6= 1. Choose V
minimal in V and set M̄ =M/CM (V ). Now

O2(X) ≤ R ≤ CM (U) ≤ CM (V ).

We apply A.4.2 to 1 6= X̄ = O2(X̄) which is subnormal in M̄ , and conclude from
A.4.2.3 that O2(M̄) centralizes X̄/O2(X̄). Then we invoke Coprime Action and
our hypothesis that all noncentral 2-chief factors of X lie in O2(X), to guarantee
that O2(X̄) ≤ Z(X̄). Then X̄ centralizes O2(M̄)/O2(X̄) and O2(X̄), so again by
Coprime Action, X̄ centralizes O2(M̄). Then by the Thompson A×B-Lemma, X̄
is faithful on CV (O2(M̄)) 6= 1, so by minimality of V , V = CV (O2(M̄)). Therefore
O2(M̄) = 1. This shows that (1) implies (2), completing the proof of the lemma. ¤

A.5. An ordering on M(T )

In chapter 15 of the proof of the Main Theorem, the uniqueness theorems from
chapter 1 are unavailable, since the set Lf (G, T ) is empty. In results such as A.5.7
and A.5.10.3 of this section, we provide some alternative uniqueness theorems, based
instead on a certain partial order on the set M(T ) of maximal 2-local subgroups
of G containing T ∈ Syl2(G).

We recall the definition of H(T ) from the Introduction to Volume II.
In this section we assume G is a simple group of even characteristic, T ∈

Syl2(G), and Z := Ω1(Z(T )).

Notation A.5.1. The results of this section are applied only in the final chapter
15, and in section 14.1 which provides preliminary analysis for that chapter. We
now define a notation V (H), which will be used only for this section and for those
applications; thus for all other parts of our proof, V (H) has the meaning given
earlier in definition A.4.7. However in this section, for H ∈ H(T ), we set

V (H) := 〈ZH〉;

and set H̄ := H/CH(V (H)).

As G is of even characteristic and T ∈ Syl2(G), B.2.14 says that V (H) is a
normal elementary abelian 2-subgroup of H , and O2(H̄) = 1.

Definition A.5.2. Define a relation
<
∼ on H(T ) by H1

<
∼ H2 iff

H1 = (H1 ∩H2)CH1 (V (H1)). (∗)

Observe in particular that
<
∼ is reflexive, and indeed extends ordinary inclusion:

that is, if H1 ≤ H2 then H1
<
∼ H2. Write Hv(T ) for the subset of those H ∈ H(T )

such that H = NG(V (H)). For example, M(T ) ⊆ Hv(T ).

Lemma A.5.3. Assume H1, H2 ∈ H(T ) with H1
<
∼ H2. Then

(1) V (H1) ≤ V (H2).
(2) CH2(V (H2)) ≤ CH2 (V (H1)).
(3) If H1 ∈ Hv(T ), then CH2(V (H2)) ≤ CH1(V (H1)).
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Proof. As H1
<
∼ H2, by the definition (*)

V (H1) = 〈Z
H1〉 = 〈ZH1∩H2〉 ≤ 〈ZH2〉 = V (H2),

so that CH2(V (H2)) ≤ CH2(V (H1)). Also if H1 ∈ Hv(T ), then H1 = NG(V (H1)),
so CH2(V (H1)) ≤ CH1(V (H1)). ¤

Lemma A.5.4. Assume H1, H2 ∈ Hv(T ). Then the following are equivalent:

(1) H1 = H2.
(2) V (H1) = V (H2).

(3) H1
<
∼ H2 and H2

<
∼ H1.

Proof. Trivially, (1) implies (2) and (3). As Hi ∈ Hv(T ), Hi = NG(V (Hi)),
so (2) implies (1). Finally by A.5.3.1, (3) implies (2). ¤

Lemma A.5.5.
<
∼ is a partial order on Hv(T ), and hence also on M(T ).

Proof. Trivially
<
∼ is reflexive. By A.5.4,

<
∼ is antisymmetric. Suppose H1

<
∼

H2
<
∼ H3. Then H2 = (H2 ∩ H3)CH2(V (H2)), and by A.5.3.3, CH2(V (H2)) ≤

CH1(V (H1)), so H2 ≤ (H2 ∩ H3)CH1∩H2(V (H1)). Therefore using the Dedekind
Modular Law,

H1 ∩H2 ≤ H1 ∩ ((H2 ∩H3)CH1∩H2(V (H1))) = (H1 ∩H2 ∩H3)CH1∩H2(V (H1))

≤ (H1 ∩H3)CH1 (V (H1)).

Then using (*),

H1 = (H1 ∩H2)CH1(V (H1)) = (H1 ∩H3)CH1 (V (H1)),

and therefore
<
∼ is transitive. ¤

Lemma A.5.6. Assume H ∈ H(T ) and M ∈ M(T ) with H
<
∼ M . Suppose

there is V satisfying
1 6= V = 〈(V ∩ Z)H∩M 〉 E M.

Then H ≤M .

Proof. As M ∈ M and V E M , M = NG(V ). Also

V = 〈(V ∩ Z)H∩M 〉 ≤ 〈ZH〉 = V (H),

while as H
<
∼M , H = (H ∩M)CH(V (H)), so

V = 〈(V ∩ Z)H∩M 〉 = 〈(V ∩ Z)H〉 E H,

and hence H ≤ NG(V ) =M . ¤

Lemma A.5.7. Let M ∈M(T ) be maximal in M(T ) with respect to
<
∼. Then

(1) M = !M(X) for each X ≤ H(T ) ∩M with M = XCM (V (M)).
(2) Assume either

(a) V = V (M), or
(b) V = 〈(Z∩V )M 〉 and M is the unique maximal member ofM(T ) under

<
∼.

Let R := CT (V ). Then we have R = F ∗(NM (R)), V ∈ R2(NM (R)), AutM (V ) =
AutNM (R)(V ), and M = !M(NM (R)).

(3) H ∈ H(T ) is maximal in Hv(T ) with respect to
<
∼ iff H ∈ M(T ) and H is

maximal in M(T ) with respect to
<
∼.
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Proof. Assume thatH ∈ Hv(T ), andH is maximal with respect to
<
∼ in either

M(T ) or Hv(T ). Assume further that X ∈ H(T ) ∩ H with H = XCH(V (H)). If

M2 ∈ M(X), then as T ≤ X , M2 ∈ M(T ), and as H = XCH(V (H)), H
<
∼ M2;

therefore H = M2 ∈ M by maximality of H . Thus (1) holds, as does the forward
implication in (3).

Assume one of the hypotheses of (2). AsG is of even characteristic F ∗(NM (R)) =
O2(NM (R)) by 1.1.3.2. By a Frattini Argument, we have M = CM (V )NM (R),
so AutNM (R)(V ) = AutM (V ). In case (a), V = 〈ZM 〉, so in either case V =

〈(Z ∩ V )M 〉. Therefore as M = CM (V )NM (R),

V = 〈(Z ∩ V )NM (R)〉, (!)

so that V ∈ R2(NM (R)) by B.2.14. Thus O2(NM (R)) ≤ CT (V ) = R, so R =
O2(NM (R)) = F ∗(NM (R)).

In (a),M = !M(NM (R)) by (1); so assume (b) holds, and letM1 ∈ M(NM (R)).

Then M1
<
∼ M by (b), so by (!) we may apply A.5.6 to conclude that M1 ≤ M ;

hence M1 =M since M1 ∈ M. This completes the proof of (2).

Let H ∈ H(T ). If H is maximal in Hv(T ) with respect to
<
∼, then H ∈ M(T )

by the first paragraph of the proof. Conversely if H is maximal in M(T ), then

H
<
∼ M for some M maximal in Hv(T ); but M ∈ M(T ) by paragraph one, so

H =M by maximality of H in M(T ). Thus (3) holds. ¤

Definition A.5.8. Let V(T ) := {V (H) : H ∈ H(T )}, and partially order V(T )
by inclusion.

Lemma A.5.9. Let H,K ∈ H(T ). Then

(1) If H ≤ K, then H
<
∼ K.

(2) If H
<
∼ K and K

<
∼ H, then V (H) = V (K).

Proof. Here (1) just recalls that
<
∼ extends ordinary inclusion, and (2) follows

from A.5.3.1. ¤

Lemma A.5.10. Let H,K ∈ H(T ) with V (H) maximal in V(T ). Then
(1) If V (H) ≤ V (K), then K ≤ NG(V (H)).

(2) If H
<
∼ K, then K ≤ NG(V (H)).

(3) NG(V (H)) = !M(H).

(4) NG(V (H)) is maximal in M(T ) with respect to
<
∼.

Proof. If V (H) ≤ V (K), then by maximality of V (H), we have V (H) =
V (K). Then as V (K) E K, (1) holds. Then A.5.3.1 and (1) imply (2), while
A.5.9.1 and (2) imply (3).

Finally set N := NG(V (H)). Then N ∈M(T ) by (3). Also H
<
∼ N by A.5.9.1,

so V (H) = V (N) by A.5.3.1 and maximality of V (H), and hence N also satisfies

the hypothesis for “H”. Now if N
<
∼ M ∈ M(T ), then by (2) applied to N ,

M ≤ NG(V (N)) = NG(V (H)) = N ; hence M = N by maximality of M , and (4)
holds. ¤
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A.6. A group-order estimate

In this section, G is a finite group with exactly two classes of involutions, with
representatives z and t. For x an involution in G, define

A(x) := {(u, v) ∈ zG × tG : x ∈ 〈uv〉},

and set a(x) := |A(x)|. The Thompson Order Formula for groups with exactly two
classes of involutions says:

Lemma A.6.1 (Thompson Order Formula). |G| = |CG(z)|a(t) + |CG(t)|a(z).

Proof. See for example 45.6 in [Asc86a]. ¤

Next for x an involution in G, define

A1(x) := {(u, v) ∈ A(x) : |uv| ≡ 0 mod 4}

and
A2(x) := {(u, v) ∈ A(x) : |uv| ≡ 2 mod 4},

and let ai(x) := |Ai(x)|. As zG 6= tG, uv has even order for each (u, v) ∈ A(x), so
A(x) = A1(x) ∪ A2(x) is a disjoint union, and a(x) = a1(x) + a2(x). Also let yG

denote the class of involutions distinct from xG, and define:

B1(x) := {u ∈ x
G ∩ CG(x) : ux ∈ u

G}, B2(x) := {u ∈ x
G ∩ CG(x) : ux /∈ u

G},

C1(x) := {u ∈ y
G ∩ CG(x) : ux ∈ u

G}, C2(x) := {u ∈ y
G ∩ CG(x) : ux /∈ u

G}.

Let bi(x) := |Bi(x)| and ci(x) := |Ci(x)|.

Lemma A.6.2. ai(x) ≤ bi(x)ci(x) for each involution x in G and i = 1, 2.

Proof. Let (u, v) ∈ A(x). Then x is the involution in 〈uv〉, so X := 〈u, v〉 ≤
CG(x). Further ux ∈ uX if and only if |uv| ≡ 0 mod 4, so as vG 6= uG, it follows
that (u, v) ∈ A1(x) iff ux ∈ uX iff vx ∈ vX . Therefore

A1(x) ⊆ {(u, v) ∈ (zG ∩ CG(x)) × (tG ∩ CG(x)) : ux ∈ u
G and vx ∈ vG},

so a1(x) ≤ b1(x)c1(x). Similarly a2(x) ≤ b2(x)c2(x). ¤

Lemma A.6.3. We have

ci(t) =
|CG(t)|c3−i(z)

|CG(z)|
for i = 1, 2.

Proof. Let Ω := {(u, v) ∈ zG × tG : uv ∈ tG}. Then

|G : CG(z)|c1(z) = |z
G|c1(z) = |Ω| = |t

G|c2(t) = |G : CG(t)|c2(t),

establishing the lemma for i = 2. A similar argument on the set Ω′, defined similarly
but with uv ∈ zG, gives the lemma when i = 1. ¤

Lemma A.6.4. |G : CG(z)| ≤ c1(t)(b1(t) + b2(z)) + c2(t)(b2(t) + b1(z)).

Proof. We apply the Thompson Order Formula A.6.1, A.6.2, A.6.3, and our
observation that a(x) = a1(x) + a2(x), to obtain:

|G : CG(z)| = a(t) +
|CG(t)|a(z)

|CG(z)|
= a1(t) + a2(t) +

|CG(t)|

|CG(z)|
(a1(z) + a2(z))

≤ b1(t)c1(t) + b2(t)c2(t) +
|CG(t)|

|CG(z)|
(b1(z)c1(z) + b2(z)c2(z))

= b1(t)c1(t) + b2(t)c2(t) + b1(z)c2(t) + b2(z)c1(t)
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= c1(t)(b1(t) + b2(z)) + c2(t)(b2(t) + b1(z)).

¤

Lemma A.6.5. Let G be a finite group with exactly two classes zG and tG of
involutions. Assume

If u, v ∈ zG with uv = vu 6= 1, then uv ∈ zG. (∗)

Then
|G : CG(z)| ≤ |z

G ∩ CG(t)| · (|z
G ∩ CG(t)|+ |z

G ∩ CG(z)|).

Proof. This is a special case of A.6.4: For by (*), c1(t) = 0, c2(t) = |zG ∩
CG(t)|, and b1(z) = |zG ∩ CG(z)| − 1. Further

B2(t) = {u ∈ t
G ∩ CG(t) : ut /∈ u

G} = {u ∈ tG ∩ CG(t) : ut ∈ z
G} ∪ {t},

and the map u 7→ ut is a bijection of

{u ∈ tG ∩ CG(t) : ut ∈ z
G} with zG ∩ CG(t)

by (*), so b2(t) = |zG ∩ CG(t)|+ 1. ¤





CHAPTER B

Basic results related to Failure of Factorization

The techniques used in this work might be called unipotent techniques, in that
they are useful in the study of local subgroups of characteristic 2—which in a group
G of Lie type and characteristic 2, reflect the unipotent structure of G. The first
and most important tool in the arsenal of the unipotent group theorist is Thompson
Factorization:

When a 2-local subgroup H of G with Sylow 2-subgroup T admits a Thompson
factorization (see B.2.15.2), we have some control over H in terms of the 2-local
subgroups NG(J(T )) and CG

(
Ω1(Z(T ))

)
of G. On the other hand if Thompson

factorization fails (see B.2.15.1), then we obtain useful information about the action
of H on each of the 2-reduced normal subgroups in R2(H) (see Definition B.2.11
and B.2.12).

In this chapter, we collect and develop the most basic ideas related to failure of
factorization, and discuss briefly the connection between failure of factorization and
some other notions, such as the theory of “small” F2-representations and pushing-
up, which are treated in other chapters.

We are grateful to John Thompson and the University of Florida seminar for
a careful reading of portions of this chapter and suggestions for improvements.

B.1. Representations and FF-modules

In this short introductory section B.1, we first develop the more purely repre-
sentation theoretic aspects of failure of factorization. We postpone to the subse-
quent section B.2 the case where the module is internal to the group, including the
corresponding connections with the Thompson subgroup.

So in this section, let G be a finite group, and V a faithful F2G-module.

Definition B.1.1. Write A2(G) 1 for the set of nontrivial elementary abelian
2-subgroups of G. For A ∈ A2(G), define the “ratio” rA,V of A on V by

rA,V :=
m(V/CV (A))

m(A)
,

and define the “global quadratic action ratio” q(G, V ) of G on V by

q(G, V ) := min{rA,V : A ∈ A2(G) and [V,A,A] = 0},

with the parameter set equal to ∞ if A2(G) is empty (i.e., if G is of odd order).
We say A is quadratic on V if [V,A,A] = 0. We say V is a failure of factorization

1We use this superscript-variant of the standard notation A2(G) of Quillen, since we want
to use subscript-notation Ak(G) for the subgroups of rank m2(G) − k which define the higher
Thompson subgroups in Definition B.2.2.

67
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module (FF-module) if rA,V ≤ 1 for some A ∈ A2(G). We say V is a strong
FF-module if rA,V < 1 for some A ∈ A2(G).

We will see in results such as B.1.4 below (as in the literature, e.g. section 32
of [Asc86a]) that we may study FF-modules by refining the condition rA,V ≤ 1,
as follows:

Definition B.1.2. Let P(G, V ) denote the set of A ∈ A2(G) such that

m(A) +m(CV (A)) ≥ m(B) +m(CV (B)) (∗)

for all B ≤ A. Notice that the case B = 1 provides the the inequality more typically
associated with failure of factorization in the literature, namely

m(A) ≥ m(V/CV (A)), (∗∗)

which is just a reformulation of the condition rA,V ≤ 1.
We sometimes consider the slightly weaker condition m(A) ≥ m(V/CV (A))−1;

typically in the literature, V is then called an (F − 1)-module, and A an (F − 1)-
offender.

Define a partial order
<
∼ on A2(G) by B

<
∼ A if B ≤ A and (*) is an equality.

Let P∗(G, V ) be the set of minimal members of P(G, V ) under
<
∼.

In the following section B.2, we will encounter elementary abelian subgroups
of 2-locals H called “FF-offenders”. The images of these FF-offenders acting on
“internal” modules V for H will lie in P(AutH(V ), V ). To distinguish the elemen-
tary abelian subgroups from their images in GL(V ), we introduce a different but
related term for offenders in our present strictly module-theoretic context.

Definition B.1.3. Thus we call the members of P(G, V ) FF∗-offenders on V .
A strong FF∗-offender is an FF∗-offender A such that rA,V < 1.

Set J(G, V ) := 〈P(G, V )〉.

Lemma B.1.4. (1) If A ∈ P(G, V ), then rA,V ≤ 1.

(2) If B
<
∼ A ∈ P(G, V ), then B ∈ P(G, V ).

(3) (Thompson Replacement Lemma) If A ∈ P∗(G, V ), then A is quadratic on
V . In particular if A is minimal in P(G, V ) under inclusion, then A is quadratic
on V .

(4) If A ∈ A2(G) with rA,V ≤ 1 (resp. rA,V < 1), then A contains a member
B of P(G, V ), with rB,V ≤ 1 (resp. rB,V < 1).

(5) The following are equivalent:

(i) V is an FF-module.
(ii) P(G, V ) 6= ∅.
(iii) q(G, V ) ≤ 1.

(6) If V is not a strong FF-module then

P(G, V ) = {A ∈ A2(G) : rA,V = 1}.

Proof. Part (1) re-states our earlier observation that (*) implies (**). Part
(2) is a straightforward consequence of the definition. To prove (3), one can show
(cf. 6.7 in [Asc82a]) for v ∈ V that (*) is an equality for B := CA([v,A]). Then
B ∈ P(G, V ) by (2), so B = A by minimality of A, giving (3).
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To prove (4), we may assume A is minimal subject to A ∈ A2(G) and rA,V ≤ 1,
rA,V < 1, respectively. As rA,V ≤ 1, (*) holds when B = 1, and if (*) fails for some
1 6= B < A, then

m(B) > m(V/CV (B)) +m(A)−m(V/CV (A)) ≥ m(V/CV (B)),

so rB,V < 1, contrary to the minimality of A. Thus A ∈ P(G, V ), establishing (4).
Assume V is not a strong FF-module. Then

P(G, V ) ⊆ S := {A ∈ A2(G) : rA,V = 1},

and

m(B) +m(CV (B)) ≤ m(V ) for all B ∈ A2(G). (!)

On the other hand, if A ∈ S, then m(A)+m(CA(V )) = m(V ), so (*) is satisfied in
view of (!), and hence S ⊆ P(G, V ), establishing (6).

It remains to prove (5). That (iii) implies (i) is immediate from the definitions,
and that (i) implies (ii) follows from (4). Finally (1) and (3) show that (ii) implies
(iii). ¤

Recall if X = O2(X) ≤ G, that Irr+(X,V ) is defined in Definition A.1.40 to be
the set of X-submodules I of V such that I = [I,X ] and I/CI(X) is an irreducible
X-module.

The following lemma shows that if V is an FF-module for G, then suitable
sections of V are also FF-modules for suitable sections of G.

Lemma B.1.5. Let A ∈ P(G, V ) and W an A-invariant subspace of V with
[W,A] 6= 0. Then

(1) AutA(W ) ∈ P(AutG(W ),W ).
(2) If A ∈ P∗(G, V ) then AutA(W ) ∈ P∗(AutG(W ),W ). If in addition

AutA(W ) is not a strong FF∗-offender on W , then V = W + CV (A) and A is
faithful on W .

(3) If A ∈ P∗(G, V ), and X = O2(X) = [X,A] ≤ G such that each 2-chief
factor of X is central in X, then A fixes Irr+(X,V ) pointwise.

(4) P(G, V ) normalizes each component of G.
(5) If A ∈ P∗(G, V ) and q(AutG(W ),W ) = 1, then AutA(W ) ∈ P∗(AutG(W ),W ),

V =W + CV (A), and A is faithful on W .
(6) If m(W/CW (A)) = m(A/CA(W )), then either A is faithful on W or

CA(W ) ∈ P(G, V ).
(7) If A is faithful on W and q(AutG(W ),W ) = 1, then V = W + CV (A) so

[A, V ] ≤W .
(8) Assume L := F ∗(G) is quasisimple, O2(G) = 1, and S is a G-invariant

section of V with [S,L] 6= 1. Then A is faithful on S and A ∼= AutA(S) contains
a member of P(AutG(S), S). Assume further that q(AutG(S), S) = 1 and let S =
W/U . Then AutA(S) ∈ P(AutG(S), S), AL centralizes U and V/W , and V =
W + CV (A).

Proof. Parts (1), (2),and (6) are essentially contained in 3.2 in [Asc81e],
or 26.20 and 26.22 in [GLS96]; for completeness we prove the former result as
B.7.1 at the end of this chapter. Thus these three conclusions follow from parts
(1), (2), and (3) of B.7.1. Also see D.2.6 for a refinement of (1). Part (3) is
3.3.2 in [Asc81e]; again for completeness we have provided a proof as B.7.2.2.
Further (4) is 26.24 in [GLS96] (due to Timmesfeld). Under the hypotheses of
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(5), m(AutA(W )) = m(W/CW (A)) as q(AutG(W ),W ) = 1, so (5) follows from (2).
Under the hypotheses of (7), m(A) = m(W/CW (A)), so we have

m(A) ≥ m(V/CV (A)) ≥ m(W/CW (A)) = m(A),

so that m(V/CV (A)) = m(W/CW (A)), and hence (7) holds.
Assume the hypotheses of (8). As L is quasisimple and [L, S] 6= 1, CG(S) ≤

Z(L); so as O2(G) = 1, A is faithful on S and L = [L,A]. Therefore

m(AutA(S)) = m(A) ≥ m(V/CV (A)) ≥ m(S/CS(A)),

so AutA(S) contains a member of P(AutG(S), S) by B.1.4.4. Assume further that
q(AutG(S), S) = 1 and let S =W/U . Then A ∈ P(AutG(S), S) by B.1.4.6, and

m(A) = m(W/CW (A)) ≥ m(S/CS(A)) +m(U/CU (A)) = m(A) +m(U/CU (A)),

so A centralizes U and m(W/CW (A)) = m(A). Then as in (7), V = W + CV (A),
so [A, V ] ≤ W . As A centralizes U and V/W , so does L = [L,A], completing the
proof of (8). ¤

We next introduce a notion whose importance will not be evident until the next
section, in results such as B.2.5:

Definition B.1.6. A nonempty subset P of P(G, V ) is stable if P is closed in

A2(G) under both G-conjugation and
<
∼; that is,

(a) Ag ∈ P for each A ∈ P and g ∈ G, and

(b) whenever A ∈ P and B
<
∼ A, then also B ∈ P .

Given a stable set P and H ≤ G, define JP(H) := 〈P ∩H〉.

Example B.1.7. P∗(G, V ) is a stable subset of P(G, V ).

The next lemma is the representation-theoretic version of Glauberman’s result
on Solvable Thompson Factorization (see B.2.16 later).

Lemma B.1.8. Assume O2(G) = 1, V is an FF-module, and G is solvable.
Then

(1) J(G, V ) = G1×· · ·×Gs and [V, J(G, V )] = V1⊕· · ·⊕Vs, where Vi := [V,Gi].
(2) Gi ∼= L2(2), and Vi is the natural module for Gi.
(3) q(G, V ) = 1. In particular, G contains no strong FF∗-offenders.
(4) A is an FF∗-offender iff A = A1 × · · · × As, where either Ai = 1 or

Ai ∈ Syl2(Gi), and Aj 6= 1 for at least one j.
(5) If P is a stable subset of P(G, V ), then JP(G) =

∏
i∈I Gi for some I ⊆

{1, . . . , s}, and P = P(G, V ) ∩ JP(G).

Proof. See Glauberman in [Gla73] for the original version of (1)–(3); there
is a proof of (1)–(3) in our context in 32.3 of [Asc86a].

From the action of J(G, V ) on V , Syl2(Gi) = P(Gi, Vi), so all the products in
(4) are FF∗-offenders. Conversely if B is an FF∗-offender, there is A ∈ P∗(G, V )
contained in B and A is nontrivial on some Vi; so applying B.1.5.2 with Vi in the role
of “W”, AutA(Vi) ∈ P(AutG(Vi), Vi), and A centralizes Vk for k 6= i as AutA(Vi)
is not a strong FF∗-offender by (3). Thus A ∈ Syl2(Gi) and B = ACB(Vi). By
B.1.5.6, either CB(Vi) = 1 or CB(Vi) is an FF∗-offender. Then A has the desired
form by induction on m(A). Thus (4) holds, and (5) follows from (4) and the fact

that Gi = 〈S
Gi
i 〉 for Si ∈ Syl2(Gi). ¤
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It is convenient to state the next result here, though its proof invokes a result
D.2.12 in a later section; however the proof of that lemma is elementary, and in
particular does not depend on the present section. This is not the first instance of
interdependence between sections, and it will not be the last. We will usually not
comment on such occurrences, since to do so would be too unwieldy.

Lemma B.1.9. Set P := P(G, V ), P∗ := P∗(G, V ), JP := J(G, V ), and JP∗ :=
JP∗(G). Assume that O2(G) = 1 and F := [F (G), JP∗ ] 6= 1. Then

(1) JP = G1 × · · · ×Gs × JP(CG(F )), where Gi ∼= L2(2).
(2) F = F1 × · · · × Fs with Fi := O(Gi) ∼= Z3, and F (G) = F × CF (G)(JP∗).
(3) [V, F ] = V1 ⊕ · · · ⊕ Vs, where Vi := [V, Fi] = [V,Gi] is of rank 2.
(4) We have

P∗f := {A ∈ P∗ : [F (G), A] 6= 1} =
s⋃

i=1

Syl2(Gi).

(5) Suppose A ∈ P∗ and K = [K,A] ≤ G. Then K ≤ CJP∗ (F (G)).

Proof. Recall that both P and P∗ are stable in P , so that JP and J∗P are
normal in G; in particular [F (G), JP∗ ] = F is also normal in G.

Since F 6= 1 by hypothesis, P∗f 6= ∅; for A ∈ P∗f let FA := [F (G), A]. Fix

A ∈ P∗f and set B := CA(FA). Now FA is faithful on CV (B) by the Thompson

A × B Lemma, so 0 6= [CV (B), FA] =: W = [W,FA]. Therefore since 1 6= FA =
[FA, A], also [W,A] 6= 0. Then by B.1.5.1, AutA(W ) ∈ P(AutG(W ),W ). Now
H := FAA is solvable, and H = 〈AH〉, so H = J(H,W ). Thus the action of
H on W is described in B.1.8, and in particular q(AutH(W ),W ) = 1. Then as
A ∈ P∗(G, V ) by hypothesis, it follows from B.1.5.2 that A is faithful on W , so
that AutA(W ) = A ∈ P∗(AutH(W ),W ) and V = W + CV (A). As W ≤ CV (B),
we conclude B = 1; so W = [V, FA], and H is faithful on W . using B.1.8. As
A ∈ P∗(H,W ), B.1.8 says FA is of order 3 andW is of rank 2. As V =W +CV (A)
with W = [V, FA], W = [V,H ].

We have shown that for A ∈ P∗f , FA is a member of the collection X of all

subgroups X of F (G) of order 3 satisfying m([V,X ]) = 2. Thus F ≤ 〈X〉 =: Y . By
parts (1) and (2) of D.2.12, Y = X1×· · ·×Xr is the direct product of the members
of X , and

[V, Y ] =

r∏

i=1

[V,Xi],

so the factorizations of F and [V, F ] in (2) and (3) follow.
Let P∗i := {A ∈ P∗f : Fi = FA} and Gi := 〈P∗i 〉. For A ∈ P∗i , F (G) =

FiCF (G)(A) by Coprime Action; then it follows from the factorization of F and the
definition of P∗f that F (G) = FCF (G)(JP∗). Since the two factors are normal in

F (G) and intersect trivially, the product is direct, completing the proof of (2).
Let A := 〈a〉. As FiA = GL(Vi), for C := 〈c〉 ∈ P∗i , there exists g ∈ Fi with

agc ∈ CG(Vi) ∩ CG(V/Vi) ≤ O2(G) = 1. Thus C ≤ FiA, so Gi = FiA, establishing
(4), and visibly 〈P∗f 〉 = G1 × · · · ×Gs.

Now consider any B ∈ P ; by B.1.5.1, either [V, F,B] = 0 or

AutB([V, F ]) ∈ P(AutG([V, F ]), [V, F ]).

In the former case B centralizes each Vi, and in the latter B.1.8 shows that B acts
on Vi. Thus JP acts on Gi, so as Gi = Aut(Gi), (1) follows.
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Finally assume the hypotheses of (5). If A ≤ CG(F (G)), then K = [K,A] ≤
CJP∗ (F (G)) and we are done. Thus we may assume A ∈ P∗f , and hence by (4),

A ≤ Gi for some i, and K = [K,A] ≤ [JP∗ , A] = Fi. But by (2), Fi ≤ Z(F (G)), so
again K ≤ CJP∗ (F (G)), completing the proof of (5). ¤

Lemma B.1.10. Assume that O2(G) = 1, and set P := P(G, V ) and JP :=
JP(G) = J(G, V ). Assume K ≤ G such that K = [K,A] for some A ∈ P with K
either quasisimple or of order 3. Then K ≤ CJP (F (G)).

Proof. A simplification in the following proof was suggested by John Thomp-
son.

As K = [K,A], K ≤ 〈AK〉 ≤ JP . Thus it remains to prove that K centralizes
F (G); we will use induction on |G|, so assume G, K, A is a counterexample with
G of minimal order. Then [F (G),K] 6= 1, so

if K is quasisimple, then CK(F (G)) ≤ Z(K). (∗)

Set H := F (G)KA, Q := O2(H), and U := CV (Q). Then Q ≤ CH(U),
and we claim in fact that Q = CH(U): For F (G) is of odd order as O2(G) =
1, so a Sylow 2-subgroup of KA is Sylow in H , and hence contains Q. Then
[K,Q] ≤ K ∩ Q ≤ O2(Z(K)), so that Q centralizes K by Coprime Action, while
[Q,F (G)] ≤ Q ∩ F (G) = 1. Thus Q centralizes F (G)K = O2(H), and then by the
Thompson A×B-Lemma, elements of H of odd order act faithfully on CV (Q) = U .
Thus CH(U) is a 2-group, completing the proof of the claim.

Set H∗ := H/CH(U). We verify the inductive hypothesis for H∗, K∗, A∗:
First O2(H

∗) = 1, since CH (U) = Q = O2(H) by the claim. Next F (G) ∼=
F (G)∗ ≤ F (H∗), so [K∗, F (H∗)] 6= 1. Further K∗ ∼= K if |K| = 3, while if K
is quasisimple, then K∗ is also quasisimple, and K∗ = [K∗, A∗] since K = [K,A].
Finally A∗ ∈ P(H∗, U) by B.1.5.1, completing the verification. Thus H∗, K∗, A∗ is
a counterexample to the lemma, so by minimality of |G|, |H∗| = |G|, and therefore
Q = 1 and G = KAF (G).

If K ∼= Z3 then G is solvable, so F ∗(G) = F (G). If K is quasisimple then as
G = KAF (G) and CK(F (G)) ≤ Z(K) by (*), again F ∗(G) = F (G).

Thus F ∗(G) = F (G) is of odd order, so each member of P∗ := P∗(G, V )
is faithful on F (G), and hence the hypotheses of B.1.9 are satisfied; adopt the
notation of that lemma, with J∗P := J∗P (G). In particular F := [F (G), J∗P ] 6= 1,
but as K ≤ O2(JP), K centralizes F by B.1.9.1. Set E := CF (G)(JP∗); by B.1.9.2,
F (G) = F ×E, so that E ≥ [E,K] 6= 1. Arguing by induction as before, now with
E in the role of “F (G)”, we conclude G = KAE. Thus F ≤ O2(G) = KE.

As KA contains a Sylow 2-subgroup of KAE = G, there is B ∈ P∗ with
B ≤ KA. If K = [K,B], then K ≤ JP∗ , so K centralizes F (G) by B.1.9.5,
contrary to our assumption that [F (G),K] 6= 1. Thus B centralizes K. But by
definition of E, B centralizes E, so B centralizes KE ≥ FE = F (G), whereas
we saw earlier that each member of P∗ is faithful on F (G). This contradiction
completes the proof. ¤

Lemma B.1.11. Assume that L is a quasisimple subgroup of G such that L =
[L,A] for some A ∈ P(G, V ). Then there is a subgroup H of G containing L, and

I ∈ Irr+(L, V ) with H ≤ NG(I), such that Ĩ := I/CI(L) is an FF-module for

AutH(Ĩ) with CH(Ĩ) ≤ CH(L) and L irreducible on Ĩ.
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Proof. Without loss G = LA. Set Q := O2(G) and U := CV (Q). As in
the proof of B.1.10, CG(U) = Q and CL(U) = O2(L). Thus as L = [L,A], A is
nontrivial on U , so AutA(U) ∈ P(AutG(U), U) by B.1.5.1. Therefore replacing G,
V by AutG(U),U , we may assume that O2(G) = 1. Thus as G = LA, L = F ∗(G),
so each member of P∗(G, V ) is faithful on L and hence we may take A ∈ P∗(G, V ).
Choose I ∈ Irr+(L, V ). By B.1.5.3, A acts on I , so G acts on I . As L is quasisimple

and I ∈ Irr+(L, V ), CL(Ĩ) ≤ Z(L) and L is irreducible on Ĩ . As F ∗(G) = L,

CG(Ĩ) = CL(Ĩ). By B.1.5.8, Ĩ is an FF-module. ¤

Lemma B.1.12. Assume that T ∈ Syl2(G), Z3
∼= K ≤ G withK = [K, J(T, V )],

and K E E H := 〈T,K〉. SetK0 := 〈K
T 〉,M := J(T, V )K0, and M̄ :=M/O2(M).

Then

(1) K0 = K1 × · · · ×Kn where {K1, . . . ,Kn} = KT .
(2) M̄ = M̄1 × · · · × M̄n with K̄i = O(M̄i), M̄i

∼= L2(2), and T transitively
permutes {M̄1, . . . , M̄n}.

Proof. Without loss, G = H . Then K is subnormal in G by hypothesis, so
that K0 = O3(G) = O2(G). Let Q := O2(G) and U := CV (Q). As in the proof
of B.1.10, CG(U) = Q. Thus setting G+ := G/Q, O2(G

+) = 1 and F ∗(G+) =
F (G+) = K+

0
∼= K0. Further by B.1.5.1,

P+ := {A+ : A ∈ P(G, V ) and A+ 6= 1}

is a subset of P(G+, U), and stable since P(G, V ) is stable. Thus as G is solvable,
by B.1.8, 〈P+〉 = G+

1 ×· · · ×G
+
n with G+

i
∼= L2(2). Therefore as K = [K, J(T, V )],

we may take K+ = O(G+
1 ). By B.1.8, G+ permutes the G+

i , so K
+T = {O(G+

i ) :
1 ≤ i ≤ n}. Then M+ = 〈P+〉 ∼= M̄ as K+

0
∼= K0, so the lemma holds. ¤

Lemma B.1.13. Assume that G is a K-group with O2(G) = 1, set P :=
P(G, V ), and let T ∈ Syl2(G). Assume K ≤ G such that K is either quasisimple
or of order 3, K E E 〈K,T 〉, and K = [K, JP(T )]. Then one of the following
holds:

(1) K ∼= Z3 and K ≤ Z(F (G)).

(2) K is a component of G, and K is of Lie type, an alternating group, or Â6.
(3) There is a component L of G with K ≤ L and L ∼= Am for some m. Further

either K ∼= An with n ≤ m, or K ∼= L3(2) and m = 7.

Proof. By hypothesis there is A ∈ P acting nontrivially on K, so since K is
quasisimple or of order 3, K = [K,A]. ThusK centralizes F (G) by B.1.10. Suppose
K also centralizes E(G). Then K ≤ CG(F

∗(G)) = Z(F (G)), so (1) holds. Thus
we may assume that [E(G),K] 6= 1.

By B.1.5, JP(G) acts on each component of G, so as K = [K, JP(T )], K does
also. Thus there exists a component L of G with L = [L,K]. As JP(T ) acts on L
and K = [K, JP(T )], also L = [L, JP(T )]. Then by B.1.11, there is an irreducible
module U for L such that U is an FF-module for NGL(U)(AutL(U)). To give a self-
contained proof of the special case of the present result which is used in this work:
under our SQTK-hypothesis, we may apply Theorem B.4.2 to determine L/Z(L).
To prove the result in general, as G is a K-group, this determination follows from
Table 2 of Guralnick-Malle [GM04]. Thus it follows that either L is of Lie type and
characteristic 2 or L/Z(L) is an alternating group. Further if L/Z(L) is alternating,

then as O2(G) = 1, I.1.3 says that L is an alternating group or Â6 or Â7. In the
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last case as L is faithful on V , Z(L) is faithful on some member of Irr+(L, V ),
so from the proof of B.1.11, we can choose L faithful on U ; then B.4.2 supplies
a contradiction. Thus if L/Z(L) is an alternating group, then L is an alternating

group or Â6.
Let H := 〈K,T 〉 and observe that TL := T ∩ L ∈ Syl2(L) and HL := H ∩ L

is subnormal in H . If K is quasisimple then by 31.4 in [Asc86a], either K is a
component of HL, or K centralizes HL. We next establish the similar claim that
when K is of order 3, either K ≤ HL or K centralizes HL: We apply B.1.12, and
choose notation as in that lemma, so that K0 := 〈KT 〉 = K1×· · ·Kn with K = K1.
Set M := K0J(T ). As JP(G) acts on L, so does M , soM acts on HL and of course
HL acts on the normal subgroupM ofK0T = H . Thus [M,HL] ≤M∩HL. Suppose
first that HL does not centralize K. Then HL 6≤ O2(H)K0, so as H = K0T , there
is t ∈ TL with [K, t] 6= 1. If Kt 6= K, then [t, M̄ ] contains s̄ := s̄1 · · · s̄r for suitable
r ≤ n, where s̄i is the involution in T ∩Mi. But the preimage s of s̄ lies in L, so
K = [K, s] ≤ L, and our claim holds in this case. On the other hand if K = K t,
then K = [K, t] ≤ L, completing the proof of the claim in the remaining case.

Now if K centralizes HL, then K centralizes TL; this is impossible, as in a
group of Lie type in characteristic 2 or an alternating group, the centralizer of a
Sylow 2-group is a 2-group. Thus K ≤ HL ≤ L.

By an earlier reduction, L/Z(L) is either of Lie type and characteristic 2 or
Am for some m. Thus if L = K then (2) holds, so we may assume K is proper in
L. Thus HL is proper in L, and as K E E HL, F

∗(HL) 6= O2(HL).
Suppose first that L is of Lie type and characteristic 2. Then F ∗(X) = O2(X)

for each proper subgroup X of L containing TL, contradicting F
∗(HL) 6= O2(HL).

Thus L/Z(L) ∼= Am. From the structure of the overgroups of TL in L (we may
apply A.3.12 under our SQTK-hypothesis), this forces K ∼= An for n ≤ m, or
K ∼= L3(2) and m = 7. Thus (3) holds, completing the proof of the lemma. ¤

B.2. Basic Failure of Factorization

What we now call failure of factorization arguments originated in work of
Thompson, particularly in [Tho68, 5.53]; the basic observations below are mostly
due to him. For general background, we will quote from the more modern treat-
ments in section 32 of [Asc86a], and [GLS96, Sec 26].

Many of the results in this section hold for arbitrary p, but our applications
will be for p = 2. Thus throughout this section, we assume:

Hypothesis B.2.1. G is a finite group, V a normal elementary abelian 2-
subgroup of G, and G∗ := G/CG(V ).

We refer to V as an internal module for G. We will study conditions guaran-
teeing that such a module is an FF-module for G∗ in the sense of Definition B.1.1
of the previous section.

We will see that these connections involve the Thompson subgroup and related
subgroups:

Definition B.2.2. Recall that for H ≤ G and j a nonnegative integer, Aj(H)
is the set of all elementary abelian 2-subgroups of H of rank m2(H) − j, and
Jj(H) := 〈Aj(H)〉. Write A(H) for A0(H), and J(H) for J0(H). The group
J(H) is called the Thompson subgroup of H . The Baumann subgroup of a 2-group
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H is

Baum(H) := CH (Ω1(Z(J(H)))).

Visibly Ji(H) and Baum(H) are characteristic subgroups of H . We begin with
some well-known elementary properties of the Thompson subgroup, its variants,
and the Baumann subgroup.

Lemma B.2.3. Let S be a 2-group and 0 ≤ i ≤ j < m2(S). Then

(1) Ji(S) ≤ Jj(S).
(2) Ω1(Z(Jj(S))) ≤ Ω1(CS(Ji(S))) = Ω1(Z(Ji(S))).
(3) If Ji(S) ≤ R ≤ S, then Ji(S) = Ji(R).
(4) If Baum(S) ≤ R ≤ S, then Baum(S) = Baum(R).
(5) If J(S) ≤ CS(U) for some elementary abelian subgroup U of S, then

Baum(S) = Baum(CS(U)).
(6) For A ∈ A(S), A = Ω1(CS(A)).
(7) We have

Ω1(CS(J(S))) = Ω1(Z(J(S))) =
⋂

A∈A(S)

A.

Proof. For each A ∈ Ai(S), A = 〈Aj(S) ∩ A〉 ≤ Jj(S), so (1) holds. By (1),
CS(Jj(S)) ≤ CS(Ji(S)). Let D be of order p in Ω1(CS(Ji(S))). Then AD ∈ Ak(S)
for some k ≤ i, so by (1), AD ≤ Ji(S) and then D ≤ Z(Ji(S)). It follows that
Ω1(CS(Ji(S)) ≤ Ω1(Z(Ji(S))), completing the proof of (2).

Under the hypotheses of (3), J(S) ≤ Ji(S) ≤ R by (1), so m2(R) = m2(S).
Then it follows that Ai(S) = Ai(R), so (3) holds. Similarly under the hypotheses of
(4), J(S) ≤ Baum(S) ≤ R, so J(S) = J(R) by (3), and hence E := Ω1(Z(J(S))) =
Ω1(Z(J(R))) =: F . Then as Baum(S) ≤ R by hypothesis, we conclude

Baum(S) = CS(E) = CS(F ) = CR(F ) = Baum(R),

proving (4).
Assume the hypotheses of (5). Then U ≤ Ω1(CS(J(S)), so U ≤ E by (2). Thus

Baum(S) ≤ CS(U), and therefore (5) follows from (4).
Let A ∈ A(S). Then maximality of m(A) shows for D of order p in CS(A) that

DA = A, so that D ≤ A. Hence (6) holds and

Ω1(CS(J(S)) ≤
⋂

A∈A(S)

A ≤ Ω1(Z(J(S))) ≤ Ω1(CS(J(S))),

establishing (7). ¤

Lemma B.2.4. Let S be a 2-subgroup of G containing V , j a nonnegative inte-
ger, and A ∈ Aj(S) with A

∗ 6= 1. Then

(1) m(A∗) ≥ m(V/CV (A)) − j. In particular if j = 0, then rA,V ≤ 1, so that
V is an FF-module for G.

(2) If equality holds in (1), then CA(V )V ∈ A(S).
(3) If A ∈ A(S) and m(V/CV (A)) = m(A∗), then CA(V )V ∈ A(S), m2(CS(V )) =

m2(S), A(CS(V )) ⊆ A(S), and V ≤ Ω1(Z(J(CS(V )))) ≥ Ω1(Z(J(S))).
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Proof. Let B := CA(V )V . Then

m(B) = m(CA(V )) +m(V/(V ∩ A)) ≥ m(CA(V )) +m(V/CV (A)). (!)

Further as A ∈ Aj(S),

m(B) ≤ m(A) + j, with equality only if B ∈ A(S). (!!)

Therefore by (!) and (!!),

m(A∗) = m(A)−m(CA(V )) ≥ m(A)− (m(B) −m(V/CV (A)))

= m(V/CV (A)) − (m(B)−m(A)) ≥ m(V/CV (A)) − j,

with equality only if B ∈ A(S). Hence (1) and (2) hold.
Assume the hypotheses of (3). Then by (2), B = CA(V )V ∈ A(S)∩CS(V ), so

the first three statements in (3) hold. Next V centralizes, and hence is contained
in, each member of A(CS(V )), so that V ≤ Ω1(Z(J(CS(V )))) =: E. Similarly
F := Ω1(Z(J(S))) ≤ B ≤ CS(V ), so F ≤ E. ¤

Recall from the previous section B.1 the discussion of FF-modules, and in par-
ticular, the definitions B.1.3 and B.1.6 of P(G∗, V ) and its stable subsets. The
following observation, which appears as 32.2 in [Asc86a], begins to show the con-
nection between those notions for an internal module V , and the Thompson sub-
group:

Lemma B.2.5. Define

PG := {A∗ : A ∈ A(G) and A∗ 6= 1}.

Then PG is a stable subset of P(G∗, V ).

Definition B.2.6. Members A of A(G) with A∗ 6= 1 are called FF-offenders
on V . More generally for V ≤ H ≤ G, we may say A is an FF-offender on V
relative to H if A ∈ A(H) and A∗ 6= 1.

Notice that if A is an FF-offender on V , then by B.2.5, A∗ is an FF∗-offender
on V in the sense of Definition B.1.3 of the previous section. An FF-offender A is
a strong FF-offender if A∗ is a strong FF∗-offender as in that previous definition:
that is if rA∗,V < 1.

Proposition B.2.7. Let T ∈ Syl2(G). Then either

(1) J(G) ≤ CG(V ) and G = NG(J(T ))CG(V ), or
(2) J(G) 6≤ CG(V ), V is an FF-module for G∗,

PG := {A∗ : A ∈ A(G) and A∗ 6= 1} is a stable subset of P(G∗, V ),

and J(G)∗ = JPG(G
∗) ≤ J(G∗, V ).

Proof. As V E G, CG(V ) E G, so S := CT (V ) ∈ Syl2(CG(V )). Then by
a Frattini Argument, G = CG(V )NG(S) = CG(V )NG(J(S)). Further if J(T ) ≤ S,
then J(S) = J(T ) by B.2.3.1, so G = CG(V )NG(J(T )). In particular (1) holds
in this case. On the other hand if J(T ) 6≤ S, then the set PG of Lemma B.2.5
is nonempty and stable in P(G∗, V ), so V is an FF-module for G∗ by B.2.5 and
B.1.4.5. Thus the proposition is established. ¤
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Remark B.2.8. Notice that for A as in B.2.7.2, by the definition B.1.6 of

stability, if B∗
<
∼ A∗ then there exists D ∈ A(G) with D∗ = B∗. Indeed from

the proof of B.2.5 in 32.2 in [Asc86a], B0CV (B0) ∈ A(G), where B0 is the
preimage in A of B∗. Notice in addition that if A is not a strong FF-offender,
then m(A∗) + m(CV (A

∗)) = m(V ). But if 1 6= B∗ ≤ A∗ with rB∗,V ≤ 1, then

m(B∗) +m(CV (B
∗)) ≥ m(V ), so B∗

<
∼ A∗.

Therefore:

Lemma B.2.9. If A is an FF-offender but not a strong FF-offender, then

(1) For any FF∗-offender B∗ contained in A∗, there exists an FF-offender D
with D∗ = B∗.

(2) For each 1 6= B∗ ≤ A∗ with rB∗,V ≤ 1, there exists an FF-offender D with
D∗ = B∗.

Next we see that lemma B.2.5 on FF-offenders in G relative to T , can be
extended to FF-offenders relative to R for suitable subgroups R of T :

Lemma B.2.10. Assume O2(G) ≤ R ≤ T ∈ Syl2(G), and set S := Baum(R).
Then

(1) If O2(G) = CR(V ), then either

(a) J(R) = J(O2(G)) and S = Baum(O2(G)) are normal in G, or
(b) PR,G := {1 6= A∗ : Ag ∈ A(R) for some g ∈ G} is a stable subset of

P(G∗, V ), so JPR,G ≤ J(G∗, V ).

(2) Assume O2(G
∗) = 1, and G = LT with [V, L] 6= 1, where either L ∈ C(G)

with L/O2(L) quasisimple, or L/O2(L) ∼= Z3. Then CG(V ) is 2-closed, so that
O2(G) = CR(V ). Further L∗ = F ∗(G∗), and either S = Baum(O2(G)) or L

∗ =
F ∗(JPR,G(G

∗)).

Proof. Let Q := O2(G), and suppose first that Q = CR(V ). If [V, J(R)] = 1,
then J(R) = J(Q) and S = Baum(Q) by parts (3) and (5) of B.2.3, so (1a) holds.
Therefore we may assume that [V, J(R)] 6= 1, so applying B.2.7 to R in the role of
“G”:

PR := {A∗ : A ∈ A(R) and A∗ 6= 1} is a stable subset of P(R∗, V ).

It follows by taking the union of the G-conjugates of PR that PR,G is G-stable, so
(1b) holds in this case.

Next assume the hypotheses of (2). As O2(G
∗) = 1, Q ≤ CT (V ). Fur-

ther L/O2(L) is quasisimple or Z3, G = LT , and [V, L] 6= 1, so we conclude
Q = CT (V ) ∈ Syl2(CG(V )), and hence CG(V ) is 2-closed. Then as G = LT and
O2(G

∗) = 1, L∗ = F ∗(G∗). As CT (V ) = Q ≤ R, Q = CR(V ), so we have the
hypotheses of (1). If [V, J(R)] = 1, then (1a) holds—so S = Baum(O2(G)), and (2)
holds. Otherwise [V, J(R)] 6= 1, and (1b) holds; so as F ∗(G) is quasisimple or Z3,
L∗ = F ∗(JPR,G(G

∗)), and again (2) holds. ¤

The condition that V is an FF-module and other related conditions place strong
restrictions on G∗ and it action on V—but only when O2(G

∗) = 1; we use the
following standard terminology:

Definition B.2.11. We say that V is 2-reduced if O2(G/CG(V )) = 1, and we
write R2(G) for the set of all 2-reduced normal elementary abelian 2-subgroups of
G.
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Notice that if V ∈ R2(G), then as O2(G)
∗ ≤ O2(G

∗) = 1, we have O2(G) ≤
CG(V ), so V ≤ Ω1(Z(O2(G))). Also it is a well-known elementary fact (26.22 and
26.23 in [GLS96]) that:

Lemma B.2.12. The product of any two members of R2(G) is itself in R2(G)—
so the product R2(G) of all the members of R2(G) is the unique maximal member
of R2(G).

It is also well known that if O2(G) 6= 1, then R2(G) 6= 1:

Lemma B.2.13. Assume T ∈ Syl2(G) and O2(G) 6= 1. Then for any 1 6= Z ≤
O2(G) ∩ Ω1(Z(T )), W := 〈ZG〉 and [W,G] are in R2(G), and W = [W,G]CW (G).

Proof. Set H := CG(W ), and let D be the preimage of O2(G/H). As D/H
is a 2-group, D = H(D ∩ T ) ≤ CG(Z); then as D E G, D centralizes 〈ZG〉 =W ,
so that W ∈ R2(G). Further W = [W,G]Z = [W,G]CW (G) using Gaschütz’s
Theorem A.1.39. Hence CG(W ) = CG([W,G]), so that [W,G] ∈ R2(G) also. ¤

We will be concerned most often with the situation where F ∗(G) = O2(G). In
that case, as CG(F

∗(G)) ≤ F ∗(G), it follows that for T ∈ Syl2(G), Z(T ) ≤ O2(G);
therefore by B.2.13:

Lemma B.2.14. Assume F ∗(G) = O2(G), and let T ∈ Syl2(G), 1 6= Z ≤
Ω1(Z(T )), and U := 〈ZG〉. Then

(1) U and [U,G] are in R2(G), and U = [U,G]CU (G).
(2) U ≤ Ω1(Z(O2(G))).
(3) O2(G/CG(U)) = 1 = O2(G/CG([U,G])).

When F ∗(G) = O2(G), B.2.13 provides a 2-reduced internal module to which
we can apply B.2.7. The first alternative in that lemma leads to Thompson Fac-
torization:

Lemma B.2.15 (Thompson Factorization Lemma). Assume F ∗(G) = O2(G),
and let T ∈ Syl2(G), Z := Ω1(Z(T )), and U := 〈ZG〉. Then either

(1) J(T ) 6≤ CG(U), U is an FF-module for G/CG(U), and O2(G/CG(U)) = 1,
or

(2) J(T ) ≤ CG(U), and G = CG(Z)NG(J(T )).

Proof. By B.2.14, U ∈ R2(G), so U is elementary abelian and normal in G
with O2(G/CG(U)) = 1. Then by B.2.7, either J(T ) 6≤ CG(U) and so (1) holds,
or J(T ) ≤ CG(U) and G = CG(U)NG(J(T )). In the latter case as Z ≤ U , (2)
holds. ¤

The factorization G = CG(Z)NG(J(T )) in the second case of the Thompson
Factorization Lemma B.2.15.2 is called the “Thompson factorization of G”. In the
first case of the lemma, we say that “Thompson factorization fails”.

Classical Thompson factorization describes conditions for a solvable group G
with Sylow 2-subgroup T and F ∗(G) = O2(G) to admit a Thompson factorization.
Thompson’s result can be stated in the form of the following lemma. This statement
and its original proof are due to Glauberman in [Gla73]. As in standard elemen-
tary references such as 32.5 in [Asc86a], the result follows easily from Thompson
Factorization B.2.15 and our earlier representation-theoretic version B.1.8. The
final two remarks follow from B.2.4.3.
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Theorem B.2.16 (Thompson Factorization for Solvable Groups). Assume G
is solvable with F ∗(G) = O2(G), and let T ∈ Syl2(G) and Z := Ω1(Z(T )). Then
V := 〈ZG〉 ∈ R2(G), and either

(1) J(T ) ≤ CG(V ) and G = NG(J(T ))CG(Ω1(Z(T ))), or
(2) J(T ) 6≤ CG(V ), J(T )∗ is Sylow in L∗ := J(G)∗, L∗ = L∗1 × · · · × L

∗
n, V =

CV (L
∗)⊕ V1 ⊕ · · · ⊕ Vn, where Vi := [L∗i , V ] is the natural module for L∗i

∼= L2(2),
and G∗ permutes the sets {L∗1, . . . , L

∗
n} and {V1, . . . , Vn}.

In any case, m2(CT (V )) = m2(T ) and J(CT (V )) ≤ J(T ).

While we are often able to use Thompson factorization on solvable groups,
more frequently we wish to factorize a non-solvable group G. Hence we need to
know the structure of G∗ and its action on V ∈ R2(G), for more general groups
G when Thompson factorization fails. For this work, the important case is when
G is an SQTK-group, where we will be able to give a fairly precise description of
the possibilities for G∗ and its action on V in Theorems B.5.1 and B.5.6. Certain
minimal situations are particularly important in the context of pushing up; we
collect various results on pushing up in chapter C of Volume I.

The next lemma was suggested by John Thompson, for use in the subsequent
result.

Lemma B.2.17. Suppose X1, · · · , Xn are subgroups of G, I := 〈X1, · · · , Xn〉,
L ≤ I, and V is an F2G-module such that

m(V/CV (L)) ≥
n∑

i=1

m(V/CV (Xi)). (∗)

Then
(i) CV (L) = CV (I), and

(ii) m(V/CV (L)) =

n∑

i=1

m(V/CV (Xi)).

Proof. Since L ≤ I , we have CV (I) ≤ CV (L), so

m(V/CV (I)) ≥ m(V/CV (L)). (∗∗)

Since I = 〈X1, · · · , Xn〉,

CV (I) =

n⋂

i=1

CV (Xi).

There is an injection

V/
n⋂

i=1

CV (Xi)→
n⊕

i=1

V/CV (Xi),

v +

n⋂

i=1

CV (Xi) 7→ (v + CV (X1), v + CV (X2), · · · , v + CV (Xn)).

Hence
n∑

i=1

m(V/CV (Xi)) ≥ m(V/CV (I)). (+)
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Applying (**), (*), and (+) respectively yields

m(V/CV (I)) ≥ m(V/CV (L)) ≥
n∑

i=1

m(V/CV (Xi)) ≥ m(V/CV (I)).

All inequalities are thus equalities, so (i) and (ii) hold. ¤

The next lemma is technical but important, and is used repeatedly throughout
the proof of the Main Theorem. We will wait until chapter C on pushing up to
try to motivate the lemma; its real utility will not become clear until we finally
apply it frequently in the proof of the Main Theorem. The argument goes back to
Baumann, cf. the special case in 2.11.1.4 of [Bau76].

Lemma B.2.18 (Baumann’s Argument). Let L := O2(G), R a 2-subgroup of G
containing V , and S := Baum(R). Assume

(a) O2(L) ≤ CR(V ) and L ≤ NG(CR(V )).
(b) CL(V ) ≤ O2,Φ(L).
(c) R∗ contains no strong FF ∗-offenders on V .
(d) There exist L-conjugates X1, . . . , Xn of subgroups of R such that Xi =

J(Xi) with m2(Xi) = m2(R), L
∗ ≤ 〈X∗1 , . . . , X

∗
n〉, and

m(V/CV (L
∗)) ≥

n∑

i=1

m(V/CV (X
∗
i )). (∗)

(e) J(R) ≤ I := 〈X1, · · · , Xn〉.

For X a 2-subgroup of G, define α(X) := Ω1(Z(J(X))). Then

(1) O2(L) ≤ S.
(2) α(R) = Cα(R)(L)CV (J(R)).
(3) If CR(V ) ∈ Syl2(CLR(V )), then CS(V ) ∈ Syl2(CLS(V )). Thus if in addi-

tion S∗ ∈ Syl2(L
∗S∗), then S ∈ Syl2(LS).

Proof. We extend an argument of Baumann, from his original proof of Bau-
mann’s Lemma B.6.10; we will use this extension later when we give our proof of
B.6.10.

As the lemma is a statement about LR, and LR satisfies the hypotheses of the
lemma in the role of “G”, replacing G by LR we may assume G = LR.

In the first two paragraphs of the proof below, we assume only hypotheses
(a)–(d) of the lemma; later we add hypothesis (e). In particular under hypotheses
(a)–(d), we prove Q := CR(V ) E G and J(R)G = J(R)I ; we can then use these
facts in the proof of B.2.19 after we establish (a)–(d) there.

First Q E R and L acts on Q by (a), so Q E LR = G. In particular IQ is a
subgroup of G. Also J(R)G = J(R)RL = J(R)L.

By (d), L∗ ≤ I∗, so as L = O2(G), L = O2(I)CL(V ). Set L+ := L/O2(L).
Then L+ = O2(I)+CL(V )+, while by (b), CL(V )+ ≤ Φ(L+), so L+ = O2(I)+.
Thus L ≤ IO2(L). Then as O2(L) ≤ Q by (a), L ≤ IQ, so

J(R)G = J(R)L ⊆ J(R)QI = J(R)I ⊆ J(R)G,

and hence J(R)G = J(R)I .
We now assume hypothesis (e). Thus J(R) ≤ I , so 〈J(R)G〉 = 〈J(R)I〉 ≤ I .

On the other hand by (d), there is li ∈ L with X li
i ≤ R; where Xi = J(Xi) and

m2(Xi) = m2(R). As J(R)
G = J(R)I , there is gi ∈ I with Xgi

i = J(Xi)
gi ≤ J(R),
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and so I = 〈J(R)I 〉. Therefore I = 〈J(R)G〉 E G. Hence O2(I) = O2(IQ), so as
L = O2(L) ≤ IQ, L ≤ O2(IQ) ≤ I .

Set W := α(R)V . By (c), R∗ contains no strong FF ∗-offenders on V , so by
B.2.4.3, for any A ∈ A(R) with A∗ 6= 1 we have CA(V )V = (A ∩Q)V ∈ A(R)∩Q,
so that A(Q) ⊆ A(R) and J(Q) ≤ J(R). Then using the characterization of α(S)
as an intersection in B.2.3.7,

α(R) ≤ α(Q) ≤ (A ∩Q)V.

Then

[α(Q), A] ≤ [(A ∩Q)V,A] = [V,A] ≤ V,

and hence [α(Q), J(R)] ≤ V . Therefore as I = 〈J(R)G〉 and Q E G, [α(Q), I ] ≤ V .
Then as α(R) ≤ α(Q), [W, I ] ≤ V , and hence G = IR acts on W . Observe
that W = CW (J(R))V as J(R) centralizes α(R). Thus m(V/CV (J(R)

∗)) =
m(W/CW (J(R))). Similarly asXgi

i ≤ J(R), and gi acts onW ,mi := m(V/CV (X
∗
i ))

= m(W/CW (Xi)). Define

U :=

n⋂

i=1

CW (Xi).

Then U = CW (I), and by B.2.17 applied to V and W , CW (L) = CW (I) = U and

m(V/CV (L)) =
n∑

i=1

mi = m(W/U).

Thus W = UV . By (e), U = CW (I) ≤ α(R), so as α(R) ≤ W = UV , we conclude
that α(R) = U(α(R) ∩ V ) = UCV (J(R)) = CW (I)CV (J(R)), so that (2) holds.
By (a), O2(L) ≤ CR(V ), so as L ≤ I , O2(L) centralizes CW (I)CV (J(R)) = α(R).
Hence as O2(L) ≤ R, (1) holds.

Next assume CR(V ) ∈ Syl2(CLR(V )). Then as LS E LR, P := CR(V )∩LS ∈
Syl2(CLS(V )). Then for x ∈ P , x centralizes CV (J(R)) as x centralizes V , while
x centralizes Cα(R)(L) as x ∈ LS ≤ CG(Cα(R)(L)). Therefore x ∈ CR(α(R)) = S
using (2), so P ≤ S and hence P = CS(V ) is Sylow in CLS(V ), establishing (3). ¤

In most of our applications of Baumann’s Argument B.2.18, we can choose
X1 := J(R), so that hypothesis (e) of B.2.18 is trivially satisfied. However some-
times this choice is not possible, notably in some cases of C.1.37; in those cases we
will appeal to the following variant of B.2.18:

Lemma B.2.19. Let L := O2(G), R a 2-subgroup of G containing V , and
S := Baum(R). Assume

(A) O2(L) ≤ Q := CR(V ) ∈ Syl2(CLR(V )), and L ≤ NG(Q).
(B) CL(V ) ≤ O2,Φ(L).
(C) R∗ contains no strong FF ∗-offenders on V .
(D) There exist L∗-conjugates Y ∗1 , . . . , Y

∗
n of subgroups of R∗, such that for Ri

a Sylow 2-subgroup of the preimage Yi in LR of Y ∗i , we have Y
∗
i = J(Ri)

∗, with
m2(Ri) = m2(R), L

∗ ≤ 〈Y ∗1 , . . . , Y
∗
n 〉, and

m(V/CV (L
∗)) ≥

n∑

i=1

m(V/CV (Y
∗
i )). (∗)

(E) For each FF ∗-offender A∗ in R∗, A∗ = A∗1 · · ·A
∗
r , with A∗i an FF ∗-

offender, and A∗i ≤ Y
∗g∗ji
ji

≤ R∗ for some index ji and g
∗
ji
∈ L∗.
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For X a 2-subgroup of G, define α(X) := Ω1(Z(J(X))). Then

(1) O2(L) ≤ S.
(2) α(R) = Cα(R)(L)CV (J(R)).
(3) CS(V ) ∈ Syl2(CSL(V )).
(4) If S∗ ∈ Syl2(L

∗S∗), then S ∈ Syl2(LS).

Proof. Set Xi := J(Ri) for 1 ≤ i ≤ n, so that X∗i = Y ∗i , and set I :=
〈X1, . . . , Xr〉. We will verify the hypotheses (a)–(e) of B.2.18 for this family of
subgroups of G. Then the lemma follows from B.2.18. Just as in the proof of
B.2.18, we may assume G = LR.

First hypotheses (A), (B), and (C) imply hypotheses (a), (b), and (c) of B.2.18,
respectively.

Let Y be the preimage in G of R∗; by (A), R ∈ Syl2(Y ), so Y = O2(Y )R =

(Y ∩ L)R. By (D), L∗ ≤ I∗, and there exist gi ∈ L with X
∗g∗i
i ≤ R∗. Then

Xgi
i ≤ Y , so as Y = (Y ∩L)R, adjusting gi by an element of Y ∩L if necessary, we

may assume Xgi
i ≤ R. Thus Xgi

i = J(R ∩ Y gii ). Since m2(Xi) = m2(Ri) = m2(R)
by (D), Xgi

i ≤ J(R) and hypothesis (d) of B.2.18 is satisfied. Thus to complete the
proof, it remains to verify hypothesis (e) of B.2.18; that is, we must show that for
each A ∈ A(R), A ≤ I .

As we mentioned during the proof of B.2.18, since we have established (a)–(d),
Q E G and J(R)G = J(R)I . Thus as Xgi

i ≤ J(R), we may take gi ∈ I , so as
Xi ≤ I , also Xgi

i ≤ I . Without loss 1 6= X∗i for each i, so again as Xi = J(Ri)
and m2(Ri) = m2(R), there is B ∈ A(R) with B∗ 6= 1. By (C) and B.2.4.3,
CB(V )V ∈ A(R) ∩ Q, so m2(Q) = m2(R) = m2(Ri). As Q E G, Q is contained
in the Sylow 2-group Ri of Yi, so as m2(Ri) = m2(Q), J(Q) ≤ J(Ri) = Xi ≤ I .

Thus A ≤ I for each A ∈ A(R) with A ≤ Q, so we may assume A∗ 6= 1. By
B.2.10, A∗ is an FF ∗-offender on V , so we may choose FF ∗-offenders A∗i , 1 ≤ i ≤ r
as in (E). Let Bi be the preimage in A of A∗i ; by Remark B.2.8, Di := BiCV (Bi) ∈
A(R). Thus if each Di ≤ I , then A ≤ B1 · · ·Br ≤ I , as desired. Therefore we may
assume that A = Di for some i. Then by (E), A∗ ≤ X∗g∗j where j := ji and g := gj .

Then A ≤ J(R ∩ Y gj ) = X
gj
j ≤ I , contrary to A 6≤ I . This contradiction completes

the proof. ¤

Lemma B.2.20. Assume O2(G) ≤ R ≤ T with J(R) 6≤ CR(V ) = O2(G).
Suppose P(R∗, V ) contains a unique FF ∗-offender A∗, and A∗ = CR∗(CV (A

∗)).
Then A∗ = J(R)∗ = Baum(R)∗.

Proof. By hypothesis there is B ∈ A(R) with B∗ 6= 1, and B∗ ∈ P(R∗, V )
by B.2.7 applied to R in the role of “G”. Hence B∗ = A∗ = J(R)∗ by hypothesis.
Then CV (A

∗) ≤ Ω1(Z(J(R)))), so Baum(R)
∗ ≤ CR∗(CV (A

∗)) = A∗, and hence
Baum(R)∗ = A∗. ¤

Occasionally we need to know that the preimage of an FF∗-offender (that is, a
member of P(G∗, V )), contains a unique FF-offender in A(G); the following condi-
tion suffices:

Lemma B.2.21. Assume CG(V ) = V and A ∈ A(G) such that CV (A) = CV (a)
for some a ∈ A. Then A is the unique member B of A(G) such that A∗ = B∗.

Proof. Assume B ∈ A(G) with A∗ = B∗. Thus CV (A) = CV (B) and as
A,B ∈ A(G), CV (A) = CV (B) ≤ A ∩B. Therefore as CV (A) = CV (a) by hypoth-
esis, CAV (a) = ACV (a) = ACV (A) = A. Now as A∗ = B∗, there is b ∈ B with
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a∗ = b∗. Hence as V = CG(V ), a = bv for some v ∈ V , and as a2 = b2 = v2 = 1,
〈b, v〉 = 〈a, b〉 is abelian. Thus v ∈ CV (a) = CV (A) ≤ B, so that a = bv ∈ B. But
now B ≤ CAV (a) = A, so A = B as |A| = |B|. ¤

B.3. The permutation module for An and its FF∗-offenders

In this section, we study failure of factorization for the alternating group on its
natural module, primarily quoting [Asc81a, 2.4] as adapted for our situation.

So we set Ω := {1, . . . , n} and G := Sym(Ω) ∼= Sn, with L := E(G) ∼= An.
Since we are interested in strongly quasithin groups, Theorem C (A.2.3) tells us
that we may restrict attention to the cases n = 5, 6, 7, or 8.

Let U be the n-dimensional permutation module for G over F2, and U0 the
core of U : If we regard U as the power set 2Ω of subsets of Ω, with addition given
by the symmetric difference of sets, then U0 is the subspace of U of subsets of even
order. For S ⊆ Ω, let eS denote the subset S regarded as an element of U . In
particular eΩ is a fixed point of G, and we set Ũ := U/〈eΩ〉 and write X̃ for the

image of X ⊆ U in the quotient space Ũ .
As just observed, the map

2Ω → U
S 7→ eS

is a bijection of the power set of Ω with U . Define the weight of a vector eS ∈ U
to be the order |S| of the set S. By a slight abuse we extend this notion to the

quotient Ũ , by “defining” the weight of ẽS to be |S|; thus ẽS also has weight n−|S|,
as ẽS and ẽΩ−S have been identified.

We define the natural module for L as the module Ũ0. The following statements
are elementary and well-known; see for example Exercise 6.3 in [Asc86a].

Lemma B.3.1. (1) L is irreducible on its natural module Ũ0.

(2) If n is odd, then U = U0 ⊕ 〈eΩ〉, so the natural module Ũ0 is of rank n− 1
and isomorphic to U0.

(3) If n is even then
〈eΩ〉 < U0 < U

is the unique L-chief series for G, so the natural module is of rank n− 2.

It is well known that the module U is an FF-module; for example a transposi-
tion induces a transvection on U . We next quote a result which gives a complete
description of the set P(G, V ) of offenders (as in B.2.7) for the various sections of
U . The behavior of P(G, V ) differs according to the following two cases:

Case (a). Either
(a1) n is odd, or

(a2) n is even and V = U or Ũ .

Case (b). n is even and V = U0 or Ũ0.

Proposition B.3.2. Let V be one of U,U0, Ũ , Ũ0 and A ∈ P(G, V ). Let ti :=
(2i− 1, 2i), 1 ≤ i ≤ n/2, be transpositions in G, and define Am := 〈ti : 1 ≤ i ≤ m〉
for 1 ≤ m ≤ n/2, 2 D := A[n/2], and

A0 := 〈(1, 2)(3, 4), (1, 3)(2, 4), ti : 2 < i ≤ n/2〉.

2This notation of Am for 2-subgroups should not be confused with the alternating subgroup
L ∼= An of G ∼= Sn.
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We may choose T ∈ Syl2(G) to contain these subgroups; then

(1) For 1 ≤ m ≤ n/2, m(Am) = m, and m(V/CV (Am)) = m, except that
m(V/CV (An/2)) =

n
2 − 1 in case (b).

(2) In case (b), m(A0) = n/2 = m(V/CV (A0)).

(3) If n = 8, V = Ũ0, and A is an E8-subgroup of L regular on Ω, then
m(V/CV (A)) = 3.

(4) In case (a),

P(G, V ) =
⋃

1≤m≤n/2

AGm,

with J(T, V ) = D, and q(G, V ) = 1.

(5) Assume case (b) holds but n 6= 8 when V = Ũ0. Then

P(G, V ) = (D ∩ L)G ∪ [
⋃

0≤m≤n/2

AGm] ∪ H,

where H is the set of conjugates of hyperplanes of D other than D ∩ L. Further
J(T, V ) = D〈 (t1t2)G ∩ T 〉 and q(G, V ) = (n− 2)/n.

(6) Assume n = 8 and V = Ũ0. Then

P(G, V ) = (D ∩ L)G ∪ [
⋃

0≤m≤4

AGm] ∪H ∪R,

where R is the set of regular E8-subgroups of L. Further J(G, T ) = T and q(G, V ) =
3/4, with D the unique strong FF∗-offender in T .

Proof. See 2.4 in [Asc81a] for the determination of P(G, V ). The subgroups
in H are mistakenly omitted from the conclusion of 2.4 in [Asc81a], but the proof is
easily repaired. The asserted value of q(G, V ) then follows from the list of offenders.

¤

Next we recall that the F2L-modules V considered in B.3.2 include the inde-
composables whose only non-central chief factor is a natural module:

Lemma B.3.3. Assume H is either L or G, let W be the natural module for L,
and V an F2H-module which is indecomposable as an L-module, and whose only
non-central L-chief factor is W . Then

(1) If n is odd, then H1(L,W ) = 0, so V = W = U0
∼= Ũ ∼= Ũ0. If n is even,

then H1(L,W ) ∼= Z2.

Now assume further that n is even.

(2) If V/CV (H) ∼=W , then V ∼= U0 or V =W ∼= Ũ0.

(3) If [V, L] =W , then V ∼= Ũ or V =W ∼= Ũ0.

(4) V ∼= U , U0, Ũ , or Ũ0.

Proof. These results are well known; see for example Exercise 6.3 in [Asc86a]
for (1) and (3). Then as W is self-dual, (2) follows from (3); cf. the discussion in
Remark I.1.7. If V = [V, L] then (4) follows from (2), so we may assume otherwise.

Hence setting V̂ := V/CV (L), V̂ ∼= Ũ0 by (3), so there is v ∈ V − [V, L] such that
CL(v̂) ∼= An−1. Then CL(v̂) = O2(CL(v̂)), so CL(v̂) = CL(v). Thus 〈vL〉 is a
quotient of the induced module U as an L-module, so as V is an indecomposable
L-module, V = 〈vL〉. It follows that V is U or Ũ , completing the proof of (4). ¤
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Lemma B.3.4. Assume n = 6, L ≤ H ≤ G, and V := U0 or Ũ0. Let P
be a nonempty stable subset of P(H,V ), T ∈ Syl2(H), Hi the stabilizer of an i-
dimensional subspace of V/CV (H) stabilized by T for i = 1, 2, Ri := O2(Hi), and
Li := Hi ∩ L. Then

(1) If H = L ∼= A6, then JP(T ) = R2 has rank 2 and contains no strong
FF-offenders, and JP(R1) = 1.

(2) If H = G ∼= S6, then

(i) R2 of rank 3 is the unique strong FF ∗-offender in T .
(ii) R1 contains no strong FF

∗-offender.
(iii) If all offenders in P are strong, then JP(R1) = 1 and JP(T ) = R2.
(iv) If JP(R1) = 1, then JP(T ) E L2T and L1 = [L1, JP(T )].
(v) If JP(R1) 6= 1, then L1 = [L1, JP(T )], and either

(a) JP(R1) = 〈(5, 6)〉 and JP(T ) E L2T , or
(b) JP(R1) = R1 and JP(T ) = T .

(vi) Either

(a) all members of P are of order 2, or
(b) there exists A ∈ P, and a hyperplane B of A (not necessarily in

P) with B ≤ T but B 6≤ R2.

Proof. Assume first that H = L. Then R2 is of rank 2 and by B.3.2.4, R2

is the unique FF∗-offender in T and is not strong, so (1) holds. Thus we may
assume that H = G. Then by parts (1) and (2) of B.3.2, A3 is the unique strong
FF∗-offender in T , so parts (i) and (ii) of (2) hold, and imply (iii).

By B.3.2.5, each offender is conjugate to one of

(I) Ar for 1 ≤ r ≤ 3.
(II) O2(L2) of rank 2.
(III) R1.
(IV) A+ := 〈(1, 2)(3, 4), (5, 6)〉.

Observe A3 = R2 and let A′1 := 〈(5, 6)〉 denote the conjugate of A1 in R1. Then

JP(R1) = 1 iff none of A′1, R1 and A+ is in P . Further A1
<
∼ A+, R1, and A2, as the

latter subgroups are not strong offenders. Hence as P is stable, if A′1 /∈ P , then A+,
R1, and A2, are not in P . Therefore JP(R1) = 1 iff A′1 /∈ P iff P∩T ⊆ {R2, O2(L2)}.
Thus (iv) holds. Further if JP(R1) 6= 1, then A′1 ∈ P , so that R2 ≤ JP(T ), and
either A′1 = JP(R1) so that (v.a) holds, or one of R1 or A+ lies in P so that (v.b)
holds.

Finally suppose that there exists A ∈ P not of order 2. If A = A2 or O2(L2),
then some conjugate of 〈(1, 2)(3, 4)〉 is contained in T but not in R2. If A = R1

then A ≤ T but A 6≤ R2, so some hyperplane B of A does not lie in R2. Finally
some conjugate of A+ is contained in T but not R2, and A+ is a hyperplane of A3,
so (vi) is established. ¤

B.4. F2-representations with small values of q or q̂

In this section, we consider strongly quasithin groups G, and begin to describe
the F2G-modules V such that q̂(G, V ) ≤ 2, where q̂(G, V ) is the “cubic” analogue
of the parameter q(G, V ):

Definition B.4.1. Define q̂(G, V ) as the minimum of rA,V over elementary
2-subgroups A of G satisfying [V,A,A,A] = 0.
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The parameter is of importance in 3.1.8, which is based on the qrc-lemma D.1.5.
We begin with the list of all SQTK-groups G such that L := F ∗(G) is qua-

sisimple and G possesses an FF-module V . As mentioned in B.1.4.5, these pairs
satisfy q(G, V ) ≤ 1. If q(G, V ) ≤ 1 for some module V , then there exists an over-
group G0 of L in G and a faithful G0-module W such that L is irreducible on W
and q(G,W ) ≤ 1. Thus in the next lemma we describe all pairs (G, V ) for which
F ∗(G) = L is quasisimple, V is a faithful FF-module for G, and L is irreducible
on V . Then later in Theorems B.5.1 and B.5.6 we consider general FF-modules for
general SQTK-groups. In view of B.2.7, we also are interested in describing the set
P(G, V ) of FF∗-offenders in V . Finally, we also record the exact value of the ratio
q(G, V ) for each pair (G, V ), since we will need this information later.

Theorem B.4.2. Let G be an SQTK-group with L := F ∗(G) quasisimple, and
V a faithful F2G-module with L irreducible on V . Assume A ∈ P(G, V ) and set
H := J(G, V ). Then one of the following holds:

(1) H = L ∼= L2(2
n), V is the natural module, A ∈ Syl2(L), and q(G, V ) = 1.

(2) H = L ∼= SL3(2
n), V is a natural module, and q(G, V ) = 1/2.

(3) H ∼= Sp4(2
n), V is a natural module, and q(G, V ) = 2/3. Further H = L

if n > 1.
(4) H ∼= G2(2

n), V is the natural module, m(A) = 3n, and q(G, V ) = 1.
Further H = L if n > 1.

(5) H ∼= S5 or S7, V is the natural module, A is generated by commuting
tranpositions, and q(G, V ) = 1.

(6) H = L ∼= A6, V is a natural module, m(A) = 2, and q(G, V ) = 1. If
notation is chosen as in section B.3, then A is conjugate to 〈(1, 2)(3, 4), (3, 4)(5, 6)〉.

(7) G = H = L ∼= A7, m(V ) = 4, q(G, V ) = 1, and A is conjugate to
〈(1, 2)(3, 4), (1, 3)(2, 4)〉.

(8) H = L ∼= Â6, m(V ) = 6, q(G, V ) = 1, and A is the centralizer of an F4-line
in V .

(9) H = L ∼= Ln(2), n = 4 or 5, V is a natural module, and q(G, V ) = 1/(n−1).
(10) L ∼= L4(2), V is the 6-dimensional orthogonal module, and either

(i) G = H = L, m(A) = 3, and q(G, V ) = 1, or
(ii) G = H ∼= S8 and q(G, V ) = 3/4.

(11) G = H = L ∼= L5(2), m(V ) = 10, A is the unipotent radical of an end-node
maximal parabolic, and q(G, V ) = 1.

Proof. The proof appears in chapter K. Lists of FF-modules satisfying the
hypotheses of B.4.2 appear in unpublished papers of Cooperstein, Mason, and Mc-
Clurg, e.g. [CM] and [McC82]. But more recently, Guralnick and Malle in
[GM02] and [GM04, Table 2] have produced a more general treatment which we
appeal to as the basis for our proof. ¤

From the cases in B.4.2 where L < H we obtain:

Corollary B.4.3. Under the hypothesis of B.4.2, if P(G, V ) 6⊆ L, then H ∼=
Sn for 5 ≤ n ≤ 8 or H ∼= G2(2), and V is the natural module, with q(G, V ) ≥ 2/3.

Let G be a finite group with F ∗(G) =: L quasisimple and V a faithful F2G-
module such that L is irreducible on V . If q(G, V ) ≤ 1, then certainly q̂(G, V ) ≤ 1.
However we also need information about pairs which satisfy the weaker condition
q̂(G, V ) ≤ 2. More precisely, we need to know the pairs such that either q(G, V ) ≤ 2,
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or q(G, V ) > 2 but q̂(G, V ) < 2. The latter class of representations arises in D.1.5.1
via an appeal to E.2.15; this is applied especially in the proof of 3.2.9.

Remark B.4.4. Our convention in the statement of B.4.5 below is to regard
the alternating groups A5, A6, A8 as the groups L2(4), Sp4(2)

′, L4(2) of Lie type
and characteristic 2. Similarly we regard the groups L2(5), L2(7), L2(9), U3(3) as
the groups L2(4), L3(2), Sp4(2)

′, G2(2)
′ of Lie type and characteristic 2. Notation

for subgroups of the Mathieu groups is as in chapter H of Volume I.

Theorem B.4.5. Let G be an SQTK-group with F ∗(G) =: L quasisimple, and
V a faithful F2G-module with L irreducible on V . Set q̂ := q̂(G, V ) and q :=
q(G, V ). Assume that q̂ ≤ 2. Then one of the following holds:

(i) q̂ ≤ 1, so that G and V are described in Theorem B.4.2.

(ii) q̂ > 1 and L, V , and bounds on q, q̂ are listed in Table B.4.5:

ThmC L dimV q q̂
C.1 A7 6 3/2 3/2
C.3 L2(2

2n) 4n orthog. ≤ 2 ≤ 3/2
U3(2

n) 6n 2 2
Sz(2n) 4n 2 2
L3(2

2n) 9n > 2 5/4
G2(2)

′ 6 3/2 3/2
C.5 M12 10 > 2 > 1

M̂22 12 > 1 > 1
M22 10 cocode > 2 > 1

10 code ≥ 2 > 1
M23 11 cocode > 2 > 1

11 code > 2 > 1
M24 11 cocode > 2 > 1

11 code > 2 > 1

(iii) q̂ = 2 but q > 2, and either

(a) L ∼= Sp4(F ) where F := F22a , K := EndF2L(V ) = F2a , and V
K ⊗K F

is the tensor product of a natural 4-dimensional FL-module with a conjugate by the
generator of Gal(F/K), where V K is V regarded as a KL-module, or

(b) L ∼= J2 with V of dimension 12.

Proof. The proof of this theorem also appears in chapter K. Some results
can be found (without proof) in [MS, 6.15], referring to [MS90]; others appear in
Stroth [Str, 1.35]. However our proof is again based on the work of Guralnick and
Malle in [GM02] and [GM04]. ¤

Most of the remaining results in this section collect detailed information about
pairs (G, V ) for which q(G, V ) ≤ 1. In each case V is “small” but usually V is
reducible.

In the first of these lemmas, we consider the groupG2(2
n) on its natural Cayley-

algebra module (i.e. the 7-dimensional Weyl module) and on the 6-dimensional
irreducible quotientof the Weyl module. We call the latter module the natural
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module for G2(2
n) or the G2(2

n)-module. In particular we show in B.4.6.13 that
there is a unique FF∗-offender up to conjugacy on this module.

The set Ak(G, V ) and the parameter a(G, V ) appear in Definitions E.3.8 and
E.3.9. For the usual theory of root groups in Lie type groups, see e.g. pages 13,
45–46, 103–104 in [GLS98].

Lemma B.4.6. Let L := G2(q), with q := 2n, let G be a finite group with

F ∗(G) = E(L), and let V = [V,E(L)] be an F2G-module such that Ṽ := V/CV (L)
is the natural 6-dimensional FL-module, where F := F2n . Then

(1) EndF2L(Ṽ ) = F , dimF2(V ) ≤ 7n, and in case of equality V is the Weyl
module for L over F .

(2) L is transitive on Ṽ #.

(3) Let Ṽ1 be a 1-dimensional F -subspace of Ṽ . Then NL(Ṽ1) =: P1 is a
maximal parabolic of L, R1 := O2(P1) is of order q

5 with Z(R1) =: Z1 the natural

module for P1/R1
∼= GL2(q), Ṽ3 := CṼ (Z1) is of F -dimension 3, A1 := CG(Ṽ3) ∼=

Eq3 , and R1/A1 is the natural module for P1/R1. Also

Ẽ := 〈CṼ (Z) : Z is a long root subgroup of L and Z ≤ Z1〉

is an F -hyperplane of Ṽ , and [E,A1] = V3.
(4) Let T ∈ Syl2(G) with TL := T ∩ L ≤ P1 and Z2 := Z(TL). Then Z2

∼= Eq
is a long-root group of L, P2 := NL(Z2) is the maximal parabolic over TL distinct

from P1, R2 := O2(P2) is special of order q5 with center Z2, CṼ (R2) =: Ṽ2 is

the natural module for P2/R2
∼= GL2(q), Ṽ2 = [Ṽ , z], and CṼ (Z2) = CṼ (z) is of

F -dimension 4 for each z ∈ Z#
2 .

(5) L has two classes of involutions, the long root involutions zL and the short

root involutions rL. Further CL(z) = CL(Z2) = O2′(P2).
(6) CL(r) = CL(R), where R is the root group of r and we may choose A1 =

Z1 × R. Also CṼ (r) = CṼ (R) = Ṽ3 = [Ṽ , r], and NL(R) = A1L1, where L1 is a
Levi complement in P1.

(7) CṼ (i) = C̃V (i) for each involution i ∈ L.
(8) If q > 2 then CV (L) ≤ [V,R].
(9) We have a(G, V ) = 2n, A2(G, V ) ⊆ L, A2n(G, V ) = AL1 , and each member

of the set An+1(G, V ) is fused into A1 under L.
(10) V3/V1 is partitioned by q + 1 P1-conjugates of V2/V1.
(11) If B ≤ G with B# ⊆ zL, then B is fused into Z1 under L. Further Z1 is

strongly closed in R1 with respect to G.
(12) For n > 1, A2n−1(G, V ) ∩ R1 ⊆ A1.
(13) P(G, V ) = AL1 , J(T, V ) = R2, and J(R1, V ) = A1.
(14) Assume that q = 4, and X is of order 3 with XT = TX. Then X ≤

P1 ∩ P∞2 if and only if [X,P∞1 ] ≤ R1.

Proof. Part (1) follows from I.1.6 and I.2.3; we mention that the latter quotes
[Asc87] which in turn uses (5.2) of [Asc88]. Parts (2)–(6) and (10) are probably
well known; in any case details are easily retrievable from [Asc87].

By (6), CṼ (r) = [Ṽ , r] = [̃V, r], so as [V, r] ≤ CV (r) since r is an involution,

while C̃V (r) ≤ CṼ (r), it follows that CṼ (r) = C̃V (r). From 2.3 in [Asc87], there

is a z-invariant complement to CW (L) in the Weyl module W , so CṼ (z) = C̃V (z).
Hence (7) follows from (5).
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To see that (8) holds, see the displayed equations on page 212 in Lemma 4.4 of
[Asc87]: note that our R is the group called “D1” there, and that if q > 2, then
commutators of D1 with x′1 cover Fx0 = CV (L).

Suppose that B ≤ G with B# ⊆ zG. Without loss z ∈ B. By a standard
argument based on 43.9 in [Asc86a], 3 P2 is transitive on root groups Zg2 6= Z2

centralizing Z2, so if b ∈ B − Z2 we may take Z1 = Z2 × Z2(b), where Z2(b) is the
root group of b. Now

B ≤ CL(〈z, b〉) = CL(Z2) ∩ CL(Z2(b)) = CL(Z1) = R1.

We will show that Z1 is strongly closed in R1 with respect to G, which will force
B ≤ Z1; that is, the second assertion of (11) suffices to establish (11). Now (cf. 5.3
in [Asc87]) P1 has three orbits on L/P2, and hence also on ZL2 , with representatives:

Z2, Z
g2
2 ≤ P1 but Zg22 ∩ R1 = 1, and Zg32 ∩ P1 = 1. Thus Z1 = 〈ZP12 〉 is the strong

closure of Z1 in R1. So as noted above, (11) holds.
We now turn to the assertions related to a(G, V ) in (9) and (12). Suppose

that A ∈ A2(G, V ); recall this means that CV (A) = CV (B) for each hyperplane B
of A. If A 6≤ L, then some a ∈ A induces a field automorphism on L and V , so
[CV (A ∩ L), a] 6= 0, contrary to the previous remark. That is A2(G, V ) ⊆ L.

Next assume that A ∈ An+1(G, V ). Suppose A# ⊆ zG. Then by (11) we may
take A ≤ Z1. As m(A) ≥ n + 1, A is not contained in a root group of Z1, so
CV (A) = CV (Z1) = V3 using (3). On the other hand, m(A/A∩Z2) ≤ m(Z1/Z2) =
n < n+ 1, so V3 = CV (A) = CV (A ∩ Z2) ≥ CV (Z2), whereas CV (Z2) > V3 by (4)
and (7). Therefore we may suppose that r ∈ A. So A ≤ CL(r) ≤ A1L1 by (6).
Then m(A/CA(V3)) ≤ m2(L1) = n, so CV (A) = CV (CA(V3)) = V3, as r ∈ CA(V3)
and CV (r) = V3 by (6). Thus A ≤ CG(V3) = A1. Hence we have shown that each
member of An+1(G, V ) is fused into A1 under L, establishing the last statement in
(9).

Next we verify that A1 ∈ A2n(G, V ): For given B ≤ A1 with m(A1/B) < 2n,
we have B ∩ R 6= 1, so CV (B) ≤ CV (B ∩ R) = V3 using (6), and hence CV (B) =
V3 = CV (A1). Thus a(G, V ) ≥ 2n. On the other hand, CV (Z1) > V3 = CV (A1), so
A1 /∈ A2n+1(G, V ). Since we saw An+1(G, V ) is fused into A1 and 2n ≥ n+ 1, to
complete the proof of (9) it remains to show that if B ∈ A2n(A1, V ), then B = A1.

Suppose first that BZ2 < A1. Then

m(B/B ∩ Z2) = m(BZ2/Z2) < m(A1/Z2) = 2n,

so

V3 = CV (B) = CV (B ∩ Z2) ≥ CV (Z2),

contrary to (4) and (7). Thus BZ2 = A1; then from the Dedekind Modular Law
we get Z1 = Z2B1, where B1 := B ∩ Z1. As Z2 ≤ Z1, BZ1 = A1, so m(B1) =
m(B) − n. Similarly the arguments above can be applied to any root group S of
Z1, so Z1 = SB1, and therefore m(B1 ∩ S) = m(B) − 2n =: k, say. Therefore as
the 2n + 1 root subgroups in Z1 partition the nontrivial elements of Z1,

2n+k − 1 = |B#
1 | = (2n + 1)(2k − 1) = 2n+k − 2n + 2k − 1,

so n = k and hence B = A1. So (9) is established.

3But notice there is a misprint in the statement of 43.9 of [Asc86a]: (GJwGK)∩W should
be (GJwGK) ∩ UWU .
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Assume that n > 1, and suppose A ∈ A2n−1(G, V ) ∩ R1. By (11), ZA :=
〈zG ∩ A〉 ≤ Z1. As n > 1, n < 2n− 1 ≥ n+ 1, so by (9), A ≤ Ag1 for some g ∈ G.
Hence ZA ≤ Z1 ∩ Z

g
1 . Also

m(A/ZA) ≤ m(Ag1/Z
g
1 ) = n < 2n− 1,

so as A ∈ A2n−1(G, V ), CV (A) = CV (ZA). Now if ZA ≤ Zg2 , then by (4) and (7),
dimF (V/CV (A)) = 2. However as m(A) ≥ 2n − 1 > n, A contains an element a
of Ag1 − Zg1 , so dimF (V/CV (A)) ≥ dimF (V/CV (a)) = 3 by (6) and (7). Thus ZA
intersects at least two distinct root groups of Z1 and Z

g
1 , so by (3), V3 = CV (ZA) =

V g3 —and hence g ∈ P1 = NG(V3). Thus A ≤ Ag1 = A1, completing the proof of
(12).

Now assumeD ∈ P(G, V ). If d ∈ D#, then either d ∈ rG so thatm([V, d]) ≥ 3n
by (6), or d ∈ zL and m([V, d]) = 2n by (4). Therefore m(D) ≥ 2n, and m(D) ≥ 3n
unless D# ⊆ zL. But in the latter case D ≤ Zg1 for some g ∈ G by (11), so as
m(Z1) = 2n, we conclude D = Zg1 and m(V/CV (D)) = 3n > m(D), contradicting
the definition of P(G, V ). Hence m(D) ≥ 3n, and we may take r ∈ D, so CV (D) ≤
CV (r) = V3 and hence m(V/CV (D)) ≥ 3n. Also D ≤ CG(r) and m2(CG(r)) = 3n
from (6), so m(D) = 3n and V3 = CV (D). Thus D ≤ CG(V3) = A1 of rank 3n, so
D = A1, completing the determination of P(G, V ). By (11), Z1 is strongly closed
in R1, so as A1 = CG(CṼ (Z1)), A1 is the only FF∗-offender in R1. Further P1 is

transitive on ZL2 ∩Z1, so P2 is transitive on ZL1 ∩P2, and hence J(T, V ) = 〈AP21 〉 =
R2. This completes the proof of (13).

Assume the hypotheses of (14), let H be a Cartan subgroup of NL(TL), ∆
the set of long roots in the root system determined by H , and K the subgroup
generated by the root groups in ∆. Then ∆ is an A3-root system, so K ∼= SL3(4).
Then Y := Z(K) = CH (L1), where L1 is a Levi complement in P1: since L1

is generated by long root subgroups, and Y is invariant under the Weyl group.
Further Y centralizes no short root groups, but is invariant under the reflection
in the Levi complement L2 of P2 generated by short root groups, so Y ≤ L2, and
hence Y ≤ P∞2 . Thus Y satisfies the conditions on “X” in (14), and is the only
subgroup of order 3 in P1 permuting with T which also lies in P∞2 . This establishes
(14). ¤

We digress briefly from our study of specific FF-modules to interject lemma
B.4.7, which shows that the quadratic subgroups on a F2-module and its dual are
the same. This facilitates calculation of q(G, V ) in terms of q(G, V ∗). In particular,
in case (3) of the qrc-lemma Theorem D.1.5, V ∗ is an FF-module; in lemma B.5.13,
we will use B.4.7 to show that this forces q(G, V ) ≤ 2. We also use the lemma in
various other places.

Lemma B.4.7. Let F be a field of characteristic 2, V an n-dimensional F -space,
and A an elementary abelian 2-subgroup of GL(V ). For U ≤ V define α(U) to be
the annihilator of U in the dual space V ∗ of V . Then

(1) α : PG(V )→ PG(V ∗) is a GL(V )-equivariant anti-isomorphism of projec-
tive geometries with dim(α(U)) = n− dim(U).

(2) α([V,A]) = CV ∗(A) and α(CV (A)) = [V ∗, A].
(3) A is quadratic on V iff A is quadratic on V ∗.
(4) Assume F = F2, A is quadratic on V , and dim([V,A]) ≤ 2m(A); then

q(A, V ∗) ≤ 2.
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Proof. Part (1) is easy linear algebra and well known. Set U := CV (A). As
A is unipotent on V and V ∗, (1) says that for v ∈ V #,

v ∈ U iff A centralizes the 1-space Fv iff A normalizes the hyperplane α(Fv)
of V ∗ iff [V ∗, A] ≤ α(Fv).

Thus

[V ∗, A] =
⋂

u∈U#

α(Fu) = α(〈Fu : u ∈ U#〉) = α(U).

The dual argument shows that α([V,A]) = CV ∗(A), so (2) holds.
If A is quadratic on V , then [V,A] ≤ U , so by (1) and (2),

[V ∗, A] = α(U) ≤ α([V,A]) = CV ∗(A)

and hence A is quadratic on V ∗. As (V ∗)∗ = V , by symmetry A is quadratic on V
if A is quadratic on V ∗, so (3) is established. Finally (1)–(3) imply (4). ¤

We return to our study of selected FF-modules: It is well known (see I.1.6.4)
that the natural module for SL3(2

n) has nontrivial 1-cohomology only when n = 1.
The next lemma determines the FF∗-offenders on the corresponding indecompos-
able modules.

Lemma B.4.8. Let G ∼= L3(2), V a faithful indecomposable F2G-module, and
W a natural 3-dimensional module for G. Then

(1) |H1(G,W )| = 2.
(2) If dim(V ) = 4 and W ∼= V/CV (G) then P(G, V ) = AG, where A is the

group of transvections on W with fixed center, and q(G, V ) = 1. Further for T ∈
Syl2(G), CV (T ) = CV (G), and for each involution a of G, [V, a] = CV (a) is of
rank 2.

(3) If dim(V ) = 4 and W = [V,G] then P(G, V ) = BG where B is the group of
transvections on W with fixed axis, and q(G, V ) = 1. Further for each involution a
of G, W contains [V, a] = CV (a) of rank 2.

(4) If V has a unique noncentral chief factor which is natural, then dim(V ) = 3
or 4.

Proof. Part (1)–(3) are standard: see I.1.6.4 (or the underlying Background
Reference [JP76]) for (1). Under the hypotheses of (2) or (3), if G were to contain
a transvection on V , then as G is generated by three involutions we would have
m([V,G]) = 3 = m(V/CV (G)) in the respective cases, contrary to the assumption
that V is indecomposable. Thus for each involution a ∈ G, [V, a] = CV (a) is of
rank 2, so in (3), CV (a) ≤W . Then it is easy to see that (2) and (3) hold.

Assume the hypothesis of (4). As the unique noncentral chief factor of V is
natural, dim([V,G]) ≤ 4 by (1). If dim([V,G]) = 3 then dim(V ) ≤ 4 by (1), so we
may assume that dim([V,G]) = 4. Indeed we may assume that dimV = 5, and it
remains to derive a contradiction. By Gaschütz’s Theorem A.1.39, no v ∈ V −[V,G]
is centralized by T ∈ Syl2(G), so dimCV (G) = 1. Let X be of order 7 in G and
Y of order 3 in NG(X). Then dimCV (X) = 2, CV (G) < CV (X) 6≤ [V,G], and Y
centralizes CV (X) by Coprime Action. So as XY is maximal in G, CG(v) = XY for
each v ∈ CV (X)− CV (G). Thus V is a quotient of the 8-dimensional permutation
module P on the cosets of XY in G, by some submodule S of dimension 3. Observe
that T acts regularly on P , so that dimCP (T ) = 1, and hence CP (T ) = CP (G).
Then P has no natural submodule N since CN (T ) 6= 0, so S has only trivial
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composition factors, and hence S is trivial since G is perfect, contradicting CP (T )
of dimension 1. ¤

Next we consider an F2G-module V for G ∼= SLn(2
f ) possessing a natural

submodule U and such that V/U is isomorphic to U or its dual. We establish a
sufficient condition for V to split over U , and show that this condition is satisfied
when V is an FF-module. The proof was suggested by Mason’s proof of 1.3.9 in
[Mas], although both his result and proof differ from ours.

Lemma B.4.9. Let G ∼= Ln(2), n ≥ 4, or SL3(2
f ), V a faithful F2G-module,

and U a natural F2G-submodule of V such that Ṽ := V/U is F2G-isomorphic to
U or its dual U∗. Then

(1) Assume G contains a 4-subgroup E of transvections with a fixed axis on

Ṽ such that E is quadratic on V . If G ∼= SL3(2
f ), assume further that E is not

contained in a root group of G; and if f = 2, assume in addition that all such
4-subgroups not in a root group are quadratic on V . Then V splits over U as an
F2G-module.

(2) Assume T ∈ Syl2(G) and there is A ∈ P(T, V ). Then

(i) V splits over U . That is, non-split extensions of a natural module by a
second natural module are not FF-modules.

(ii) If n = 3, then Ṽ ∼= U and q(G, V ) = 1. So the sum of the natural
module and its dual is not an FF-module.

(iii) If n = 4 and Ṽ ∼= U∗, then A = J(T ) is of rank 4, and q(G, V ) = 1.

(iv) If n = 5 and Ṽ ∼= U∗, then q(G, V ) = 5/6 and either A ∼= E16 is
contained in a Levi complement of an end-node maximal parabolic—or A ∼= E32

or E64 and A is contained in the unipotent radical of an interior-node maximal
parabolic.

Proof. Assume the hypotheses of (1). For e ∈ E#, set Ĩ := CṼ (e), the

common axis for the transvections in E; thus Q := CG(Ĩ) is the full group of

transvections with axis Ĩ and so contains E. Then Q is partitioned by root groups,
and we denote by Qe the root group containing e. LetK0 denote a Levi complement
of the parabolic NG(Q), and K := O2′(K0). Observe that KQ contains T ∈
Syl2(G), so by Gaschütz’s Theorem A.1.39 to show the splitting required for (1),
it suffices to exhibit a KQ-complement to U in V .

Further let

E(e) := {Eg : g ∈ G and e ∈ Eg},

except when G is SL3(4), in which case E(e) is defined to consist of all 4-subgroups
in Q containing e but not contained in Qe. We observe that Q = 〈E(e)〉: This is
because E ≤ Q, but E 6≤ Qe (using the first additional hypothesis when f > 1),
and Q = 〈e, xCK (e)〉 for x ∈ Q − Qe—unless G ∼= SL3(4), where the observation
holds as E(e) = {〈e, x〉 : x ∈ Q−Qe}.

For Ee ∈ E(e), Ee is quadratic on V by our hypotheses, so as Q = 〈E(e)〉,

[V, e,Q] = 〈[V, e, Ee] : Ee ∈ E(e)〉 = 0.

Thus Q centralizes [V, e], so by transitivity of K on Q#, Q centralizes [V,Q]—so Q
is quadratic on V .

Set F := F2f , where f := 1 if G ∼= Ln(2). Observe that K contains a conjugate
P := Hg of a hyperplane H of Q—unless f > 1, where K contains a conjugate
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P := Qge of Qe. Also K fixes a complement F ṽ to Ĩ in Ṽ . Now P ≤ Qg with

ṽ ∈ [Ṽ , Qg] = ˜[V,Qg] ≤ C̃V (Qg) ≤ C̃V (P )

since Q is quadratic on V . Therefore we may pick v ∈ CV (P ). As [ṽ, K] = 0, K

acts on the preimage U0 of F ṽ in V , and then on Û0 := U0/CU (K).
We will show that K centralizes v. Suppose first that [v̂, K] = 0. Then

[v,O2(K)] = 0 by Coprime Action. Now K = O2(K), except when G ∼= L3(2),
where K = O2(K)P and P centralizes v by our choice of v—so in any event, we
conclude that [v,K] = 0 in this case, as desired. So we turn to the case [v̂, K] 6= 0;

then Û0 is indecomposable for K of rank fn with [Û ,K] a natural module of rank
f(n − 1). However (see I.1.6, and also recall B.4.8.1) the natural module for K
has trivial 1-cohomology unless K ∼= L3(2) or SL2(2

f ) for f > 1—that is, unless
G ∼= L4(2) or SL3(2

f ) for f > 1. However, in those explicit non-split extensions (cf.
B.4.8.3 when K = L3(2), and the dual of I.2.3 when K = SL2(2

f )), the subgroup

P does not fix a vector outside [Û0,K] = Û , whereas P fixes v.
We have shown that K fixes some v ∈ V − ([V,Q] + U). Set W := [v,Q] and

for x ∈ Q define

α : Q →W
x 7→ [v, x]

Now for y ∈ Q,

[v, xy] = [v, x]y + [v, y] = [v, x] + [v, y]

as Q is quadratic on V , so α is a homomorphism. Now ker(α) = CQ(v) = 1,
since elements of Q have their fixed points in [V,Q]; so α is an isomorphism. Thus
m(W ) = f(n− 1), with W ∩ U = 0.

So when L is Ln(2) where f = 1, the vector v spans a 1-space over F = F2, and
henceW+〈v〉 is a KQ-complement to U in V ; as mentioned earlier, this establishes
(1) in this case.

So we have reduced to the case G = SL3(2
f ) with f > 1; set H := CK0(K), so

that H is cyclic of order 2f − 1 and K0 = KH . As K acts on W and W̃ = [W̃ ,K],
also W = [W,K].

Suppose Ṽ ∼= U∗. Then CU (Q) is a 1-space over F centralized by K, so as
CV (Q) = CU (Q) +W , W = [CV (Q),K] and hence W is H-invariant; therefore

W =W h = [v,Q]h = [vh, Q]

for each h ∈ H . Now choosing anH-complementWH to CU (K) in CV (K),W+WH

is spanned by W and the vectors vh for h ∈ H . Thus W + WH gives a K0Q-
complement to U in V , establishing (1) in this case.

Thus we may assume finally that Ṽ ∼= U . Then CU (Q) and W are natural

K-submodules of CV (Q), so as CṼ (Q) = Ĩ = W̃ , CV (Q) = CU (Q)⊕W is a homo-
geneous K-module. Therefore the set W of irreducible K-submodules of CV (Q) is
of order 2f + 1, and the map

ϕ : CV (K)# →W
v 7→ [v,Q]

is H-equivariant. As [u+ v, x] = [u, x] + [v, x] for x ∈ Q and u, v ∈ V , ϕ−1(W ) is
a subgroup of CU (K) for each W ∈ W . Further ϕ−1(W ) ∩ U = 0 for W 6= CU (Q),
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so |ϕ−1(W )| ≤ 2f − 1, and in case of equality ϕ−1(W ) ∪ {0} is a complement to
CU (K) in CV (K). Therefore as

|CU (K)#| = 22f − 1 = |W| · (2f − 1)

we conclude from the pigeonhole principle that VW := ϕ−1(W ) is a complement to
CU (K) in CV (K) for each W 6= CU (Q). So W + VW is a KQ-complement to U in
V , completing the proof of (1).

We turn to the proof of (2). Let E = E(G) be the set of 4-subgroups E of

G centralizing a hyperplane of Ṽ , with E not contained in a root group if n = 3.
Assume A ∈ P(T, V ), and let Ṽi be the T -invariant i-dimensional F -subspace of Ṽ .

By the Thompson Replacement Lemma B.1.4.3, there is B ≤ A with B ∈
P(G, V ) and B quadratic on V ; and in particular if A is minimal in P(G, V ) under
inclusion, then B = A itself is quadratic on V . Further if B contains a member of
E , then V splits over U by (1)—except possibly in case G is SL3(4), where we must

require B to contain all 4-subgroups with a fixed axis on Ṽ , in order to guarantee
this splitting.

Set m1 := m(U/CU (A)) and m2 := m(Ṽ /CṼ (A)). Then as rA,V ≤ 1 by B.1.4,

k := m(A) ≥ m(V/CV (A)) ≥ m1 +m2 ≥ 2, (!)

so for qi := mi/k,
q1 + q2 ≤ 1. (∗)

In particular either qi < 1/2 for some i = 1 or 2, or q1 = q2 = 1/2.
Assume that n = 3. Then it follows from B.4.2.2 that q1 = q2 = 1/2, and from

the proof of B.4.2, A must be the group of transvections with fixed axis, since that
class of subgroups is the unique class which achieves this minimum ratio. This must
be true on both modules, so Ṽ ∼= U , and A = B is the group of transvections with
axis Ṽ2. As B contains all 4-subgroups with axis Ṽ2, B contains all the necessary
members of E , and hence V splits over U by earlier remarks. Thus (2.i) holds in
this case, with (2.ii) established along the way.

Assume next that n = 4. We first consider the case where Ṽ ∼= U∗. Then as
q1 + q2 ≤ 1, A does not centralize a hyperplane in either module. Hence

m1 ≥ 2 ≤ m2, so k ≥ 4 (∗∗)

by (*). As

CT (Ṽ2) ∩ CT (Ṽ /Ṽ2) = J(T )

is of rank 4, this forces J(T ) = A = B. Again B contains a member of E , so as
before the extension splits as required for (2.i), and we have also established the

additional requirement of (2.iii) in this case. This leaves the case where Ṽ ∼= U . If

A centralizes Ṽ3 then as k ≥ 2, B contains a member of E , so the extension splits.
If A does not centralize Ṽ3, then as U ∼= Ṽ , A does not centralize V3 either, so
mi ≥ 2 for i = 1 and 2. Thus k ≥ 4 and then as earlier A = B = J(T ) and the
extension splits. Thus (2.i) and hence also (2) is established for n = 4.

Finally take n = 5. Again we first consider the case Ṽ ∼= U∗. Arguing as in the
previous paragraph, A does not centralize a hyperplane of either Ṽ or U , so again
(**) holds.

Assume first that k = 4. Then A is minimal in P(G, V ) under inclusion, and
hence as mentioned earlierB = A is quadratic on V . Further as k = 4,m1 = 2 = m2

by (**), so we may assume that CṼ (A) = Ṽ3, and A centralizes a 3-subspace of U .
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Then as Ṽ ∼= U∗, [Ṽ , A] is a 2-subspace of Ṽ by B.4.7.2. As A is quadratic on Ṽ ,

[Ṽ , A] ≤ Ṽ3. Thus A lies in the center of the unipotent radical R of the parabolic

stabilizing the flag [Ṽ , A] < Ṽ3, so as |Z(R)| = 16 = |A|, A = Z(R). But R lies in

a Levi complement L ∼= L4(2) of the parabolic P stabilizing a 4-subspace W̃ of Ṽ

such that Ṽ3 ∩ W̃ = [Ṽ , A], and in fact R is the unipotent radical of the parabolic

of L stabilizing the 2-subspace [Ṽ , A] of W̃ . Therefore from our treatment of the
case n = 4, A contains a member of E(L), so as E(L) ⊆ E(G), V splits over U by
(1). Thus we have established (2.i), and that part of (2.iv) referring to the case
m(A) = 4. The equality q(G, V ) = 5/6 will be obtained in the discussion of the
case m(A) = k > 4.

Thus we may assume that k > 4. If k = 6, then we may assume that A is the
unipotent radical of the parabolic NG(Ṽi) for i = 2 or 3, so A contains a member
of E ; and as A is quadratic, the extension splits by (1), giving (2.i). Also A is a
quadratic offender with ratio 5/6, so q(G, V ) ≤ 5/6. Thus we may take k = 5, so
that m1 +m2 ≤ 5 by (!). Therefore as m1,m2 ≥ 2 by (**), we may assume that
CṼ (A) and CU (A) are given by either

(a) Ṽ3 and a line or plane in U , or

(b) Ṽ2 and a plane in U .

In case (a) if [Ṽ , A] 6≤ Ṽ3, then [Ṽ , a] 6≤ Ṽ3 for some a ∈ A#, so Ṽ3 + [Ṽ , a] is

a hyperplane centralized by a, and a is a transvection with center [Ṽ , a]; then A

centralizes [Ṽ , a], contradicting Ṽ3 = CṼ (A). Thus [Ṽ , A] ≤ Ṽ3, so A is contained

in the radical of NG(Ṽ3), and hence as k = 5, A contains a member of E , and
CU (A) is a line rather than a plane. To prove splitting, we may take A minimal in
P(G, V ), and hence quadratic on V , so the extension splits by (1), and the offender
A satisfies rA,V = 1. In case (b), we obtain the same conclusions by arguing on U

in place of Ṽ . This completes the proof of (2.i), and also of (2.iv) since we have
now shown that q(G, V ) ≥ 5/6.

Finally we turn to the case where Ṽ ∼= U . We only need to establish (2.i)
in this case, so we may choose A minimal in P(G, V ) under inclusion, and hence
quadratic on V ; further we may assume that A contains no member of E . As
k ≥ m1 +m2 ≥ 2, A is noncyclic. Thus as A contains no member of E , A does not
centralize a hyperplane of Ṽ or U , so again (**) holds. If A does not centralize a

3-subspace of Ṽ , then mi ≥ 3 and so k ≥ 6; hence we may assume that A is the
radical of NG(Ṽi) for i = 2 or 3, contradicting the assumption that A contains no

member of E . So we may assume that A centralizes Ṽ3. Then as A is quadratic,
[Ṽ , A] ≤ Ṽ3, so A is contained in the radicalR ofNG(Ṽ3), and k = 4 since A contains

no member of E . Now R = R1 × R2 where Ri := CR(W̃i) for W̃1 and W̃2 distinct

hyperplanes of Ṽ over Ṽ3. As A contains no member of E , Ai := A ∩ Ri ∼= Z2.
Notice it suffices to show that R is quadratic on V , since then R contains a member
of E acting quadratically, so the module splits by (1). As R is generated by NG(R)-
conjugates of A1 and [V,A1, A] = 0, it even suffices to show that R = 〈AX 〉, where
X := NG(R) ∩ NG(A1). Set D := CR(O

2(X))—a 4-group of transvections with
fixed center, containing A1. Observe that [R,O2(X)] = R1D, and X is irreducible
on R/R1D, so that every proper X-submodule of R is contained in R1D; thus
R = 〈AX 〉 as desired, unless A ≤ R1D. But in that event, as m(A) = 4 = m(R1D)
we have A = R1D, whereas A1 = R1 ∩ A is of order 2 rather than 8. This
contradiction completes the proof of B.4.9. ¤
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The following lemma will be used for example in D.2.9.

Lemma B.4.10. Let V be a faithful F2G-module, and assume u ∈ V # such that
the group T of transvections on V with center 〈u〉 is contained in G. Let U := 〈uG〉
and L := 〈TG〉. Then AutL(U) = GL(U).

Proof. Observe that AutT (U) is the group of transvections on U with center
〈u〉; so replacing G, V by AutG(U), U , we may assume that V = 〈uG〉. As V =
〈uG〉, there is a basis X := {x1, . . . , xn} of V contained in uG. Let xi := ugi ,
Ti := T gi , and Lm := 〈T1, . . . , Tm〉 for 1 ≤ m ≤ n. It suffices to show that
Ln = GL(V ), which we prove by induction on n.

If n = 1, then Ln = 1 = GL(V ), giving the base step. So assume that n > 1.
Then by induction on n, AutLn−1(W ) = GL(W ), where W := 〈x1, . . . , xn−1〉.
Next CT1(W ) =: 〈t〉 is of order 2, and as Ln−1 is irreducible on W , Q := 〈tLn−1〉
is the group of transvections with axis W . Thus Q = CGL(V )(W ) ≤ Ln−1, so
Ln−1 = NGL(V )(W ) is a maximal parabolic of GL(V ). Finally Tn 6≤ Ln−1, so by
maximality of Ln−1, Ln = 〈Ln−1, Tn〉 = GL(V ), completing the proof. ¤

The following result is well known, and can be obtained from James [Jam78]
or the Modular Atlas [JLPW95]; however as usual to avoid such outside appeals
we sketch a proof:

Lemma B.4.11. Let G ∼= A7 and V a nontrivial irreducible F2G-module with
dim(V ) ≤ 8. Then dim(V ) = 4 or 6.

Proof. Let n := dim(V ). As G contains an element of order 5, n ≥ 4, so we
may assume that n = 5, 7 or 8.

Let A, L be the set of subgroupsH of G isomorphic to A6 or L3(2), respectively,
and pick H ∈ A∪L. Inspecting the character of the permutation module M for G
on G/H in characteristic 0, we find that the nontrivial composition factors for G
on M are of dimension 6 when H ∈ L, and of dimension 6 or 4 when H ∈ A. Thus
V is not a quotient of the reduction of M modulo 2, so that CV (H) = 0.

Recall next that up to quasiequivalence (conjugacy in Out(H)), the nontrivial
irreducibles for H over F2 (cf. G.5.1 and H.6.1) are a projective P of dimension 8
(resp. 16), and the natural module N of dimension 3 (resp. 4), for H ∈ L (or A,
respectively). Further (cf. I.1.6) dim(H1(H,N)) = 1. Then since H has no fixed
points on V (or on its dual V ∗), we conclude from the existence of H ∈ A that
n 6= 5, 7, and hence that n = 8, Similarly, for A ∈ A, V |A has two 4-dimensional
composition factors; and for L ∈ L, V |L is the 8-dimensional projective P . So for
T ∈ Syl2(G), V |T is the regular T -module, and hence dimCV (T ) = 1. Now for Y
of order 3 in L, dim(CV (Y )) = 2 by H.6.3.3; so by G.5.1.2, the two composition
factors of V |A are non-isomorphic, and then dim(CV (X)) = 1 for X in either
conjugacy class of subgroups of order 3 in A. But we may choose X from the class
not in L to be T -invariant, and then V = [V,X ] ⊕ CV (X) by Coprime Action,
so that T has nonzero fixed points on each of the two summands, contrary to
dim(CV (T )) = 1. ¤

Lemma B.4.12. Let G be a group, V an F2G-module, and v ∈ V , such that

(i) V = 〈vG〉, and
(ii) there exists U ≤ V with dim(U) > 1 such that U# ⊆ vG.

Then
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(1) If G is 2-transitive on vG then V # = vG.
(2) Assume G ∼= L4(2) or A7, |vG| is odd, and CG(v)/O2(CG(v)) ∼= L3(2).

Then dim(V ) = 4 and V # = vG.

Proof. Assume the hypotheses of (1), and let W := vG ∪ {0}; to prove (1)
if suffices by (i) to show that W is a subspace of V . Thus we must show that if
u,w ∈ vG are distinct, then u+ w ∈ vG. Pick U as in (ii); as G is 2-transitive on
vG, we may assume u,w ∈ U , so u+ w ∈ U# ⊆ vG, completing the proof of (1).

Next assume the hypotheses of (2) and let H := CG(v). By hypothesis, |G :
H | = |vG| is odd, so as H/O2(H) ∼= L3(2), we conclude H is an end-node maximal
parabolic of G if G ∼= L4(2), and H ∼= L3(2) when G ∼= A7. In either case, G
is 2-transitive on G/H of order 15, so V # = vG by (1). Then as |vG| = 15,
dim(V ) = 4. ¤

Lemma B.4.13. Assume that G ∼= L4(2) and

(1) V = 〈vG〉 for some v ∈ V # such that CG(v) is the parabolic P stabilizing a
point of the 6-dimensional orthogonal module W for G ∼= Ω+

6 (2), and
(2) 〈vH 〉 is of rank 3, where H is a parabolic of G isomorphic to L3(2)/E8

sharing a Sylow 2-subgroup T of G with P .
Then V is isomorphic to W as an F2G-module.

Proof. Let Q be the quadratic form on W , and ( , ) the associated bilinear
form. Let Ω be the set of 35 nonzero Q-singular vectors of W , and U the permuta-
tion module on Ω, viewed as usual as the power set of Ω. Let f be the symmetric
bilinear form on U with f(x, y) = (x, y) for all x, y ∈ Ω, and q the quadratic form
on U with bilinear form f such that q(x) = 0 for each x ∈ Ω. By definition, P = Gx
for some x ∈ Ω; and by (2), |H : (H ∩P )| = 7, with H the stabilizer of some totally
singular 3-subspace WH of W containing x, where WH

∼= 〈vH 〉 as F2H-module.
By (1) there is a surjective G-homomorphism ϕ : U → V with ϕ(x) = v; let

K := ker(ϕ). Similarly there is a G-surjection ψ : U → W with kernel KW , and
f(u, u′) = (ψ(u), ψ(u′)) and q(u) = Q(ψ(u)).

Let l be a projective line in WH , viewed as a 3-subset which is an element of
U . By (2), K contains the subspace J of U generated by all G-conjugates of l,
so as G is transitive on totally singular lines of W , J contains all such lines. Let
Û := U/J ; then J ≤ K ∩KW since W also satisfies the hypotheses for V , so ϕ and

ψ induce maps from Û to V and W , which we also denote by ϕ and ψ. Each y ∈ Ω
is orthogonal to one or all of the points on l, so l ∈ Rad(f), and hence J ≤ Rad(f).

Similarly J ≤ Rad(q). Thus f and q induce forms f̂ and q̂ on Û preserved by G

such that f̂(û, û′) = (ψ(û), ψ(û′)) and q̂(û) = Q(ψ(û)).
Next there is a conjugate W ′

H of WH under P with x⊥ = WH + W ′
H and

WH ∩W ′
H = 〈x〉. Let

ÛH := {ŵ : w ∈WH ∩ Ω} ∪ {0} and Û ′H := {ŵ : w ∈ W ′
H ∩ Ω} ∪ {0}.

By H.5.5, ψ : ÛH → WH is an F2H-isomorphism and ψ : Û ′H → W ′
H is an

F2NG(W
′
H )-isomorphism. Let Û(x) := ÛH + Û ′H . As WH is a maximal totally

singular subspace of W , no w ∈ W ′
H −WH is orthogonal to WH , so applying ψ,

ŵ /∈ ÛH . Thus ψ induces an isometry of (Û(x), q̂) with (x⊥, Q), so {ŵ : w ∈ x⊥∩Ω}

is the set of singular vectors in Û(x)#.
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Let y ∈ Ω− x⊥ and set Û0 := Û(x) + 〈ŷ〉. As x⊥ ∩ y⊥ is a complement to 〈y〉

in y⊥, Û0 = 〈x̂, ŷ〉⊥(Û(x) ∩ Û(y)), and indeed the same holds for each y′ ∈ Ω− x⊥

with ŷ′ ∈ Û0. In particular it holds for each y′ ∈ (Ω− x⊥) ∩ y⊥. Then as for each

y′′ ∈ Ω − x⊥, y′′ is orthogonal to some y′ orthogonal to y, it follows that ẑ ∈ Û0

for each z ∈ Ω. Hence Û = Û0 by (1). But then ψ is an isometry of (Û , q̂) with
(W,Q), so KW = J and G is irreducible on U/J . Thus as J ≤ K < U , J = K, so
the lemma holds. ¤

Lemma B.4.14. Let G ∼= PGL3(4), V a faithful irreducible F2G-module, P a
maximal parabolic of G, L := P∞, and X of order 3 in P centralizing L/O2(L).
Assume

Each noncentral chief factor for L on V is a natural L2(4)-module for L/O2(L).
(∗)

Then V is the adjoint module, and as an F4CL(X)-module, CV (X) is a tensor
product of two natural L2(4)-modules, and so is a uniserial module with trivial
submodule and quotient module.

Proof. Let F := F4, V
F := V ⊗F2 F , LX := CL(X), and K := SL3(4). By

the Steinberg Tensor Product Theorem (cf. 2.8.5 in [GLS98]), the irreducible FK-
modules are the tensor products M1⊗Mσ

2 , where M1 and M2 are basic irreducible
modules and Gal(F/F2) =: 〈σ〉. Moreover the nontrivial basic modules for K are
the natural module N , its dual N∗, and the adjoint module A of dimension 3,3,8
over F . Further XLX ∼= GL2(4), and as an XLX-module, N = N1 ⊕ N2 where
N1 is 1-dimensional, N2 is the natural LX-module, and a generator x of X has
eigenvalue ω of order 3 on N1 and ω−1 on N2. Next N × N∗ = F ⊕ A, so as an
XLX-module, A = A0⊕A1⊕A2, where Ai is the ω

i-eigenspace for x on A, A1 and
A2 are natural modules for LX , and A3

∼= N2⊗N2 as an LX-module. In particular
A3 = CA(X) is the uniserial module for LX described in the lemma.

If both M1 and M2 are nontrivial then N2 ⊗Nσ
2 is a section of V F , and N2 ⊗

Nσ
2 = SF for some LX-section of V such that S is the A5-module for LX . This

is contrary to (*), so V F is a Galois conjugate of one of the basic irreducibles.
Therefore as Z(K) is trivial on V , V F is A or Aσ and hence as an F2G-module, V
is isomorphic to A. ¤

B.5. FF-modules for SQTK-groups

In section B.4 we concentrated on the case where F ∗(G) was quasisimple and
irreducible on V , but in this section we remove those restrictions. We will give a
complete description of FF-representations ϕ of SQTK-groups Ĝ with O2(Ĝϕ) = 1
in Theorems B.5.1 and B.5.6.

Recall the definition B.1.2 of P(G, V ), and the set P∗(G, V ) of minimal mem-

bers of P(G, V ) under the partial ordering defined by the relation
<
∼.

Given a group X and an F2X-module U , we will be concerned with the set
Irr+(X,U) (cf. A.1.40) of all X-submodules I of U such that I = [I,X ] and
I/CI(X) is X-irreducible. These appear in the literature for example in [Asc81e]
and [Asc82a].
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Our first main result of the section essentially maintains the requirement in
B.4.2 that F ∗(G) be quasisimple, but removes the restriction that V should be an
irreducible F ∗(G)-module:

Theorem B.5.1. Let G be a finite group with F ∗(G) = LZ(G), where L is a
quasisimple strongly quasithin K-group, and V is a faithful F2G-module. Assume
O2(G) = 1 and G = J(G, V ). Let U := [V, L] and T ∈ Syl2(G). Then

(1) L = F ∗(G), and one of the following holds:
(i) U ∈ Irr+(L, V ), and L and its action on U/CU (L) are described in

B.4.2. Moreover either G = L; or G = LT ∼= Sn, 5 ≤ n ≤ 8, or G2(2), with
U/CU (L) the natural module.

(ii) G = L ∼= SL3(2
n), and U is the sum of two isomorphic natural mod-

ules. The FF∗-offenders on U are the conjugates of the full group of transvections
with a fixed axis on each summand, and so q(G, V ) = 1.

(iii) G = L ∼= Ln(2) with n = 4 or 5, and U is the sum of the natural
module and its dual.

(iv) G = L ∼= Ln(2) with n = 4 or 5, and U is the sum of at most n − 1
isomorphic natural modules.

(2) V 6= U ⊕ CV (L) iff CU (L) > 0 or V > U + CV (L), in which case U ∈
Irr+(L, V ) and U/CU (L) is a natural module for L ∼= L2(2

n), Sp4(2
n), G2(2

n),
A6, A8, G2(2)

′, or L3(2).

(3) Either Ũ := U/CU (L) is homogeneous under L, or U is the sum of the
natural module and its dual for L ∼= Ln(2), n = 4 or 5.

(4) If V 6= U ⊕ CV (G), then U ∈ Irr+(L, V ), and either

(a) V 6= U ⊕CV (L), so that L and its action on V are described in (2), or
(b) V = U ⊕ CV (L), U is the natural module for G ∼= S6 or S8, and

|CV (L) : CV (G)| = 2.

(5) Either V = U + CV (G); or U ∈ Irr+(L, V ) and U/CU (L) is a natural
module for Sp4(2

n), A6, A8, or L3(2). In the latter case if L is L3(2), then CU (L) =
0.

(6) Assume B.5.1.1.iii holds, let T ∈ Syl2(G), and set Z := CV (T ). Then
CL(Z) ∼= Ln−2(2)/2

1+2(n−2) and P(G, V ) ∩ O2(CG(Z)) = ∅.

Proof. Let T ∈ Syl2(G) and A ∈ P(T, V ). As F ∗(G) = LZ(G) and O2(G) =
1, T is faithful on L, so L = F ∗(LT ). Further G = J(G, V ) = 〈J(T, V )G〉, so:

(α) If J(T, V ) ≤ L, then G = L.
(β) If Out(L) is abelian, then G = LT .

We will reduce to (α) or (β) in various cases of the proof of (1).
Assume first that U ∈ Irr+(L, V ); we will show that (i) holds. Set S :=

U/CU (L). Then S is an irreducible L-module, and L is faithful on S by Coprime
Action, so LT is faithful on S as F ∗(LT ) = L. By B.1.5.8, A contains some
B ∈ P(T, S), and we may take A = B if q(T, S) = 1. Hence setting J := J(LT, S),
the pair J, S is described in B.4.2, and in particular either

(α′) J = L, or

(β′) J = Sn or G2(2), with S the natural L-module.

In (β′), Out(L) is abelian, so G = LT by (β). Further Aut(G) ∼= J unless L is
A6, and G is not Aut(A6) since the natural module S = U/CU (L) does not admit
Aut(A6). Thus (i) holds in this case.
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So we may assume that (β′) does not hold, and hence L = J . Now we already
observed that we may take B = A if q(T, S) = 1; and we may also take B = A when
CU (L) = 0 by B.1.5.1. Thus under either of these assumptions, A = B ≤ J = L
for all A ∈ P(T, V ), so that L = G by (α), and again (i) holds.

Thus we may finally assume that CU (L) 6= 0 and q(T, S) < 1. Then from the
sublist of B.4.2 with q(T, S) < 1 and (β′) removed, and inspecting I.1.6 for cases
with CU (L) > 0, we conclude that L is L3(2) or Sp4(2

n) for n > 1, and S is a
natural module with P(T, S) ⊆ L. Further the nonsplit extension U is described in
B.4.8.2 or I.2.3. We check in these cases (see especially the explicit computation of
FF∗-offenders in B.4.8.2) that P(T, U) ⊆ L, so again L = G by (α), and (i) holds.
This completes the treatment of the case U ∈ Irr+(L, V ).

Thus in the remainder of the proof of (1), we may assume that U /∈ Irr+(L, V ),
and we will show that one of (ii)–(iv) holds. Pick A ∈ P∗(G, V ) and let U1, . . . , Ur
denote the noncentral chief factors for LA on V . As A ∈ P∗(G, V ), A acts on each
member of Irr+(L, V ) by B.1.5.3. Therefore as U /∈ Irr+(L, V ):

r > 1.

Further as A is faithful on L, and L is quasisimple and nontrivial on Ui, LA is
faithful on Ui. Set mi := m(Ui/CUi(A)). Now rA,V ≤ 1 as A ∈ P(G, V ), so (since

CX(A) ≤ CX̄(A) for any quotient X̄ of any A-submodule X of V )

m(A) ≥ m(V/CV (A)) ≥
r∑

i=1

mi.

Further rA,Ui ≥ q(AutLA(Ui), Ui), so setting

q := min{qi : 1 ≤ i ≤ r},

we have

1 ≥ m(V/CV (A))/m(A) ≥ (

r∑

i=1

mi)/m(A) =

r∑

i=1

rA,Ui ≥
r∑

i=1

qi ≥ rq. (∗)

Then as r > 1, we conclude from (*) that

q ≤ 1/r ≤ 1/2, qi < 1 for each i, and qi + qj ≤ 1 for each i 6= j. (+)

Further by B.1.5.8, A contains a member Bi of P(AutLA(Ui), Ui). So as r > 1
and Ui = [Ui, L], by induction on the dimension of V , the pair AutLBi(Ui), Ui
satisfies one of conclusions (i)–(iv) of (1); and in particular the LA-chief factor Ui
is a semisimple L-module. Hence to describe the value of qi, we may use sums of
the corresponding values for the L-irreducible modules in B.4.2. Pick k with qk = q.
Then since qk = q ≤ 1/2 by (+), we conclude that

AutL(Uk) ∼= SL3(2
m) or Ln(2) for n = 4 or 5. (∗∗)

Next B.4.2 also provides the following lower bounds:

Each qi ≥ 1/2, 1/3, 1/4 in the respective cases of (**). (++)

Since qi + qj ≤ 1 by (+), it follows from (++) that for each i, qi ≤ 1/2, 2/3, 3/4 in
the respective cases of (**). Hence for any i, Ui cannot contain an L-irreducible in
case (10) or (11) of B.4.2. This leaves cases (2) and (9), so that the L-constituents
of Ui are (possibly non-isomorphic) natural L-modules. Indeed from B.4.9.2, Ui is
a single natural L-module when AutL(Ui) = SL3(2

m), or a sum of at most n − 2
isomorphic natural L-modules when AutL(Ui) = Ln(2). Furthermore by A.3.6.2,
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AutL(Ui) has no proper covering over a center of odd order, so that LA is faithful
on Ui.

In proving that one of (ii)–(iv) holds, we must also show that G = L; we now
prove this in two special cases:

(I) The L-socle Soc(U) of U is a direct sum of isomorphic natural L-modules
I .

(II) Soc(U) is the direct sum of natural modules and their duals for L ∼= Ln(2).

Later we will show that one of these cases must always arise. To obtain G = L in
these cases, we will use the following observation: If LT acts on some nontrivial
irreducible L-submodule I of V , then I is some Ui, and so by our discussion above,
I is a natural L-module in case (2) or (9) of B.4.2; hence P(LT, I) ⊆ L, so as
P(LT, V ) ⊆ P(LT, I) using B.1.5.1, we have G = L by (α).

Now in case (I), T acts on such an irreducible by A.1.42, so G = L by the
observation.

Notice since we saw that each Ui is L-homogeneous, this reference also shows
(independently of case (I)) that A acts on some irreducible L-submodule of Ui;
hence as Ui is an LA-chief factor,

Ui is an irreducible natural L-module.

Next in case (II), if B ∈ P(G, V ) and there is b ∈ B−NB(I), thenm(U/CU (b)) ≥
m(I) = n and m2(CG(b)) = 4 as b /∈ L. Thus as rB,V ≤ 1, n = m(B) = 4 and B
centralizes CU (b), impossible as B∩L is faithful on CU (b). Therefore each member
of P(G, V ) normalizes I , and hence LT normalizes I since G = J(G, V ), so again
G = L by the observation.

We begin by considering the first case in (**), where L ∼= SL3(2
m). Then our

earlier discussion shows that

(a) r = 2 and q1 = 1/2 = q2,
(b) Ui is a natural module for L, with LA faithful on Ui, and
(c) 2mi ≤ m(A), so that A is the full group of transvections on each Ui with a

fixed axis, and mi = n = m(A)/2.

By (b) and (c), U1 and U2 are isomorphic natural modules. If n > 1, then by
I.1.6, H1(G,Ui) = 0, so U has no trivial chief factors. Assume now that U has no
trivial chief factors. Then we may take U1 to be a submodule of U , and U2 = U/U1.
So by B.4.9.2.i, the L-module U splits. Then the L-socle Soc(U) is the direct sum
of two natural modules isomorphic to U1, so G = L from the discussion of case (I),
and hence conclusion (ii) of (1) holds. Thus we have reduced to the case where
n = 1 so that G is L3(2), and also there is a nonsplit 1-dimensional submodule of
some Ui. Thus U involves a 4-dimensional section S as in B.4.8.2, and therefore
q(G,S) = 1, so that q(G, V ) ≥ q(AutG(S), S) + q(AutG(U3−i), U3−i) > 1, contrary
to q(G, V ) ≤ 1.

Finally we consider the remaining cases in (**), where L ∼= Ln(2) with n = 4 or
5, and each Ui is a natural module for L. Pick U0 to be a maximal LA-submodule of
U . As U = [U,L], we may choose our notation so that Ur = U/U0, and U1, . . . , Ur−1
are the noncentral LA-chief factors of U0. FurtherH

1(L,Ui) = 0 for any i = 1, . . . , r
by I.1.6; so U0 = [U0, L] and CU0(L) = 0. As qi ≥ 1/(n − 1) by (++), r ≤ n − 1.
By B.1.5.2, AutA(U0) ∈ P∗(AutG(U0), U0), so as U0 = [U0, L], by induction on
dim(V ), the pair AutLA(U0), U0 satisfies (i), (iii), or (iv) of (1). Further if U0
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satisfies (i), then U0 and U/U0
∼= Ur are natural L-modules, as we saw this is true

for each Ui. Hence one of the following holds:

(A) U0 and U/U0 are natural L-modules.
(B) r ≥ 3, and U0 is the direct sum of r − 1 ≤ n − 2 isomorphic natural

L-modules.
(C) r = 3, and U0 is the direct sum of a natural L-module and its dual.

In particular case (I) or (II) holds, so G = L by our earlier discussion of those cases.
Now if (A) holds, then U splits over U0 by B.4.9.2.i, so conclusion (iii) or (iv)

of (1) holds.
If (C) holds, then from the values of 1 or 5/6 when n = 4 or 5 in (iii) and (iv)

of B.4.9.2,

m(U0/CU0(A)) > 1−
1

n− 1
,

so as q3 ≥ q ≥ 1/(n− 1) by (++), we contradict q(G, V ) ≤ 1.
Therefore we may assume that (B) holds. As G = L we may choose notation

so that U0 is the direct sum of irreducibles realizing the factors U1, . . . , Ur−1 of
U0, with Ui ∼= U1 for all i < r.

Next for i < r, set U i := U/Ui. Then by B.1.5.8, A contains a member of
P(AutG(U i), U i), and hence U i is an FF-module. Therefore as r − 1 > 1, by
induction on dim(V ), U i is described in (iii) or (iv), so U i is the direct sum of
irreducible L-submodules. Further the preimage W0 of a maximal L-submodule of
U i is a maximal L-submodule of U , so applying our arguments to W0 in the role of
U0, W0 is homogeneous. As r > 2 it follows that U is a homogeneous module for
L = G, so conclusion (iv) of (1) holds. This completes the treatment of (B), and
hence completes the proof of (1).

The equivalence in (2) is immediate, so assume that either CU (L) > 0 or
V > U+CV (L); then H

1(L,Ui) 6= 0 for some i. Applying the cohomological results
in I.1.6 to the list in B.4.2 reduces that list to the groups given in (2), and shows
furthermore that for some I ∈ Irr+(L, V ), I/CI(L) is the natural module. Suppose
that U 6∈ Irr+(L, V ). Among the groups in (2), the only example appearing in cases
(ii)–(iv) of (1) is L ∼= L3(2) in case (ii), where CU (L) = 0. Thus V > U . But notice
that the argument used in the branch of the proof of (1) leading to case (ii) can
be applied via B.4.8.3 rather than B.4.8.2, to give V = U—contradicting V > U .
Thus U = I ∈ Irr+(L, V ), and (2) holds.

Part (3) follows by inspection of the examples that occur in (1): Namely in

case (i) of (1), Ũ is irreducible and hence certainly homogeneous under L, while
in the remaining cases, U is homogeneous, apart from the the exceptional case
(iii)—which is allowed in (3).

Assume the hypothesis of (4), and also V = U⊕CV (L). Thus CV (L) > CV (G)
and hence G > L. By hypothesis G = J(G, V ), so A 6≤ L for some A ∈ P(G, V ).
Thus case (i) of (1) holds, so U ∈ Irr+(L, V ) and G ∼= Sn or G2(2) with U/CU (L)
the natural module. Thus G/L ∼= A/(A ∩ L) ∼= Z2. But unless G is S6 or S8, we

have q(G,U) = 1 = q(G, Ũ) by B.3.2.4 and B.4.6.13—in which case V = U+CV (A)
by B.1.5.8, so in particular CV (L) ≤ CV (A) for each A ∈ P(G, V ), contradicting
CV (L) > CV (G). Thus G = S6 or S8, so m(U/CU (A)) ≥ m(A)−1 by B.3.2. Hence
|CV (L) : CV (G)| = 2, and thus conclusion (b) of (4) holds.

Suppose that V > U + CV (G). Then by (4), U ∈ Irr+(L, V ), and L and its
action on V are described in (2) or (4b). But if L ∼= L2(2

n) or G2(2
n)′, the duals
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of the nonsplit extensions in I.2.3 are not FF-modules, since for U the irreducible
submodule of V , q(G,U) = 1, so V = U +CV (A) for each A ∈ P(G, V ) by B.1.5.2,
whereas CU (A) = CV (A). Further if L ∼= L3(2) then G = L by B.4.2.2, and by
B.4.8.4, CU (G) = 0. So (5) holds.

Assume the hypotheses of (6). By (4), V = CV (G) ⊕ U ; and in (1.iii), U =
U1⊕U2 with U1 natural and U2 dual to U1. So Z = CV (G)⊕ZU where ZU := CU (T ),
and either

(γ) T acts on U1, U2, and ZU = Z1 ⊕ Z2 with Zi := CUi(T ) of rank 1; or
(δ) T contains an involution inducing an outer automorphism on L switching

U1 and U2, so that ZU is of rank 1.

In either case CL(Z) ∼= Ln−2(2)/2
1+2(n−2) is the parabolic obtained by remov-

ing the end nodes. Now none of the FF∗-offenders determined in (iii) and (iv) of
B.4.9.2 are contained in O2(CL(Z)), establishing the final statement of (6). This
completes the proof of Theorem B.5.1 ¤

The following lemma is useful in analyzing representations of 2-locals in QTKE-
groups on internal modules of the 2-local:

Lemma B.5.2. Let G be a finite group which is a quotient of an SQTK-group.

Then there exists an SQTK-group Ĝ and K̂ E Ĝ such that G = Ĝ/K̂, and

(1) The preimage of F (G) in Ĝ is nilpotent.

(2) K̂ is nilpotent of odd order.

(3) For each component L of G, L = L̂K̂/K̂ for some component L̂ of Ĝ.

(4) F ∗(G) = F ∗(Ĝ)/K̂.

Proof. By hypothesis, G = Ĝ/K̂ for some SQTK-group Ĝ and K̂ E Ĝ. Let F̂

be the preimage in Ĝ of F (G), p a prime, and P ∈ Sylp(F̂ ). Then Op(G) = PK̂/K̂

and Ĝ = K̂NĜ(P ) by a Frattini Argument. Hence

G = Ĝ/K̂ = K̂NĜ(P )
∼= NĜ(P )/NK̂(P );

so replacing Ĝ by NĜ(P ), we may assume P E Ĝ. That is, we may choose Ĝ and

K̂ so that (1) holds.

Next as Ĝ is an SQTK-group, so is Ĝ/O2(K̂) and

Ĝ/K̂ ∼=
Ĝ/O2(K̂)

K̂/O2(K̂)
.

Thus replacing Ĝ by Ĝ/O2(K̂), we may assume O2(K̂) = 1, and with this choice
(2) follows from (1).

Let L be a component of G, L̂1 its preimage in Ĝ, L̂ := L̂∞1 , and R̂ := K̂∩L̂. As

L is quasisimple, L̂1 = K̂L̂, so L̂/R̂ ∼= L is quasisimple. Observe O2(L̂) ≤ Z(L̂): for

O2(L̂) centralizes R̂ as R̂ is of odd order, and O2(L) ≤ Z(L). Let L̂∗ := L̂/O2(L̂).

Then by A.3.6, either L̂∗ is quasisimple, or L̂∗ is described in case (3) or (4) of

A.3.6. In the first case, (3) holds; so we may assume L̂∗ is described in case (3) or

(4) of A.3.6. Thus L̂∗/O(L̂∗) ∼= SL2(p) for some prime p, so as R̂ is of odd order

and SL2(p) has trivial multiplier (e.g. I.1.3), R̂∗ = O(L̂)∗. Now (1) supplies a

contradiction, as Z(L) ≤ F (G) but O2′,2(L̂
∗) is not nilpotent. Thus the proof of

(3) is complete.
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By (1), F̂ ≤ F (Ĝ). On the other hand, F (Ĝ)/K̂ is a nilpotent normal subgroup

of G, so F (Ĝ) = F̂ . Similarly if Ê is the preimage of E(G), then Ê ≤ E(G)K̂ by

(3), and of course E(G) ≤ Ê. Thus (4) is established. ¤

Theorem B.5.1 determines the FF-modules for an SQTK-group G with F ∗(G)
quasisimple. In the next few lemmas (including our second main result Theorem
B.5.6 and its proof), we remove the restriction on F ∗(G), and instead assume the
following hypothesis:

Hypothesis B.5.3. G is a finite group and V is a faithful F2G-module such
that O2(G) = 1, G = J(G, V ), and G is a quotient of an SQTK-group.

Notice that Hypothesis B.5.3 holds when G = H/CH(V ) for some SQTK-group
H and V ∈ R2(H), and of course this is exactly the situation of interest when we
study failure of factorization in 2-local subgroups of a QTKE-group.

Notation B.5.4. Under Hypothesis B.5.3, choose Ĝ and K̂ with G = Ĝ/K̂ as

in B.5.2. Let α : Ĝ→ G be the natural surjection.

In the next lemma B.5.5, we record some elementary consequences of Hypoth-
esis B.5.3, such as the possible components L of G.

Lemma B.5.5. Assume Hypothesis B.5.3. Then

(1) If L is a component of G, then

(i) L E G.
(ii) There exists A ∈ P(G, V ) with L = [L,A], and for each such A, L is

faithful onW := CV (O2(LA)), CA(W ) = CA(L), and AutA(W ) ∈ P(AutG(W ),W ).
(iii) There is A ∈ P(G, V ) and an A-invariant faithful L-chief section S

of V such that L = [L,A], F ∗(AutLA(S)) = L, and AutA(S) contains a member of
P(LAutA(S), S).

(iv) L ∼= L2(2
n), SL3(2

n), Sp4(2
n)′, G2(2

n)′, A7, Â6, L4(2), or L5(2),
and the section S of (iii) is described in B.4.2.

(2) Op(G) ≤ Z(G) for each prime p 6= 3. So F ∗(G) = E(G)O3(G)Z(G).

Proof. If X E G, then as G = J(G, V ) by Hypothesis B.5.3, either [X,A] 6= 1
for some A ∈ P(G, V ) or X ≤ Z(G).

In particular if Op(G) 6≤ Z(G) for some prime p, then as p is odd by Hypothesis
B.5.3, taking X := Op(G), we have Y := [X,A] 6= 1 for some A ∈ P(G, V ).
Let G0 := Y A, B := CA(Y ) = O2(Y A), W := CV (B) and G∗0 := G0/CG0(W ).
Then by the Thompson A × B Lemma, Y is faithful on W , so as B = CA(Y ),
also B = CA(W ). Therefore O2(G

∗
0) = CA∗(Y

∗) = B∗ = 1, and by B.1.5.1,
A∗ ∈ P(G∗0,W ). Thus by B.1.8, p = 3, establishing (2).

It remains to prove (1), so we may assume that L is a component of G. By
B.1.5.4, P(G, V ) ⊆ NG(L), so using Hypothesis B.5.3, G = 〈P(G, V )〉 ≤ NG(L),
proving (i). Further L is not central in G, so as noted at the outset, [L,A] 6= 1 for
some A ∈ P(G, V ), and hence L = [L,A], proving the first part of (ii).

Now O2(L) ≤ O2(G) = 1. Set B := CA(L) ≤ O2(LA) and W := CV (O2(LA)).
Since O2(L) = 1, the Thompson A × B Lemma says L is faithful on W ; so B =
CA(W ) and A/B = AutA(W ) ∈ P(AutLA(W ),W ), completing the proof of (ii).
So replacing (G, V ) by (AutLA(W ), W ), we may assume that F ∗(G) = L. Now
as F ∗(G) = L and O2(G) = 1, L = [L,A] for all A ∈ P(G, V ). Therefore we
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may take A ∈ P∗(G, V ), and hence by B.1.5.3, A acts on each I ∈ Irr+(L, V ). So

replacing V by I , we may take V ∈ Irr+(L, V ). Finally setting Ṽ := V/CV (L), by

B.1.5.8, A ∼= AutA(Ṽ ) contains a member of P(G, Ṽ ). Thus we may even assume
that V is an irreducible L-module; that is, I/CI(L) is the section S required by
(iii). In particular, G and its action on V are described in B.4.2. Finally the groups
described in B.4.2 are just those in (iv). ¤

We are now ready to state the second main result of the section, which describes
FF-representations ϕ for the general SQTK-group Ġ with O2(Ġϕ) = 1.

Theorem B.5.6. Assume Hypothesis B.5.3. Then one of the following holds:

(1) F ∗(G) is quasisimple, so G and its action on V are described in Theorem

B.5.1. In particular, F ∗(G) ∼= L2(2
n), SL3(2

n), Sp4(2
n), G2(2

n), A6, A7, Â6,
G2(2)

′, L4(2), or L5(2).
(2) G ∼= S3 and V = [V,G]⊕ CV (G) with m([V,G]) = 2.

(3) G = G1 ×G2 and Ṽ = Ṽ1 ⊕ Ṽ2 as a G-module, where Ṽ := V/CV (G), and
each Gi is one of L2(2

ni), ni ≥ 1, S5, or L3(2
mi), mi ≥ 1 odd. Moreover one of

the following holds:

(a) Vi := [V,Gi] and Ṽi is the natural module for Gi.

(b) Vi := [V,Gi] and Ṽi is the sum of two isomorphic natural modules for
Gi ∼= L3(2

mi).

(c) Ṽi is a 4-dimensional indecomposable for Gi ∼= L3(2) described in
B.4.8.3, and [V,Gi] ≤ Vi.

(4) G = (G1×G2)〈t〉 and V = CV (G)⊕V1⊕V2, where Vi := [V,Gi], G1
∼= A6,

m(V1) = 4 or 5, G2
∼= Z3, m(V2) = 2, and t induces an outer automorphism on G1

and G2.
(5) G = G1 ×G2 and [V,G] = V1 ⊕ V2, where Vi := [V,Gi], G1

∼= L3(2), V1 is
of rank 3, [V,G] + CV (G) is a hyperplane of V , and either

(a) V2 is the sum of at most two isomorphic natural modules for G2
∼=

L3(2), or
(b) V2/CV2(G2) is the natural module for G2

∼= L2(2
n).

The proof proceeds via a short series of reductions. So until the proof of the
theorem is complete, we assume G, V satisfy the hypotheses of Theorem B.5.6, but
not its conclusion. We first see that the existence in G of a component of 3-rank 2
leads to conclusions (1) or (4):

Lemma B.5.7. If L is a component of G, then m3(L) = 1.

Proof. Assume m3(L) > 1. By B.5.2, L = L̂α for some component L̂ of Ĝ.

Applying A.3.18 to Ĝ, we conclude L̂ = E(Ĝ), and either

(i) CĜ(L̂) is a 3′-group, or

(ii) L̂ ∼= SLε3(q), Â6, or Â7, and a Sylow 3-subgroup X̂ of O3(Ĝ) is cyclic with

Ω1(X̂) = Z(L̂). In this case, set X := X̂α.

As L̂ = E(Ĝ), L = E(G) by B.5.2.4, so it follows from B.5.5.2 that F ∗(G) =
LO3(G)Z(G). Thus if O3(G) ≤ Z(G), then F ∗(G) = LZ(G), so case (1) of Theo-
rem B.5.6 holds by Theorem B.5.1, contrary to our choice of G, V as a counterex-
ample. Therefore O3(G) 6≤ Z(G). In particular, case (ii) holds. Then by B.5.5.1.iv,
either
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(a) L ∼= L̂ ∼= SL3(2
n), n even, or Â6, or

(b) L̂ ∼= Â6 or Â7 and L ∼= A6 or A7.

Next as O2(G) = 1 and F ∗(G) = LO3(G)Z(G), a Sylow 2-subgroup S of C :=

CG(L) is faithful on O3(G). Thus if S 6= 1, then as X̂ is cyclic, there is an

involution s ∈ S inverting X , so there is an involution ŝ ∈ Ĉ inverting X̂ . This is

impossible as ŝ centralizes L̂ and Ω1(X̂) = Z(L̂). Thus C is of odd order.
As C is of odd order, every A ∈ P(G, V ) acts faithfully on L, and F ∗(LA) = L.

Thus since A ≤ L in cases (ii)–(iv) of B.5.1.1 and since (a) or (b) holds, either

A ≤ L; or else U := [V, L] ∈ Irr+(L, V ), and using B.4.3, Û := U/CU (L) is the
natural module for LA ∼= S6 or S7, so in particular (b) holds. But as G = J(G, V )
and X 6≤ Z(G), some A ∈ P(G, V ) acts nontrivially on X , so in particular A 6≤ L.

Thus LA ∼= S6 or S7 and Û is the natural module.
If L is not irreducible on U , then by B.5.1.2, L ∼= A6 and U is the 5-dimensional

core of a 6-dimensional permutation module. Otherwise, U is the natural irreducible
module. In particular in each case, EndF2L(Û) = F2, so [U,X ] = 0 and hence
[V, LX ] = U ⊕ [V,X ]. Further if AL ∼= S7, then m(U) = 6 and q(LA,U) = 1 =

q(LA, Û) by B.3.2.4, so V = U +CV (A) by B.1.5.8, and hence A centralizes [V,X ],
contradicting X = [X,A]. Thus L ∼= A6. By B.3.4.2.i, rA,U = 1 unless m(A) = 3
and m(U/CU (A)) = 2. Therefore as C[V,X](A) < [V,X ], the latter case holds with
m([V,X ]) = 2, so conclusion (4) of Theorem B.5.6 holds, contrary to the choice of
G, V as a counterexample. ¤

Lemma B.5.8. P∗(G, V ) centralizes F (G).

Proof. Assume A ∈ P∗(G, V ) is nontrivial on F (G). Then by B.1.9, G =
G1 × G2 and V = V1 ⊕ V2, where A ≤ G1

∼= L2(2), V1 := [V,G1] is of rank 2,
G2 = J(G2, V ) centralizes V1, and V2 := CV (G1). If G2 = 1 then case (2) of
B.5.6 holds, contrary to our choice of G as a counterexample. Therefore G2 6= 1,
and as G2 centralizes V1, G2 is faithful on V2. Thus the pair G2, V2 satisfies
the hypotheses of Theorem B.5.6, so by induction on the order of G, G2 and its
action on V2 are described in that Theorem. As G1

∼= L2(2), m3(G2) = 1 by
A.1.31.1. Thus G2, V2 satisfy conclusion (1) or (2) of B.5.6, and in case (1),
F ∗(G2) ∼= L2(2

n) or L3(2
m) with m odd. If (2) holds, then G satisfies conclusion

(3) of B.5.6. If (1) holds, then the action of G2 on V2 is described in Theorem B.5.1.
If V2 = [V,G2] + CV (G2), then G satisfies (a) or (b) of conclusion (3) of Theorem

B.5.6. Otherwise V2 > [V,G2] + CV (G2). Then by B.5.1.5 and B.4.8, Ṽ2 is the 4-
dimensional indecomposable for G2

∼= L3(2) described in B.4.8.3, so that G satisfies
conclusion (3c) of B.5.6. Thus in each case G, V is not a counterexample. ¤

For the rest of the proof of B.5.6, we take

A ∈ P∗(G, V );

that is, we take A to be minimal under the relation
<
∼ in Definition B.1.2. By B.5.8,

P∗(G, V ) centralizes F (G), so using B.5.5.1.iv,

A is faithful on E(G) = O3′ (E(G)),

and hence [L,A] 6= 1 for some component L ofG. By B.5.5.1.i, L E G, so L = [L,A].

Let W := [V, L] and W̃ :=W/CW (L).
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By B.5.7,

m3(L1) = 1 for each component L1 of G.

Thus inspecting the list of B.5.5.1.iv, we conclude that L is either L2(2
n), or

SL3(2
m) for m odd.

We can now more or less repeat the proof of 14.8 in [Asc82a]. The next lemma
is a start toward pinning down the modules that are involved.

Lemma B.5.9. One of the following holds:

(1) L ∼= L2(2
n), A ∈ Syl2(L), W̃ is the natural module for L, and V =

W + CV (A).
(2) LA ∼= S5, |A| = 2, W is the A5-module, and V =W + CV (A).
(3) L ∼= L3(2

m) for m odd, W is the direct sum of two isomorphic natural
F2L-modules, A ≤ L, and V =W + CV (A).

(4) L ∼= L3(2
m) for m odd, W is a natural L-module, and A induces inner

automorphisms on L.
(5) L ∼= L3(2), E4

∼= A ≤ L, W is the 4-dimensional indecomposable L-module
described in B.4.8.2, and V =W + CV (A).

Proof. Set B := CA(L), U := [CV (O2(LA)), L], and (LA)+ := LA/CLA(U);
by B.5.5.1, L is faithful on U and B = CA(U). By B.1.5, A+ ∈ P∗(L+A+, U); with
B = 1 and V = U +CV (A) in case q(L+A+, U) = 1. In this last case U =W since
L = [L,A]. Also as we just observed, L ∼= L2(2

n) or L3(2
m) for m odd; we examine

the possible representations of L+A+ on U appearing in Theorem B.5.1 and B.4.2.
Suppose first that L ∼= L2(2

n). Then by B.5.1.1, U ∈ Irr+(L, V ). Therefore
by B.4.2, either:

(I) L ∼= L2(2
n), Ũ is the natural module for L, A+ ∈ Syl2(L+), and m(A+) =

m(U/CU (A)) = n, or
(II) L+A+ ∼= S5, U is the A5-module, A+ is generated by a transposition since

it is a minimal FF ∗-offender, and m(U/CU (A)) = 1.

In cases (I) and (II), q(L+A+, U) = 1, so U =W by an earlier remark.
Suppose next that L ∼= L3(2

m) for m odd. Then either case (i) of B.5.1.1 holds
with U ∈ Irr+(L, V ), or case (ii) holds with U a sum of two isomorphic natural
modules. In case (ii), m(A+) = 2m and q(L+A+, U) = 1, so in that case:

(III) L ∼= L3(2
m), W = U is the sum of two isomorphic natural modules, A

induces inner automorphisms on L, and m(A+) = 2m = m(W/CW (A)).

In case (i) by B.4.2, Ũ is a natural module for L. By I.1.6, either CU (L) = 0,
or m = 1 and U is described in B.4.8.2. In particular q(L+A+, U) = 1 in the latter
case. This leads to our final two cases:

(IV) U is natural and A+ ≤ L+.
(V) L ∼= L3(2), U =W , m(W ) = 4, and m(W/CW (A)) = m(AutA(W )) = 2.

In all cases other than (IV), U =W and m(A+) = m(W/CW (A)), so as we saw
in the first paragraph of the proof, V =W + CV (A) and B = 1. In particular, (2)
holds in case (II), so we may assume we are in one of the remaining cases. Therefore
A induces inner automorphisms on L, so A ≤ AL ×AC , where AL and AC are the
projections of A on L and CG(L), respectively.

Assume case (IV) does not hold. Then V = W + CV (A), so AL centralizes
V/W , and hence AC centralizes V/W . Also in (I) and (V), W ∈ Irr+(L, V ), so
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AC centralizes W by the Thompson A×B-Lemma. Thus

AC ≤ CG(W ) ∩ CG(V/W ) ≤ O2(G) = 1

and hence A = AL so that A ≤ L, giving conclusion (1) or (5).
Thus we may assume that case (III) holds, and in view of the argument we

just made, we may also assume AC 6= 1 is faithful on W . But AL fixes Irr+(L, V )
pointwise, as does A by B.1.5.3, so AC fixes Irr+(L, V ) pointwise, contradicting
AC faithful on W . This contradiction shows A ≤ L in (III), completing the proof
that (3) holds in this case.

It remains to consider case (IV), where we may assume U < W , so AC 6= 1. As
CG(A)∩CG(L) = CG(AC)∩CG(L), it follows that there is a component K distinct
from L with K = [K,A]. Then as A 6≤ K and |A| > 2, it follows from symmetry
between L and K that K ∼= L3(2

k) and A induces inner automorphisms on K. By

(2) of Theorem A (A.2.1), LK = O3′(E(G)), so A ≤ LK and hence B ≤ AC ≤ K.
As U < W , [W,AC ] 6= 0, so [W,K] 6= 0. By symmetry between L and K we may
take m ≥ k, so

m(A) ≤ m2(LK) = 2(m+ k) ≤ 4m, (∗)

with equality only if m = k and B = AC is of rank 2m.
Let c be the number of noncentral factors in a chief series for V as L-module.

Observe for each such chief factor I that m(I) ≥ 3m and m(I/CI (A)) ≥ m. Thus

m(A) ≥ m(V/CV (A)) ≥ cm. (!)

Next if c = 2, then CGL(W )(L) contains no L3(2
k)-subgroup, so [W,K] = 0, con-

trary to an earlier remark. Thus c > 2, so as m(A+) ≤ 2m, B 6= 0 by (!). Therefore
K = [K,B] so as [W,K] 6= 0, [W,B] 6= 0. Thus as L centralizes B, L is nontrivial
on V/CV (B), so m(V/CV (B)) ≥ 3m. Hence

m(A) ≥ m(V/CV (A)) ≥ m(V/CV (B)) +m(U/CU (A)) ≥ 4m, (!!)

with equality only if L has c− 1 noncentral chief factors on CV (B). It follows from
(*) and (!!) that B = AC and L has c − 1 noncentral chief factors on CV (B). As
B = AC , U = CV (B), so L has one noncentral chief factor on CV (B). Thus c = 2,
contrary to an earlier reduction. ¤

Set G1 := L, unless case (2) of B.5.9 holds, where we set G1 := LA. Let
V1 :=W , V2 := CV (G1), and G2 := CG(G1).

Define G1 to be exceptional if W is a natural module for G1
∼= L3(2), and

V1 + V2 is a hyperplane of V .

Lemma B.5.10. (1) Gi E G and G acts on Vi.
(2) G = G1 ×G2 and G2 = CG(V1).
(3) Either V = V1 + V2, or G1 is exceptional.

Proof. Recall L E G. Thus G acts on [V, L] = W = V1. Further if case (2)
of B.5.9 does not hold, then G1 = L, G2 = CG(L), and V2 = CV (L), so (1) holds
in those cases.

Suppose case (2) of B.5.9 holds. ThenW is a projective L-module, so V =W⊕
CV (L). Then as V =W +CV (A), A centralizes CV (L), so V2 = CV (G1) = CV (L)
is G-invariant and V = V1 ⊕ V2. Then as G1 = NGL(V1)(L), G1 = CG(V2), so G1

and G2 = CG(G1) are normal in G. Thus (1) and (3) hold in this case, and in
particular the proof of (1) is complete.
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Observe [CG(W ), G1] ≤ CG1(W ) = 1, so CG(W ) ≤ G2. Set H1 := G1 and
H2 := CG(W ). Let D ∈ P(G, V ) with [W,D] 6= 0. By B.1.5.1, AutD(W ) ∈
P(AutG(W ),W ), so from the description of G1 and its action on W in B.5.9, and
from B.4.2, AutD(W ) ≤ AutG1(W ). Thus D ≤ D1×D2, where Di is the projection
of D on Hi with respect to the decomposition H1 ×H2. So as G = J(G, V ) and
G1 = J(G1, V ), G = H1 ×H2. Then as H2 ≤ G2 and G1 ∩G2 = 1, (2) holds.

Suppose V > V1 + V2; then H
1(L,W ) 6= 0, so either case (1) of B.5.9 holds, or

L ∼= L3(2) and one of the last three cases of B.5.9 holds. But in case (1) of B.5.9,
that result also says that A ∈ Syl2(L) and V =W +CV (A), so V = V1 + V2 holds
by Gaschütz’s Theorem A.1.39, contrary to assumption. Similarly if L ∼= L3(2) and
V =W+CV (A) (which holds in cases (3) and (5) of B.5.9), then we obtain the same
contradiction from B.4.8.3. This leaves case (4) of B.5.9, where as H1(X,W ) ∼= Z2

by B.4.8.1, we have m(V/(V1 + V2)) ≤ 1. As V > V1 + V2, this inequality is an
equality. Thus G1 is exceptional, so (3) is established. ¤

Lemma B.5.11. (1) 1 6= G2 is faithful on V2, and G2 = J(G2, V2).
(2) G2

∼= L2(2
n), L3(2

m), m odd, or S5, and V2 = V ′2 + CV2(G2) where V
′
2

satisfies one of conclusions (a), (b), or (c) of case (3) of B.5.6.

Proof. If G2 = 1, then G = G1 by B.5.10.2; then conclusion (1) of B.5.6
holds, contrary to our choice of G, V as a counterexample. Thus G2 6= 1.

Set U := V2, Ḡ := G/CG(U), and let π : G→ Ḡ be the natural surjection. By
construction, G1 ≤ ker(π), and G2 centralizes V1 by B.5.10.2. Thus if V =W + U
then G2 is faithful on U . If V > W +U , then by B.5.10.3, m(V/U +W ) = 1, so as
G2 centralizes W , CG2(U) ≤ O2(G) = 1. Thus again G2 is faithful on U , and the
restriction π : G2 → Ḡ an isomorphism as G = G1 ×G2 by B.5.10.2. In particular
O2(Ḡ) = π(O2(G2)) = 1, as O2(G) = 1 and G2 E G. Further for D ∈ P(G, V ) with
D nontrivial on U , D̄ ∈ P(Ḡ, U) by B.1.5.1, so as G = J(G, V ), also Ḡ = J(Ḡ, U)
and hence G2 = J(G2, U). Thus (1) is established. Since by construction G1 6= 1,
we may apply induction on the order of G to G2, and conclude G2 and its action
on U are described in B.5.6.

Since G1 contains a subgroup isomorphic to S3, m3(G2) = 1 by A.1.31.1.
Thus G2 must satisfy conclusion (1) or (2) of B.5.6: Either F ∗(Ḡ) ∼= F ∗(G2) is
quasisimple or G2

∼= Ḡ ∼= L2(2). In the latter case, the requirements of conclusion
(2) are immediate.

So assume the former case holds. Then B.5.6.1 also says that G2 and its
action on U are described in B.5.1. In particular as m3(G2) = 1, G2 is one of the
groups in conclusion (2) of B.5.11. In these cases, (1) and (2) of B.5.1 show that
U = V ′2 + CV2(G2) with V

′
2 described in conclusion (2). ¤

Lemma B.5.12. G1 is exceptional.

Proof. Assume G1 is not exceptional. By B.5.10, G = G1 × G2 and V =
V1 + V2. By B.5.11, G2 = J(G2, V2) is faithful on V2, and G2 and its its action on
V2 are described in B.5.11.2; in particular the action of G2 on V2 is described in
conclusion (3) of B.5.6. The same holds for G1 by B.5.9. Moreover

V1 ∩ V2 ≤ CV1(G1) ∩ CV2(G2) ≤ CV (G1) ∩ CV (G2) = CV (G)

as G = G1G2 and Gi centralizes V3−i. Thus conclusion (3) of Theorem B.5.6 is
satisfied, contrary to the choice of G, V as a counterexample. ¤
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We are now in a position to complete the proof of Theorem B.5.6. By B.5.12,
V/V2 is the 4-dimensional indecomposable forG1

∼= L3(2) described in B.4.8.3. Pick
u ∈ V − (V1 + V2) and let U1 := 〈W,u〉. Thus V = U1 ⊕ V2, and as W = [G1, V ],
U1 is a G1-submodule isomorphic to V/V2.

Let L2 := F ∗(G2). Then from B.5.11.2, G2 = L2〈t〉, where either t = 1, or
G2
∼= L2(2) or S5 with t an involution.
Let U2 := [V, L2], and suppose first that V = U2 ⊕ CV (L2). As G1 is self-

normalizing in GL(V/V2), [V,G2] ≤ V2. Further we may choose u ∈ CV (L2), so

[U1, t] ≤ CV2(L2) = CV2(G2), and hence Ũ1 is a G-submodule of Ṽ . By construction

V2 is a G-submodule, and Ṽ = Ũ1 ⊕ Ṽ2, so conclusion (3) of B.5.6 is satisfied by
B.5.11.2. This contradicts the choice of G, V as a counterexample.

Thus V 6= U2⊕CV (L2). Therefore by the cohomology of the modules appearing

in B.5.11, either G2
∼= L2(2

n), or G2
∼= L3(2) with Ũ2 the natural module. Then by

B.5.1.5 and B.4.8, V2 = W2 + CV2(G2), where either W2 = U2 satisfies conclusion
(a) or (b) of case (3) of B.5.6, or W2 is a 4-dimensional indecomposable described
in B.4.8.3. In the former case V1 + V2 = W ⊕ U2 + CV (G) is a hyperplane of
V , so conclusion (5) of B.5.6 is satisfied, contrary to the choice of G, V as a
counterexample. In the latter case, by B.4.8.4, V = W2 ⊕ CV (G2), so we can
pick u ∈ CV (G2), and hence U1 is a G-submodule of V with V = U1 ⊕ W2 ⊕
CV (G), so that conclusion (3) of B.5.6 is satisfied, again contrary to our choice of
a counterexample.

This final contradiction establishes Theorem B.5.6.

We mention next that in conclusion (3) of the qrc-lemma D.1.5 in the following
chapter, there is an F2G-module V such that the dual V ∗ of V is an FF-module.
In this case, the next lemma says that q(G, V ) ≤ 2.

Lemma B.5.13. Let G be a finite group and V a faithful F2G-module. Assume
Hypothesis B.5.3 is satisfied by the pair G, V ∗, where V ∗ is the dual of V as an
F2G-module. Then q(G, V ) ≤ 2.

Proof. By hypothesis B.5.3, G = J(G, V ∗). Therefore G, V ∗ is described in
Theorem B.5.6.

We must show that q(G, V ) ≤ 2. By B.4.7.4, it suffices to exhibit a nontrivial
elementary abelian 2-subgroup A of G which is quadratic on V ∗ with

m([V ∗, A]) ≤ 2m(A). (∗)

If G, V ∗ satisfies conclusion (5) of Theorem B.5.6, then for G1, V1 as defined
there, choose E4

∼= A ≤ G1 with m(CV ∗1 (A)) = 2. Then for a ∈ A#,

[V ∗, a] ≤ [V ∗, G1] ∩ CV ∗(a) = V ∗1 ∩ CV ∗(a) = CV ∗1 (A),

so m([V ∗, A]) ≤ 2 = m(A), verifying (*). Similarly in case (4) of B.5.6, pick
A ∈ P(G, V ∗) and observe m(A) = 3 and [V ∗, A] = CV ∗(A) is of rank 3 or 4, which
is less than 2m(A), verifying (*). In the decomposable case (3) of B.5.6, it suffices
to establish the bound for a suitable FF∗-offender inside one of the factors G1 or
G2, so replacing G by Gi, we reduce to the case of a single factor in case (1) or (2) of
B.5.6, with F ∗(G) quasisimple or Z3. If F

∗(G) ∼= Z3, then m([V ∗, A]) = 1 = m(A),
so (*) holds.

Thus we are reduced to the case where L = F ∗(G) is quasisimple, where we can
appeal to Theorem B.5.1. Let U∗ := [V ∗, L]. If V ∗ = V ∗1 ⊕ V ∗2 with [V ∗2 , G] = 0,
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then V = V1⊕V2 with [V2, G] = 0 and V ∗1 is an FF-module, so the lemma holds by
induction on dim(V ). Thus

There is no nonzero direct summand V ∗2 of V ∗ centralized by G. (∗∗)

First consider cases (ii)–(iv) of B.5.1.1; in these cases V ∗ = U∗ ⊕ CV ∗(G) by
B.5.1.4, so V ∗ = U∗ by (**). Now in case (iii), V ∗ is self-dual, while in cases (ii)
and (iv), V is quasiequivalent (conjugate under Out(G)) to V ∗, so in all of these
cases, q(G, V ) = 1, and we are done.

Thus we have reduced to case (i) of B.5.1.1, where by (**), V ∗ is indecomposable
underG with one noncentralL-chief factorW := U ∗/CU∗(L). If V

∗ is an irreducible
L-module, then by inspection of the list in B.4.2, V is quasiequivalent to V ∗, so
q(G, V ) ≤ 1. Thus we may assume that L, V ∗ is one of the exceptional cases of
B.5.1.4.

Suppose case (b) of B.5.1.4 holds. If G ∼= S8 then V ∗ is self-dual, while if
G ∼= S6 then V is quasiequivalent to V ∗, so in either case, q(G, V ) = 1. Thus case
(a) of B.5.1.4 holds, with V ∗ not of form U∗⊕CV ∗(L), and L and its action on V ∗

are described in B.5.1.2.
Suppose first that W is the natural module for G ∼= L2(2

n) or G2(2
n). Then

V ∗ = U∗ + CV ∗(G) by B.5.1.5, so V ∗ = U∗ as V ∗ is indecomposable. Let D ∈
P∗(G, V ∗); thus D is quadratic on V ∗ by B.1.4.3. By B.5.5.1.iii, there is A ≤ D
with A ∈ P(G,W ). Thus m := m(A) = m(CW (A)) = n or 3n, respectively, by
B.4.2, and m(CU∗(L)) ≤ n by I.1.6. As A is quadratic on V ∗, [V ∗, A] ≤ CU∗(A),
so m([V ∗, A]) ≤ m+ n ≤ 2m, establishing (*).

Thus W is a natural module for L ∼= Sp4(2
n), A6, A8, or L3(2). (Recall that

if L = U3(3) ∼= G2(2)
′, then G = G2(2), a case we just treated.) If L ∼= L3(2),

then by B.4.8.4, m(V ∗) = 4 and q(G, V ∗) = 1. As V is also a 4-dimensional
indecomposable, q(G, V ) = 1 by B.4.8, handling this case.

Suppose G ∼= Sp4(2
n) with n > 1. Then G = L by B.4.2.3, and as V ∗ is

indecomposable we may describe V ∗ more explicitly as follows: Let J denote a
6-dimensional orthogonal space over F2n ; we may choose G to be the stabilizer
in Ω(J) of a non-singular point N of J , U∗ to be a quotient of I := N⊥, and
V ∗/CV ∗(G) to be a submodule of J/N . Let W2 be a totally singular 2-dimensional
F2n-subspace of I/N , let V ∗2 be the preimage in U∗ of W2, and set B := CL(W2).
Then m(B) = 3n, while [V ∗, B] ≤ V ∗2 of rank at most 3n, so (*) is satisfied.

This leaves the cases L ∼= An, n = 6 or 8. We first consider the case where V ∗ is
a decomposable L-module. Then [CV ∗(L), A] 6= 1 by (**). Let Ṽ ∗ := V ∗/CV ∗(L).
Then

m(A) ≥ m(V ∗/CV ∗(A)) ≥ m(Ṽ ∗/CṼ ∗(A)) +m(CV ∗(L)/CV ∗(LA))

≥ m(Ṽ ∗/CṼ ∗(A)) + 1,

so

m(Ṽ ∗/CṼ ∗(A)) ≤ m(A)− 1. (!)

In B.3.4.2i and B.3.2.6, a strong FF -offender A exists only when m(A) = n/2,

Ṽ ∗ = [Ṽ ∗, L], and the inequality in (!) is an equality. As [Ṽ ∗, L] = Ṽ ∗, V ∗ =
U∗ + CV ∗(L). As (!) is an equality, m([CV ∗(L), A]) = 1. But then

m([V ∗, A]) ≤ m([U∗, A]) +m([CV ∗(L), A]) ≤ n/2 + 1 = m(A) + 1 ≤ 2m(A),

verifying (*).
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Thus we have reduced to the case where V ∗ is an indecomposable L-module.
Therefore by B.3.3.4, V ∗ is a submodule or quotient of the full n-dimensional
permutation module; that module is self-dual, so V is also a submodule or quo-
tient. Finally each such module is an FF-module for Sn, so as L ≤ G ≤ Sn, with
|Sn : An| = 2, there is B ≤ L∩A withm(V/CV (B)) ≤ m(B)+1. Thus q(G, V ) ≤ 2,
completing the proof of the lemma. ¤

B.6. Minimal parabolics

The object of this section is to define a collection of subgroups of an abstract
finite group, which resemble the minimal parabolic subgroups (ie. parabolics of Lie
rank 1) in a group of Lie type over a field of characteristic 2.

Thus, following ideas of McBride, we define:

Definition B.6.1. A minimal parabolic of a finite group H (with respect to
the prime 2) is a subgroup P of H such that some Sylow 2-subgroup T of H is
contained in a unique maximal subgroup of P , but T is not normal in P .

In particular if H is a minimal parabolic in the Lie-theoretic sense of a group
of Lie type over a field of characteristic 2, then H is also a minimal parabolic as an
abstract group according to this definition.

As a consequence of our first three results below (which are entirely elementary),

we will see that if H = O2′ (H) is a finite group, then H is generated by the minimal
parabolics over a fixed Sylow 2-subgroup. In chapter E on generation and weak
closure later in the Volume I, we will go on to describe in more detail the structure of
minimal parabolics in SQTK-groups. The remainder of this section will study FF-
modules for minimal parabolics—information which will be required in the following
chapter on pushing up.

In this section H is a finite group.

Definition B.6.2. Write N for the set of maximal subgroups of H , and for
X ⊆ H let

N (X) = NH(X) := {N ∈ N : X ⊆ N}

U(X) = UH(X) := {U ≤ H : X < U and |NU (X)| = 1}

Û(X) = ÛH(X) := {U ∈ U(X) : X 6 E U}

Thus U(X) consists of the subgroups of H in which X is contained in a unique
maximal subgroup.

Lemma B.6.3 (McBride’s Lemma). If X < H then H = 〈UH (X)〉.

Proof. Let H be a minimal counterexample. If |N (X)| = 1, then H ∈ U(X),
and the result holds trivially. So assumeM,N are distinct members of N (X); thus
M > X < N . Now for any X < K < H , UK(X) ⊆ UH(X), and by minimality of
H , K = 〈UK(X)〉. Therefore applying this observation to M and N in the role of
“K”, we have

H = 〈M,N〉 = 〈UM (X),UN (X)〉 = 〈UH(X)〉,

as desired. ¤
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Lemma B.6.4. Let X ≤ H and Ĥ := 〈ÛH(X)〉. Then

(1) Ĥ E H = ĤNH(X).

(2) If X < 〈XH〉 = H, then H = Ĥ.

Proof. If X = H , then ÛH(X) = ∅ so that Ĥ = 1 and (1) is trivial. So

assume X < H . By B.6.3, H = 〈UH(X)〉. Now UH(X) − ÛH(X) ⊆ NH(X), and

NH(X) acts on ÛH(X). Therefore NH(X) acts on Ĥ , and

H = 〈UH(X)〉 ≤ 〈ÛH(X), NH(X)〉 = ĤNH(X) ≤ H

with Ĥ E H . That is, (1) holds.

Further if X < 〈XH〉 = H , then as H = 〈ÛH (X), NH(X)〉 by (1), we conclude

ÛH(X) 6= ∅, so X ≤ Ĥ . Now by (1), Ĥ E H , so H = 〈XH〉 ≤ Ĥ . ¤

In the remainder of this section let T ∈ Syl2(H).

In the terminology of Definition B.6.1, ÛH(T ) is the set of minimal parabolics of

H above T . Recall that T is not normal in the members of ÛH(T ) by definition.

Notice that 〈TH〉 = O2′ (H), so by B.6.4.2:

Lemma B.6.5. If H = O2′(H) then H is generated by the minimal parabolics
above T .

Remark B.6.6. In the proof of our Main Theorem, after Theorem 2.1.1 is
established there exists a pairH ,M of 2-local subgroups containing T withH 6≤M .
Furthermore usually NG(T ) ≤ M , so that NH(T ) < H ; see for example Theorem

3.3.1. Since H = O2′ (H)NH(T ) by a Frattini Argument, B.6.5 tells us that H is
generated by NH(T ) and minimal parabolics above T . Hence we can reduce many
problems to the case where our group is a minimal parabolic.

So in the remaining results in this section, our hypotheses will usually include
the assumption that H ∈ ÛH(T ).

Definition B.6.7. If H ∈ ÛH(T ), we write !NH(T ) (or just !N (T )) for the
unique maximal subgroup of H containing T .

Recall for A ≤ B that kerA(B) := ∩b∈B Ab (in the literature this is often
denoted coreB(A)).

We obtain some elementary restrictions on the structure of H :

Lemma B.6.8. Assume H is a minimal parabolic and M := !N (T ). Set J :=
kerM (H), K := O2(H), H̄ := H/O2(H), and H∗ := H/J . Then

(1) O2(H) = O2(J), but K 6≤ J .
(2) If H is solvable, 4 then H = O2,p,2(H) for some odd prime p, J̄ =

Φ(Op(H̄)), and T irreducible on Op(H
∗).

(3) If H is not solvable then J = O2,F (H), H = KT , and K∗ is the direct
product of the T -conjugates of a nonabelian simple group L∗ such that

AutH∗(L
∗) ∈ ÛAutH∗ (L∗)(AutT∗(L

∗)) and NM∗(L∗) = !NNH∗ (L∗)(NT∗(L
∗)).

Further either

(i) J = O2,F (H) = O2,F∗(H), or

4This result holds for general p. It may be regarded as a descendant of [FT63, 7.6], showing
generation by {p, q}-subgroups of p-length at most 2.
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(ii) J = O∞(H) and H = O2,E,2(H).

(4) If Y EH, then either Y ≤ J or K ≤ Y .
(5) J is 2-closed; that is, O2(H) ∈ Syl2(J).
(6) Let W be an F2H-module.

(a) If K 6≤ CH (W ) then CH(W ) ≤ J .
(b) If CH(W ) ≤M then CH (W ) ≤ J , so CO2(H)(W ) ∈ Syl2(CH(W )).
(c) If O2(H) ≤ CH(W ) ≤M , then O2(H/CH(W )) = 1.
(d) Assume V ∈ R2(H) with [V,H ] 6= 1, and N E T . Then [O2(H), N ] <

O2(H) iff N ≤ O2(H) iff N ≤ CT (V ). In particular [V, J(T )] = 1 iff J(T ) =
J(O2(H)) iff Baum(T ) = Baum(O2(H)). Thus if [V, J(T )] 6= 1, then J(H) =
O2(H)J(T ), and V is an FF-module for H/CH(V ).

(7) J̄ = Φ(H̄).

Proof. As J E H , certainly O2(J) ≤ O2(H). On the other hand, O2(H) ≤
T ≤ M as T is Sylow in H , so O2(H) ≤ J ; then O2(H) = O2(J), giving the first
part of (1). As our other conclusions are essentially statements about H/O2(H),
passing to H/O2(H) we may assume O2(H) = 1.

We claim that J is nilpotent of odd order. For if J is of odd order but not
nilpotent, then some T -invariant Sylow r-subgroup R of J is not normal in H ,
while if J has even order then 1 6= R := T ∩ J ∈ Syl2(J)—and as O2(H) = 1, R
is not normal in H . In either case T ≤ NH(R) < H , so NH(R) ≤ M ; then by a
Frattini Argument, H = JNH(R) ≤M , contradicting M < H . This contradiction
establishes the claim. Now as J is of odd order, J is 2-closed, establishing (5), and
also showing that J ≤ O2(H) = K. If K ≤ J , we again obtain a contradiction as
H = TO2(H) = TJ ≤M < H , completing the proof of (1).

Now letK0 be any subgroup normal inH , but not contained in J , and hence not
contained in M . Then T ≤ TK0 6≤ M , so as M = !N (T ), we conclude H = TK0.
Therefore K = O2(H) = O2(K0), so

K is the unique subgroup minimal with respect to K E H and K 6≤ J . (∗)

In particular this establishes (4). Further (*) also shows that K∗ = K/J is a
minimal normal subgroup of H∗. As K = O2(H) and J < K, K/J is not a
2-group.

Consider the case where H is solvable; we need to prove (2). Suppose there are
distinct odd prime divisors p, q of |H |; for r := p or q, by Hall’s Theorem we can
choose Hr ≥ T a Hall r′-subgroup of H , and Mr ∈ N (Hr). Then Mp 6= Mq, as
|H : Mr| is a power of r, contrary to the hypothesis that H ∈ U(H).

Thus H is a {2, p}-group for some odd prime p, and hence so is K. Now the
solvable minimal normal subgroup K/J is not a 2-group, so it must be a p-group—
and J is a p-group as J is of odd order. Therefore as K = O2(H) we conclude
K = Op(H).

As Φ(K) < K, (*) shows Φ(K) ≤ J . Let K1/Φ(K) be an irreducible T -
submodule of K/Φ(K). If K1 < K, then K/Φ(K) = K1/Φ(K)×K2/Φ(K) where
K2 is T -invariant. Then each Ki is normal in H , so again by (*), Ki ≤ J , and then
K = K1K2 ≤ J , contrary to (1). Therefore K1 = K so that T is irreducible on
K/Φ(K). Then as Φ(K) ≤ J < K, J = Φ(K), establishing (2).

We turn to the case where H is not solvable; thus K is not solvable, and we
need to prove (3). The minimal normal subgroup K∗ of H∗ is the direct product of
the conjugates under T of some nonabelian simple group L∗, so that F (K∗) = 1.
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If J < F (H) then F (H) ≥ K by (*), contradicting F (K∗) = 1, so we conclude
J = F (H). If F (H) = F ∗(H), we have conclusion (i) of (3). Otherwise from
the transitivity of T on the components of H∗, we get K = E(H)J ; and then by
(*), K = E(H), so conclusion (ii) of (3) holds. The remaining assertions of (3)
are essentially about H∗, so passing to H/J , we may assume J = 1. Now if X ∈
NLNT (L)(NT (L)), then 〈X,T 〉 ∈ N (T ), so M = 〈X,T 〉. Therefore X = NM (L)
and AutX(L) = !NAutH (L)(AutT (L)), completing the proof of (3).

Next we prove (6). First (6a) and (6b) are just (4) and (5) applied to CH(W )
in the role of “Y ”. Assume the hypotheses of (c), let I be the preimage of
O2(H/CH(W )) in H and S := T ∩ I . Then S ∈ Syl2(I) with I = CH(W )S,
so by a Frattini Argument H = CH (W )NH(S). Hence as CH(W ) ≤M < H by the
hypotheses of (c), NH(S) 6≤ M , so as T ≤ NH(S) and M = !N (T ), NH(S) = H .
Hence S ≤ O2(H), while O2(H) ≤ CH(W ) by the hypotheses of (c). That is
O2(H/CH(W )) = 1, as asserted.

Now assume the hypotheses of (d). If N ≤ O2(H) then [N,O2(H)] ≤ O2(H),
and so [O2(H), N ] < O2(H). Conversely if [O2(H), N ] < O2(H), then because
[O2(H), N ]N E O2(H)T = H , [O2(H), N ]N ≤ J by (4), so N ≤ O2(H) by (5).

Next since V ∈ R2(H), O2(H/CH(V )) = 1, so in particular O2(H) ≤ CH(V ).
By hypothesis, [V,H ] 6= 1, so O2(H) 6≤ CH(V ). Therefore CH (V ) ≤ J by (a),
so by (b), CH (V ) is 2-closed, with Sylow group O2(H). Thus N ≤ CT (V ) iff
N ≤ O2(H), and the proof of the first statement of (d) is complete. Then the
remaining statements follow using B.2.3. This completes the proof of (6).

Assume (7) fails. Then there is a maximal subgroup X of G with J 6≤ X ; thus
G = XJ so as J is of odd order, X contains a Sylow 2-subgroup of G, which we
may take to be T . But then X =M as M = !N (T ), so G = XJ ≤M , for our final
contradiction. ¤

The following result determines the FF-modules for minimal parabolics which
are K-groups. (A later result E.2.3 gives further details in the case of an SQTK-
group). Notice the similarity with the representation-theoretic version of Solvable
Thompson Factorization B.1.8.

Lemma B.6.9. Assume H is a minimal parabolic, H is a K-group, O2(H) = 1,

and V is a faithful FF-module for H. Let Ṽ := V/CV (J(H,V )). Then

(1) q(H,V ) = 1. In particular, H contains no strong FF-offenders.

(2) J(H,V ) = H1 × · · · × Hs, and [Ṽ , J(H,V )] = Ṽ1 ⊕ · · · ⊕ Ṽs, where Vi :=
[V,Hi] and [Vi, Hj ] = 0 for i 6= j.

(3) T permutes the set {H1, . . . , Hs} transitively.
(4) H = J(H,V )T .
(5) Set M :=!NH(T ). Then either

(i) Hi
∼= L2(2

e), M ∩Hi = NHi(T ∩Hi), and Ṽi is the natural module for
Hi, or

(ii) Hi
∼= S2k+1 is a symmetric group, M ∩Hi

∼= S2k , and Vi is the core
of the (2k + 1)-dimensional permutation module of rank 2k.

Proof. Adopt the notation of B.6.8 (in particular J = kerM (H)) and let

Y := J(H,V ). If Y ≤ J then as Y = O2′ (Y ), Y ≤ O2(H) by B.6.8.5, contradicting
O2(H) = 1. Thus Y 6≤ J , so O2(H) = K ≤ Y by B.6.8.4. Thus (4) holds
and K = O2(Y ). Indeed let P := P∗(H,V ); then the same argument shows
K = O2(JP(H)).
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Next H is described in B.6.8.2 or B.6.8.3. If H is solvable, then (1), (2), and
(5i) with e := 1 hold by B.1.8. In particular H permutes ∆ := {H1, . . . , Hs}, so as
T is irreducible on K by B.6.8.2, (3) holds. Thus the lemma holds in this case, so
we may assume H is not solvable, and hence H is described in B.6.8.3.

Suppose that [F (H),K] 6= 1. Then as K = O2(JP(H)), B.1.9 says there is
a normal subgroup G1

∼= L2(2) of Y with [V,G1] of rank 2. Hence K := K∞

centralizes [V,G1], so O
2(G1) ≤ O2(H) = K centralizes [V,G1], a contradiction.

Therefore K centralizes F (H), so since O2(H) = 1, F (H) = Z(K). Therefore
by B.6.8.3, K = F ∗(H) = K1 · · ·Ks is the central product of the components
of H , permuted transitively by T . By B.1.5.4, Ki E Y . Let L := K1 and
A ∈ P = P∗(H,V ). As T is transitive on {K1, . . . ,Ks}, we may assume L = [L,A].

Let W ∈ Irr+(L, V ) and set W̃ :=W/CW (L). By B.1.5.3, A acts on W . Then by

B.1.5.1, AutA(W ) ∈ P(AutH(W ),W ). So by B.1.5.8, AutA(W̃ ) contains a member

of P(AutH(W̃ ), W̃ ), so that W̃ is an FF-module for AutLA(W̃ ), and by construction

L is irreducible on W̃ .
As W̃ is an FF-module for AutLA(W̃ ), L/Z(L) is of Lie type and characteristic

2 or an alternating group: this is a standard consequence of our K-group hypothesis;
in particular, it follows from B.4.2 in the case where L is an SQTK-group, which
is the only case we need in this work. By B.6.8.3, AutH(L) is also a minimal
parabolic. If L is of Lie type it follows that either

(a) L is of Lie rank 1 and M ∩ L = NL(T ∩ L), or
(b) L ∼= (S)L3(2

e) or Sp4(2
e), and NT (L) is nontrivial on the Dynkin diagram

of L.

In case (a), as W̃ is an FF-module, using the K-group hypothesis (in the form

of B.4.2 when H is an SQTK-group), we conclude L ∼= L2(2
e), W̃ is the natural

module (or else the A5-module for AutLA(W ) ∼= S5—which we treat below in the
symmetric case), A induces inner automorphisms on L, and q(AutH(W ),W ) = 1.
By B.1.5.5, V = W + CV (A), so W = [V, LA] = V1. As [V, L] ∈ Irr+(L, V ),
Ki centralizes Vj for i 6= j, and then as V = W + CV (A), A centralizes KiVi for
i > 1. Then as A induces inner automorphisms on L, A ≤ L; indeed A ∈ Syl2(L).
Moreover an argument in the proof of B.1.8 shows that each member of P(H,V )
is a product of members of P∗(H,V ) = P , so K = Y . This completes the proof of
the lemma in case (a).

In case (b), AutLA(W ) has no FF-modules by B.4.2, so this case does not arise.
This leaves the case where L ∼= An for some n. As AutH(L) is a minimal

parabolic we conclude that n = 2k + 1 and M ∩ L ∼= A2k ; this follows from the
structure of Sn, and in particular from E.2.2 when L is an SQTK-group, the only
case we need in this work. Then as W̃ is an FF-module, it follows (again using the
K-group hypothesis, and in particular B.4.2 when L is an SQTK-group) that W is
the core of the permutation module of degree 2k + 1, A ∈ P = P∗(H,V ) induces
a transposition on L, and q(AutH(W ),W ) = 1. Then applying B.1.5.5 as above,
W = V1 and AL centralizes KiVi for i > 1. Set

Hi :=
⋂

j 6=i

CH(Vj).

Then as AL = NGL(V1)(L), AL = H1, and as H is transitive on {K1, . . . ,Ks},
Hi

∼= H1 for each i. Finally arguing as in the proof of B.1.8, each member of
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P(H,V ) is a product of members of P , so Y = H1×· · ·×Hs, and hence the lemma
holds in this final case as well. ¤

The final result of this section is due to Baumann; its proof depends on our first
use of Baumann’s Argument B.2.18. (The original result is the special case given
in 2.11.1.4 of [Bau76]). Part (2) is particularly important, in that it guarantees
that the Baumann subgroup of T is Sylow in certain crucial subgroups.

Proposition B.6.10 (Baumann’s Lemma). Assume H is a minimal parabolic
with F ∗(H) = O2(H), let V ∈ R2(H), set H∗ := H/CH(V ), and assume that L is
subnormal in H with L∗ ∼= L2(2

n)′, [V, L]/C[V,L](L) is the natural module for L
∗,

and [V, J(T )] 6= 1. Then

(1) Baum(T ) ≤ NH(L
∗).

(2) Baum(T ) is Sylow in 〈Baum(T )L〉.
(3) Let E := Ω1(Z(J(T ))). Then E = C[V,L](J(T ))CE(L).

Proof. Let S := Baum(T ), E := Ω1(Z(J(T ))), and Q := O2(H). By hypoth-
esis [J(T ), V ] 6= 1, so by B.6.8.6d, J(H) = KJ(T ). Further defining P := PH as in
B.2.7, by that result P is a stable subset of P(H∗, V ) and K∗ ≤ J(H)∗ ≤ J(H∗, V ).
Next B.6.9 gives a description of J(H∗, V ), and in particular by transitivity of
T in B.6.9, no proper normal subgroup of J(H∗, V ) is generated by a subset of
FF∗-offenders, so J(H∗, V ) = J(H)∗. By B.6.9, J(H)∗ = H∗1 × · · · × H∗s and

[Ṽ , J(H)] = Ṽ1 ⊕ · · · ⊕ Ṽs. As L is subnormal in H and [Ṽ , L] is the natu-
ral module for L∗ ∼= L2(2

n)′, it follows that L∗ = O2(Hi)
∗ and [V, L] = Vi for

some i. Now J(T ) ≤ J(H) ≤ NH(Vi), and as Ṽi is the natural module for L∗,
Zi := CVi(J(T )) 6≤ CVi(L). Thus Zi ≤ E, and as T permutes the Vj with [V, J(H)]

the direct sum of the Ṽj , it follows that S acts on Vi and hence also on L∗, estab-
lishing (1).

Set M := !N (T ), J := kerM (H). Observe using B.6.8.6a that CH(V ) = J . Let
T ∩ LS ≤ H0 ≤ LS be minimal subject to LS = H0(J ∩ L). Then as L∗S∗ is a
minimal parabolic, H0 is a minimal parabolic, and if (2) and (3) are satisfied in H0,
they are satisfied in H as J/Q is of odd order. Thus replacing H by H0, we may

assume that L = O2(H) and H = LS. As Ṽ is the natural module for J(H)∗ ∼=
L2(2

e), B.2.20 says that S∗ = J(T )∗ ∈ Syl2(J(H)∗), so H∗ = L∗S∗ = J(H)∗.
To complete the proof, we appeal to Baumann’s argument B.2.18 applied to T

in the role of “R”. First as V ∈ R2(H) with [V,H ] 6= 1, CT (V ) = O2(H) by part
(6d) of B.6.8, so hypothesis (a) of B.2.18 is satisfied. Hypothesis (c) follows from

B.6.9.1. As Ṽ is the natural module for H∗ ∼= L2(2
e) and J(T )∗ is Sylow in H∗,

2m(V/CV (J(T ))) = m(Ṽ ) and H∗ = 〈J(T )∗, J(T )∗g〉 for g ∈ L−M , so hypothesis
(d) is satisfied with n = 2, X1 = J(T ), and X2 = J(T )g , while hypothesis (e) is
satisfied as J(T ) = X1. Let H̄ := H/Q. If H is solvable, then J̄ = Φ(L̄) by B.6.8.2.
If H is not solvable, then H∗ = L∗, so H = LJ and Φ(L̄) = J̄ by B.6.8.7. Therefore
as CH(V ) ≤ J by B.6.8.6b, hypothesis (b) is satisfied.

Thus the hypotheses of Baumann’s Argument B.2.18 are satisfied; now part (2)
of that result gives conclusion (3). Finally, CT (V ) ∈ Syl2(CH(V )) as T ∈ Syl2(H),
and CT∗(CV (J(T ))) = J(T )∗, so S∗ = J(T )∗ is Sylow in J(H)∗. Then part (3) of
B.2.18 shows that S ∈ Syl2(KS), establishing (2). ¤
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B.7. Chapter appendix: Some details from the literature

In this short section, for completeness we state and prove 3.2 and 3.3 from
[Asc81e], quoted in the proof of B.1.5. In keeping with the style of exposition in
this work, the proofs are somewhat more expansive than the originals.

Assume G is a finite group, V is a faithful F2G-module, A ∈ P(G, V ), and let
U = U(A) := [V,A].

The following lemma is 3.2 in [Asc81e]; a new part (3) has been added to make
the proof of B.1.5.6 explicit.

Lemma B.7.1. Let W be an A-invariant subspace of V with [W,A] 6= 0. Then:

(1) AutA(W ) ∈ P(AutG(W ),W ).
(2) If A ∈ P∗(G, V ), then AutA(W ) ∈ P∗(AutG(W ),W ). If in addition

m(A/CA(W )) = m(W/CW (A)), then V =W + CV (A) and A is faithful on W ; in
particular, this holds if A is not a strong FF∗-offender on W .

(3) Assume m(A/CA(W )) = m(W/CW (A)). Then either A is faithful on W

with V =W + CV (A); or CA(W ) ∈ P(G, V ) with CA(W )
<
∼ A.

Proof. Assume that B ≤ A with CA(W ) ≤ B; then CB(W ) = CA(W ). Since
A ∈ P(G, V ), condition (*) in section B.1 says

|A||CV (A)| ≥ |B||CV (B)|. (!)

As B ≤ A, CV (A) ∩ CW (B) = CW (A), so that (CV (A) + CW (B))/CW (B) ∼=
CV (A)/CW (A), and hence

|CV (B) : CW (B)| = |CV (B) : CV (A) + CW (B)||CV (A) + CW (B) : CW (B)|

= |CV (B) : CV (A) + CW (B)||CV (A) : CW (A)|.

It follows that

|CV (B)|/|CV (A) : CW (A)| = |CW (B)||CV (B) : CV (A) + CW (B)|.

Dividing (!) by |CA(W )| = |CB(W )| and |CV (A) : CW (A)|, and then using the
previous equality,

|A/CA(W )||CW (A)| ≥ |B/CB(W )||CW (B)||CV (B) : CV (A) + CW (B)| (!!)

≥ |B/CB(W )||CW (B)|,

and (!!) is an equality only if |A||CV (A)| = |B||CV (B)| and CV (B) = CV (A) +
CW (B). In particular, AutA(W ) ∈ P(AutG(W ),W ), establishing (1).

Observe that if |A/CA(W )||CW (A)| = |B/CB(W )||CW (B)|, then (!!) is an
equality, so by the previous paragraph

CV (B) = CV (A) + CW (B), and (+)

|A||CV (A)| = |B||CV (B)|. (++)

Then either B = 1, so that V = CV (A)+W by (+), or (++) says that B ∈ P(G, V )

and B
<
∼ A.

Assume that m(A/CA(W )) = m(W/CW (A)), and set B := CA(W ). Then
|A/CA(W )||CW (A)| = |W | = |B/CB(W )||CW (B)|, so by the previous paragraph
either B = 1 (so that A is faithful on W ) and V = CV (A) +W , or B ∈ P(G, V )

and B
<
∼ A. Thus (3) holds.
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It remains to prove (2), so we assume that A ∈ P∗(G, V ). Suppose that

D ≤ AutG(W ) with D
<
∼ AutA(W ). Then D = AutB(W ) for some B ≤ A with

CA(W ) ≤ B. As AutB(W )
<
∼ AutA(W ), |A/CA(W )||CW (A)| = |B/CB(W )||CW (B)|.

So by an earlier observation either B = 1, or B ∈ P(G, V ) with B
<
∼ A, so

that B = A since we are now assuming A ∈ P∗(G, V ). Thus either D = 1 or
D = AutA(W ). We conclude that AutA(W ) ∈ P∗(AutG(W ),W ), establishing the
first statement in (2).

Finally assume in addition that m(A/CA(W )) = m(W/CW (A)), and again set
B := CA(W ). Then as A ∈ P∗(G, V ), B 6∈ P(G, V ), so that (3) completes the
proof of (2). ¤

The following lemma is 3.3 in [Asc81e]:

Lemma B.7.2. Assume 1 6= H = O2(H) = [H,A] ≤ G such that each 2-chief
factor of H is central. Then:

(1) If a ∈ A with 0 = [V, a, A], then a fixes Irr+(H,V ) pointwise.
(2) If A ∈ P∗(G, V ), then A fixes Irr+(H,V ) pointwise.

Proof. Notice that (1) implies (2): For if A ∈ P∗(G, V ), then by Thompson
Replacement B.1.4.3, [V,A,A] = 0.

So assume that a ∈ A with [V, a, A] = 0, and I ∈ Irr+(H,V ) with I 6= Ia;
it remains to derive a contradiction. As I 6= Ia, I 6= 0. Set W := I + Ia; then
W = [W,H ] 6= 0 by definition of I ∈ Irr+(H,V ).

Suppose H normalizes [I, a]. Then as H = [H,A] and A centralizes [V, a], H
centralizes [I, a], and hence H also centralizes W since [I, a] = {iia : i ∈ I} is the
a-diagonal of I+Ia =W . This is a contradiction as 0 6=W = [W,H ], so H does not
normalize [I, a]. Thus W = I + Ia = [I, a,H ] is A-invariant, since [I, a] and H are
A-invariant. Appealing to B.7.1.1 to conclude that AutA(W ) ∈ P(AutHA(W ),W ),
we may replace the pair G, V by AutHA(W ), W ; hence we may assume G = HA
and V =W .

Set Z := CV (H), Ṽ := V/Z, and n := m(Ĩ). Then Ṽ = Ĩ ⊕ Ĩa has rank

2n, and n = m([Ṽ , a]) ≤ m(V/CV (A)) ≤ m(A) since A ∈ P(G, V ). Suppose
b ∈ A# normalizes I . Then b also normalizes Ia, and as [V, a, b] = 0, b central-

izes the diagonal [Ĩ , a], so b centralizes Ṽ . Thus [H, b] ≤ CH(Ṽ ) ≤ O2(H) using
Coprime Action, while O2(H) ≤ Z(H) since all 2-chief factors of H are central by
hypothesis; so we conclude from Coprime Action that H = O2(H) centralizes b.
Hence [V H, b] ≤ [V, b] ≤ Z ≤ Z(V H). Recall V = [V,H ] since V = W , so that
V H = O2(V H); hence V H centralizes b by Coprime Action, so b ∈ CG(V ) = 1.

Thus NA(I) = 1, so that A is regular on IA. Now Ĩ1 ∩ Ĩ2 = 0 for distinct members

Ii of Irr+(H,V ), and |Ĩ#i | = 2n− 1, so |Irr+(H,V )| ≤ (22n− 1)/(2n− 1) = 2n+1.
Then as m(A) ≥ n, |A| ≥ 2n, so we conclude |A| = 2n = |IA|. Furthermore A

centralizes [Ṽ , a], so that ĨA ∪ [Ṽ , a] is a partition of Ṽ by subspaces. Since I is

H-invariant, IA is HA-invariant, and hence so is [Ṽ , a] = [Ĩ , a], a case eliminated
in the previous paragraph. This completes the proof. ¤





CHAPTER C

Pushing-up in SQTK-groups

In this chapter, we recall the fundamentals of pushing up, and develop a number
of pushing up results—primarily of local subgroups which are SQTK-groups. Fur-
ther results on pushing up in QTKE-groups used in the proof of the Main Theorem
appear in chapter 4.

C.1. Blocks and the most basic results on pushing-up

In this section, we record and review some of the most fundamental notions and
theorems from the theory of pushing up. For the most part we only state results
for SQTK-groups, since we will only apply the theory to such groups, and since the
theorems are stronger and easier to state for SQTK-groups.

In particular, we prove a version of the Aschbacher LocalC(G, T )-Theorem, and
quote a version of the result of Meierfrankenfeld-Stellmacher on pushing up weak
BN -pairs of rank 2, but only for SQTK-groups. These results identify the “ob-
structions” to pushing up in two of the most basic cases. Sometimes the C(G, T )-
Theorem and the Meierfrankenfeld-Stellmacher Theorem are sufficient for our pur-
poses; but often we also require deeper results on pushing up, like those in section
C.2 (using ideas from [Asc81b]), and later sections of this chapter. Still the math-
ematics in the present section supplies the foundation for the proofs of the more
sophisticated theorems, and since the SQTK hypothesis is quite restrictive, that
foundation is sufficient.

C.1.1. The pushing up hypotheses (PU) and (CPU). We begin with
some general background and notation. We will be considering the normalizers of
various nontrivial subgroups of a 2-subgroup R of a finite group G.

Definition C.1.1. As in the literature, S2(G) denotes the set of nontrivial
2-subgroups of G.

To obtain interesting conclusions, we must restrict the embedding of R in G.
In particular, we often require that R is in the set B2(G) , of 2-subgroups of G
called 2-radical or 2-stubborn in the literature; that is, R satisfies:

1 6= R = O2(NG(R)).

We begin with a few elementary observations about 2-radical subgroups:

Lemma C.1.2. Let G be a finite group and R ∈ S2(G). Then

(1) If R ∈ Syl2(G) then R ∈ B2(G).
(2) There is B ∈ B2(G) with R ≤ B and NG(R) ≤ NG(B).
(3) If H ≤ K ≤ G with R ∈ B2(H) and NK(R) ≤ H, then R ∈ B2(K).
(4) If M ≤ G, L = O2(L) E M , and R ∈ Syl2(CM (L/O2(L))), then R ∈

Syl2(〈RM 〉) and R ∈ B2(M).
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Proof. If R ∈ Syl2(G), then |G : R| is odd so certainly (1) holds. Let B ∈
S2(G) be maximal subject to R ≤ B and NG(R) ≤ NG(B). Then since NG(B) ≤
NG(O2(NG(B))), B ∈ B2(G) by the maximal choice of B, establishing (2). Under
the hypotheses of (3), R = O2(NH(R)), so as NK(R) ≤ H ≤ K, NK(R) = NH(R),
and hence R ∈ B2(K), so (3) holds. Assume the hypotheses of (4), and let Q :=
O2(NM (R)) and H := CM (L/O2(L)). Then H E M , and we are assuming
R ∈ Syl2(H), so R = Q∩H . By A.4.2.4, L normalizes R, and hence also normalizes
Q = O2(NM (R)); thus as L E M , [L,Q] ≤ L ∩Q ≤ O2(L). Therefore Q ≤ H , so
Q = Q∩H = R. This completes the proof of the second conclusion of (4); the first
conclusion follows as H E M . ¤

Now suppose C is some nontrivial characteristic subgroup of R ∈ S2(G). Then
NG(R) ≤ NG(C), so if NG(R) < NG(C), we have “pushed up” NG(R) to the
larger local subgroup NG(C). A special case of particular interest occurs when
NG(C) = G, so that C is normal in G. Unfortunately, there are pairs (G,R) for
which no such characteristic subgroup exists, so we are led to study the following
situation:

Definition C.1.3. We say that the pair (G,R) satisfies (PU) if

1 6= R ∈ B2(G), and no nontrivial characteristic subgroup of R is normal in G.

Hypothesis (PU) is the weakest of the standard pushing up hypotheses. For
example, when O2(G) = 1, (PU) is obviously satisfied for all R ∈ B2(G). However,
we will be most interested in the case where F ∗(G) = O2(G) 6= 1, where (PU)
begins to have some bite. The pairs G,R satisfying (PU) with F ∗(G) = O2(G) are
said to be obstructions to pushing up.

Remark C.1.4. The existence of pairs satisfying (PU) restricts internal mod-
ules for G: As R ∈ B2(G), O2(G) ≤ R, so J(R) 6≤ O2(G), since otherwise

J(R) = J(O2(G)) E G by B.2.3.3. Then if V ∈ R2(G) with O
2′(CG(V )) = O2(G),

J(R) 6≤ CG(V ), so by B.2.4.1, the 2-reduced internal module V is an FF-module
for G/CG(V ).

Under (PU), the normalizers of all nontrivial characteristic subgroups of R
are proper subgroups of G. It is also of interest to study a stronger pushing up
condition, in which a single proper subgroup contains all these normalizers. Recall
that for S ∈ S2(G):

Definition C.1.5. C(G,S) := 〈NG(C) : 1 6= C char S〉.

Even when C(G,R) is proper in G, in order to prove strong results we must
again restrict the embedding of R in C(G,R). Thus we are led to the following
stronger pushing up situation:

Definition C.1.6. The pair (G,R) satisfies (CPU) if

C(G,R) ≤M < G for some 1 6= R ∈ B2(G) with R ∈ Syl2(〈R
M 〉).

In this context, if C is a nontrivial characteristic subgroup of R such that
NG(C) 6≤ M , then we have “pushed up” NG(R) to NG(C) outside of M ; so in
(CPU) we are studying obstructions G,R to the conclusion C(G,R) = G. This
stronger condition occurs for example when R is normal in a uniqueness subgroup,
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such as in 1.4.1 in the proof of our Main Theorem, where T ∈ Syl2(G), L0 =
O2(L0)EM < G, M is the unique maximal 2-local of G containing L0T , and R :=
CT (L0/O2(L0)). For then by C.1.2.4, R ∈ B2(M), and by 1.4.1.1, C(G,R) ≤ M .
We will develop the basic theory of triples (R,M,G) satisfying (CPU) under the
SQTK-hypothesis in the subsequent sections C.2, C.3, and C.4 of this chapter.

C.1.2. Blocks and their elementary properties. We will return to (PU)
and (CPU) later in the section; we turn now to a discussion of short subgroups and
blocks, since such subgroups arise naturally as obstructions to pushing up.

When hypothesis (PU) holds with F ∗(G) = O2(G), the typical input is knowl-
edge of the quotient G/O2(G), and the output consists of restrictions on the struc-
ture of the 2-group R, and hence also on the structure of O2(G). Often (see C.1.29
etc.) the only obstruction to obtaining a nontrivial characteristic subgroup of R
normal in G is the case where there is a unique non-central composition factor of
G in O2(G).

Thus we are led to the following definition:

Definition C.1.7. A group L is short if

L = O2(L),
F ∗(L) = O2(L),
U(L) := [O2(L), L] ≤ Ω1(Z(O2(L))),
L/O2(L) is quasisimple or of order 3, and

L is irreducible on Ũ(L) := U(L)/CU(L)(L).

Admitting the possibility that L/O2(L) is of order 3 allows us to treat the solvable
linear group L/Z(L) ∼= SL2(2)

′ in parallel with the cases where L/O2(L) ∼= L2(2
n)

with n > 1 is quasisimple.
A block of a finite group G is a short subnormal subgroup of G. These are

sometimes called Aschbacher blocks in the literature.
We follow the convention in the literature that the expression “L is a block”

(that is, with no overgroup G of L specified) implicitly assumes that G := L—that
is, this expression just means that L is short.

The next few lemmas establish some basic properties of blocks; all are presum-
ably known at least to experts.

Lemma C.1.8. If X is a block, then X/U(X) is quasisimple or of order 3.

Proof. By definition:

(a) U(X) = [O2(X), X ],
(b) X/O2(X) is quasisimple or of order 3, and
(c) X = O2(X).

By (a), O2(X/U(X)) ≤ Z(X/O2(X)), so the lemma follows from (b) and (c), using
31.1 in [Asc86a] in the case where X/O2(X) is quasisimple. ¤

See Definition C.1.12 for the notion of A3-block.

Proposition C.1.9. If G has an A3-block, assume F
∗(O2,3(G)) = O2(O2,3(G)).

Then distinct blocks in G commute.

Proof. See 3.4 in [Asc81a]. ¤

In the following lemma, if π is empty, then Oπ(Y ) = Y .
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Lemma C.1.10. Assume X is a normal block of H, and let F := EndX(Ũ(X))
and π the set of prime divisors of |F#|. Assume Y ≤ H satisfies Y = O2(Y ) =
Oπ(Y )[Y, Y ], and Y centralizes X/O2(X). Then Y centralizes X.

Proof. Set H̄ := H/CH(Ũ(X)), and recall O2(X) ≤ CX(U(X)) ≤ CH(Ũ(X))

by definition as X is short. As X̄ is irreducible on Ũ(X), F is a field. By hypothesis
Ȳ ≤ CAutH (Ũ(X))(X̄)), and the latter group is a subgroup of the abelian group F# of

odd order. Therefore as Y = Oπ(Y )[Y, Y ] by hypothesis, Y centralizes Ũ(X). Also
[X,Y ] ≤ O2(X) ≤ CX (U(X)), so by the Three-Subgroup Lemma, Y centralizes
[U(X), X ] = U(X).

Next [Y,X ] ≤ O2(X) by hypothesis, and X/U(X) is either quasisimple or
of order 3 by C.1.8. In the latter case, U(X) = O2(X), so that Y centralizes
X/U(X); and in the former, Y centralizes X/U(X) by 31.6.1 in [Asc86a]. Thus
as Y centralizes U(X), the lemma holds by Coprime Action as Y = O2(Y ). ¤

Lemma C.1.11. Let H = KS with K a product of blocks and S ∈ Syl2(H). Set
U := [O2(K),K]. Then CH (U) = O2(H).

Proof. As U = [O2(K),K] and F ∗(K) = O2(K), CK(U) ≤ O2(K). Thus
as H = KS, CH (U) ≤ O2(H), so it remains to show O2(H) ≤ CH(U). By
induction on the number of blocks of H , we may assume K is a block. Furthermore
[O2(H),K] ≤ O2(K) ≤ CK(U), so O2(H) ≤ CH (U) by A.1.41, completing the
proof. ¤

We next consider the blocks that arise in results like the C(G, T )-theorem (see
C.1.29 below).

Definition C.1.12. We say a short group L is of type L2(2
n) (for n > 1)

if L/O2(L) ∼= L2(2
n) and Ũ(L) is the natural module for L/O2(L). Similarly

L is of type An if L/O2(L) ∼= An and Ũ(L) is the natural module (that is, the
unique noncentral chief factor in the n-dimensional permutation module described
in section B.3). Write χ for the set of short groups of type L2(2

n) or Am, m odd,
and write χ0 for the set of short groups of type L2(2

n), A3, or A5.
A χ-block of G is a block in χ, and an L2(2

n)-block is a block of type L2(2
n),

etc.

To motivate the definitions of χ and χ0, first recall from [Asc81a] that Y is the
subset of χ consisting of the blocks of type L2(2

n) and Am with m of form 2a + 1.
In an SQTK-group, Theorem C (A.2.3) rules out sections which are alternating
groups of degree 9 or more, leaving only A3 and A5. The collection Y appeared in
our earlier lemma B.6.9; while χ0 will appear later on in the present section in the
C(G, T )-Theorem C.1.29, and χ will appear sooner in C.1.16 and C.1.28.

Lemma C.1.13. Let T ∈ Syl2(LT ) with L a normal block of LT , and set
Q := O2(LT ) and U := U(L). Then

(a) Φ(Q) ≤ CT (L).

(b) m(Q/UCT (L)) ≤ m(H1(L/O2(L), Ũ(L))), and O2(L)/U is a quotient of
the the Schur multiplier of L/O2(L) if L/O2(L) is quasisimple, and is trivial if
L/Z(L) ∼= Z3.

(c) If L is an A3-block or A5-block then Q = U × CT (L) and U is the natural
module. If L is an A3-block then L ∼= A4. If L is an A5-block, then L/U ∼= A5 or
SL2(5), with Z(L) of order 2 in the latter case. In any case, Q centralizes O2(L).
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(d) If L is an A6-block, then Q centralizes O2(L).

Proof. As L is a block, [Q,L] = U , while U ≤ Z(Q) by C.1.11. Thus for

l ∈ L and q ∈ Q, we have lq = lv for some v ∈ U , and then lq
2

= lv2 = l, since U
is elementary abelian, so (a) holds.

Now set L̄T̄ := LT/CT (L). Then in particular Ū ∼= Ũ(L). Further [L̄, Q̄] =

[L,Q] = Ū and by (a), Q̄ is elementary abelian. Setting D̄ := CQ̄(L̄), m(Q̄/ŪD̄) ≤

m(H1(L/O2(L), Ũ(L))). Let D denote the preimage of D̄. Then L centralizes
D̄ = D/CT (L) and CT (L), and so L = O2(L) centralizes D by Coprime Action;
that is, CT (L) = D, establishing the first part of (b).

Next set L∗ := L/U . By C.1.8, L∗ is of order 3 or L∗ is quasisimple. Hence
O2(L)

∗ is a quotient of the Schur multiplier of L/O2(L) when L/O2(L) is quasisim-
ple, and trivial if L/O2(L) is of order 3, completing the proof of (b).

Now assume that L is an An-block for n = 3, 5, or 6. When n = 3, L∗ is of order
3 and O2(L) = U is the natural module for L∗ by (b), so that L ∼= A4. Thus we
may take n = 5 or 6. By (b), L∗ ∼= An, SL2(5), or SL2(9), as the latter two groups
are the universal 2-covering groups of A5, A6, respectively using I.1.3. If n = 5, the
irreducible natural module for L/O2(L) is projective by I.1.6, so CU (L) = 1 and
Q = U ×D by (b). This completes the proof of (c).

It remains to prove (d), so we may take n = 6. Recall U ≤ Z(Q), so we may
assume that U < P := O2(L) and hence L∗ ∼= SL2(9) and |P : U | = 2 by the
previous paragraph. Let K0/P be the stabilizer of a point in the representation
of L/P on 6 points, and set K := O2(K0). Now U/CU (L) is the 4-dimensional
permutation module for A6, so UK := [U,K] is the A5-module for K0/P , and
hence K is an A5-block, so that O2(K) = Z(K) × UK by (c). As L∗ ∼= SL2(9),
K∗ ∼= SL2(5) with Z(K

∗) = Z(L∗), so K/UK ∼= SL2(5) with Z(K) of order 2, and
P = UZ(K). Further [Q,K] ≤ [Q,L] = U , so Q acts on O2(KU) = K, and hence
centralizes Z(K) as |Z(K)| = 2. Therefore Q centralizes UZ(K) = P , establishing
(d). ¤

We often specialize to the case where F ∗(G) = O2(G) and work with some
internal module V ; in that case we adopt the following notation:

Hypothesis C.1.14. G is a finite group with F ∗(G) = O2(G). Choose V ∈
R2(G) and T ∈ Syl2(G), and set G∗ := G/CG(V ) and Z := Ω1(Z(T )).

Remark C.1.15. Recall that as V ∈ R2(G), V is normal in G, V is an
elementary abelian 2-group, and V is 2-reduced: that is, O2(G

∗) = 1. When
J(T ) 6≤ CG(V ), V is an FF-module for G∗ by B.2.4.1. Then since O2(G

∗) = 1,
we can apply various results on the Thompson and Baumann subgroups in section
B.2, and in particular results determining FF-modules, such as Theorem B.5.6.

The next technical lemma shows that J(T ) normalizes the components of G∗,
and that the Baumann subgroup Baum(T ) normalizes suitable blocks.

Proposition C.1.16. Assume Hypothesis C.1.14. Then

(1) J(T )∗ acts on each component of G∗.
(2) Baum(T ) acts on each χ-block L of G such that [L∗, J(T )∗] 6= 1.
(3) If G is an SQTK-group, L ∈ C(L) with L∗ quasisimple, and [L∗, J(T )∗] 6= 1,

then Baum(T ) acts on L.
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Proof. Part (1) appears as Theorem 26.24 in [GLS96], but the proof is easy
given B.1.5.4: Namely by B.2.5, J(T )∗ ≤ J(G∗, V ), and by B.1.5.4, each component
of J(G∗, V ) is normal in J(G∗, V ). On the other hand, if K∗ is a component of G∗

not contained in J(G∗, V ), then [K∗, J(G∗, V )] = 1 by 31.4 in [Asc86a]. Thus (1)
is established.

Assume the hypotheses of (2) or (3); thus in either case, L is subnormal in G
and [L∗, J(T )∗] 6= 1. We may assume G = 〈L, T 〉. Thus if L is an L2(2

n)-block or
an A3-block, then G is a minimal parabolic in the sense of Definition B.6.1, and
(2) follows from Baumann’s Lemma B.6.10.1. Therefore we assume that either L
is an An-block for n > 3, or the hypotheses of (3) hold. In either case, L ∈ C(G)
and L∗ is a component of G∗, so by (1), J(T ) acts on L∗ and hence on [V, L] =: U ;
the action is nontrivial since [L∗, J(T )∗] 6= 1. Let K := 〈LT 〉, UK := 〈UT 〉, and
ŨK := UK/CUK (K). Then K = K1 · · ·Km is the central product of the conjugates
of L under T , and we may assume that m > 1. Let Ui := [Ki, V ].

In (2), L is irreducible on Ũ , so ŨK is the direct sum of the Ũi. In (3) as m > 1,
(1) and (3) of A.3.8 say that m = 2 and L∗ is L2(2

n), Sz(2n), L2(p), or J1. Then

by Theorem B.5.6, ŨK = Ũ1⊕ Ũ2, and Ũ is the natural module for L∗ ∼= L2(2
n) or

A5, or the sum of at most two isomorphic natural modules for L3(2).

Thus in any event, ŨK = Ũ1⊕· · · Ũm. But in each case, we check that CU (L) <

CU (J(T )
∗), so as CU (J(T )) ≤ Ω1(Z(J(T ))) by B.2.3.7, and as ŨK is the direct sum

of the Ũi, Baum(T ) acts on U and hence also on L. ¤

C.1.3. Pushing-up in certain minimal situations. In the remainder of
the section, we collect a number of the most basic results from the literature de-
termining the obstructions to pushing up. For many of these results, we provide
short, modern proofs under the hypothesis that G is an SQTK-group.

Typically the results show that the obstruction to pushing up must be a block,
or occasionally some other highly restricted group.

In this subsection, we focus on results describing obstructions to pushing up
when G/O2(G) is a rank-1 group, or one of a number of other “small” groups. We
assume, and record here as C.1.18 below, the fundamental result of Glauberman-
Niles and Campbell on pushing up a minimal parabolic G in the sense of Definition
B.6.1 which satisfies Hypothesis C.1.14, with G∗ ∼= L2(2

n) and V/CV (G) the nat-
ural module.

Definition C.1.17. Given a 2-group S, denote by G(S) the set of finite groups
H such that: S ∈ Syl2(H), F ∗(H) = O2(H), H is a minimal parabolic in the sense
of Definition B.6.1, and setting V := 〈Ω1(Z(S))

H 〉 and H∗ := H/CH(V ), we have
F ∗(H∗) ∼= L2(2

n)′, with [V, F ∗(H∗)]/C[V,F∗(H∗)](F
∗(H∗)) the natural module for

F ∗(H∗).

Theorem C.1.18 (Glauberman-Niles/Campbell). Let S be a 2-group. Then
there exist nontrivial characteristic subgroups Ci(S), i = 1, 2, of S, such that
C1(S) ≤ Ω1(Z(S)), C2(S) char Baum(S), and for all H ∈ G(Baum(S)), one of the
following holds:

(1) C1(S) ≤ Z(H).
(2) C2(S) E H.
(3) O2(H) is an L2(2

n)-block or A3-block of H.
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Proof. This appears in [GN83] in our Background References. (We mention
that it was also obtained by Campbell in his unpublished thesis [Cam79]). ¤

Remark C.1.19. Notice that it suffices to prove Theorem C.1.18 for B :=
Baum(S) in the role of “S”: Namely given Ci(B) satisfying the conclusions of
C.1.18 for B, define C2(S) := C2(B) and C1(S) := Z(S)∩C1(B), and observe that
these groups satisfy the conclusions of C.1.18 for S.

In the remainder of this subsection, we will apply C.1.18 in treating a number
of more general minimal situations, culminating in the C(G, T )-theorem C.1.29.
Since the two characteristic subgroups defined in C.1.18 will play a prominent role,
we establish the following notation:

Notation C.1.20. Given a 2-group T , let C1(T ) and C2(T ) be characteris-
tic subgroups of T supplied by the Glauberman-Niles/Campbell Theorem C.1.18.
Thus C1(T ) ≤ Ω1(Z(T )) and C2(T ) char Baum(T ). Indeed because of Remark
C.1.19, we can and will choose these subgroups so that C2(T ) := C2(Baum(T ))
and C1(T ) := Z(T ) ∩ C1(Baum(T )) ≤ C1(Baum(T )).

The following argument, due originally to Glauberman, is our main technical
tool for extending Theorem C.1.18 to groups other than those in G(T ). Notice that
we leave the 2-group T unspecified; in particular T is not necessarily a subgroup of
G. In some applications, G is a subgroup of some larger group containing T .

Lemma C.1.21 (Glauberman’s Argument). Assume

(i) G is a finite group with F ∗(G) = O2(G) and L := O2(G) ∈ C(G) with
L/O2(L) quasisimple.

(ii) T is a finite 2-group and S := Baum(T ) ≤ R ≤ T , with O2(G) ≤ R ≤ G.
Let Y(G,R) denote the set of all subgroups Y = O2(Y ) of G invariant under
R0 := SO2(G), such that R ∩ Y ∈ Syl2(Y ) and R2(R0Y )/CR2(R0Y )(Y ) is the
natural module for Y/O2(Y ) ∼= L2(2

n) or Z3. Then

(1) For each Y ∈ Y(G,R), one of the following holds:

(a) Y normalizes C2(T ).
(b) Y centralizes C1(T ) and C1(S).
(c) Y is an L2(2

n)-block or A3-block.

Moreover either Y acts on S, or S ∈ Syl2(Y S) and Y = [Y, J(R)].
(2) If there is Y ⊆ Y(G,R) such that G = 〈Y , CG(Ω1(Z(R)))〉 = 〈NG(S), Y 〉

for each Y ∈ Y, then one of the following holds:

(a) C1(T ) ≤ Z(G).
(b) C2(T ) E G.
(c) L is a block, and U(L) is an FF-module for LS/CLS(U(L)).

(3) If G = 〈NG(S), Y 〉 for some Y ∈ Y(G,R), then either

(I) some nontrivial characteristic subgroup of S is normal in G, or
(II) L is a block, and U(L) is an FF-module for LS/CLS(U(L)).

(4) Let V ∈ R2(G) and set G∗ := G/CG(V ) and ZV := CV (J(R)). As-
sume J(R)∗ = CR(ZV )

∗, and X = O2(X) is a J(R)CG(V )-invariant subgroup
of G satisfying CX(V ) = O2(X), X∗J(R)∗/O2(X

∗J(R)∗) ∼= L2(2
n), J(R)∗ ∈

Syl2(X
∗J(R)∗), and [ZV , X ] 6= 1. Then S∗ = J(R)∗ and X ∈ Y(G,R).
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Proof. Let Q := O2(G) and Z := Ω1(Z(T )). Now Z ≤ CT (Ω1(Z(J(T )))) =
Baum(T ) = S, and by hypothesis S ≤ R, so Z ≤ Ω1(Z(R)) =: ZR. Second,
J(R) = J(S) and S = Baum(R) by parts (3) and (4) of B.2.3.

Assume Y ∈ Y(G,R); then by definition, QS acts on Y and R ∩ Y ∈ Syl2(Y ).
Thus as Q ≤ R, P := QS(R ∩ Y ) ≤ R and P is Sylow in Y QS = Y P . Again

J(R) = J(P ) and S = Baum(P )

by parts (3) and (4) of B.2.3.
Let U := R2(Y P ), and Y ∗P ∗ := Y P/CY P (U). We will verify that the hy-

potheses of B.2.10.2 are satisfied, with Y P , Y , P , P , U in the roles of “G, L, T ,
R, V ”; since S = Baum(P ), S still plays the role of “S”. First, O2(Y P ) ≤ P
since P ∈ Syl2(Y P ). As U ∈ R2(Y P ), O2(Y

∗P ∗) = 1. Further Y = O2(Y ) with
Y/O2(Y ) ∼= L2(2

n)′, so either n > 1 and Y ∈ C(Y P ), or n = 1 and Y/O2(Y ) ∼= Z3.
Finally [U, Y ] 6= 1 as U/CU (Y ) is the natural module for Y ∗ ∼= L2(2

n)′ by hypothe-
sis. This completes the verification of the hypotheses of B.2.10.2, so we can appeal
to Lemma B.2.10.

We turn to the proof of (1). If S = Baum(O2(Y P )), then Y normalizes S, and
hence also normalizes the characteristic subgroup C2(T ) of S in view of C.1.20, so
that conclusion (1a) holds.

Thus we may assume that case (b) of B.2.10.1 holds: Y ∗ = F ∗(JPP,Y P (Y
∗P ∗)).

We saw that J(P ) = J(R), so that J(R) does not centralize U , and hence Y =
[Y, J(R)]. Furthermore as Y P is a minimal parabolic in the sense of Definition
B.6.1, and U/CU (Y ) is the natural module for Y ∗, the hypotheses of Baumann’s
Lemma B.6.10 are satisfied with Y P , P , Y ∗, U in the roles of “H , T , L∗, V ”.
Then we conclude from B.6.10.2 that S is Sylow in 〈SY 〉 = Y S. In particular this
establishes the final statement in (1). Further as U/CU (Y ) is the natural module
for Y ∗, U ∩ Ω1(Z(S)) 6≤ CU (Y ) by I.2.3, so 〈Ω1(Z(S))

Y S〉 = UCΩ1(Z(S))(Y ) by
B.2.13. Therefore Y S ∈ G(S).

Thus we may apply C.1.18 with Y S, S, S in the roles of “H , S, Baum(S)”, and
appealing to C.1.20, in the three cases of C.1.18 we obtain the three conclusions
of our lemma: As S = Baum(T ) and C2(T ) = C2(S), case (2) of C.1.18 gives
conclusion (1a). In case (1), Y centralizes C1(S), and hence also centralizes C1(T ) =
Z(T ) ∩ C1(S), giving conclusion (1b). Finally in case (3) conclusion (1c) holds for
O2(G) = L. This completes the proof of (1).

Next we make a reduction which will simplify the verification of conclusions
(2) and (3): Suppose Y satisfies neither case (a) nor (b) of (1), so that Y satisfies
case (c) of (1). Set W := Ω1(Z(Q)), and recall that U centralizes O2(Y P ) and
Q ≤ O2(Y P ); hence as F ∗(G) = Q, we conclude that U ≤ W . Thus U(Y ) ≤ W ,
so [Q, Y ] ≤ W . Hence L = 〈Y L〉 centralizes Q/W , so [Q,L] ≤ W . Indeed as Y
has only one noncentral chief factor on W , so does L, so L is also a block with
U(L) = [Q,L] ≤W . Thus the hypotheses of B.2.10.2 are satisfied, with LP , L, P ,
P , U(L) in the roles of “G, L, T , R, V ”; so by that result either S = Baum(Q),
or L = [L, J(R)]. In the former case, conclusion (a) of (1) holds, contrary to
assumption; in the latter case, U(L) is an FF-module for LS/CLS(U(L)), so that
conclusions (2c) and (3II) hold. Therefore in our proof of (2) and (3), we may
assume that each Y ∈ Y(G,R) satisfies case (a) or (b) of (1).

Now assume the hypotheses of (2). Then there is Y ⊆ Y(G,R) with G =
〈Y,NG(S)〉 for each Y ∈ Y . If case (a) of (1) holds for some Y ∈ Y , then Y acts on
C2(T ). So as C2(T ) is characteristic in S, G = 〈Y,NG(S)〉 acts on C2(T ), and hence
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conclusion (b) of (2) holds. Hence by the reduction in the previous paragraph, we
may assume that each Y ∈ Y satisfies case (b) of (1). But then by the hypothesis
of (2), G = 〈Y , CG(ZR)〉 centralizes C1(T ), as C1(T ) ≤ Z ≤ ZR. Thus conclusion
(a) of (2) holds, and the proof of (2) is complete.

Assume the hypotheses of (3). Our earlier reduction showed that Y satisfies
case (a) or (b) of (1), so that either C2(S) or C1(S) is normalized by Y , and hence
is normalized by G = 〈Y,NG(S)〉. Thus conclusion (I) of (3) holds, so the proof of
(3) is also complete.

Finally assume the hypotheses of (4). By B.2.3.2, ZV ≤ Ω1(Z(J(R))), so that
S∗ ≤ CR(ZV )

∗ = J(R)∗ by hypothesis. Hence S∗ = J(R)∗, establishing one of the
conclusions of (4), and also CG(V )S = CG(V )J(R).

As X = O2(X) ≤ O2(G) = L and [V,X ] 6= 1, also [V, L] 6= 1. As before, the
hypotheses of B.2.10.2 are satisfied with LP , L, P , P in the roles of “G, L, T , R”; so
Q is Sylow in CG(V ) by that result. Thus as Q ≤ R and J(R)∗ ∈ Syl2(X∗J(R)∗) by
hypothesis, R∩X ∈ Syl2(X). Also as CG(V )J(R) = CG(V )S, QJ(R) = QS = R0.
By hypothesis X is CG(V )J(R)-invariant and J(R)∗ ∈ Syl2(X

∗J(R)∗), so X is
R0-invariant, and R0 is Sylow in XR0. Further R0 ≤ R centralizes ZV , and by
hypothesis [ZV , X ] 6= 1, so [R2(XR0), X ] 6= 1 by B.2.14. Then as XR0/O2(XR0) ∼=
X∗J(R)∗/O2(X

∗J(R)∗) ∼= L2(2
n), the FF-module R2(XR0)/CR2(XR0)(X) is the

natural module by Theorem B.5.1.1. Thus X ∈ Y(G,R), completing the proof of
(4). ¤

We now begin our series of results extending C.1.18. The following lemma
considers the only case whereG is a minimal parabolic with O2(G/O2(G)) ∼= L2(2

n)
and R2(G) is an FF-module for G, but G /∈ G(S): the case where [R2(G), O

2(G)]
is the A5-module for O2(G/O2(G)) ∼= L2(4). For technical reasons, we also treat
one of the two cases where O2(G/O2(G)) ∼= A7. In the that case, we need the first
of the following definitions, and we will need the second shortly thereafter.

Definition C.1.22. A block L is an exceptional A7-block if L/O2(L) ∼= A7

and m(U(L)/CU(L)(L)) = 4; by I.1.6.10, this implies that CU(L)(L) = 0 and hence
m(U(L)) = 4. Thus U(L) is the natural module for L4(2) ∼= A8 restricted to

its subgroup A7. Define L to be a Â6-block if L/O2(L) ∼= Â6, m(U) = 6, and
CL(U) = O2(L); thus U is the natural module for SL3(4) restricted to its subgroup

Â6.

Just as in C.1.21, the 2-group T in the following result need not be a subgroup
of G. In at least one later application, T will be Sylow in an overgroup of G.

Lemma C.1.23. Assume T is a finite 2-group, S := Baum(T ) ≤ R ≤ T ,
G is a finite group with R ∈ Syl2(G), and G = LR for some L ∈ C(G), with
F ∗(G) = O2(G), and L/O2(L) ∼= A5 or A7. Then

(1) If L/O2(L) ∼= A5, then one of the following holds:

(a) C1(T ) ≤ Z(G).
(b) C2(T ) E G.
(c) L is an A5-block or L2(4)-block and L = [L, J(T )].

(2) If L is an exceptional A7-block then G = 〈CG(C1(T )), NG(C2(T ))〉.

Proof. Let Z := Ω1(Z(T )), V := 〈ZG〉, U := [V, L], and G∗ := G/CG(V ).
First Z ≤ CT (Ω1(Z(J(T )))) = Baum(T ) = S, and by hypothesis S ≤ R ≤ T ,

so Z ≤ Ω1(Z(R)) =: ZR, and hence V ∈ R2(G) by B.2.14. Also observe that
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J(R) = J(S) and S = Baum(R) by parts (3) and (4) of B.2.3. Hence the hypotheses
of B.2.10 hold, with R serving in the role of both “R” and “T”.

Suppose first that [V, L] = 1. Then the hypothesis of (2) does not hold. Fur-
thermore by C.1.20 C1 := C1(T ) ≤ Z ≤ V , so that C1 is central in LR = G, and
conclusion (a) of (1) holds.

So we may assume that [V, L] 6= 1. Hence the hypotheses for part (2) of B.2.10
hold, so we can apply that result and adopt its notation. If S = Baum(O2(G))
then C2 := C2(T ) char S E G, so conclusion (2) holds, as does conclusion (b) of
(1).

Thus we may assume that the second case of B.2.10.2 holds. Since R ∈ Syl2(G),
PR,G = PG is a stable set of FF∗-offenders on V , and V is an FF-module with
F ∗(J(G)∗) = L∗ quasisimple, so we may apply Theorem B.5.1 to conclude U ∈
Irr+(L, V ). Then we apply B.4.2 to conclude Ũ is a natural module for J(G)∗ ∼=
L2(4) or S5 in (1), while in (2) Ũ is a 4-dimensional module for G∗ ∼= A7 by
hypothesis.

We first prove (1). We will appeal to part (2) of Glauberman’s Argument
C.1.21; more precisely, we will exhibit Y ∈ Y(G,R) such that G = 〈Y,R〉, so (1)
follows from C.1.21.2.

First if Ũ is the L2(4)-module, we take Y := L; as we are assuming R ∈
Syl2(G), visibly L ∈ Y(G,R), and by hypothesis G = LR, so (1) holds in this case.

Next suppose Ũ is the natural module for S5. In this case CU (L) = 1 as the

natural module is projective (e.g., I.1.6.1), so U ∼= Ũ , and we adopt the notation
of section B.3. We will use part (4) of Glauberman’s Argument C.1.21 to produce
Y . By B.3.2.4, J(R)∗ = 〈(1, 2), (3, 4)〉 and ZU := CU (J(R)) = 〈e1,2, e3,4〉. Hence
J(R)∗ = CG∗(CU (J(R))). Next we define Y := O2(X), where X is the preimage
in L of 〈(3, 4), (3, 5)〉. Visibly the hypotheses of C.1.21.4 are satisfied with Y in the
role of “X”, so Y ∈ Y(G,R) by that lemma. Then as G∗ = 〈Y ∗, R∗〉, G = 〈Y,R〉,
completing the proof of (1).

Finally suppose L is an exceptionalA7-block. Then U = [V, L] is a 4-dimensional
module for G∗ ∼= A7. RepresentG

∗ on Ω := {1, . . . , 7} as in section B.3. In this case
by B.4.2.7 there is a unique FF∗-offender A∗ := 〈(1, 2)(3, 4), (1, 3)(2, 4)〉 in R∗, and
CU (A) is the unique R∗-invariant 2-subspace of U . Then CG∗(CU (A)) ∼= A∗ × Z3,
and hence S∗ = J(R)∗ = A∗. Thus NG(S)

∗ is the global stabilizer of {1, 2, 3, 4},
and since C2 char S, NG(S)

∗ ≤ NG(C2)
∗. Further by Theorem B.5.1.2, UZ =

UCZ(L), so that CL(U ∩ Z) ≤ CG(C1) as C1 ≤ Z. Then as CL(U ∩ Z)∗ ∼= L3(2),
G = 〈CG(C1), NG(C2)〉, establishing (2). ¤

Lemma C.1.24. Assume Hypothesis C.1.14 with G = LT for some L ∈ C(G),
F ∗(L) = O2(L), [V, L] 6= 1, and L/O2,Z(L) ∼= Am. Let O2(G) ≤ R ≤ T , and set
S := Baum(R). Further assume that one of the following holds:

(a) m = 5 or 7.
(b) m = 6 and R∗ ≤ L∗.
(c) m = 6 and |R∗| = 2.

Then either

(1) some nontrivial characteristic subgroup of S is normal in G, or

(2) L is a χ-block, an exceptional A7-block, an A6-block, or an Â6-block.

Proof. Set U := [V, L], and G∗ := G/CG(V ). Observe that the hypotheses of
B.2.10.2 are satisfied, so CR(V ) = O2(G) = CT (V ) by that lemma. Furthermore
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if S = Baum(O2(G)) then conclusion (1) holds, so by B.2.10.2 we may assume
P := PR,G is a stable set of FF ∗-offenders on V , and setting H∗ := JP(G

∗),
F ∗(H∗) = L∗ is quasisimple. Hence U ∈ Irr+(L, V ) by Theorem B.5.1, and B.4.2

says that Ũ := U/CU (L) is either a natural module for H∗ ∼= L2(4), S5, S7, A6,

S6, or Â6, or the 4-dimensional module for H∗ ∼= A7.
In each case we will appeal to part (3) of C.1.21 with R in the roles of “R” and

“T”. Specifically we will exhibit Y ∈ Y(G,R) such that G∗ = 〈Y ∗, NG∗(S∗)〉, and
hence G = 〈Y,NG(S)〉 since O2(G) ≤ R, so S = Baum(O2(G)S) by B.2.3.4. This
verifies the hypothesis of C.1.21.3, so by that lemma either conclusion (1) holds, or

L is a block. In the latter case from the description of Ũ in the previous paragraph,
the block is of one of the types described in conclusion (2), completing the proof of
the lemma.

Thus it remains to produce Y . To do so, we will appeal to part (4) of C.1.21.
Thus we will need to locate J(R)∗ and ZU := CU (J(R)).

We first consider the case where Ũ is the natural module for H∗ ∼= L2(4).
Here T ∗ ∩ L∗ ∈ Syl2(L

∗) is the unique FF ∗-offender on U in T ∗ by B.4.2.1, and
T ∗∩L∗ = CG∗(CU (T

∗∩L∗)), so that J(R)∗ = T ∗∩L∗ = S∗ and ZU = CU (T
∗∩L∗).

In this case we take Y := L. Visibly L satisfies the hypotheses for “X” in C.1.21.4,
so L ∈ Y(G,R). As S∗ = T ∗ ∩ L∗ E T ∗, G∗ = L∗T ∗ = L∗NG∗(S

∗), so the lemma
holds in this case.

We next consider the case where Ũ is the natural module for H∗ ∼= Sm, m := 5,
6, or 7, and adopt the notation of section B.3. If m = 5 or 7, then since P is
stable, we conclude from B.3.2.4 that J(R)∗ ∼= E2k is generated by k ≤ bm/2c
commuting transpositions. On the other hand if m = 6, then as we are assuming
H∗ 6≤ L∗, hypothesis (c) holds, so R∗ is of order 2, and hence R∗ = J(R)∗ is
generated by a single transposition; in this case we set k := 1. In each case we
check that J(R)∗ = CG∗(CU (J(R))). Let X∗ := 〈r∗, t∗〉 ∼= S3, where r

∗ := (i, j) is
a transposition in R∗, and t∗ a transposition moving a point of Ω fixed by J(R)∗. Let
Y0/O2(G) be a J(R)-invariant complement to O2,Z(L)O2(G)/O2(G) in X/O2(G)
and Y := O2(Y0). Then Y

∗ = O2(X∗) moves 3 points of Ω, and does not centralize
ei,j ∈ ZU . Thus the hypotheses of C.1.21.4 are satisfied with Y in the role of “X”,
so S∗ = J(R)∗ and Y ∈ Y(G,R) by that result. Further G∗ = 〈NG∗(S∗), Y ∗〉: for
example, NG∗(S

∗) is maximal in G∗ when k = 1 or 3, and when k = 2 this group is
contained in a unique maximal subgroup, which fixes a point moved by Y ∗. Thus
the lemma also holds in this case.

Finally we consider the cases where either Ũ is a 4-dimensional module for
G∗ ∼= A7, or hypothesis (b) holds. In case (b) as R∗ ≤ L∗, H∗ ∼= A6 or Â6, and

Ũ is the natural module of rank 4 or 6. Represent G∗/Z(L∗) on {1, . . . ,m}, and
recall from cases (6)–(8) of B.4.2 that there is a unique FF∗-offender A∗ in T ∗∩L∗:
namely A∗ := 〈(1, 2)(3, 4), (1, 3)(2, 4)〉 (modulo the right choice of notation when

m = 6). Hence J(R)∗ = A∗. Moreover in each case J(R)∗ = O2′(CG∗(ZU )) and
m(U/ZU ) = m(A∗) = 2. This time let X∗/Z(L∗) be the pointwise stabilizer of {6}
or {6, 7}, when m = 6 or 7, respectively, X the preimage of X∗/Z(L∗) in G, and
Y := X∞. Then Y ∗ ∼= L2(4) with CY (V ) = O2(Y ), J(R)∗ ∈ Syl2(Y

∗), and Y
does not centralize the subspace ZU of U of codimension 2. Thus once again the
hypotheses of C.1.21.4 are satisfied, so Y ∈ Y(G,R) and S∗ = J(R)∗. As NG∗(S

∗)
is maximal in G∗, G∗ = 〈NG∗(S

∗), Y ∗〉, completing the proof of the lemma. ¤
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Remark C.1.25. The following lemma shows that under the SQTK-hypothesis,
χ0-blocks are the obstruction to pushing up minimal parabolics in the sense of
Definition B.6.1.

Proposition C.1.26. Assume that H is an SQTK-group with T ∈ Syl2(H),
F ∗(H) = O2(H), and H is a minimal parabolic over T . Then one of the following
holds:

(1) C1(T ) ≤ Z(H).
(2) C2(T ) E H.
(3) O2(H) is the central product of χ0-blocks Ki of H permuted transitively by

T , with Ki = [Ki, J(T )].

Proof. Let Z := Ω1(Z(T )), V := 〈ZH〉, H∗ := H/CH(V ), E := Ω1(Z(J(T ))),
and S := Baum(T ). Adopt the notation of B.6.8. By Thompson Factorization
B.2.15, either J(T )∗ 6= 1 or H = CH(Z)NH(J(T )). Assume the second case holds.
Then as T ≤ CH (Z)∩NH(J(T )) and H is a minimal parabolic, either H = CH(Z)
or H = NH(J(T )). In the first case (1) holds since C1 := C1(T ) ≤ Z, so we may
assume Z 6≤ Z(H), and hence J(T ) E H . Then by B.6.8.6d, S E H , so (2) holds
as C2 := C2(T ) char S.

Thus we may assume that J(T )∗ 6= 1, so V is an FF-module for H∗ and hence
H∗ and its action on V are described in B.6.9.

Suppose first that case (i) of B.6.9.5 holds. Then from the description in that
result, there is L∗ E E H∗ with L∗ ∼= L2(2

n) or Z3, [V, L]/C[V,L](L) the natural
module for L∗, where L is the preimage of L∗, and L∗ = [L∗, J(T )∗]. Thus H
satisfies the hypotheses of Baumann’s Lemma B.6.10, so by that lemma, S nor-
malizes L∗, and S is Sylow in H0 := 〈SL〉. Thus H∗0 = L∗S∗. Then H0 ∈ G(S),
so we may apply The Glauberman-Niles/Campbell Theorem C.1.18 with H0, T ,
S in the roles of “H , S, Baum(S)”, to conclude that C1 ≤ Z(H0), or C2 E H0,
or O2(H0) =: L0 is an L2(2

n)-block or A3-block. In the first case H = 〈H0, T 〉
centralizes C1, and in the second C2 E 〈H0, T 〉 = H . In the third case L0 is a
χ0-block, with L0 = [L0, J(T )] since L

∗ = [L∗, J(T )∗]. Thus one of the conclusions
of the lemma holds in each case.

Thus we may assume that (5ii) of B.6.9 holds, so K∗ = K∗1 × · · · ×K∗s is the
direct product of alternating groups K∗i

∼= An (with n := 2k + 1 ≥ 5) permuted
transitively by T , [V,K] = V1 ⊕ · · · ⊕ Vs with Vi := [V,Ki] the natural module for
K∗i , and K

∗
i = [K∗i , J(T )

∗]. Then 1 6= CVi(J(T )) ≤ E, so S also acts on each Ki.
As H is an SQTK-group, n = 5, and there is L1 ∈ L(K1, NT (K1)) with L1/O2(L1)
quasisimple and L∗1 = K∗1 . Then applying C.1.23 with H0 := L1NT (K1), L1,
NT (K1), T in the roles of “G, L, R, T”, we conclude that C1 ≤ Z(H0), or C2 E H0,
or O2(H0) = L1 = [L1, J(T )] is a block. Finally we finish the proof as in the
previous paragraph. ¤

Lemma C.1.27. Assume F ∗(G) = O2(G), T ∈ Syl2(G), Z := Ω1(Z(T )), G is
a K-group, and H is a minimal parabolic of G over T such that H = T 〈KT 〉 for
some block K of H with K = [K, J(T )]. Then there is a block L of G containing
K, and U(L) ≤ 〈ZG〉 =: V . Further either K = L, or L/CL(V ) and K/CK(V ) are
alternating groups of odd degree.

Proof. Set G∗ := G/CG(V ); as V ∈ R2(G) by B.2.14, O2(G
∗) = 1. As

F ∗(G) = O2(G) and T ≤ H , F ∗(H) = O2(H) by A.1.6.
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Let K0 := 〈KT 〉. As we are assuming K is a block, C.1.9 says K0 is the central
product of the members of KT . As K0 = 〈KT 〉 and K = [K, J(T )], K0 ≤ J(H).
Let U0 := 〈U(K)T 〉; as H is a minimal parabolic and K0 ≤ J(H), K and its action
on U(K) are described in B.6.9. In particular K/O2(K) ∼= L2(2

n) or A2k+1 and
CU(K)(NT (K)) 6≤ CG(K), so Z ∩ U0 6≤ CU0(K), and hence U(K) ≤ 〈ZG〉 = V .
Therefore as K/U(K) is quasisimple or of order 3 by C.1.8, K∗ ∼= K/CK(V ) is
quasisimple or of order 3. Furthermore as K is a block, [V,K] ≤ [O2(KT ),K] =
U(K), so that [V,K] = U(K). In particular either K∗ is a component of H∗ or
K∗ ∼= Z3. Thus the hypotheses of B.1.13 are satisfied with G∗, V , K∗ in the roles of
“G, V , K”. Thus asK∗ is L2(2

n) or A2k+1, B.1.13 says that eitherK
∗ ≤ Z(F (G∗))

(in which case we set L∗ := K∗), or there is a component L∗ of G∗ containing K∗

such that either K∗ = L∗, or K∗ and L∗ are alternating groups. In the latter case
K∗ is alternating of odd degree and subnormal in 〈K∗, T ∗〉, so L∗ is also alternating
of odd degree.

Let L0 be the preimage of L∗ in G, and set L := 〈KL0〉. As U(K) ≤ V , K
centralizes CT (V )/V , so that L centralizes O2(G)/V . Then [CG(V ), L] ≤ CG(V )∩
CG(O2(G)/V ) ≤ O2(G) as F

∗(G) = O2(G). Thus CG(V ) acts on O2(LO2(G)) = L,
and hence L E LCG(V ) E E G, so L E E G. As the unique noncentral 2-chief
factor for K is in V , the same holds for L, so U(L) = [O2(L), L] ≤ V ≤ Z(O2(G)),
and hence U(L) ≤ Z(O2(L)). Then L is a block of G. ¤

Theorem C.1.28. Assume F ∗(G) = O2(G) and G is an SQTK-group. Let
T ∈ Syl2(G) and M := 〈CG(C1(T )), NG(C2(T ))〉. Then either

(1) G =M , or
(2) G = ML1 · · ·Ls, where Li is a χ-block of G with Li = [Li, J(T )], and

s ≤ 2.

Proof. This is a consequence of Theorem 3 in [Asc81b] and the Glauberman-
Niles/Campbell Theorem C.1.18, but is it not difficult to give a proof here using
our K-group hypothesis. Note that s ≤ 2 in conclusion (2) because m3(G) ≤ 2
since G is an SQTK-group.

Let Ci := Ci(T ). First NG(T ) ≤ NG(Ci) ≤ M , so by a Frattini Argument

G = O2′(G)M , and we may assume that G = O2′(G) > T . Thus by B.6.5,
G = 〈H〉, where H is the set of minimal parabolics over T . If H ≤ M for all
H ∈ H, then (1) holds, so we may assume there is H ∈ H with H 6≤M . Therefore
by C.1.26, H = TK1 · · ·Kr, where Ki = [Ki, J(T )] is a χ0-block, {K1, . . . ,Kr} is
permuted transitively by T , and Ki 6≤M .

Let V := 〈ZG〉 and G∗ := G/CG(V ). Let U1 := U(K1); as G is an SQTK-
group, G is a K-group, so as Ki = [Ki, J(T )], C.1.27 says that there is a block
L of G with K := K1 ≤ L and U1 ≤ U(L) ≤ V , such that either L = K, or
K/O2(K) and L/O2(L) are alternating groups of odd degree. In the former case
as K is a χ0-block, L is a χ-block; we claim L is a χ-block in the latter case as
well: As K = [K, J(T )], Ũ(L) is an FF-module for L∗ ∼= Am. Therefore as G is an
SQTK-group, we may apply Theorem B.4.2 to conclude that m = 5 or 7, and that
the block L is a χ-block or an exceptional A7-block. However in the latter case as G
is an SQTK-group, L is normalized by T by A.3.8.3. Thus we may apply C.1.23.2
with T in the roles of “T” and “R” to conclude L ≤ M , contradicting K 6≤ M .
This establishes the claim that L is a χ-block of G.
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Let X := 〈LG〉. Then S := Baum(T ) acts on each member of LG by C.1.16.2,
and Out(L/O2(L)) is 2-closed, so SXCG(X) E G. Now by B.2.3.4, S = Baum(T0)
for T0 ∈ Syl2(SXCG(X)). Further NG(S) ≤ NG(C2) ≤ M as C2 char S. Hence
by a Frattini Argument, G = XCG(X)M . Now by induction on the order of G,
CG(X)M satisfies one of the conclusions of the theorem, so G satisfies conclusion
(2). ¤

This subsection culminates in the Aschbacher Local C(G, T )-theorem, stated
here in the case of SQTK-groups. It applies to the optimal case for pushing up,
where our 2-subgroupR is the full Sylow group T of G. The C(G, T )-theorem shows
that in this optimal case, the only obstruction to the conclusion G = C(G, T ) is
the existence of χ0-blocks of G.

Theorem C.1.29 (C(G, T )-Theorem). Assume F ∗(G) = O2(G), T ∈ Syl2(G),
and G is an SQTK-group. In addition assume C(G, T ) ≤ M ≤ G. Then G =
ML1 · · ·Lr, where 0 ≤ r ≤ 2, and Li is a χ0-block with (Li ∩M)/O2(Li) a Borel
subgroup of Li/O2(Li) and Li = [Li, J(T )] for each 0 < i ≤ r.

Proof. The Local C(G, T )-theorem for the general group G with F ∗(G) =
O2(G) is Theorem 1 in [Asc81a], but we can derive the theorem for SQTK-groups
as a consequence of Theorem C.1.28. We may assume that M < G, and hence
M0 := 〈NG(C1), NG(C2)〉 ≤ C(G, T ) ≤ M < G. Therefore by Theorem C.1.28,
G = M0L1 · · ·Lr = ML1 . . . Lr, where the Li are χ-blocks of G not contained in
M , 0 < r ≤ 2, and Li = [Li, J(T )]. Observe if Li is a χ0-block, then as G is an
SQTK-group, Li is of type L2(2

n), A3 or A5. Thus in each case, Li is a minimal
parabolic in the sense of Definition B.6.1, so as Li 6≤ M , it follows that Li ∩M is
a Borel subgroup of Li.

Thus we may assume that some Li, say L1, is a χ-block but not a χ0-block, and
it remains to derive a contradiction. As G is an SQTK-group, Theorem C (A.2.3)
forces L1 to be an A7-block and L1 E G by A.3.8.3. By induction on the order
of G, we may assume that G = L1T . Represent G on Ω := {1, . . . , 7} as in section
B.3 so that T has orbits {1, 2, 3, 4}, {5, 6}, {7}. As G7 is an A6-block, G7 ≤M by
induction on the order of G, so M = G7 by maximality of G7 in G. Let Y0 be the
preimage in G of 〈(5, 6, 7)〉, and Y := O2(Y0); then Y T 6≤ M and Y ∼= A4, with
Y T = (Y ×D)〈t〉 whereD := CT (Y ), t induces a transposition on Ω, andD/CD(L1)
is the extension of W := CU(L1)(Y ) ∼= E16 by a Sylow 2-group D8 of G5,6,7 with W
a permutation module for G5,6,7/O2(G) ∼= S4. In particular D/CD(L1) has class 4;
while T/D ∼= D8 has class 2. Thus if Ti is the i-th term in the descending central
series for T , then 1 6= T3 ≤ D, and hence Y ≤ CG(T3) ≤ C(G, T ) ≤ M , contrary
to our observation that M = G7. ¤

C.1.4. Pushing up rank-2 groups. The C(G, T )-Theorem C.1.29 pins down
the obstructions to the (CPU) version of pushing up when R ∈ Syl2(G). However
we also need to push up in situations where R is not Sylow in G, as well as under the
weaker (PU) hypothesis. In the next most accessible case, T is in just two maximal
subgroups G1 and G2, and (PU) holds for R := O2(Gi) or T . An important subcase
was treated by Meierfrankenfeld and Stellmacher in [MS93], which considers the
situation where F ∗(G/O2(G)) is (essentially) a rank-2 group of Lie type.

There are some further classes of blocks that arise in this wider context:
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Definition C.1.30. A block L is an Sp4(4)-block or an SL3(2
n)-block if

L/O2(L) ∼= Sp4(4) or SL3(2
n), respectively, and Ũ(L) is a natural module. Define

L to be a G2(2)-block if L/O2(L) ∼= G2(2)
′ and Ũ(L) is the natural module. For use

in other contexts, we define a block L to be an Ln(2)-block if L/O2(L) ∼= Ln(2) and

Ũ(L) is a natural module; and an Ωεm(2
n)-block if L/O2(L) ∼= Ωεm(2

n) and Ũ(L) is
a natural module.

In order to quote the main result of [MS93], we first adapt their hypotheses
to our situation:

Definition C.1.31 (MS-pairs). Define an MS-pair to be a pair (G,R) where

(MS1) G is an SQTK-group with F ∗(G) = O2(G) and G = LR with L ∈ C(G),
and L/O2,Z(L) is the commutator subgroup of a group of Lie type in characteristic
2 and Lie rank 2.

(MS2) Either

(a) R = O2(H) for some proper subgroup H of G of odd index, or
(b) G/O2(G) ∼= G2(2) and O2(G) ≤ R with R/O2(G) a normal E8-

subgroup of some maximal parabolic subgroup of G/O2(G).

(MS3) No nontrivial characteristic subgroup of R is normal in G.

Observe that in (MS1) we allow L/O2,Z(L) to be one of the commutator groups
A6
∼= Sp4(2)

′, U3(3) ∼= G2(2)
′, and the Tits group 2F4(2)

′.
Define G to be an MS-group if (G,R) is an MS-pair for some R ≤ G.

We can now state the theorem of Meierfrankenfeld and Stellmacher classifying
MS-groups:

Theorem C.1.32 (Meierfrankenfeld-Stellmacher rank-2 pushing up). If (G,R)
is an MS-pair then one of the following holds:

(1) L is a G2(2)-block.
(2) L is an A6-block.
(3) L is an Sp4(4)-block.

(4) L is a Â6-block.
(5) L/O2(L) ∼= SL3(2

n).

Remark C.1.33. Much more precise information about the groups arising in
case (5) of Theorem C.1.32 is given in several lemmas below, particularly C.1.34.
Notice that when n is even, only the full universal group SL3(2

n) arises, not just
the simple quotient L3(2

n); this distinction is important in the proof and in later
applications.

Proof. This is a special case of the Main Theorem of [MS93]. (That result
in turn assumes Theorem A of [DGS85]).

We begin with a prelimary observation: Set E := O2,Z(L)O2(G) and G∗ :=
G/E. We claim that G∗ is trivial on the Dynkin diagram of L∗. If not, then
L∗ is L3(2

n) or Sp4(2
n)′, so by (MS2), R∗ = O2(H

∗) for some proper subgroup
H∗ of G∗ of odd index. Thus as G = LR by (MS1), R ∈ Syl2(G) (cf. C.2.2.4)
and NL∗(R

∗ ∩ L∗) is the unique maximal subgroup of G∗ containing R∗, so that

G ∈ Û(R) in the sense of definition B.6.2. Further by (MS3), neither Ω1(Z(R))

nor J(R) is normal in G; so as G ∈ Û(R), G has an FF-module by Thompson
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Factorization B.2.15. Now Theorem B.5.1.1 supplies a contradiction since R is
nontrivial on the Dynkin diagram of L∗, completing the proof of the claim.

We next check that the hypotheses of the Main Theorem of [MS93] hold, with
R, G in the roles of “T , M”. In our setup, E is the normal subgroup “E” of
that theorem, and F ∗(G) = O2(G) by (MS1), which makes their hypothesis (A)
immediate. By (MS1), G = LR, giving their hypothesis (B). By (MS2), O2(G) ≤ R,
and then (MS3) affords their hypothesis (P). Finally we verify that G∗ possesses
a weak BN -pair of rank 2 (cf. Definition F.1.7): Let P ∗i , i = 1, 2 be the maximal

parabolics of L∗ and L∗i := O2′(P ∗i ). As G
∗ is trivial on the Dynkin diagram of L∗,

R∗ acts on L∗i , and we set B∗ := NL∗(R
∗ ∩ L∗)R∗ and α := (L∗1B

∗, B∗, L∗2B
∗). It

is straightforward to check that Hypothesis F.1.1 is satisfied by L∗1, L
∗
2, and R

∗, so
α is a weak BN-pair by F.1.9. This completes our verification of the hypotheses of
[MS93].

Next, our hypotheses also exclude some of their conclusions: As F ∗(G) =
O2(G), conclusion (1) of their result does not hold. Our assumption that G is
an SQTK-group excludes the groups L/O2(L) ∼= U4(2

n) ∼= Ω−6 (2
n), avoiding their

conclusion (9). As p = 2, conclusion (12) does not hold. As L ∈ C(G) and G = LR,
L E G, which eliminates the two cases appearing in their conclusion (7) in which
F ∗(G/O2(G)) is the product of two components. The remaining case in their
conclusion (7) where V := [O2(E), L] ∼= E26 and G/CG(V ) ∼= 28L3(2) does not
occur: For since the Schur multiplier of L3(2) is a 2-group by I.1.3, O2,Z(L) =
O2(L), so that E = O2,Z(L)O2(G) = O2(G), and hence G/O2(G) ∼= L3(2). Thus
V = [O2(E), L] contains a Steinberg-module section 28 from 28L3(2): observe by
page 932 of [MS93] that (7) arises via their (3.6) and (1.8), where the latter shows
that this module is identified using (1.4)(iii) on page 842. This section of rank 8
contradicts V ∼= E26 . Their conclusions (4), (5), (8), (11), and (13) involve SL3(2

n),
and are summarized in conclusion (5) of our Theorem; as we remarked, those cases
are described in more detail in lemma C.1.34 below as our conclusions (1), (2), (5),
(3), and (4), respectively. Finally their conclusions (2), (3), (6), and (10) become
our conclusions (2), (3), (4), and (1), respectively. ¤

The examples involving SL3(2
n) which appear in C.1.32.5 need not have blocks.

The next result describes in further detail the possibilities that can occur in this
case.

Theorem C.1.34 (Meierfrankenfeld-Stellmacher). Assume (G,R) is an MS-
pair such that L/O2(L) ∼= SL3(2

n), and let Q := [O2(G), L], R ≤ S ∈ Syl2(G),
and ZS := Ω1(Z(S)). Then one of the following holds:

(1) L is an SL3(2
n)-block and Q is the natural module for L/O2(L).

(2) Q is the direct sum of two isomorphic natural modules for L/O2(L) and
R 6= O2(CG(ZS)).

(3) Z(Q) is a natural module for L/O2(L), Q/Z(Q) is the direct sum of two
copies of the dual of Z(Q), and R 6= O2(CG(ZS)).

(4) E22n
∼= CQ(L) ≤ Z(G), Z(Q) = CQ(L) ⊕ U where U = [Z(Q), L] is a

natural module for L/O2(L), Φ(Q)/Z(Q) is dual to U , CQ(Φ(Q))/Φ(Q) is the sum
of two copies of the dual of U , Q/CQ(Φ(Q)) is the sum of two copies of U , and
R 6= O2(CG(ZS)).
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(5) L/O2(L) ∼= L3(2), CQ(L) ∼= Z2, Q/CQ(L) is a natural module for L/O2(L),
ZS ≤ Z(G), and R = O2(G1), where G1 is the subgroup of G of index 7 containing
S and fixing a point of Q/CQ(L).

Proof. This is again a special case of the Main Theorem of [MS93]. Earlier
we gave the correspondence between their conclusions and ours. The statement
that R 6= O2(CG(ZS)) in our cases (3) and (4) comes from the final remark about
their cases (11)–(13) in their Main Theorem. That same statement in our case
(2) can be obtained as follows: Setting Ḡ := G/CG(Q), we see that SL3(2

n) ∼=
L̄ = F ∗(Ḡ), so that O2(Ḡ) = 1 and Q ∈ R2(G). Recall that O2(G) ≤ R using
(MS2); further Baum(R) 6= Baum(O2(G)) in view of (MS3). Then by B.2.10,

J(R) 6= 1, so that R̄ contains an FF∗-offender onQ. AsQ is a sum of two isomorphic
natural modules for L/O2(L), case (ii) of B.5.1.1 holds; but that result shows that
the unique conjugacy class of FF∗-offenders is given by the transvections with a
common axis on each summand of Q—rather than those with a common center
as required if R = O2(CG(ZS)). The statement in (4) that CQ(L) ≤ Z(G) can
be recovered from their Lemma 4.5, the lemma in which this conclusion arises:
Namely by 4.5.iii there, CQ(L) = Hα in the notation of that lemma. Then in
their Hypothesis 4.0 we find Hα = [V ◦α , Qα], while by their 4.4, [Vα, Qα] ≤ Z(G).
Therefore CQ(L) = Hα = [V ◦α , Qα] ≤ [Vα, Qα] ≤ Z(G). ¤

In applications involving cases (2) and (3) of theorem C.1.34, it turns out we
will require still more precise information under the additional hypothesis that
CG(L) = 1. A lengthier argument is required in case (3):

Lemma C.1.35. Let G be an MS-group with L/O2(L) ∼= SL3(2
n), S ∈ Syl2(G),

Q := O2(L), U := Z(Q), and G∗ := G/U . Assume further that CG(L) = 1, and L
has 3 noncentral 2-chief factors, so that we are in the case (3) of C.1.34. Then

(1) Q is special, Q∗ = W ∗
1 ⊕W

∗
2 , U is a natural L/Q-module, W ∗

1 is the dual
of U as an L/Q-module, and there exists an L/Q-isomorphism α :W ∗

1 →W ∗
2 .

(2) The preimage Wi of W
∗
i in Q is isomorphic to E26n , and for w ∈W1 −U ,

|CQ(w) : W1| = 2n with CW2(w)
∗ = Z∗wα, where Z

∗
w is the 1-dimensional F2n-

subspace of W ∗
1 containing w∗.

(3) O2(G) = Q.
(4) m2(G) = 6n.
(5) Z2(S) ≤ U .

Proof. As L has 3 noncentral 2-chief factors, case (3) of C.1.34 holds, estab-
lishing conclusion (1) which is just a restatement of that case. We are considering
modules over the field F := F2n of definition of L/O2(L), and dimensions discussed
below are over F .

As L is transitive on W ∗#
1 , either W1

∼= E26n or U = Ω1(W1). In the latter
case each w ∈ W1 − U has order 4, with Φ(〈w,U〉) = 〈w2〉 since U = Z(Q); then
CL(w

∗) ≤ CL(w
2), contradicting W ∗

1 dual to U . Thus W1
∼= E26n .

Next as W ∗
1 is a natural module for L/Q, EndF2L(W

∗
1 ) = F , so for each

a ∈ F#, the map

αa := α ◦ a :W ∗
1 → W ∗

2

is an F [L/O2(L)]-isomorphism, and then since Q/U is a sum of two isomorphic
modules,

W ∗
a = {w∗(w∗αa) : w

∗ ∈W ∗
1 }
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is another irreducible for L on Q∗. (cf. 27.14 in [Asc86a])
Then by symmetry betweenW1 and the preimageWa, Wa

∼= E26n . Now let Z∗w
be the 1-dimensional F -subspace ofW ∗

1 containing w∗ ∈W ∗#
1 . We have just shown

that wu is an involution for u∗ := w∗αa, so ZwZw,2 is elementary abelian, where
Z∗w,2 := Z∗wα. Hence Qw ≤ CQ(w), where Q

∗
w := W ∗

1Z
∗
w,2. On the other hand as

U = Z(Q) by definition, CQ(w) < Q; so as the parabolic CL(w
∗) is irreducible on

the 2-dimensional quotient Q/Qw ∼=W2/Zw,2, Qw = CQ(w). That is, (2) holds. In
particular, notice that CQ(W1) =W1.

Next as CG(L) = 1 by hypothesis, G ≤ Aut(L). Let H1 := NG(W1) and H̄1 :=
H1/CG(W1); then H1 = LNR(W1) as G = LR by (MS1). Now H̄1 is contained
in the parabolic P stabilizing U in the linear group GL(W1), and P ∼= (GL3(F )×
GL3(F ))/F

9, with O2(P ) centralizing U and W1/U . We claim CO2(P )(L̄) = 1:

For if 1 6= x ∈ CO2(P )(L̄), then as L is irreducible on U and W1/U , U = CW1(x).
But now CL̄(w

∗) acts on [U + w, x] = [w, x], impossible as W ∗
1 is dual to U ,

so CL̄(w
∗) fixes no vector of U . So indeed CO2(P )(L̄) = 1. We claim in fact

that NO2(P )(L̄) = O2(L̄). If n > 1, then by I.1.6.4 H1(L̄, O2(L̄)) = 0, so as

CO2(P )(L̄) = 1, the claim holds in this case. So suppose n = 1. Then in the language
of the weight theory for irreducible representations of Lie type groups (cf. section
2.8 of [GLS98], briefly summarized in section H.6), where the basic natural modules
are denoted by M(λi), we have U ∼= M(λ1) and W1/U ∼=M(λ2) as L/Q-modules.
Therefore L/Q is diagonally embedded in P/O2(P ), so O2(P ) is a tensor product of
the form M(λ1)⊗M(λ1) or M(λ1)⊗M(λ2) as an L̄/O2(L̄)-module. As O2(L̄) is a
natural L-submodule of O2(P ), it must be the former, as the latter has only adjoint
and trivial sections. But then all L-sections of O2(P ) are of dimension 3 and hence
nontrivial, so as [NO2(P )(L), L] ≤ O2(L̄), again NO2(P )(L̄) = O2(L̄), completing the

proof of the claim. Next as L is irreducible on U and W ∗
1 , O2(NP (L̄)) ≤ O2(P ), so

O2(H̄1) = O2(L̄) = Q̄. Therefore O2(H1) = CR(W1)Q.
Now our Sylow 2-group S acts on some L-irreducible of Q∗ := Q/U which

we may take to be W ∗
1 , so as G = LR, G = H1. From the previous paragraph

O2(G) = QV , where V := CO2(G)(W1). Now [V, L] ≤ V ∩ L = W1 since we
saw earlier that CQ(W1) = W1. Further W1 = [W1, X ] for X a Hall 2′-subgroup
of the preimage of a suitable torus of L/O2(L), so V = W1 × CV (X). Then
Φ(CV (X)) = Φ(V ) E G, so Φ(V ) = 1 since L = [L,X ] and CG(L) = 1 by
hypothesis. Thus V is elementary, and we may write V =W1 ⊕ CV (X).

Assume temporarily that we have established (3); that is, assume that Q =
O2(G). Then Z(S) is contained in a 1-dimensional F -subspace Z of U , and using
(2) we see for w∗ fixed by S∗ that

Z2(S)
∗ ≤ Z(S∗) = Z∗w(Z

∗
wα),

so if (5) fails then replacing W1 by a suitable L-invariant subgroup, we may take
w ∈ Z2(S). Now by (2), Qw = CQ(w) has corank 2n in Q, so [Q,w] is not contained
in Z of rank n, contradicting w ∈ Z2(S). Thus (3) implies (5), so it only remains
to establish (3) and (4).

If J(S) ≤ O2(G), then since O2(G) ≤ R ≤ S, J(S) = J(R) = J(O2(G)) normal
in G by B.2.3.3, contrary to (MS3). Therefore there is A ∈ A(S)−A(O2(G)). Let

Ĝ := G/O2(G). Now CV (A) = V ∩ A since A ∈ A(S), so

m(V/(A ∩ V )) = m(V/CV (A)) ≥ m(W1/CW1(A))
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≥ m(U/CU (A)) +m(W ∗
1 /CW∗

1
(A)) =: m. (∗)

We claim that

m ≥ 2n, and m ≥ 3n if m(Â) > n. (+)

For as U is a natural module, m(U/CU (â)) ≥ n for each involution â ∈ Ĝ and

similarly m(W ∗
1 /CW∗

1
(â)) ≥ n. On the other hand if m(Â) > n, then as W ∗

1 is dual
to U , m(X/CX(A)) ≥ 2n for X := U or W ∗

1 . This establishes (+).

As m(A) ≥ m(V ) and m(Â) ≤ 2n, we conclude from (*) and (+) that

N := m((A ∩ O2(G))/(A ∩ V )) ≥ m(V/(A ∩ V ))−m(Â) ≥ m−m(Â) ≥ n. (∗∗)

In case N = n, all inequalities in (*) and (**) are equalities, so in particular
m(A) = m(V ) and V =W1CV (A).

But in any case N ≥ n > 0, so B := A ∩O2(G) 6≤ V . Let A2 := BV ∩W2 and
A1 := A∩W1. Then A2U/U = A∗2

∼= A2V/V , so that A2V = BV ≤ CQV (A1), and
hence A∗2 ≤ Z∗w for each 1 6= w∗ ∈ A∗1 by (2). In particular as A∗2 6= 1, m(A∗1) ≤ n,
and if A∗1 6= 1, then m(A∗2) ≤ n; so m(A2V/V ) ≤ n. But also as BV = A2V ,
N = m(BV/V ) = m(A2V/V ) and hence either N ≤ n or A∗1 = 1. When N ≤ n,
we saw that N = n, m(A) = m(V ), and V =W1CV (A).

Notice also that if V = W1, then O2(G) = V Q = W1Q = Q, so (3) holds. So
if in addition m(A) = m(V ) for all A ∈ A(S) −A(O2(G)), then m2(S) = m(A) =
m(V ) = m(W1) = 6n, establishing (4), and completing the proof of the lemma.
Thus it suffices to show that V =W1 and m(A) = m(V ).

We first show that m(A) = m(V ) and that V = W1CV (A). If not then by an

earlier remark, A∗1 = 1. Thus A1 = A ∩W1 ≤ U . As Â is non-trivial, A ∩W1 =
A ∩ U = CU (A) and B

∗ have rank at most 2n. Therefore

m(V/V ∩ A) ≥ m(W1/W1 ∩A) ≥ m(W ∗
1 ) +m(U/CU (A)) ≥ 4n

and N = m(B∗) = m(A∗2) ≤ 2n. (!)

Combining the inequalities in (!) with those in (**), we get:

2n ≥ N ≥ m(V/(V ∩ A))−m(Â) ≥ 4n− 2n = 2n. (!!)

Now all inequalities in (!) and (!!) are equalities. In particular from (!!), m(Â) = 2n,

while from (!), m(CU (A)) = m(A∗2) = 2n, which is impossible as the subgroup Â

of rank 2n in Ĝ cannot centralize an F2-space of dimension 2n in both U and the
dual module W ∗

2 .
We have shown m(A) = m(V ), so it remains to show V = W1. Further we

have shown V = W1CV (A), so V = W1(V ∩ A), since CV (A) ≤ A as A ∈ A(S).
Recall O2(G) = V Q; then Z(O2(G)) ≤ CO2(G)(Q) ≤ CO2(G)(W1) = V , so as V
is elementary, Z(O2(G)) = CV (Q). First suppose V 6≤ Z(O2(G))W1 = CV (Q)W1.
As [L, V ] ≤ W1, L acts on V1 := 〈v1,W1〉 for each v1 ∈ V − CV (Q)W1, so as L is
irreducible on O2(G)/V and CQ(v1) < Q, CO2(G)(v1) = V . As V = W1(V ∩ A),
we may replace v1 by v′1 := w1v1 ∈ V ∩ A for suitable w1 ∈ W1, and we still
have CO2(G)(v

′
1) = V , since v′1 = w1v1 /∈ CV (Q)W1. But we saw earlier that

A∩O2(G) 6≤ V , and A∩O2(G) centralizes v
′
1 ∈ V ∩A, contradicting CO2(G)(v

′
1) = V .

Therefore V ≤ Z(O2(G))W1 = CV (Q)W1, so V = EW1, for E := CV (O2(G)).
Assume that V > W1, so that E > U . Now E ∩ L = U , and as CG(L) = 1 by
hypothesis, E is indecomposable under L, so m(E/U) ≤ dim(H1(L,U ′)) for U ′

the dual of U . Recall from I.1.6.4 that this dimension is 0 for n > 1 and 1 for
n = 1. Therefore n = 1, m(E) = 4, m(V ) = m(W1) + 1 = 7, and E is the unique
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indecomposable module with submodule U described in B.4.8.3. By that result,
we get CE(a) = CU (a) of rank 2 for any a ∈ A − O2(G). As O2(G) centralizes
E, A ∩ O2(G) = CA(E); and as A ∈ A(S), m(A) ≥ m(ECA(E)). This forces

m(Â) = 2, with A centralizing a hyperplane U0 of U . But then Â centralizes just
a 1-space in each of the dual modules W ∗

i in Q∗, so we conclude that

m(A) ≤ m(Â) +m(CE(A)) +m(CQ∗(A)) ≤ 6 < 7 = m(V ),

contradicting A ∈ A(S). Thus the proof of C.1.35 is at last complete. ¤

Lemma C.1.36. Let G be an MS-group with L/O2(L) ∼= SL3(2
n), S ∈ Syl2(G)

and Q := O2(L). Assume further that CG(L) = 1 and L has two noncentral 2-chief
factors, so that we are in the case (2) of C.1.34. Then

(1) Q = CG(Q).
(2) A(S) = {Q,A} with A ≤ L and m(A ∩Q) = 4n.

Proof. The proof is much like that of C.1.35, only substantially easier. As
L has 2 noncentral 2-chief factors, case (2) of C.1.34 holds. Thus Q = U1 ⊕ U2

with U1 and U2 isomorphic natural modules for L/O2(L), and S ≤ NG(U1) (cf.
the argument in A.1.42). Set V := CG(Q). Arguing as in the proof of C.1.35,
[V, L] ≤ V ∩ L = Q and Q = [Q,X ] for a suitable subgroup X of L of odd order,
so V = Q × CV (X); hence Φ(CV (X)) = Φ(V ) E G, and as before Φ(V ) = 1
since CG(L) = 1. As CG(L) = 1, V is an indecomposable F2L-module, so applying
I.1.6.4 as in the proof of C.1.35, we get V = Q if n > 1, establishing (1) in this
case. On the other hand if n = 1 then by B.4.8.3, |V : Q| ≤ 4, with CV (a) ≤ Q for
a ∈ (S ∩ L)− CS∩L(Q).

Set Ĝ := G/O2(G); then Ĝ = L̂ ∼= SL3(2
n) since G = LR and R̂ is the radical

of a parabolic since (G,R) is an (M,S)-pair. Set Ḡ := G/V , SL := S ∩ LV , and
SC := O2(G). Then S̄ = S̄L × S̄C and as CGL(Q)(L̄) ∼= GL2(2

n), S̄C is elementary

abelian of rank at most n, with CQ(s̄) = U1 for each 1 6= s̄ ∈ S̄C , and S̄C is
semiregular on Irr+(L,Q)− {U1}.

Using B.2.3.3 as in the proof of C.1.35, there is some A ∈ A(S) − A(O2(G)).

Then CV (A) = A∩V since A ∈ A(S), andm(Â) ≤ m2(L̂) = 2n. If AC := A∩SC >
A ∩ V , then CQ(AC) = U1 by the previous paragraph, so CQ(A) = CU1(A) is of
rank at most 2n, and then

m(A) ≤ m(Â) +m(ĀC) +m(A ∩ V ) ≤ 2n+ n+ (m(V )− 4n) < m(V ),

contradicting A ∈ A(S). Therefore A ∩ O2(G) = AC = A ∩ V ≤ CA(Q), so by
B.2.4.1,

m(Â) ≥ m(Q/CQ(A)) ≥ 2n = m2(L̂).

Hence m(Â) = 2n = m(Q/CQ(A)), so QCA(Q) = Q(A ∩ V ) = V ∈ A(S) by
B.2.4.2. Furtherm(V/(A∩V )) = 2n, so as each I ∈ Irr+(L,Q) satisfiesm(I) ≥ 3n,
A ∩ I 6= 0. Therefore A ≤ CG(I ∩ A) ≤ NG(I), so A lies in the kernel SL of the
action of S on Irr+(L,Q).

If n = 1 we saw earlier that A ∩ V ≤ CV (a) ≤ Q for a ∈ A− CA(Q) = A− V ,
so V = (A ∩ V )Q = Q, completing the proof of (1).

Now as V = Q, SL = S ∩ L and CQ(A) = A ∩ Q. Further as m(Â) = 2n =
m(Q/CQ(A)), we conclude that A ∩ Q = W1 ⊕W2, where Wi := A ∩ Ui is the
SL-invariant subgroup of Q of rank 2n, and A ∩ Q = CQ(a) for each a ∈ A − Q.
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Thus A and V are the maximal elementary abelian subgroups of SL, establishing
(2). ¤

We conclude the subsection with a useful but more technical result which, in
many of the cases in (MS1) where L/O2,Z(L) is defined over the smallest field
F2, shows roughly that we may replace R in (MS3) with the Baumann subgroup
of a suitable unipotent radical. The main idea is to use Baumann’s Argument
B.2.18.3 to extend the reach of the C(G, T )-Theorem C.1.29, much as we earlier
used Glauberman’s Argument C.1.21 to extend C.1.18 in the lemmas that followed
it.

Lemma C.1.37. Assume G = LT with T ∈ Syl2(G), L ∈ C(G), F ∗(G) =

O2(G), and L/O2(L) ∼= L3(2), A6, Â6, or U3(3), with T trivial on the Dynkin
diagram of L/O2(L). Let T ≤ P ≤ M where M is a maximal subgroup of G; and

either P =M—or L/O2(L) ∼= Â6 and P is of index 3 in M with O2(P ) 6≤ O2,Z(L).
Let R := O2(P ), S := Baum(R), and assume V ∈ R2(G) with [V, L] 6= 1. Set

G∗ := G/CG(V ), U := [V, L], and Ṽ := V/CV (L). If L/O2(L) ∼= L3(2), assume
either that U is the sum of two isomorphic natural modules for L/O2(L), or that
U is the natural module and P is the stabilizer of a point in U . Then one of the
following holds:

(1) Some nontrivial characteristic subgroup of S is normal in G.

(2) L is a block of type L3(2), A6, Â6, or G2(2), and if L is of type Â6 then
P ∗ is the stabilizer of an E16-subgroup of U .

(3) L/O2(L) ∼= L3(2), U = [O2(L), L] is the sum of two isomorphic natural
modules, and P is the stabilizer of a line in each of those submodules.

(4) Ũ is the natural module for G∗ ∼= G2(2), and P is the stabilizer of a line in

Ũ .
(5) Ũ is a natural module for G∗ ∼= A6, P

∗ is the stabilizer of a line in Ũ ,

O2(O2,Z(L)) 6≤ P if L/O2(L) ∼= Â6, and the image in G
∗ of some member of A(T )

has order greater than 2.

Proof. Let Q := O2(G). Notice that R E T from the hypothesis.
If [V, J(R)] = 1 then J(R) = J(Q) by B.2.3.3. Thus in this case J(R) is a

characteristic subgroup of Baum(R) = S normal in G, so (1) holds.
Therefore we may assume that [V, J(R)] 6= 1. Since O2(G) ≤ O2(P ) = R by

hypothesis, the hypotheses of B.2.10.2, and hence also of B.2.10.1, are satisfied and
so we can apply that lemma and adopt its notation. In particular, Q = CR(V ). Let
P := PR,G and set L∗0 := JP(G

∗). By B.2.10, L∗ = F ∗(L∗0). Thus we can apply
Theorem B.5.1 to conclude either U ∈ Irr+(L, V ), or L/O2(L) is L3(2) and U is

the sum of two isomorphic natural modules. Then we apply B.4.2 to conclude Ũ
is a natural module for L∗0

∼= L3(2), A6, S6, Â6, or G2(2), or U is the sum of two
isomorphic natural modules for L∗0

∼= L3(2).

We next determine the embedding of J(R)∗ and S∗ inG∗, and ZU := CU (J(R)),
in the various cases:

If L∗0
∼= G2(2) then L

∗
0 = Aut(L∗∞0 ), and so (4) holds—unless P is the stabilizer

of a point of Ũ , so we may assume P has that form. In this case by B.4.6.13,
there is a unique FF ∗-offender A∗ in R∗ = O2(P

∗), m(A∗) = 3 = m(U/ZU ), and
A∗ = CL∗0 (ZU ). Therefore S

∗ = J(R)∗ = A∗, and as rA∗,V = 1 there are no strong
FF-offenders in R.
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If L∗0
∼= Â6, then by B.4.2.8, there is a unique FF∗-offender A∗ in T ∗: namely

O2(P
∗
1 ), where P

∗
1 is the maximal parabolic stabilizing a 4-dimensional subspace of

U . But then the hypotheses of part (b) of C.1.24 are satisfied, so (1) or (2) holds

by that lemma. Thus we may assume L∗0 is not Â6. Similarly we may assume L∗0 is
not A6, since there too the hypotheses of C.1.24.b hold, so that conclusion (1) or
(2) holds.

Assume that L∗0
∼= L3(2). Suppose first that U is the sum of two isomorphic

natural modules. Here we check easily that there is a unique FF∗-offender A∗ :=
O2(P

∗
1 ), where P

∗
1 is the stabilizer of a line in each member of Irr+(L,U), so that

m(U/CU (A)) = 2. Thus if P 6= P1, J(R) = J(Q) and (1) holds, so we may assume
P = P1. Thus R

∗ = O2(P
∗
1 ) = A∗ = J(R)∗ and ZU = CU (A) with A

∗ = CL∗0 (ZU ),
so S∗ = A∗. Again A is not a strong FF-offender as rA∗,V = 1.

Next suppose that U is not the sum of two natural modules, so that by hy-
pothesis, U is a natural module and P is the stabilizer of a point of U . This time
P(G∗, V ) contains conjugates of the subgroups of L∗ of order 2, and the conjugates
of R∗ = O2(P

∗), so J(R)∗ = O2(P
∗). In particular ZU = CU (R) is a point of U ,

S∗ = J(R)∗ = R∗, and there are no strong FF-offenders.
Finally suppose L∗0

∼= S6, and adopt the notation of section B.3. As L∗0
∼= S6,

R∗ 6≤ L∗, so O2(O2,Z(L)) 6≤ P if L/O2(L) ∼= Â6. Assume first that P ∗ is the

stabilizer of a point in Ũ . Then by B.3.4.2v, one of the following holds:

(i) J(Q) = J(R).
(ii) S∗ = 〈(5, 6)〉.
(iii) S∗ = R∗.

In case (i), (1) holds as before. In case (ii), the hypotheses of C.1.24.c hold with
R0 := SO2(G) in the role of “R”, so as S = Baum(R0) by B.2.3.4, again (1) or (2)
holds by that lemma. Thus we may assume when P ∗ is the stabilizer of a point
that (iii) holds: that is, S∗ = R∗, so that again S∗ = J(R)∗ = R∗ and Z̃U is a point

in Ũ . In that event by B.3.4.2ii, R contains no strong FF-offender. Further since
J(R)∗ = R∗, and 〈(5, 6)〉 is the only FF∗-offender of order 2 contained in R∗, there
is an FF-offender A ∈ A(R) with m(A∗) ≥ 2. Indeed since the set PR,LR of B.2.10

is stable, and hence closed below under the relation
<
∼, we see if FF-offenders with

image R∗ occur, then also we may choose our FF-offender A with m(A∗) = 2. Thus
for such an A we have m(U/CU (A)) = 2.

Finally, assume that P ∗ is the stabilizer of a line in Ũ . We may assume that
(5) does not hold, so all FF-offenders have images in R∗ of rank 1, and hence are
generated by a transposition. Therefore as R∗ is the subgroup of T ∗ generated by
transpositions, J(R)∗ = R∗. As before, R∗ = O2′(CL∗0 (ZU )), so that S∗ = J(R)∗ =
R∗, and of course R contains no strong FF-offenders since we are assuming all
FF-offenders have image of rank 1. Finally observe that m(U/ZU ) = 2.

We have determined the possible embeddings of S∗ in G∗, in those cases where
the lemma may fail. We will use Baumann’s Argument B.2.18.3 or B.2.19.3 to show
that SC := CS(V ) ∈ Syl2(CLS(V )). This will suffice to prove the lemma: For in the
cases where S∗ = R∗, S is then Sylow in O2(P0), where P0 := P ∩LS. On the other
hand if S∗ < R∗ = O2(P

∗), then from the discussion above, G∗ ∼= G2(2), P is the

stabilizer of a point in Ũ , and S∗ is the unique normal E8-subgroup of P ∗. In either
case, hypothesis (MS2) holds with S in the role of “R”. Of course hypothesis (MS1)
also holds from our hypothesis, and if (1) fails, then hypothesis (MS3) holds. Thus
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we may assume (LS, S) is an MS-pair. Then when L/O2(L) 6∼= L3(2), (2) holds by
Theorem C.1.32. When L/O2(L) ∼= L3(2) that result shows that LS is described
in Theorem C.1.34, and as our hypothesis that P is the point stabilizer when U is
natural rules out cases (3) and (4) of C.1.34, conclusion (2) or (3) holds.

So it remains to verify the hypotheses of B.2.18.3 or B.2.19. First Q = CR(V ),
so hypothesis (a) of B.2.18 holds, and CR(V ) ∈ Syl2(CLR(V )), as required in
B.2.18.3 and hypothesis (A) of B.2.19. As CL(V ) = O2(L) or possibly L/O2(L) ∼=
Â6 and CL(V ) = O2,Z(L), hypothesis (b) holds, and hypothesis (B) is satisfied as
L/O2(L) is quasisimple. From the discussion above, R has no strong FF-offenders,
so hypothesis (c) holds, as does (C) of B.2.19. Therefore it remains to exhibit
subgroups Xi, 1 ≤ i ≤ n, satisfying hypothesis (d) and (e) of B.2.18, or (D) and
(E) of B.2.19.

First consider the cases where either L∗0
∼= G2(2); or L

∗
0
∼= S6, and P is the

stabilizer of a line. Here we set X1 := J(R) and take n := 2 with X2 := Xg
1

for g ∈ L with P ∗g an opposite parabolic to P ∗. Thus L∗0 = 〈X∗1 , X
∗
2 〉. Then

we observe in both of these cases that m(Ũ) = 2m(U/CU (J(R))), completing the
verification of (d) and (e) in these cases. Next if L∗0 is L3(2) and U is the sum of
two natural modules, we take n := 3 and choose the Xi to be conjugates of J(R)
whose images generate L∗0, completing the verification of (d) and (e) in this case.
In the remaining two cases, we verify (D) and (E) of B.2.19: Suppose first that
L∗0 is L3(2), with U the natural module and P the stabilizer of a point. Here we
take n := 3, and Xi to be a conjugate of an FF-offender in R with X∗i of order
2 and L∗0 = 〈X∗i : 1 ≤ i ≤ 3〉, verifying (D) in this case. Any FF ∗-offender X∗

in R is L∗-conjugate either to X∗1 or to R∗ = X∗1X
∗l
1 for suitable l ∈ L, verifying

(E). Finally suppose Ũ is the natural module for L∗0
∼= S6 and P is the stabilizer

of a point. Here we take n := 2, X1 an offender in R with X∗1 of order 4, and
X2 a conjugate of X1 with L∗0 = 〈X∗1 , X

∗
2 〉, verifying (D). This time by B.3.2.5,

any FF ∗-offender in R∗ either is generated by a transvection (and hence lies in an
L∗-conjugate of X∗1 ) or is L

∗-conjugate to X∗1 or R∗. As R∗ is the product of X∗1
and the subgroup generated by a transvection, (E) is verified in this case. Thus the
proof of the lemma is complete. ¤

C.2. More general pushing up in SQTK-groups

As mentioned in section C.1, we will often encounter SQTK-groups H with
a 2-subgroup R and a proper subgroup MH satisfying the pushing up hypothesis
(CPU) in Definition C.1.6:

C(H,R) ≤MH < H for some 1 6= R ∈ B2(H) with R ∈ Syl2(〈R
MH 〉).

In this section we derive consequences of this condition along the lines of sec-
tions 8–10 of [Asc81b], but now under the SQTK-hypotheses. In particular, we
will see in C.2.13 that obstructions to pushing up H can usually be detected in
O2,E(H).

We postpone consideration of (CPU) until later, when Hypothesis C.2.3 is in-
troduced. Instead we first record, as in [Asc81b, Sec 8], a few elementary properties
(beyond those already listed in C.1.2) of the set B2(H) of 2-radical subgroups of a
finite group H . Recall from Definition C.1.1 that B2(H) consists of the nontrival
2-subgroups R of H such that 1 6= R = O2(NH(R)).

Lemma C.2.1. Assume H is a finite group and R ∈ B2(H). Then
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(1) {R} =I∗H(NH(R), 2).
(2) O2(H) ≤ R.

Proof. Part (1) is easy; cf. 8.1 in [Asc81b]. Then (2) follows from (1). ¤

The following technical lemma from [Asc81b] shows how B2(H) interacts with
the C-components of H ; see section A.3 and chapter 1 for a discussion of the prop-
erties of C-components.

Lemma C.2.2. Assume H is an SQTK-group, R ∈ B2(H), and L ∈ C(H).
Then

(1) R ∩ LCH(L/O2(L)) = (R ∩ L)CR(L/O2(L)).
(2) R ∩ L = O2(NL(R)) = O2(NL(R ∩ L)). That is, R ∩ L ∈ B2(L).
(3) Let X := LNR(L). Then NR(L) = O2(NX (NR(L))). That is, NR(L) ∈

B2(X).
(4) If L/O2(L) is of Lie type and characteristic 2, then NL(R ∩L)/O2(L) is a

parabolic subgroup of L/O2(L).

Proof. By C.2.1.2, O2(H) ≤ R; then we pass to H/O2(H), observing that
H/O2(H) is an SQTK-group, R/O2(H) ∈ B2(H/O2(H)), and LO2(H)/O2(H) ∈
C(H/O2(H)) by A.3.3.4. Thus we may assume that O2(H) = 1, giving Hypothesis
A.3.4, so that we can apply the subsequent results from section A.3.

By A.3.7, distinct members of ∆ := LH commute. Hence the hypotheses of 8.2
in [Asc81b] are satisfied, and lemma C.2.2 follows from that lemma. ¤

We now impose the (CPU) hypothesis from Definition C.1.6, in the form studied
in [Asc81b, Sec 10]:

Hypothesis C.2.3. H is an SQTK-group; further 1 6= R ∈ B2(H) and MH

are subgroups of H such that

C(H,R) ≤MH and R ∈ Syl2(〈R
MH 〉).

Hypothesis C.2.3 is satisfied in a 2-local H in the QTKE-groups G appearing
in the proof of the Main Theorem, when R := O2(L0T ) for a suitable uniqueness
subgroup L0T and MH := NH(L0); see in particular 1.4.1. Later in sections 4.1
and 4.2, we will see how to use this initial example of (CPU) to get the condition
in other situations.

Eventually we will see in C.2.13 that under the stronger Hypothesis C.2.8, the
obstructions to pushing up H are certain C-components L of H with L/O2(L)
quasisimple. The case where L is an ordinary component will be treated in section
C.3. We begin with some preliminary results restricting triples R,MH , H satisfying
Hypothesis C.2.3, concentrating on the case where F ∗(L) = O2(L) and L/O2(L) is
quasisimple. See Definition C.1.12 for the definition of χ0-blocks.

Lemma C.2.4. Assume Hypothesis C.2.3, and assume L ∈ C(H) with F ∗(L) =
O2(L) and L/O2(L) quasisimple. Set L

∗ := L/O2(L). Then

(1) If R∩L ∈ Syl2(L) then either L ≤MH ; or L is a χ0-block, NR(L) contains
an FF-offender on R2(LNR(L)), and (L ∩MH)

∗ is a Borel subgroup of L∗.
(2) Either R ∩ L ∈ Syl2(L) or R ≤ NH(L).

Proof. Part (1) follows from C.1.29; see also 10.2 in [Asc81b]. Part (2) is
10.3 in [Asc81b]. ¤
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The next result is just a restatement of the Local C(G, T )-theorem C.1.29 in
our present context:

Lemma C.2.5. Assume Hypothesis C.2.3 with R ∈ Syl2(H) and F ∗(H) =
O2(H). Then H =MHL1 · · ·Lr (r ≥ 0), where L1, . . . , Lr are subnormal χ0-blocks
of H.

Similarly by C.2.1.2 and C.1.29:

Lemma C.2.6. Assume Hypothesis C.2.3 with F ∗(O2,F (H)) = O2(H). Then

(1) R ∈ Syl2(O2,F (H)R).
(2) If O2,F (H) 6≤ MH , then O2,F (H) = (MH ∩ O2,F (H)) L1 · · ·Lr with Li an

A3-block not contained in MH .

In view of C.2.4, we can focus on the case whereR normalizes some C-component
K of H with K 6≤ MH . The next result provides some initial restrictions on the
structure of such C-components, utilizing results from [Asc81b] along with C.1.32.
We will obtain much stronger restrictions later in Theorem C.4.1. See Definition
C.1.31 for MS-pairs.

Lemma C.2.7. Assume Hypothesis C.2.3 and K ∈ C(H) such that K/O2(K)
is quasisimple, F ∗(K) = O2(K), K 6≤ MH , and R ≤ NH(K). Also define V :=
Ω1(Z(O2(KR))), MK :=MH ∩K, and (KR)∗ := KR/CKR(V ). Then

(1) O2(KR) ≤ CKR(V ) ≤ O2(KR)O2,Z(K) and V ∈ R2(KR).
(2) J(R) 6≤ J(O2(KR)), V is an FF-module for K∗R∗, and R∗ contains FF∗-

offenders on V .
(3) One of the following holds:

(a) K is a χ-block, and one of the following holds:

(i) K is an L2(2
n)-block, J(R)∗ ∈ Syl2(K

∗), and M∗
K is a Borel

subgroup of K∗.
(ii) K is an A5-block, R ∈ Syl2(KR), K∗R∗ ∼= S5, and M

∗
K is a Borel

subgroup of K∗.
(iii) K is an A7-block, R

∗ ∼= D8, K
∗R∗ ∼= S7, andM

∗
K is the stabilizer

of a partition of type 4, 3.
(iv) K is an A7-block, R

∗ ∼= E8, K
∗R∗ ∼= S7, and M

∗
K is the stabilizer

of a partition of type 23, 1.

(b) K is an An-block for 5 ≤ n ≤ 8, R∗ is generated by an involution
inducing a transposition on K∗, and M∗

K = CK∗(R
∗).

(c) K is an Â6-block and |K : MK | = 15, with MK the stabilizer of a
2-dimensional F4-subspace of the 3-dimensional F4-space U(K).

(d) K is an exceptional A7-block and |K :MK | = 35.
(e) K is an A6-block or Sp4(4)-block and M∗

K is a maximal parabolic of
K∗.

(f) K is a G2(2)-block, K
∗R∗ ∼= G2(2), and M

∗
KR

∗ is a maximal parabolic
of K∗R∗.

(g) K∗ ∼= SL3(2
n), M∗

K is a maximal parabolic of K∗, and (KR,R) is an
MS-pair described in Theorem C.1.34.

(h) K∗ ∼= L4(2) or L5(2) andM
∗
K is a parabolic subgroup of K∗ of semisim-

ple rank at least 1.
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Proof. By hypothesis R acts on K, so by C.2.2.3, R ∈ B2(RK). Then the
triple R, KR ∩MH , KR satisfy Hypothesis C.2.3, so we may assume H = KR.

Now parts (1) and (2) are easy consequences of B.2.10, or see 10.4 in [Asc81b].
Then Theorem B.5.1 implies that

K∗ is Lr(2), L2(2
n), Sp4(2

n)′, SL3(2
n), G2(2

n)′, Â6, or A7. (!)

It remains to show that one of conclusions (a)–(h) of (3) holds.
Let J := J(R) and KJ := NK(J). Since C(H,R) ≤MH by Hypothesis C.2.3,

and O2(H) ≤ R by C.2.1.2, (1) says that

NK∗(J
∗) = K∗J ≤M∗

K < K∗. (∗)

Suppose first that K is a χ-block. If K is an L2(2
n)-block then by B.4.2.1, the

Sylow 2-subgroups of K∗ are the only FF∗-offenders, so that J∗ ∈ Syl2(K∗). Then
as Borel subgroups are maximal in K∗, we conclude from (*) that M∗

K = KJ∗ is
Borel in K∗, so that case (i) of (a) holds. Therefore we may assume that K is an
An-block for n = 5 or 7, and represent K∗R∗ on Ω := {1, . . . , 7} as in section B.3.
By B.4.2.5, J∗ is generated by k commuting transpositions. If k = 1 then K∗

J is
maximal in K∗, so M∗

K = K∗J and (b) holds. Assume k = 2. Then the unique
maximal subgroup of K∗ containing K∗J is the global stabilizer of the set ∆ of 4
points of Ω moved by J∗, which we will denote by M∗

J , and |MJ : KJ | = 3, so
MK is MJ or KJ by (*). However in the latter case O2(K

∗
J) ≤ R∗ by C.2.1.1, so

R is Sylow in KΩ−∆R (where KΩ−∆ denotes the pointwise stabilizer of Ω − ∆),
and X := O2(KΩ−∆) is not an A3-block, so that X ≤MK by C.2.6.2, contrary to
our assumption that MK = KJ . Therefore MK = MJ , so as R ∈ Syl2(〈RMK 〉) by
Hypothesis C.2.3, and k = 2, it follows that R∗ ∼= D8 and hence case (ii) or (iii) of
(a) holds. Finally assume k = 3. Then n = 7 and K∗J is the stabilizer of a partition
of Ω of type 23, 1. The only proper subgroup of K∗ properly containing K∗J is the
stabilizer M∗

J of a point of Ω, so M∗
K = K∗J or M∗

J by (*). But if MK = MJ , then
as R ∈ Syl2(〈RMK 〉), R ∈ Syl2(H), and C.1.29 supplies a contradiction since the
preimage MJ of M∗

J is not a χ0-block. Hence MK = KJ , so that case (iv) of (a)
holds.

Thus we may assume that K is not a χ-block, so by C.1.29,

R 6∈ Syl2(H), (∗∗)

and case (1) of 10.5 in [Asc81b] does not hold. In case (2) of that result
K∗/Z(K∗) is of Lie rank at least 3 and M∗

K is a parabolic subgroup of K∗. As
K∗ appears in (!), K∗ is L4(2) or L5(2), and by (**), M∗

K is a parabolic of rank
at least 1, so conclusion (h) holds. In case (3) of 10.5 in [Asc81b], K∗ is an
alternating group of degree at least 10, and no such group appears in (!). Thus
we may assume that case (4) of 10.5 in [Asc81b] holds; thus MH = NH(R), so
that R = O2(MH) by C.2.1.1. Furthermore the hypotheses of sections 8 and 9 of
[Asc81b] are satisfied, so K∗ described in 9.3 of [Asc81b].

Assume K∗ is A7. Then as K is not a χ-block, K∗ is an exceptional A7-block
by 9.3 in [Asc81b], so by B.4.2.7, J∗ is a regular 4-subgroup of K∗. Thus K∗J is
maximal in K∗, soM∗

K = K∗J and hence (d) holds. Thus we may assume that K∗ is
not A7, so by 9.3 in [Asc81b], K∗ is one of the groups of Lie type of characteristic 2
appearing in (!), and hence 8.9 of [Asc81b] applies. In the first case of that result,
8.8 of [Asc81b] says that (b) holds, so we may assume that the second case of 8.9 of
[Asc81b]holds: that isM∗

K is a parabolic subgroup ofK∗. We may assumeK∗ is of
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Lie rank 2 since we have already handled the other cases, and then M ∗
K a parabolic

of rank 1 by (**). Further (H,R) is an MS-pair; for example (MS3) follows from
Hypothesis C.2.3 and the hypothesis that K 6≤ MH . Now C.1.32 completes the
proof of C.2.7. ¤

Next we strengthen Hypothesis C.2.3 so as to achieve the hypotheses attained
in the proof of Theorem 4.2.5; in particular, that hypothesis holds for our standard
uniqueness situation in 1.2.9.2. Thus in the remainder of this section we assume:

Hypothesis C.2.8. H is an SQTK-group, and R is a 2-group with R ≤MH ≤
H such that

(1) F ∗(MH) = O2(MH) and O2(H) 6= 1.
(2) There exists LH ∈ C(MH) such that

R ∈ Syl2(CMH (M0/O2(M0)) and C(H,R) ≤MH

where M0 := 〈L
MH

H 〉.
(3) There exists a nontrivial elementary abelian 2-subgroup V of M0 such that

V = [V,M0] ≤ Z(O2(M0R)) and NH(V ) ≤MH .

We first obtain some easy initial consequences of Hypothesis C.2.8. In the
remainder of the section, we will take

R ≤ TH ∈ Syl2(MH).

Lemma C.2.9. (1)M0/O2(M0) is a direct product of at most two C-components,
with LMH

H = LTHH . In particular, M0 =M∞
0 .

(2) M0 ≤ NH(R) and R ∈ B2(H).
(3) Hypothesis C.2.8 is inherited by any subgroup X with M0TH ≤ X ≤ H.

Proof. As in earlier arguments, we may apply the results of section A.3 in
MH/O2(MH); in particular A.3.8.1 implies (1). Applying A.4.2.4 to M0, MH in
the roles of “X , M”, and appealing to C.2.8.2, M0 normalizes R. Also R ∈ B2(H)
by C.1.2.4, establishing (2). Part (3) is straightforward. ¤

Lemma C.2.10. (1) O(H) = 1.
(2) No component of H is contained in MH .
(3) R ∈ Syl2(CH(M0/O2(M0)).
(4) Hypothesis C.2.3 is satisfied.
(5) {R} =I∗NH(R)(M0, 2).

Proof. Embed R ≤ S ∈ Syl2(CH(M0/O2(M0))). By C.2.8.2, NH(R) ≤
MH—while R is Sylow in CMH (M0/O2(M0)), so NS(R) = R and hence (3) holds.
As M0 normalizes R by C.2.9.2, R is contained in each S ∈ I∗NH(R)(M0, 2), and

S ≤ NH(R) ≤MH so S = R by C.2.8.2 and A.4.2.4, proving (5). Next R ∈ B2(H)
by C.2.9.2. AsM0 E MH by C.2.8.2, also CMH (M0/O2(M0)) E MH , and of course
R is Sylow in the former subgroup so R ∈ Syl2(〈RMH 〉). Therefore Hypothesis C.2.3
is satisfied, establishing (4).

As F ∗(MH) = O2(MH) by Hypothesis C.2.8, (2) holds and O(H) ∩ MH ≤
O(MH) = 1. By A.1.26, V = [V,M0] ≤ CH(O(H)), so by (3) of Hypothesis C.2.8,

O(H) = O(H) ∩ CH(V ) = O(H) ∩MH = 1,

completing the proof of (1), and hence of the lemma. ¤
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Lemma C.2.11. O2,F (H) ≤MH .

Proof. By C.2.10.1, O(H) = 1, so F ∗(O2,F (H)) = O2(H). Thus if O2,F (H) 6≤
MH , then by C.2.6.2 there is some A3-block X of O2,F (H) with X 6≤MH . As H is
an SQTK-group, m3(H) ≤ 2, so |XH | ≤ 2. Therefore as M0 is perfect and Aut(X)
is solvable, M0 ≤ CH (X). Then V = [V,M0] ≤ CH (X), so X ≤ CH(V ) ≤ MH by
Hypothesis C.2.8.3, contrary to assumption. ¤

Lemma C.2.12. NH(M0) =MH .

Proof. Set X := CH(M0/O2(M0)); by C.2.10.3, R ∈ Syl2(X). By a Frattini
Argument, NH(M0) ≤ XNH(R), so as NH(R) ≤ MH , it remains to show that
X ≤MH . Assume otherwise. By C.2.9.3, we may assume H =M0XTH .

We first show that F ∗(X) = O2(X). By C.2.10.1, O(X) = 1. Suppose L is
a component of X . Then by definition of X , [M0, L] ≤ O2(M0) ≤ CX (L), so L
centralizes M0 by the Three-Subgroup Lemma. Thus L ≤ CH(M0) ≤ CH(V ) ≤
MH using Hypothesis C.2.8.3, contrary to C.2.10.2. Therefore F ∗(X) = O2(X).

Since R is Sylow in X , the Local C(G, T )-Theorem in the form C.2.5 says there
is a χ0-block K of X not contained in MH . Therefore from Hypothesis C.2.8.3,
K does not centralize V , and so [M0,K] 6= 1. However [M0,K] ≤ O2(M0) ∩K ≤
O2(K), so a Sylow 2-group T0 of M0 is contained in O2(KT0). Thus T0 centralizes

U := U(K) by C.1.11, so as M0 acts on K, M0 = 〈TM0
0 〉 centralizes U . Then M0

centralizes K by Coprime Action, completing the proof. ¤

We now arrive at the main result C.2.13 of this sequence of lemmas: if MH is
proper in H , then (leaving aside the very special situation in C.2.13.2, which causes
little difficulty) there is a C-component K of H such that K/O2(K) is quasisimple
and K 6≤ MH . In particular either K is a component of H (the case treated in
section C.3) or F ∗(K) = O2(K) (the case treated in section C.4).

Proposition C.2.13. Assume O2,F∗(H) ≤MH . Then either

(1) H =MH , or
(2) M0 = LH ∈ C(H) and MH = NH(M0) is of index 2 in H.

Proof. By C.2.9.1, M0 = 〈LTHH 〉 for some LH ∈ C(MH) and R ≤ TH ∈
Syl2(MH). As O2,F∗(H) ≤ MH by hypothesis, LH ∈ C(H) using A.3.3.2. Now
if MH < H , M0 is not normal in H by C.2.12. By A.3.8.1 there are exactly two
H-conjugates of LH ; thus M0 = LH . Now (2) holds using C.2.12. ¤

Lemma C.2.14. If H1 ≤ H is solvable with M0TH ≤ NH(H1), then H1 ≤MH .

Proof. As M0TH ≤ NH(H1), by C.2.9.3 we may assume H = H1M0TH , so
H1 E H . As H1 is solvable, O2,F∗(H1) = O2,F (H1) ≤ MH by C.2.11. Now as
H = H1M0TH ,M0 = H∞ E H , and then C.2.12 showsMH = H ≥ H1, completing
the proof. ¤

C.3. Pushing up in nonconstrained 2-locals

Recall that because of C.2.13 and C.2.11, the obstruction to pushing up H (i.e.,
to showing MH = H) under hypothesis C.2.8 is some C-component K of H with
K/O2(K) quasisimple. In this section, we show that when K is quasisimple, the
triple M0, MH ∩K, K is on a short list of configurations:
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Theorem C.3.1. Assume Hypothesis C.2.8 and that K is a component of H.
Let MK := K ∩MH . Then LH = M0 E MH , M0 ≤ K, MH acts on K, Z(K) is
a 2-group, and one of the following holds:

(1) K/Z(K) is of Lie type and Lie rank 2 over F2n , MK is a maximal parabolic
of K, M0 = M∞

K , M0/O2(M0) ∼= L2(2
n), and either V is the natural module for

M0/O2(M0), or K ∼= Sp4(2
n) and V/CV (M0) is the natural module.

(2) K ∼= Ln(2), n = 4 or 5, MK is a parabolic of K, M0 =M∞
K , and either

(a) M0/O2(M0) ∼= Ln−1(2) and V = O2(M0) is the natural module for
M0/V , or

(b) n = 5, M0
∼= L3(2)/E64, and V is the natural module for M0/O2(M0).

(3) K/Z(K) ∼=M22 and M0/Z(K) is L2(4)/E16, A6/E16, or L3(2)/E8.
(4) K ∼=M23 and M0 is L2(4)/E16 or A7/E16.

(5) K ∼=M24 and M0 is Â6/E64, L4(2)/E16, or L3(2)/E64.
(6) K ∼= J4 and M0 is M24/E211 , L3(2)/2

3+12, or L5(2)/E210 .
(7) K/Z(K) ∼= HS and M0/Z(K) is L3(2)/Z

3
4 or A6/E16.

(8) K ∼= He and M0 is Â6/E64.
(9) K/Z(K) ∼= Ru and M0/Z(K) is L3(2)/2

3+8 or G2(2)
′/E64.

(10) K is the double cover group of A8, Z(K) = CV (M0) and V is the 4-
dimensional indecomposable for M0/V ∼= L3(2) described in B.4.8.2.

Recall by C.2.10.1 that O(H) = 1, so that Z(K) is a 2-group.
The proof of Theorem C.3.1 involves a short series of reductions. In the re-

mainder of the section assume the theorem fails. Let R ≤ TH ∈ Syl2(MH) and set
K0 := 〈KTH 〉. Applying A.3.8.1 in H/O2(H), we see that |KH | ≤ 2. As M0 is
perfect by C.2.9.1, M0 ≤ NH(K). By C.2.9.3 we may assume H = M0K0TH . In
particular K0 E H .

Lemma C.3.2. M0 ≤ K0 and, replacing K by some conjugate if necessary,
LH ≤ K.

Proof. By C.2.10.2, K 6≤ MH , so as CH(V ) ≤ MH by C.2.8.3, [V,K] 6= 1.
Then as V ≤M0 by C.2.8.3, [K,M0] 6= 1.

Recall M0 is perfect by C.2.9.1; so by the Schreier property for K-groups,
M0 ≤ K0CH (K0). Let M1 be the projection of LH on K; we saw [K,M0] 6= 1, so

replacing K by a conjugate if necessary, M1 6= 1. Let M2 := 〈MTH
1 〉 and observe

O2(M2) ∈ IH(MH , 2), so by C.2.1.1, O2(M2) ≤ R. Further [M0, R] ≤ O2(M0) by
C.2.8.2, so [M2, R] ≤ O2(M2) ≤ R, and therefore M2 ≤ NH(R) ≤MH ≤ NH(M0).
As LH is perfect, so is M1, so M1 acts on LH using A.3.8.1. Then as M1 is the
projection of LH , LH = [LH ,M1] ≤M1 ≤ K, so M0 = 〈L

TH
H 〉 ≤ K0. ¤

Lemma C.3.3. K = K0.

Proof. Assume otherwise; then as we noted earlier, K0 = KKt for some
t ∈ TH −NH(K). By A.3.8.3 K/Z(K) is L2(2

n), Sz(2n), J1, or L2(p), p an odd
prime. Let X := NH(K) and X̄ := X/CX(K). Since

1 6= V = [V,M0] ≤M0 ≤ K0 ≤ NH(K) = X

by C.3.2, 1 6= V̄ E M̄0 with V̄ = [V̄ , M̄0]. But by inspection of the maximal
subgroups of the groups just listed, K̄0 has no such perfect subgroup M̄0 with
1 6= V̄ = [V̄ , M̄0]. ¤
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Lemma C.3.4. V ≤ R ∩K and V 6≤ CH(K).

Proof. By C.3.2 and C.3.3, V ≤M0 ≤ K, so as V = [V,M0], V acts nontriv-
ially on K. Further V ≤ O2(M0) ≤ R using C.2.10.5. ¤

Lemma C.3.5. If K/Z(K) is of Lie type and characteristic 2, then conclusion
(1) or (2) of Theorem C.3.1 holds.

Proof. Assume that K̄ := K/Z(K) is of Lie type and characteristic 2 and set
RK := R ∩K and Y := NK(RK). By C.3.4, V ≤ RK , so R̄K 6= 1. Then by (4)
and (2) of C.2.2, Ȳ is a parabolic subgroup of K̄ and O2(Ȳ ) = R̄K . By C.2.9.2,
M0 ≤ NK(RK) = Y . As M0 = M∞

0 acts nontrivially on V , Ȳ is not a Borel
subgroup of K̄, so K̄ is of Lie rank at least 2. From Theorem C (A.2.3),

K̄ is of Lie rank 2, L4(2), or L5(2),

and then as M0 is a nonsolvable subgroup of Y , either Ȳ is a maximal parabolic,
or Y/O2(Y ) ∼= L3(2) and K̄ ∼= L5(2). In either case M0 ≤ X := Y∞ ∈ C(Y ), and
either X/O2(X) is of Lie rank 1 or Y/O2(Y ) is L3(2) or L4(2).

We claim that M0 = X . Suppose not; then by C.2.9.3 and C.2.10.4, the
hypotheses of C.2.7 are satisfied with X in the role of “K”. Therefore as X/O2(X)
is of Lie rank 1, L3(2), or L4(2), and M0 is a nonsolvable subgroup of MH ∩X we
conclude from the list in C.2.7.3 that X/O2(X) ∼= L4(2), so K̄ ∼= L5(2) and Y = X
is a maximal parabolic. Then as R acts on Y , R induces inner automorphisms on
K, so R = RKCR(K) by C.2.2.1. Thus

Y ≤ NH(R) ≤ NH(M0),

so M0 = X by A.3.3.1 applied to Y ∈ C(Y ), completing the proof of the claim.
Therefore M0 E Y , so Y ≤ MH by C.2.12. Thus MK := MH ∩ K is a

parabolic subgroup of K containing Y . In particular if Ȳ is a maximal parabolic,
then Y = MK , and thus M0 = M∞

K . Suppose on the other hand that Ȳ is not
maximal. Recall in this case that K̄ ∼= L5(2) and M0/O2(M0) ∼= L3(2). If Y is
the parabolic of K centralizing an involution, then Z(RK) ≤ Z(Y ), contradicting
the hypothesis in C.2.8 that V = [V,M0] ≤ Z(R). In the remaining cases Y is
contained in a maximal parabolic P of K with P/O2(P ) ∼= L3(2)×S3, so P ≤MK

by C.2.14, and hence P = MK . In this case Z(RK) is the natural module for
X/O2(X), so as V ≤ Z(RK) by Hypothesis C.2.8.3, V = Z(RK).

Suppose K̄ ∼= Ln(2) with n = 4 or 5. As Z(K) is a 2-group, I.1.3 says that either
Z(K) = 1 or K is the double cover group of A8. In the former case the module V is
as claimed from the structure of the maximal parabolics, and our observation in the
previous paragraph in the case n = 5 and MK/O2(MK) ∼= L3(2)×S3. In the latter
case (10) holds. Thus we have completed the treatment of the case K̄ ∼= L4(2) or
L5(2).

Finally if K̄ is of Lie rank 2, then as M0 acts nontrivially on Ω1(Z(O2(RK))),
we conclude from the structure of the parabolics of K that M0/O2(M0) ∼= L2(2

n),
and indeed V is the natural module—unless we are in the exceptional case that
conclusion (1) allows when K ∼= Sp4(2

n) (where K̄ = K by I.1.3 since n > 1). So
conclusion (1) of Theorem C.3.1 holds in all cases for K̄ of rank 2. This completes
the proof of C.3.5. ¤

We now complete the proof of Theorem C.3.1. By C.3.2 and C.3.3,M0 ≤ K0 =
K. Now M0 E NK(V ) ≤ MK using C.2.8.2 and C.2.8.3. By C.3.4, V ≤ R, so
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that V = [V,M0] ≤ R ∩ Z(O2(M0)) using C.2.8.3. We get LH ∈ C(NK(V )) using
C.2.8.3 and A.3.3.2. Set H∗ := H/CH(K). By C.3.4, V ∗ 6= 1, so as V = [V,M0]
and M∗

0 = M∗∞
0 , 3 ≤ m(V ∗) ≤ m2(K

∗). This rules out A7 and the groups of odd
characteristic in Theorem C (A.2.3); the other alternating groups in Theorem C
are of Lie type and characteristic 2, so they have already been handled in C.3.5.
Therefore K∗ is sporadic. We inspect the list of 2-locals for each of those sporadics
(cf. the references for sporadics in the proof of Theorem C), seeking locals M ∗

H

with V ∗ = [V ∗,M∗
0 ] ≤ Z(O2(R

∗M∗
0 )), M

∗
0 = M∗∞

0 E M∗
H , and NH∗(V

∗) ≤
M∗
H ≥ NH∗(R

∗). We conclude that M∗
0 is contained in an R-invariant 2-local X∗

of K∗ such that the pair K∗, X∗ is described in one of the conclusions (3)–(9) of
Theorem C.3.1. In particular if X∗ = M∗

0 then the Theorem holds, using I.1.3 to
determine the cases where Z(K) 6= 1. So assume that M ∗

0 < X∗. Then by C.2.9.3
and C.2.10.4, the hypotheses of C.2.7 are satisfied with X in the role of “K”.
Comparing the list of groups in C.2.7.3 to the list of conclusions in Theorem C.3.1
with K sporadic, and recalling that M0 is a nonsolvable subgroup of MH ∩ X ,
we conclude that X/O2(X) ∼= L4(2) or L5(2). and M∗

0R
∗ is a parabolic of X∗.

If X/O2(X) ∼= L4(2), then K ∼= M24 and M0
∼= L3(2)/E64, so the pair K, M0

appears on the list of Theorem C.3.1. If X/O2(X) ∼= L5(2), then K ∼= J4 and
X ∼= L5(2)/2

10. From C.2.7.2, R/O2(X) contains an FF∗-offender on O2(X), so
from B.4.2.11, M0

∼= L4(2)/2
6+8. But now MK = NK(M0) ∼= L4(2)/E24/E211 , so

O2(MK) = R by C.2.1. This is a contradiction as O2(MK) does not act on X in
J4.

C.4. Pushing up in constrained 2-locals

Again recall from C.2.13 and C.2.11 that we can detect when MH is proper
in H under Hypothesis C.2.8 from the existence of a suitable C-component K in
O2,E(H). In section C.3 we dealt with the case where K is quasisimple. In this
section we deal with the case F ∗(K) = O2(K). We are able to improve considerably
on the initial restrictions for this case given in C.2.7:

Theorem C.4.1. Assume Hypothesis C.2.8 and that there is K ∈ C(H) with
F ∗(K) = O2(K), K/O2(K) quasisimple, and K 6≤ MH . Let K0 := 〈KH〉 and
MK :=MH ∩K. Then LH =M0 ≤ K0 = K and one of the following holds:

(1) M0 is an An-block, n = 5 or 6, V = U(M0), K is an An+2-block, R induces
a transposition on K/U(K), and MK = NK(R).

(2) K is an Sp4(4)-block, MK/U(K) is the maximal parabolic of K/U(K)
stabilizing the F4-line V/CU(K)(K) of U(K)/CU(K)(K), and M0/O2(M0) ∼= L2(4).

(3) K/O2(K) ∼= SL3(2
n) for n > 1, and (KR,R) is an MS-pair described

in one of conclusions (1)–(4) of Theorem C.1.34. Further MK/O2(K) is the
maximal parabolic of K/O2(K) stabilizing a F2n-line V1 in a K-irreducible on
[Ω1(Z(O2(RK))),K], and M0/O2(M0) ∼= L2(2

n); and either V = V1, or case (2)
of Theorem C.1.34 holds with V the sum of two lines.

(4) K/O2(K) ∼= L4(2) or L5(2), MK/O2(K) is a parabolic of K/O2(K), and

M0/O2(M0) ∼= L3(2) or L4(2).

The proof involves a series of reductions. Until it is finished, assume that the
theorem fails. Let R ≤ TH ∈ Syl2(MH), and set RK := R ∩ K. Passing to
H/O2(H), |KH | ≤ 2 by A.3.8.1. Therefore M0 = O2(M0) ≤ NH(K). By C.2.9.3
we may assume:
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Lemma C.4.2. H = K0M0TH .

Set H∗ := H/CH(K0/O2(K0)).

Lemma C.4.3. M∗
0 6= 1.

Proof. By C.2.1.2, O2(K0) ≤ O2(H) ≤ R ≤ NH(M0), so using C.2.9.1, M0

is the product of members of C(O2(K0)M0). Thus if M0 centralizes K0/O2(K0),
then K0 normalizes M0 using A.3.3.3, so K0 ≤ MH by C.2.12, contradicting K 6≤
MH . ¤

Lemma C.4.4. R normalizes K.

Proof. If not then by C.2.4.2, RK ∈ Syl2(K), so as K 6≤ MH , K is a χ0-
block of H by C.2.4.1. By C.4.2, H = THM0K0, so as M0 and K0 normalize K,
K0 = KKt for some t ∈ TH −NTH (K). Let B := NK0(R∩K0); then B

∗ is a Borel
subgroup of K∗0 . Next B is normalized by THM0 in view of C.2.9.2, so B ≤ MH

by C.2.14. As B∗R∗ is maximal in K∗0R
∗ and K0 6≤ MH , B = MH ∩K0. But by

C.4.3, 1 6=M∗
0 ≤ B∗ which is solvable, contradicting M0 =M∞

0 . ¤

By C.4.4, the hypotheses of C.2.7 are satisfied, and hence K satisfies one of
the conclusions of that lemma. Recall that M0 ≤ NH(K) and set X := RM0K,
MX := MH ∩ X , and X̄ := X/CX(K/O2(K)). As K0 = 〈KTH 〉, TH normalizes
M0, and M

∗
0 6= 1, we conclude that

M̄0 6= 1.

Of course M̄0 E M̄X , and M̄X is a proper subgroup of X̄ because K 6≤ MH . By
the Schreier property, M̄0 ≤ K̄, so NK̄(R̄) is not solvable.

We claim that K = K0; for if not, then by A.3.8.3 and C.2.7, K/O2(K) is
L2(2

n) or L3(2) and NK̄(R̄) is solvable, contrary to the previous paragraph.
Let M∗

1 be the projection of M∗
0 on K∗. As M0 acts on R, M∗

1 acts on R∗, so
as O2(K) ≤ R, M1 ≤ NH(R) ≤ MH . Then as M̄0 = M̄1, M1 = [M0,M1] E M0

by A.3.3.7, and hence M1 = M0. Similarly NK̄(R̄) = NK(R) ≤ M̄K , where
MK :=MH ∩K. Thus we have shown:

Lemma C.4.5. (1) M0 E MK .
(2) M̄0 ≤ NK̄(R̄) ≤ M̄K .
(3) K = K0.

We begin to consider the various possibilities listed in C.2.7:

Lemma C.4.6. If K is a χ-block, then K is an A7-block and conclusion (1) of
Theorem C.4.1 holds.

Proof. Assume that K is a χ-block. Then by Theorem C (A.2.3), K is of
type L2(2

n) or Am with m = 5 or 7. By C.4.5, M0 ≤ MK , so MK is not solvable.
Thus by inspection of the list in C.2.7.3, K is an A7-block, R̄ is generated by
a transposition, and M̄0

∼= A5. As K is an A7-block, M0 is an A5-block and
U(M0) = U(K). Therefore V = U(M0), as U(M0) is the unique elementary abelian
subgroup of M0 satisfying V = [V,M0]. That is, conclusion (1) of Theorem C.4.1
holds. ¤

Lemma C.4.7. If K/O2(K) ∼= SL3(2
n), then conclusion (3) of Theorem C.4.1

holds.
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Proof. Assume K/O2(K) ∼= SL3(2
n); then case (g) of C.2.73 holds. Thus

M̄K is a maximal parabolic of K̄, and K is described in Theorem C.1.34. As M0 =
M∞

0 E MK by C.4.5, we conclude from the structure of the maximal parabolic M̄K

that n > 1, M0 = M∞
K , and M0/O2(M0) ∼= L2(2

n). From C.2.8.3, V = [V,M0] ≤
Z(O2(M0R)), so as F ∗(K) = O2(K) ≤ R, V ≤ Z(O2(K)). Therefore from the
description of Z(O2(K)) in C.1.34, MK/O2(MK) is the parabolic stabilizing a line
in a K-chief factor W of Z(O2(K)). Furthermore W is unique in all cases except
case (2) of C.1.34, where Z(O2(K)) is the sum of two isomorphic natural modules—
and then V may be a sum of two lines. This completes the proof. ¤

We are now in a position to complete the proof of Theorem C.4.1. By C.4.5,
M∞

0 =M0 E MK and M∗
0 ≤ NK∗(R

∗) ≤M∗
K . We inspect the possibilities for K

on the list of C.2.7.3 not yet eliminated, for the existence of such a perfect normal
subgroups of MK and NK∗(R

∗). In case (b) as NK∗(R
∗) is not solvable, K∗ ∼= A8

and conclusion (1) of Theorem C.4.1 holds, just as in C.4.6. Similarly cases (c),
(d), and (f), and the subcase of (e) with K∗ ∼= A6 are eliminated as NK∗(R

∗) is not
solvable. Therefore either case (h) or the subcase of (e) with K∗ ∼= Sp4(4) holds.
If K/O2(K) ∼= Sp4(4), we deduce that conclusion (2) of Theorem C.4.1 holds, just
as in C.4.7. When K/O2(K) ∼= Ln(2), M

∗
0 is a parabolic of K∗ by C.2.7.3, and the

possible choices for M0/O2(M0) are L3(2) and L4(2), which is all that conclusion
(4) of Theorem C.4.1 asserts.

We close this section with a corollary to Theorems C.3.1 and C.4.1:

Theorem C.4.8. Assume Hypothesis C.2.8 with MH < H. Then M0 = LH
and LH ≤ K ∈ C(H) with K/O2(K) quasisimple, and one of the following holds:

(1) LH/O2(LH) ∼= L2(2
n), and V/CV (LH) is the natural module for LHR/R

or the A5-module with n = 2.
(2) LH/O2(LH) ∼= L3(2) or L4(2), and V is either the direct sum of one or more

isomorphic natural modules for LHR/R, or the 6-dimensional orthogonal module
for LH/O2(LH) ∼= L4(2).

(3) K/Z(K) ∼=M22 or HS and LH is an A6-block.
(4) K ∼=M23 and LH is an exceptional A7-block.

(5) K ∼=M24 or He and LH is an Â6-block.
(6) K ∼= J4 and LH is a block with LH/O2(LH) ∼= M24 or L5(2) described in

case (6) of Theorem C.3.1.
(7) K/Z(K) ∼= Ru and LH is a G2(2)-block.
(8) K is an A8-block and LH is an A6-block.
(9) K is the double cover group of A8 and LH is an L3(2)-block with m(V ) = 4.
(10) O2,F∗(H) ≤ MH , LH/O2(LH) ∼= L2(2

n), Sz(2n), J1, or L2(p) for some
odd prime p, and MH = NH(M0) is of index 2 in H.

In cases (1)–(9), K 6≤MH , K is invariant under MH , and K is described in C.3.1
or C.4.1.

Proof. Assume first that O2,F∗(H) ≤ MH ; since MH < H by hypothesis,
C.2.13.2 says that |H :MH | = 2, and then conclusion (10) of Theorem C.4.8 holds
by A.3.8.3 applied in H/O2(H).

Thus we may assume that O2,F∗(H) 6≤ MH . Hence by C.2.11, there is K ∈
C(H) with K/O2(K) quasisimple and K 6≤ MH . Now by Theorems C.3.1 and
C.4.1, M0 = LH , K is MH-invariant, and one of the conclusions of Theorem C.4.8
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holds—except that in case (4) of C.4.1, we must show that V is as claimed in
conclusion (2).

Assume that case (4) of Theorem C.4.1 holds, and let Q := O2(KR), U :=
Ω1(Z(Q)), and (KR)∗ := KR/CKR(U). Thus K/O2(K) ∼= Ln(2), with n = 4 or
5, and M0 is a C-component of the parabolic MK of K. By C.2.7.1, Q = CKR(U)
so O2(K

∗R∗) = 1, and by C.2.7.2 there is A ∈ A(R) with A∗ an FF∗-offender
on U . Now Q ≤ R by C.2.1.2, and V ≤ Z(O2(M0R)) by Hypothesis C.2.8.3,
so V ≤ CKR(Q) ≤ Q. Therefore V ≤ W := [CU (O2(M0)),M0]. As U is an
FF-module for K∗R∗ and K∗ ∼= Ln(2), U is described in case (i), (iii), or (iv) of
B.5.1.1. In each case, for each C-component M0 in a parabolic of K, W is either a
sum of isomorphic natural modules for M0/O2(M0) ∼= Lm(2), or the 6-dimensional
orthogonal module for M0/O2(M0) ∼= L4(2), so the proof is complete. ¤

C.5. Finding a common normal subgroup

As mentioned in the Introduction to Volume I, in the proof of the Main The-
orem, outcome (5) of the Meierfrankenfeld-Stellmacher qrc-lemma D.1.5.5 leads to
a certain pushing up situation 3.1.6.1—which we can rule out via Theorem C.5.8
of this section. Formally this is accomplished by restating Theorem C.5.8 in a
slightly modified form as Theorem 3.1.1, and applying Theorem 3.1.1 to eliminate
that configuration. Theorem 3.1.1 is used repeatedly throughout the proof of the
Main Theorem. Some of its most immediate corollaries are recorded and derived
in section 3.1.

We will show roughly that if a 2-subgroup R is normal in some subgroup M0,
and Sylow in a minimal parabolic H in the sense of Definition B.6.1, then some
nontrivial subgroup of R must be normal in both M0 and H . We prove the contra-
positive, showing that if no such common normal subgroup exists, then condition
(PU) of Definition C.1.3 is satisfied in H , and then more detailed analysis leads
to a contradiction. In many situations arising in the proof of our Main Theorem,
such normal subgroups are ruled out as O2(〈M0, H〉) = 1—often because M0 is a
uniqueness subgroup with M = !M(M0), while H ∈ H∗(T,M). (Cf. 1.4.1 and
3.3.2.4).

The main result of this section is Theorem C.5.8; it relies on some detailed
lemmas established under more general hypotheses, which will be useful elsewhere.

So we will assume in this section:

Hypothesis C.5.1. G is an SQTK-group and H and M0 are subgroups of G
such that:

(1) F ∗(H) = O2(H), and TH ∈ Syl2(H) is in a unique maximal subgroup of
H. Set K := O2(H).

(2) R ≤ TH ≤M0 ≤ G with R ∈ Syl2(RK) and R E M0.

We add a further condition useful in pushing up, and assume it holds in lemmas
C.5.3 through C.5.6—which give us a detailed list of consequences of these two
hypotheses.

Hypothesis C.5.2. There is no nontrivial subgroup R0 of R such that R0 E

〈M0, H〉.

Lemma C.5.3. K = K1 · · ·Ks is the product of a set ∆ := {K1, . . . ,Ks} of
s ≤ 2 blocks of type L2(2

n), A3, or A5, permuted transitively by TH . Further
Ki = [Ki, J(R)] for each i = 1, · · · , s.



C.5. FINDING A COMMON NORMAL SUBGROUP 155

Proof. If 1 6= C char R and C E KR, then from C.5.1.2, C E 〈M0, H〉,
contrary to C.5.2. Hence no such characteristic subgroup exists. As F ∗(H) =
O2(H), F ∗(KR) = O2(KR). Then since R is Sylow in KR, the lemma follows
from C.1.26. ¤

Recall the Baumann subgroup Baum(R) of R from Definition B.2.2, and set
S := Baum(R). The next lemma collects some properties of the Baumann subgroup
which we will need.

Set

Ui := U(Ki), Qi := O2(〈Ki, S〉), Di := CS(Ki), and Ei := [Ui, S].

Lemma C.5.4. (1) S acts on each Ki.
(2) If Ki is an L2(2

n)-block or A3-block then S ∩ Ki ∈ Syl2(Ki), and S =
(S ∩ Ki)Qi when Ki is an L2(2

n)-block, while KiS/Qi ∼= L2(2) if Ki is an A3-
block.

(3) If Ki is an A5-block then Qi = Ui × Di, and S/Qi ∼= E4 is generated by
two transpositions in KiS/Qi ∼= S5.

(4) Ui ≤ Qi = CS(Ui), and setting U := U1 · · ·Us, CR(U) = O2(KR).

Proof. By C.5.3, Ki = [Ki, J(R)] for each i, so (1) follows from C.1.16.2.
Suppose Ki is an L2(2

n)-block or an A3-block. Then by Baumann’s Lemma
B.6.10, S is Sylow in 〈SKi〉, while as Ki = [Ki, J(R)], Ki ≤ 〈SKi〉, so S is Sylow in
KiS. In particular Qi = O2(KiS) ≤ S. By B.6.9, KiS/Qi ∼= L2(2

n), where we set
n := 1 if Ki is an A3-block. For n > 1, L2(2

n) is perfect, so that S ≤ KiQi, and
hence since Qi ≤ S we conclude S = (S ∩Ki)Qi. This completes the proof of (2).

Assume that Ki is an A5-block. By B.3.2.4, J(R)Qi/Qi is generated by two
commuting transpositions in KiJ(R)Qi/Qi ∼= S5. Thus the hypotheses of Bau-
mann’s argument B.2.18 are satisfied by Ki, Ui, R in the roles of “L, V , R” and
with n = 2, X1 = J(R), and X2 = J(R)g for suitable g ∈ Ki. Therefore by
B.2.18.1, Qi ≤ S, and then Qi = Ui ×Di by C.1.13.c, completing the proof of (3).

By (2) and (3), Qi ≤ S so O2(KR) ≤ R. Then (4) follows from C.1.11. ¤

Now recall that by Hypothesis C.5.1.2, M0 normalizes the Sylow group R of
RK, and hence normalizes the characteristic subgroup S; as U1 ≤ Q1 ≤ S by
C.5.4.4, we have UM0

1 ⊆ S ≤ H . However:

Lemma C.5.5. 〈UM0
1 〉 6≤ O2(H).

Proof. Suppose U0 := 〈UM0
1 〉 ≤ O2(H). Then as [O2(H),Ki] = Ui ≤ U0, K

normalizes U0, as does M0, so we may take R0 := U0 to obtain a contradiction to
C.5.2. ¤

By C.5.5, we may choose x ∈ M0 with Ux1 6≤ O2(H); observe since S ≤ H
that x ∈ M0 − S. By C.5.4.4, O2(H) ∩ R is the centralizer of U = U1 · · ·Us in
S. Therefore [Ux1 , Ui] 6= 1 for some i, so as TH ≤ M0 is transitive on ∆, we may
assume [U1, U

x
1 ] 6= 1.

Lemma C.5.6. (1) Q1 = U1D1 with D1 ≤ CQ1(U
x
1 ).

(2) S = Ux1Q1 = Q1Q
x
1 and E1 = [U1, U

x
1 ] = CU1(U

x
1 ) = U1 ∩ Ux1 .

(3) Ex1 = E1.
(4) Φ(D1)

x = Φ(D1).
(5) x is of even order.
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(6) If TH ∈ Syl2(M0) then s = 2 and we may choose x ∈ NM0(T1) with x
2 ∈ T1,

where T1 := NTH (U1).
(7) Assume |M0 : TH | = 2 and set D := CS(K) and U := U1 · · ·Us. Then

U = O2(K), Φ(D) = 1 = D ∩ Dx, D = CR(K), O2(KR) = DU ∈ A(R), S =
DUUx = J(R), and one of the following holds:

(i) s = 1, K is an L2(2
n)-block or A3-block, and A(R) = {Q1, Q

x
1}.

(ii) s = 1, K is an A5-block, and A(R) = {Q1, Q
x
1 , A,A

r}, where |A :
A ∩Q1| = 2 and r ∈ R ∩K − S.

(iii) s = 2, S = UUxD, and {DU,DUx} are the TH -invariant members of
A(R).

Proof. We begin by establishing (1), (2), and (3).
Suppose first that K1 is an L2(2

n)-block or A3-block, and set n := 1 in the
latter case. We argue as in Stellmacher’s proof of lemma 3.4 in [Ste86]: By C.5.4.4,
Q1 = CS(U1), and from C.5.4.2, S/Q1 is Sylow in L1S/Q1

∼= L2(2
n). Then S

centralizes a 1-dimensional F2n-subspace of the 2-dimensional natural module Ũ1.

Further by the structure of the extension U1 in I.2.3.1, C̃U1(Y ) = CŨ1(Y ) for any

1 6= Y ≤ S/Q1, and CU1(S) = [U1, S], so CŨ1(S) = CŨ1(U
x
1 ) as U

x
1 6≤ Q1, and

|S : CS(U1)| = 2n = |U1 : CU1 (U
x
1 )|

and if S = Ux1Q1, then [U1, U
x
1 ] = U1 ∩ U

x
1 = CU1(U

x
1 ). (∗)

Notice next that x ∈ M0 ≤ NG(R) ≤ NG(S), and we have symmetry between
U1 and Ux1 . By (*) and this symmetry, |Ux1 : CUx1 (U1)| = 2n, so again by (*),
|Ux1 : CUx1 (U1)| = |S : CS(U1)| and hence

S = Ux1CS(U1) = Ux1Q1 (!)

using C.5.4.4. Further since U1 ≤ Q1, S = Q1Q
x
1 . As S = Ux1Q1, E1 = [U1, S] =

[U1, U
x
1 ], and as U1 and Ux1 are normal in S, [U1, U

x
1 ] ≤ U1 ∩ Ux1 ≤ CU1(U

x
1 ),

so that [U1, U
x
1 ] = CU1(U

x
1 ) by (*), completing the proof of (2). By symmetry,

[S,Ux1 ] = [U1, U
x
1 ] = E1, so E

x
1 = [S,U1]

x = [S,Ux1 ] = E1, and hence (3) holds.
It remains to establish (1) in this case. We first obtain some intermediate

facts useful in the proof of (1) and later. Applying (*) to both U1 and Ux1 , we
have |S : CS(U1)| = |S : CS(U

x
1 )| = 2n, so |S : CS(U1U

x
1 )| ≤ 22n. But notice

CS(U1) ≥ U1CS(U1U
x
1 ), with U1 ∩ CS(U1U

x
1 ) = CU1(U

x
1 ), so

|U1CS(U1U
x
1 ) : CS(U1U

x
1 )| = |U1 : CU1(U

x
1 )| = 2n;

combined with the first equality of (*), this forces |S : CS(U1U
x
1 )| ≥ 22n. So in fact

all inequalities above must be equalities, and in particular

U1CS(U1U
x
1 ) = CS(U1) = Q1 and |Q1 : CQ1(U

x
1 )| = 2n. (∗∗)

Then as S = Ux1Q1, (**) says

S = U1U
x
1 CS(U1U

x
1 ).

We turn to (1). Note K1 ≤ LQ1, where L := 〈Ux1 , U
xk
1 〉 for some k ∈ K1. Now

Q1 ≤ S ≤ NH(U
x
1 ), and hence Q1 = Qk1 also normalizes Uxk1 ; thus L E LQ1 =

K1Q1, and so K1 = O2(K1Q1) ≤ L. Hence CH (Ux1 ) ∩ CH(U
xk
1 ) ≤ CH(K1). Now

by (**) and (*),

|Q1 : CQ1(U
x
1 )| = |U1 : CU1(U

x
1 )| = 2n,
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so as CH (Ux1 ) ∩ CH(U
xk
1 ) ≤ CH(K1) it follows that

|Q1 : CQ1(K1)| ≤ |Q1 : CQ1(U
x
1 ) ∩ CQ1(U

xk
1 )| ≤ 22n = |U1 : CU1 (K1)|,

and hence Q1 = U1CQ1(K1) with CQ1(K1) ≤ CQ1 (U
x
1 ). Now by definition D1 =

CS(K1) ≤ Q1, so CQ1(K1) = D1, establishing (1). This completes the proof (1)–(3)
in the case where K1 is an L2(2

n)-block or A3-block.
So assume instead that K1 is an A5-block. Then from C.5.4.3, Q1 = U1 ×D1.

We saw in the proof of C.5.4.3 that J(R)Q1/Q1 = S/Q1 is a 4-group generated by
commuting transpositions.

Assume first that S = Ux1Q1 = U1Q
x
1 . Then as S = Ux1Q1, [U1, S] = CU1(S)

is of rank 2, so (*) and (!) hold with n := 2, and of course S = U1Q
x
1 supplies the

analogous statement for the action of S on Ux1 . The proofs of (2) and (3) follow
as before. We can then use (*) and (!) to repeat the deduction of (**); and use
then (*) and (**) together with the fact that K1S/Q1

∼= S5 is generated by two
conjugates of S/Q1 to repeat the proof of (1).

Thus it remains to show that S = Ux1Q1 = U1Q
x
1 . Suppose R normalizes K1;

then U1 E R, so Ux1 E R as M0 ≤ NG(R). Therefore as AutKR(U1) ∼= S5,
AutUx1 (U1) is not generated by a transvection, so appealing to B.3.2.4, we conclude
AutUx1 (U1) = AutS(U1), and hence S = Ux1Q1. Further R = Rx normalizes Kx

1 , so
by symmetry, S = U1Q

x
1 , and we are done in this case.

So it remains to eliminate the case where |Ux1 : Q1∩Ux1 | = 2 with AutUx1 (K1/U1)
generated by a transposition, and R does not normalize K1, so that s = 2. Let
E := Ω1(Z(S)). Then E = CE(K) × E1 × E2 with Ei elementary of order 4, as
Di = Qi × Ui. Let R+/S be the subgroup of R/S generated by all transvections

on E. Each such transvection centralizes an element of E#
1 , so R+ ≤ NR(K1).

Further m([R ∩Ki, Ei]) = 1 and R ∩Ki centralizes E3−i, so R ∩Ki ≤ R+. Also
x normalizes E and hence R+, so as U1 E R+, also Ux1 E R+. This is a
contradiction as |Ux1 : Ux1 ∩Q1| = 2; namely R+ contains R∩K1 which does not act
on the subgroup AutUx1 (K1/U1) generated by a transposition. This contradiction
completes the proof of (1)–(3) in all cases.

Next by (1) and (**), U1D1 = Q1 = U1CS(U1U
x
1 ), so

Φ(CS(U1U
x
1 )) = Φ(U1CS(U1U

x
1 )) = Φ(Q1) = Φ(U1D1) = Φ(D1),

and by symmetry, Φ(Dx
1 ) = Φ(CS(U1U

x
1 )). Therefore Φ(D1)

x = Φ(Dx
1 ) = Φ(D1),

so that (4) holds.
We next prove (5) and (6). Set S̄ := S/Φ(D1). Again suppose first that K1 is

an L2(2
n)-block or A3-block. Then AutS(U1) is the unique FF

∗-offender on U1 and
|AutS(U1)| = |U1 : CU1(s)| for each s ∈ S −Q1, so as S = Ux1Q1 with Q1 = D1U1

and D1 ≤ CQ1(U
x
1 ) by (1), B.2.21 says that A(S̄) = {Q̄1, Ū

x
1 D̄1} is of order 2. Thus

M1 := NM0(Φ(D1)) acts on Γ := {Q1, U
x
1D1}. By (4), x ∈ M1, and as U1 ≤ Q1

but Ux1 6≤ Q1, M1 is transitive on Γ. Thus |M1 : NM1(Q1)| = 2, so x has even order
and (5) holds.

In proving (6), we assume that TH ∈ Syl2(M0). If s = 1, then TH ≤ M1,
contradicting |M1 : NM1(Q1)| = 2. Thus s = 2, so T1 := NTH (U1) is of index 2 in
the Sylow subgroup TH of M0. But as T1 ≤ NM1(Q1) which is of index 2 in M1,
T1 = TH ∩M1 is of index 2 in some T0 ∈ Syl2(M1), and T1 ∈ Syl2(NM1(Q1)). We
claim for x0 ∈ T0 − T1 that [Ux01 , U1] 6= 1: For M1 ≤M0 acts on S, and hence M1

acts on S̄. Also D1 centralizes U1U
x
1 and S = U1U

x
1D1 by (1) and (2), so as D̄1

is abelian, D̄1 ≤ Z(S̄). Then D̄x0
1 ≤ Z(S̄) ≤ Q̄1 as F ∗(K̄1S̄) = O2(K̄1S̄). Since
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Q1 = U1D1 and x0 /∈ NM1(Q1), U
x0
1 6≤ Q1 = CS(U1), as claimed. So replacing x

by x0, we may assume that x ∈ NM0(T1). Hence (6) holds in this case.
Therefore in proving (5) and (6), we may assume that K1 is an A5-block. This

time the analysis of FF∗-offenders using B.3.2.4 yields

A(S̄) = {Q̄1, Ū
x
1 D̄1, Ā1, Ā

r
1},

where Ā1/(Ā1 ∩ Q̄1) is of order 2 and induces a transposition on K1/U1, and
r ∈ R ∩K1 − S. Thus NR(U1) induces the transposition r on the 4-set A(S̄). If
s = 1, then R = NR(U1) = NR(Φ(D1)). If s = 2, then S2 := S ∩K2 ≤ D1, with
U2 ∩ Φ(S2) 6= 1, while D1 ∩ U1 = 1 by C.5.4.3, so NR(Φ(D1)) cannot interchange
K1 and K2, and hence NR(Φ(D1)) = NR(U1). Thus in either case, NR(U1) =
NR(Φ(D1)). But R E M0 so NR(Φ(D1)) E M1. Then as NR(Φ(D1)) = NR(U1)
induces only the transposition r on A(S̄), and NR(Φ(D1)) E M1, it follows that
M1 acts on {Q1, U

x
1D1}. Then (5) and (6) follow just as above.

It remains to establish (7), so we may assume |M0 : TH | = 2 and set D :=
CS(K). Then M0 = TH〈x〉. Since TH ≤ H ≤ NG(O2(H)) and Ux1 6≤ O2(H), we
can in fact choose x to be any element of M0 − TH . Assume first that s = 1; then
D = D1 and Φ(D) = 1 by (4) and Hypothesis C.5.2. Hence S̄ = S, so now

A(S) = {Q1, U
x
1D1} or {Q1, U

x
1D1, A1, A

r
1}.

In particular, Q1 is elementary abelian as Q1 ∈ A(S). Notice also that x ∈
NG(R) ≤ NG(S), so Q

x
1 ∈ A(S) and Qx1 is R-invariant as s = 1, so Ux1D1 = Qx1 .

ThereforeA(S) = {Q1, Q
x
1} whenK is not anA5-block, andA(S) = {Q1, Q

x
1 , A,A

r}
when K is an A5-block. In particular S = Ux1Q1 = 〈A(S)〉 = J(R). Finally
x2 ∈ TH ≤ NG(D), so both M0 = 〈x, TH〉 and H normalize D ∩ Dx, and hence
D ∩Dx = 1 by Hypothesis C.5.2. That is, (7) holds in this case—except possibly
for the assertions that U = O2(K), D = CR(K), and O2(KR) = DU , which we
will return to at the end of the proof.

So we turn to the case s = 2. Let t ∈ TH −NH(K1). Then |TH : T1| = 2, with
T1 := NTH (U1) as earlier, so |M0 : NM0(U1)| = 4. Let I be the kernel of the action

of M0 on UM0
1 . By the hypothesis for (7), M0 induces a transitive 2-subgroup of

S4, so M0/I is E4, Z4, or D8.
Recall we showed that (*) holds in all cases, so |S : CS(U

x
1 )| = |U1 : CU1(U

x
1 )|,

and therefore Ux1 must centralize U2 = U t1—since Ux1 acts on U2, and by I.2.3.1,
[U1, a] ∩ CU1(K1) = 1 for a ∈ Ux1 −Q1.

First assume thatM0/I ∼= D8. Then T1/I fixes U1 and U2, but acts nontrivially

on UM0
1 , so there is also an element in M0 fixing Ux1 and interchanging U1 and U2,

contradicting [Ux1 , U1] 6= 1 = [Ux1 , U2]. Assume next M0/I ∼= Z4. Then t, x2 ∈
TH − I so tI = x2I and hence in its action on UM0 , x = (U1, U

x
1 , U2, U

x
2 ); so as

[U1, U2] = 1, also [Ux1 , U
x
2 ] = 1. Therefore as [Ux1 , U2] = 1, M0 must permute the

noncommuting pairs {U1, U
x
1 } and {U2, U

x
2 }, whereas x does not.

Therefore M0/I ∼= E4, and and M0/I is regular on UM0
1 as |UM0

1 | = 4. So as
in the previous paragraph,

[U1U
x
1 , U2U

x
2 ] = 1.

Recall the factorizations S = UiU
x
i CS(UiU

x
i ) = UiU

x
i Di obtained after (**), and

observe CS(UiU
x
i ) = EiDi by (1) and (2), for i = 1, 2; these factorizations give

S = U1U
x
1U2U

x
2 CS(U1U

x
1 U2U

x
2 ) = U1U

x
1 U2U

x
2D = UUxD,



C.5. FINDING A COMMON NORMAL SUBGROUP 159

with CS(UU
x) = E1E2D. Thus by symmetry,

E1E2D
x = CS(UU

x) = E1E2D,

and hence

Φ(D) = Φ(CS(UU
x)) = Φ(Dx) = Φ(D)x.

So as Φ(D) E H we conclude Φ(D) = 1 from Hypothesis C.5.2. Similarly we get
D∩Dx = 1 just as in the case s = 1, using x2 ∈ NG(D). Now it is easy to see that
(7) holds, again modulo the same three assertions mentioned earlier, to which we
now turn.

Thus to complete the proof of (7), we must show in each of the cases (i), (ii),
and (iii) that U = O2(K), O2(KR) = DU and CR(K) ≤ D. We recall from C.5.4.4
that CR(U) = O2(KR).

To show U = O2(K), we must show U1 = O2(K1). By C.1.8, K1/U1 is qua-
sisimple or of order 3, and in the latter case U1 = O2(K1). If K is an L2(2

n)-block,
then U1 = O2(K1) by Gaschütz’s Theorem A.1.39 since Q1 is abelian and Ux1
contains a complement to Q1 in S ∈ Syl2(K1Q1). Finally if K1 is an A5-block,
then by C.1.13.c, K1/U1 is A5 or SL2(5), and we may assume the latter. But as
S = Ux1Q1, there is an involution t ∈ Ux1 inducing a nontrivial inner automor-
phism on K1/O2(K1), and as Φ(〈j,D1〉) = 1, jD1 ∩ K1 contains an involution,
contradicting K1/U1

∼= SL2(5).
Next S/Q1 is self-centralizing in Aut(K1), so CR(U

x) ≤ UxO2(KR). If K1 is
an A3-block or an A5-block, then O2(KR) = U ×CR(K) by C.1.13.c. On the other
hand if K1 is an L2(2

n)-block, then from the action of R on the module U and the
description of U1 ∩ Ux1 in (2), we have

CR(U ∩ U
x) = UxCR(U) and |CR(U ∩ U

x) : CR(U)| = |U : U ∩ Ux|.

Then as x normalizes U ∩ Ux and R, also

CR(U ∩ U
x) = UCR(U

x) and |CR(U ∩ U
x) : CR(U

x)| = |Ux : U ∩ Ux|.

Therefore U ≤ CR(U) ≤ UCR(U
x), so CR(U) = UCR(UU

x). Then because
UxO2(KR)/O2(KR) is Sylow in KO2(KR)/O2(KR), we conclude UCR(K) =
CR(U) = O2(KR) by Gaschütz’s Theorem A.1.39.

So in either case, CR(U) = O2(KR) = UCR(K), with CR(U
x) ≤ UxO2(KR).

Therefore it suffices to show CR(K) ≤ S: for if so, CR(K) = CS(K) = D by its
definition, so

O2(KR) = CR(K)U = DU,

as desired.
In fact, it will suffice to show CR(U

x) = CR(K)Ux: For this implies that

Φ(CR(U)) = Φ(UCR(K)) = Φ(CR(K)) = Φ(CR(U
x)) = Φ(CR(U))x,

and hence Φ(CR(K)) = 1 by Hypothesis C.5.2. Then CR(K) is abelian, so it
centralizes CS(K) = D, and hence as U ≤ K and (by assumption) CR(K) ≤
CR(U

x), also CR(K) centralizes UUxD = S using (2). But S = CR(Ω1(Z(J(R)))
by the definition of the Baumann subgroup, so that S contains Ω1(Z(J(R))), and
hence CR(K) ≤ S, as desired.

To prove the sufficient condition CR(U
x) = CR(K)Ux, notice that P :=

O2(KR) = CR(U) normalizes Ux as U E R and x acts on R. So as AutU (U
x) is self-

centralizing in AutR(U
x) in each of our three cases, it follows that P = UCP (U

x).
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Therefore [P, ux] = [U, ux] for each u ∈ U#, and [U, ux] ∩ CU (K) = 1, so

[CR(K), ux] ≤ CR(K) ∩ [P, ux] = CR(K) ∩ [U, ux] = 1,

and hence CR(K) ≤ CR(U
x). But we showed earlier that CR(U

x) ≤ UxP , so as
CU (U

x) = U ∩ Ux and recalling P = CR(U) = CR(K)U ,

CR(U
x) = UxCP (U

x) = UxCUCR(K)(U
x) = UxCR(K)CU (U

x) = UxCR(K),

completing the proof of (7) and hence of C.5.6. ¤

There is a special case of C.5.6 which we will encounter from time to time:

Lemma C.5.7. Assume Hypotheses C.5.1 and C.5.2. Assume further that s = 1
and NM0(K) is a maximal subgroup of M0. Then |M0 : NM0(K)| = 2, Φ(D1) = 1,
S = Q1Q

x
1 for x ∈M0 −NM0(K), and either

(1) K is an L2(2
n)-block or A3-block and A(S) = {Q1, Q

x
1}, or

(2) K is an A5-block and A(R) = {Q1, Q
x
1 , A,A

r} for r ∈ R ∩K − S.

Proof. As NM0(K) normalizes Q1 but Ux1 6≤ Q1, x /∈ NM0(K). Thus by
maximality of NM0(K), M0 = 〈NM0(K), x〉, so no nontrivial subgroup of R is
invariant under K, NM0(K), and x in view of C.5.2. However as s = 1 by hypoth-
esis, Φ(D1) is normalized by K and NM0(K), and also by x in view of C.5.6.4.
Therefore Φ(D1) = 1. Now as we saw during the proof of C.5.6.5, either (1) or
(2) holds, with S = Q1Q

x
1 by C.5.6.2. In either case {Q1, Q

x
1} is the set of R-

invariant members of A(S); then M := NM0(Q1) is of index 2 in M0, as x /∈ M .
As NM0(K) ≤ NM0(Q1) = M < M0, from maximality of NM0(K) we conclude
NM0(K) =M . ¤

We come to the main result of this section. It is stated under the hypothesis
of our Main Theorem, which we ordinarily avoid in Volume I; however it seems
most natural to place it here, since the proof of the theorem continues to use the
notation and point of view developed in this section. The proof will also make use
of the machinery developed in chapter 1 from the proof of the Main Theorem.

Theorem C.5.8. Assume Hypotheses C.5.1, and in addition assume TH =
T ∈ Syl2(G) and G is a simple QTKE-group. Then there is 1 6= R0 ≤ R with
R0 E 〈M0, H〉.

Until the proof of Theorem C.5.8 is complete, assume we are working in a
counterexample to that Theorem. We begin a short series of reductions.

As we are in a counterexample to Theorem C.5.8, Hypothesis C.5.2 is satisfied,
and we can appeal to C.5.3 through C.5.6. In particular K = K1 · · ·Ks as in C.5.3
and we adopt the rest of the notation established just after C.5.3 and in C.5.6,
especially C.5.6.7.

By the hypothesis of C.5.8, we have TH = T Sylow in G, and hence as TH ≤M0

by C.5.1.2, T is also Sylow in M0. In particular we may apply C.5.6.6 to see that

s = 2,

so that T1 := NT (U1) is of index 2 in T . By C.5.6.6 we may also choose x ∈ NM0(T1)
with x2 ∈ T1. Thus as T1 is of index 2 in T ∈ Syl2(G), T and T0 := T1〈x〉 are
Sylow in Y := NG(T1). Notice as |T : T1| = 2, |Y : O2(Y )T1| = 2.

Lemma C.5.9. Hypotheses C.5.1 and C.5.2 are satisfied by the quadruple γ :=
(Y, T1, T1,K1T1) in the role of “(M0, R, TH , H)”.
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Proof. As H satisfies hypothesis C.5.1.1, H ∈ He, in the language of chapter
1, so K1T1 ∈ He as O2(H) ≤ T1 and hence O2(H) ≤ O2(K1T1). In particular
K1T1 is an SQTK-group as G is a QTKE-group. By construction T1 is Sylow in
K1T1. Finally if T1 were in distinct maximal subgroups of K1T1, then adjoining t ∈
T\T1 would give distinct maximal subgroups over T in K1K

t
1T = H , contradicting

C.5.1.1 for H . Thus we have verified C.5.1.1 for our quadruple γ.
Next T1 E Y by construction, and K1 = O2(K1T1) plays the role of “K” in

γ, so our earlier observation that T1 is Sylow in K1T1 completes the verification of
C.5.1.2 for γ.

Finally suppose 1 6= R0 ≤ T1, with R0 E H0 := 〈Y,K1T1〉. Notice that t ∈
T ≤ Y , so that H0 ≥ 〈K1T1, t〉 = H . Further as R0 6= 1, H0 ∈ H, so H0 ∈ He

by 1.1.4.6. Then by B.2.14, 〈Ω1(Z(T ))
H0〉 ≤ Ω1(Z(O2(H0))). From C.5.3 there

is u ∈ U ∩ Ω1(Z(T )) with U = 〈uH〉, so U ≤ O2(H0). But x ∈ Y ≤ H0, so
Ux1 ≤ O2(H0)∩H ≤ O2(H) as H ≤ H0, contrary to the original choice of x. So we
have also verified C.5.2 for γ. ¤

Because of C.5.9, we can apply C.5.6 to γ. Now K1 plays the role of K in γ,
so the number “s” for γ is 1. Applying C.5.5 to (M0, R, TH , H) gave us an x with
[Ux1 , U1] 6= 1, and this same x works for γ. Recall |T : T1| = 2, so that Y/T1 is
dihedral of order 2m, for some odd integer m. It follows that T1O

2(Y ) = T1Y0
where Y0 is a Hall 2′-subgroup of O2(Y ) of order m. Since x has even order by

C.5.6.5, UY01 ⊆ CS(U1) = Q1, so

V := 〈U
T1O

2(Y )
1 〉 = 〈UY01 〉 ≤ Q1.

Then as Q1 = U1D1 by C.5.6.1,

V E X := 〈O2(Y ),K1T1〉.

As x ∈ T0 − T1, t ∈ T − T1, and Y/T1 is dihedral of order 2m, xt ∈ O2(Y )T1 and

V ≥ [Uxt1 , U2] = [Ux1 , U1]
t = Et1 = E2,

using C.5.6.2. So V contains the diagonal involutions of E1E2 central in T , and
hence by 1.1.4.3, V ∈ Se2(G) so that NG(V ) ∈ He. Further X ≤ NG(V ), and
T1 ≤ X with |T : T1| = 2, so by 1.1.4.7 we also have X ∈ He. So we have shown:

Lemma C.5.10. X ≤ NG(V ), V ≤ Q1, and X ∈ He.

Lemma C.5.11. T1 ∈ Syl2(X), so x, t 6∈ X.

Proof. If not, then T1 is proper in a Sylow 2-group Z of NX(T1) = X∩Y , and
Z normalizes O2(Y )T1. Recall however that T1 is Sylow in O2(Y )T1 ≤ X∩Y . Thus
O2(Y )T1 < O2(Y )Z ≤ X ∩ Y ≤ Y . But O2(Y )T1 has index 2 in Y = 〈x〉O2(Y )T1,
so X ∩ Y = Y . Thus x ∈ Y = X ∩ Y ≤ X . But then as V E X , Ux1 ≤ V ≤ Q1

using C.5.10, contradicting the choice of x. ¤

To complete the proof of Theorem C.5.8 we will show:

Lemma C.5.12. NX(T1) ≤ NX(U1).

We first check that this lemma is sufficient to complete the proof of the Theo-
rem: By C.5.11 x ∈ Y −X , so

NX(T1) = X ∩ Y = T1O
2(Y ) = (T1O

2(Y ))t,
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which by C.5.12 would normalize U t1 = U2 and hence also normalize U = U1U2;
then Y = O2(Y )T acts on U . But now as x ∈ Y , Ux1 ≤ U ≤ CT (U1), contradicting
the choice of x.

Thus it remains to establish lemma C.5.12. Let P1 := O2(T1K1). We first
show:

Lemma C.5.13. Let X1 := NX(P1) and L := 〈KX1
1 〉. Then NX1(T1) normalizes

U1, and either

(1) L = K1 (that is, X1 ≤ NX(K1)), or
(2) K1 is a block of type A5 or L2(4), and L is an A7-block or exceptional

A7-block, respectively.

Proof. Before addressing the conclusions of the lemma, we establish a few
preliminaries. First T1 is Sylow in X1 by C.5.11. By C.5.10, X ∈ He, so X1 ∈ He

using 1.1.4 and our QTKE-hypothesis. Also U1 ≤ 〈Ω1(Z(T1))
K1〉 from C.5.3, and

I.2.3.1, so as K1 ≤ X1, U1 ≤ V1 := 〈Ω1(Z(T1))
X1 〉, and V1 ∈ R2(X1) by B.2.14.

Now P1 = CT1(U1) by C.5.4.4 with T1 in the role of “R”, and P1 E X1, so
P1 ≤ CT1 (V1). Therefore as U1 ≤ V1, P1 = CT1(V1) is Sylow in CX1(V1). Let
X∗1 := X1/CX1(V1).

Recall from C.5.6.2 that

CUx1 (U1) = U1 ∩ U
x
1 = E1 ≤ CT1 (U1) = P1 = CT1(V1),

so E1 = CUx1 (V1) = Ux1 ∩ V1, and so m(Ux∗1 ) = n. As x normalizes T1, we also
have Ux1 E T1, so that [Ux1 , V1] ≤ Ux1 ∩ V1 = E1, while E1 = [Ux1 , U1] by C.5.6.2, so
[Ux1 , V1] = E1. Then m([V1, U

x
1 ]) = m(E1); and either m(E1) = n = m(Ux∗1 ), or K1

is an L2(2
n)-block with m(E1) = n+m(CU1(K1)) ≤ 2n. Therefore by B.4.7, either

V1 is a dual FF-module for Ux∗1 , orK1 is an L2(2
n)-block and at least q(X∗1 ,W ) ≤ 2,

where W is the dual of V1. In particular if K1 is an A3-block, then U
x∗
1 induces a

transvection on V1. Further T ∗1 acts faithfully on K∗1 , as P1 = O2(K1T1). We will
make use of these facts a little later.

Now, with the preliminaries in place, we begin to establish that one of the two
conclusions of the lemma holds. Notice first that if L = K1 as in case (1), then X1

acts on [O2(K1),K1] = U1, so the lemma holds. Thus we may assume that K1 < L.
Similarly if (2) holds, then in either of the cases listed there, the Sylow 2-subgroups
of L are self-normalizing, so we have

NX1(T1) ≤ CX1(L)T1 ≤ NX1(K1) ≤ NG(U1),

again completing the proof. So it remains to show that (2) holds under our as-
sumption that K1 < L.

Suppose first that K1 is an A3-block. Then the Sylow group T ∗1 = T1/P1 of
X∗1 is of order 2, so by Thompson Transfer, L∗ = O(L∗) has odd order. As we just
observed, T ∗1 = Ux∗1 induces a transvection on V1, so we conclude from Theorem
B.5.6 that L∗ = K∗1 is of order 3; thus X1 normalizes O2(L) = K1, contradicting
K1 < L.

Therefore K1 is a block of type L2(2
n) or A5, so K1 ∈ L(X1, T1). Set n := 2

when K1 is an A5-block. By 1.2.4, L ∈ C(X1) and the embedding of K1 in L is
described in A.3.12. Recall that O2(K1) ≤ P1 ≤ CG(V1), so that T ∗1 acts faithfully
on a subgroup K∗1

∼= L2(2
n) of L∗. We conclude from A.3.12 that n = 2 and

L∗ ∼= A7, Â7, J1, L2(25), or L2(p) for p an odd prime with p ≡ ±1 mod 5. Let



C.5. FINDING A COMMON NORMAL SUBGROUP 163

I := [V1, L]. As U1 = [P1,K1] ∈ Irr+(K1, V1), U1 = [V1,K1] ≤ I , so I = [P1, L].
Thus I = [O2(L), L]. Then as we showed earlier that q(L∗,WI ) ≤ 2, where WI is
the dual of I , it follows from B.4.2 and B.4.5 that L∗ ∼= A7, and I is of dimension
4 or 6. Further L is a block with I = U(L), so this completes the proof of (2), and
hence of C.5.13. ¤

Finally we turn to the proof of C.5.12. First X ∈ He by C.5.10. As V =

〈U
O2(Y )
1 〉 with O2(Y ) ≤ X , and X normalizes V by C.5.10, V = 〈UX1 〉. Arguing as

in the proof of C.5.13, V ∈ R2(X). Set X∗ := X/CX(V ). As U1 ≤ V , CT1(V ) ≤
CT1(U1) = P1, so that CT1(V ) = CP1(V ).

Suppose first that P1 ≤ CX (V ), so that now P1 = CT1(V ) ∈ Syl2(CX (V )). Let
N := NX(T1). Then P1 ≤ T1 ≤ N , so also P1 ∈ Syl2(CN (V )). Thus by a Frattini
Argument, N = CN (V )NN (P1). Certainly CN (V ) ≤ CN (U1), while by C.5.13,
NN(P1) = NX1(T1) normalizes U1, so C.5.12 holds by the Frattini factorization
above.

Thus we may assume that P1 6≤ CX (V ), so that P ∗1 6= 1. Recalling CP1(V ) =
CT1(V ), a Frattini Argument gives

NX∗(P
∗
1 ) = NX(P1)

∗ = X∗1 ,

with L∗ E X∗1 from the definition of L in C.5.13. This puts us in a position to
apply (4.4) or (5.1) of [Asc81a]; but we supply our own argument here to keep the
treatment self contained.

If L∗ E X∗, then P ∗1 = CT∗(L
∗) E NX∗(T

∗
1 ) = NX1(T1)

∗, so C.5.12 follows
from C.5.13. Thus we may assume that L∗ is not normal in X∗, and similarly that
NX∗(T

∗
1 ) does not act on P

∗
1 .

Assume that L is not an A3-block. Then L ∈ L(X,T1) is T1-invariant and
T1 ∈ Syl2(X) by C.5.11, so by 1.2.4, L ≤ LX ∈ C(X) with LX E X , and the
embedding of L in LX is described in A.3.12. As L∗ is not normal in X∗, L∗ < L∗X .
As L is irreducible on U(L) = 〈UL1 〉 ≤ V , LX has a unique noncentral 2-chief

factor U(LX) and U(LX) ≤ V . Then as LX E X , V = 〈U
O2(Y )
1 〉 = U(LX). If

LX/O2(LX) is not quasisimple, then as L/O2(L) is L2(2
n) for some n, case (21) of

A.3.12 holds with L/O2,F (LX) ∼= SL2(5). So for suitable g ∈ O2,F (LX), D/O2(D)
is not quasisimple, where D := 〈L,Lg〉. This is impossible as U ′ := U(L) + U(Lg)
is of rank at most 8 and CD(U

′) ≤ O2(D), whereas L8(2) has no such subgroup.
Thus LX is a block. Next L∗ is a component of CLX (P

∗
1 ) so by inspection of the

embeddings listed in A.3.12, (L∗, L∗X) is (L2(5), L2(25)), (SL2(5), L
ε
3(5)), (A5, A7),

or (A5, J1). Except in the last case, we conclude from the structure of Aut(L∗X)
that NX∗(T

∗
1 ) acts on P ∗1 , contrary to an earlier remark. In the last case, L∗X is

generated by two conjugates of L∗, whereas J1 is not a subgroup of L8(2), contrary
to an earlier argument.

Therefore we may assume that L is an A3-block. An argument in the proof
of C.5.13 shows that Ux∗1 is generated by a transvection on V inverting L∗. It
follows from G.6.4 that L∗Ux∗1 ≤ L∗H ≤ X∗ with L∗H

∼= Ln(2) or Sn. As T ∗1 acts
on L∗ ∼= Z3, it follows that either L∗H

∼= S3, or S7 is normal in X∗. But now
NX(T

∗
1 ) ≤ NX(U1), completing the proof of lemma C.5.12, and hence also the

proof of Theorem C.5.8.
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C.6. Some further pushing up theorems

In this section we provide some more detailed results on pushing up, to be used
for example in section 4.1 of the proof of our Main Theorem.

We begin the section with a proof of the following result, which may be regarded
as a specific subcase of the situation analyzed in C.5.6:

Theorem C.6.1. Assume H and Λ are subgroups of a group G such that:

(i) F ∗(H) = O2(H) and O2(H/O2(H)) ∼= L2(2
n) or H/O2(H) ∼= S3 or

S3 wr Z2.
(ii) Λ is a 2-group and TH := Λ ∩H ∈ Syl2(H).
(iii) TH < Λ.
(iv) If 1 6= T0 ≤ TH with T0 E H, then NΛ(T0) = TH .

Let Q := O2(H), L := O2(H), and Σ := NΛ(TH). Then

(1) |Σ : TH | = 2 and J(TH) = Baum(TH) = QQx for each x ∈ Σ− TH .
(2) L is an L2(2

n)-block or A5-block or a product of s ≤ 2 A3-blocks.
(3) Assume that L is an L2(2

n)-block or an A3-block. Then A(TH) = {Q,Qx}
and m(CTH (L)) ≤ n, with n := 1 if L is an A3-block.

(4) Assume that L is an A5-block or a product of two A3-blocks. Then A(TH) =
{Q,Qx, A1, A

r
1}, where |A1 : (A1 ∩Q)| = 2 and r ∈ TH − J(TH).

(5) Q = CTH (L)O2(L).
(6) One of the following holds:

(a) |Λ : TH | = 2 and J(TH) = J(Λ). If L is an A3-block, then H ∼= S4×Z2.
(b) L is an A3-block, H ∼= S4, and Λ is dihedral or semidihedral.
(c) L is an A5-block or the product of two A3-blocks, with

J(TH) = J(Σ), NΛ(Σ)/J(TH) ∼= D8, and |NΛ(A1Q)| ≥ |TH |.

Proof. Set R := TH , S := Baum(R), and D := CS(L). By (iii) there is
M0 ≤ Λ with |M0 : R| = 2; in particular, REM0. Observe that Hypothesis C.5.1 is
satisfied by the quadruple (M0, H,R, TH) with L, H playing the roles of “K, KR”.
Indeed by (iv), Hypothesis C.5.2 is also satisfied. Thus we can appeal to C.5.3 to
see that L is a product of blocks—and hence (2) holds by our restrictions in (i). Let
U := U(L) and D := CS(L). By C.5.5 there is x ∈M0 −R with Ux 6≤ Q. Further
by C.5.6.7, Φ(D) = 1 = D ∩ Dx, Q = DU , S = QUx = J(R), and D = CR(L).
Thus Q is elementary and S = QQx. Again by C.5.6.7:

(α) if L is an L2(2
n)-block or an A3-block, then A(R) = {Q,Q

x}, while
(β) if L is either an A5-block or the product of two A3-blocks, then A(R) =

{Q,Qx, A1, A
r
1} where |A1 : A1 ∩Q| = 2 and r ∈ (R ∩ L)− S.

In particular (1)–(5) hold—modulo showing that |Σ : R| = 2 to finish (1), and that
m(D) ≤ n in case (α) to finish (3). However in (α), using I.2.3.1 Z(S) = D × Z,
where Z := [U,Ux] is of rank n. Thus as D ∩Dx = 1, while DDx ≤ Z(S) since x
normalizes R, we do get m(D) ≤ m(Z) = n, finishing (3).

We first consider the case where L is an A3-block, and further Q = U . Then
H ∼= S4. Also by (iv), U = CΛ(U); thus as U ∼= E4, Λ is dihedral or semidihedral,
by a lemma of Suzuki (cf. Exercise 8.6 in [Asc86a]). Therefore (6b) holds. But
also since Λ is dihedral or semidihedral, R = S ∼= D8 and |Σ : R| = 2 completing
the proof of (1); so we are done in this case.
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So if L is an A3-block, we may assume that U < Q. Hence as m(D) ≤ n = 1
by (3), we have:

H = D × LUx ∼= Z2 × S4,

establishing at least the final statement of (6a).
Suppose we can show that:

(A) M0 = Λ, and
(B) S = J(Λ).

Then (A) forces M0 = Σ, completing the proof of (1) and the first assertion of
(6a), while (B) establishes the second assertion of (6a), and we established the
third assertion of (6a) above. So if we prove (A) and (B), we will have established
(1)–(5) and shown (6a) holds. If either (A) or (B) fails, we’ll see later that (1)–(5)
and (6c) hold.

Next assume that S 6= J(M0). Then there is A ∈ A(M0) − A(R). Let B :=
A ∩ S. As R/S is cyclic in (α) and (β), while m(M0/R) = 1, m(A/B) ≤ 2, and
m(A/B) = 1 if H ∼= Z2 × S4. Define m := n in case (α) and m := 2 in case
(β). In particular either H ∼= Z2 × S4 and m = 1, or m ≥ 2. Thus in any case,
m(A/B) ≤ m. Now R = NM0(Q) by (iv), while M0 = R〈x〉 and Ux 6≤ Q, so
Ua 6≤ Q for a ∈ A− R, and hence we may take our element x to lie in A. Then as
x interchanges the factors Q, Qx of S, B ≤ CS(x) ≤ Q ∩ Qx. Now as S = QQx,
m(Q/(Q ∩ Qx)) = m(S/Q) ≥ m ≥ m(A/B). Thus as m(A) ≥ m(Q) from the
definition of A(M0), we conclude B = Q ∩ Qx, m = m(A/B) ≤ 2, and either
A = 〈x, t, B〉 for some t ∈ R − S, or H ∼= Z2 × S4 with A = 〈x,B〉. The latter is
impossible, as x centralizes B and 1 6= D ≤ B, whereas D ∩Dx = 1. The former
is impossible as S = CR(Q ∩ Q

x) (as we observed during the proof of C.5.6) so
[t, Q ∩Qx] 6= 1, contradicting A abelian.

This contradiction shows that J(M0) ≤ R and hence S = J(R) = J(M0).
Hence ∆ := NΛ(M0) normalizes S and permutes A(R).

Assume that case (α) holds. Then M0 is transitive on A(R) = {Q,Qx}, so by
a Frattini Argument

∆ =M0N∆(Q) =M0

since by (iv), N∆(Q) = R ≤ M0. Therefore in fact Λ = M0, establishing (A),
and also (B), since we showed S = J(M0) in the previous paragraph. Therefore
the treatment of case (α) is complete, since we showed earlier that it suffices to
establish (A) and (B) to show that (1)–(5) and (6a) hold.

Therefore we may assume that case (β) holds. Here by (4), A(R) is of order
4, S is the kernel of the action of M0 on A(R), and M0/S ∼= E4 has two orbits
of length 2 on A(R). If ∆ preserves those orbits, then by a Frattini Argument
as in the previous paragraph we obtain Λ = M0—again giving (A) and (B), and
completing the proof in this case.

Hence we may assume that ∆ induces D8 on A(R), with S = J(R) the kernel
of that action. But notice that Σ and ∆ lie in Γ := NΛ(S), and Γ also permutes
the 4-set A(R) = A(S)—again with kernel S. As the 2-subgroup Γ/S of S4 has
order at most 8, we have M0 < ∆ = Γ ≥ Σ. Further M0 = NΓ(R) as R induces
a transposition on A(R), so Σ = M0. This gives |Σ : R| = 2 to complete the
proof of (1), and also established the first two assertions of (6c), as we showed
J(R) = J(M0) earlier, and now ∆ = NΛ(Σ). Thus it remains to verify the last
assertion of (6c).



166 C. PUSHING-UP IN SQTK-GROUPS

As ∆ permutes the pairs {Q,Qx}, {A1, A
r
1}, there is y ∈ ∆ with cycles (Q,A1)

and (Qx, Ar1) on A(R). Now y acts on A1Q since y has cycle (Q,A1). Also S acts
on Q and A1, and y acts on S, so

|NΛ(A1Q)| ≥ |S〈y〉| = 2|S| = |TH |,

so that (6c) holds, completing the proof of Theorem C.6.1. ¤

In the remainder of the section, we establish a few more odds and ends involving
pushing up. Roughly speaking, the first result deals with the case where we wish
to push up a subgroup H with a block L, and the second specializes to the case
where L is an A7-block. We will assume:

Hypothesis C.6.2. L,R, TH ,Λ are finite subgroups of a group G such that

(1) R acts on L = O2(L) with O2(LR) ≤ R and U := [O2(L), L] 6= 1 is
elementary abelian.

(2) TH is a 2-group with R E TH , TH normalizes Λ, and L is subnormal in
〈L, TH〉 =: H.

(3) If 1 6= R0 ≤ R with R0 E H, then NΛ(R) 6≤ NΛ(R0).

In addition set X := NΛ(R), Q := O2(LR), D := CR(L), and RL := RL/D.

Notice that R is not normal in H , or else we would obtain a contradiction from
C.6.2.3 with R = R0; so in particular Q < R.

Lemma C.6.3. Assume Hypothesis C.6.2. Then

(1) There exists x ∈ XTH with Ux 6≤ Q.
(2) If CR(U) ≤ Q then m(Ux/CUx(U)) ≥ m(R,U), where

m(R,U) := min{m(U/A) : A ≤ U and CR(A) > CR(U)}.

(3) Assume

(a) Q = CR(U) and Φ(Q̄) = 1, and
(b) R/Q ∼= E2n , where n := m(R,U).

Then for x ∈ XTH with Ux 6≤ Q,

(i) R = UUxCR(UU
x) = UxQ and Q = UCQ(U

x).
(ii) If CQ̄(R̄) ≤ Ū , then Ū = Q̄.
(iii) If in addition |X : TH ∩ Λ| = 2 and TH normalizes L, then A(R) =

{Q,Qx}, R = QQx, and D ∩Dx = 1 = Φ(D).

Proof. By C.6.2.2, TH normalizes R and Λ, and hence also X ; then XTH ≤
NG(R). Let U0 := 〈UXTH 〉; as U ≤ O2(L) ≤ R E XTH , U0 ≤ R. Next [Q,L] ≤
O2(L), and hence [Q,L] = [Q,L,L] ≤ U . Thus if U0 ≤ Q, then [L,U0] ≤ U ≤ U0,
so U0 E 〈L, TH〉 = H by C.6.2.2; since NΛ(R) = X normalizes U0, this contradicts
C.6.2.3. Thus U0 6≤ Q, and hence (1) holds.

Assume the hypotheses of (2) and set L̃R := LR/CR(U). We make some
arguments resembling those in the proof of C.5.6. Recall from the previous para-
graph that Ux ≤ R, so that CUx(U) = Ux ∩ CR(U), and hence Ũx ∼= Ux/CUx(U).

Recall also that x ∈ NG(R), so m(R,U) = m(R,Ux). Thus if m(Ũx) < n :=
m(R,U), then CR(CUx (U)) = CR(U

x), so U ≤ CR(CUx(U)) = CR(U
x). Thus

Ux ≤ CR(U) ≤ Q, using the hypothesis of (2), contradicting our choice of x in (1).
This shows m(Ux/CUx(U)) ≥ n, proving (2).
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Now assume the hypotheses (a) and (b) of (3). By (a), CUx(U) = Ux ∩ Q, so
(2) and (b) give

m(Ux/(Ux ∩Q)) ≥ m(R,U) = n.

Then using (a) and (b), |R : CR(U)| = |R : Q| = 2n and R = UxQ. Now as
x ∈ NG(R) we have

|R : CR(U
x)| = |R : CR(U)| = 2n, (∗)

while by (2) m(U/CU (U
x)) ≥ n, so m(U/CU (U

x)) = n and so R = UCR(U
x).

Then as Q = CR(U),

Q = CUCR(Ux)(U) = UCCR(Ux)(U) = UCR(UU
x) = UCQ(U

x), (∗∗)

using the Dedekind Modular Law. But we showed R = UxQ earlier, and Q̄ is
abelian by (a), so CQ̄(Ū

x) = CQ̄(R̄). If CQ̄(R̄) ≤ Ū , then Q̄ = ŪCQ̄(Ū
x) = Ū by

(**), establishing (ii). Further R = UxQ = UUxCR(UU
x) by (**), establishing (i).

Finally assume the hypotheses of (iii). Recall TH acts on R and X , and X =
NΛ(R), so TH ∩ Λ = TH ∩ X , and XTH is a subgroup of G. But by hypothesis,
|X : (TH ∩ Λ)| = 2, so |XTH : TH | = 2. Thus x normalizes TH , and x

2 ∈ TH . By
hypothesis, TH normalizes L and R, so it also must normalize U and D. Hence x2

normalizes U and D, so x normalizes UUx and CR(UU
x). Similarly x normalizes

D ∩ Dx. Further as U and D are normal in TH , so are Ux and Dx, so UUx and
D∩Dx are normal in TH as well. In particular D ∩Dx is normalized by LTH = H
and (TH ∩X)〈x〉 = X = NΛ(R), so D ∩Dx = 1 by C.6.2.3.

By (a), CR(UUx) ≤ Q̄ and Φ(Q̄) = 1, so Φ(CR(UU
x)) ≤ Φ(Q) ≤ D and

hence Φ(CR(UU
x)) E LTH = H . Therefore Φ(CR(UU

x)) = 1 by C.6.2.3. Next
R = UUxCR(UU

x) by (i), so using (a),

Q = CR(U) = CUUxCR(UUx)(U) = UCR(UU
x)CUx(U) = UCR(UU

x)

is elementary abelian. In particular D = CR(L) ≤ CR(U) = Q, so Φ(D) = 1, and
R = UxQ = QQx. Further it follows from the definition of n = m(R,U), and R/Q
of rank n in (b), that no proper subgroup of R/Q can be an FF∗-offender on Q,
so that A(R) = {Q,Qx}, completing the proof of (iii), and hence also the proof of
C.6.3. ¤

In the next lemma, we will apply C.6.3 in the special case (used in section 4.1)
of an A7-block. We use the notational conventions of section B.3 in discussing the
action of H/Q ∼= S7 on the natural module U for H/Q.

Lemma C.6.4. Assume Hypothesis C.6.2, and in addition assume

(I) L = O2(H) is an A7-block, Q := O2(H) ≤ R, and R/Q is generated by the
transposition (1, 2) in H/Q.

(II) NΛ(R0) = R for each 1 6= R0 ≤ R with R0 E H.
(III) Λ is a 2-group and LV := O2(NL(R)) ≤ NG(Λ).

Then

(1) [U,R] = 〈e1,2〉.
(2) Q = D × U , and [Q,R] = 〈e1,2〉.
(3) |X : R| = 2 and Ux 6≤ Q for x ∈ X −R.
(4) R = QUx and A(R) = {Q,Qx}.
(5) D ∩Dx = 1.
(6) D ≤ Z(R).
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(7) R ≤ J(Λ) = Q0 ×D0, where Q0 is of index 2 in Z(R) and D0 is dihedral
of order at least 8.

(8) |Λ : J(Λ)| ≤ 2.
(9) LV = O2(LV Λ) E LV Λ, and Λ centralizes V := O2(LV ).
(10) e1,2 ∈ Z(THΛ).

Proof. Let H∗ := H/Q. By hypothesis, R∗ = 〈(1, 2)〉, so (1) follows. As L is
an A7-block, QL = DL by C.1.13 and the fact that H1(L/U,U) = 0 by B.3.3.1. In
particular Q = D × U , giving the first part of (2).

Next we note that R < Λ: for R ≤ Λ by (II)—and if R = Λ, then R = NΛ(R)
normalizes 1 6= U ≤ R with U EH , contrary to C.6.2.3. By (III), Λ is a 2-group,
so R < NΛ(R) = X ; thus there is x ∈ NXTH (TH) − TH with x2 ∈ TH . Set
X1 := 〈x,R〉. Notice that Hypothesis C.6.2 is satisfied, with R, R, X1 in the roles
of “R, TH , Λ: First, C.6.2.1 is immediate from (I). Second, by construction X1

contains R, while H = LR as R contains Q and R∗ 6≤ L∗, giving C.6.2.2. Finally
if x1 ∈ X1 − R acts on 1 6= R0 ≤ R with R0 E H , then x1 = tλ with t ∈ TH and
λ ∈ Λ. Now t ∈ H ≤ NG(R0), so λ ∈ NΛ(R0) = R by (II). But then x1 ∈ TH , so
X1 = 〈x1, R〉 ≤ TH , contradicting x ∈ X1 − TH . So C.6.2.3 holds.

Now X1 plays the roles of “X” and “XTH”, so we apply C.6.3.1 to see that
Ux 6≤ Q for some x ∈ X1 −R—and hence for any such x, as |X1 : R| = 2. Next as
Q = D×U , hypothesis (a) of C.6.3.3 is satisfied, while hypothesis (b) follows (with
n = 1) from the fact that R∗ is generated by a transposition. Therefore R = QUx

and Q = UCQ(U
x) by C.6.3.3.i, and then C.6.3.3.iii applied to X1 in the role of “X”

completes the proof of (4) and establishes (5). In particularQ andD are elementary
abelian. Also as X permutes A(R), it follows from (4) that |X : NX(Q)| = 2—
while by (II), NX(Q) = R, so |XTH : TH | = 2 = |XR : R| = 2, giving X = X1,
and completing the proof of (3). Since R = QUx and Q = UCQ(U

x) is abelian,
we get [Q,R] = [Q,Ux] = [U,Ux] = 〈e1,2〉, completing the proof of (2). Similarly
R = UCR(U

x), so [R,Ux] = [U,Ux] = 〈e1,2〉, and hence [D,Ux] ≤ 〈e1,2〉 ∩D = 1.
Then as Q is abelian, D centralizes UxQ = R, so (6) holds.

Now observe that LV is an A5-block. Let u ∈ U−CU (Ux). Then [u, ux] = 〈e1,2〉
by (1), so R = Q0 × 〈u, ux〉, where Q0 is of index 2 in Z(R) and 〈u, ux〉 ∼= D8 with
〈e1,2〉 = Z(〈u, ux〉). We maximize with respect to these properties: Let R consist of
those overgroups R1 of R in Λ with R1 = Q0×D1, D1 dihedral, and R1 ≤ NΛ(LV ).
Pick R1 maximal in R. If R1 = Λ, then visibly (7) and (8) hold with Λ = J(Λ)—
since the 4-groups of a dihedral group D1 generate D1. Further Λ = R1 acts on
LV and hence must centralize O2(LV ) = V , giving (9). Finally e1,2 is central in R1

and TH , so (10) holds.
So we may assume that R1 < Λ. Then R1 < R0 := NΛ(R1). Now R0 acts on

R1/Z(R1)Φ(R1) ∼= E4.

Let R2 be the centralizer in R0 of this section. Then for r ∈ R2 we have Qr ≤
QZ(R1)Φ(R1), so that Qr is conjugate to Q under the dihedral subgroup D1 of
R1. Thus QR2 = QR1 , so by a Frattini Argument, R2 = R1NR2(Q) = R1, using
NΛ(Q) = R from (II) again. Thus R2 = R1 < R0; so as |R0 : R2| ≤ 2 since the
section is of rank 2, we conclude that |R0 : R1| = 2.

By (III), LV normalizes the 2-group Λ, and by construction R1 normalizes LV ,
so

[LV , R1] ≤ Λ ∩ LV = V ≤ R1.
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Thus LV normalizes R1 and hence also normalizes NΛ(R1) = R0. Then as |R0 :
R1| = 2 and LV = O2(LV ), [LV , R0] ≤ R1. We now get the assertions of (9)
and (10) for R0 in the role of “Λ”: namely R0 normalizes LVR1 and hence also
normalizes O2(LV R1) = LV . Therefore [LV , R0] = V , so as EndF2LV (V ) = F2, R0

centralizes V . Also R0 normalizes Ω1(Φ(R1)) = 〈e1,2〉.
Suppose now that R1 = J(R0). Then NΛ(R0) ≤ NΛ(R1) = R0, so R0 = Λ.

Then (7) and (8) hold (this time with |Λ : J(Λ)| = 2) as do (9) and (10), since we
verified them earlier for R0 in the role of “Λ”, and now R0 = Λ.

Finally assume that R1 6= J(R0), so there is an involution y ∈ R0 −R1 with

m2(CR1(y)) ≥ m2(R1)− 1.

As D1 is dihedral while y does not centralize the section R1/Z(R1)Φ(R1), R1 =
〈u, uy〉Z(R1) and

m2(CR1(y)) = m2(CZ(R1)(y)) ≤ m(Z(R1)) = m2(R1)− 1. (∗)

Our earlier inequality now forces equality in (*), so we conclude y centralizes Z(R1),
and R0 = Q0 × D0, where D0 := 〈u, y〉 is dihedral with center 〈e1,2〉. In the
previous paragraph we showed that R0 normalizes LV ; thus R0 ∈ R, contradicting
the maximal choice of R1.

Thus the proof of C.6.4 is complete. ¤





CHAPTER D

The qrc-lemma and modules with q̂ ≤ 2

The previous chapter used results on FF-modules from chapter B to pin down
the obstructions to pushing up, and to establish other related applications. The
present chapter analyzes certain situations where weaker information than Failure
of Factorization is available. In particular we study F2G-modules V where the
parameters q(G, V ) and q̂(G, V ) in Definitions B.1.1 and B.4.1 are at most 2—as
opposed to FF-modules V , which satisfy q(G, V ) ≤ 1.

The study of such modules is motivated by Stellmacher’s qrc-lemma. We de-
velop a version D.1.5 of the qrc-lemma for QTKE-groups G in the first section of
this chapter. Among its conclusions is the case where the parameter q(AutH(V ), V )
is at most 2 for suitable internal modules V in 2-locals H of G.

Just as our description of general FF-modules in section B.5 was based on the
irreducible case in Theorem B.4.2, in this chapter we provide a fairly complete de-
scription of the possibilities for faithful 2-reduced F2X-modules V with q̂(X,V ) ≤ 2
under the SQTK-hypothesis, based on Theorem B.4.5, which gives the possibilities
in the subcase where F ∗(X) is quasisimple and irreducible on V .

Since the machinery for analyzing modules with q̂(X,V ) ≤ 2 is not available in
the literature, we begin in section D.2 with a general discussion of the inheritance
properties to subspaces of the parameters q and q̂, and “offending” subgroups,
somewhat in the spirit of B.1.5. Then in section D.3 we extend B.4.5 to a description
of more general SQTK-groups G and modules V with q̂(G, V ) ≤ 2. This discussion
is the basis for our description of the Fundamental Setup FSU (3.2.1) in the proof
of the Main Theorem on QTKE-groups.

D.1. Stellmacher’s qrc-Lemma

One statement of Stellmacher’s qrc-lemma appears in (3.4) of [Ste92]; roughly
speaking, that result establishes numerical restrictions on certain parameters (most
notably the parameter q as mentioned above) on internal modules for a pair G1, G2

of subgroups of a group G which share a common Sylow 2-subgroup, such that
O2(〈G1, G2〉) = 1, and G2 is a minimal parabolic in the sense of Definition B.6.1.
We use the qrc-Lemma in implementing the Thompson strategy described in the
outline of the proof of our Main Theorem given in the Introduction to Volume II.

The version of the lemma stated in this section was first shown to us by Ulrich
Meierfrankenfeld in February 1997. Among other things, it provides a simplification
of our original reduction to the list in section 3.2, of groups L and modules V
appearing in the Fundamental Setup FSU in the proof of the Main Theorem.

Throughout this section we assume:

Hypothesis D.1.1. G1 and G2 are finite subgroups of a group G,

T ∈ Syl2(G1) ∩ Syl2(G2), R := O2(G1),
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and V ∈ R2(G1), such that

(1) T is contained in a unique maximal subgroup M2 of G2.
(2) R = CT (V ).
(3) No nontrivial subgroup of R is normal in 〈G1, G2〉.

Notice that we do not assume that F ∗(Gi) = O2(Gi), although in the proof of
the Main Theorem, this condition will hold when T is Sylow in our QTKE-group
G. We do however assume that V ∈ R2(G1), and so in particular V ≤ Z(R).
Similarly, we do not require that G be quasithin, although at certain points we do
appeal to lemmas proved in this work only under such restrictions, but which in
fact hold more generally.

In the most important application of the qrc-Lemma in the proof of the Main
Theorem, G1 will be a uniqueness subgroup L0T (cf. 1.4.1) contained in a maximal
2-local M , which acts faithfully on a 2-reduced module V . By Theorem 2.1.1,
M(T ) 6= {M}, so we can choose G2 in the set H∗(T,M) of the Introduction to
Volume II (see also Definition 3.0.1). These choices guarantee that condition (3)
of Hypothesis D.1.1 is satisfied, while condition (2) is a consequence of 1.4.1.4. As
G2 ∈ H∗(T,M), G2 ∩M is the unique maximal overgroup of T in G2, so condition
(1) holds (cf. 3.1.3.1).

In the remainder of the section, we adopt the following notation:

U := 〈V G2〉, R2 := O2(G2), and q := q(G1/CG1(V ), V ).

When V 6≤ R2 we show in E.2.13 that q̂(G1/CG1(V ), V ) < 2. Therefore in
this section, we will concentrate on the case where V ≤ R2, so that also U ≤ R2.
Similarly in earlier chapters we discussed techniques for handling the case when V
is an FF-module for G1/CG1(V ), so in this section we focus on the case q > 1. In
lemmas D.1.2 through D.1.4, we establish various consequences of the assumptions
q > 1 and V ≤ R2. Then we collect our conclusions in the qrc-Lemma D.1.5.

We begin with some elementary consequences of the assumption that V is not
an FF -module for G1:

Lemma D.1.2. Assume q > 1. Then

(1) If V ≤ R2 then U is elementary abelian.
(2) J(T ) = J(R) = J(RR2).
(3) T is not normal in G2, and J(R) 6≤ R2.
(4) G2 is a minimal parabolic in the sense of Definition B.6.1, and so is de-

scribed in B.6.8.
(5) If W is an F2G2-module with W ≤ O2(G2) ≤ CG2(W ) ≤ M2, then W ∈

R2(G2) and q(G2/CG2(W ),W ) ≥ 1.

Proof. Assume that V ≤ R2. Then as R2 ≤ T ≤ G1, while V E G1 since
V ∈ R2(G1) by Hypothesis D.1.1, also V E R2. Then for g ∈ G2,

[V, V g ] ≤ V ∩ V g ≤ CG(V ) ∩ CG(V
g),

so that V and V g act quadratically on each other. Interchanging the roles of V and
V g if necessary, we may assume that m(V g/CV g (V )) ≥ m(V/CV (V

g)). Now if U
is nonabelian then there is g ∈ G2 with [V, V g ] 6= 1, so V g is quadratic on V and
rAutV g (V ),V ≤ 1, contradicting our hypothesis that q > 1. This establishes (1).

Observe next since q > 1 that J(T ) ≤ CT (V ) by B.2.7, while CT (V ) = R =
O2(G1) by part (2) of Hypothesis D.1.1. Then by B.2.3.3, J(T ) = J(R) = J(RR2),
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establishing (2). Similarly J(R) 6≤ R2, since otherwise J(R) = J(T ) = J(R2) E
〈G1, G2〉 by B.2.3.3, contrary to part (3) of Hypothesis D.1.1. In particular T is
not normal in G2, completing the proof of (3).

As T is not normal in G2, part (1) of Hypothesis D.1.1 establishes (4). Then (4)
and B.6.8.6c say that each module W satisfying the hypotheses of (5) is in R2(G2).
It also follows from (4) that q(G2/CG2(W ),W ) ≥ 1; we supplied a proof of this
fact in B.6.9.1 when G2 is a SQTK-group, which suffices for our applications. ¤

Under the assumption q > 1, our analysis of the case V ≤ R2 depends upon
the number c of nontrivial G2-composition factors on U . We see next that q ≤ 2
when c ≥ 2:

Proposition D.1.3. Assume q > 1, V ≤ R2, and G2 has c > 1 noncentral
2-chief factors U1, . . . , Uc on U . Then Φ(U) = 1, R2 = O2′(CG2(U)), and:

(1) q ≤ 2.
(2) The set A∗ of A ∈ A(R) = A(T ) with nontrivial quadratic action on U is

nonempty, and includes those A with AR2/R2 minimal subject to being nontrivial.
(3) If q = 2, then c = 2 and for each A ∈ A∗, setting B := A ∩ R2 we have:

2m(A/B) = m(U/CU (A)) = 2m(B/CB(U));

2m(B/CB(V
h)) = m(V h/CV h(B)) for each h ∈ G2 with [V h, B] 6= 1;

m(A/B) = m(Ui/CUi(A)); and CU (A) = CU (B).

Proof. By hypothesis q > 1, so we conclude from D.1.2.2 thatA(T ) = A(R) =
A(RR2), and from D.1.2.3 that there is A ∈ A(R) with A 6≤ R2. Using the
hypothesis V ≤ R2, U is elementary by D.1.2.1.

Notice if O2(G2) ≤ CG2(U), then V is normalized by G1 and O2(G2)T = G2,
contradicting D.1.1.3; thus O2(G2) 6≤ CG2(U). By D.1.2.4, we may apply B.6.8.6a

to conclude that CG2(U) ≤ kerM2(G2); then by B.6.8.6b, CR2(U) = O2′(CG2(U)),
so that CA(U) ≤ A ∩ R2 < A. By the Thompson Replacement Lemma B.1.4.3, if
AR2/R2 is minimal subject to being nontrivial, then A acts quadratically on U ,
establishing (2).

Let A ∈ A∗ and set B := A ∩ R2. As noted above, CA(U) ≤ R2, so CA(U) =
CB(U).

Suppose that B ≤ CG2(U), so that CA(U) = B. As Ui is a non-trivial ir-
reducible for G2, R2 ≤ CG2(Ui) and O2(G2) 6≤ CG2(Ui), so CG2(Ui) ≤ M2 by
B.6.8.6a. Thus using D.1.2.5, qi := q(G2/CG2(Ui), Ui) ≥ 1. But from B.6.8.6b,
CA(Ui) ≤ A ∩R2 = B = CA(U), so CA(Ui) = B, and hence A/B is faithful on Ui.
Then as A acts quadratically on Ui and qi ≥ 1, we conclude that m(Ui/CUi(A)) ≥
m(A/B). Then the hypothesis c ≥ 2 gives m(U/CU (A)) ≥ 2m(A/B) > m(A/B).
But as A ∈ A(T ) and B = CA(U), m(A/B) ≥ m(U/CU (A)) by B.2.4.1. This
contradiction shows that

CA(U) < B and hence [U,B] 6= 1.

We now make some calculations based on the action of B on the generating
set V G2 := {V1, . . . , Vn} of U . Set Zi := V1 · · ·Vi and Bi := CB(Zi). As we saw
during the proof of D.1.2.1, Vi is normal in R2 and hence is B-invariant, so Zi is
B-invariant. Observe

Zi = Zi−1Vi and so Bi = CBi−1(Zi) = CBi−1(Vi). (a)
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Since A is quadratic, by definition of q (applied to the conjugate Vi of V ) we get

m(Vi/CVi(Bi−1))

m(Bi−1/Bi)
≥ q whenever Bi < Bi−1. (b)

Of course when Bi = Bi−i, both ranks in (b) are zero, so in any case we have

m(Vi/CVi(Bi−1)) ≥ m(Bi−1/Bi)q. (c)

As [U,B] 6= 1, there is a first j with Bj < B. Then

Zj−1 ≤ CZj (B) and m(Zj/CZj (B)) = m(Vj/CVj (B)). (d)

We claim:

m(Zi/CZi(B))/m(B/Bi) ≥ q for all i ≥ j, (e)

with equality only if
m(Vk/CVk (Bk−1))

m(Bk−1/CBk−1(Vk))
= q for all j ≤ k ≤ i. (f)

The proof is by induction on i. First consider the base step i = j: Since Bj < B =
Bj−1 by our choice of j, (e) follows from (b) and (d). Moreover if (e) is an equality,
so is the inequality in (b)—and using (a) to replace Bj by CBj−1 (Vj) in (b), we
have the equality (f), establishing the claim when i = j.

Assume the claim holds at k for j ≤ k ≤ i− 1. We start with the relation:

m(Zi/CZi(B)) = m(Zi/Zi−1CZi(B)) +m(Zi−1CZi(B)/CZi(B)). (g)

From (a) we have Zi = Zi−1Vi and

Zi−1CZi(B) ≤ Zi−1CZi(Bi−1) = Zi−1CVi(Bi−1).

Using these facts and the standard isomorphism theorems, we obtain

m(Zi/Zi−1CZi(B)) ≥ m(Zi−1Vi/Zi−1CVi(Bi−1)) = m(Vi/CVi(Bi−1)) (h)

and

m(Zi−1CZi(B)/CZi(B)) ≥ m(Zi−1/CZi−1(B)).

Next from (c) and our induction assumption we obtain

m(Vi/CVi(Bi−1) ≥ m(Bi−1/Bi)q and m(Zi−1/CZi−1(B)) ≥ m(B/Bi−1)q. (i)

Now combining (g), (h), and (i) we conclude

m(Zi/CZi(B)) ≥ m(Bi−1/Bi)q +m(B/Bi−1)q = m(B/Bi)q,

establishing (e). Furthermore if (e) is an equality, then the inequalities in (i) must be
equalities. Then by (a), (f) holds when k = i. Finally by induction the inequalities
in (e) must be equalities for all k between j and i, so (f) holds for all such k. The
proof of the claim is complete.

Since Zn = U and Bn = CB(Zn) = CB(U), the claim at i = n gives

m(U/CU (B))

m(B/CB(U))
≥ q, (j)

and in case of equality, m(V h/CV h(B))/m(B/CB(V
h)) = q for each h ∈ G2 with

[V h, B] 6= 1—since we can order the Vi so that V h = Vj , and appeal to (f) using
Bj−1 = B.

As noted earlier in the proof,

m(A/CA(U)) ≥ m(U/CU (A)) ≥ m(U/CU (B)) ≥ m(B/CB(U))q, (k)
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appealing to (j) for the final inequality. Next recalling that CA(U) = CB(U):

m(B/CB(U))q = [m(A/B) +m(B/CB(U))]q −m(A/B)q

= m(A/CA(U))q −m(A/B)q, (l)

and then combining (k) and (l) we obtain

m(A/B)q ≥ m(A/CA(U))(q − 1) ≥ m(U/CU (A))(q − 1). (m)

Let qi := m(Ui/CUi(A))/m(A/B). Then

m(U/CU (A)) ≥
c∑

i=1

m(Ui/CUi(A)) = m(A/B)
c∑

i=1

qi. (n)

Recall that that qi ≥ 1 for all i, so using these inequalities together with (m) and
(n):

c ≤
c∑

i=1

qi ≤
m(U/CU (A))

m(A/B)
≤ q/(q − 1) = 1 +

1

q − 1
. (o)

But by hypothesis the integer c is at least 2, so q ≤ 2, establishing conclusion (1)
of our Proposition.

Now assume that q = 2. Then all inequalities in (j)–(o) are equalities. In
particular c = 2 and q1 = 1 = q2. We verify the remaining statements in (3):
As the inequalities in (k) are equalities, CU (A) = CU (B) and m(U/CU (A)) =
2m(B/CB(U)). The equality 2m(A/B) = m(U/CU (A)) comes from (n), since
qi = 1 and c = 2. From the remark after (j), m(V h/CV h(B)) = 2m(B/CB(V

h))
for each h ∈ G2 with [V h, B] 6= 1. Finally m(A/B) = m(Ui/CUi(A)) as qi = 1.
Thus all parts of the Proposition are established. ¤

To complete our analysis of the case V ≤ R2, it remains to treat the case where
G2 has a unique nontrivial chief factor on U . In this case we do not need to assume
q > 1.

Proposition D.1.4. Assume that V ≤ R2 and that G2 has a unique noncentral
chief factor on U . Then either

(1) The dual of V is an FF-module for G1/CG1(V ), or
(2) R ∩ R2 E G2, U is elementary abelian, [U,O2(G2)] ≤ Z(R2), O

2(G2) =
[O2(G2), J(R)] with J(T ) = J(R), and U contains an FF-module for G2 in R2(G2).
If G2 is solvable and F ∗(G2) = O2(G2), then O2(G2) is the product of A3-blocks
and R ∈ Syl2(O2(G2)R).

Proof. Let I := [U,O2(G2)], D := CV (O
2(G2)), and Ĩ := I/CI(O

2(G2)).

Note that if X ≤ I with X E G2 and Ĩ ≤ X̃ , then I ≤ XCI(O
2(G2)), so

I = [I, O2(G2)] ≤ [X,O2(G2)] ≤ X and so I = X. (∗)

As G2 = O2(G2)T we have U = 〈V G2〉 = 〈V O
2(G2)〉, so U = [V,O2(G2)]V =

IV . By hypothesis G2 has just one noncentral chief factor on U , so this irreducible
is Ĩ . Notice also that G2 = O2(G2)T normalizes D. Set Q := 〈(R ∩ R2)

G2〉. The
hypothesis V ≤ R2 gives V ≤ R ∩ R2, so U = 〈V G2〉 ≤ Q E G2. By Hypothesis
D.1.1, O2(G1/CG1(V )) = 1, so R = O2(G1) centralizes V . Therefore R ∩ R2

centralizes D, so as D E G2, in fact Q centralizes D.
We claim that [V,Q] ≤ D = CV (O

2(G2)): For if not, I0 := [V,Q,O2(G2)] 6= 1,

so as G2 is irreducible on Ĩ , we get Ĩ ≤ [̃U,Q], and hence I ≤ [U,Q] by (*). Thus
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U = IV ≤ [U,Q]V , so U/V = [U/V,Q], and hence V = U E G2. as Q is a 2-group.
But then V is normal in both G1 and G2, contrary to D.1.1.3. This contradiction
establishes the claim that [V,Q] ≤ D.

Similarly D < V , since otherwise D is normal in G1 and G2. Thus there is
v ∈ V −D with [v, T ] ≤ D. Observe:

[v,Q] is normalized by G2. (∗∗)

For [v,Q] ≤ [v, T ] ≤ D ≤ CV (O
2(G2)Q), so T normalizes vD and hence also

normalizes [vD,Q] = [v,Q]. So (**) is established.

Next as v /∈ D we have [ṽ, O2(G)] 6= 1, so Ĩ = 〈ṽG2〉 as G2 is irreducible on

Ĩ . Hence I = 〈vG2〉 by (*), so U = IV ≤ 〈vG2〉V . Recalling that R centralizes V ,
[U,R2 ∩ R] = [〈vG2〉, R2 ∩ R], so

[U,Q] = [〈vG2〉, Q] = 〈[v,Q]G2〉 = [v,Q],

using (**). But we also showed that [v,Q] ≤ D ≤ CV (Q), so Q acts quadratically
on U , and hence also on V . Thus Φ(Q) ≤ CQ(V ). Also

m([V,Q]) ≤ m([U,Q]) = m([v,Q]) ≤ m(Q/CQ(V )).

Therefore if Q 6≤ CG2(V ), then Q/CQ(V ) is a dual-FF∗-offender, so that conclusion
(1) holds.

Thus we may assume that [V,Q] = 1, and so Q ≤ CT (V ) = R using D.1.1.2.
Then

〈(R2 ∩ R)
G2〉 = Q ≤ R2 ∩ R,

so R ∩ R2 = Q E G2. As V centralizes R, V ≤ Z(Q), so that U ≤ Z(Q)
and hence Φ(U) = 1. By D.1.1.3, R is not normal in G2, so as R ∩ R2 E G2,
R 6≤ R2. By D.1.1.1 and as T is not normal in G2, we may apply B.6.8 to G2: as
R2 is Sylow in kerM2(G2) by B.6.8.5, it follows that R 6≤ kerM2(G2), so by B.6.8.4,
O2(G2) ≤ 〈RG2〉, and hence

O2(G2) = [O2(G2), R]. (!)

We next show that I ≤ Z(R2). Namely [R2, R] ≤ Q, so using (!) and U ≤
Z(Q), [R2, O

2(G2)] ≤ Q ≤ CR2(U) ≤ CR2(I). Set G
∗
2 := G2/CG2(I); then O

2(G2)
∗

commutes with R∗2. Thus as O2(G2) is nontrivial on I , CI(R2) 6≤ CI (O
2(G2)) by

the Thompson A×B Lemma, so as O2(G2) is irreducible on Ĩ , Ĩ = C̃I(R2). Hence
I = CI (R2) ≤ Z(R2) by (*).

As O2(G2) 6≤ CG2(I), CG2(I) ≤M2 by B.6.8.6a, so I ∈ R2(G2) by B.6.8.6c.
If J(R) ≤ R2, then J(R) ≤ R∩R2 = Q, and then J(R) = J(Q)E 〈G1, G2〉, con-

trary to D.1.1.3. Thus J(R) 6≤ R2, so arguing as above, O2(G2) = [O2(G2), J(R)]
and I is an FF-module. Thus we have completed those parts of the proof of (2)
which do not depend upon G2 being solvable of even characteristic.

Finally assume G2 is solvable and F
∗(G2) = O2(G2). As G2 is solvable, B.6.8.2

saysO2(G2/O2(G2)) is of odd order; so as [R2, O
2(G2)] ≤ Q ≤ R, O2(O

2(G2)) ≤ R,
and hence R ∈ Syl2(O

2(G2)R). Then as F ∗(G2) = O2(G2), by a theorem of
Baumann (cf. C.1.29 when G2 is strongly quasithin), either there is a nontrivial
characteristic subgroup of R normal in G2, or O

2(G2) is the product of A3-blocks.
The latter must hold in view of D.1.1.3, so the proof of D.1.4 is complete. ¤

We have essentially established our version of the qrc-lemma:
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Theorem D.1.5 (Stellmacher-Meierfrankenfeld qrc-Lemma). One of the fol-
lowing holds:

(1) V 6≤ O2(G2).
(2) q(G1/CG1(V ), V ) ≤ 1, so V is an FF-module for G1/CG1(V ).
(3) The dual of V is an FF-module for G1/CG1(V ).
(4) q(G1/CG1(V ), V ) ≤ 2, U is abelian, and G2 has more than one noncentral

chief factor on U .
(5) R∩R2 E G2, U is elementary abelian, G2 has one noncentral chief factor

on U , [U,O2(G2)] ≤ Z(R2), and O
2(G2) = [O2(G2), J(R)] with J(R) = J(T ).

Proof. We may assume conclusions (1) and (2) fail, so q(G1/CG1(V ), V ) > 1
and V ≤ R2. Then by D.1.2.1, U is elementary abelian. Let c be the number of
noncentral chief factors for G2 on U . If c > 1 then D.1.3.1 gives conclusion (4),
while if c = 1 then D.1.4 says that either conclusion (3) or (5) holds. ¤

In section 3.1 we will show that when G is a QTKE-group, each of the con-
clusions of the qrc-Lemma implies that q̂ := q̂(G1/CG1(V ), V ) ≤ 2. Thus in the
remaining sections of this chapter, we investigate pairs (G, V ) where V is a faithful
F2G-module with q̂(G, V ) ≤ 2.

We close this section with a brief overview of the reduction in section 3.1 just
mentioned: First, in conclusions (2) and (4) of Theorem D.1.5, we already have
the conclusion q ≤ 2. In Conclusion (1), q̂ ≤ 2 by E.2.13.2; this is the place where
the parameter q̂—as opposed to q—enters the picture. Conclusion (5) is eliminated
using Theorem 3.1.1 (which is just a restatement of Theorem C.5.8), with a little
extra work to show that R ∈ Syl2(O

2(G2)R). For example this holds when G2 is
solvable by D.1.4.2. Finally q ≤ 2 in conclusion (3) by B.5.13.

D.2. Properties of q and q̂: R(G, V ) and Q(G, V )

Throughout this section G is a finite group and V is a faithful F2G-module.
Recall from Definition B.1.1 that we denote the set of nontrivial elementary abelian
2-subgroups of G by A2(G), and for A ∈ A2(G) we define

rA,V :=
m(V/CV (A))

m(A)
.

We have just seen, in the discussion in the final paragraph of the previous
section, one instance of how the condition q̂(G, V ) ≤ 2 arises in the proof of our
Main Theorem. Earlier in B.4.5, we listed the cases where V is irreducible with
q̂(G, V ) ≤ 2 and G is an SQTK-group with F ∗(G) quasisimple. In order to describe
more general representations satisfying that bound, it will be necessary to study
the behavior of q(AutG(U), U) and q̂(AutG(U), U) for suitable subspaces U of V ,
much as we did for FF-modules in B.1.5.

Since the parameters q and q̂ were introduced only recently, as yet there are
few results in the literature on the corresponding modules; thus our development
here will be more detailed. We feel that development is best accomplished in the
context of a system of more general but related parameters associated to faithful
modules, which we now introduce.

The parameters q and q̂ arise from the study of the ratios rA,V for A ∈ A2(G).
Recall that the parameters q(G, V ), q̂(G, V ) denote the minimum value of rA,V as
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A varies over the subsets of A2(G) of members acting quadratically or cubically.
We now introduce some more general notions:

Definition D.2.1. For any 0 < r ∈ R, define

Rr(G, V ) := {A ∈ A2(G) : rA,V ≤ r}, and

R=r(G, V ) := {A ∈ A2(G) : rA,V = r}.

Then define

R+(G, V ) := {A ∈ A2(G) : rA,V ≤ rB,V for all 1 < B ≤ A}.

For A ≤ G we obtain the commutator series for A on V by setting L0
A(V ) := V

and then defining LkA(V ) := [Lk−1A (V ), A] for k > 0 recursively. In particular A is
quadratic on V when L2

A(V ) = 0, and cubic on V when L3
A(V ) = 0. Define

kRr(G, V ) := {A ∈ Rr(G, V ) : LkA(V ) = 0},

R+
r (G, V ) := Rr(G, V ) ∩ R+(G, V ),

kR+
r (G, V ) := kRr(G, V ) ∩ R+(G, V ),

and
kq(G, V ) := min{r ∈ R : kRr(G, V ) 6= ∅}.

In particular q(G, V ) = 2q(G, V ) and q̂(G, V ) = 3q(G, V ).
Our main applications will be in D.1.5, E.2.13, and F.9.16.3, where these pa-

rameters are at most 2; this leads us to define

Q(G, V ) := 2R2(G, V ) and Q̂(G, V ) := 3R2(G, V ).

Notice thatQ(G, V ) 6= ∅ or Q̂(G, V ) 6= ∅ if and only if q(G, V ) ≤ 2 or q̂(G, V ) ≤

2, respectively. Finally if q̂(G, V ) ≤ 2 define Q̂∗(G, V ) to consist of the members

of 3Rq̂(G,V )(G, V ) which are minimal under inclusion, setting Q̂∗(G, V ) := ∅ if
q̂(G, V ) > 2.

D.2.1. General inheritance properties. The lemmas in this subsection dis-
cuss the relationship between rA,V and rAutA(U),U , when A ∈ A

2(G) and U is an
A-invariant subspace of V .

Lemma D.2.2. Assume that A ∈ Rr(G, V ) and U is an F2A-submodule of V
with [U,A] 6= 0. Set B := CA(U). Then one of the following holds:

(1) A/B ∈ Rr−ε(AutG(U), U) for some ε > 0; that is rA/B,U < rA,V .
(2) B ∈ Rr−ε(G, V ) for some ε > 0; that is rB,V < rA,V .
(3) A is faithful on U , rA,V = rA,U , and V = U + CV (A).
(4) A ∈ R=r(G, V ), A/B ∈ R=r(AutG(U), U), B ∈ R=r(G, V ), and CV (B) =

U + CV (A).

Proof. Suppose first that B = 1; then A is faithful on U . If V = U +CV (A),
then we have conclusion (3). Otherwise U + CV (A) < V , so m(U/CU (A)) <
m(V/CV (A)) and hence rA,U < rA,V , so conclusion (1) holds.

Suppose instead that B > 1. We may assume that (1) and (2) fail, and hence
that m(U/CU (A)) ≥ r m(A/B) and m(V/CV (B)) ≥ r m(B). Using these inequal-
ities and U + CV (A) ≤ CV (B) we have:

m(V/CV (A)) = m(V/(U + CV (A))) +m(U + CV (A)/CV (A))
≥ m(V/CV (B)) +m(U/CU (A)) ≥ r [m(B) +m(A/B)] = r m(A).
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Since r ≥ rA,V , all inequalities in this paragraph must in fact be equalities, so that
(4) holds. ¤

Lemma D.2.3. (1) If A ∈ R+(G, V ) and 1 < B ≤ A with rA,V = rB,V , then
B ∈ R+(G, V ).

(2) If A ∈ A2(G) with LkA(V ) = 0 and rA,V = kq(G, V ), then A ∈ R+(G, V ).

Proof. Assume the hypotheses of (1). If 1 < C ≤ B then as A ∈ R+(G, V ),
rC,V ≥ rA,V = rB,V , so (1) is established. Assume the hypotheses of (2), and notice
if B ≤ A then LkB(V ) ≤ LkA(V ) = 0. Thus as rA,V = kq(G, V ), rB,V ≥ rA,V , so
that (2) holds. ¤

Now we will see that if A ∈ R+(G, V ) then one possibility is eliminated from
D.2.2:

Lemma D.2.4. Assume A ∈ R+
r (G, V ) and U is an F2A-submodule of V with

[U,A] 6= 0. Set B := CA(U). Then one of the following holds:

(1) A/B ∈ Rr−ε(AutG(U), U) for some ε > 0, and rA/B,U < rA,V .
(2) A is faithful on U , V = U +CV (A), and m(U/CU (D)) = m(V/CV (D)) for

each 1 < D ≤ A, so rD,U = rD,V ≥ r, A ∈ R+
=r(G, V ), and A ∈ R+

=r(AutG(U), U).
(3) A/B ∈ R=r(AutG(U), U), B ∈ R+

=r(G, V ), and CV (B) = U + CV (A).

Proof. We appeal to D.2.2. The hypothesis that A ∈ R+(G, V ) rules out case
(2) of D.2.2. Now case (1) of D.2.2 is conclusion (1), and in case (4), D.2.3.1 says
B ∈ R+(G, V ), so that conclusion (3) holds. Finally assume case (3) of D.2.2 holds,
but (1) fails, so rA,V = r and hence A ∈ R=r(G, V ) and A ∈ R=r(AutG(U), U).
For 1 6= D ≤ A we have CV (A) ≤ CV (D) and hence V = U + CV (D), so that
rD,U = rD,V ≥ r since A ∈ R+(G, V ); thus A ∈ R+(AutG(U), U), so (2) holds. ¤

Lemma D.2.5. Let A ∈ R+
r (G, V ). Then for each F2A-submodule U of V such

that [U,A] 6= 0, AutA(U) ∈ Rr(AutG(U), U); that is rAutA(U),U ≤ r.

Proof. Let B := CA(U) and observe that AutA(U) = A/B, while in each of
the conclusions of D.2.4, rA/B,U ≤ r. ¤

Lemma D.2.6. Assume A ∈ kR+
r (G, V ) and U is an F2A-submodule of V such

that [U,A] 6= 0 and kq(AutG(U), U) ≥ r. Set B := CA(U). Then kq(AutG(U), U) =
r and either

(1) A is faithful on U , V = U + CV (A), and A ∈ R+
=r(AutG(U), U), or

(2) A/B ∈ R=r(AutG(U), U), B ∈ R+
=r(G, V ), and CV (B) = U + CV (A).

Proof. As LkA(U) ≤ LkA(V ) = 0, rA/B,U ≥
kq(AutG(U), U) ≥ r by hypothe-

sis, so equality holds by D.2.5. In particular case (1) of D.2.4 cannot occur. The
remaining two conclusions of D.2.4 appear as (1) and (2). ¤

D.2.2. The case q̂(G,V) ≤ 2. We next use results from the previous sub-
section to derive consequences in the case q̂(G, V ) ≤ 2. One goal is to deter-

mine in D.2.17 all representations ϕ : Ĝ → GL(V ) of SQTK-groups Ĝ such that

q̂(Ĝϕ, V ) ≤ 2 and F ∗(Ĝϕ) = F (Ĝϕ). The general case will be considered in the
following section D.3 which concludes this chapter.

First, we will see how the minimality under inclusion of members of Q̂∗ restricts
the possibilities from D.2.4, and then from D.2.6:
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Lemma D.2.7. Assume that r := q̂(G, V ) ≤ 2, A ∈ Q̂∗(G, V ), and U is an

F2A-submodule of V with [U,A] 6= 0. Set B := CA(U). Then A ∈ 3R
+
=r(G, V ) and

either

(1) A/B ∈ Q̂r−ε(AutG(U), U) for some ε > 0, or
(2) A is faithful on U and V = U + CV (A).

Proof. By definition of Q̂∗(G, V ), rA,V = r = q̂(G, V ) is minimal, so A ∈
3R

+
=r(G, V ) by D.2.3.2. Thus we have the hypotheses of D.2.4. Furthermore as A

is also minimal under inclusion in 3Rr(G, V ) by definition of Q̂∗(G, V ), case (3) of
D.2.4 does not occur. Thus (1) or (2) holds. ¤

Lemma D.2.8. Set r := q̂(G, V ) and assume r ≤ 2, A ∈ Q̂∗(G, V ), and U
is an F2A-submodule of V such that [U,A] 6= 0 and q̂(AutG(U), U) ≥ r. Then

q̂(AutG(U), U) = r, A is faithful on U , V = U+CV (A), and A ∈ Q̂∗(AutG(U), U).

Proof. By D.2.7, A ∈ 3R
+
=r(G, V ) and one of the two conclusions of that

lemma hold. By hypothesis q̂(U,AutG(U)) ≥ r, so the hypotheses of D.2.6 are
satisfied. Case (2) of D.2.6 is not satisfied in either case of D.2.7, so case (1) of
D.2.6 holds, giving the second and third assertions of D.2.8, and showing A ∈
3R

+
=r(AutG(U), U). Then as q̂(AutG(U), U) ≥ r, q̂(AutG(U), U) = r, so it remains

to show that A is minimal under inclusion in 3Rr(AutG(U), U). Since A satisfies
neither conclusion (1) nor (3) of D.2.4, it satisfies conclusion (2). Hence if 1 < D <

A then rD,U = rD,V , while as A ∈ Q̂∗(G, V ), rD,V > rA,V . Therefore rD,U > rA,U ,
completing the proof. ¤

We sometimes need to know that V is primitive under A ∈ Q̂(G, V ). The
following lemma says that this is usually the case.

Lemma D.2.9. Let A ∈ 3R+
2 (G, V ) and set r := rA,V , so in particular q̂(G, V ) ≤

r ≤ 2. Assume A permutes the summands I of a vector-space decomposition
V =

⊕
I∈I I, with each summand of rank at least 2. Pick I ∈ I and set

B := NA(I). Then

(1) |A : B| ≤ 2.
(2) If B < A then B is quadratic on I.
(3) If A is quadratic on V and B < A, then m(I) = 2 = r, and either |A| = 2

or B ∈ 2R+
2 (G, V ).

(4) If B < A and m(I) > 2, then AutB(I) ∈ Rr−ε(AutG(I), I) for some ε > 0.
(5) If |I| = 2 and B < A, then either:

(i) B induces the full group of transvections on I with a fixed center. Fur-
ther if m(I) > 2 and G permutes I, then either O2(G) 6= 1 or r > q(G, V ); or

(ii) m(I/CI(B)) = m(I) − 2 = m(B). Further if m(I) > 2, then rB,V =

r = 2, so A /∈ Q̂∗(G, V ).

(6) Assume that G permutes I, |I| = 2, m(I) > 2, and O2(G) = 1. Then

Q̂∗(G, V ) ⊆ NG(I).

Proof. If B = A, then (1) and (6) are immediate and (2)–(5) are vacuous, so
we may assume that B < A.

Now (6) follows from (5), since under the hypotheses of (6), (5) says that

A 6∈ Q̂∗(G, V ). So it remains to establish (1)–(5) when B < A.
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Fix some a ∈ A−B and set U := I + Ia; then U = I ⊕ [I, a], where [I, a] is the
diagonal {iia : i ∈ I}.

Assume as in (3) that A is quadratic on V . Since A permutes I and centralizes
0 6= [I, a] ≤ U , it permutes the set {I, Ia} of direct summands on which [I, a]
projects nontrivially; hence |A : B| = 2. Then as B centralizes the full diagonal
[I, a], it centralizes the projection i of iia on I for each i ∈ I , so that B centralizes
U . Then B = CA(U), and hence A/B = AutA(U) has rank 1, with CU (A) = [I, a].
Thus

m(I) = m(U/CU (A)) = rAutA(U),U = 2q(AutA(U), U), (+)

with the last equality holding since AutA(U) has no nontrivial subgroups. By
hypothesis

r ≤ 2 ≤ m(I), (++)

so we have the hypotheses of D.2.6, with A, 2 in the roles of “G, k”. Then that
lemma says

2q(AutA(U), U) = r, (+ ++)

so by (+) and (+++), the inequalities in (++) are equalities, and hence m(I) =
r = 2. Further one of the two conclusions of D.2.6 holds. If case (1) of D.2.6 holds,
then B = 1 so that |A| = 2, while if case (2) holds, then B ∈ 2R+

2 (A, V ), so since
also B < A and r = 2, B ∈ 2R+

2 (G, V ). This completes the proof of (3).
We next prove (1) and (2). First consider the case where [I, B] 6= 0. Then as

A is cubic on V we have

0 6= [I, B, a] ≤ CU (A).

Since [I, B, a] ≤ [I, a], as in the previous paragraph, {I, Ia} is an A-orbit, establish-
ing (1). Similarly the cubic action of A gives [I, B,B] ≤ CI (A) = 0 since I∩Ia = 0,
giving quadratic action of B on I , and hence establishing (2) in this case.

Next we turn to the case where B centralizes I ; in particular (2) holds trivially
in this case. Now as A is abelian, A∗ := A/B is regular on IA, so to prove (1), we
assume that |A∗| > 2. Thus there is c ∈ A with c∗ /∈ 〈a∗〉. Then

0 6= [I, a, c] ≤ U + U c =:W,

and [I, a, c] centralizes A by its cubic action, so arguing as above, I 〈a,c〉 is an A-orbit
of order 4. Thus A∗ ∼= E4 and B = CA(W ), so A∗ = AutA(W ). Further CW (A) is
a diagonal {

∑
x∈A∗ ix : i ∈ I} over four conjugates of rank m(I), so

rAutA(W ),W =
m(W/CW (A))

m(A∗)
=

3m(I)

2
.

Now by hypothesis A ∈ R+
r (G, V ), so we may apply D.2.5 to conclude that

3m(I)

2
= rAutA(W ),W ≤ r ≤ 2,

contrary to our hypothesis that m(I) ≥ 2. This contradiction completes the proof
of (1) and (2).

We turn to (4) and (5). Notice A acts on U by (1).
Assume first that B centralizes I and hence U . Then A is quadratic on U , so

we may apply (3) to U in the role of “V ” to conclude that m(I) = 2. Then (4) is
vacuous. Further |I| = 2 under the hypothesis of (5), so B centralizes U = V and
hence B = 1; then case (ii) of (5) holds, since its second sentence is also vacuous as
m(I) = 2.
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Therefore we may assume that B does not centralize I . Define i := m(I) and
m := m(I/CI(B)), so m(U/CU (A)) = i+m. Now AutA(U) = A/CA(U), and we
have seen that CA(U) = CB(U) = CB(I), so setting b := m(B/CB(I)) and using
(1), we have m(A/CA(U)) = b+1. Since B does not centralize I , b > 0. By D.2.5,
rAutA(U),U ≤ r, so

i+m ≤ r(b+ 1). (∗)

We rearrange (*) to obtain:

rAutB(I),I =
m

b
≤ r +

r − i

b
. (∗∗)

Under the hypotheses of (4), i > 2 ≥ r, so rAutB(I),I < r, completing the proof
of (4).

It remains to prove (5), so we may assume that |I| = 2, and hence V = U . If
i = 2 then B induces a transvection on I of rank 2, so case (i) of (5) holds; thus we
may also assume that i > 2, When G permutes I, G = NG(I)〈a〉 for a ∈ A − B,
with NG(I) of index 2 and hence normal in G.

As A is faithful on V = U , B is faithful on I and rAutA(U),U = rA,V = r. Then
(*) becomes (i+m)/(b+ 1) = r ≤ 2, so

i+m− 2

2
≤ b, (!)

and as A ∈ R+(G, V ),
i+m

b+ 1
= r ≤ rB,V =

2m

b
.

Thus b(i+m) ≤ 2m(b+ 1) and then

b ≤
2m

i−m
. (!!)

Combining (!) and (!!), we obtain (i+m− 2)(i−m) ≤ 4m, which we rearrange to
obtain (i− 1)2 ≤ (m + 1)2, so m ≥ i− 2. On the other hand m < i, so m = i− 1
or i− 2.

Suppose m = i− 1. Then by (!), b ≥ i− 3/2, so as b is an integer, b ≥ i− 1. So
as m = i− 1, CI (B) is a point, while as B is quadratic on I by (2), [I, B] ≤ CI (B).
Therefore B induces a group of transvections on I with center CI(B). As the
group T of all such transvections is of rank i−1 and b = m(B) ≥ i−1, we conclude
b = i− 1 and B induces the full group T on I .

Thus since i > 2, to show that case (i) of (5) holds, we may assume that G
permutes I, and it remains to show that either O2(G) 6= 1 or r > q(G, V ).

Let J := 〈CI (B)NG(I)〉 and L := 〈BNG(I)〉. Then AutL(J) = GL(J) by B.4.10.
As B centralizes I/CB(I), it centralizes V/(J + Ja).

Assume first that J < I . Then CB(J) 6= 1 since B induces T on I , and CB(J)
centralizes J + Ja and V/(J + Ja). Now NG(I) is normal in G and normalizes
J + Ja, so by Coprime Action CB(J) ≤ O2(NG(I)) ≤ O2(G). Thus O2(G) 6= 1, so
(5i) holds.

Therefore we may assume that J = I . Then AutL(I) = GL(I) and

NG(I) ≤ G0 := NGL(V )(I) ∩NGL(V )(I
a) ∼= GL(I)×GL(I).

As i > 2, GL(I) is simple, so either L = NG(I) is a full diagonal subgroup of G0, or
NG(I) = G0. Suppose the first case holds. Then as a centralizes B, and T is self-
centralizing in GL(I), a induces inner automorphisms on L. Thus as G = L〈a〉,



D.2. PROPERTIES OF q AND q̂: R(G,V ) AND Q(G,V ) 183

O2(G) 6= 1, so again (5i) holds. In the second case there is A0 ∈ Q(G, V ) with
rA0,V < r, so once again conclusion (5i) holds: Namely if S is the group of all
transvections in CG(I

a) with a fixed axis, and A0 := SSa, then

rA0,V =
1

i− 1
<

2i− 1

i
= rA,V = r.

This leaves the case m = i− 2. Here by (!) and (!!), b = i− 2, so

r = rA,V =
2i− 2

i− 1
= 2 =

2(i− 2)

i− 2
= rB,V ;

thus A is not minimal under inclusion, so A 6∈ Q̂∗(G, V ), and conclusion (ii) of (5)
holds.

This completes the proof of (5), and hence of the lemma. ¤

A special case where q(G, V ) ≤ 2 occurs when A := 〈t〉 is of order 2 with
m([V, t]) ≤ 2. Our next two lemmas are therefore devoted to the study of:

Definition D.2.10. T is the set of involutions t ∈ G such that m([V, t]) ≤ 2.

These lemmas are largely independent of the other results in this section.

Lemma D.2.11. Let t ∈ T , and set m := m([V, t]). Assume x ∈ G# is of odd
order and inverted by t. Then

(1) If m = 1 then |x| = 3 and m([V, x]) = 2.
(2) If m = 2 then |x| = 3 or 5; and if |x| = 5, then m([V, x]) = 4.
(3) If m([V, x]) = 2m then [V, t] = [V, x, t], [CV (x), t] = 0, and

[CG(x) ∩ CG([V, x]), t] = 1.

(4) 〈t〉 ∈ Q(G, V ).

Proof. Part (4) is an easy consequence of Definition D.2.1 where Q(G, V ) =
2R2(G, V ). Set n := |x|. Then t acts freely on [V, x], so

m([V, x])

2
= m([V, x, t]) ≤ m, (∗)

and hence m([V, x]) ≤ 2m and 〈x, t〉 ≤ GL([V, x]) is dihedral of order 2n. If m = 1
then m([V, x]) = 2 by (*) and |GL2(2)| = 6, so (1) holds. If m = 2 then GL4(2)
contains D2n with 1 < n odd only for n = 3, 5; and if n = 5, then m([V, x]) = 4,
so (2) holds. In (3), m([V, x]) = 2m, so m([V, x, t]) = m and [V, t] = [V, x, t] by (*).
Also V = [V, x] ⊕ CV (x) by Coprime Action, so t ∈ CG(CV (x)). Thus if we set
Y := CG(x) ∩ CG([V, x]), then

[Y, t] ≤ CG([V, x]) ∩ CG(CV (x)) = CG(V ) = 1,

completing the proof of (3). ¤

Lemma D.2.12. For k := 1, 2, let Xk be the set of subgroups X of F (G) of
order p := 2k + 1 such that m([V,X ]) = 2k. Let Gk := 〈Xk〉. Then

(1) Gk = X1× · · · ×Xs is the direct product of the members X1, . . . , Xs of Xk.
(2) [V,Gk] = V1 ⊕ · · · ⊕ Vs, where Vi := [V,Xi].
(3) If t ∈ T with m([V, t]) = k, then either

(a) [Gk, t] = 1 and [V,Gk , t] = 0, or
(b) There exists a unique j such that t inverts Xj . Further [V, t] = [Vj , t],

and t centralizes Xi and Vi for i 6= j.
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(4) If t ∈ T with m([V, t]) = k, then t ∈ NG(Xi) for each i.
(5) If k = 1 and t ∈ T with m([V, t]) = 2, then either:

(a) t acts on each Xi; or
(b) t induces a transposition (Xj , Xj′) on X1, [V, t] = [Vj + Vj′ , t], and t

centralizes Xi and Vi for i 6= j, j′.

Proof. Notice if Xi ≤ NG(X1), then in fact Xi ≤ CG(X1) since Xi and X1

are of prime order p. Suppose there is some X2 ∈ Xk ∩ CG(X1) − {X1}. As X1

is irreducible on V1, AutX2(V1) ≤ CGL(V1)(X1) which is cyclic of order 22k − 1.
Thus either X2 centralizes V1, or AutX2(V1) = AutX1(V1). In the latter case, X1 is
the projection of X2 with respect to the decomposition CG([V,X1])×CG(CV (X1)).
Hence [V,X1] = V1 ≤ [V,X2] = V2, so that V1 = V2 as dim(Vi) = 2k, and then
CV (X1) = CV (X2) as X2 acts on CV (X1). But then X2 = X1 as G is faithful on
V , contradicting X2 6= X1. So if X2 centralizes X1 it also centralizes V1.

It follows that if ∆ := {X1, . . . , Xs} is a maximal set of commuting members
of Xk, and if D := 〈∆〉, then [V,D] = V1 ⊕ · · · ⊕ Vs; so that D = X1 × · · · ×Xs,
and Xk ∩D = ∆ by maximality of ∆.

We claim in fact that ∆ = Xk, andD = Gk. This is established using a standard
weak-closure argument: For suppose ∆ ⊂ Xk∩NGk(D). If 〈x〉 := Xi ∈ NXk(D)−∆
has a nontrivial cycle (X1, . . . , X2k+1) on ∆, then

2k = m([V, x]) ≥ 2k · 2k = 4k2 > 2k,

a contradiction. Therefore, Xi normalizes and hence centralizes all members of ∆,
contradicting the maximal choice of ∆. We conclude Xk ∩ NGk(D) = ∆, so that
NGk(NGk (D)) normalizes ∆, and hence lies already in NGk(D). As Gk ≤ F (G), Gk
is nilpotent, forcing D = Gk , and hence ∆ = Xk. Thus (1) and (2) are established.

Let t ∈ T and setm := m([V, t]). By D.2.11.4, A := 〈t〉 ∈ Q(G, V ), with rA,V =
m. Now A permutes Xk, so it permutes the summands Vi in the decomposition of
(2), each of which has rank 2k ≥ 2. Hence the hypotheses of D.2.9 are satisfied, so
we may apply D.2.9.3 to see that either t normalizes V1, or m(V1) = 2. The latter
case forces p = 3 so k = 1, and m = 2 > k since t interchanges V1 and V t1 . Hence
under the hypothesis of (3) and (4), where m = k, t normalizes each Vi, and hence
each Xi, establishing (4).

Next we prove (3). Assume first that t centralizes each Xi; then as Xi is
irreducible on Vi, t centralizes each Vi. Thus t centralizes [V,Gk], so that conclusion
(a) of (3) holds. Therefore we may assume that t inverts X1. As m = k, we have
the hypotheses of D.2.11.3, with X1 in the role of “〈x〉.” That result says that
[V, t] = [V,X1, t] = [V1, t], and that t centralizes CV (X1) and CG(V1X1), and hence
centralizes Xi and Vi for i 6= 1. Thus conclusion (b) of (3) holds in this case, so the
proof of (3) is complete.

It remains to prove (5), so we may take m = 2 and k = 1. If X2 = Xt
1, then

m([V1 + V2, t]) = 2 = m, so [V, t] = [V1 + V2, t]. Therefore t centralizes Vn for
n 6= 1, 2—and hence also Xn. Thus (5) holds, and the proof is complete. ¤

D.2.3. The case F∗(G) = F(G). In this subsection we analyze the case where
F ∗(G) = F (G) and q̂(G, V ) ≤ 2.

Lemma D.2.13. Assume r := q̂(G, V ) ≤ 2 and A ∈ Q̂∗(G, V ) acts nontrivially
on Op(G) for some odd prime p. Then

(1) p = 3 or 5.
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(2) If p = 5 then r = 2, m(A) = 1, D := [O5(G), A] ∼= Z5, and V = [V,D] ⊕
CV (DA) with m([V,D]) = 4.

(3) If m(A) = 1 then r = 1 or 2, and if r = 1 then D := [O3(G), A] ∼= Z3,
V = [V,D]⊕ CV (DA), and m([V,D]) = 2.

(4) If r ≤ 1, then r = 1, p = 3, and m(A) = 1.
(5) If m(A) > 1 then p = 3, and for each hyperplane B of A such that DB :=

[CO3(G)(B), A] 6= 1, we have DB
∼= Z3, CV (B) = [CV (B), DB ] ⊕ CV (DBA), and

m([CV (B), DB ]) = 2.

Proof. First consider the case where m(A) = 1. Then A = 〈t〉 for some

involution t, and as rA,V = q̂(G, V ) = r ≤ 2 and A ∈ Q̂∗(G, V ), we have

m([V, t]) = m(V/CV (A)) = m(A)r = r ≤ 2.

In particular, m([V, t]) = r = 1 or 2, which is the first assertion of (3). Furthermore
t ∈ T , and we may apply D.2.11 to elements x ∈ Op(G)# inverted by t. Parts (1)
and (2) of D.2.11 establish (1). Further if r = 1 then p = 3 by D.2.11.1, so that (2) is
vacuous. Thus to complete the proofs of (2) and (3), we may assume that r = 1 or 2,
with p = 2r+1, and it remains to showD := [Op(G), t] ∼= Zp, V = [V,D]⊕CV (DA),
and m([V,D]) = 2r. By D.2.11, m([V, x]) = 2r, so X1 := 〈x〉 ∈ Xr, in the notation
of D.2.12. As t inverts X1, it centralizes Xi for i > 1 by D.2.12.3. We may take
d ∈ D# inverted by t, and then we have symmetry between x and d, so 〈d〉 ∈ Xr
and hence 〈d〉 = X1 as [d, t] 6= 1. Therefore D = X1

∼= Zp as m([V,D]) = 2r, and
using D.2.11.3, DA centralizes CV (D), completing the proof of (2) and (3). The
proof in the case m(A) = 1 is now complete—since (5) is vacuous, and (1) and (2)
imply (4) when m(A) = 1.

Therefore we may assume that m(A) > 1. Now (3) is vacuous. By Generation
by Centralizers of Hyperplanes A.1.17, DB := [COp(G)(B), A] 6= 1 for some hyper-
plane B of A. Set UB := CV (B). By the Thompson A×B-Lemma, DB is faithful
on UB , so as DB = [DB , A], A is nontrivial on UB. Now B 6= 1 as m(A) > 1, so by
D.2.7:

A/B ∼= AutA(UB) ∈ Q̂r−ε(AutG(UB), UB) for some ε > 0.

Since m(AutA(UB)) = m(A/B) = 1, and the pair AutDBA(UB), UB satisfy the
hypotheses of D.2.13 in the roles of “G, V ”, we can appeal to our treatment of the
case m(A) = 1. Since m(A/B) = 1 we have

q̂ := q̂(AutDBA(UB), UB) = rA/B,UB = r − ε < 2, (∗)

so (3) says q̂ = 1, DB
∼= Z3, UB = [UB , DB ] ⊕ CUB (DBA), and m([UB , DB ]) = 2.

In particular this shows that p = 3 when m(A) > 1, completing the proof of (1),
(2), and (5). Finally as q̂ = 1, (*) implies that r > 1, completing the proof of
(4). ¤

Lemma D.2.14. Assume r := q̂(G, V ) ≤ 2 and A ∈ Q̂∗(G, V ) is noncyclic

and acts faithfully on O(F (G)). In addition assume V = [V,O(F (G))] and Ĝ is a
quotient of an SQTK-group. Then

(1) [O2,3(F (G)), A] = 1.
(2) P := O3(G) = P1 × · · · × Ps with Pi ∼= Z3, s = 2 or 3, and P = [P,A].
(3) [V, P ] = V1 ⊕ · · · ⊕ Vs, where Vi := [V, Pi] is of rank 2.
(4) m(A) = 2.
(5) [CV (P ), A] = 0.
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(6) r = 3/2.
(7) Either
(i) s = 2 and AP ∼= S3 × S3 with P1 and P2 diagonally embedded in the S3

factors, so that A is transitive on {P1, P2}; or
(ii) s = 3, A acts on each Pi, and m([Vi, A]) = 1 for each i.

Proof. If [Op(G), A] 6= 1, then as m(A) > 1 by hypothesis, D.2.13.5 forces
p = 3; this establishes (1).

Next as A is faithful on O(F (G)) by hypothesis, in view of (1) it is faithful on
P = O3(G). By hypothesis, G is a quotient of an SQTK-group, so as A is faithful
on O3(G), it follows from A.1.31.1 that

CP (a) is cyclic for all a ∈ A#. (∗)

Thus m(A) ≤ 2 by A.1.5, giving (4), and A.1.5 together with (*) shows that

CP (A) = 1.

By hypothesis rA,V = r ≤ 2, so it follows from (4) that

m(V/CV (A)) = m(A)r = 2r ≤ 4. (!)

If r ≤ 1 then D.2.13.4 says m(A) = 1, contrary to our hypothesis. Thus r > 1, and
hence by (!):

m(V/CV (A)) = 4 or 3, with r = 2 or 3/2, respectively. (!!)

By Generation by Centralizers of Hyperplanes, there is a hyperplane B of A
with DB := CP (B) 6= 1, and by the Thompson A × B-Lemma, DB is faithful
on UB := CV (B). We saw CP (A) = 1, so DB = [DB , A]. Then by D.2.13.5,
DB is of order 3, UB = [UB , DB] ⊕ CV (DBA), and m([UB , DB ]) = 2. By (4),
m(B) = m(A)− 1 = 1, so

2 = m([UB , DB]) = m(C[V,DB ](B)) ≥ m([V,DB ])/2, (+)

and hencem([V,DB ]) = 2 or 4, with [UB , DB ] = C[V,DB ](B) of rank 2 ifm([V,DB ]) =
4.

Let Z denote the set of A-invariant subgroups Z of Z(P ) of order 3; then
Z = [Z,A] as CP (A) = 1. Thus as m(A) = 2, BZ := CA(Z) is of order 2. The
previous paragraph now applies to BZ , CP (BZ) in the roles of “B, DB”, so we
conclude

UZ := [V, Z] ≤ [V,CP (BZ)], m(UZ) = 2 or 4,

and [UBZ , Z] = CUZ (B) is of rank 2 if m(UZ) = 4. (++)

Therefore P/CP (UZ) ∼= Z3 or E9 as GL([V, Z]) ≤ GL4(2), and hence Φ(P ) ≤
CP (UZ). As Z is faithful on UZ , this shows Z 6≤ Φ(P ). Thus Z ∩ Φ(P ) = ∅, so
Φ(P ) = 1.

Let s := m3(P ), and note s > 1 since A is noncyclic and faithful on P . By (*),
distinct involutions a and b invert subspaces of P of dimension at least s − 1, so
the product ab centralizes a subspace of dimension at least s− 2. Thus s− 2 ≤ 1,
so s = 2 or 3. Since CP (A) = 1, P = [P,A], completing the proof of (2). Notice
also that as P is abelian, any A-invariant subgroup X of order 3 is central in P ,
and hence is in Z .

We next establish (5), so suppose that [CV (P ), A] 6= 0. First O2,3(F (G))
centralizes A by (1), and hence normalizes CV (PA), and second V = [V,O(F (G))]
by hypothesis, so that CV (P ) = [CV (P ), O

2,3(F (G))]. Thusm(CV (P )/CV (PA)) ≥
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3. On the other hand as A is noncyclic and faithful on P , m([V, P ]/C[V,P ](A)) ≥ 2.
Therefore m(V/CV (A)) ≥ 5, contrary to (!!). We conclude that (5) holds, so it
remains to establish (3), (6), and (7).

By (5), PA satisfies the hypotheses of the lemma on [V, P ] with r = rA,V =
rA,[V,P ], so if [V, P ] < V , then the lemma holds by induction on m(V ). Therefore
we may assume that V = [V, P ].

Suppose that V = [V, Z] = UZ for some Z ∈ Z . By (++), m(V ) = m(UZ) = 2
or 4. Then as s ≥ 2 by (2), m(V ) = 4, which in turn forces s = 2 and AP ∼= S3×S3,
establishing (3) for suitable Pi. By (!!), r = 3/2 or 2, so A contain no transvection,
and hence NA(P1) = NA(P2) is the group of order 2 inducing a transvection on
both [V, P1] and [V, P2], and A interchanges P1 and P2, Therefore conclusion (i)
of (7) holds, and m(CV (A)) = 1, establishing (6) and completing the proof in this
case.

Thus we may assume that [V, Z] < V for all Z ∈ Z , and henceWZ := CV (Z) 6=
0. As Z ≤ P which is elementary abelian by (2), the decomposition V = UZ ⊕WZ

is PA-invariant.
By (++), m(UZ) = 2 or 4. Suppose first that m(UZ) = 4 for some Z ∈

Z . In this case by (++), [UBZ , Z] = CUZ (BZ) is of rank 2. Then as Z =
[Z,A], m(CUZ (A)) = 1, so m(UZ/CUZ (A)) = 3. By (!!) m(V/CV (A)) ≤ 4, so
m(WZ/CWZ (A)) ≤ 1. As V = [V, P ], WZ = [WZ , P ], so as P = [P,A] by (2) and
m(WZ/CWZ (A)) ≤ 1, we concludem(WZ) = 2,m(V/CV (A)) = 4, and r = 2. How-

ever, now C := CA(WZ) is of order 2 with rC,UZ = rC,V = 2 = r, so C ∈ Q̂r(G, V ),

contradicting the minimality under inclusion of A ∈ Q̂∗(G, V ).
We’ve shown that m(UZ) = 2 for each Z ∈ Z . Hence P = Z × R with

R := CP (UZ) faithful onWZ . Set P1 := Z and V1 := UZ = [V, P1]. Pick P2 ∈ Z∩R;
thus V2 := [V, P2] is of rank 2. As m3(P ) = 2 or 3 from (2), either R = P2, or
R = P2 × P3 with P3 ∈ Z . In the former case V = [V, P ] = V1 ⊕ V2 is of rank 4,
with A centralizing a 2-subspace; this gives r = 1, contradicting (!!), so the latter
case holds. Now (3) and conclusion (ii) of (7) are satisfied with respect to this
decomposition of P . As P = [P,A],m(CVi(A)) = 1 for each i, som(CV (A)) = 3 and
hence r = 3/2 by (4), establishing (6) and completing the proof of the lemma. ¤

We are now ready to establish the main result of this section: Theorem D.2.17,

which determines the modules V such that q̂(Ĝϕ, V ) ≤ 2 for representations ϕ :

Ĝ→ GL(V ) of SQTK-groups Ĝ with F ∗(Ĝϕ) = O(F (Ĝϕ)).
In the spirit of the case of FF∗-offenders, where we defined J(G, V ) := 〈P(G, V )〉,

we set

Definition D.2.15. Ĵ(G, V ) := 〈Q̂∗(G, V )〉.

From now on we focus on the case where G = Ĵ(G, V ).
In order to state and prove Theorem D.2.17 efficiently, we define an appropriate

notion of decomposability:

Definition D.2.16. If G = Ĵ(G, V ), we write (G, V ) = (G1, V1) + (G2, V2) if

there is a proper partition Q̂∗(G, V ) = Q1 ∪Q2 such that Gi = 〈Qi〉, V = V1 ⊕ V2,
[Gi, V ] ≤ Vi, and [Gi, V3−i] = 1, for i = 1, 2. We say (G, V ) is decomposable if
(G, V ) = (G1, V1)+(G2, V2) with G1 6= 1 6= G2; and we say (G, V ) is indecomposable
otherwise.

As G is finite, (G, V ) can always be written as the sum of indecomposables.
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Theorem D.2.17. Assume r := q̂(G, V ) ≤ 2, G = Ĵ(G, V ), and V = [V, F (G)],
with (G, V ) indecomposable. Assume further that F ∗(G) = F (G), O2(G) = 1, and

G is a quotient of an SQTK-group. Then Q̂∗(G, V ) = Syl2(G), and one of the
following holds:

(1) G ∼= S3, m(V ) = 2r, and r = 1 or 2.
(2) G ∼= D10, m(V ) = 4, and r = 2.
(3) G is E9 extended by an involution inverting F (G), with m(V ) = 4, and

r = 2.
(4) G is 31+2 extended by an involution inverting F (G)/Φ(F (G)), m(V ) = 6,

and r = 2.
(5) m(V ) = 4, G = Ω+

4 (V ) ∼= S3 × S3, and r = 3/2.
(6) G is E27 extended by a 4-group, m(V ) = 6, and r = 3/2.

The proof of Theorem D.2.17 involves a series of reductions. In the remainder
of this subsection, assume the hypotheses of the Theorem.

Consider any A ∈ Q̂∗(G, V ). By hypothesis, F ∗(G) = F (G) and O2(G) = 1,
so A is faithful on F (G) = O(F (G)). Then A is nontrivial on Op(G) for some odd
p, so we have the hypotheses of D.2.13. In particular by D.2.13.3:

Lemma D.2.18. If |A| = 2 then the hypotheses of D.2.13 are satisfied and r = 1
or 2.

Also by hypothesis V = [V, F (G)], so as F (G) = O(F (G)), we have V =
[V,O(F (G))].

Lemma D.2.19. If m(A) > 1 then the hypotheses of D.2.14 are satisfied,

(1) r = 3/2, and

(2) all members of Q̂∗(G, V ) are noncyclic.

Proof. If A is noncyclic, the hypotheses of D.2.14 are satisfied, so (1) follows
from D.2.14.6. Then (2) follows from (1) and D.2.18. ¤

Note as V = [V,O(F (G))]⊕CV (O(F (G)) and V = [V,O(F (G))], CV (O(F (G)) =

0. In particular CV (G) = 0, and hence as G = Ĵ(G, V ):

Lemma D.2.20. CV (G) = 0, so no non-zero subspace of V is centralized by

each member of Q̂∗(G, V ).

Lemma D.2.21. If A is faithful on O3(G), then m3(CG(a)) ≤ 1 for each a ∈
A#.

Proof. This follows from A.1.31.1 and our hypothesis that G is the image of
an SQTK-group. ¤

Lemma D.2.22. If A is noncyclic, then conclusion (5) or (6) of Theorem D.2.17
holds.

Proof. Suppose that m(A) > 1. Then by D.2.19.2, all members of Q̂∗(G, V )
are noncyclic, and we may apply D.2.14. By D.2.14.1, [O3(F (G)), A] = 1, and then

G = Ĵ(G, V ) centralizes O3(F (G)), so that F ∗(G) = RZ(G), where R := O3(G).
Now RA and its action on V are described in D.2.14. In particular, R = [R,A]
by D.2.14.2, and s := m3(R) = 2 or 3. Further A centralizes CV (R) by D.2.14.5,

so G = Ĵ(G, V ) centralizes CV (R), and hence CV (R) = 0 by D.2.20, so that
V = [V,R].
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Suppose first that s = 3. Then case (ii) of D.2.14.7 holds, so that A acts on
each Pi, and hence also on each of the commutator subspaces Vi := [V, Pi] of V

defined in D.2.14.3. Then as G = Ĵ(G, V ), G acts on each Vi. As G acts faithfully
on the sum V = [V,R] of the Vi,

RA ≤ G ≤ G0 :=
⋂

i

NGL(V )(Vi) ∼= S3 × S3 × S3,

with |G0 : G| ≤ 2. But G < G0 by D.2.21, so A is Sylow in G = RA, and case (6)
of Theorem D.2.17 holds in this case.

Thus we may take s = 2, so from D.2.14.7,

AR ∼= S3 × S3 ≤ G ≤ G0 := NGL(V )({P1, P2}) = O+
4 (2).

But if G = G0, there are transvections in G, so r = 1, contradicting D.2.19. Thus
RA = G with A Sylow in G, so that case (5) of Theorem D.2.17 holds. ¤

By D.2.22, for the remainder of the proof we may assume that each A ∈
Q̂∗(G, V ) is of order 2. Thus by D.2.18, D.2.13 applies and r = 1 or 2. Now
A = 〈t〉 with r = rA,V = m(V/CV (A)) = m([V, t]) = 1 or 2, so that t is in the set
T of Definition D.2.10; thus

G = 〈T 〉

as G = 〈Q̂∗(G, V )〉. By D.2.13.1, [O3,5(F (G)), A] = 1.

Lemma D.2.23. If [O5(G), A] 6= 1 then conclusion (2) of Theorem D.2.17 holds.

Proof. Suppose [O5(G), A] 6= 1. Then by D.2.13.2, r = 2, D := [O5(G), A] ∼=
Z5, V = [V,D]⊕CV (DA), and m([V,D]) = 4. Now D is a member of the set X2 of
D.2.12, and as r = 2, T contains no transvections—that is m([V, u]) = 2 for each

u ∈ T . Thus D E 〈T 〉 = G by D.2.12.4. Applying D.2.12.3 to B ∈ Q̂∗(G, V ), either
B centralizes D[V,D], or D = [D,B] and [CV (D), B] = 1. In the latter case B is
faithful on [V,D], and as NGL([V,D])(D) is the multiplicative group F× of F := F16

extended by Aut(F ) ∼= Z4, B ∈ AD ; indeed [F×, A] = D and hence AF
×

= AD.

Therefore we have a partition Q̂∗(G, V ) = Q1 ∪ Q2, where Q1 := AD, and Q2

consists of those B centralizing D[V,D]. Set V1 := [V,D] and V2 := CV (D), and
observe that members of Qi normalize Vi and centralize V3−i, so that [V,B] ≤ Vi
for each B ∈ Qi. Hence as (G, V ) is indecomposable by hypothesis, we must have

Q2 = ∅. Thus G = Ĵ(G, V ) = 〈AD〉 ∼= D10, and as A centralizes CV (D), so does

AD = Q̂∗(G, V ), so CV (D) = 0 by D.2.20. Therefore case (2) of Theorem D.2.17
holds. ¤

Because of D.2.23 and the remark preceding it, in the remainder of the proof
we may assume each A ∈ Q̂∗(G, V ) centralizes O3(F (G)), so as G = Ĵ(G, V ),
O3(F (G)) ≤ Z(G). Set R := O3(G). Then F ∗(G) = F (G) = RZ(G), and A is
faithful on R.

Lemma D.2.24. If r = 1, then conclusion (1) of Theorem D.2.17 holds.

Proof. Suppose r = 1. We argue as in the proof of D.2.23, replacing D.2.13.2
by D.2.13.3, and F16 by F4, to conclude V = [V,D] is of rank 2, and G ∼= S3. Thus
A is Sylow in G, and conclusion (1) of Theorem D.2.17 holds. ¤
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Since D.2.22 reduced us to the case |A| = 2, by D.2.18 and D.2.24, we may
assume for the remainder of the proof that r = 2. In particular, G contains no
transvections on V , so all members of T satisfy

m([V, t]) = 2 = r. (∗)

Lemma D.2.25. Let X1 denote the set of subgroups X of order 3 in R with
m([V,X ]) = 2. If X1 6= ∅, then conclusion (3) of Theorem D.2.17 holds.

Proof. Assume X1 = {P1, . . . , Pn} 6= ∅. Then by D.2.12, Y := 〈X1〉 = P1 ×
· · ·×Pn and [V, Y ] = V1⊕· · ·⊕Vn, where Vi := [V, Pi]. As usual V = [V, Y ]⊕CV (Y )
by Coprime Action. Set T+ := CT (Y ) and T− := T − T+.

Suppose T+ = T , so that T ⊆ CG(Y ). Then any t ∈ T centralizes Pi and hence
also Vi. Thus G = 〈T 〉 centralizes [V, Y ] 6= 0, contrary to D.2.20. Thus T+ 6= T ,
and hence T− is nonempty.

Let t ∈ T−. If t is not in the kernel K of the permutation representation
of G on X1, then by D.2.12.5, t induces a transposition on X1, and centralizes
those members of X1 which it fixes. Further as m([V, t]) = 2, [V, t] ≤ [V, Y ], so t
centralizes CV (Y ).

Suppose on the other hand that t ∈ K. Then t normalizes each Pj , so as t ∈ T−,
t inverts some Pi. Then m([Vi, t]) = 1, so as m([V, t]) = 2, m([CV (Pi), t]) = 1.
Suppose that [CV (Y ), t] 6= 0. Then we may apply D.2.11.1 to CV (Y ) to conclude
that t inverts some x ∈ O3(G) of order 3 with m([CV (Y ), x]) = 2. Let Xt := 〈x〉.
As [CV (Y ), Xt] 6= 0, Xt /∈ X1, so m([V,Xt]) > 2 and hence [V, Y,Xt] 6= 0. As
m([V, t]) = 2, [Vj , t] = 0 for all j 6= i. As t is in the kernel of the action of G on X1,
so is Xt = [Xt, t], and hence also [Vj , Xt] = 0 for all j 6= i. Thusm([V,Xt]) = 4, and
we see from the structure of GL4(2) that PiXt = Pi ×X ′ for some X ′ ∈ X1 with
[V,X ′] = [CV (Y ), Xt], contradicting [V,X ′] ≤ [V, Y ]. Hence t centralizes CV (Y )
when t ∈ K.

Thus the members of T− centralize CV (Y ) and normalize the complement
[V, Y ], while members of T+ centralize [V, Y ] and normalize CV (Y ). Therefore
as (G, V ) is indecomposable, and T− 6= ∅, T− = T . In particular, G = 〈T−〉, so
as T− centralizes CV (Y ), CV (Y ) = 0 by D.2.20, and hence V = [V, Y ]. Now t
centralizes all but two members of X1, so by D.2.21, n := |X1| ≤ 3. Furthermore if
n = 3, we claim t normalizes each Pk: for otherwise 1 6= CP1P2(t) while [P3, t] = 1
by D.2.12.5, contrary to D.2.21. Note if n = 1, then m(V ) = 2 and m([V, t]) = 1,
contrary to (*); thus n > 1.

Suppose n = 2. Then m(V ) = 4, so

P 〈t〉 ≤ G ≤ NGL4(2)(P ) = O+
4 (2).

Recall G contains no transvections, and each member of Q̂∗(G, V ) is of order 2,
with r = 2 by (*); thus a Sylow 2-group of G is of order 2, so in fact G = P 〈t〉 has
order 18 and conclusion (3) of Theorem D.2.17 holds.

Thus we may assume that n = 3. Recall t fixes each Pk , so as T− generates G,
each Pk is normal in G. We may assume t inverts P1 and P2 and centralizes P3,
and as G = 〈T−〉, there is also t′ ∈ T− inverting P3 and one other Pk. But we may
take [t, t′] = 1 since each Pk is normal, so that A0 := 〈t, t′〉 ∼= E4 with rA0,V = 3/2,
contrary to r = 2 by (*). ¤

Appealing to D.2.25, for the remainder of the proof we may assume that X1

is empty. Let Y consist of those subgroups Y of R of order 3 with m([V, Y ]) = 4.
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Let X be any nontrivial cyclic subgroup of F (G) = F ∗(G) inverted by t ∈ T ; such
subgroups exist as O2(G) = 1.

Lemma D.2.26. (1) X ∈ Y.
(2) [V, t] = [V,X, t], [CV (X), t] = 0, and [CG(X [V,X ]), t] = 1.
(3) V = [V, 〈Y〉].

Proof. As X1 = ∅, m([V,X1]) ≥ 4 for each X1 of order 3 in R. Recall
we have reduced to the case where t centralizes O3(F (G)), so X ≤ R. By (*),
r = m([V, t]) = 2, so |X | = 3 by D.2.11.2. As m([V,X ])/2 = m([V,X, t]) ≤
m([V, t]) = 2, m([V,X ]) = 4, so (1) holds, and (2) follows from D.2.11.3. Since
each t′ ∈ T is faithful on F (G), t′ inverts some Y ∈ Y , and hence centralizes
CV (Y ) ≥ CV (〈Y〉). Therefore CV (〈Y〉) = 0 by D.2.20. Then as 〈Y〉 ≤ O3(G) is a
3-group, (3) holds by Coprime Action. ¤

Lemma D.2.27. If |R| = 3 or Y = {X}, then conclusion (1) of Theorem D.2.17
holds.

Proof. If |R| = 3 then Y = {R} = {X}; thus in any case we may assume
Y = {X}. Thus V = [V,X ] has rank 4 by D.2.26.3, and then

G ≤ NGL(V )(X) ∼= ΓL2(4).

As we saw F ∗(G) = F (G) = RZ(G), and X = [X, t], we conclude that either
G ∼= S3 or F (G) ∼= E9. In the former case, conclusion (1) of Theorem D.2.17 holds
with r = 2, while in the latter case X1 6= ∅, contrary to an earlier reduction. ¤

By D.2.27 we may assume for the remainder of the proof that |Y| > 1 and
X < R; so in particular X < NR(X) = CR(X) =: P .

The remainder of the argument is devoted to reducing to conclusion (4) of
Theorem D.2.17. It will take some further work to nail down all the details.

Lemma D.2.28. (1) P = X × Z where Z := CP (t).
(2) P ∼= E9.
(3) U := [V, P ] = [V, Z] is of rank 6.
(4) Y ∩ P is the set of subgroups of P of order 3 distinct from Z.

Proof. Let Z := CP (t), and suppose (1) fails, so that P > X × Z. Then t
inverts some cyclic subgroup Y of P with Y 6≤ X , so by D.2.26.1, Y ∈ Y∩P −{X}.
But by D.2.26.2, t centralizes CV (X), so Y = [Y, t] does too, and then [V, Y ] ≤
[V,X ]. Therefore [V, Y ] = [V,X ] since m([V, Y ]) = 4. But then X1 ∩ XY 6= ∅,
contrary to our earlier reduction to the case X1 empty. Thus (1) is established.

By D.2.21, Z is cyclic. If Y ∩ P = {X}, then as Y is G-invariant, X is weakly
closed in P = NR(X), so Y = {X} by A.1.13, contrary to D.2.27. Thus |Y ∩P | > 1.

Next set P0 := Ω1(P ), and note that Y ∩ P ⊆ P0 and P0 = X × Ω1(Z). As Z
is cyclic, P0 ∼= E9.

Suppose CP0 ([V,X ]) 6= 1. Then P0 = X × CP0([V,X ]), and by D.2.26.2, t
centralizes CP0([V,X ]), forcing CP0([V,X ]) = CP0(t) since both have order 3. Then
Y ∩ P = {X} ∪ (Y ∩ CP0([V,X ])), since 3-elements w projecting on both factors
have m([V,w]) > 4. Hence as Z is cyclic, Y ∩ P = {X,Y } with Y := CP0(t). Then
as R is of odd order, NR(P ) fixes Y ∩ P pointwise, so R = P = X × CR(t) and
hence Y = {X,Y }. Thus by D.2.26.3, V = [V,XY ] = [V,X ]⊕ [V, Y ], contradicting
our hypothesis that (G, V ) is indecomposable.
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Therefore CP0([V,X ]) = 1, and hence P0 is faithful on [V,X ] of rank 4. Then
P = X × Z is also faithful on [V,X ], and hence (2) holds by our usual appeal to
the structure of GL4(2).

We have shown that there is Y ∈ Y ∩P −{X}, and as X1 = ∅, [V,X ] 6= [V, Y ].
As P is faithful on [V,X ], [V,X ] ∩ [V, Y ] 6= 0. Therefore [V,X, Y ] is of rank 2, and
U := [V,XY ] = [V,X ] + [V, Y ] is of rank 6. In particular, P contains a unique
subgroup Z0 of order 3 with [V, Z0] = U of rank 6, and the remaining subgroups of
order 3 constitute Y∩P . As Z0 is unique, t normalizes Z0. Then as P0 = X×CP (t),
we must have Z0 = CP (t) = Z. This completes the proof of (3) and (4), and hence
of the lemma. ¤

Lemma D.2.29. P < R.

Proof. Suppose R = P . Then P ∼= E9 by D.2.28.2, so |Y| = 3 by D.2.28.4.
Then each member of T induces a transposition on Y using D.2.28.1, and as 〈T 〉 =
G, we conclude G induces S3 on Y . By D.2.26.3, V = [V, 〈Y〉], so V = U has rank
6 by D.2.28.3. Then the kernel K of the action of GL(V ) ∼= GL6(2) on Y is the
direct product of 3 copies of S3. As r = 2 by (*), K ∩G contains no transvection,
and as each member of T induces a transposition on Y , T ∩K = ∅. We conclude
|K ∩ G : P | ≤ 2 (possibly K ∩ G might contain an involution which inverts P ,
and hence is central modulo P ). But then as G/K ∼= S3, P < R, contrary to
assumption. ¤

We now complete the proof of Theorem D.2.17 by showing that conclusion (4)
of the Theorem holds. By D.2.29, P < R, and hence P < Q := NR(P ). Note
that Q normalizes the unique subgroup Z of order 3 in P with m([V, Z]) = 6
in view of D.2.28.3. Recall P = CR(X), so P = CR(P ). Then as P ∼= E9,
AutQ(P ) = Q/P is of order 3, soQ is extraspecial of order 27 with center Z. Further
Q〈t〉 induces S3 on Y ∩ P , so t inverts Q/P as well as X , and therefore also Q/Z,
so Q ∼= 31+2 is of exponent 3. As CR(Q) ≤ CR(X) = P ≤ Q, Z(R) = Z(Q) = Z.
Further t centralizes CV (X) by D.2.26.2, so as [V,X ] ≤ U = [V, Z] by D.2.28.3,
CV (Z) ≤ CV (X) and t centralizes CV (Z). Then as V = [V, Z]⊕ CV (Z),

[CR(U), t] ≤ CG(U) ∩ CG(CV (Z)) = CG(V ) = 1,

so CR(U) ≤ CR(t). But Z ≤ CR(t) which is cyclic by D.2.21, so Ω1(CR(U)) ≤ Z
which is faithful on U . Thus Ω1(CR(U)) = 1, and hence CR(U) = 1; that is, R is
faithful on U .

Next as R〈t〉 centralizes Z, U has the structure of a 3-dimensional F4-space
preserved by R〈t〉, with Z defining the scalar multiplication; that is R〈t〉 ≤ GL3(4).
As GL3(4) has Sylow-3 group isomorphic to Z3 oZ3, R = QCR(t) with CR(t) ∼= Z3

or E9. As CR(t) is cyclic by D.2.21, we have CR(t) = Z and hence Q = R = O3(G).
Now V = U is of rank 6 by D.2.26.3, and NGL(V )(Q)/Q ∼= GL2(3), so as G = 〈T 〉,
it follows that G = Q〈t〉. In particular, conclusion (4) of Theorem D.2.17 holds.

Thus the proof of D.2.17 is complete.

D.3. Modules with q̂ ≤ 2

In this section we extend our analysis (begun in B.4.5 for the case of V irre-
ducible) of modules V for SQTK-groups G satisfying q̂(G, V ) ≤ 2.

During much of this section we assume:
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Hypothesis D.3.1. M is a quotient of of an SQTK-group, T ∈ Syl2(M), VM
is a faithful F2M -module, and M+ E M satisfies either

(i) M+ = 〈LT 〉 for some component L of M , or
(ii) M+ = Op(M+) for some odd prime p, and T is irreducible on M+/Φ(M+).

Assume further that VM := 〈V M 〉 for some O2(M+T )-invariant member V of

Irr+(M+, VM ). Set ṼM := VM/CVM (M+).

During the proof of our Main Theorem, we will apply the results of this section
to certain internal modules of 2-locals in QTKE-groups. The following hypothesis,
which holds for example in our Fundamental Setup FSU (3.2.1), is sufficient to
achieve Hypothesis D.3.1 on the relevant internal modules:

Hypothesis D.3.2. Ṁ is an SQTK-group, Ṫ ∈ Syl2(Ṁ), and Ṁ+ = O2(Ṁ+)

E Ṁ such that either

(i) Ṁ+ = 〈L̇Ṫ 〉 for some L̇ ∈ C(Ṁ) with L̇/O2(L̇) quasisimple, or

(ii) Ṁ+ = O2,p(Ṁ+) for an odd prime p, and Ṫ is irreducible on Ṁ+/O2,Φ(Ṁ+).

Further assume that V+ = Q+/Q− is an Ṁ -invariant elementary abelian section of

O2(Ṁ), with O2(Ṁ+/CṀ+
(V+)) = 1, and V = QV /Q− is an O2(Ṁ+Ṫ )-invariant

member of Irr+(Ṁ+, V+).

Set QM := 〈QṀV 〉 and VM := QM/Q−.

Lemma D.3.3. Assume Hypothesis D.3.2 and let M := AutṀ (VM ), M+ :=
AutṀ+

(VM ), and T := AutṪ (VM ). Then

(1) M , M+, VM , V satisfy Hypothesis D.3.1.

(2) O2(Ṁ+) ≤ CṀ+
(VM ) ≤ O2,Φ(Ṁ+).

Proof. By Hypothesis D.3.2, V+ is an F2Ṁ -module, V ∈ Irr+(Ṁ+, V+), and

VM = 〈V Ṁ 〉. Thus by definition of M and M+, VM is a faithful F2M -module, and

V ∈ Irr+(M+, VM ) with VM = 〈V M 〉. Further M = Ṁ/CṀ (VM ) is a quotient of

the SQTK-group Ṁ .
By Hypothesis D.3.2, O2(Ṁ+) centralizes V+, so it centralizes the submodule

VM . As V ∈ Irr+(Ṁ+, V+), 0 6= V = [V, Ṁ+]. Further in both cases (i) and (ii)
of Hypothesis D.3.2, each proper subgroup of M+ normal in M+T is contained
in O2,Φ(M+); so CM+(VM ) ≤ O2,Φ(M+), completing the proof of (2). Then (2),
Hypothesis D.3.2, and the first paragraph of this proof imply (1). ¤

Here are some elementary consequences of Hypothesis D.3.1:

Lemma D.3.4. Assume Hypothesis D.3.1 and let VT := 〈V T 〉. Then

(1) O2(M) = 1 = O2(M+T/CM+T (VT )).
(2) CM+(VT ) ≤ Φ(M+).

(3) VM = [VM ,M+], VT = [VT ,M+], and ṼM and ṼT are semisimple M+-

modules, with M , T transitive on the M+-homogeneous components of ṼM , ṼT ,
respectively.

(4) CVM (M+) = 〈CV (M+)
M 〉.

(5) F ∗(AutM+T (VT )) = AutM+(VT ) and F ∗(AutM+T (V )) = AutM+(V ) are

semisimple in (i) and a p-group in (ii). 1

(6) If CV (M+) = 0, then V is a TI-set under M .

1but notice we make no corresponding assertion for M and VM .
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Proof. Let X := M+T or M and VX := 〈V X〉. Since V is M+-invariant,
VM+T = VT . As M+ E X and V = [V,M+], VX = [VX ,M+]. As V ∈

Irr+(M+, V+), Ṽ is an irreducible M+-module, so as ṼX = 〈Ṽ X〉, it follows that

ṼX is a semisimple M+-module, and X is transitive on its M+-homogeneous com-
ponents. Further as M+T is transitive on the M+-components of VM+T = VT , T is
also transitive on those components, completing the proof of (3). Indeed

CV (M+) ≤ V0 := 〈CV (M+)
M 〉 ≤ CVM (M+),

so the same argument applies to VM/V0; in particular CVM/V0(M+) = 0, so (4)
holds.

By Hypothesis D.3.1, V is O2(M+T )-invariant, so O2(M+T ) centralizes V by
A.1.41. Since O2(M) ≤ O2(M+T ) by A.1.6, we conclude O2(X) centralizes VX =
〈V X〉, establishing (1).

By (1), O2(AutM+T (VT )) = 1, so from (1), and (i) and (ii) of D.3.1,

F ∗(AutM+T (VT )) = AutM+(VT )

is semisimple or a p-group in the respective case. A similar argument works for V ,
so (5) holds.

As V ∈ Irr+(M+, VM ), 1 6= V = [V,M+]. Further in both cases (i) and (ii)
of Hypothesis D.3.1, each proper subgroup of M+ normal in M+T is contained in
Φ(M+), so CM+(VT ) ≤ Φ(M+), establishing (2). If CV (M+) = 0 and 0 6= v ∈
V ∩ V x for some x ∈M , then V and V x are M+-irreducibles, so V = 〈vM+〉 = V x,
establishing (6). ¤

The situation in case (ii) of D.3.1 can be handled using Theorem D.2.17 of the
previous section, so in the remainder of this section we will concentrate on case (i).
Therefore:

During the remainder of the section we assume that case (i) of Hypothesis D.3.1
holds, so that M+ = 〈LT 〉 for some component L of M .

By (2) of Theorem A (A.2.1), the possibilities for L/Z(L) are listed in Theorem
C (A.2.3). Observe that O2(L) = 1, since O2(M) = 1 by D.3.4.1. Thus Z(L) is of
odd order, and is described in the list of Schur multipliers in I.1.3.

By Hypothesis D.3.1, M = M̂/K̂0 for some SQTK-group M̂ and normal sub-

group K̂0 of M̂ . Let α : M̂ → M be the natural surjection. By B.5.2 we may
choose M̂ and K̂0 to satisfy the conclusions of B.5.2. In particular, K̂0 is nilpotent
of odd order, and L = L̂α for some component L̂ of M̂ . As K̂0 is of odd order and

O2(M) = 1, O2(M̂) = 1. Thus M̂ , L̂, and M̂+ := 〈L̂M̂ 〉 are described in section
A.3, so M+ and L are described in A.3.6 and in (1) and (3) of A.3.8; in particular,
either M+ = L, or M+ = LLt for t ∈ T −NT (L).

In the rest of the section we set VT := 〈V T 〉, and we adopt the notational
convention

M∗
+T

∗ :=M+T/CM+T (VT ).

We also assume
q̂(M∗

+T
∗, VT ) ≤ 2.

Finally for the rest of the section we assume that V ∈ Irr+(M+, VT , T ).

Hence ṼT is the direct sum of the T -conjugates of Ṽ by A.1.42.3, and these conju-
gates are not isomorphic as M∗

+-modules. In view of A.1.42.2, there is little loss of
generality in this last assumption.
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The restriction on q̂ will hold in our FSU in view of 3.2.5.

Our next two results describeM∗
+ and its action on VT when V < VT . Notice if

L =M+, then CM+(V ) ≤ Z(M+), so the hypothesis of the next lemma is satisfied.

Lemma D.3.5. Assume that V < VT and CM+(V ) ≤ Z(M+). Then

(1) M+ = L; that is, T ≤ NM (L).
(2) V is an FF-module for AutM+T (V ), and AutL(V ) = F ∗(AutM+T (V )) is

quasisimple.
(3) Each member of Q̂∗(T ∗, VT ) acts on V .
(4) |T : NT (V )| = 2, so that ṼT = Ṽ ⊕ Ṽ t, for t ∈ T −NT (V ).

(5) Either L∗ ∼= SL3(2
n), Sp4(2

n), A6, L4(2), or L5(2), and Ṽ is a natural
module for L∗; or V is a 4-dimensional module for L∗ ∼= A7.

Proof. Choose A∗ ∈ Q̂∗(T ∗, VT ). By A.3.8.1, either M+ = L orM+ = LLt >
L for t ∈ T −NT (L). In either case by D.3.4.5, F ∗(M∗

+T
∗) = M∗

+ = E(M∗
+), and

by D.3.4.2, O2(M
∗
+T

∗) = 1, so A∗ is faithful on M∗
+. By hypothesis, CM+(V ) ≤

Z(M+), so CM∗
+
(V ) ≤ Z(M∗

+) and each component of M+ is nontrivial on V .

By hypothesis V ∈ Irr+(M+, VT , T ), so by A.1.42.3, ṼT is the direct sum of

the T -conjugates of Ṽ . Let V =: V1, . . . , Vr be representatives for the orbits of A∗

on Irr+(M+, VT ), and set Wi := 〈V A
∗

i 〉. As T is transitive on Irr+(M+, VT ), each
component K of M+ is nontrivial on each Vi by the previous paragraph. Thus
Wi = [Wi,K] and as A∗ is faithful on M∗

+, A
∗ is faithful on Wi, so AutM+(Wi) =

F ∗(AutM+T (Wi)) and so O2(AutM+T (Wi)) = 1. Define

q̂i := rA∗,Wi =
m(Wi/CWi(A

∗))

m(A∗)
, for 1 ≤ i ≤ r.

By definition q̂ := rA∗,VT , so as ṼT = W̃1 ⊕ · · · ⊕ W̃r,

2 ≥ q̂ = rA∗,VT =
m(VT /CVT (A

∗))

m(A∗)
≥

∑r
i=1 m(Wi/CWi(A

∗))

m(A∗)
=

r∑

i=1

q̂i. (∗)

Suppose that r = 1. Observe that the hypotheses of D.2.9 are satisfied with
M∗

+T
∗, Ṽ ∗T , Ṽ

T in the roles of “G, V , I”: for s := |Ṽ T | > 1 since V < VT , while

m(Ṽ ) > 2 as M+ is nonsolvable, and Ṽ T = Ṽ A
∗

as r = 1. Then we conclude
from D.2.9.1 that s = 2, so as O2(M

∗
+T

∗) = 1, D.2.9.6 forces A∗ to normalize each

summand, contradicting our assumption that V T = V A
∗

.
Thus r > 1. Then q̂i ≤ 1 for some i by (*), so by B.1.4.4, A∗ contains an

FF ∗-offender B∗ on the FF-module Wi. Set M
∗
0 := [M∗

+, B], G0 := AutM∗
0B

∗(Wi),
and L0 := AutM∗

0
(Wi). As F ∗(AutM+T (Wi)) = AutM+(Wi) = E(AutM+T (Wi)),

F ∗(G0) = L0 = E(G0); and as Wi = [Wi,K] for each component K of M+,
Wi = [Wi, L0]. Thus we may apply Theorem B.5.6 to the action of G0 on Wi.
Since F ∗(G0) = E(G0), cases (2) and (4) of B.5.6 are ruled out. We saw that each
component of M+ is nontrivial on Vi, so as Vi ∈ Irr+(M+,Wi), cases (3) and (5)
of B.5.6 are also ruled out. Thus case (1) of B.5.6 holds, so that F ∗(G0) = L0 is
quasisimple, and we can apply Theorem B.5.1 to the action of G0 on Wi. In each
case CGL(Wi)(L0) contains no component K0 with K0/Z(K0) ∼= L0/Z(L0); so as
each component of M+ is nontrivial on Wi, it follows that M+ = L, establishing

(1). As W̃i is the direct sum of A∗-conjugates of Ṽi which are not M∗
+-isomorphic,

B.5.1.1 says that eitherWi = Vi is an FF-module in Irr+(M
∗
+, VT ), or Vi is a natural
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module for M∗
+
∼= Ln(2), with n = 4 or 5, and |V A

∗

i | = 2. In the latter case there is
a ∈ A∗−NA∗(Vi) with CL∗(a∗) ∼= Sp4(2) or S4×Z2, som(A∗) ≤ m(CL∗A∗(a

∗)) = 4.

On the other hand, as W̃i = Ṽi ⊕ Ṽ ai ,

m(Wi/CWi(A
∗)) ≥ m(V ) +m(Vi/CVi(NA∗(Vi))) > m(V ) ≥ 4,

contradicting qi ≤ 1. Thus A∗ acts on Vi, and Vi is an FF-module for AutLT (Vi).
So (1)–(3) are established.

Now Ṽ is an irreducible L-module, so by (2), Ṽ is described in Theorem B.4.2.

In each of the cases listed there, the stabilizer NT (V ) of the equivalence class of Ṽ is
of index at most 2 in T , so as |T : NT (V )| = r > 1 we conclude r = 2, establishing
(4). As V 6= V t, cases (1), (4), (5), and (10) of Theorem B.4.2 are ruled out, while
cases (2), (3), (6), (7), and (9) appear in conclusion (5) of the lemma. Therefore it

remains to eliminate cases (8) and (11) of Theorem B.4.2—namely L∗ ∼= Â6 with
m(V ) = 6, and L∗ ∼= L5(2) with m(V ) = 10. Here by (3), A∗ acts on V1 and V2.
But by B.4.2, q(AutLT (Vi), Vi) ≥ 1; so as q̂ ≤ 2, A∗ must be an FF ∗-offender on
both V1 and V2. However by B.4.2, the unique FF ∗-offender in T on V1 is not an
offender on the module V2. This contradiction completes the proof. ¤

The next two results assume that L < M+; observe in this case that the
possibilities for L are listed in A.3.8.3.

Lemma D.3.6. Assume that V < VT and M+ = LLt for some component L of
M and t ∈ T −NT (L). Then

(1) ṼT = Ũ ⊕ Ũ t, where U := [VT , L] ≤ CVT (L
t).

(2) Each member of Q̂∗(T
∗, VT ) acts on U , so q̂(AutM+T (U), U) ≤ 2.

(3) Either U = V or L∗ ∼= L3(2), U = V ⊕ V s for s ∈ NT (L) − NT (V ), and
m(V ) = 3.

Proof. As L < M+, CM+(V ) 6≤ Z(M+) by D.3.5.1. As Lt∗ is quasisimple,
interchanging the roles of L and Lt if necessary, we may assume [V, Lt] = 1; hence

Ṽ is an irreducible F2L-module. Set S := NT (L) and U := [VT , L]; thus S is

of index 2 in T . By A.1.42.3, Ũ is the direct sum of the S-conjugates of Ṽ , and
ṼT = Ũ ⊕ Ũ t, with U ≤ CVT (L

t). That is, (1) is established.

Choose A∗ ∈ Q̂∗(T ∗, VT ). As in the proof of the previous lemma, we have the

hypotheses of D.2.9 for the decomposition ṼT = Ũ ⊕ Ũ t as the direct sum of just
two summands. Again we may apply D.2.9.6 to see that A∗ acts on U . By D.2.5,

rAutA∗ (U),U ≤ rA∗,VT = q̂(M∗
+T

∗, VT ) ≤ 2,

completing the proof of (2).
Next the quadruple AutM (U), U , V , AutS(U) satisfies Hypothesis D.3.1 in the

roles of “M , VM , V , T”. Part (3) holds if V = U , so we may assume V < U = VS .
By (2), q̂(AutLS(U), U) ≤ 2, so the hypotheses of D.3.5 are also satisfied by this
quadruple. Then comparing the possibilities for L∗ in A.3.8.3 to the list of D.3.5.5,
we conclude L∗ ∼= L3(2) and Ṽ is a natural module for L∗. From D.3.5.4 we see

Ũ = Ṽ ⊕ Ṽ s for s ∈ S − NS(V ). However B.4.8.2 says that q̂(AutLS(U), U) > 2
if CV (M+) 6= 0, so m(V ) = 3. This completes the proof of (3), and the lemma is
established. ¤

Having begun the case L < M+ in D.3.6 under the assumption that V < VT ,
we now continue that case when V = VT :
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Lemma D.3.7. Assume that V = VT , and M+ = LLt for some component L

of M and t ∈ T −NT (L). Set q̂ := q̂(M∗
+T

∗, V ) and let A∗ ∈ Q̂∗(T ∗, VT ). Then
one of the following holds:

(1) L∗ ∼= L2(2
n), V is the Ω+

4 (2
n)-module for M∗

+, and either q̂ = 3/2 and
m(A∗) = 2n (with m(A∗) = 4 also allowed when n = 3), or n = 2, m(A∗) = 3, and
q̂ = 4/3.

(2) L∗ ∼= L3(2), V is the tensor product of natural modules for L∗ and L∗t,
q̂ = 5/4, and m(A∗) = 4.

Proof. Let I ∈ Irr+(L, V ), F := EndF2L(Ĩ) = F2e , and d := dimF (Ĩ) ≥ 2.

Now It ∈ Irr+(L
t, V ) and Ĩt is quasi-equivalent (by t-conjugacy) to Ĩ , so also

F = EndF2Lt(Ĩ
t). Then regarding Ĩ and Ĩt as F -modules for L∗ and Lt∗, and as

Ṽ is an irreducible M∗
+-module, Ṽ = Ĩ ⊗ Ĩt as an FM∗

+-module. Then by Theorem

3 in [AS85], H1(M∗
+, Ṽ ) = 0, so CV (M+) = 0 and V = Ṽ .

Pick an F -basis x1, . . . , xd for I and let yi := xti , so that y1, . . . , yd is a basis
for It, and hence xi ⊗ yj , 1 ≤ i, j ≤ d, is an F -basis for V .

We first consider the case where A∗ 6≤ NT∗(L
∗). Then we may choose t∗ to be

an involution in A∗, so the linear span 2

[V, t∗] = 〈vJ : J ∈ Λ〉

is of F -dimension d(d − 1)/2, where Λ is the set of 2-subsets of {1, . . . , d}, and
vi,j := xi ⊗ yj + xj ⊗ yi. Also

CV (t
∗) = [V, t∗]⊕ 〈xi ⊗ yi : 1 ≤ i ≤ d〉

is of F -dimension d(d+ 1)/2.
Observe that

m(A∗) ≤ 1 +m2(NT (L)
∗) ≤ 1 +m (∗)

where m := m2(Aut(L
∗)).

Consider the subcase d > 2. Then

m(V/CV (A
∗)) ≥ m(V/CV (t

∗)) = d(d− 1)e/2 ≥ de = k, (!)

where k := dimF2(I). Indeed if A∗ > 〈t∗〉, then 1 6= NA∗(L) acts faithfully on the
diagonal L∗t := CM∗

+
(t∗) of L∗Lt∗, and L∗t is faithful on CV (t

∗), so m(V/CV (A
∗)) >

m(V/CV (t
∗)) ≥ k. Thus:

2m(A∗) ≥ q̂ m(A∗) = m(V/CV (A
∗) ≥ k,

and 2m(A∗) > m(V/CV (t
∗)) ≥ k if m(A∗) > 1. (!!)

In particular if m(A∗) = 1, then k ≤ 2, contrary to L not solvable. Thus k > 2 and
m(A∗) > 1, so by (!!), m(A∗) > k/2 > 1. Then using (*),

m+ 1 > k/2. (∗∗)

We now examine the possibilities for L∗ from A.3.8.3. If L∗ ∼= Sz(2n), then
m = n ≥ 3 is odd and k ≥ 4n, so

m+ 1 = n+ 1 < 2n ≤ k/2,

contradicting (**). If L∗ ∼= J1, then m = 3, and k ≥ 18 as L∗ has an element of
order 19, also contrary to (**). If L∗ ∼= L2(p) with p > 5 prime, then m = 2; thus

2Notational convention: We often use angle brackets to denote the vector subspace spanned
by a set of vectors.
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(**) gives k < 2(m+1) = 6, which forces p = 7 and k = 3. Therefore L∗ ∼= L3(2), so
e = 1 and d = k = 3, so that I is the 9-dimensional module described in conclusion
(2). However m(A∗) ≤ 3 by (*), so m(V/CV (A

∗)) ≥ 6 and hence rA∗,V ≥ 2—
whereas the product B∗ of transvection subgroups with a fixed axis from L∗ and
Lt∗ satisfies rB∗,V = 5/4 < rA∗,V , contradicting A

∗ ∈ Q̂∗(T ∗, V ).
This leaves the possibility L∗ ∼= L2(2

n), so again m = n. Let K := F2n . Then
F ≤ K and we let IK := I ⊗F K. Then IK is the tensor product of a set ∆ of r
Galois conjugates of the natural module, so

2r = dimK(IK) = dimF (I) = d,

as I is an absolutely irreducible FL-module. Now n/e is the order of the largest
subgroup Γ of Aut(K) acting on ∆, and all orbits of Γ on ∆ are regular. Therefore
n/e divides r, so (**) gives

2re = k < 2(n+ 1) = 2(e ·
n

e
+ 1) ≤ 2(er + 1),

so 2r−1 < r + 1/e and hence r = 1 or 2. However if r = 1 then I is the natural
module, F = K, and d = 2, contrary to our assumption in this subcase that d > 2.

Thus r = 2, so that IK = N⊗Nσ for N the natural module and σ a non-trivial
automorphism of K. If σ has order other than 2, then Γ is trivial, so we have n = e
and as n > 1,

k = 4n > 2(n+ 1),

contradicting (**). Thus σ has order 2, and I is the orthogonal module of dimension
d = 4 and minus type over the σ-fixed field F , and e = n/2. Now by (*), (!), and
the strict inequality in (!!) as m(A∗) > 1,

2(n+ 1) ≥ 2m(A∗) > m(V/CV (t
∗)) =

d(d− 1)e

2
= 3n,

impossible as n ≥ 2.
So when A∗ 6≤ NT∗(L

∗) we are reduced to the subcase d = 2. Then

L∗t ≤ CGL(V )(L
∗) ∼= GLd(F ) = GL2(F ),

so L∗ ∼= L2(2
n), I is the natural module for L∗, and F = F2n . But now V = I ⊗ I t

is the orthogonal module of dimension 4 and plus type, as in conclusion (1). We
argue much as in the earlier case L∗ ∼= L3(2), now with B∗ the product of the
Sylow groups of L∗ and Lt∗, giving rB∗,V = 3/2, whereas m(A∗) ≤ n + 1 by (*)

and m(V/CV (A
∗)) ≥ 2n, so that rA∗,V ≥ 2n/(n + 1). Then as A∗ ∈ Q̂∗(T

∗, V ),
rA∗,V ≤ 3/2, which forces n ≤ 3, and m(A∗) = 4 when n = 3. When n = 2 we get
q̂ = 4/3 and m(A∗) = 3. Thus conclusion (1) holds in these two cases, completing
the treatment of the case A∗ 6≤ NT∗(L

∗).

Thus we have reduced to the case where A∗ acts on L∗. As A∗ is faithful on
M∗

+, interchanging the roles of L and Lt if necessary, we may assume L∗ = [L∗, A∗].
As M+ is irreducible on V , V is a homogeneous L-module, so we may assume (cf.
A.1.42.2) that A∗ acts on I . As L∗ = [L∗, A∗], [I, A∗] 6= 0. Then by D.2.5, q̂ ≥
q̂(AutL∗A∗(I), I), and in case of equality, using D.2.8 we have V = I+CV (A

∗). But
in the latter case as L∗ = [L∗, A∗], we have I = [V, L]; then as V is a homogeneous
L-module, V = I , contradicting the fact that V is the sum of d > 1 copies of I .
Thus q̂(AutA∗L∗(I), I) < q̂ ≤ 2. Applying this restriction to the groups in A.3.8.3,
Theorems B.4.2 and B.4.5 show that one of the following holds:
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(i) L∗ ∼= L2(2
n) and I is a natural module.

(ii) L∗ ∼= L2(2
n), n even, and I is an orthogonal module of minus type.

(iii)L∗ ∼= L3(2) and I is a natural module.

In (i), conclusion (1) holds—where A∗ is the subgroup B∗ described in our earlier
discussion of the orthogonal module of plus type. Similarly conclusion (2) holds in
(iii), so we may assume that (ii) holds. Then m(V ) = 42 · n/2 = 8n.

We claim that any involution j∗ inM∗
+ acts freely on V , so that CV (j

∗) = [V, j∗]
is of rank 4n: For if j∗ ∈ L∗ then m(CI (j

∗)) = [I, j∗] is of rank m(I)/2, so as V is
homogeneous under L∗, the same is true for V . On the other hand if j∗ is not in
L∗ or L∗t, then j∗ = j∗1j

∗
2 with 1 6= j∗1 ∈ L

∗ and 1 6= j∗2 ∈ L
∗t, and

m([CV (j
∗
1 ), j

∗]) = m([CV (j
∗
1 ), j

∗
2 ]) = m(CV (j

∗
1 ))/2,

and similarly m([V/CV (j
∗
1 ), j

∗]) = m(V/CV (j
∗
1 ))/2, so m(CV (j

∗)) = m(V )/2, as
claimed.

Thus if j∗ ∈ A∗ ∩M∗
+, then

4n ≥ 2m(A∗) ≥ m(V/CV (A
∗)) ≥ m(V/CV (j

∗)) = m(V )/2 = 4n,

so all inequalities are equalities, and in particular m(A∗) = 2n and CV (A
∗) =

CV (j
∗). But since m(A∗) = 2n, A∗ ∈ Syl2(M

∗
+), so that CV (A

∗) < CV (j
∗),

a contradiction. Hence there is no such involution j∗, so A∗ ∩ M∗
+ = 1, and

hence m(A∗) ≤ 2. But m(V/CV (A
∗)) ≥ 4 for any such A∗, so as rA∗,V ≤ 2,

m(V/CV (A
∗)) = 4, which occurs only when n = 2 and m(A∗) = 1, contradicting

rA∗,V ≤ 2. This completes the proof. ¤

Lemma D.3.8. Assume L/Z(L) ∼= Sz(2n) with n > 1. Then q̂(M∗
+T

∗, VT ) = 2,

V is the natural module for L∗, Q̂∗(T ∗, VT ) ⊆ NT∗(V ), and either

(1) M+ = L and VT = V , or
(2) M+ = LLt for t ∈ T − NT (L) and VT = V ⊕ V t, with V = [VT , L] =

CVT (L
t).

Proof. As q̂ := q̂(M∗
+T

∗, VT ) ≤ 2 we must show that q̂ = 2.
Suppose first that M+ = L. As we saw earlier that Z(L) is of odd order,

Z(L) = 1 by I.1.3, so that L is simple, and hence L is faithful on V by D.3.4.2. As

Suzuki groups do not appear in D.3.5.5, we have VT = V . Then as Ṽ is irreducible,
Theorem B.4.5 says Ṽ is the natural module and q̂ ≥ 2; thus V = Ṽ is irreducible
by I.1.6.11, so that q̂ = 2 and conclusion (1) holds in this case.

Thus we may assume thatM+ = LLt with t ∈ T−NT (L). Since Suzuki groups
do not appear in D.3.7, we may assume V < VT . Then by D.3.6, ṼT = Ṽ ⊕ Ṽ t, with
V = [VT , L], and Q̂∗(T ∗, VT ) acts on V . Then applying the result of the previous
paragraph to NM (L), conclusion (2) holds in this case. ¤

The previous results provide a good description of VT , so we turn next to VM .
In our proof of the Main Theorem (cf. 3.2.5) we will be able to apply the qrc-
lemma to both M+T on VT , and M on VM , so we are interested in the case where
q̂(M,VM ) ≤ 2 ≥ q̂(M ∗

+T
∗, VT )).

Lemma D.3.9. Assume that

q̂(M,VM ) ≤ 2 ≥ q̂(M ∗
+T

∗, VT ).

Further assume that either V = VT , or V = [V, L] < [VT , L]. Let A ∈ Q̂∗(M,VM ).
Then
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(1) If A is faithful on M+, then either

(a) VT = VM , or

(b) V = VT , M+ = L, Ṽ is an FF-module for AutLT (Ṽ ), and L has at

most 2/q̂ chief factors on ṼM , where q̂ := q̂(AutLT (Ṽ ), Ṽ ).

(2) If A is not faithful on M+, then A acts on X ≤ CM (M+) such that X =
[X,CA(M+)], and either

(a) X = 〈KA〉 for some component K of M with K not a Suzuki group,
or

(b) X ≤ O3(M) is of order 3.

Further M+ = L and A centralizes O3(F (M)) and each Suzuki component of
CM (L).

Proof. We first prove (1), so suppose that A is faithful on M+. Using D.3.4.3
and A.1.42.2, there is part of an M+T -chief series

VM,0 < · · · < VM,k = VM

with VM,0 := CVT (M+), VM,1 := VT , and each Ii := VM,i/VM,i−1 is quasi-equivalent

(M+T -conjugate by Clifford’s Theorem) to ṼT as an M+T -module. Thus setting

q̂T := q̂(AutM (ṼT ), ṼT ), by hypothesis

2 ≥ q̂(M,VM ) ≥ kq̂T ,

so in particular k ≤ 2/q̂T .

We may assume that VT < VM , so that k > 1. Then q̂T ≤ 1, so that ṼT is an
FF-module for AutLT (ṼT ). We claim then that M+ = L: For by Theorem B.4.2,
VT is not an FF-module in either of the two cases of D.3.7, so the claim holds
when V = VT . On the other hand when V < VT , by the hypotheses of the lemma,
V = [V, L] < [VT , L]; so if L < M+, then by D.3.6.3, [VT , L] is the sum of the
natural module and its dual for L∗ ∼= L3(2), and again VT is not an FF-module.
This completes the proof of the claim.

Therefore M+ = L. Moreover the other assertions of conclusion (1b) were
established above in the case where V = VT , so to complete the proof of (1), we
assume that V < VT , and it remains to derive a contradiction. Then F ∗(L∗T ∗) =
L∗ is quasisimple and VT is an FF-module, so VT is described in Theorem B.5.1. As
Ṽ < ṼT and Ṽ is an L-homogeneous component of ṼT , it follows that B.5.1.1 holds
with L ∼= Ln(2) for n = 4 or 5, and ṼT the sum of the natural and dual modules.

Applying parts (iii) and (iv) of B.4.9.2 to ṼT , we conclude that q̂T ≥ 5/6. Then as
k ≤ 2/q̂T , we conclude that k = 2. Therefore as F2 is the splitting field of these
modules,

CM (L) ≤ CGL(VM )(L) ∼= L2(2)× L2(2).

Then as m3(M) ≤ 2 and Aut(L) is a 2-group, M = LT , contradicting the assump-
tion that VT < VM . This completes the proof of (1).

Therefore it remains to prove (2), so we may assume that A is not faithful on
M+. Hence 1 6= CA(M+) is faithful on CF∗(M)(M+) as O2(M) = 1 by D.3.4.1, so

A acts on some X ≤ CM (M+) such that X = [X,CA(M+)] and either X = 〈KA〉
for some component K ofM , or X ≤ Op(M) is of order p for some odd prime p. To
establish (2), we need to show that 3 divides the order ofX , so we assume otherwise.
Then if X is nonsolvable, K ∼= Sz(2n). Set B := CA(X) and W := CVM (B). By
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D.2.5, A/B ∈ Q̂(AutM (W ),W ), and by the Thompson A×B-lemma, X is faithful
on W .

Suppose first that X ≤ Op(G). Then by D.2.13.1, X is of order p = 3 or 5, and

since we are assuming X is a 3
′

-group, p = 5. Now m([VM , X ]) = 4 by D.2.13.2,
so CGL([VM ,X])(X) is cyclic of order 15. Then as M+ = M∞

+ , M+ centralizes

[VM , X ]—impossible as CṼM (M+) = 0, since ṼM is a direct sum of conjugates of

Ṽ .
So X = 〈KA〉 and K ∼= Sz(2n). Now applying D.3.8 to X in the role of

“M+” and I ∈ Irr+(K,W ) in the role of “V ”, we conclude A normalizes K and
hence X = K. Further I is the natural module for K, and by A.1.42.2, we may
choose I to be A-invariant. By Theorem B.4.5, q̂(AutKA(I), I) = 2; so by D.2.8,
VM = I + CV (A). So as K = [K,A], I = [VM ,K] is irreducible, and we obtain a
contradiction as in the previous paragraph since CGL(I)(I) is cyclic. ¤

The main results of this section are Theorems D.3.10 and D.3.21, describing
the cases where L =M+ and L < M+, respectively.

Theorem D.3.10. Assume L =M+ and

q̂(M,VM ) ≤ 2 ≥ q̂(LT/CLT (VT ), VT ).

Take V ∈ Irr+(L, VT , T ). Then one of the following holds:

(1) T acts on V , so V = VT , and hence the action of LT on V is described in
Theorems B.4.2and B.4.5.

(2) Either L is SL3(2
n), Sp4(2

n), A6, L4(2), or L5(2), and Ṽ is a natural

module for L; or V is a 4-dimensional module for L ∼= A7. Further ṼM = Ṽ ⊕ Ṽ t

with t ∈ T −NT (V ), and Ṽ t is not F2L-isomorphic to Ṽ .

The proof of Theorem D.3.10 involves a series of reductions. AssumeM , V is a
counterexample. By our hypothesis that V ∈ Irr+(L, VT , V ), Ṽ is a homogeneous

component of ṼT . If V = VT , then (1) holds, so we may assume that

V < VT .

As L is quasisimple by hypothesis, CL(V ) ≤ Z(L), so the hypotheses of D.3.5 are
satisfied. Therefore by parts (4) and (5) of D.3.5:

Lemma D.3.11. VT satisfies conclusion (2) of Theorem D.3.10.

If VT = VM , then D.3.11 says that conclusion (2) of Theorem D.3.10 holds,
contrary to the choice of M,V as a counterexample. Therefore

VT < VM .

By D.3.4.3, ṼM is a semisimple L-module, with M transitive on the homoge-
neous L-components of ṼM . But by D.3.11, VT is described in D.3.10.2; and in each
of the cases listed there, the full stabilizer in Aut(L) of the equivalence class of Ṽ

is of index 2 in Aut(L). It follows that ṼM = Ũ ⊕ Ũ t, where Ũ is the homogeneous

L-component of Ṽ on ṼM , and t ∈ T − NT (V ). Now Ũ = Ũ1 ⊕ · · · ⊕ Ũk, where

Ũ1, . . . , Ũk are copies of Ṽ , and as VT < VM , k > 1.
Set q̂ := q̂(M,VM ); by hypothesis, q̂ ≤ 2. Let A ∈ Q̂∗(T, VM ). As in earlier

arguments, we may apply D.2.9.6 to the decomposition VM = U ⊕U t, to conclude:

Lemma D.3.12. A ≤ NM (U).
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Lemma D.3.13. A is not faithful on L.

Proof. Since V = [V, L] < [VT , L], we have the hypotheses of D.3.9. But
V < VT < VM , so that neither of the two conclusions of D.3.9.1 can hold. Thus A
is not faithful by D.3.9.1. ¤

We just observed that the hypotheses of D.3.9 are satisfied, but A is not faithful
on L. Therefore the hypotheses of D.3.9.2 are satisfied, so by D.3.9.2, A acts on
some X ≤ CM (L) such that

X = [X,CA(L)],

where either X = 〈KA〉 for some component K of M with K not a Suzuki group,
or X ≤ O3(M) is of order 3.

Lemma D.3.14. m3(CM (L)) = 1 and L ∼= L3(2
m) with m odd.

Proof. By D.3.11, the possibilities for L are listed in D.3.10.2. In each case:

there is a subgroup of L of order 3 inverted in L. (!)

Further

m3(L) > 1 unless L ∼= L3(2
m), with m odd. (!!)

Using (!), and applying A.1.31.1 to a section of M̂ which is the product of an
S3-section of L with a Sylow 3-group of CM (L), m3(CM (L)) = 1. In particular
m3(X) = 1. Then we may assume that m3(L) = 2 by (!!). If X has order 3,
then as X = [X,CA(L)], an involution in CA(L) inverts X and commutes with an
E9-subgroup of L, contrary to A.1.31.1. So as m3(X) = 1, we conclude from (2) of
Theorem A (A.2.1) and Theorem C (A.2.3) that X = K ∼= L2(2

n), Lε3(q), L2(p
e),

or J1. In each case some involution in X inverts an element of order 3 in X , so as
before, m3(L) = 2 contrary to A.1.31.1. ¤

Lemma D.3.15. X = [F ∗(CM (L)), A] and either

(1) X = O3(M) ∼= Z3, or
(2) X is a normal component of M .

Proof. Set Y := CM (L). By D.3.9.2, A centralizes O3(F (Y )) and each Suzuki

component of Y , so [F ∗(Y )), A] ≤ O3(M)I , where I := O3′(E(Y )). As m3(Y ) = 1
by D.3.14, either I = 1 and O3(Y ) 6= 1 is cyclic, or O3(Y ) = 1 and I is a component
of Y . In the second case (2) holds since L = M+ is normal in M by Hypothesis
D.3.1. In the first case X = Ω1(O3(Y )), and it remains to show that X = O3(M).
If not set W := CVM (CA(X)), and argue as in the proof of D.3.9.2 using D.2.5 to

conclude A/CA(X) ∈ Q̂(AutM (W ),W ), whereas O3(Y ) is cyclic of order at least 9
and faithful on W , contrary to D.2.17. ¤

Lemma D.3.16. CVM (L) = 0 = CV (M).

Proof. If the lemma fails, then CV (L) 6= 0 by D.3.4.4, so H1(L, Ṽ ∗) 6= 0,

where Ṽ ∗ is the dual of Ṽ . But by D.3.14 and D.3.11, Ṽ is the natural module
for L ∼= L3(2

m), so we conclude from I.1.6 that m = 1. However by hypothesis,
q̂(AutLT (VT ), VT ) ≤ 2, and this case is eliminated using B.4.8.2 as in the proof of
D.3.6.3. So the lemma is established. ¤

Recall Ũ is the L-homogeneous submodule of ṼM with k summands defined
after D.3.11. By D.3.16, ṼM = VM , so Ũ ∼= U and VM = U ⊕ U t.
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Lemma D.3.17. (1) X ∼= L3(2
n) with n odd.

(2) There is I ∈ Irr+(X,U,NT (U)), and each such I is a natural module for
X.

(3) A induces inner automorphisms on X.

Proof. By D.3.12, we have A ≤ NM (U). Using A.1.42.2, we may choose I ∈
Irr+(X,U,NT (U)); then It ≤ U t, so I 6= It—and hence the hypotheses of D.3.5
are satisfied with X , I in the roles of “L, V ”. So by D.3.5.2, I is an FF-module for
AutNT (U)X(I). Therefore the sublist of simple groups of 3-rank 1 from Theorem
C is reduced by applying Theorem B.4.2 to give X ∼= Z3, L2(2

m), or L3(2
n) with

n odd, and in the last case, A induces inner automorphisms on X . When X ∼=
L3(2

n) and CI(L) = 0, I is natural by B.4.2.4, and we are done. Thus we may
assume otherwise. Then from B.4.2.2 and B.4.8.2, q̂(AutXNT (U)(I), I) = 1, so that

q̂(AutXNT (U)(I + It), I + It) = 2. Thus by D.2.8, we have VM = (I + It) +CV (A),

and hence [VM , X ] = I+It asX = [X,A]. Then asX is irreducible on I/CI(X) and
[L,X ] = 1, [I, L] = 0 by A.1.41, contrary to D.3.16. This contradiction completes
the proof. ¤

Lemma D.3.18. L = [L,A].

Proof. Assume otherwise, so that A centralizes L. Then A is faithful on
X by D.3.15. Choose I as in D.3.17.2. By D.3.17, I is a natural module for
X ∼= L3(2

n) and A induces inner automorphisms on X , so that A ≤ XCM (X).
Then as X = [F ∗(CM (L)), A], the projection of A on CM (X) centralizes F ∗(M)
and so A ≤ X . Now q̂(X, I) = 1/2 by Theorem B.4.2.2, so X has at most 4 chief
factors on VM , and hence at most 2 on U . Thus

L ≤ CGL(U)(X) ∼= GL2(2
n),

whereas L3(2
n) has no such 2-dimensional representation. This contradiction com-

pletes the proof. ¤

Recall that CV (L) = 0 by D.3.16, so VT = V ⊕ V t. On the other hand,
A acts on U by D.3.12, so A acts on U ∩ VT . Then as L is irreducible on V ,
CA(VT ) = CA(V ) = CA(L), and therefore AutA(VT ) ∼= A/CA(L).

Lemma D.3.19.

rAutA(VT ),VT =
m(VT /CVT (A))

m(A/CA(L))
< 2.

Proof. Otherwise we have the hypothesis of D.2.8 with VT , A in the roles of
“U , G”; then by D.2.8, A is faithful on VT , and hence also on L since CA(VT ) =
CA(L), contradicting D.3.13. ¤

Now we work toward the final contradiction which will establish Theorem
D.3.10. By D.3.14, L ∼= L3(2

m), m odd, and by D.3.11 and D.3.16, VT = V ⊕ V t

with V a natural module and V t its dual. Therefore by D.3.19, interchanging the
roles of V and V t if necessary, AutA(L) is contained in the subgroupD ∼= E22m of L
inducing the full group of transvections on V with fixed axis, and CVT (A) = CVT (D)
is of corank 3m in VT . Now as U is L-homogeneous, using D.3.4.8, there is an LA-
series

0 = V0 < V1 < · · ·Vk = VM
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with Wi := Vi/Vi−1 ∼= VT . Indeed as X ∼= L3(2
n), we must have k ≥ 3 since

X ≤ CGL(U)(L) ∼= GLk(2
m). Therefore as rA,VM ≤ 2,

2m(A) ≥ m(VM/CVM (A)) ≥ 3km ≥ 9m,

so m(A) ≥ 9m/2. Therefore as m(A/CA(L)) ≤ 2m,

5m/2 ≤ m(CA(L)) ≤ 2n

as X ∼= L3(2
n) is of 2-rank 2n. Therefore n ≥ 5m/4 > m.

Pick I as in D.3.17.2, and let d be the number of composition factors of X on
UI := 〈IL〉, and B := CA(L). As in the proof of D.3.18, using D.3.15 and D.3.17.3,
B ≤ X , so

m(A) ≤ m(B) +m(A/B) ≤ 2(m+ n).

As

L3(2
m) ∼= L ≤ CGL(UI)(X) ≤ GLd(2

n),

we have d ≥ 3, so

m(U/CU (B)) ≥ dn ≥ 3n,

and similarly m(U t/CUt(B)) ≥ 3n. As VT ≤ CVM (B) and m(VT /CVT (A)) = 3m,
we conclude

m(VM/CVM (A)) ≥ 6n+ 3m,

so as n > m,
m(VM/CVM (A))

m(A)
≥

6n+ 3m

2(m+ n)
> 2,

for our final contradiction to our hypothesis that rA,VM ≤ 2. Thus the proof of
Theorem D.3.10 is at last complete.

Notice we did not discuss VM in case D.3.10.1. However during the proof of the
Main Theorem, we will need the following information when VM is an FF-module:

Lemma D.3.20. Assume L = M+, CV (L) 6= 0, and L ≤ J(M,VM ). Then M
acts on V , so V = VT = VM .

Proof. By hypothesis VM is an FF-module for M , so the action of J(M,VM )
is described in Theorem B.5.6. By D.3.4.3, VM = [VM , L], so cases (3)–(5) of B.5.6
do not hold, while case (2) does not hold as L is quasisimple. Therefore case (1)
holds, so F ∗(M) = L and VM is described in Theorem B.5.1.1. Then as CV (L) 6= 0,
M acts on V by B.5.1.1. ¤

We conclude the section with our main result in the case L < M+. Notice in
case (3) of Theorem D.3.21 that we can replace V by an NM (L)-invariant member
of Irr+(L, VM ), and hence reduce to case (1) of the Theorem after that replacement.

Theorem D.3.21. Assume M+ = LLt for some component L of M and t ∈
T −NT (L), and

q̂(M,VM ) ≤ 2 ≥ q̂(M+T/CM+T (VT ), VT ).

Then one of the following holds:

(1) VT = VM .
(2) L ∼= L3(2) and VM = U ⊕ U t, where U := [VM , L] = CVM (Lt) is the sum

of 4 isomorphic natural modules for L, each member of Q̂∗(M,VM ) acts on U , and
O2(CM (M+)) ∼= Z5 or E25.
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(3) L ∼= L2(2
n), ṼM = Ũ ⊕ Ũ t where U = [VM , L] ≤ CVM (Lt), Ũ is the sum

of two natural modules for L, CM (L) = Lt, and NM (L) acts on some member of
Irr+(L,U).

Proof. We may assume that VT < VM . Suppose first that either V = VT or
V = [V, L] < [VT , L], so that we have the hypotheses of D.3.9. Case (1.a) of D.3.9
is ruled out by our assumption that VT < VM , and cases (1.b) and (2) do not hold
since L < M+.

Therefore V < VT , and either [V, L] < V or V = [V, L] = [VT , L]. As V < VT ,
we may apply D.3.6. The second case of D.3.6.3 is ruled out, since there V =
[V, L] < [VT , L]. Therefore V = [VT , L] by D.3.6.3. Then by D.3.6.1, ṼT = Ṽ ⊕ Ṽ t

with V ≤ CVT (L
t). Now we get a situation analogous to that in D.3.10: By

D.3.4.3, ṼM is a semisimple M+-module, with M transitive on the homogeneous

M+-components of ṼM . As V = [VT , L] ≤ CVT (L
t), it follows that ṼM = Ũ ⊕ Ũ t,

where U := [VM , L] ≤ CVM (Lt). Now Ũ = Ũ1 ⊕ · · · ⊕ Ũk, where U1, . . . , Uk are
conjugates of V under ML := NM (L), and as VT < VM , we have k > 1.

Set q̂ := q̂(M,VM ). By hypothesis, q̂ ≤ 2. Let D ∈ Q̂∗(M,VM ). As in the
proof of D.3.10, we may apply D.2.9.6 to the decomposition U ⊕ U t, to conclude
D ≤ NM (U) =ML. Then by D.2.5, q̂(AutM (U), U) ≤ q̂ ≤ 2, and similarly

q̂(AutLT (V ), V ) ≤ q̂(LT/CLT (VT ), VT ) ≤ 2.

Thus we have the hypotheses of D.3.9 for ML, L, NT (L), V , U in the roles
of “M , M+, T , V , VM”; in particular, V = VNT (L) plays the role of “VT ”. Set

M+
L :=ML/CML(U). Applying D.3.4.1 to ML, U :

O2(M
+
L ) = 1.

Let A+ ∈ Q̂∗(M
+
L , U).

Observe that if L is not a Suzuki group, then m3(L) ≥ 1, so as M̂ is an SQTK-

group, M+ = O3′(M); cf. the argument for 1.2.2.a, but use A.1.31.1 in place of the

condition mp(H) ≤ 2. Similarly if L ∼= L2(2
n), then M+ = Op

′

(M) for each prime

divisor p of 22n − 1, while if L ∼= Sz(2n), then M+ = Op
′

(M) for p = 5, and also

for each prime divisor p of 2n − 1. Finally if L ∼= L3(2), then M+ = Op
′

(M) for
p = 3 and 7.

We first consider the case where A+ is not faithful on L+; in this case, we will
derive a contradiction.

First D.3.9.2 supplies us with a subgroup X = O3′ (X) of M such that 1 6=
X+ ≤ CM+

L
(L+). Thus if L is not a Suzuki group, X ≤ M+ by the previous

paragraph, so X ≤ CM+(L
+) = Lt ≤ CM (U), contradicting X+ 6= 1.

Therefore L ∼= Sz(2n) for some odd n ≥ 3. In particular by Theorem B.4.5,
q̂(AutLT (V ), V ) = 2. If in addition L+ = [L+, A+], then [U,A+] 6= 0, establishing
the hypotheses of D.2.8. Then by D.2.8, U = V + CU (A), so as U = [U,L] we
conclude U = V , contradicting k > 1.

Hence A+ centralizes L+. Set B+ := CA+(X+). By the Thompson A × B-
lemma, X+ is faithful on CU (B

+). We chose X as in D.3.9.2, so X+ is either of
order 3, or of the form 〈K+A〉 for some component K+ of M+

L . Therefore X+

is also faithful on W := 〈IL
+A+

〉 for some I ∈ Irr+(X
+, CU (B

+)). By D.2.5,

A/B ∈ Q̂(AutM (W ),W ). As Ũ is a homogeneous L+-module, W̃ is the sum of
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copies of the natural module Ṽ for the Suzuki group L+. In particular if X+ is of
order 3, it is inverted by A/B of order 2, with m(W̃ ) ≥ m(V ) = 4n ≥ 12, so

m(W̃/CW̃ (A+)) ≥ 6 > 2m(A/B),

contradicting rAutA(W ),W ≤ 2. Therefore X+ is a component of M+
L . Also

L+ ≤ CGL(W̃ )(X
+) ∼= GLd(F ),

where F := EndF2X+(Ĩ) and W̃ is the sum of d copies of Ĩ . Therefore d ≥ 4 as
L+ is a Suzuki group. By A.1.42.2, we may choose I ∈ Irr+(X,CU (B+), CT (B

+)).
As [L+A+, B+] = 1 and [I, B+] = 0, we have [W,B+] = 0; so as B+ = CA+(X+)
and X+ is faithful on W , AutA+(W ) ∼= A+/B+ is faithful on X+. Hence as
rAutA(W ),W ≤ 2, the hypotheses of D.3.9.1 are satisfied with AutLXA(W ), AutX(W ),
W , I in the roles of “M , M+, VM , V ”. Therefore by D.3.9.1,

q̂I := q̂(AutXA(Ĩ), Ĩ) ≤ 2/d ≤ 1/2,

so by Theorem B.4.2, X+ ∼= SL3(2
m), L4(2), or L5(2). But recall we saw as L is a

Suzuki group that M+ = O5′(M), so X+ ∼= SL3(2
m) with m odd. Then by B.4.2,

q̂I = 1/2, so d = 4 and L+ ≤ GL4(2
m). Therefore n divides m, impossible as we

also saw that M+ = Op
′

(M) for each prime divisor p of 2n − 1. This contradiction
eliminates the case of A+ not faithful on L+.

So we turn to the case where A+ is faithful on L+. As V, U play the roles
of “VT , VM” in D.3.9 and V < U , conclusion (b) of D.3.9.1 holds. Thus Ṽ is an

FF-module for AutLT (Ṽ ), and k ≤ 2/r, where r := q̂(AutLT (Ṽ ), Ṽ ). In particular
if r = 1 then k = 2. In any event

K+ := CM+
L
(L+) ≤ GLk(F ),

where F := EndF2L+(Ṽ ). We observed earlier that O2(M
+
L ) = 1, so also O2(K

+) =
1.

By A.3.8.3, L+ is L2(2
n), Sz(2n), L2(p), or J1, so as Ṽ is an FF-module for

AutLT (Ṽ ), L+ ∼= L2(2
n) or L3(2) by B.4.2. In particular either Ṽ is a natural

module, or V is the A5-module. Hence either F = F2, or Ṽ is the natural module
for L+ ∼= L2(2

n) with F = F2n .
Suppose that k = 2 if L+ is L2(2

n); we claim that conclusion (3) of the Theorem
holds if K+ = 1. Assume otherwise. As U is the sum of k > 1 ML-conjugates of
V and LNL(T ) acts on V , OutM (L+) is not a 2-group, so L+ ∼= L2(2

n), and thus
k = 2 by hypothesis, so |Irr+(L,U)| = 2n + 1. Indeed M+

L = L+Y + where Y +

acts faithfully as a group of field automorphism on L+. Let p be an odd prime
divisor of |Y +| and P+ ∈ Sylp(Y +). By an earlier remark, p does not divide 2n+1,
so P+ fixes two distinct members Ii, i = 1, 2, of Irr+(L,U), and hence induces a

group of field automorphisms on Ĩi, and hence also on Ũ . Thus P+ fixes exactly
2f + 1 members of Irr(L,U), where f := n/|P+|. As Y permutes these fixed
points, continuing in this fashion, O2(Y ) fixes 2s + 1 members of Irr(L,U), where
s := n/|O2(Y +)|, and then Y fixes at least one member, so conclusion (3) of the
Theorem holds, establishing the claim.

Suppose that k = 2. Then K+ ≤ GL2(F ), and by the claim we may assume
K+ 6= 1. So as O2(K

+) = 1, O2(K+) ∼= Z3 if F = F2, and |K+| is divisible by a
prime p dividing 22n − 1 if F = F2n for n > 1. This is impossible, since we saw
that M+ = O3′(M), and M+ = Op

′

(M) for each prime divisor p of 22n − 1.
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So k > 2, and hence r < 1; so by B.4.2, L+ ∼= L3(2) and r = 1/2. Therefore
k ≤ 4 since k ≤ 2/r. Indeed if CV (L) 6= 0, then we can pick an L+A+-series

0 =: V0 < · · · < Vk = U

such that Ii := Vi/Vi−1 = [Ii, L] is of rank 3 or 4 for each i, andm(Ii) = 4 for at least
one i. Therefore by B.4.8.2, m(U/CU (A

+)) ≥ k + 1. But recall rAutA+ (U),U ≤ 2,

so m(U/CU (A
+)) ≤ 2 m(A+) ≤ 4, and hence k ≤ 3 if CV (L) 6= 0. However K+ is

of order coprime to 21, since we saw earlier that Op
′

(M) =M+ for p = 3, 7. Then
as K+ ≤ GLk(2) and K

+ 6= 1 by the claim, we conclude that k > 3, so that k = 4.
Hence CV (L) = 0, and O2(K+) ∼= Z5. Thus as VM = U ⊕U t, O2(CML(M+)) is an
elementary abelian 5-group of rank at most 2, so conclusion (2) of Theorem D.3.21
holds, since O2(CML(M+)) = O2(CM (M+)), completing the proof. ¤





CHAPTER E

Generation and weak closure

In the first two sections of this chapter we collect material primarily focused
on generation of a group by suitable subgroups, often chosen minimal subject to
some property; the methods go back to Thompson, especially in the N -group paper.
Then we develop the technique of weak closure, which, among other things, provides
numerical restrictions on possible configurations in the local subgroups we analyze,
and makes use of the theory of generation developed in the first two sections of this
chapter.

The first two sections are devoted to our theory of generation. Often it is
convenient to establish a result for a group G by reducing to minimal subgroups
generating G. A particularly influential example of this approach is Thompson’s
argument [Tho68, 5.53] for Solvable Thompson Factorization (our B.2.16), where
minimality is with respect to containing a fixed Sylow p-group. An axiomatic
development of this method is provided in section E.1.

The subsequent section E.2 continues the study of minimal parabolics in the
sense of Definition B.6.1. Again the focus is on generation by minimal subgroups;
and in particular we investigate the structure of minimal parabolics under the
hypothesis that G is an SQTK-group. These results are useful throughout the
proof of the Main Theorem.

E.1. E-generation and the parameter n(G)

The theory recorded here was developed by Aschbacher in section 4 of [Asc81c]
and section 4 of [Asc82a].

In this section, G is a finite group, Ω is a G-invariant collection of elementary
abelian 2-subgroups of G, and T ∈ Syl2(G). As a tool primarily for doing weak
closure, we consider a collection E of subgroups K of G, which are essentially
minimal subject to T ∩ K ∈ Syl2(K) and Ω ∩ K 6⊆ O2(K); for example (E1)
and (E2) below correspond roughly to the cases (2) and (3) for abstract minimal
parabolics in B.6.8.

Note that in the version of (E2) appearing in definition E.1.2, the group τ(K,T∩
K,A) replaces the group TA( = τ(G, T,A)) which appears in (2) of 4.2 in [Asc82a].
That definition in [Asc82a] was not chosen with sufficient care to guarantee the
inheritance properties in E.1.8 and E.1.10.

Definition E.1.1. Given an elementary abelian subgroup A of T , set

τ(G, T,A) := CT
(
AO2(G)/O2(G)

)
.

Definition E.1.2. Given an elementary abelian subgroupA of T , let E(G, T,A)
denote the set of subgroups K of G such that

209
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(E0) τ(G, T,A) ≤ T ∩K ∈ Syl2(K),

and either

(E1)(a) K = O2,p,2(K) for some odd prime p, and
(b) for K̄ := K/O2(K) we have 1 6= Op(K̄) = [Op(K̄), Ā] and m(Ā) = 1;

or

(E2)(a) O∞(K) is 2-closed, K = O∞,E,2(K), O2(K) = K∞, and

(b) for K̄ := K/O∞(K), E(K̄) is the product of the τ(K,T ∩ K,A)-
conjugates of a component L̄ of K̄ such that either

(1) L̄ = [L̄, Ā], or
(2) A 6≤ NG(L̄) and m(Ā) = 1.

Remark E.1.3. Virtually the same theory holds for any prime p, although we
restrict ourselves here to p = 2 since that is the only case we use.

Lemma E.1.4. For K ∈ E(G, T,A), O2(K) ≤ 〈AK〉.

Proof. Let X := 〈AK〉 and Y the kernel of the bar map in E.1.2. From E.1.2,
O2(K̄) = [O2(K̄), A], so O2(K) ≤ XY . But in (E1) Y is a 2-group, and in (E2)
Y is solvable, so XY/X is a 2-group or solvable in the respective case. Hence as
O2(K) = K∞ in (E2), O2(K) ≤ X as claimed. ¤

Now we refine our collection E(G, T,A) in definition E.1.2:

Definition E.1.5. For i a positive integer, define Ei(G, T,A) to consist of
those K ∈ E(G, T,A) such that for K̄ as in definition E.1.2, m(Ā) ≤ i. Notice that,
except possibly in (E2.1), m(Ā) = 1, so K ∈ E1(G, T,A). Define

Ei(G, T,Ω) := 〈 Ei(G, T,A) : A ∈ Ω ∩ T 〉.

For X ≤ G, define
W (X,Ω) =W (X) := 〈Ω ∩X〉

to be the weak closure of Ω in X . Write G ∈ Ei if for all G-invariant collections Ω
of elementary abelian 2-subgroups of G:

G = 〈 Ei(G, T,Ω) , NG
(
W (T,Ω)

)
〉.

We focus on the following parameter:

Definition E.1.6. If G is of odd order, set n(G) := 0, while if G is of even
order, set:

n(G) := min{i > 0 : G ∈ Ei}.

Remark E.1.7. As lemma E.1.14 suggests, if G is simple and not of Lie type
and characteristic 2, then n(G) = 1—or very occasionally n(G) = 2. On the other
hand, if G is of Lie type over F2n , then roughly speaking, n(G) = n; more precisely,
n(G) is the maximum n such that for some minimal parabolic P of G, P/O2(P ) is
a rank 1 group of Lie type over F2n . Observe in general from definition E.1.5 that
n(G) ≤ m2(G).

Lemma E.1.8. Let A be an elementary abelian subgroup of T and H ≤ G such
that τ(G, T,A) ≤ T ∩H ∈ Syl2(H) and K ∈ Ei(H,T ∩H,A) for some i. Then

(1) AO2(G) ≤ τ(G, T,A) ≤ τ(H,T ∩H,A) ≤ τ(K,T ∩K,A) ≤ K.
(2) K ∈ Ei(G, T,A).
(3) If Y is a normal subgroup of G with O2(G) ∈ Syl2(Y ), and G∗ := G/Y ,

then CT (A
∗) = τ(G, T,A), so τ(G, T,A)∗ ≤ τ(G∗, T ∗, A∗).
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Proof. Observe AO2(G) ≤ τ(G, T,A), and by hypothesis τ(G, T,A) ≤ T ∩
H inSyl2(H). Thus O2(G) ≤ O2(H), so τ(G, T,H) ≤ τ(H,T ∩ H,A). Similarly
τ(H,T ∩H,A) ≤ τ(K,T ∩K,A), establishing (1). Then (2) follows from (1) and
the definition of E(G, T,A) in E.1.2.

Assume the hypothesis of (3). As O2(G) ≤ Y , τ(G, T,A) ≤ CT (A
∗). On the

other hand Y is 2-closed, so [CT (A
∗), A] ≤ T ∩ Y = O2(G), completing the proof

of (3). ¤

Definition E.1.9. Given a finite group U , a section U1/U2 of U with Ui E U
for i = 1, 2, and U0 ∈ Syl2(U), write S(U,U0, U1, U2) for the set of subgroups K of
U1U0 minimal subject to U0 ≤ K and U1U0 = KU2. That is, setting Ū := U/U2,
K is minimal subject to U0 ≤ K and K̄ = Ū1Ū0.

Lemma E.1.10. Assume that X and Y are normal subgroups of G with Y ≤ X,
and let K ∈ S(G, T,X, Y ). Set KX := K ∩X, KY := K ∩ Y , and Ḡ := G/Y . Let
A be an elementary abelian subgroup of T . Then

(1) K = KXT and X/Y ∼= K̄X
∼= KX/KY .

(2) The preimage in K of O2(K̄) is 2-closed.
(3) If K̄X = O2,p(K̄X) for some odd prime p, then K = O2,p,2(K).
(4) If K̄X = O∞,E(K̄X), O∞(K̄) is 2-closed, and O2(K̄) = K̄∞, then also

K = O∞,E,2(K), O∞(K) is 2-closed, and O2(K) = K∞.
(5) If X/Y is a chief factor of G, then K̄X is the direct product of copies of

some composition factor of G.
(6) If X/Y is a p-group for some odd prime p, and X̄ = [X̄, Ā], then X ≤

〈 E1(G, T,A) 〉Y .

(7) If Ī ∈ Ei(Ḡ, T̄ , Ā), then O2(Ī) = O2(J) for some J ∈ Ei(G, T,A).
(8) Assume O2(G) = G∞ = [G∞, A], Y is 2-closed, and T ≤ J ≤ G with

G = JY . Then G = 〈J, E1(G, T,A)〉.

Proof. As K ∈ S(G, T,X, Y ), T ≤ K and XT = KY , so K = XT ∩ K =
KXT and X = X ∩ KY = KXY . Thus X/Y = KXY/Y = K̄X

∼= KX/KY ,
establishing (1).

Let Z be the preimage in K of O2(K̄). As T ∈ Syl2(K) and Z E K, T ∩Z is
Sylow in Z and normal in T . Then by a Frattini Argument, K = NK(T ∩ Z)Z =
NK(T ∩ Z)KY . Thus XT = KY = NK(T ∩ Z)Y and T ≤ NK(T ∩ K), so
K = NK(T ∩ Z) by minimality of K. That is (2) holds.

Assume the hypothesis of (3) holds. Since K̄ = K̄X T̄ , K̄ = O2,p,2(K̄), so K̄
is solvable. By (2), KY is 2-closed and hence solvable, so K is solvable. Therefore
by Hall’s Theorem, T is contained in a Hall {2, p}-subgroup K0 of K. Since K̄ is a
{2, p}-group, K̄ = K̄0, so K = K0 by minimality of K. Then as Z is 2-closed and
K/Z = Op,2(K/Z), (3) holds.

Assume that the hypothesis of (4) holds. We saw KY is solvable, so O∞(K) is
the preimage in K of O∞(K̄). Then as Z and O∞(K̄) are 2-closed, so is O∞(K).
Also as K̄ = O∞,E,2(K̄),K = O∞,E,2(K). As O2(K̄) = K̄∞ = K∞, the minimality
of K gives K = K∞T . Hence O2(K) = K∞, completing the proof of (4).

Part (5) is well known; cf. 8.2 in [Asc86a].
Assume the hypothesis of (7), and choose X := O2(G)Y , so that O2(Ī) ≤ X̄.

Replacing G by K and appealing to E.1.8.2, we may assume G = K. Let Ḡ1 :=
O2(Ī)τ(Ī , T̄ ∩ Ī , Ā) and G1 the preimage of Ḡ1. By A.1.16, T ∩ G1 ∈ Syl2(G1),
and by E.1.8.3, τ(G, T,A) ≤ G1; so replacing G by G1 and appealing to E.1.8.2, we
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may assume G = G1. Set G
∗ := G/O2(G) if Ḡ is solvable, and set G∗ := G/O∞(G)

otherwise. By (2) and E.1.8.3, τ(G, T,A) is the preimage in T of τ(Ḡ, T̄ , Ā).
Suppose Ḡ is solvable. By (3), G = O2,p,2(G). By (2), |A∗| = |Ā| = 2. As Ḡ =

Ḡ1, T̄ = τ(Ḡ, T̄ , Ā), so as τ(G, T,A) is the preimage in T of τ(Ḡ, T̄ , Ā) and G∗ =
G/O2(G), T centralizesA∗. AsOp(Ḡ) = [Op(Ḡ), Ā], Op(G

∗) = [Op(G
∗), A∗]Op(Y

∗),
so as T centralizes A∗, T ∗ acts on [Op(G

∗), A∗]. Thus as G = K, Op(G
∗) =

[Op(G
∗), A∗], so G ∈ E1(G, T,A), completing the proof of (7) in this case.

This leaves the case where G∗ is nonsolvable, where G ∈ Ei(G, T,A) by (4) and
the fact that τ(G, T,A) is the preimage in T of τ(Ḡ, T̄ , Ā). Hence (7) holds.

Assume the hypothesis of (6). For B of index 2 in A, let X̄(B) := [CX̄(B), A].
By Generation by Centralizers of Hyperplanes, X̄ = 〈X̄(B) : |A : B| = 2〉. Further
τ(Ḡ, T̄ , Ā) acts on X̄(B), so X̄(B)τ(Ḡ, T̄ , Ā) ∈ E1(Ḡ, T̄ , Ā) for each hyperplane B
of A. Then (7) completes the proof of (6).

Finally assume the hypotheses of (8). Let Y1 be a minimal normal subgroup of

G contained in Y , Ĝ := G/Y1, and J1 := 〈J, E1(G, T,A)〉. Proceeding by induction

on the order of G, Ĝ = 〈Ĵ , E1(Ĝ, T̂ , Â)〉, so G = J1Y1 by (7). Thus replacing J, Y
by J1, Y1, we may assume Y is a minimal normal subgroup of G, and it remains to
show Y ≤ J1. As Y is 2-closed, Y is solvable, so Y is an elementary abelian p-group
for some prime p and J is irreducible on Y . If p = 2 then Y ≤ T ≤ J1, so we may
take p odd. If [Y,A] 6= 1, then [Y,A]τ(G, T,A) ≤ J1 by (6), so as J is irreducible
on Y , Y ≤ J1. Thus we may assume [Y,A] = 1, so G∞ = [G∞, A] centralizes Y .
Thus J∞ E J∞Y ≤ G∞, so as Y is abelian, Y ≤ J∞ ≤ J1, completing the proof
of (8). ¤

Notice in case (4) of E.1.10 that K∞ is a product of C-components by A.3.3.5.
The following result is a weak form of lemma 4.5 from [Asc81c]. Since the

proof given in [Asc81c] is difficult to read with many typos, and is the only result
of any depth in that section of the paper, we include a slightly expanded proof here.

Proposition E.1.11. If n(LAutT (L)) ≤ n for each composition factor L of G,
then n(G) ≤ n.

Proof. Let Ω be a G-invariant collection of elementary abelian 2-subgroups
of G, W := W (T,Ω), G1 := 〈 En(G, T ) , NG(W ) 〉, X := O2(G)O2(G), and Y
maximal subject to O2(G) ≤ Y E G and Y < X . By induction on the order of G,
n(Y T ) ≤ n, and therefore Y T ≤ 〈 En(Y T, T,Ω ∩ Y T ) , NG

(
W (T,Ω ∩ Y T )

)
〉; the

first term lies in G1 by E.1.8.2, as does the second since (Ω∩Y T )∩T = Ω∩T . Thus
Y ≤ G1, so we may assume X 6≤ G1. Set G

∗ := G/Y . Then W ∗ =W (T ∗,Ω∗), and
as W is weakly closed in T with respect to G, NG∗(W

∗) = NG(W )∗ ≤ G∗1. Further
by E.1.10.7, E(G∗, T ∗,Ω∗) ≤ E(G, T,Ω)∗ ⊆ G∗1. Finally the composition factors of
G∗ are composition factors of G; so if Y 6= 1, then by induction on the order of G,
G∗ = 〈 En(G∗, T ∗,Ω∗) , NG∗(W ∗) 〉 ≤ G∗1, contradicting X 6≤ G1. Hence Y = 1.
By E.1.10.5, X is the direct product of subgroups isomorphic to some composition
factor L of G. As O2(G) ≤ Y = 1, |L| > 2.

Next X = [X,W ]NX(W ), so as G = XT and X is a chief section of G,
X = [X,W ] or NX(W ). As NG(W ) ≤ G1, X = [X,W ]. Hence X = 〈XA : A ∈
Ω ∩ T 〉, where XA := [X,A]. Therefore XA 6≤ G1 for some A ∈ Ω ∩ T . Notice
XA is subnormal in G, so SA := T ∩ XA ∈ Syl2(XA). Let TA := τ(G, T,A). As
O2(G) ≤ Y = 1, TA = CT (A). Further TA acts on XA.
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Suppose L is of prime order p; then p is odd since |L| > 2. As XA =
[XA, A] is a p-group, applying E.1.10.6 to XATA, and recalling by E.1.8.2 that
En(XATA, SATA, A) ⊆ En(G, T,A) ⊆ G1, XATA ≤ 〈E1(G, T,A)〉 for eachA ∈ Ω∩T ,
so G ≤ G1, contrary to the choice of G.

Therefore L is a nonabelian simple group. Let J be a component of X and
set S := NT (J). As X is a chief section of G, G = 〈J, T 〉, so J 6≤ G1. Let
Γ := {A ∩ JS : A ∈ Ω}, set W0 := W (S,Γ), J0 := NJ(W0), and P := En(JS, S,Γ).
By hypothesis, n(JS/O2(JS)) ≤ n, so JS = 〈P , J0S〉; and hence as J 6≤ G1:

Either J0 6≤ G1 or P 6⊆ G1. (!)

Let A ∈ Ω ∩ T , set V := NA(J), and pick a complement Z to V in A.
We claim that J0 6≤ G1. Assume otherwise. Then P 6⊆ G1 by (!), so we may

pick A so that there is P ∈ En(JS, S, V ) with P 6≤ G1. Set PA := 〈O2(P )TA〉.
Then PA is the direct product of the TA-conjugates of O2(P ). Let KA := PATA
and RA := T ∩ KA. Then P ≤ KA, so as P 6≤ G1, KA 6≤ G1, and hence KA 6≤
〈En(G, T,A)〉. Set K̄A := KA/O2(KA) if P is solvable, and K̄A := KA/O∞(KA)
if P is not solvable. Suppose first that P is solvable; then O2

(
P/O2(P )

)
is a

p-group, so K̄A = Op(K̄A)T̄A and Op(K̄A) = [Op(K̄A), A]. Thus by E.1.10.6,
KA ≤ 〈 E1(KA, RA, A) 〉O2(KA), contradicting KA 6≤ G1 in view of E.1.8.2. Thus
P is not solvable, so O2(K̄A) is the direct product of the TA-conjugates of simple
components L̄i, 1 ≤ i ≤ r, of K̄A contained in P̄ . Further O2(P ) = P∞, so
PA = P∞A . Recall Z is a complement to V in A, and define πi : L̄i → CK̄A

(Z) by

xπi :=
∏

z∈Z̄

xz for x ∈ L̄i.

Then πi is a NV (Li)-equivariant isomorphism of L̄i with Īi, where Ii is the C-
component in the preimage in KA of L̄iπi. Further Ni := 〈I

TA
i 〉 is TA-invariant and

T ∩Ni ∈ Syl2(Ni). Let KZ,i := NiTA. Then K̄A = 〈 K̄Z,i , R̄A : 1 ≤ i ≤ r〉, so by
E.1.10.8,

KA = 〈 KD,i , RA , E1(KA, RA, A) : 1 ≤ i ≤ r〉

for each KD,i ≤ KA with O2(K̄Z,i) ≤ K̄D,i. Thus as KA 6≤ G1, KD,i 6≤ G1 for some
i using E.1.8.2. As P ∈ En(JS, S, V ) either V acts on Li or |V : V ∩ O2(P )| = 2;
then the corresponding statement holds for Īi as πi is NV (Li)-equivariant. Then
as TA centralizes Ā,

(
V ∩ O2(P )

)
Z centralizes Īi, so K̄Z,i ∈ En(K̄Z,i, T ∩KZ,i, Ā).

However O2(K̄Z,i) = O2(K̄D,i) for some KD,i ∈ En(KZ,i, T ∩KZ,i, A) by E.1.10.7,
while KD,i ∈ En(G, T,A) by E.1.8.2, contrary to KD,i 6≤ G1. This completes the
proof of the claim.

By the claim, J0 6≤ G1. Let Y0 be maximal subject to Y0 E J0, Y0 is S-invariant,
and Y0 ≤ G1. Hence there is a S-chief section X0/Y0 of J0 with X0 6≤ G1. Then
X0/Y0 is a direct product of copies of a simple group L0 and S ∩X0 ∈ Syl2(X0),
so as X0 6≤ G1, L0 is not of order 2. Let K1 := O2(X0) and H := 〈KT

1 〉. As
S = NT (J) acts on X0 ≤ J , and T is transitive on the components {J1, . . . , Jr} of
X , r = |T : S| and H = K1 × · · · ×Kr where we choose notation so that J =: J1
and Ki := Kti

1 for ti ∈ T with J ti = Ji. Let Y1 := Y0 ∩ K1, Yi := Y ti1 , and
H0 := Y1 · · ·Yr; then Xi/Yi ∼= X0/Y0, so H/H0 is a section of HT which is the
direct product of copies of L0. Let K ∈ S(HT, T,H,H0).

Suppose L0 is of order p for some prime p; then p is odd since L0 is not
of order 2. Then K is solvable by E.1.10.3, so n(K) = 1 by induction on the
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order of G; and using E.1.8.2 as in our argument on Y T at the start of the proof,
K ≤ G1, contrary to the choice of X0. Therefore L0 is a nonabelian simple group,
so setting KY := K ∩ H0, KX := K ∩H , and K+ := K/KY , and using E.1.10.1,
K+
X = L+

1 ×· · · ×L
+
m is the direct product of copies of L0 permuted transitively by

T+. Choose notation so that L1 ≤ JKY and {L+
1 , . . . , L

+
s } = L+TA

1 .
If W ≤ S then W = W0 and hence J0 ≤ NG(W ) ≤ G1, which is not the case.

Thus we may choose A 6≤ S, so Z 6= 1. As A∩S ≤W0 ≤ O2(J0S), A∩S centralizes
L+
1 and hence also centralizes U+ := L+

1 · · ·L
+
s , while the complement Z to V in

A is semiregular on {L+
1 , . . . , L

+
s }. As Z 6= 1, we may take C to be a hyperplane

of Z, and define π0 : L
+
1 → CU+(C) by

x+π0 :=
∏

c∈C

x+c.

Then π0 is an isomorphism of L+
1 with L+

1 π0. Finally let I0 be the preimage in KX

of L+
1 π0, M := 〈ITA0 〉, and R := T ∩MTA. Then M+R+ ∈ E1(M+R+, R+, A+),

so M ≤ 〈E1(G, T,A)〉H0 by E.1.10.7 and E.1.8.2. Therefore M ≤ G1, and then
H ≤ 〈 M ∩H , T 〉H0 ≤ (G1 ∩H)H0, so X0 ≤ G1, contrary to the choice of X0.
This finally completes the proof. ¤

Proposition E.1.11 essentially reduces us to the simple case. Then one can
reduce to a collection of overgroups of T which generates G, and hence to minimal
parabolics of G via McBride’s lemma B.6.3:

Proposition E.1.12. Let ∆ be a collection of subgroups of G such that G =
〈∆〉, and for each H ∈ ∆, T ≤ H and n(H) ≤ n. Then n(G) ≤ n.

Proof. This is 4.6 in [Asc81c]. ¤

Corollary E.1.13. If G is solvable, then n(G) ≤ 1.

Proof. This is a consequence of E.1.11 and the fact that Aut(Zp) is cyclic. ¤

We will frequently make use of the following list of values of the parameter
n(G) for the simple SQTK-groups in Theorem C (A.2.3).

Lemma E.1.14. Let G be an SQTK-group with L := F ∗(G) simple and G = LT .
Then

(1) If L ∼= L2(2
n), Sz(2n), U3(2

n), L3(2
n), Sp4(2

n)′, 2F4(2
n)′, or G2(2

n)′,
then n(G) = n; and if L ∼= L4(2) or L5(2), then n(G) = 1.

(2) If L ∼= 3D4(2
n) then n(G) = 3n.

(3) If L ∼= A7 then n(G) = 1.
(4) If L ∼=M11, M12, M24, or He, then n(G) = 1.
(5) If L ∼= J1, J2, J4, M22, M23, HS, or Ru, then n(G) ≤ 2.
(6) If L ∼= L2(q), q > 5 odd, then n(G) = 1.
(7) If L ∼= Lε3(p), p odd, then n(G) = 1.

Proof. Recall Theorem C gives the list of possible L. Then the values for
n(G) are obtained from the following results in [Asc82a]: Lemma 4.7 for (1) and
(2); 4.8 for (3); 4.9 for (4) and (5); 4.10 for (6); and 4.11 for (7). ¤
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E.2. Minimal parabolics under the SQTK-hypothesis

Recall from Definition B.6.1 that a minimal parabolic of a finite group H (with
respect to the prime 2) is a subgroup P of H such that some Sylow 2-subgroup T of
H is contained in a unique maximal subgroup of P , but T is not normal in P . The
terminology is suggested by the fact that in a group of Lie type of characteristic 2,
the property holds for the parabolics of rank 1.

Recall also Û(T ) = ÛH(T ) and !N (T ) = !NH(T ) from Definitions B.6.2 and
B.6.7.

E.2.1. Structure of minimal parabolics in SQTK-groups.

In this subsection, H is a finite SQTK-group such that H ∈ ÛH(T ) for some
T ∈ Syl2(H). Set M := !NH(T ) and J := kerM (H).

Lemma E.2.1. Assume that H is solvable, and that either O2(M) 6≤ O2(H)
or CT (J/O2(J)) 6≤ O2(H). Then O2(H/O2(H)) ∼= Zp, Ep2 , or p

1+2 for some odd
prime p.

Proof. Let H∗ := H/O2(H), P ∗ := F (H∗) and R := CT (J/O2(J))). By
B.6.8.2, O2(H∗) = P ∗ is a p-group for some odd prime p, T ∗ is irreducible on
P ∗/Φ(P ∗), and Φ(P ∗) ≤ J∗, so R∗ centralizes Φ(P )∗. As O2(M) ≤ R, R 6≤ O2(H)
by hypothesis, so that R∗ 6= 1. Let P ∗0 be a supercritical subgroup of P ∗; as R∗

is faithful on P ∗, R∗ is faithful on P ∗0 , so as R∗ centralizes Φ(P ∗) and R∗ 6= 1,
P ∗0 6≤ Φ(P ∗). Thus as T ∗ is irreducible on P ∗/Φ(P ∗), P ∗ = P ∗0Φ(P

∗), so P ∗ = P ∗0 .
Then as H is an SQTK-group, the lemma follows from A.1.24. ¤

Next we refine B.6.8 using the results of section A.3.

Lemma E.2.2. Assume H is not solvable and set H∗ := H/J . Then H = 〈K,T 〉
for some K ∈ C(H) such that K/O2(K) is quasisimple, and setting MK :=M ∩K,
one of the following holds:

(1) J = O2(H), K 6= Kt for some t ∈ T , M =MKM
t
KT , and either

(a) K∗ ∼= L2(2
n) or Sz(2n) and M∗

K is a Borel subgroup of K∗, or
(b) K∗ ∼= L2(p), p ≡ ±1 mod 8 an odd prime, M ∗

K = CK∗(Z((T ∩K)∗)),
and |AutT (K∗)| > 8.

(2) H = KT , J/O2(H) = Z(KO2(H)/O2(H)), and one of the following holds:

(a) K∗ is a Bender group and M∗
K is a Borel group of K∗.

(b) K∗ ∼= L3(2
n) or Sp4(2

n)′, T is nontrivial on the Dynkin diagram of
K∗, and M∗

K is a Borel group of K∗.
(c) K∗ ∼= L2(p

e), p > 3 prime and e ≤ 2, with pe ≡ ±1 mod 8, M ∗
K =

CK∗(Z((T ∩K)∗)), and |AutT (K∗)| > 8. If e = 2, then AutT (K
∗) is not contained

in the group of inner-field automorphisms of K∗.
(d) K∗ ∼= L−ε3 (p), p ≡ ε mod 4 prime, T is nontrivial on the Dynkin

diagram of K∗ if ε = −1, and M ∗
K = CK∗(Z((T ∩K)∗)).

In any case, H∗ is also an SQTK-group, n(H) = n in (1a), (2a), and (2b),
and n(H) = 1 in all other cases.

Proof. The lemma describes H/O2(H), so passing to that quotient, we may
assume that O2(H) = 1. We appeal to B.6.8 and the results of section A.3. As H is
not solvable by hypothesis, B.6.8.3 says H = K0T where K0 := O2(H), J = F (H),
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and K∗0 is the direct product of the T -conjugates of a nonabelian simple group
K∗1 . Let K := K∞1 . Then K ∈ C(H) and H = 〈K,T 〉J , so as M = !N (T ), we
conclude that H = 〈K,T 〉. If K is not quasisimple, then case (3) or (4) of A.3.6
holds, so J contains an involution in O2′,Z(K) − F (K), contrary to J = F (H)
nilpotent. ThereforeK is quasisimple. In particular conclusion (ii) of B.6.8.3 holds,
so 〈KT 〉 = F ∗(H), and J = O∞(H) = Z(K) is of odd order since O2(H) = 1.

Suppose first that K is not normal in H . Then by A.3.8.1 H = KKtT for
t ∈ T −NT (K). Further by A.3.8.3,

K ∼= L2(2
n), Sz(2n), L2(p), p an odd prime, or J1.

By I.1.3, the multiplier of each of these groups is a 2-group, so as J = Z(K) is of
odd order, we conclude that J = 1. Let S := NT (K) and KS := KS/O2(KS). By

B.6.8.3, K̄S̄ ∈ ÛL̄S̄(S̄), so by induction on |H |, K̄S̄ satisfies conclusion (2) of the
lemma. Then from the list of possibilities for K above, (1) holds.

Thus we may assume that K E H , so that H = KT . We showed earlier that
J = Z(K); and to verify the remaining assertions we may pass to H/Z(K), and so
assume that K is simple and J = 1.

Now in view of (2) of Theorem A (A.2.1), K is described in Theorem C (A.2.3).
If K is of Lie type and characteristic 2, the maximal T -invariant subgroups of K
containing T ∩ K are parabolics, so |N (T )| = 1 only if MK is a Borel subgroup
of K, where K is either of rank 1, or untwisted of rank 2 with T nontrivial on
the diagram of K; thus (a) or (b) of (2) holds in this case. One checks directly
(e.g. [Asc86b]) that none of the sporadic cases arise. Finally if K is of Lie type
and odd characteristic, then as M =!N (T ), we may apply Theorem A of [Asc80]
to conclude that (c) or (d) of (2) holds, using Dickson’s Theorem A.1.3 to verify
the statements in (c) about AutT (K

∗) and the congruences on pe. For example
the condition |AutT (K∗)| > 8 is necessary to ensure that T ∗ is not contained in
an A4 or S4 subgroup of H∗, and when e = 2, the condition that T ∗ does not
induce inner-field automorphisms is necessary to ensure that T ∗ does not act on a
PGL2(p) subgroup of K∗. Then the conditions on T imply that pe ≡ ±1 mod 8.

Finally we use E.1.14 to check the statements about n(H). By (2) of Theorem
A (A.2.1), H∗ is an SQTK-group. This completes the proof. ¤

We will also need to know the action ofH on members ofR2(H) when F ∗(H) =
O2(H) and J(T ) does not centralize R2(H). We obtained such information for
more general minimal parabolics in B.6.9, so much of the following result is simply
a restatement of that lemma for SQTK-groups:

Lemma E.2.3. Assume that F ∗(H) = O2(H), V ∈ R2(H), and J(T ) 6≤ CT (V ).

Set H∗ := H/CH(V ), Ṽ := V/CV (O
2(H)), and S := Baum(T ). Then

(1) O2(H) ≤ J(H), J(H)∗ = H∗1 × · · ·H
∗
s , and Ṽ = Ṽ1 ⊕ · · · ⊕ Ṽs, where

s = 1 or 2, T is transitive on {H1, · · · , Hs}, Vi := [V,Hi], and H
∗
i
∼= S5 or L2(2

n)
(including L2(2) ∼= S3).

(2) If H∗i
∼= L2(2

n) then Ṽi is the natural module for H
∗
i and S∗ = J(T )∗ is

Sylow in J(H∗). Further S is Sylow in O2(H)S, and setting E := Ω1(Z(J(T ))),

〈EO
2(H)〉 = [V,O2(H)]CE(O

2(H)).

(3) If H∗i
∼= S5 then Vi is the A5-module and J(T )

∗ = S∗ is the product of the
4-subgroups H∗i ∩ S

∗ generated by the transpositions in H∗i ∩ T
∗.
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(4) If no nontrivial characteristic subgroup of S is normal in H, then H =
〈L, T 〉, where L ∈ C(H) is an L2(2

n)-block or A5-block.

Proof. The structure ofH∗ and its action on [V,H ] follow from B.6.9. As H is

an SQTK-group, s ≤ 2 by A.1.31.1, andm = 3 or 5 if H∗i
∼= Sm. Set F := 〈EO

2(H)〉

and F1 := 〈EO
2(H1)〉.

Assume that H∗i
∼= L2(2

n). By B.6.8.6.b, CH (V ) is 2-closed, so the hypotheses

of Baumann’s Lemma B.6.10 are satisfied. Hence S is Sylow in 〈SO
2(H)〉, and

F1 = V1CE(O
2(H1)). Further 〈SO

2(H)〉 = O2(H)S by B.6.8.6.d. In particular if
s = 1, then F = F1 and (2) holds, so we may take s = 2. Then

F = 〈EO
2(H)〉 = 〈EO

2(H1)O
2(H2)〉 = 〈F

O2(H2)
1 〉

= V1〈CE(O
2(H1))

O2(H2)〉 = V1V2CE(O
2(H)) = [V,O2(H)]CE(O

2(H)),

completing the proof of (2). Part (4) follows from the C(G, T )-Theorem C.1.29 in
this case.

Finally assume H∗i
∼= S5. Then we have the hypothesis of case (a) of C.1.24,

and that result completes the proof of (3) and (4), and hence of E.2.3. ¤

E.2.2. Further results for the case b = 1.

In this subsection we continue the hypothesis and notation of the previous
subsection.

We consider the situation where some elementary abelian normal 2-subgroup
of T is not contained in O2(H). This situation arises in case (1) of the qrc-lemma
D.1.5; in the amalgam literature, the situation corresponds to the case where the
parameter “b” is equal to 1; cf. Definition F.7.8 and remark F.7.12.

In particular, the situation arises in the proof of our Main Theorem as follows:
G is a QTKE-group, T ∈ Syl2(G), M0 = !M(L0T ), for a suitable uniqueness
subgroup L0T , V ∈ R2(L0T ) is a TI-set under M0, H ∈ H∗(T,M0) (cf. Definition
3.0.1), and M = !N (T ) = M0 ∩H . Recall from B.6.8.5 that J is 2-closed, so that
V ≤ J iff V ≤ O2(H). Thus when V 6≤ J , the parameter b in Definition F.7.8 is
equal to 1 by F.7.9.3, for the amalgam defined by L0T and H .

To deal with this situation, we consider certain subgroups I of H , which are
essentially minimal subject to V 6≤ O2(I). The theory of such subgroups is useful in
many places in the proof of the Main Theorem; we also use it in the next subsection
to show that then q̂(AutM0(V ), V ) < 2. We are led to the following definition:

Definition E.2.4. For V a nontrivial elementary abelian 2-subgroup of T ,
define I(H,T, V ) to consist of those subgroups I of H such that I = 〈V, V g〉 for
some g ∈ I , T ∩ I ∈ Syl2(I), kerM∩I (I) is 2-closed, and setting I∗ := I/ kerM∩I (I),
one of the following holds:

(1) I∗ ∼= L2(2
k) or Sz(2k) for some k > 1, and (M ∩ I)∗ is a Borel subgroup of

I∗.
(2) I∗ is dihedral of order 2pa, p an odd prime and a ≥ 1; in this case set k := 1.
(3) O2(H/J) ∼= Sp4(2

n)′, I∗ ∼= Sp4(2
k) for some k ≥ 1, (M ∩ I)∗ is a Borel

subgroup of I∗, and V ∗ ≤ Z(T ∗ ∩ I∗) but V ∗ is contained in neither root subgroup
of Z(T ∗ ∩ I∗).

Moreover we require that k divides n(H) in each case.

Remark E.2.5. When k = 1 in case (3), notice I∗ ∼= S6 rather than A6.
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Definition E.2.6. When discussing involutions t in subgroups of Sp(V ) for
V a symplectic space of dimension 2m over F of characteristic 2, we follow the
terminology of Suzuki type defined on pages 16-17 of [AS76a]. Briefly, t can be of
Suzuki type ai, bi, or ci, where i = dimF ([V, t]) and in the respective cases: i is
even and v⊥vt for all v ∈ V ; i is odd; i is even and v is not perpendicular to vt for
some v ∈ V . In particular, if dimF V = 4, then root involutions have type b1 and
a2, and non-root involutions have type c2.

Lemma E.2.7. Assume that J = 1, and V is a nontrivial elementary abelian
2-group normal in T , with V ≤ O2(M). Then I(H,T, V ) 6= ∅.

Proof. By B.6.8.1, O2(H) ≤ J , so O2(H) = 1 since J = 1 by hypothesis.
In particular as V 6= 1, NH(V ) < H . Then as T ≤ NH(V ), NH(V ) ≤ M as
M = !N (T ).

If V is of order 2, then by the Baer-Suzuki Theorem we can choose g ∈ H with
I := 〈V, V g〉 not a 2-group. As I is generated by two involutions, I is dihedral;
then replacing I by a suitable subgroup, we may assume |I | = 2pa for some odd
prime p. Then V is conjugate to V g in I , so we may take g ∈ I . Also V ∈ Syl2(I),
so as V ≤ O2(M) by hypothesis, V = M ∩ I = NI(V ), and hence kerM∩I(I) = 1.
Thus I is in case (2) of I(H,T, V ).

Therefore we may assume that m(V ) > 1. Set K := O2(H), TK := T ∩K, and
MK :=M ∩K.

Suppose that H is solvable. Then by B.6.8.2, and as O2(H) = 1, K is a p-
group for some prime p, and K = F ∗(H). Hence using Generation by Centralizers
of Hyperplanes A.1.17, there is a hyperplane U of V with [CK(U), V ] 6= 1. Choose
g ∈ [V,CK(U)] inverted by v ∈ V −U and define I := 〈V, V g〉. Then I is the direct
product of U and a dihedral group of order of 2|g|, and as K is a p-group, |g| is a
power of p. Arguing as in paragraph two, I ∈ I(H,T, V ).

Thus we may suppose that H is not solvable. So as J = 1, K is a product of
at most two simple groups by E.2.2.

Suppose first that K is a Bender group X(2n). Then by E.2.2, MK is a Borel
group of K. As V ≤ O2(M), V induces inner automorphisms on K, so that
V ≤ K as F ∗(H) = K. Then as V is elementary abelian and K is a Bender group,
V ≤ Z(TK). Hence for g ∈ K −M , I := 〈V, V g〉 ∼= X(2k) for some k dividing n,
and the Sylow 2-group of I containing V is T ∩ I , so that k ≥ m(V ) > 1. Moreover
we may take g ∈ I −M , and M ∩ I is a Borel group of I , so that kerM∩I(I) = 1.
Hence I ∈ I(H,T, V ) as I is described in case (1) of Definition E.2.4.

Similarly ifK = K1K
t
1 withK1 a Bender group, then V ≤ K. Let Vi denote the

projection of V on Ki; we may assume V1 is nontrivial, and choosing g ∈ K1 −M ,
I1 := 〈V1, V

g
1 〉 × V2. If m(V1) = 1, our usual argument produces I ∈ I(H,T, V )

satisfying case (2) of Definition E.2.4, while if m(V1) > 1, then 〈V1, V
g
1 〉 is a Bender

group and again I1 ∈ I(H,T, V ).
Suppose next that case (2c) of E.2.2 holds. Then M = CH(Z), where Z :=

Z(TK), and this centralizer possesses no noncyclic elementary abelian 2-subgroup
V contained in O2(M) with V E T—unless pe = 9 and H ∼= Aut(K), a case we
will consider later in treating the case K ∼= Sp4(2

n)′. Similarly if case (1b) of E.2.2
holds we can again choose the projection V1 of V on K1 nontrivial, and arguing as
in the previous paragraph, either m(V1) = 1, leading to a member of I(H,T, V ),
or m(V1) > 1, leading to a contradiction.
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Next suppose we are in case (2d) of E.2.2, where K ∼= Lε3(p) for a suitable odd
prime p. Here M = CH(Z(TK)) and O2(MK) is cyclic, contradicting V ≤ O2(M)
since m(V ) > 1.

This leaves case (2b) of E.2.2. Suppose first that K ∼= L3(2
n). We have treated

the case L2(7) ∼= L3(2) already, so we may take n > 1. Now TK = AAt, where t ∈ T
is nontrivial on the Dynkin diagram of K, and A, At are the maximal elementary
abelian subgroups of TK . Hence as Φ(V ) = 1 and V E T , V ≤ A∩At =: Z. But Z
is a long root group of K, so Z is Sylow in some L ≤ K with L ∼= L2(2

n) for n > 1,
and M ∩ L is Borel in L. As V ≤ L, we can construct I ∈ I(H,T, V ) contained in
L as in an earlier treatment.

Finally assume K ∼= Sp4(2
n)′; this case causes the most difficulties. Set F :=

F2n . If n = 1 then as T is nontrivial on the Dynkin diagram of K by E.2.2,
while V is a noncyclic elementary abelian normal subgroup of T , it follows that
H = Aut(K). In this case we let KS denote the subgroup of H isomorphic to
Sp4(2). If n > 1 let KS := K. In any case set S := T ∩KS .

As before S = AAt, where now A ∼= E23n , and V ≤ A ∩ At =: Z. This time
Z = Zl × Zs, where Zl and Zs are long and short root groups of KS , respectively.
Let U be the natural module for KS . Then Zl is the group of transvections with
center Ul for some point Ul, and [U,Zs] = CU (Zs) =: Us is a totally singular line
containing Ul. Let Wl, Ws be a flag opposite to Ul, Us in the building for KS. We
can use these flags to define a symplectic basis X := {x1, x2, x3, x4} for U , with
Ul = 〈x1〉, Us = 〈x1, x2〉, Wl = 〈x4〉, Ws = 〈x3, x4〉, and (x1, x4) = 1 = (x2, x3).
With respect to this basis, the action of root elements on U is given by

Zl = {zl(λ) : λ ∈ F} and Zs = {zs(λ) : λ ∈ F},

where zl(λ) centralizes U
⊥
l , and zl(λ) : x4 7→ x4 + λx1; while zs(λ) centralizes Us,

and
zs(λ) : x3 7→ x3 + λx1, and zs(λ) : x4 7→ x4 + λx2.

Next for µ ∈ F#, define

R(µ) := {zl(λ)zs(λµ) : λ ∈ F}.

Then the groups R(µ), µ ∈ F#, form a partition of the diagonal involutions of Z,
and those involutions are of Suzuki type c2 (recall Definition E.2.6); in particular
they are not root involutions. Further the groups R(µ) are characterized by the
property that for each rµ ∈ R(µ)#:

R(µ)# is the set of involutions r ∈ K such that [r, Fu] = [rµ, Fu] for all u ∈ U .
(∗)

We claim that R(µ) is a Sylow group of an L2(2
n)-subgroup L of K, with Borel

subgroup NL(R(µ)) ≤ NG(R(µ)) = MK : Namely the map ϕ : x1 → x2 and
ϕ : x4 7→ x3 induces an isometry ϕ : 〈x1, x4〉 → 〈x2, x3〉 and hence an isomorphism
ϕ∗ : Sp(〈x1, x4〉)→ Sp(〈x2, x3〉). Further a Sylow 2-subgroup D of the diagonal

L := {yϕ∗(y) : y ∈ Sp(〈x1, x4〉)}

satisfies (*), so D is conjugate to R(µ), completing the proof of the claim. Con-
sequently if V ≤ R(µ), we can find a member of I(H,T, V ) in L. Hence we may
assume for each µ that V 6≤ R(µ).

Observe also that if Zl ∩ V =: Rl 6= 1, then as t acts on V with Ztl = Zs,
Rs := V ∩ Zs = Rtl 6= 1. In particular V is contained in neither root group.
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Let g ∈ K map Ul, Us to Wl, Ws; and set I := 〈V, V g〉. We first show that
I is irreducible on U as F -module. For suppose W 6= 0 is an FI-submodule of U .
Then W 6≤ Us, since U

g
s =Ws and Us ∩Ws = 0, so there is w ∈ W −Us. We claim

that Ul ≤ W : Suppose first that w ∈ U⊥l , so that w = us + νx3 for us ∈ Us and
ν 6= 0. We saw V ∩ Zs 6= 1, so from the action of zs(λ) on V , Ul ≤ [V,w] ≤ W ,
as claimed. Suppose on the other hand that w /∈ U⊥l . Then the coefficient of x4
in the expression for w as an F -linear combination of members of X is nonzero; in
this case we make the stronger claim that Us ≤W . If Rl 6= 1, then also Rs 6= 1, so
Us ≤ [V,w] from action of Zl and Zs on V . Otherwise Rl = 1 = Rs, and hence all
elements v ∈ V # are involutions of Suzuki type c2. Then for each such v, [v, Fw] is a
1-dimensional F -subspace of the 2-space Us spanned by x1 and x2. Since V 6≤ R(µ)
for any µ, [Fw, v] 6= [Fw, v′] for some v, v′ ∈ V #, and hence Us ≤ [w, V ] ≤ W ,
completing the proof of the claims. Thus in any case we have Ul ≤ W . But now
by symmetry between V , Ul, Us and V

g , Wl, Ws, Ws = [Ul, V
g] ≤W , and then as

Ws 6≤ U⊥l , Us = [Ws, V ] ≤ W by the stronger claim. Hence U = Us +Ws ≤ W ,
establishing irreducibility of I on U as F -module.

So indeed I is irreducible on U , and hence also on the quasiequivalent FI-
module U t, since our argument was independent of the representative of the quasiequiv-
alence class.

Assume first that I contains involutions not of Suzuki type c2—that is, I con-
tains long or short root involutions. Then replacing U by U t if necessary, we may
assume that I contains transvections on U . Hence as I is irreducible on U , we
conclude from G.4.1 that either I is Sp4(2

k), or I is Oε4(2
k), or I preserves a de-

composition of U as the direct sum of two 2-dimensional subspaces. Assume the
second or third case holds; then as I = 〈V, V g〉, V contains an involution of Suzuki
type b1 or a2: This is because all involutions in I − Ωε4(2

k) are of these types in
the second case, and all involutions moving the two factors are of Suzuki type a2
in the third case. Then as Rl ∼= Rs, V contains an involution of Suzuki type b1
commuting with one of type a2, whereas such a pair does not exist in cases two
and three. Therefore I ∼= Sp4(2

k), and as TK = CK(v) for v ∈ V of Suzuki type
c2, T ∩ I ∈ Syl2(I). Then as V contains elements of Suzuki type c2 in Z(T ∩ I),
while Z(T ∩ I) ≤ Z(TK), the Borel subgroup NI(Z(T ∩ I)) of I is contained in
M ∩ I . Further kerM∩I(I) = 1 and we can choose g ∈ I . Thus I satisfies case (3)
for I(H,T, V ) in Definition E.2.4.

Thus we may assume that all involutions in I are of Suzuki type c2, so

CK(i) is a 2-group for each involution i ∈ I . (!)

By (!), I has at most one component. Also O(I) is generated by centralizers of
hyperplanes of V , so as V is noncyclic, we conclude from (!) that O(I) = 1. As
I is irreducible and faithful on U , O2(I) = 1. Therefore F ∗(I) is simple. Then
inspecting the centralizers of involutions in the automorphism groups of the simple
groups listed in Theorem C satisfying (!) (see [GLS98], or 16.1.4 and 16.1.5),
we conclude that I is L2(2

k), Sz(2k), A6, or L2(p), where p > 5 is a Fermat or
Mersenne prime. The last case is impossible as Sp4(2

n) contains no Frobenius group
of order p(p − 1)/2 with p > 5 prime (e.g. over a suitable extension field of F2n ,
an element of order p can be taken to be diagonal, and so is acted on nontrivially
only by elements of the Weyl group D8). Further if I is A6, then V ∼= E4 and each
4-subgroup of I is contained in an L2(4)-subgroup of I , so such an overgroup of V
is in I(H,T, V ). Thus we may assume that I is L2(2

k) or Sz(2k).
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Let E := EndFI (U). If E 6= F then as dimF (U) = 4, |E : F | = 2 and U is
the natural EI-module for I ∼= L2(2

k). But then involutions in I are of type a2
on I , a contradiction. Thus E = F so U = F ⊗F2e

Ū for some divisor e of n and
some 4-dimensional absolutely irreducible F2eI-module Ū such that F2e ≤ F is a
splitting field for Ū . Invoking the theory of small dimensional representations of I
(cf. pages 26-27 and 77-78 of [GLS98]) we conclude that either e = k/2 and Ū is
the orthogonal module for I ∼= Ω−4 (2

e), or e = k and Ū is the natural module for
I ∼= Sz(2e) (i.e., the module obtained by restriction from the embedding of Sz(2e)
in Sp4(2

e)).
As each involution in V # is of type c2, CU (v) = Us = CU (V ) for each v ∈ V #,

so V ≤ V0 := {v0 ∈ I : CU (v0) = CU (V )}. When I ∼= Ω−4 (2
e), V0 is Sylow in

a subgroup I0 ∼= Ω3(2
e). When I ∼= Sz(2e), let I0 := I . Then in either case

I0 is a Bender group such that the Borel subgroup B0 of I0 over V is contained
in NK(V0) = NK(Us). Now B0 = R0H0 where R0 is the unipotent radical of
B0 and H0

∼= Z2e−1 is a Cartan subgroup. If I0 is a Suzuki group, then R0 6≤
CK(Us) and R0 ≤ CK(V ), so B0 ≤ MK . If I0 is Ω3(2

e) then CUs(H0) 6= 0, so
H0 ∩ O2,2′(NK(Us)) = 1, and hence MK is the unique Borel subgroup of NK(Us)

containing each h ∈ H#
0 with V ∩V h 6= 1, and again B0 ≤MK . Then as before we

can find a member of I(H,T, V ) inside I0, completing the proof of the lemma. ¤

Lemma E.2.7 supplies subgroups of H/J which, under suitable hypotheses on
V , can be “pulled back” to members of I(H,T, V ). The necessary hypotheses are:

Hypothesis E.2.8. Assume that H ∈ Û(T ) with M := !N (T ), and H is an
SQTK-group. Assume further that V is an elementary abelian 2-group normal in
T , with V ≤ O2(M) and V 6≤ J := kerM (H).

Lemma E.2.9. Assume Hypothesis E.2.8. Then NH(V ) ≤ M . Furthermore
I(H,T, V ) 6= ∅, and for each I ∈ I(H,T, V ):

(1) [J, I ] ≤ O2(H) and O2(H) ≤ NG(I), so J ≤ NG(O
2(I)).

(2) If F ∗(H) = O2(H) then F ∗(I) = O2(I).

Proof. If V E H , then V ≤ O2(H) ≤ J by B.6.8.1, contradicting hypothesis
E.2.8. Then T ≤ NH(V ) < H , so as M = !N (T ) we get NH(V ) ≤M .

Let H∗ := H/J . If H is not solvable then H∗ is an SQTK-group by E.2.2.
If H is solvable, then as V ≤ O2(M) but V 6≤ O2(H), O2(H∗) ∼= Zp or Ep2 by
E.2.1 and B.6.8.2, so again H∗ is an SQTK-group. Thus in any event H∗ is an
SQTK-group. Then since J ≤ M by definition, Hypothesis E.2.8 is satisfied by
the tuple H∗, T ∗, M∗, V ∗, and kerM∗(H∗) = J∗ = 1. Hence by E.2.7, there is
I∗0 ∈ I(H

∗, T ∗, V ∗). Let I0 be the preimage of I∗0 in H , and pick g ∈ I0 with
I∗0 = 〈V ∗, V ∗g〉 and I := 〈V, V g〉 minimal subject to this constraint. We will show
that I ∈ I(H,T, V ).

First I∗0 = I∗ ∼= I/(I ∩ J), and by minimality of I , there is g1 ∈ I with V ∗g =
V ∗g1 , so without loss g ∈ I . By B.6.8.5, J is 2-closed, so T ∩J = O2(H) ∈ Syl2(J);
hence as (T ∩ I0)∗ ∈ Syl2(I∗0 ), also T ∩ I0 ∈ Syl2(I0).

Now set H̄ := H/O2(H). As J ≤ M and V ≤ O2(M) by hypothesis, [V̄ , J̄ ] ≤
O2(J̄) = 1, so as I = 〈V, V g〉, Ī centralizes J̄ . Thus Ī E Ī J̄ = Ī0, so T ∩ I ∈ Syl2(Ī);
then as O2(H) ≤ T , also T ∩ I ∈ Syl2(I). As Ī centralizes J̄ , J̄ ∩ kerM∩I(Ī) ≤
Z(kerM∩I (Ī)), so as ker(M∩I)∗(I

∗) ∼= ker(M∩I0)∗(I
∗
0 ) is 2-closed by Definition E.2.4,
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kerM∩I(Ī) is 2-closed. Hence the preimage kerM∩I(I) is 2-closed. This completes
the verification that I ∈ I(H,T, V ).

Now let I be any member of I(H,T, V ). The argument above shows that Ī
centralizes J̄ , so [J, I ] ≤ O2(H), and in particular, J normalizes IO2(H). As

O2(H) ≤ T ∩ T g ≤ NG(V ) ∩NG(V
g),

O2(H) acts on 〈V, V g〉 = I . Then O2(I) = O2(O2(H)I) is J-invariant, completing
the proof of (1). By (1), O2(H) centralizes O2(F ∗(I)), so (2) holds as well. ¤

In the next lemma E.2.10 we study the structure of groups like those in I(H,T, V ),
under a weaker version of Hypothesis E.2.8, in which we replace the condition that
H ∈ Û(T ) by the assumption that NH(V ) ≤M .

Lemma E.2.10 is often applied in the proof of the Main Theorem in the following
way: We are given L ∈ L∗f (G, T ); setM0 := NG(〈LT 〉), and suppose V ∈ R2(〈L, T 〉)
and H ∈ H∗(T,M0) such that V 6≤ kerM (H). Set M :=M0 ∩H . Then E.2.10 and
later lemmas supply very precise information on the structure of I ∈ I(H,T, V ). If
G is an example or shadow, then M is usually an end-node parabolic in a diagram
geometry, and H is the rank 1 parabolic not contained in M . Often H = IT , and
the special 2-group P constructed in E.2.10 is O2(NG(V ∩ V g)).

Proposition E.2.10. Assume X is a finite group, T ∈ Syl2(X), V E T is
an elementary abelian 2-group, and NX(V ) ≤M ≤ X with V ≤ O2(M). Set L :=
O2(X), J := kerM (X), and X∗ := X/J . Assume J is 2-closed and X = 〈V, V g〉
for some g ∈ X. Then

(1) Set B := J ∩ V , P := 〈B,Bg〉, and Z := V ∩ V g. Then P := BBg E X,
and Z ≤ P ∩ Z(X).

(2) Set X̃ := X/Z. Then P̃ = B̃⊕ B̃g is elementary abelian, V is quadratic on

P̃ , and CP̃ (V ) = B̃.
(3) O2(X

∗) = 1.
(4) X centralizes J/P .
(5) A := Bg is cubic on V . That is [V,A,A,A] = 1.
(6) If V ∗ is of order 2, then P = O2(X) = J and X/P ∼= X∗ ∼= D2m for some

odd integer m.
(7) If X∗ ∼= L2(2

n) or Sz(2n), with n > 1, then J = O2(X) and X/P is
the direct product of O2(X/P ) with an elementary abelian 2-group. Further either
P = O2(LP ) and LP/P ∼= X∗, or LP/P is a perfect central extension of a 2-group
by Sz(8).

(8) If X∗ ∼= Sp4(2
n), then O2(X) = J and X/P is the direct product of a

copy of X∗ and an elementary abelian 2-group. Further O2(LP ) = P and LP/P ∼=
[X∗, X∗].

(9) If X > V and F ∗(X) = O2(X), then [V,A] 6= 1.

Proof. As V and V g are abelian, Z = V ∩V g is in the center of 〈V, V g〉 = X , so
Z ≤ O2(X), and hence Z ≤ P . Next B,Bg ≤ J which is 2-closed, so B = V ∩O2(X)
and P ≤ O2(X) ≤ T ≤ NX(V ), so

[V, P ] ≤ V ∩ O2(X) = B ≤ P,

and similarly [V g , P ] ≤ P . Therefore X = 〈V, V g〉 normalizes P . Then as P ≤
NX(V ),

B = V ∩ O2(X) E P,
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and similarly Bg is normal in P , so that P = BBg , completing the proof of (1). Now

as B and A := Bg are normal in P and elementary abelian, P̃ = B̃ ⊕ B̃g = B̃ ⊕ Ã
is elementary abelian. As [V, P ] ≤ V ∩ P and V is abelian, V is quadratic on

P̃ . Further as P̃ = B̃ ⊕ Ã with B̃ ≤ CP̃ (V ), CP̃ (V ) = B̃ ⊕ CÃ(V ), with CÃ(V )
centralized by 〈V, V g〉 = X . Then the preimage C in X of CÃ(V ) is normalized by

X and contained in V g , so C ≤ V ∩ V g = Z. That is CP̃ (V ) = B̃, completing the
proof of (2).

Next O2(X
∗) ≤ T ∗ and JT ≤ M , so O2(X

∗) ≤ kerM∗(X∗) = J∗ = 1, so (3)
holds.

Set X̄ := X/P . As O2(X) ≤ NX(V ), [O2(X), V ] ≤ V ∩ O2(X) = B ≤ P , so

X = 〈V, V g〉 centralizes O2(X). Then as J is 2-closed, J̄ = O(J̄) × O2(X). As
V ≤ O2(M) by hypothesis, [J, V ] ≤ O2(M) ∩ J ≤ O2(X), so X = 〈V, V g〉 also
centralizes O(J̄), which with the previous observation completes the proof of (4).

We have seen that A ≤ P E X . Then [V,A] ≤ P , so [V,A,A] ≤ [P,A] ≤ Z as

P̃ is abelian. Then as Z ≤ Z(X), [V,A,A,A] = 1, and (5) holds.
Notice that V̄ = V/(V ∩ P ) = V/(V ∩ J) ∼= V ∗, and in particular we have

V̄ ∩ O2(X̄) = 1. Also by (4), J̄ ≤ Z(X̄).
Assume |V ∗| = 2; then V̄ ∼= V ∗ also has order 2. Thus X∗ = 〈V ∗, V ∗g〉 ∼= D2m

and X̄ are dihedral. By (3), m is odd. Then as J̄ ≤ Z(X̄), we conclude that
|J̄ | ≤ 2. But if J̄ 6= 1, then V̄ and V̄ g are not conjugate in the dihedral group
X̄, so V is not conjugate to V g in X , contradicting our hypothesis. Thus J = P ,
completing the proof of (6).

Assume that X∗ ∼= L2(2
n) or Sz(2n). Thus X = JL, so as J̄ ≤ Z(X̄),

X̄ = L̄Z(X̄). Then as X = 〈V X〉, also X̄ = L̄V̄ , and hence X = PLV . Then
since X̄ = Z(X̄)L̄, Z(X̄)/Z(L̄) is an elementary abelian 2-group. By I.1.3, the
Schur multiplier Σ of L∗ is a 2-group, and Σ is trivial unless L∗ ∼= L2(4) or Sz(8).

Therefore Z(X̄) = O2(X̄) = O2(X), and Z(L̄) = 1 unless L∗ ∼= L2(4) or Sz(8).
Thus J = O2(X), and if Z(L̄) = 1 then X̄ = O2(X̄) × L̄ with O2(X̄) elementary
abelian, so that P = O2(LP ) and (7) holds. Thus we may assume that Z(L̄) 6= 1, so
that L∗ ∼= L2(4) or Sz(8). In the latter case by I.2.2.4, every involution in L∗ lifts
to an involution of L̄, so O2(X̄) is elementary abelian and we are in the exceptional
case allowed in (7). Finally if L∗ ∼= L2(4), then L̄ ∼= SL2(5) by I.1.3. But then as
V E T , Z(L̄) ≤ V̄ ∩ O2(X̄) = 1 as we saw earlier, contradicting our assumption
that Z(L̄) 6= 1. So the proof of (7) is complete.

Assume the hypotheses of (8). Using I.1.3 as in the previous paragraph, X =
PLV , L̄ is quasisimple, and either X̄ = L̄Z(X̄) or X∗ ∼= Sp4(2) ∼= S6. Further
when n > 1, the multiplier of X∗ is trivial by I.1.3, and arguments in the previous
paragraph complete the proof. Thus we may assume that X∗ ∼= S6. As Z(L̄) ≤

J̄ ≤ Z(X̄), |Z(L̄)| ≤ 2, since the center of the triple cover Â6 is not centralized
by any element of S6 −A6 (cf. the proof of I.2.2—the normalizer in S6 of a Sylow
3-subgroup contains D8, rather than the Sylow 2-group Q8 of SL2(3) centralizing
that center). If Z(L̄) 6= 1, then as V E T , again Z(L̄) ≤ V̄ ∩ O2(X̄) = 1, a
contradiction. Therefore L̄ ∼= A6, so that (8) holds.

Assume that F ∗(X) = O2(X) and X > V . If V ≤ O2(X) then X = 〈V, V g〉 ≤
O2(X), so X is a 2-group. Then since V E T , X = 〈V, V g〉 = V , contradicting the
hypothesis of (9). Therefore V 6≤ O2(X). But if V centralizes A, then V centralizes
AB = P , while by (4), V centralizes O2(X)/P . Then as F ∗(X) = O2(X), V ≤
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CX(P ) ∩ CX (O2(X)/P ) ≤ O2(X) by Coprime Action, contrary to our previous
reduction. This completes the proof. ¤

Lemma E.2.11. Assume Hypothesis E.2.8 and let I := 〈V, V g〉 ∈ I(H,T, V ),
and set MI :=M ∩ I, JI := kerMI (I), I

∗ := I/JI , and TI := T ∩ I. Then

(1) I, MI , TI , V satisfy the hypotheses of E.2.10 in the roles of “X, M , T ,
and V ”.

(2) V ∗ ≤ Z(T ∗I ).

(3) TI = O2′ (MI); that is, MI is 2-closed.
(4) V g ∩ O2(I) = NV g (V ).
(5) Define P := (O2(I) ∩ V )(O2(I) ∩ V g). Then O2(I) = JI , and O2(I)/P =

Z(I/P ) is elementary abelian.

Proof. Part (1) is immediate, once we observe that NH(V ) ≤M by E.2.9, so
that NI(V ) ≤MI .

Next the possiblities for I∗ in (1)–(3) of Definition E.2.4 are those in (6)–(8)
of E.2.10. Hence by E.2.10, JI = O2(I) and O2(I)/P = Z(I/P ) is elementary
abelian, establishing (5). Thus to prove (3), it suffices to check that M ∗

I is 2-closed.
We verify this claim, and also that V ∗ ≤ Z(T ∗I ) in each of the three cases: If I∗ is
dihedral,M∗

I = T ∗I = V ∗, so our claim holds. If I∗ is a Bender group or a symplectic
group, then M∗

I is a Borel subgroup of I∗, so T ∗I = O2(M
∗
I ). Further when I∗ is

Bender, V ∗ ≤ Ω1(T
∗
I ) = Z(T ∗I ), while if I∗ is symplectic, then V ∗ ≤ Z(T ∗I ) from

Definition E.2.4. Thus our claim is established, completing the proof of (2) and (3).
It remains to prove (4). As O2(I) ≤ T ≤ NI(V ), V g ∩ O2(I) ≤ NV g (V ), so

it suffices to show that U∗ := NV g∗(V
∗) = 1. But using (2) and (3) we see that

U∗ ≤ O2′ (M∗
I ) = T ∗I ≤ CI∗(V

∗); so I∗ = 〈V ∗, V g∗〉 centralizes U∗, and hence
U∗ ≤ O2(I

∗) = 1. ¤

E.2.3. Modules for H when b = 1.

Using the lemmas in the previous subsection, we can establish a key result
which shows that in conclusion (1) of the qrc-lemma D.1.5, q̂ ≤ 2. In that case of
the qrc-lemma, V 6≤ O2(H), which is equivalent to V 6≤ J in our setup.

Definition E.2.12. Given an odd prime p, define d(pa) to be the order of 2 in
the group of units of the ring of integers modulo pa, set d′(pa) := d(pa)/2 if d(pa)
is even, and d′(pa) := d(pa) if d(pa) is odd.

Proposition E.2.13. Assume Hypothesis E.2.8 with F ∗(H) = O2(H). Then

(1) I(H,T, V ) 6= ∅.

Pick I = 〈V, V g〉 ∈ I(H,T, V ), and set A := V g ∩O2(I). Then:
(2) A = NV g (V ), A is cubic on V , [V,A] 6= 1, CA(V ) = V ∩ V g, and

m(V/CV (A)) ≤ 2 m(A/CA(V )).

(3) q̂(AutH(V ), V ) ≤ 2.
(4) m(AutA(V )) ≥ d′(pa), k, 2k, 2k for I/ kerM∩I(I) ∼= D2pa , L2(2

k), Sz(2k),
Sp4(2

k), respectively.
(5) If V ∩ V g = 1 then q(AutH(V ), V ) ≤ 1.
(6) If V I ∩ T ⊆ CI (V ) then I/ kerM∩I(I) is not Sp4(2

k).
(7) CI (P/(V ∩ V g)) ≤ O2(I) = kerM∩I (I).
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Proof. Part (1) follows from E.2.9. By E.2.11.1, I , MI :=M ∩ I , TI := T ∩ I ,
and V satisfy the hypotheses of E.2.10, so we can also appeal to that lemma. By
E.2.9.2, F ∗(I) = O2(I), so by E.2.10.9, [V,A] 6= 1. By E.2.10.5, A is cubic on V ,
and by E.2.11.4, A = NV g (V ). Thus to complete the proof of (2) and (3), we must
show that CA(V ) = V ∩ V g and m(V/CV (A)) ≤ 2 m(A/CA(V )).

Adopt the notation of E.2.11, and set B := V ∩ JI , P := BA, Z := V ∩ V g,
and P̃ := P/Z. As I ∈ I(H,T, V ), I∗ ∼= D2pa , p odd, L2(2

k), Sz(2k), or Sp4(2
k).

By E.2.10.2,

CP̃ (V ) = B̃,

and P̃ = B̃ ⊕ Ã. Therefore CA(V ) = A ∩ B = Z so AutA(V ) = A/Z, and then

m(A/CA(V )) = m(A/Z) = m(B/Z)

= m(V/Z)−m(V/B) ≥ m(V/CV (A))−m(V/B) (∗)

We will show later that

m(V/B) = m(V ∗) ≤ m(B/Z) = m(A/CA(V )), (∗∗)

and then (2) and (3) will follow from (*) and (**).

We first establish (7). Let Y := CI(P̃ ). Then Y centralizes O2(I)/P and
O2(I) = kerM∩I (I) by E.2.11.5, so Y centralizes the quotients in the normal series
1 ≤ Z ≤ P ≤ O2(I). Thus Y ≤ O2(I) as F

∗(I) = O2(I), so (7) holds.
Now (cf. the discussion and references in the proof of Theorem G.9.3) the

minimal degree d of a faithful F2I
∗-module is 2d′(pa), 2k, 4k, 4k for I∗ isomorphic

to D2pa , L2(2
k), Sz(2k), Sp4(2

k), respectively. Therefore (4) is established, as

m(P̃ ) = 2 m(A/Z). Further m(V ∗) ≤ m2(I
∗) = 1, k, k, 3k, in the respective

cases, and indeed when I∗ is Sp4(2
k), V ∗ ≤ Z(T ∗I ) by Definition E.2.4, so that

m(V ∗) ≤ 2k. Thus m(V ∗) ≤ d/2, so as d/2 ≤ m(A/CA(V )) by (4), we have
established (**) and hence also (2) and (3).

Next assume that Z = 1. Then P = A×B by (2) and (5) of E.2.10 (where the
definition of A is given). Also by E.2.10.2, CP (V ) = B. Since A ≤ P , CA(V ) ≤
CP (V ) = B, so CA(V ) ≤ A ∩ B = 1, and hence A acts faithfully on V . It follows
that B = CV (A), and now (5) is a consequence of (**).

Finally assume that W := 〈V I ∩TI〉 ≤ CI(V ) and I∗ ∼= Sp4(2
k). By Definition

E.2.4, V ∗ ≤ Z(T ∗I ) and V ∗ is contained in neither of the root groups in Z(T ∗I ).
This implies that T ∗I = W ∗ = CI∗(V

∗); for example T ∗I is the product of the
unipotent radicals R∗i of the two parabolics I∗i , i = 1, 2 of I∗ above T ∗I , and R

∗
i =

〈V ∗I
∗
i 〉 as V ∗ is not contained in the root group Z(O2′ (I∗i )). Indeed as R∗i =

〈V ∗I
∗
i 〉 and V ∗ ≤ Z(T ∗I ), it follows from the standard connectivity (cf. p. 208 and

Exer. 14.5 in [Asc86a]) of the building for I∗ that the commuting graph on V ∗I

(where commuting pairs define edges) is connected. By hypothesis, W centralizes

V and hence also B̃. Therefore as B̃ = CP̃ (V ), also B̃ = CP̃ (W ) = CP̃ (V
i)

for each i ∈ I with V i∗ ≤ T ∗I , since i normalizes P and so Ṽ i ≤ CP̃ (V ) = B̃.

Then as the commuting graph on V ∗I is connected, B̃ = CP̃ (V
g), whereas Ã =

CP̃ (V
g) by E.2.10.2. This contradiction completes the proof of (5), and hence of

the proposition. ¤

In the proof of the Main Theorem we often encounter a subgroup H satisfying
Hypothesis E.2.8 with F ∗(H) = O2(H) and V a TI-set under the action of M .
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Further in many such situations we will know that V ∩V g 6= 1 for each g ∈ H . The
next lemma gives us extra information under these hypotheses:

Lemma E.2.14. Assume Hypothesis E.2.8. Assume also that F ∗(H) = O2(H),
V is a TI-set under the action of M , and I = 〈V, V g〉 ∈ I(H,T, V ) such that
Z := V ∩ V g 6= 1. Set MI :=M ∩ I, TI := T ∩ I, JI := kerMI (I), B := V ∩O2(I),

A := V g ∩O2(I), P := AB, Ĩ := I/Z, I∗ := I/JI , and k := n(I∗). Then

(1) MI = NI(V ).
(2) One of the following holds:

(i) P = JI and V
∗ = Z(T ∗I ).

(ii) I/P is quasisimple with I∗ ∼= Sz(8), JI/P = Z(I/P ), and V P/P =
[Ω1(TI/P ),MI ]. Further M

∗
I is a Borel subgroup of I∗, and V ∗ = Z(T ∗I ).

(iii) I/P ∼= S6 × Z2 and JI = Z(I/P ).

(3) If I∗ ∼= L2(2
k) then P̃ is a sum of natural modules for I∗.

(4) If I∗ ∼= Sz(2k) or Sp4(2
k) then each chief factor for I on P̃ is of rank at

least 4k.
(5) If I∗ ∼= L2(2

k) or Sp4(2
k) and P̃ is a natural module for I∗, then P is

abelian and q(AutI(V ), V ) ≤ 1.
(6) AutA(V ) E AutI(V ).
(7) If m(AutA(V )) ≤ 2k and q(AutI (V ), V ) > 1, then I∗ ∼= L2(2

k), Sz(2k),

or D10, m(AutA(V )) = 2k, m(V/Z) = 3k, and P̃ is either the sum of two natural
modules for L2(2

k), or one natural module for Sz(2k) or D10.
(8) If k = 2, m(AutA(V )) ≤ 6, and q(AutI(V ), V ) > 1, then I∗ ∼= L2(4),

m(AutA(V )) = 2s, s = 2 or 3, and m(V/Z) = 2(s+ 1).
(9) If I∗ ∼= L2(2

k) or Sz(2k) with k > 1, then Z = CV (X
∗) for X∗ of order

2k − 1 in M∗
I .

(10) If I∗ ∼= D2p then P̃ is the direct sum of faithful irreducible modules of
dimension 2d′(p).

(11) [V, P̃ ] = B̃.

Proof. Observe that we may apply E.2.13, and by E.2.11.1 we may apply
E.2.10. By the latter result, NI(V ) ≤ M and Z ≤ Z(I), so as Z 6= 1 and V is a
TI-set under M , MI ≤ NM (Z) ≤ NM (V ). Hence (1) is established.

As P E I and P = AB from E.2.10, AutA(V ) = AutP (V ) E AutI(V ),
establishing (6).

By E.2.10.2 and E.2.13.2, P̃ = Ã⊕ B̃ and Z = CA(V ), so that

Ã ∼= A/CA(V ) and B̃ = CP̃ (V ) are of rank m(P̃ )/2. (∗)

We now consider each of the three cases in Definition E.2.4, establishing the
appropriate parts of (2)–(4) and (9)–(11) in each case. Let L := O2(I) and Ī :=
I/P . By E.2.11.5, JI = O2(I) and J̄I = Z(Ī).

Suppose that I∗ is dihedral. Then JI = P by E.2.10.6, so that I∗ = Ī , and
in particular V ∗ = V̄ = T̄I = Z(T̄I) has order 2—and hence (2i) holds in this

case. Further by E.2.13.7, Ī is faithful on P̃ , and by (*), V̄ is free on P̃ with

B̃ = CP̃ (V ) = [P̃ , V ], establishing (11) in this case. Thus P̃ is the direct sum of
faithful irreducible F2Ī-modules of degree 2d′(p), proving (10).

Suppose next that I∗ ∼= L2(2
k) or Sz(2k), with k > 1. From Definition E.2.4,

M∗
I is the Borel subgroup over T ∗I , so M

∗
I is irreducible on Ω1(T

∗
I ) = Z(T ∗I ). Then

as V E MI , we conclude V ∗ = Z(T ∗I ). Also as V ∗ = [V ∗,M∗
I ] and V E MI
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with V ∗ ∼= V̄ , V̄ = [V̄ , M̄I ]. But by E.2.10.7, Ī = Z(Ī)L̄ with L̄ quasisimple, so
V̄ = [V̄ , M̄I ∩ L̄] ≤ L̄. Thus Ī = 〈V̄ , V̄ g〉 ≤ L̄, and hence Ī = L̄ is quasisimple.
Then (2i) or (2ii) holds by E.2.10.7 in this case. But as V ∗ = Z(T ∗I ), I

∗ = 〈V ∗, e∗〉
for each 1 6= e∗ ∈ V ∗g, so

CB̃(e
∗) ≤ CP̃ (I

∗) = CP̃ (V
∗) ∩ CP̃ (V

∗g) = B̃ ∩ Ã = 0,

and hence Ã = CP̃ (e
∗) = [P̃ , e], establishing (11) in this case. Hence if I∗ ∼= L2(2

k),

P̃ is the sum of natural modules for I∗ by G.1.6, establishing (3) and also (9) in this
case. Further if I∗ ∼= Sz(2k), then the minimum rank of a nontrivial module for I∗

is 4k; so to establish (4) in this case, it remains to verify that I∗ has no nonzero

central chief factors on P̃ . This holds since if 1 6= v∗ ∈ V ∗, then 1 6= x∗ := v∗vg∗ is
of odd order, while as

CP̃ (v
∗) ∩ CP̃ (v

g∗) = B̃ ∩ Ã = 0,

we have CP̃ (x
∗) = 0. Notice this also completes the proof of (9), since an element

of order 2k − 1 is inverted in I∗.
Suppose finally that I∗ ∼= Sp4(2

k). Then Z(T ∗I ) = Z∗l ×Z
∗
s is the product of a

long and short root group, and by Definition E.2.4, V ∗ ≤ Z(T ∗I ) and V
∗ 6≤ Z∗r 6= 1

for r = l and s. As I∗ is generated by two conjugates of V ∗, V ∗ is noncyclic; thus
V ∗ = Z(T ∗I ) if k = 1. On the other hand if k > 1, then Z∗l and Z∗s are the only
nontrivial proper M∗

I -submodules of Z(T ∗I ), so again V ∗ = Z(T ∗I ). Now we appeal
to E.2.10.8 and argue as in the case where I∗ was L2(2

k) or Sz(2k), to establish
(2i)—except possibly when k = 1, where H∗ ∼= S6 is not quasisimple. In that case,
V̄ = 〈v̄, ū〉, where v̄ induces an inner automorphism on L̄, ū induces a transposition,
and w̄g ∈ w̄L̄ for each w̄ ∈ V̄ . Thus H̄ = 〈V̄ , V̄ g〉 = 〈ū〉L̄ × 〈c̄〉, where c̄ is the
projection of v̄ on CĪ (L̄); hence (2i) or (2iii) holds. To establish (4), we can use
the argument we used when I∗ was Sz(2k)—once we observe that I∗ = I∗e∗ for
1 6= e∗ ∈ V g∗ of Suzuki type c2 (recall Definition E.2.6, where Ie∗ := 〈V ∗, e∗〉).
This observation is established as follows: We will show that if v∗ ∈ V ∗ is of Suzuki
type c2, then v

∗e∗ is of odd order. Then v∗ is conjugate to e∗ in 〈v∗, e∗〉 ≤ Ie∗ , so
V ∗ is conjugate to V ∗g in Ie∗ and hence I∗ = 〈V ∗, V ∗g〉 = I∗e∗ . Finally if |v∗e∗| is
even, then there is an involution

i∗ ∈ CI∗(v
∗) ∩ CI∗(e

∗) = T ∗I ∩ T
∗g
I ,

whereas M∗
I and M∗g

I are opposite Borel subgroups, so that T ∗I ∩ T
∗g
I = 1. This

contradiction completes the proof of (4) and (11) in this final case; and hence
completes the proof of (2)–(4) and (9)–(11).

Next assume that P̃ is a natural module for I∗ ∼= L2(2
k) or Sp4(2

k). Then I∗

is transitive on P̃#. Therefore as Φ(A) = 1, all elements in P are involutions, and
hence also Φ(P ) = 1. Then B = CV (A) by (*), and hence (5) follows from (**) in
the proof of E.2.13.

Assume the hypotheses of (7). Suppose first that I∗ is Sz(2k) or Sp4(2
k). Then

by E.2.13.4, m(AutA(V )) = 2k, so from (*) and (4), P̃ is irreducible of rank 4k.
From the representation theory of these groups, the only F2-irreducibles of this
rank are quasiequivalent to the natural module. Then as q(AutI (V ), V ) > 1 by
the hypotheses of (7), (5) forces I∗ ∼= Sz(2k). Hence m(V ∗) = m(Z(T ∗I )) = k by

(2), so m(V/Z) = m(V ∗) +m(B̃) = 3k, and (7) holds in this case. Suppose next

that I∗ ∼= L2(2
k) with k > 1. Then P̃ is a sum of natural modules by (3), so using

(*) and the hypothesis m(AutA(V )) ≤ 2k, P̃ has at most two summands. The
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case of a single irreducible is ruled out using (5), so we have two summands, and
hence m(AutA(V )) = 2k. By (2) m(V ∗) = k, so that m(V/Z) = 3k, and hence
(7) holds in this case as well. Finally if I∗ ∼= D2pa then by E.2.13.4, d′(pa) ≤ 2, so

pa = 3 or 5 and P̃ is a sum of at most 2 or 1 “natural” modules of dimension 2d′(p)
respectively. The case of a single summand for D6

∼= L2(2) is again ruled out using
(5). This completes the proof of (7) in all cases.

Finally assume the hypotheses of (8). As k = 2, I∗ ∼= L2(4) or Sp4(4). In the

latter case as m(P̃ ) = 2m(Ã) ≤ 12 by hypothesis and (*), so we conclude from (4)

that P̃ is an irreducible of rank 8 for I∗. Therefore from the representation theory
of Sp4(4), P̃ is a natural module for I∗, and then (5) contradicts our assumption
that q(AutI(V ), V ) > 1. Thus I∗ ∼= L2(4), and now (3) and (5) complete the proof
of (8). ¤

In our next result we see that when V is a TI-set in M , we can improve E.2.13
to obtain the strict inequality q̂ < 2. We will use this in 3.1.6.2 and 3.1.8.2 in the
proof of the Main Theorem.

Lemma E.2.15. Assume Hypothesis E.2.8. Assume also that F ∗(H) = O2(H)
and V is a TI-set under the action of M . Then q̂(AutH(V ), V ) < 2. Indeed for
I ∈ I(H,T, V ) and A := V g ∩ O2(H), rAutA(V ),V < 2.

Proof. By E.2.13 we can choose I ∈ I(H,T, V ), and adopt the notation of
that lemma and its proof. By E.2.13.3, r := q̂(AutH(V ), V ) ≤ 2, so we may assume
that r = 2. Therefore Z := V ∩V g 6= 1 by E.2.13.5, so we can also appeal to E.2.14.
Now I∗ ∼= D2pa , L2(2

k), Sz(2k), Sp4(2
k), and by E.2.14.2, m(V ∗) = 1, k, k, 2k,

respectively. By E.2.13.2, Z = CA(V ); and by E.2.10.2, m(P̃ ) = 2 m(A/Z), so as
rAutA(V ),V ≥ r = 2,

m(P̃ ) = 2 m(A/CA(V )) ≤ m(V/CV (A)) ≤ m(V/Z) = m(V ∗) +m(B̃)

= m(V ∗) +m(P̃ )/2.

Thus m(P̃ ) ≤ 2 m(V ∗) = 2, 2k, 2k, 4k. It follows from E.2.14.4 that I∗ is not

Sz(2k), and if I∗ ∼= Sp4(2
k) then P̃ is an irreducible of rank 4k, and hence a

natural module. Similarly if I∗ ∼= L2(2
k), then P̃ is a natural module by E.2.14.3.

Finally if I∗ ∼= D2pa , then m(P̃ ) ≤ 2, so d′(p) = 1 by E.2.13.4; we conclude that P̃
is the natural module for I∗ ∼= L2(2).

So in any case, P̃ is a natural module for I∗ ∼= L2(2
k) or Sp4(2

k). But then
by E.2.14.5, r ≤ 1, contradicting our assumption that r = 2. This contradiction
completes the proof of the lemma. ¤

We use the following convention in many places in our work:

Notation E.2.16. Recall that a 2-group X is extraspecial if X ′ = Φ(X) =
Z(X) is of order 2. The standard classification (e.g., p. 111 in [Asc86a]) says that
X has structure Qm8 D

n
8 by which we denote the central product of m copies of Q8

and n copies of D8, with centers identified.

The following technical lemma is needed in 15.1.11 in the proof of the Main
Theorem.

Lemma E.2.17. Assume Hypothesis E.2.8. Further assume F ∗(H) = O2(H),
V is a TI-set under the action of M , q̂(AutH(V ), V ) = 3/2, O2(M) centralizes V ,
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and m(V ) = 4. Then 〈V H〉 ∼= S3/Q
2
8, L3(2)/D

3
8, or (Z2 × L3(2))/D

3
8, and in the

latter two cases, |AutT (V )| ≥ 8.

Proof. By E.2.13 we can choose I ∈ I(H,T, V ), and adopt the notation of
that lemma and its proof. As r := q̂(AutH(V ), V ) = 3/2, Z := V ∩ V g 6= 1 by

E.2.13.5, so we can appeal to E.2.14. Further as B̃, Z 6= 1 we have

m(V ∗) = m(V )−m(Z)−m(B̃) ≤ 4− 1− 1 = 2;

and if m(V ∗) = 2, then m(B̃) = 1, so m(P̃ ) = 2 and I∗ ≤ GL2(2), contradicting
the assumption that m(V ∗) = 2. Therefore m(V ∗) = 1, so I∗ ∼= D2pa and

4 = m(V ) = 1 +m(B̃) +m(Z) ≥ m(B̃) + 2,

so that m(B̃) = 1 or 2. If m(B̃) = 1, then P̃ is a natural module for I∗ ∼= L2(2) by
E.2.14.10, and hence r ≤ 1 by E.2.14.5, contradicting our hypothesis that r = 3/2.

Therefore m(B̃) = 2, and hence m(Z) = 1. If P is abelian, then B = CV (A),

so Ã induces transvections on V , giving r ≤ 1/2, again a contradiction. So P is

nonabelian. Next m(P̃ ) = 2 m(B̃) = 4 and hence pa = 3 or 5. But if pa = 5,

the five conjugates of the elementary abelian group B cover P̃ , contradicting P
nonabelian. Thus pa = 3. As the chief factors of I on P̃ are of rank 2, either
Z(P ) = Z or Z(P ) ∼= E8, and in the latter case P/Z(P ) is covered by the 3
conjugates of BZ(P )/Z(P ), again contradicting P nonabelian. Thus Z(P ) = Z,
and P is extraspecial. Then as m(B) = 3, P ∼= Q2

8. In particular I ∼= S3/Q
2
8, using

E.2.10.6 to see that P = O2(I) = JI .

Thus it remains to show that either 〈V H〉 = I , or 〈V H〉 isD3
8 extended by L3(2)

or L3(2)×Z2. This part of the argument is more complicated. Let H̄ := H/O2(H)
and K := O2(H).

We first consider the case where H is solvable. As V ≤ O2(M) but V 6≤ O2(H),
K̄ ∼= Zr, Er2 or r1+2 for some odd prime r by E.2.1. Then as I ≤ H , r = 3. Hence
using E.2.10.6, P = [O2(I), O

2(I)] ≤ O2(H). Thus B = V ∩ O2(I) = V ∩ O2(H)
and so V̄ ∼= V ∗ is of order 2. By hypothesis V E T , so as T is irreducible on
K̄/Φ(K̄) by B.6.8.2, V̄ inverts K̄/Φ(K̄). Next Z = CI(O2(I)) is of order 2 and
hence Z = V ∩Z(O2(H)), since we saw that O2(I) ≤ O2(H). Since K̄ is a 3-group
and V̄ inverts K̄/Φ(K̄), for h ∈ K −M we obtain Ih := 〈V, V h〉 ∈ I(H,T, V ),
with h ∈ Ih (cf. the proof of E.2.9). So by symmetry between I and Ih, also
V ∩ V h = V ∩ Z(O2(H)) = Z. Thus Z ≤ Z(H).

Let H̃ := H/Z and U := 〈BH〉 = 〈BK〉. Again by symmetry between I and Ih,

[B,Bh] ≤ Zh = Z for any h ∈ K −M , and hence Φ(Ũ) = 1. Now O2(H) ≤ T ≤
NH(V ), so [O2(H), V ] ≤ O2(H) ∩ V = B. Thus V centralizes O2(H)/U , so also
K = [K,V ] centralizes O2(H)/U , and hence O2(K) = [O2(K),K] ≤ [O2(H),K] ≤
U . On the other hand B ≤ [O2(I), O

2(I)] ≤ [O2(K),K], so in fact U = O2(K).

As [O2(H), V ] ≤ B, while [A, V ] = B by E.2.14.11, [Ũ , V ] = B̃ is of rank 2, and

hence rV̄ ,Ũ = 2. Let H+ := H/CH(Ũ) and apply D.2.17 to the action of K+V + on

Ũ . As V + is of order 2 and Sylow inK+V +, the pair (V +K+, Ũ) is indecomposable

in the sense of Definition D.2.16, and as B̃ ≤ [Ũ ,K] and U = 〈BK〉, [Ũ ,K] = Ũ . As

q̂(K+V +, Ũ) = 2, conclusions (5) and (6) of D.2.17, as well as conclusion (1) with
r = 1, are eliminated. As p = 3, conclusion (2) is eliminated. This leaves the cases

K+ = Z3 or E9 and m(Ũ) = 4, or K+ ∼= 31+2 and m(Ũ) = 6. As O2(K) = U and
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Q2
8
∼= O2(I) ≤ U , we conclude that U = O2(I) in the cases with m(Ũ) = 4. Further

as T is irreducible on K̄/Φ(K̄), if K+ ∼= E9, then as H+ lies in the stabilizer O+
4 (2)

in GL4(2) of the set of two quaternion subgroups of U , H+ ∼= S3 wr Z2 or Z4/E9; so
that V E T forces [U, V ] ∼= Z4 ×Z2, contrary to B = [U, V ]. Therefore K+ ∼= Z3,
where 〈V H〉 = I , which is one of the conclusions in (2). On the other hand if

K+ ∼= 31+2, then J+ = Z(K+) and B̃ = [B̃, J ], contradicting the hypothesis that
O2(M) centralizes V . This completes the treatment of the case H solvable.

We turn to the case whereH is not solvable, soH ! := H/J is described in E.2.2.
We recall from B.6.8.4 that J is 2-closed and V̄ ∼= V ! 6= 1 in view of the hypothesis
that V 6≤ J . Also by hypothesis [V,O2(M)] = 1 and V E T , so V E M = O2(M)T
and [V !, O2(M !)] = 1. As V ! E T ! we have Z(M !) 6= 1, so inspecting the list of
E.2.2, we conclude either that one of cases (1b), (2c), or (2d) of E.2.2 hold, or that
case (2b) holds and K ! ∼= A6. Further V̄ ∼= V ! is an elementary abelian normal
2-subgroup of M̄ centralizing O2(M̄), so either V̄ is of order 2; or case (1b) of E.2.2
holds, K̄ = K̄1 × K̄2, K̄i

∼= L2(p), and V̄ = 〈v̄1, v̄2〉 ∼= E4 with v̄i ∈ K̄i. Define
v̄ := v̄1v̄2 in the exceptional case where V̄ is noncyclic. When V̄ is cyclic, let v̄ be
the generator for V̄ .

We claim next that |V̄ | = 2, and also that for each h ∈ H such that 1 6=
n = |v̄v̄h| is odd, we have n = 3. Notice it suffices to prove this for n = pa an
odd prime power, as we can always pass to dihedral subgroups of order 2pa. If
|V̄ | = 2 but h is a counterexample to the latter statement, let I0 := 〈V, V h〉, so that
Ī0 = 〈v̄, v̄h〉 ∼= D2n, with n = pa > 3. If |V̄ | > 2, choose h ∈ K1 with 1 6= n = |v̄1v̄h1 |
odd, and let I0 := 〈V, V h〉, so that this time Ī0 ∼= D2n ×Z2. Then by construction
(cf. E.2.9), I0 ∈ I(H,T, V ); thus I0 ∼= S3/Q

2
8 by the first paragraph of the proof.

Hence I0/[O2(I0), I0] ∼= S3, contrary to the construction of I0 in either case. Thus
the claim is established.

By the claim, |V̄ | = 2, so V̄ ≤ Z(M̄). Further |v̄v̄h| = 3 whenever |v̄v̄h| 6= 1
is odd, so it follows—from the existence of dihedral subgroups of order pe ± 1
in L2(p

e) and of order 2p in L−ε3 (p)—that K̄ ∼= L2(7), L2(7) × L2(7), or L3(3).
In the last two cases, there is a subgroup H0 of H satisfying T0 := T ∩ H0 ∈
Syl2(H0), T0 = !NH0(T0), V 6≤ O2(H0), and H0/O2(H0) ∼= D8/E9. Now applying
our treatment of the solvable case to H0 in place of H , we have a contradiction. So
K̄ ∼= L2(7) and hence by E.2.2, H̄ ∼= PGL2(7). Further arguing as in the solvable
case, O2(I) ≤ O2(H) and B = V ∩ O2(H). Again set U := 〈BH〉; our earlier
arguments give [O2(H),K] = U = O2(K) and [U, V ] = B. Indeed K̄ is generated
by the elements of order 3 inverted by V̄ , so K ≤ 〈I(H,T, V )〉, and hence an earlier

argument shows Z ≤ Z(H). Then setting H̃ := H/Z, [Ũ , V ] = B̃ ∼= E4, so from

the representation theory of PGL2(7), Ũ = Ũ1 ⊕ Ũ2, with Ũ1 the natural module
for K̄ ∼= L3(2), and U2 = U t1 for t ∈ H−O2(H)K. It follows that U is extraspecial,
and hence U ∼= D3

8 as it admits L3(2); that is, K ∼= L3(2)/D
3
8. As V E T and

H = KT , V H = V K ; so setting K0 := 〈V H〉, we conclude that either K0 = K, or
K0/U ∼= Z2 ×L3(2) (since V̄ has rank 1). These are the remaining possibilities for
K0 listed in the lemma, so the proof of the lemma is at last complete. ¤

E.3. Weak Closure

Weak closure arguments are used heavily in parts of our proof of our Main
Theorem classifying simple QTKE-groups. Here is a rough overview of one part of
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the proof: Let L, V , and M := !M(〈L, T 〉) be as in the Fundamental Setup FSU
(3.2.1). Weak closure studies the embedding in T of G-conjugates of subgroups of
V . We define various numerical parameters, some determined locally by the action
of NM (V ) = NG(V ) on the “internal module” V , others determined globally by
the fusion under G of conjugates of subgroups of V and by the centralizers of such
subgroups. In section E.3, we reproduce some elementary lemmas from [Asc81c]
which show how the values of these parameters restrict the value of n(H) (see
Definition E.1.6) for subgroups H of G not contained in M . This provides useful
information on the possible structure of many of the subgroups considered in the
proof of our Main Theorem.

In the initial subsection, we introduce the basic parameters and give some
sense of their significance for weak closure. The second subsection gives a number
of basic results, primarily taken from [Asc81c]. The final subsection provides a
more detailed outline of the weak closure arguments in this work, while at the same
time establishing some of the machinery necessary to implement that outline. (The
reader unfamiliar with the background and the methods might wish to start with
the final subsection, to understand the motivation better, referring back as needed
to the earlier subsections).

E.3.1. The basic weak closure parameters. In this section G is a finite
group and V is a nontrivial elementary abelian 2-subgroup of G.

We begin by recalling the definition of a module parameter used in the work of
Thompson, Aschbacher, and Mason on weak closure:

Definition E.3.1. Assume a group X acts faithfully on an F2-module W . If
X is of even order, set:

m(X,W ) := min{m(W/CW (t)) : t an involution of X},

and if X is of odd order set m(X,W ) := m(W ).

Notice that if W 6= 0 then as X is faithful on W , m(X,W ) ≥ 1.
In this section we often use the abbreviation m := m(AutG(V ), V ). To ac-

climate the reader to one standard use of the parameter, we record the following
elementary consequence of Definition E.3.1:

Lemma E.3.2. If A is a nontrivial elementary abelian 2-subgroup of AutG(V ),
then m(V/CV (A)) ≥ m(AutG(V ), V ).

Notice that our next parameter is “global” in the sense that is determined by G,
whereas the parameter m is “local” in that it is determined by the local subgroup
NG(V ).

Definition E.3.3. r(G, V ) := min{m(V/U) : U ≤ V and CG(U) 6≤ NG(V )}.

Note that as V 6= 1 and CG(V ) ≤ NG(V ), we have r(G, V ) ≥ 1.
Again we often use the abbreviation r := r(G, V ), and record easy consequences

of the definition:

Lemma E.3.4. (1) If B ≤ NV g (V ) satisfies CV (B) 6≤ NG(V
g), thenm(V g/B) ≥

r(G, V ).
(2) If V 6≤ NG(V

g), then m(V g/CV g (V )) ≥ r(G, V ).

Next we combine the parameters m, r in:
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Definition E.3.5. s(G, V ) := min{r(G, V ),m(AutG(V ), V )}

From previous remarks, r ≥ 1 ≤ m, so also s(G, V ) ≥ 1. In this section we
typically use the abbreviation s := s(G, V ). Here is one elementary property of the
parameter:

Lemma E.3.6. Let B ≤ A ≤ V , with m(V/B) < s(G, V ), and E an A-invariant
2-subgroup of G. Then CE(A) = CE(B) = CE(V ).

Proof. As m(V/B) < r(G, V ), we have CE(B) ≤ NG(V ). Therefore since
m(V/CV (CE(B))) ≤ m(V/B) < m, CE(B) ≤ CG(V ) by E.3.2. Thus as B ≤ A ≤
V , CE(B) = CE(A) = CE(V ). ¤

Applying E.3.6 to V g , V in the roles of “V , E”:

Lemma E.3.7. If B ≤ NV g (V ) with m(V g/B) < s(G, V ), then CV (B) =
CV (V

g).

Definition E.3.8. Assume X is a finite group, W is a faithful F2X-module,
and k is a positive integer. Define Ak(X,W ) to consist of those nontrivial ele-
mentary 2-subgroups A of X such that CW (A) = CW (B) for all B ≤ A with
m(A/B) < k. 1

Notice that A1(X,W ) is the set A2(X) of all nontrivial elementary abelian
2-subgroups of X . We define another local parameter:

Definition E.3.9. a(X,W ) := max{k : Ak(X,W ) 6= ∅} if X is of even order,
and a(X,W ) := 0 otherwise.

Following our usual convention, write a := a(AutG(V ), V ). The following vari-
ant of E.3.6 establishes a relation between s and a:

Lemma E.3.10. Suppose A := NV g(V ) satisfies b := m(V g/A) < s := s(G, V )
and [V, V g ] 6= 1. Then CV (A) = CV (V

g) and AutA(V ) ∈ As−b(AutG(V ), V ), so
s− a ≤ b < s.

Proof. For B ≤ A with m(A/B) < s− b, we have m(V g/B) < s, so by E.3.7,
CV (V

g) = CV (B). Then as B ≤ A ≤ V g, CV (A) = CV (V
g), so as [V, V g ] 6= 1,

AutA(V ) 6= 1. Hence as CV (A) = CV (B), the lemma holds. ¤

Lemma E.3.11. If V is not an FF-module for AutG(V ) and V g ≤ NG(V ) with
[V, V g ] 6= 1, then V 6≤ NG(V

g).

Proof. Suppose V g ≤ NG(V ). Then interchanging V and V g if necessary,
we may assume that m(V g/CV g (V )) ≥ m(V/CV (V

g)). Thus rAutV g (V ),V ≤ 1,
contrary to the assumption that V is not an FF-module for AutG(V ). ¤

E.3.2. Basic results on weak closure. We now begin to establish the basic
machinery of weak closure. In particular we begin to see how restrictions on the
weak closure parameters of the previous subsection, and on n(H) (cf. Definition
E.1.6) for various 2-locals H , lead to restrictions on the 2-local structure of G. The
material in this section comes from section 6 of [Asc81c].

1Don’t confuse this notation with the notation Ak(G) in Definition B.2.2 for subgroups of
corank k in a maximal elementary 2-subgroup of a group G, used elsewhere in this work in contexts
of FF-modules.
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In this subsection, H ≤ G and S ∈ Syl2(H).

First we establish a property of the set E(H,S,A), defined in Definition E.1.2;
observe that the minimal parabolics have this same property by B.6.8.5:

Lemma E.3.12. Let A ≤ V ∩S, K ∈ E(H,S,A), and Y := kerNK(V )(K). Then
Y is 2-closed and A 6≤ Y .

Proof. Replacing H by K, we may assume H = K. We adopt the bar
conventions in the definition E.1.2 of E(H,S,A); that is H̄ := H/O2(H) in (E1)
where H is solvable, while H̄ := H/O∞(H) in the other case (E2). As A ≤ V ∩ S
and Y acts on V , [Ā, Ȳ ] is a subgroup of V ∩H and hence is a 2-group.

In case (E1), H̄ = Op,2(H̄) for some odd prime p, and Op(H̄)/Φ(Op(H̄)) is
inverted by Ā of order 2. Therefore every normal subgroup Ȳ0 of H̄ with [Ā, Ȳ0] a
2-group is contained in P̄ := Φ(Op(H̄)). Thus Ȳ ≤ P̄ , and hence Y ≤ P which is
2-closed, so that Y is also 2-closed. But A 6≤ O2(K) as K ∈ E(H,S,A), so A 6≤ Y ,
completing the proof in this case.

Similarly in case (E2), F ∗(H̄) is the product of the T̄A-conjugates of a simple
component L̄ of H̄ with [L̄, Ā] 6= 1, so [Ā, Ȳ0] is not a 2-group for any nontrivial
normal subgroup Ȳ0 of H̄. Therefore Y ≤ O∞(H) which is 2-closed, so also Y is
2-closed, and hence A 6≤ Y . ¤

Definition E.3.13. For X ≤ G and i < m(V ), let Γi(X) = Γi(X,V ) be the
set of subgroups A of X such that A ≤ V g and m(V g/A) = i for some g ∈ G.
Define

Wi(X) =Wi(X,V ) := 〈Γi(X,V )〉
Ci(X) = Ci(X,V ) := CX (Wi(X,V )).

Remark E.3.14. Weak closure methods are founded on elementary properties
of weakly closed subgroups such as Wi(X). In particular, Wi(X) E NG(X),
and then also Ci(X) = CX(Wi(X)) E NG(X). Usually X is taken to be a 2-
group; indeed in this section, it is often the Sylow 2-subgroup S of H . In that
case a standard application of Sylow’s Theorem extends these properties to any
2-overgroup of Wi(X) in H :

Lemma E.3.15. If Wi(S) is contained in a 2-subgroup Y of H, then Wi(S) =
Wi(Y ). In particularWi(S) is also weakly closed in Y , and hence normal in NG(Y ).

As we will see in E.3.21 and later lemmas, this property can be exploited in
conjunction with the existence of uniqueness subgroups such as those appearing in
the proof of the Main Theorem in chapter 1. Such applications are based on:

Lemma E.3.16. Assume Wi(S) is contained in a 2-subgroup Y of H, and in
addition assume N = !M(NG(Y )). Then

(1) NG(Y ) ≤ NG(Wi(S)) ≤ N .
(2) N = !M(NG(Wi(S))).
(3) CG(Ci(S)) ≤ N .

Proof. By E.3.15, NG(Y ) ≤ NG(Wi(S)), so as N = !M(NG(Y )), (1) and
(2) hold. Similarly NG(Z(Wi(S)) ≤ N , so CG(Ci(S)) ≤ CG(Z(Wi(S))) ≤ N ,
establishing (3). ¤

The next two lemmas E.3.17 and E.3.18 are important technical results, which
serve as the basis of the proofs of most of the results in this section.
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Lemma E.3.17. Suppose nonnegative integers i, j, k satisfy i+j ≤ k < r(G, V ),
and that A ∈ Γi(S) and K ∈ Ej(H,S,A) satisfy [O2(K), Ck(S)] 6= 1. Then

(1) Ck(S) ≤ Ck(O2(K)), so [O2(K), Ck(O2(K))] 6= 1 6= [A,Ck(O2(K))].
(2) If A ≤ V , then V ∩ Z(Wk(O2(K))) 6= 1.
(3) m(AutG(V ), V ) ≤ k.

Proof. As A ∈ Γi(S, V ), conjugating in G we may take A ≤ V . Set Q :=
O2(K) and B := A ∩Q. As K ∈ Ej(H,S,A), m(A/B) ≤ j by Definition E.1.5. As
A ∈ Γi(S), m(V/A) ≤ i. Therefore m(V/B) ≤ i + j ≤ k, so B ≤ Wk(Q) := W .
Then as k < r(G, V ), CG(B) ≤ NG(V ), so CG(W ) ≤ CG(B) ≤ NG(V ).

Set Y := kerNK(V )(K). By E.3.15, W E NG(Q), so CQ(W ) and CK(W ) are
normal in K. Then as CG(W ) ≤ NG(V ), CK(W ) ≤ Y . As A ∈ Γi(S) and i ≤ k,
Ck(S) ≤ CS(A) ≤ S ∩K by Definition E.1.2. As Q ≤ S, W = Wk(Q) ≤ Wk(S),
and then Ck(S) = CS(Wk(S)) ≤ CS(W ), so Ck(S) ≤ CK(W ) ≤ Y . By E.3.12,
Y is 2-closed; therefore Ck(S) ≤ O2(Y ) ≤ Q, so Ck(S) ≤ CQ(W ) = Ck(Q). By
hypothesis, [O2(K), Ck(S)] 6= 1, so [O2(K), Ck(Q)] 6= 1. Furthermore by E.1.4,
O2(K) ≤ 〈AK〉, so [A,Ck(Q)] 6= 1, completing the proof of (1).

Assume that A ≤ V . Recall that Ck(Q) ≤ CH(B) ≤ NG(V ) and Ck(Q) =
CQ(W ) E K. So using (1), we have 1 6= [A,Ck(Q)] ≤ V ∩Ck(Q). But B ≤ V ∩Q, so
m(V/V ∩Q) ≤ m(V/B) ≤ k, and hence V ∩Q ≤W . Therefore as Ck(Q) = CQ(W ),
we have V ∩ Ck(Q) ≤ Z(W ), so 1 6= [A,Ck(Q)] ≤ V ∩ Z(W ), establishing (2).

Assume that m > k. By hypothesis, r > k, so s > k ≥ m(V/B). Thus by
E.3.6, Ck(Q) = CCk(Q)(B) = CCk(Q)(A) ≤ CK(A), which contradicts (1). This
establishes (3) and completes the proof. ¤

Lemma E.3.18. Assume U is a normal elementary abelian 2-subgroup of H,
and 0 ≤ i < s(G, V )− a(H/CH (U), U) with Wi(S) 6= 1. Then

[U,Wi(S)] = 1, so H = CH (U)NH(Wi(S)).

Proof. Set H∗ := H/CH(U). By hypothesis Wi(S) 6= 1, so there exists
A ∈ Γi(S). Also by hypothesis i + a(H∗, U) < s, so for any B ≤ A with
m(A/B) ≤ a(H∗, U), E.3.6 says CU (A) = CU (B). Thus if A∗ 6= 1 then A∗ ∈
Aa(H∗,U)+1(H

∗, U), contrary to the maximality of a(H∗, U) in Definition E.3.9.
Hence A ≤ CH (U) for all A ∈ Γi(S), so Wi(S) ≤ CS(U), and hence Wi(S) E

NH(CS(U)) by E.3.15. Then a Frattini Argument gives H = CH(U)NH(CS(U)) =
CH(U)NH(Wi(S)). ¤

We now come to our first main result, which shows that if n(H) is small relative
to s(G, V ), then the structure of H is controlled by normalizers and centralizers of
certain weakly closed subgroups.

Proposition E.3.19. Let n(H) = j and suppose i is a nonnegative integer
such that i+ j < s(G, V ). Then H = 〈CH (Ci+j(S)), NH(Wi(S))〉.

Proof. Set Ω := Γi(H). Recall from Definition E.1.6 that as n(H) = j,

H = 〈Ej(H,S,Ω), NH(Wi(S))〉.

Thus it suffices to prove that K = CK(Ci+j(S))NK(Wi(S)) for all A ∈ Γi(S) and
all K ∈ Ej(H,S,A). Set B := A ∩ O2(K), and recall by Definition E.1.5 that
m(A/B) ≤ j. Let A ≤ V g so that

m(V g/B) = m(V g/A) +m(A/B) ≤ i+ j < s(G, V ).
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Assume that [O2(K), Ci+j(S)] 6= 1. Then as s ≤ r, we can apply E.3.17.1 with
i + j in the role of “k” to conclude that E := Ci+j(O2(K)) centralizes B, but
does not centralize A. Hence E.3.6 supplies a contradiction as [E,B] = 1 6= [E,A].
We conclude that O2(K) centralizes Ci+j(S). Certainly S normalizes the weakly
closed subgroup Wi(S), so K = O2(K)(S ∩K) = CK(Ci+j(S))NK(Wi(S)). This
completes the proof. ¤

We sometimes apply E.3.19 during the proof of the Main Theorem in the fol-
lowing form with T in the role of the Sylow group “S” of H :

Lemma E.3.20. Assume the Fundamental Setup FSU (3.2.1), H ∈ H∗(T,M),
[Z,H ] 6= 1 and W0(T ) 6≤ O2(H). Then n(H) ≥ s(G, V ).

Proof. First T normalizes W0(T ), but since W0(T ) 6≤ O2(H), H does not
normalize W0(T ) by E.3.15. Thus NH(W0(T )) is contained in the unique maximal
subgroup H ∩M of H containing T (cf. 3.1.3.1), so NH(W0(T )) ≤M . Similarly as
[H,Z] 6= 1, CH(Z) ≤ M , and as Z ≤ Cm(T ) for any m, CH (Cm(T )) ≤ M . Thus
n(H) ≥ s(G, V ) by E.3.19 with i = 0. ¤

We now use E.3.18 and E.3.19 to establish another important result under the
hypothesis that NG(CS(V )) is a uniqueness subgroup. This hypothesis holds when
V is a module in the Fundamental Setup FSU in the proof of the Main Theorem.
The lemma says that H ≤M when n(H) is sufficiently small. Later in the section,
the result will be applied to obtain lower bounds for n(H) when H 6≤M .

Proposition E.3.21. Assume that s > a + i for some nonnegative integer i,
where s := s(G, V ) and a := a(AutG(V ), V ). Assume further that V E S and that
M = !M(NG(Q)) where Q := CS(V ). Then

(1) [V,Wi(S)] = 1, so Ws−a−1(S) ≤ CS(V ) = Q and NG(Wi(S)) ≤ M ≥
CG(Ci(S)).

(2) If n(H) = i, then H ≤M .
(3) If i ≥ 1 and H is solvable, then H ≤M .

Proof. We verify the hypotheses of E.3.18 with S, V in roles of “H , U”: As
V ≤ S, 1 6= V ≤ Wi(S), and by hypothesis V E S and i < s − a(S̄, V ). Thus by
E.3.18, [V,Wi(S)] = 1. In particular, Wi(S) ≤ CS(V ) = Q—giving the first part of
(1), and then E.3.16 implies the second part.

Recall E.1.13 says that if H is solvable, then n(H) = 1; thus (3) follows from
(2). It remains to prove (2), so we assume n(H) = i, and we must show that
H ≤ M . As a ≥ 0, i < s by hypothesis, so we may apply E.3.19 with 0, i in the
roles of “i, j” to conclude that H = 〈CH(Ci(S)), NH (W0(S))〉. Therefore H ≤ M
by (1), so the proof is complete. ¤

E.3.3. Applying weak closure. The purpose of this subsection is to provide
an overview of applications of the basic theory of weak closure just developed, and
to put in place the machinery necessary to implement these applications. The
reader may find this helpful, since the methods are fairly technical, and probably
not well known to a very wide audience.

We begin with a brief overview of the role played by weak closure in the proof
of our Main Theorem. There G is a QTKE-group, and the pair M,V arises in the
Fundamental Setup FSU. Because the action of AutG(V ) on V is highly restricted
in the FSU, we will be able to compute or estimate the values of the parameters
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m, r, s, a; then weak closure arguments provide some initial restrictions on n(H)
for H 6≤ M—particularly when V is not an FF-module. For example, we will see
in chapter 7 that when a pair AutG(V ), V does not correspond to an example
or a shadow, usually the elementary numerical restrictions on n(H) and the weak
closure parameters already suffice to eliminate the configuration. We will also see
(for example in chapter 8) that when AutG(V ), V actually occurs in an example
or shadow G∗, weak closure can typically pin down the structure of H : namely
H will resemble CG∗(U) for a suitable subgroup U of V . In effect, H determines
another maximal 2-local NG(U), corresponding in a diagram geometry for G∗ to a
node adjacent to that for M . This provides a route either toward a contradiction
eliminating the shadow, or toward the eventual identification of G with the example
G∗.

In the remainder of the subsection, we develop more weak closure machinery.
The main goal is to produce numerical restrictions on n(H) for H 6≤ M , in terms
of a parameter w to be defined below. The case where H contains a Sylow 2-
subgroup of G will be of particular importance, so throughout the remainder of
this subsection we assume:

Hypothesis E.3.22. T ∈ Syl2(G) and V E T . Set Q := CT (V ).

Abbreviate
Wi :=Wi(T ) and Ci := Ci(T ).

We begin to focus on those i for whichWi centralizes V , so we introduce yet another
weak closure parameter:

Definition E.3.23. w(G, V ) := min{j :Wj 6≤ CT (V ) = Q},

We adopt the abbreviations w := w(G, V ), m := m(AutG(V ), V ), r := r(G, V ),
s := s(G, V ), and a := a(AutG(V ), V ).

In the examples and shadows, we usually find there is H 6≤M such that n(H)
achieves the minimal value w. Thus it makes sense to try to establish bounds
forcing the values of the two parameters w and n(H) to be close together. We
sometimes need the following hypothesis:

Hypothesis E.3.24. Either

(1) w > 0, or
(2) V is not an FF-module for AutG(V ).

Lemma E.3.25. If w > 0, then

V g ≤ NG(V ) iff V g ≤ CG(V ) iff V ≤ CG(V
g) iff V ≤ NG(V

g).

Lemma E.3.26. Assume Hypothesis E.3.24 and V g ≤ NG(V ) with [V, V g ] 6= 1.
Then V 6≤ NG(V

g).

Proof. If w > 0, this is a consequence of E.3.25. If V is not an FF-module
for AutG(V ), it follows from E.3.11. ¤

We next focus attention on a conjugate realizing the minimum codimension w,
and define:

Definition E.3.27. A w-offender is a subgroup NV g (V ) for g ∈ G satisfying
[V, V g ] 6= 1 and w = m(V g/NV g (V )).
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The next few results develop some basic properties of w-offenders.

Lemma E.3.28. Assume Hypothesis E.3.24 and A := NV g (V ) is a w-offender.
Then

(1) m(V g/CA(V )) ≥ r.
(2) r ≤ w +m(AutA(V )) ≤ w +m2(AutG(V )).
(3) m(AutA(V )) ≥ r − w.
(4) V 6≤ NG(V

g), and if w > 0 then V g 6≤ NG(V ).

Proof. If w > 0, V g 6≤ NG(V ) and V 6≤ NG(V
g) by E.3.25. On the other

hand if w = 0, then A = V g by Definition E.3.27, so V 6≤ NG(V
g) by E.3.26. This

establishes (4).
By (4), V 6≤ NG(V

g), so (1) follows from E.3.4.2. It follows from (1) that

r ≤ m(V g/CA(V )) = m(V g/A) +m(AutA(V )) = w +m(AutA(V )),

and of course m(AutA(V )) ≤ m2(AutG(V )), so (2) holds. Then (2) implies (3). ¤

Remark E.3.29 (Fundamental Weak Closure Inequality).
Notice that if Hypothesis E.3.24 holds, then by E.3.28.2:

m2(AutG(V )) + w ≥ r (FWCI).

which (as the name is intended to suggest) is an important tool for obtaining
contradictions or restrictions on structure.

In examples and shadows, the FWCI is often an equality. We see next that
when the FWCI is an equality, we nearly have symmetry between V and V g for
NV g (V ) a w-offender, and that we are close to achieving the hypotheses of E.2.10.

To this end, it is convenient to define a notation roughly dual to the usual
notation of the k-generated core ΓP,k(H) (cf. page 246 of [Asc86a] and Definition
F.4.41):

Definition E.3.30. If an elementary abelian 2-group P acts on a group H ,
and k is a positive integer, define

Γ̌k,P (H) := 〈CH(X) : X ≤ P, m(P/X) ≤ k〉.

Lemma E.3.31. Assume Hypothesis E.3.24, that A := NV g (V ) is a w-offender,
and that the Fundamental Weak Closure Inequality E.3.29 is an equality. Define
Ā := A/CA(V ), and the subspace generated by fixed points of involutions in Ā:

W := Γ̌m(Ā)−1,Ā(V ).

Then

(1) m(AutA(V )) = m2(AutG(V )), r = m(V g/CA(V )), and W ≤ NV (V
g).

(2) m(V/W ) ≥ w—and in case of equality, w > 0 and W = NV (V
g) is a

w-offender on V g, so also m(AutW (V g)) = m2(AutG(V )).

Proof. By E.3.28.2,

m2(AutG(V )) + w ≥ m(V g/CA(V )) = m(AutA(V )) + w ≥ r,

so since the FWCI is an equality, we have m(AutA(V )) = m2(AutG(V )) and
r = m(V g/CA(V )). Then for CA(V ) ≤ B ≤ A with m(B/CA(V )) = 1 we
see m(V g/B) = m(V g/CA(V )) − 1 = r − 1 < r, so CG(B) ≤ NG(V

g) and
hence W ≤ NV (V

g), completing the proof of (1). Next by Definition E.3.23,
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m(V/W ) ≥ m(V/NV (V
g)) ≥ w, and in case of equality W = NV (V

g) is a w-
offender on V g and w > 0 since V 6≤ NG(V

g) by E.3.28.4. Then by (1) and
symmetry between V and V g, m(AutW (V g)) = m2(AutG(V )), completing the
proof. ¤

Observe that an argument in the proof of the previous lemma also shows:

Lemma E.3.32. Assume w < r and A := NV g (V ) is a w-offender. Set Ā :=
A/CA(V ). Then Γ̌r−w−1,Ā(V ) ≤ NV (V

g).

Lemma E.3.33. Assume A := NV g (V ) is a w-offender, and 0 < w < s. Then

(1) U := CV (A) = CV (V
g) < V .

(2) V < 〈V, V g〉 ≤ CG(U) 6≤ NG(V ).
(3) m(V/U) ≥ r.
(4) AutA(V ) ∈ As−w(AutG(V ), V ) so m(AutA(V )) ≥ s− w ≥ 1.

Proof. By hypothesis, m(V g/A) = w < s, so (1) and (4) follow from E.3.10.
By E.3.25, V g 6≤ NG(V ), so (1) implies (2). Then (2) and E.3.4.2 (with the roles
of V and V g reversed) imply (3). ¤

The remaining results of the section discuss other useful bounds and relations on
the parameters, often involving n(H) forH 6≤M , and usually under the assumption
of the existence of a suitable uniqueness group.

The most elementary way to show that w > 0 is to prove that s > a, and
then apply some variant of E.3.21, as in the proof of E.3.34.1 below. To see that
this approach might be feasible in the proof of our Main Theorem, notice that for
most of the pairs L̄, V arising in the Fundamental Setup FSU, we have recorded
(in section E.4 and chapter H) the values of the parameters m and a determined
by those pairs. Furthermore in section E.6, we show that if m > 2, then r ≥ m, so
that s = m. Thus we do have some initial knowledge of m, r, s, a. So when we
can show w > 0, then under the assumption that NG(Q) is a uniqueness subgroup,
E.3.34.2 provides control over normalizers and centralizers of some of our weakly
closed subgroups.

Lemma E.3.34. (1) If s > a, then w ≥ s− a > 0.
(2) If M = !M(NG(Q)), then for each 0 ≤ i < w, NG(Wi) ≤M ≥ CG(Ci).

Proof. Assume the hypotheses of (1); then the hypotheses of E.3.18 are sat-
isfied with V , NG(V ), T in the roles of “U , H , S” for each 0 ≤ i < s−a. Therefore
by E.3.18, Wi centralizes V , so (1) follows.

Next assume the hypothesis of (2), and suppose that 0 ≤ i < w. This time
Wi ≤ Q by Definition E.3.23, so (2) follows from E.3.16 and our hypothesis that
M = !M(NG(Q)). ¤

In the remainder of this subsection, let H denote some subgroup of G, and
S ∈ Syl2(H).

Our next lemma begins to provide lower bounds on n(H) for subgroups H such
that Q ≤ H and H 6≤M .

Lemma E.3.35. Assume M = !M(NG(Q)), CH(V ) ≤ M , and Q = CT (V ) ≤
S. Then
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(1) If n(H) < min{w, r}, then H ≤ M . In particular if H is solvable and
min{w, r} > 1, then H ≤M .

(2) If s > a, r ≥ w, and H 6≤M , then n(H) ≥ w ≥ s− a > 0.

Proof. Suppose j := n(H) < min{w, r}. To prove (1), we establish the
analogues of certain steps in the proofs of E.3.21 and E.3.19, but now using our
hypothesis on w since we have no restriction on s. First j < w and Q ≤ S by
hypothesis, so that Wj ≤ S. Therefore Wi = Wi(S, V ) for all i ≤ j, by E.3.15
applied with T , S, G in the roles of “S, Y , H”. Also V ≤Wj , so Cj = CT (Wj) ≤
CT (V ) ≤ S, and hence Cj = Cj(S, V ). Then by E.3.34.2, NG(W0) ≤M ≥ CG(Cj);
in particular S ≤M . Next as n(H) = j, Definition E.1.6 says that

H = 〈 NH(W0),K : K ∈ Ej(H,S,A) and A ∈ Γ0(S) 〉,

so it suffices to show that K ≤M for each A := V g ∈ Γ0(S) and K ∈ Ej(H,S,A).
Further K = O2(K)(S ∩K) and O2(K) ≤ 〈AK〉 by E.1.4, so since CH(V ) ≤M by
hypothesis, it suffices to show that Ak ≤ CH(V ) for each k ∈ K. Thus as w > n(H)
by hypothesis and n(H) ≥ 0, we may assume that Ak 6≤ NG(V ) by E.3.25. However
as K ∈ Ej(H,S,A), m(Ak/(Ak ∩ O2(K))) ≤ j by Definition E.1.5, so as j < w,
Ak ∩O2(K) centralizes V . Therefore m(Ak/CAk(V )) ≤ j < r, contrary to E.3.4.2.
This completes the proof of (1), since n(H) = 1 when H is solvable by E.1.13.

Now assume that s > a. Then w ≥ s− a > 0 by E.3.34.1. If in addition w ≤ r
and H 6≤M , then n(H) ≥ w by (1), completing the proof of (2). ¤

When H contains T , we can take S = T , so certainly the hypothesis Q ≤ S
of E.3.35 is satisfied; in particular this holds for H ∈ H∗(T,M) in the proof of the
Main Theorem. Then if in addition CG(V ) ≤M = !M(NG(Q)), s > a, and r ≥ w,
E.3.35.2 says that w is a lower bound on n(H) for H ∈ H∗(T,M). We see next
that under more restrictive hypotheses, we also get useful upper bounds on n(H),
and hence also on w.

Indeed we can expect roughly that n(H) ≤ n(AutG(V )). The method goes
back (at least) to [Asc78b], based on the idea of finding a “Cartan subgroup” B
of H inside H ∩M , and showing that that Cartan subgroup embeds faithfully in
AutG(V ). In the proof of the Main Theorem, we use results like Theorem 4.4.14
(depending on the applications of pushing up in QTKE-groups) to establish such an
embedding under suitable hypotheses related to the Fundamental Setup. Rather
than recalling those details of the FSU, we instead axiomatize the setup which
emerges from that method in the following hypothesis:

Hypothesis E.3.36. Assume Hypothesis E.3.22 with G a QTKE-group and

(1) M = !M(NG(Q)).
(2) If H ∈ H∗(T,M) with n(H) > 1, then

H ∩M = NH(V ) and CH∩M (V ) ≤ O2(H ∩M).

Before going further we define another parameter which, given a T -invariant
section X of G, roughly gives an upper bound on the exponent c of the field of
definition F2c of any minimal parabolic H over T such that a Cartan subgroup of
H is embedded in X .

Definition E.3.37. If X is a finite group, define n′(X) to be the maximum
power c such that X contains a cyclic subgroup Y of order 2c − 1 and an abelian
overgroup of Y of odd order permuting with a Sylow 2-subgroup of X .
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As usual we often abbreviate n′ := n′(AutG(V )). Notice n′ ≥ 1.

Lemma E.3.38. Assume Hypothesis E.3.36 holds. Then min{w, r} ≤ n(H)
≤ n′(AutG(V )) for each H ∈ H∗(T,M).

Proof. The first inequality is a consequence of E.3.35.1, so it remains to estab-
lish the second. Let H ∈ H∗(T,M) (see Definition 3.0.1) and set H∗ := H/O2(H).
As n′ ≥ 1, we may assume n := n(H) > 1. Recall (cf. 3.1.3.1) that H ∩M is
the unique maximal subgroup of H containing T . As n(H) > 1, H is nonsolv-
able by E.1.13, so H∗ is described in E.2.2. By that result, O2(H∗) is of Lie type
and characteristic 2, and if B is a Hall 2′-subgroup of H ∩M , then B is abelian,
BT = TB, and B contains a cyclic subgroup Y of order 2n − 1. By Hypothesis
E.3.36.2, B is faithful on V . As B permutes with T , B ∼= AutB(V ) permutes with
AutT (V ) ∈ Syl2(AutG(T )), so n′ ≥ n = n(H) by Definition E.3.37. ¤

Lemma E.3.39. Assume Hypothesis E.3.36, and also n′(AutG(V )) < r. As-
sume H ∈ H∗(T,M). Then

(1) w ≤ n(H) ≤ n′(M̄) < r.
(2) If s > a then 0 < s− a ≤ w ≤ n(H) ≤ n′(M̄) < r.

Proof. Let n := n(H). By E.3.38, min{w, r} ≤ n ≤ n′, while by hypothesis,
n′ < r—so (1) holds. Then (1) and E.3.35.2 imply (2). ¤

Lemma E.3.40. Let W be a faithful F2X-module and A ∈ A2(X,W ). Then A
centralizes O(X).

Proof. If the lemma fails, then using Generation by Centralizers of Hyper-
planes A.1.17, there is some hyperplane B of A such that Y := [CO(X)(B), A] 6= 1.
By the Thompson A × B Lemma A.1.18.2, Y acts faithfully on CW (B). But as
A ∈ A2(G,W ), CW (A) = CW (B), so Y = [Y,A] ≤ CG(CW (A)) = CG(CW (B)),
contrary to the previous sentence. ¤

E.4. Values of a for F2-representations of SQTK-groups.

In this section we establish upper bounds on the parameter a(G, V ), when
F ∗(G) =: L is quasisimple with L/Z(L) a Mathieu group, and V is a faithful F2G-
module. These bounds are required in Part 3 of our proof of the Main Theorem. The
original calculations are from [Asc82a], but to keep our treatment self-contained,
we reproduce the proofs here.

Throughout this section, we assume that G is a finite group such that O2(G) =
1, T ∈ Syl2(G), and V is a faithful F2G-module.

Recall from Definition E.3.8 that given a positive integer k, Ak(G, V ) is the set
of nontrivial elementary abelian 2-subgroups A of G such that CV (A) = CV (B) for
all B ≤ A with m(A/B) < k. Further from Definition E.3.9

a(G, V ) = max{k : Ak(G, V ) 6= ∅},

if G is of even order, and a(G, V ) = 0 if G is of odd order.

Lemma E.4.1. If G is solvable then a(G, V ) = 1.

Proof. As G is solvable and O2(G) = 1, F ∗(G) = O(F (G)) =: F , and any
elementary abelian 2-subgroup A of G is faithful on F . Therefore by G.8.8, AF
contains a direct product AF1 of dihedral groups of order 2pi for suitable odd
primes pi. In particular A contains a hyperplane A0 centralizing a dihedral factor
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〈a〉F2 ∼= D2p with F2 ≤ F and a ∈ A − A0. By the Thompson A × B Lemma,
F2 acts nontrivially on CV (A0), and then a is also nontrivial on CV (A0), so that
CV (A0) > CCV (A0)(a) = CV (A), completing the proof. ¤

The next lemma is a weak version of 4.16 in [Asc82a].

Lemma E.4.2. Assume F ∗(G) =: L is quasisimple, G = LT , and ∆ is a set
of overgroups of T in G such that G = 〈∆〉, and for each H ∈ ∆, F ∗(H)/O2(H)
is quasisimple or of prime order. For H ∈ ∆, set i(H) := m2(H/O2(H)), and for
Γ ⊆ ∆, define

k(Γ) :=
∑

H∈Γ

i(H),

with k(∅) := 0. Assume [CV (T ), L] 6= 0. Then a(G, V ) ≤ k(∆).

Proof. Let k := k(∆), Ω := Ak+1(G, V ), and for j ≤ k, define

Wj =Wj(T,Ω) := 〈B : m(A/B) ≤ j for some A ∈ Ω〉,

and Vj := CV (Wj). We may assume a(G, V ) > k so Ω 6= ∅. For A ∈ Ω, and
B ≤ A with m(A/B) ≤ k, CV (A) = CV (B); thus B 6= 1 as A is faithful on V . In
particular Wk 6= 1, and hence Wj 6= 1 for j ≤ k, so L = [L,Wj ] as L = F ∗(G) is
quasisimple and O2(G) = 1.

Let S be the set of subsets Γ of ∆ such that [Vk(Γ), O
2(H)] = 0 for each H ∈ Γ;

for example ∅ ∈ S vacuously. Let Γ be a maximal member of S, partially ordered
by inclusion, and set j := k(Γ). Observe that for H ∈ Γ, H = O2(H)T acts on Vj .
Also j ≤ k, so L = [L,Wj ] by the previous paragraph.

Suppose Wj E K for each K ∈ ∆ − Γ. Then K acts on Vj , so G = 〈∆〉 acts
on Vj . Therefore asWj centralizes Vj , so does L = [L,Wj ]. This is a contradiction,
as CV (T ) ≤ Vj , and [CV (T ), L] 6= 0 by hypothesis.

Thus we can choose K ∈ ∆−Γ, A ∈ Ω∩T , and B ≤ A with m(A/B) = j, such
that B 6≤ O2(K). By hypothesis, F ∗(K/O2(K)) is quasisimple or of prime order,
so O2(K) = [O2(K), B]. Let Θ := Γ ∪ {K}, m := k(Θ), W := Wm(O2(K)), and
D := B ∩ O2(K). Then m(B/D) ≤ i(K), so m(A/D) ≤ j + i(K) = m ≤ k. Thus
CV (A) = CV (D) and D ≤ W ≤ Wm, so Vm ≤ CV (W ) ≤ CV (D) = CV (A). Hence
O2(K) = [O2(K), B] centralizes CV (W ), so O2(H) centralizes Vm for each H ∈ Θ.
That is, Θ ∈ S, contrary to the maximality of Γ. ¤

Lemma E.4.3. Assume CV (G) < CV (T ) and F
∗(G) = L is quasisimple. Then

(1) If L/Z(L) ∼=M12, then a(G, V ) ≤ 2.
(2) If L/Z(L) ∼=M22 or M24, then a(G, V ) ≤ 3.
(3) If V is the code or cocode module for G ∼=M23, then a(G, V ) ≤ 3.

Proof. Recall that [Asc86b] describes the maximal subgroups of L containing
a Sylow 2-subgroup.

As the code and cocode modules for M23 are obtained by restriction from the
corresponding modules for M24, (2) implies (3). To prove (1) and (2), we appeal to
E.4.2. To apply that lemma, we need a set ∆ of overgroups H of T in G such that
G = 〈∆〉, F ∗(H/O2(H)) is quasisimple or of prime order, and k :=

∑
H∈∆ i(H) is

2 if L/Z(L) is M12 and 3 otherwise.
When L/Z(L) is M12, let ∆ be the set of maximal subgroups of G containing

T ; thus ∆ is of order 2 and H/O2(H) ∼= S3 for both members H of ∆, so that
i(H) = 1.



242 E. GENERATION AND WEAK CLOSURE

When L/Z(L) ∼= M22, we take ∆ to consist of H1
∼= S5/E16, and H2 the

rank 1 parabolic in M ∼= A6/E16 not contained in H1. Thus i(H1) = 2 and
H2/O2(H2) ∼= S3, so i(H2) = 1 and k = 3. Finally when L ∼=M24, we take ∆ to be
the set of three minimal proper overgroups of T which generate G; for each such
H , H/O2(H) ∼= S3, so i(H) = 1. ¤

E.5. Weak closure and higher Thompson subgroups

In this section we present some elementary lemmas related to failure of factor-
ization, which we will use in conjunction with weak closure. The main result is
Proposition E.5.2 involving higher Thompson groups Jj for suitable j, which we
will most often apply in the case j = 1—particularly in E.6.26 in the section after
this one.

We assume in this section that P is a Sylow 2-subgroup of G. The results are
elementary and hold for any prime p, although we only state them here for the case
p = 2, since that is the only case where we need them.

Recall Definition B.2.2: For 0 ≤ i ≤ m2(G) and H ≤ G, Ai(H) consists of the
elementary abelian 2-subgroups of H of rank m2(H) − i, and Ji(H) = 〈Ai(H)〉.
Also A(H) = A0(H) and J(H) = J0(H).

Assume in this section that i ≥ 0 and j > 0, so that 0 ≤ i < i + j. Set
m := m2(G).

The following elementary result E.5.1 has probably long been known, at least
for the original case of i = 0, j = 1—and indeed that is the case of most interest
to us. The argument in that case appears essentially in Thompson’s treatment
of factorizations of solvable groups in the N -group paper ([Tho68, 5.53], after
“Suppose i = 1” on page 424). For general i, j it is contained (partly implicitly) in
Aschbacher’s GF (2)-representations paper [Asc82a, 14.9]. One advantage of the
formulation given here is that the original hypothesis of F ∗(K) = O2(K) can be
replaced by the weaker hypothesis below on the centralizer of O2(K).

Proposition E.5.1. Let A ∈ Ai(P ), and K ∈ Ej(G,P,A), and assume that
CO2(K)(O2(K)) ≤ R, for R := O2,Φ(F∗)(K) in case (E1), or R := O∞(K) in
case (E2), of Definition E.1.2. Set W := 〈B ∈ Ai+j(P ) : B ≤ O2(K)〉. Then
D := Ω1(Z(Ji+j(P ))) ≤ Ω1(Z(W )) and W EK.

Proof. If i+j ≥ m then Ji+j(P ) =W = 1, so there is nothing to prove. Thus
we may assume i+ j < m. Set Q := O2(K), and observe that W is weakly closed
in Q, so that W E K. From B.2.3.2, D ≤ CP (A), while Definition E.1.2 says that
CP (AO2(G)/O2(G)) ≤ K, so D ≤ K. By definition D centralizes Ji+j(P ) and
hence W , so D ≤ CP∩K(W ).

Next Q ≤ P ≤ NG(D) and Q E K, so that [D,Q] ≤ D∩Q ≤ Ω1(CQ(W )) ≤W
by B.2.3.2. Thus D centralizes Q/W and W . By hypothesis CO2(K)(Q) ≤ R,
while by Coprime Action, (CK(Q/W )∩CK(W ))/CK(Q) is a 2-group. However by
Definition E.1.2, O2(K/R) = 1 and R is 2-closed, so D ≤ Q. Thus D ≤ CQ(W ),
so D ≤ Ω1(Z(W )) by B.2.3.2. ¤

The next result extends a statement in [Mas, 1.5.11] for the case i = 0, j = 1;
we also remove his hypotheses that F ∗(G) = O2(G) and G is quasithin. The result
could be stated for any prime p. Mason’s result was for solvable groups; we replace
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that hypothesis by a restriction on n(G); that is, when G is solvable, n(G) = 1 by
E.1.13, giving rise to Corollary E.5.3. As a proof, Mason just refers to Thompson’s
original proof of factorizations for solvable groups, presumably meaning [Tho68,
5.53].

Proposition E.5.2. Let n(G) = j and assume i ≥ 0 with i+ j < m2(G). Set
D := Ω1(Z(Ji+j(P ))). Then G = 〈NG(Ji(P )), Ji(CG(D1)) : m(D/D1) ≤ i+ j〉.

Proof. Define

D := {D1 : m(D/D1) ≤ i+ j} and G0 := 〈NG(Ji(P ), Ji(CG(D1)) : D1 ∈ D〉;

we must show that G ≤ G0. We first claim that

CG(D1) ≤ G0 for each D1 ∈ D. (∗)

For let D1 ∈ D and G1 := CG(D1). By B.2.3.1, Ji(P ) ≤ Ji+j(P ) ≤ CG(D) ≤
CG(D1) = G1, so Ji(P ) = Ji(P1) ≤ Ji(G1) for some P1 ∈ Syl2(G1). Thus by a
Frattini Argument,

G1 = Ji(G1)NG1(P1 ∩ Ji(G1)) ≤ Ji(G1)NG1(Ji(P )) ≤ G0

using the definition of G0, establishing the claim.
At this point, the machinery in section E.1 and our hypothesis that n(G) = j

takes the place of the reductions in Thompson’s proof in [Tho68, 5.53]. In the
notation of that section, choose:

Ω := Ai(G),

so that
Ω ∩ P = Ai(P ) and W (P,Ω) = Ji(P ).

As n(G) = j, Definition E.1.6 says that G is generated by NG(Ji(P )) together
with the subgroups K ∈ Ej(G,P,A) as A varies over Ai(P ). Thus it will suffice
to show that each such K is contained in G0. Indeed K = O2(K)(P ∩ K) with
P ∩K ≤ P ≤ NG(Ji(P )) ≤ G0, so it suffices to show that H := O2(K) ≤ G0. As
in the proof of E.5.1, D ≤ CP (A) ≤ K. In discussing K, adopt the notation of
Definition E.1.2 such as K̄ := K/O2(K).

Assume first that H ≤ CK(O2(K)). Since A ∈ Ai(P ) and DA is elementary
abelian, m(DA/A) ≤ i. As K ∈ Ej(G,P,A), m2(K̄) ≤ j, so m(D̄) ≤ m(D̄Ā) ≤
i+ j. Set D1 := D ∩O2(K); then m(D/D1) ≤ i+ j, and so H ≤ CG(D1) ≤ G0 by
(*), completing the proof in this case.

Therefore we may assume that CH(O2(K)) < H . Define R as in E.5.1, and let
K∗ := K/R. In case (E2) of Definition E.1.2, H∗ is the product of simple compo-
nents permuted transitively by K, so CH(O2(K)) ≤ R. In case (E1), choosing K
minimal we may assume that K is irreducible on H∗, so again CH(O2(K)) ≤ R.
Thus in either case we have the hypothesis of E.5.1, so we conclude from that result
that D ≤ E := Ω1(Z(W )), where W := 〈B ∈ Ai+j(P ) : B ≤ O2(K)〉. As W is
weakly closed in O2(K), E E K.

Now define A1 := A∩O2(K) and E1 := E∩A1. Asm(A/A1) ≤ j, A1 ≤W , and
of courseW ≤ CK(E). Then A1E is an elementary abelian subgroup of O2(K) ≤ P
of rank m2(G) − (i + j) +m(E/E1), so m(E/E1) ≤ i + j. Now A centralizes its
subgroup E1, so for k ∈ K, Ak centralizes D1 := D ∩ Ek1 . As D ≤ E E K,
m(D/D1) ≤ m(E/Ek1 ) = m(E/E1) ≤ i+ j, so D1 ∈ D. Thus each member of AK

centralizes some D1 ∈ D, so H = O2(K) ≤ 〈AK〉 ≤ G0 using E.1.4, and the proof
is complete. ¤
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Corollary E.5.3. Assume G is solvable and set D := Ω1(Z(J1(P ))). Then

G = 〈NG(J(P )), J(CG(D1)) : m(D/D1) ≤ 1〉.

Lemma E.5.4. Assume that F ∗(G) = O2(G), F
∗(G/O2(G)) is quasisimple,

m2(G/O2(G)) ≤ j, and G/X has no FF-modules for any X E G with O2(G) ≤
X ≤ O∞(G). Then either

(1) J(P ) E G, or
(2) O2(G) centralizes D := Ω1(Z(Jj(P ))), so D E G.

Proof. Assume that (1) fails; then J(P ) 6≤ Q := O2(G), so there is A ∈ A(P )
with A 6≤ Q. We proceed as in the proof of E.5.2. Namely let Ω := A(G), and
observe that our hypotheses imply that G ∈ Ej(G,P,A). As F ∗(G) = O2(G), E.5.1
says D ≤ E := Ω1(Z(W )) E G, where W := 〈B ∈ Aj(P ) : B ≤ O2(G)〉. Thus
if K := O2(G) ≤ CG(E) then [K,D] = 1, so D E KP = G, and hence (2)
holds. Therefore we may assume that [K,E] 6= 1. Let G∗ := G/Q, V a G-chief
section of E with [V,K] 6= 1, and Ḡ := G/CG(V ). As F ∗(G∗) = K∗ is quasisimple,
CK∗(V ) ≤ Z(K∗), so F ∗(Ḡ) = K̄ and m(A∗) = m(Ā). Since Z(K∗) ≤ O∞(G)∗,
by hypothesis V is not an FF-module for Ḡ.

Arguing as in the last paragraph of the proof of E.5.2 with G in the role of
“K” and i = 0, m(E/CE(A)) ≤ m(A∗). Thus m(V/CV (Ā)) ≤ m(A∗) = m(Ā),
contradicting our observation that V is not an FF-module. ¤

Lemma E.5.5. Let G be a 2-group, Q E G, Ḡ := G/Q, and V ≤ Ω1(Z(Q)) with
V E G. Assume that j is a nonnegative integer, and that m(V/CV (Ā)) > m(Ā)+j
for each Ā ∈ A2(Ḡ). Then Jj(G) ≤ Q.

Proof. This is by now a familiar argument. If A ∈ Aj(G), then m(Ā) + j ≥
m(V/CV (Ā)) by B.2.4.1, and hence Ā = 1 by hypothesis, so A ≤ Q. ¤

E.6. Lower bounds on r(G,V)

Let V be a nontrivial elementary abelian 2-subgroup of a finite group G. We
begin by recalling the weak closure parameter from Definition E.3.3:

r(G, V ) := min{m(V/U) : U ≤ V and CG(U) 6≤ NG(V )}.

Since G will be fixed, we will typically use the abbreviation r := r(G, V ) as in
section E.3. Recall that r is a global parameter depending on G, rather then
simply on the local subgroup NG(V ). We saw in section E.3 that in order to do
weak closure, we need lower bounds on r.

We are primarily interested in establishing a lower bound on r in our Funda-
mental Setup (3.2.1). So in this section, we will assume a hypothesis which holds
in the FSU and implies the hypotheses used for weak closure in section E.3 such as
Hypothesis E.3.22.

Hypothesis E.6.1.
(1) G is a simple QTKE-group, T ∈ Syl2(G), and M ∈ M(T ).
(2) V 6= 1 is a normal elementary abelian 2-subgroup of T , and is a TI-set

under M .

Set MV := NM (V ), M̄V :=MV /CM (V ), Q := CT (V ), and Z := CV (T ).
(3) M = !M(NMV (Q)).
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Note that by (2), V E T , and by (1), T is Sylow in G; thus T is also Sylow in
MV and Q ∈ Syl2(CM (V )). Also by (3), M = !M(NG(Q)) = !M(NG(V )).

Often in applications the TI-set assumption in (2) is strengthened to V E

M , so that MV = M and NMV (Q) = NM (Q). The uniqueness condition M =
!M(NMV (Q)) typically comes from the fact that L0T is a uniqueness subgroup in
the FSU.

Notice that as M = !M(NG(V )), we have MV = NM (V ) = NG(V ), and hence
CG(V ) ≤M ; as a consequence:

Lemma E.6.2. If L ≤ G and L 6≤M , then [V, L] 6= 1.

E.6.1. The main result: m > 2 implies s = r ≥m > 2. We begin with the
statement of the main result of the section; its proof will require most of the section,
but along the way we will also establish other results of independent interest. The
primary virtue of the following theorem is that it is easy to establish its hypothesis
without detailed knowledge of the action of NG(V ) on V .

Theorem E.6.3. Assume Hypothesis E.6.1, and that m(M̄V , V ) > 2. Then
r(G, V ) ≥ m(M̄V , V ), so s(G, V ) = m(M̄V , V ) > 2.

In this subsection we let m := m(M̄V , V ). To prove Theorem E.6.3, must show
that if m > 2 then CG(U) ≤ M for each U ≤ V with m(V/U) < m. However we
will also prove that CG(U) ≤M under weaker hypotheses on the subspace U of V .
In particular we will concentrate on the set

Definition E.6.4.

Γ := {U ≤ V : 1 6= U, CG(U) 6≤M, and O2′ (CM (U)) ≤ CM (V )}.

Notice that our hypothesis E.6.1.2 that V is a TI-subgroup ofM shows that for
1 6= U ≤ V , CM (U) ≤ NM (V ) = MV . Also the condition O2′(CM (U)) ≤ CM (V )
is equivalent to the assertion that CM̄V

(U) is of odd order.
By Definition E.3.3, there is U ≤ V with m(V/U) = r and CG(U) 6≤ M ; so if

r < m then U ∈ Γ. Thus if Theorem E.6.3 fails, Γ contains the set of obstructions
to Theorem E.6.3.

But in general there are subspaces U of V with CM̄V
(U) of odd order but

m(V/U) ≥ m, and often we also want to know that CG(U) ≤M for such subspaces.

In the remainder of this subsection, we let U denote some member of Γ. Set
H := CG(U) and MH := H ∩M .

In the results through E.6.13, we establish some useful restrictions on U and
H without making use of the hypothesis m > 2 of Theorem E.6.3.

We begin by observing the condition that |CM̄V
(U)| is odd leads to the pushing

up hypothesis (CPU) of Definition C.1.6, in the optimal case where Q is Sylow in
H :

Lemma E.6.5. (1) Q ∈ Syl2(H).
(2) C(H,Q) ≤MH < H.
(3) V E MH .

Proof. As Q is Sylow in CM (V ) and O2′ (CM (U)) ≤ CM (V ), Q is also Sylow
in CM (U) = MH . Next M = !M(NG(Q)) from Hypothesis E.6.1.3, so for 1 6= C
char Q, NH(C) ≤ NH(Q) ≤ MH . Then as Q ∈ Syl2(MH) and NH(Q) ≤ MH ,
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(1) holds. Further H 6≤M by Definition E.6.4, so MH < H , completing the proof
of (2). Finally we observed earlier that MH = CM (U) normalizes V because of
the TI-hypothesis, so (3) holds. Since Q ∈ Syl2(MH), trivially Q ∈ B2(MH) and
Q ∈ Syl2(〈QMH 〉), so (CPU) is satisfied with H , Q, MH in the roles of “G, R,
M”. ¤

Our analysis will depend upon the fact that certain subgroups are in He (cf.
Definition 1.1.1), so we need:

Lemma E.6.6. (1) F ∗(MH) = O2(MH).
(2) F ∗(CM (A)) = O2(CM (A)) for each nontrivial 2-subgroup A of M .
(3) F ∗(CH (z)) = O2(CH (z)) ≥ O2(CG(z)) ∩CG(O2(CH (z))) for each z ∈ Z#.
(4) If U ∩ Z 6= 1 then F ∗(H) = O2(H).

Proof. As M contains T ∈ Syl2(G), M ∈ He by 1.1.4.6, and then (2) follows
from 1.1.3.2. Part (1) is the special case of (2) with A = U . Part (4) follows
using 1.1.4.3. If z ∈ Z#, then CG(z) ∈ H(T ), so CG(z) ∈ He by 1.1.4.6, and then
CH(z) ∈ He by 1.1.3.2. Then since U ≤ O2(CH (z)) we have

O2(CG(z)) ∩ CG(O2(CH(z))) ≤ O2(CG(z)) ∩ CG(U) ≤ O2(CH(z)),

and hence (3) holds. ¤

Lemma E.6.7. If Q ≤ K ≤ H and F ∗(K) = O2(K), then

(1) K = (K ∩M)L, where L = L1 · · ·Ls is the central product of s ≤ 2 blocks
of type L2(2

ni), A3, or A5, such that Li = [Li, J(Q)] for each i.
(2) If Li is an An-block, then m(V/CV (Li)) = 1, |Li : Li ∩ M | = n, and

r(G, V ) = 1.
(3) If Li is an L2(2

n)-block then V = CV (Li) × [V,Xi], where Xi
∼= Z2n−1,

m([V,Xi]) = n, and Li ∩M = (Li ∩Q)Xi with (Li ∩M)/O2(Li) a Borel subgroup
of Li/O2(Li). In particular m(V/U) ≥ n.

Proof. Observe that the hypotheses of C.1.29 are satisfied with K, Q, M ∩K
in the roles of G, T , M : By hypothesis F ∗(K) = O2(K) and Q ≤ K ≤ H , so Q
is Sylow in K and C(K,Q) ≤ MK := K ∩M by E.6.5. Finally K is an SQTK-
group by Hypothesis E.6.1.1. Thus (1) follows from C.1.29, which also says that
(Li ∩M)/O2(Li) is a Borel subgroup of Li/O2(Li), so in particular Li ∩M is of
index n in Li when Li is of type An.

As Q ∈ Syl2(K), and V ≤ Z(Q), V centralizes the Sylow group Li ∩ Q of
Li, so V acts on Li and induces inner automorphisms on Li (cf. 16.1.6). Thus
AutV (Li) ≤ AutZi(Li), where Zi := Ω1(Z(Li ∩ Q)). As Li 6≤ M , [V, Li] 6= 1 by
E.6.2, and it follows from Definition E.3.3 that

r ≤ m(V/CV (Li)) ≤ mi := m(Zi/(Zi ∩ Z(Li))).

Now if Li is an An-block, we calculate that mi = 1. This gives r = 1 =
m(V/CV (Li)) since [V, Li] 6= 1, and completes the proof of (2).

So assume Li is an L2(2
n)-block. Then since (Li ∩ M)/O2(Li) is a Borel

subgroup of Li/O2(Li), Li ∩M = (Li ∩ Q)Xi, where Xi is cyclic of order 2n − 1.
Further by I.2.3, Zi = [Zi, Xi]× CZi(Li), with m([Zi, Xi]) = n. But by E.6.5.3, V
is normal in MH , and hence [V,Xi] is normal in Li ∩M . Since 1 6= AutV (Li) ≤
AutZi(Li) and Xi is irreducible on [Zi, Xi], it follows that [Zi, Xi] = [V,Xi] and
hence V = CV (Li)× [V,Xi]. This completes the proof of (3), once we observe that
m(V/U) ≥ m(V/CV (Li)) = n, since U ≤ CV (Li). ¤
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When F ∗(H) = O2(H), E.6.7 gives a good description of H . In the next few
lemmas we obtain some restrictions on E(H) and O(H).

Lemma E.6.8. If L is a component of H, then L 6≤M and one of the following
holds:

(1) L ∼= L2(2
n), Sz(2n), Lε3(2

n), or a covering of L3(4) (where we set n := 2)
with Z(L) a 2-group; L ∩M is the preimage of a Borel subgroup of L/Z(L), and
L ∩M ∼= Z2n−1 with n = m(V/CV (L)) ≤ m(V/U). Further if n > 1, then V =
[V, L ∩M ]× CV (L) and n = m([V, L ∩M ]).

(2) L ∼= Sp4(2
n)′, and m(V/U) ≥ m(V/CV (L)). Further if n > 1, then V =

[V, L ∩M ]× CV (L). Further either:

(a) L ∩ M is a Borel subgroup of L—and either m(V/CV (L)) = 2n,
with CL(A) 6≤ M for some U < A < V with m(V/A) = n, or L ∼= A6 with
m(V/CV (L)) = 1.

(b) L ∩ M is a maximal parabolic of L, AutV (L) is a root subgroup of
AutLV (L), and m(V/CV (L)) = n.

(3) L ∼= L4(2), LQ/O2(LQ) ∼= S8, U = CV (L), and m(V/CV (L)) = r(G, V ) =
1.

(4) L ∼= A7, Â6, or Â7 and CL(A) 6≤M for some hyperplane A of V containing
U , so that r(G, V ) = 1. Further m(V/CV (L)) ≤ 2.

(5) L ∼= L2(p), p a Fermat or Mersenne prime, L3(3), or M11, U = CV (L),
and m(V/CV (L)) = r(G, V ) = 1.

Proof. Let z ∈ Z#. By E.6.6.3, CO2(CG(z))(O2(CH (z))) ≤ H , so the hypothe-
ses of 1.1.5 are satisfied with Q, CG(z) in the roles of “S, M”. Therefore we can
appeal to that lemma, and conclude that L = [L, z] is described in 1.1.5.3.

Further as Q ∈ Syl2(H) and V ≤ Z(Q), V centralizes the Sylow group Q∩L of
L and hence acts on L. By E.6.6.1, L 6≤MH and hence L 6≤M ; so by E.6.2, V acts
nontrivially on L. Set QL := NQ(L) and (LQL)

∗ := LQL/O2(LQL). Recall from
1.2.1.3 that QL = Q unless L ∼= L2(2

n), Sz(2n), L2(p) for p odd, since J1 does not
appear in 1.1.5.3. As in the the proof of the previous lemma, V ≤ QL ∈ Syl2(LQL)
and

V ∗ is central in Q∗L and normal in (L ∩M)∗Q∗L. (!)

In particular,

r ≤ m(V/CV (L))) ≤ m(Z(Q∗L)). (∗)

Further O2′(L ∩M) ≤ CL(V ) from Definition E.6.4.
Suppose first that L is either of Lie type and characteristic 2 (including A6

∼=
Sp4(2)

′), or a covering of L3(4) or G2(4). Then case (a), (b), or (c) of 1.1.5.3 holds
and Z induces inner automorphisms on L, except possibly in case (c). Recall (cf.
pp. 220 and 257–258 in [Asc86a]) that the maximal overgroups of Q∗L in L∗Q∗L
are of form P ∗Q∗L, for P

∗ a maximal Q∗L-invariant parabolic of L∗. Let P be the
preimage of P ∗ in LQL. Then F

∗(〈P,Q〉) = O2(〈P,Q〉), so E.6.7 says that:

Either P ≤M , or P has a χ0-block.

Now if L is L5(2), or L
∗ is of Lie rank 2 other than L3(q) or Sp4(q), then QL = Q

and L∗ is generated by Q∗-invariant parabolics P ∗ such that PQ has no χ0-block;
hence all such P lie in M , contradicting L 6≤ M . Similarly if L is L4(2) then the
same argument supplies a contradiction unless LQ ∼= S8, in which case Z(Q∗) is of
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order 2, so as in the proof of E.6.7, the inequality (*) gives m(V/CV (L)) = r = 1,
and hence conclusion (3) holds. Therefore:

Either L is of Lie rank 1, or L/Z(L) is L3(q) or Sp4(q)
′.

Now the preimage B of a Borel subgroup over (L ∩ Q)∗ is solvable, and unless
L ∼= L2(4), B has no A3-block, so that B ≤ L ∩M . Thus either L is L2(4), or
(L ∩M)∗ is a QL-invariant proper parabolic P

∗ of L∗ over B∗.
Assume first that L is of Lie rank 1. Then B is the only proper parabolic of

L over L ∩ Q, so by the previous paragraph, either L ∼= L2(4) or L ∩M = B. In
the latter case arguing as in the proof of E.6.7 using (!) and (*), (1) holds. We
consider the former case below by regarding L2(4) as L2(5).

If L/Z(L) is L3(q) then sinceO2′(L∩M) ≤ CL(V ), we conclude that L∩M = B,
and arguing as above, (1) holds. Finally if L ∼= Sp4(q)

′ then QL = Q, and L∩M is
B or maximal parabolic over B, and the argument above leads to conclusion (2).

We turn to the cases remaining in (c) or (d) of 1.1.5.3, where L/Z(L) ∼= A6 or
A7, Z(L) is of order 1 or 3, and some z ∈ Z induces a transposition on L/Z(L) ∼= A6,
or an involution of cycle type 23 on L/Z(L) ∼= A7. In either case CL(z) ∼= S4. We
have already treated the case where L ∼= Sp4(2)

′ ∼= A6, so when L/Z(L) ∼= A6,

we may take L ∼= Â6; thus Z = 〈z〉 in this case by 1.1.5.3. Now in any case
m(Z(Q∗)) ≤ 2, so by (*), m(V ∗) ≤ 2, and r = 1 if m(V ∗) = 1. In the latter case,
conclusion (4) holds, so we may assume that m(V ∗) = 2. Then

L = 〈CL(A
∗) : 1 6= A∗ < V ∗〉,

so CL(A) 6≤M for some hyperplane of V containing U , completing the proof of (4).
In case (e) of 1.1.5.3, L ∼= L3(3) or L2(p), p a Fermat or Mersenne prime. We

also consider the subcase L ∼=M11 from case (f) of 1.1.5.3. Here m(Z(Q∗)) = 1, so
using (*) as before we see that (5) holds.

This leaves the sporadic groups in case (f) of 1.1.5.3 other than M11. In
each case L∗ possesses a Q∗L-invariant subgroup P ∗ with no χ0-block, such that

F ∗(PQL) = O2(PQL) and CZ(Q∗L)(O
2′ (P ∗)) = 1. As before using E.6.7 we have

P ≤M , contradicting O2′(L ∩M) ≤ CL(V ). This completes the proof. ¤

Lemma E.6.9. (1) O(H) ∩M = 1.
(2) If O(H) 6= 1, then CO(H)(A) 6≤M for some hyperplane A of V containing

U , so r(G, V ) = 1.

Proof. Note O(H) ∩M ≤ O(H ∩M) = 1 by E.6.6.1, giving (1). Further if
r > 1, then using A.1.17,

O(H) = 〈CO(H)(A) : A ≤ V and m(V/A) = 1〉 ≤M

in view of Definition E.3.3, so that (2) holds. ¤

In various places during the proof of the Main Theorem (including but not
limited to the proof of Theorem E.6.3 in this section) we will want to prove r > 1.
The next lemma provides some restrictions on H when r = 1.

Lemma E.6.10. Assume that m(V/U) = 1, and that either Z ∩ U 6= 1 or
F ∗(H) = O2(H). Then

(1) F ∗(H) = O2(H).
(2) H = (H ∩ M)L where L = L1 · · ·Ls, s ≤ 2, is the central product of

Ani-blocks Li with |Li : Li ∩M | = ni and ni = 3 or 5.
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(3) There exists no W ≤ U such that an E9-subgroup of G acts faithfully on
W .

(4) Ω1(Z(NT (U))) 6≤ U .

Proof. If Z ∩ U 6= 1, then (1) follows from E.6.6.4; otherwise it holds by
hypothesis. Then as m(V/U) = 1, E.6.7.3 says that H has no L2(2

n)-blocks for
n ≥ 2, so (2) follows from (1) and (2) of E.6.7. In particular if W ≤ U , then
CG(U) ≤ CG(W ), so 3 divides the order of CG(W ); then (3) holds asm3(NG(W )) ≤
2 since G is a QTKE-group.

Finally let S := NT (U), L0 := 〈LS1 〉, U1 := O2(L1), and U0 := 〈US1 〉. Now
NM (U) permutes the blocks L1, . . . , Ls, s ≤ 2, and CUi(Li) = 1 by C.1.13.c. Thus
either L0 = L1 with U0 = U1, or L0 = L1×Lt1 for t ∈ S−NS(L1) and U0 = U1×U t1.
In any event S acts on U0, so 1 6= CU0(S) =: Z0 ≤ Ω1(Z(S)). Then CU0(L0) = 1
as CUi(Li) = 1, so as U ≤ Z(H), U ∩ U0 = 1. Thus Z0 6≤ U , so (4) holds. ¤

When m(V/U) > 1, we can get some further information by choosing U max-

imal in Γ; since the condition O2′ (CG(U)) ≤ CG(V ) is inherited by overgroups of
U in V , this amounts to considering U maximal subject to CG(U) 6≤M .

Lemma E.6.11. Assume that m(V/U) =: n > 1 and U is maximal in Γ; that
is, maximal subject to CG(U) 6≤M . Then

(1) H = (H ∩M)L for a suitable L E H, described in (3) below.
(2) V = U × [V,X ], where 1 6= Z2n−1

∼= X ≤ L∩M is regular on [V,X ]#, and
1 6= X̄ E NM̄ (U).

(3) One of the following holds:

(a) F ∗(H) = O2(H), L is an L2(2
n)-block, and |L : L ∩M | = 2n + 1.

(b) F ∗(H) = O2(H)L, L/Z(L) ∼= L2(2
n), Sz(2n), or Lε3(2

n), M ∩ L is a
Borel subgroup of L, and O2(L)[V,X ] = Z(L ∩Q).

(c) F ∗(H) = O2(H)L, L ∼= Sp4(2
n), L ∩M is a maximal parabolic of L

with (L ∩M)∞ = CL(V ), and [V,X ] is a root subgroup of L.

(4) CH(L) ≤ CM (V ).

Proof. By hypothesis m(V/U) = n > 1, so by maximality of U , CG(W ) ≤M
for each hyperplane W with U < W < V . Therefore O(H) = 1 by E.6.9. If
F ∗(H) = O2(H), then by E.6.7, H has a χ0-block L with L 6≤ M . On the other
hand if F ∗(H) > O2(H), then since O(H) = 1, H has a component L—and then
by E.6.8, L 6≤M . In any event by maximality of U ,

CG(W ) ≤M for W with U < W ≤ V , (∗)

so

U = CV (L) and m(V/CV (L)) = n > 1.

We will first establish (1)–(3).
Suppose first that F ∗(H) = O2(H), so that L is a χ0-block. As m(V/CV (L)) >

1, E.6.7.2 says L is not of type A3 or A5. Therefore L is an L2(2
n)-block. As

U = CV (L) while V ∩Li 6≤ Z(Li) for each of the blocks Li in E.6.7.1, the parameter
s of that lemma is 1. Thus H = (H ∩M)L, and L is the unique block of H not
contained inM , so H ∩L acts on L and hence L E H , establishing (1). By E.6.7.3,
(2) and (3a) hold, where X is a Hall 2′-subgroup of L ∩M ; note X̄ = L ∩M , and
as L is the unique block of H = CG(U) not in M , L ∩M E NM (U).
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Thus we may suppose instead that L is a component ofH , so that L is described
in E.6.8. As m(V/CV (L)) = n > 1, cases (3) and (5) of E.6.8 are ruled out, as
are case (1) and case (2b) when n = 1, and the exceptional subcase of (2a) where
m(V/CV (L)) = 1. Case (4) and the remaining subcase of (2a) are ruled out, since
then CG(W ) 6≤M for some W with U < W < V , contrary to (*).

Assume that case (2b) of E.6.8 holds. By the previous paragraph n > 1.
Further L E H by 1.2.1.3. In this case L ∩M is a maximal parabolic of L, and
as n > 1, [V, L ∩M ] ∼= AutV (L) is the root group of L normalized by L ∩M , and
CL(V ) = CL([V, L ∩M ]) = (L ∩M)∞, with a complement X to CL(V ) in L ∩M
where X is cyclic and regular on [V, L∩M ]#. As V = U × [V, L∩M ], by a Frattini
Argument, H = LNH([V, L ∩M ]) = LMH with CH (L) ≤ CH([V, L ∩M ]) ≤ MH ,
so as F ∗(MH) = O2(MH), F

∗(H) = O2(H)L. Thus (1), (2) and (3c) hold in this
case.

This leaves case (1) of E.6.8 with n > 1, where L ∩M is the Borel subgroup
of L over L ∩Q, L/Z(L) is a Bender group over F2n or L3(2

n), and V = VL × U ,
where VL := [V, L ∩M ] = [VL, L ∩M ] = Z(L ∩ Q). Arguing as in the previous
paragraph, H = LMH and F ∗(H) = O2(H)L, so that (1) and (3b) hold. There is

a cyclic complement X to CL(VL) regular on V
#
L , so (2) holds. Thus we have now

established (1), (2), and (3) in all cases.
Finally (4) holds, since we may use (2) in each case to see that [V, L ∩M ] =

[V,X ] and hence CH(L) ≤ CH([V,X ]) = CH(U [V,X ]) = CH (V ) ≤M . ¤

We obtain a corollary when U satisfies a somewhat stronger hypothesis than
U ∈ Γ:

Lemma E.6.12. Assume 1 6= U ≤ V , with CM (U) = CM (V ) and CG(U) 6≤M .
Then CG(U1) 6≤M for some hyperplane U1 of V containing U , so r(G, V ) = 1.

Proof. As CM (U) = CM (V ) and CG(U) 6≤ M , U ∈ Γ. Furthermore for
U ≤ U1 ≤ V , CM (U) = CM (V ) ≤ CM (U1) ≤ CM (U), so CM (U1) = CM (V ).
Hence, replacing U by U1 if necessary, we may assume that U is maximal in V
subject to CG(U) 6≤ M . Now assume that U is not a hyperplane of V , so that
m(V/U) > 1. Then the hypotheses of E.6.11 are satisified, and by E.6.11.2, there
is X̄ 6= 1 in AutCG(U)(V ), contrary to our hypothesis that CM (U) = CM (V ). Thus
m(V/U) = 1, so as r(G, V ) ≤ m(V/U), r(G, V ) = 1. ¤

Our next result shows that members of Γ are not normal in T ; it depends on
Theorem 3.1.1, which we recall is a version of Theorem C.5.8. We use this result
later to establish contradictions in many situations.

Proposition E.6.13. Assume 1 6= W ≤ V with O2′(CM (W )) ≤ CM (V ), and
W E T . Then CG(W ) ≤M , so W 6∈ Γ.

Proof. Assume that CG(W ) 6≤M , so that in fact W ∈ Γ, and hence we may
take U =W . In particular Q is Sylow in H by E.6.5.1. As U E T by hypothesis,
T normalizes CG(U) = H , so we may choose H1 ∈ H∗(T,M) (cf. Definition 3.0.1)
with H1 ≤ HT , and H1 ∩M is the unique maximal subgroup of H1 over T by
3.1.3.1. We verify the hypotheses of Theorem 3.1.1 with Q, NG(Q), H1 in the
roles of “R, M0, H”: First O2(H1) ≤ O2(H), so as Q is Sylow in H , Q is Sylow
in O2(H1)Q; by construction NG(Q) ∈ H(T ) and Q E NG(Q). Now Theorem
3.1.1 shows that O2(〈NG(Q), H1〉) 6= 1. Then as M = !M(NG(Q)) by Hypothesis
E.6.1.3, we conclude H1 ≤M , contrary to the choice of H1. ¤
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Lemma E.6.14. Assume 1 6=W ≤ V such that

(i) O2′(CM (W )) ≤ CM (V ).
(ii) F ∗(CG(W )) = O2(CG(W )), and either m3(CG(W )) ≤ 1 or NG(W ) con-

tains a subgroup of order 3 faithful on W .
(iii) T ≤ M0 ≤ NG(Q) with M = !M(M0), and NM0(W ) is a maximal sub-

group of M0, but not of index 2 in M0.

Then CG(W ) ≤M , so W 6∈ Γ.

Proof. Assume that CG(W ) 6≤ M , so that W ∈ Γ, and hence we may take
U =W . Thus Q is Sylow in CG(W ) = H by E.6.5.1. By (ii), F ∗(H) = O2(H), and
either m3(H) ≤ 1 or NG(W ) contains an element of order 3 faithful on W . Since
NG(W ) is an SQTK-group, we conclude from E.6.7 that H = (H ∩M)L where

L 6≤M is a block of H and L = O3′ (H) E NG(W ).
We will apply C.5.7, so we need to check that Hypotheses C.5.1 and C.5.2 hold,

with Q, H1 := LQ in the roles of “R, H”. As F ∗(H) = O2(H) by (ii) and Q ≤ H1,
F ∗(H1) = O2(H1). From the list of groups in E.6.7, H1∩M is the unique maximal
subgroup of H1 containing Q, and Q is Sylow in H1. Thus Hypothesis C.5.1 is
satisfied. By (iii), M =!M(M0), so as H1 6≤M , Hypothesis C.5.2 is also satisfied.

As L = O2(H1) is a block, the parameter s of C.5.7 is indeed 1. By (iii),
NM0(W ) is maximal in M0, so as L E NG(W ), we have NM0(L) = NM0(W ) or
M0. In the latter case WL := CV (L) is T -invariant and CG(WL) 6≤M , contrary to
E.6.13. Thus the hypotheses of C.5.7 are satisfied, so we conclude from that lemma
that |M0 : NM0(W )| = 2, contrary to (iii). ¤

As mentioned earlier, it is useful in various situations to show that r > 1; in
particular in E.6.23 we will establish this fact when m > 2. The next few results
impose some restrictions on CG(W ) for W a hyperplane of V—culminating in
E.6.22 showing that F ∗(CG(W )) = O2(CG(W )).

These intermediate results can be useful in other contexts as well, and in par-
ticular we will also establish them when r > 1. Thus for the remainder of this
subsection, we will assume:

Hypothesis E.6.15. Either r(G, V ) > 1 or m := m(M̄V , V ) > 2.

Let U denote the set of hyperplanes of V .

Lemma E.6.16. Let W ∈ U . Then

(1) If CG(W ) 6≤M , then r = 1, m > 2, and W ∈ Γ.
(2) If O2(F ∗(CG(W ))) 6= 1 then CG(W ) 6≤M .

Proof. Assume first that CG(W ) 6≤M . Then r = 1, so by Hypothesis E.6.15,

m > 2; then O2′ (CM (W )) ≤ CM (V ), and hence W ∈ Γ, establishing (1). On
the other hand if O2(F ∗(CG(W )) 6= 1, then CG(W ) 6≤ M by E.6.6.2, establishing
(2). ¤

We continue the convention that U denotes a member of Γ and H = CG(U).

Lemma E.6.17. If r = 1 then m > 2 and m(V ) ≥ 6.

Proof. As r = 1, m > 2 by Hypothesis E.6.15. Now if there is an involution
t̄ in M̄V , then m(V/CV (t̄)) ≤ m(V )/2, so that m(V ) ≥ 6. Thus if the lemma fails,
M̄V is of odd order, so that T = CT (V ) = Q. Then any W ∈ U is normal in T ,
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and as m > 2, O2′(CM (W )) ≤ CM (V ). Hence CG(W ) ≤ M for each W ∈ U by
E.6.13, so that r > 1, contrary to the hypothesis of the lemma. ¤

Lemma E.6.18. If m(V/U) ≤ 2 then H has no component isomorphic to A7

or Â7.

Proof. Assume that L is a component of H isomorphic to A7 or Â7. Let
UL := CV (L), so that U ≤ UL ∈ Γ since U ∈ Γ. Now L ≤ LU ∈ C(CG(UL)) by
1.2.4, and L is Q-invariant by 1.2.1.3, so LU centralizes O2(CG(UL)), and hence
LU is a component of CG(UL). Then by comparing the lists in E.6.8 and A.3.12,
L = LU , so without loss, U = UL = CV (L).

By E.6.8, r = 1, so by Hypothesis E.6.15, m > 2—and then m(V ) ≥ 6 by
E.6.17. Let g ∈ MV ; then U1 := U ∩ Ug ≤ V , and we set H1 := CG(U1). As
U = CV (L), m(V/U) ≤ 2 by E.6.8.4, so thatm(V/U1) ≤ 4. Therefore asm(V ) ≥ 6,
U1 6= 1.

Next H = CG(U) = CH1(U), so L is a component of CH1(U). As m3(L) = 2,
I.3.1.3 says L ≤ L1 for some normal component L1 of H1, and L is a component of
CL1(U). But by inspection of the choices for L1 in Theorem C (A.2.3), no nontrivial

2-subgroup of Aut(L1) has a centralizer with a component isomorphic to A7 or Â7.
Thus L1 = L is a component of H1, and by symmetry, so is Lg. Then by A.3.18,
L = O3′(E(H1)) = Lg.

As this holds for all g ∈ MV , it follows that MV acts on L and thus also on
CV (L) = U , contradicting E.6.13. This completes the proof. ¤

Lemma E.6.19. If W,W0 ∈ U then O(CG(W )) ≤ O(CG(W ∩W0)).

Proof. We may assume that O(CG(W )) 6= 1. Therefore by E.6.16, r = 1,
m > 2, and W ∈ Γ, so we may take U = W . There is nothing to prove if
U = W0, so U1 := U ∩W0 is of corank 2 < m in V . Hence U1 ∈ Γ, so we can
apply the results of this section to H1 := CG(U1). As H = CG(U) = CH1(U),
O(H) = O(CH1 (U)). We may assume that E.6.19 fails, so O(CH1 (U)) 6≤ O(H1).

Thus setting H̃1 := H1/O(H1)U1, Ũ is of order 2 and O(CH̃1
(Ũ)) 6= 1. Therefore by

31.14.1 and 31.18 in [Asc86a], there is a component L̃ = [L̃, Ũ ] = [L̃, O(CH̃1
(Ũ))]

of H̃1. But U ≤ V ≤ Z(Q) and Q ∈ Syl2(H1), while L is on the list of E.6.8, with

O(CAutH1 (L)
(AutU (L))) 6= 1. This forces L to be A7 or Â7, contradicting E.6.18

applied to U1 in the role of “U”. This completes the proof. ¤

Lemma E.6.20. O(CG(U+)) = 1 for each U+ ∈ U .

Proof. Assume U+ ∈ U with O(CG(U+)) 6= 1. By E.6.16, CG(U+) 6≤ M ,
r = 1, m > 2, and U+ ∈ Γ, so we may take U = U+.

Let U0 ≤ U ≤ V with m(V/U0) = 3; notice U0 6= 1 since m(V ) ≥ 6 by E.6.17.
Set H0 := CG(U0) and H

∗
0 := H0/U0. Thus V ∗ ∼= E8. Let U0 ≤ Ui ≤ V , i = 1, 2,

with U∗1 and U∗2 distinct subgroups of V ∗ of order 2. Then W1 := U1U2 ∈ U , and
we may choose W0 ∈ U with W1 ∩W0 = U1. We now apply E.6.19 with W1 in the
role of “W” to see that O(CG(W1)) ≤ O(CG(U1), and hence

O(CG(U1U2)) = O(CG(W1)) = O(CG(U1)) ∩ CG(W1) = O(CG(U1)) ∩ CG(U2).

All these centralizers lie in H0, and O
2(CH∗0 (U

∗
i )) = O2(CH0(Ui))

∗, so

O(CH∗0 (U
∗
1 )) ∩ CH∗0 (U

∗
2 ) = (O(CG(U1)) ∩ CG(U2))

∗ = O(CG(U1U2))
∗.
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Thus if we set θ(U∗i ) := O(CH∗0 (U
∗
i )), we have

θ(U∗1 ) ∩ CH∗0 (U
∗
2 ) = O(CG(U1U2))

∗ = θ(U∗2 ) ∩ CH∗0 (U
∗
1 ),

with the last equality holding by symmetry between U1 and U2. That is (using
also the Odd Order Theorem), θ is a solvable V ∗-signalizer functor (cf. chapter 15
(section 44) in [Asc86a]); hence by the Solvable Signalizer Functor Theorem

〈O(CG(A
∗)) : 1 6= A∗ ≤ V ∗〉 = 〈θ(A∗) : 1 6= A∗ ≤ V ∗〉 = θ(H∗0 )

is of odd order. Now U0 is central in H0, so the preimage is the direct product of
U0 with

X := 〈O(CG(A)) : U0 < A ≤ V 〉

of odd order. In particular as O(CG(U)) 6= 1, X 6= 1.
Recall that Z = CV (T ), let z ∈ Z#, and set Gz := CG(z). As O(H) 6= 1, in

view of E.6.6.4, z 6∈ U . Hence z 6∈ U0, so U0 < A := 〈U0, z〉 < V . By 1.1.4.6,
F ∗(Gz) = O2(Gz), so by 1.1.3.2,

1 = O(CGz (A)) = O(CG(A)) = X ∩ CG(A) = X ∩Gz,

using completeness of the functor (again see chapter 15 (section 44) of [Asc86a]).
Therefore z inverts X , so X is abelian. Thus if p is a prime divisor of |X |,

1 6= Y := Op(X) = 〈Op(CG(W )) : U0 ≤W ∈ U〉. (∗)

Next as Y ≤ H0 ∈ H, mp(Y ) ≤ 2 since G is QTKE-group. Thus m(V/CV (Y )) ≤ 2
by A.1.29, and hence Y = Op(CG(U4)) for some U0 ≤ U4 ≤ V with m(V/U4) ≤ 2.

Now choose U4 ≥ U0 with m(V/U4) ≤ 2, so that Y1 := Op(CG(U4)) is of
maximal order; notice Y1 6= 1 as Y 6= 1. Now we make a new choice of U : that is,
we choose U so that U4 ≤ U ∈ U with CY1(U) 6= 1; this choice is possible since Y1
is generated by centralizers of such hyperplanes using A.1.17. As CY1(U) 6= 1, also
O(CG(U)) 6= 1. We claim that

Y1 = 〈Op(CG(W )) :W ∈ U〉. (∗∗)

For if not, there is U3 ∈ U with Op(CG(U3)) 6≤ Y1. Then we may choose a new U0

such that U0 ≤ U4 ∩ U3 and m(V/U0) = 3, and obtain a contradiction from (*) to
our choice of U3. So the claim is proved.

As MV permutes U , (**) says MV acts on Y1, and hence also on CV (Y1). But
U4 ≤ CG(Y1) and m(V/U4) ≤ 2 < m, so CV (Y1) ∈ Γ, contrary to E.6.13. This
completes the proof. ¤

As an easy corollary to E.6.20 we obtain:

Corollary E.6.21. O(CG(A)) = 1 for all 1 6= A ≤ V .

Proof. By Generation by Centralizers of Hyperplanes A.1.17,

O(CG(A)) = 〈O(CG(A)) ∩ CG(U) : A ≤ U ∈ U〉,

and O(CG(A)) ∩ CG(U) ≤ O(CG(U)) for A ≤ U ∈ U , while O(CG(U)) = 1 by
E.6.20. ¤

Lemma E.6.22. F ∗(CG(U)) = O2(CG(U)) for each U ∈ U .
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Proof. Assume otherwise. Then by E.6.21, there is U+ ∈ U such that CG(U+)
has a component L. By E.6.16, r = 1, m > 2, and U+ ∈ Γ, so we may take U+ = U .
As m(V/CV (L)) = m(V/U) = 1, E.6.8 says L/Z(L) is An, 5 ≤ n ≤ 8, L2(p) for p
a Fermat or Mersenne prime, L3(3), or M11. Let g ∈ MV and set U0 := U ∩ Ug

and H0 := CG(U0). Then m(U/U0) ≤ 2 < m and CG(U) ≤ CG(U0) 6≤ M , so as
m(U/U0) < m, U0 ∈ Γ. Therefore by E.6.5.1, Q ∈ Syl2(H0) with U ≤ Z(Q), so
U acts on each component of H0. Further O(H0) = 1 by E.6.21. Thus I.3.1 shows
that L is contained in a component L0 of H0. Then L is a component of CL0(U),
so from the list of possibilities for L0 in E.6.8, and keeping in mind that U ≤ Z(Q)
so that the centralizer of a 2-central involution has a component, we see that either
L = L0, or L ∼= A5 and L0/Z(L0) ∼= A7. The last case is out by E.6.18, so L = L0

is a component of H0.
By symmetry Lg is a component of H0, so either L = Lg or [L,Lg] = 1. Now

we arrive at a contradiction much as we did in the last paragraph of the proof of
E.6.18: Namely L can have at most two conjugates under MV by 1.2.1.3, and these
centralize U0 6= 1. Then MV normalizes CV (〈LMV 〉) ∈ Γ, so we obtain our usual
contradiction from E.6.13. ¤

We now obtain the main preliminary result involved in the proof of Theorem
E.6.3:

Proposition E.6.23. If m(M̄V , V ) > 2, then r(G, V ) > 1.

Proof. As m > 2, Hypothesis E.6.15 holds. Assume that also r = 1. Then
there is W ∈ U with CG(W ) 6≤ M , and by E.6.16.1, W ∈ Γ, so we take U = W .
By E.6.22, H ∈ He, so by E.6.10, H = MHL, where L is the central product of
Ani-blocks L1, . . . , Ls, with s ≤ 2, Li 6≤ M , and ni = 3 or 5. Let U0 ≤ U with
m(V/U0) = 2 and set H0 := CG(U0). Again as m > 2 and H0 6≤ M , U0 ∈ Γ,
so Q ∈ Syl2(H0) by E.6.5.1. Now Li ∈ L(H0, Q), so by 1.2.4, Li ≤ Xi with
Xi ∈ C(H0). As Li 6≤ M , also Xi 6≤ M . Fix i ∈ {1, . . . , s} and set X := Xi and
K := 〈Q,X〉. By E.6.21, O(H0) = 1, so O(K) = 1. Thus if E(K) 6= 1 then X
is a component of H0, and hence is described in E.6.8, while if E(K) = 1, then
F ∗(K) = O2(K), and we apply E.6.7 to see that X is a χ0-block of H0.

Assume Li < X . Then U0 = CV (X) is of corank 2 in V . If X is a χ0-block,
then E.6.7 shows that X is an L2(4)-block, which is impossible since Li ≤ CX(U)
and U is a hyperplane of V . Therefore X is a component of H0, so by E.6.8,
X/Z(X) ∼= L2(4), L

ε
3(4), Sp4(4), A6, or A7. However X/Z(X) is not A7 by E.6.18,

and as O(H0) = 1, X is not Â6. As the Ani -block Li is normal in CX(U) and U is
a hyperplane of V , we conclude that X ∼= A6.

Claim X = 〈LMV

i 〉. For suppose Lgi 6≤ X for some g ∈ MV , and set U1 :=
U0∩Ug and H1 := CG(U1). By E.6.17, m(V ) ≥ 6, so U1 6= 1. Further H0 ≤ H1, so
by I.3.1.3, X is contained in a component Y of H1 which is normal in H1. Next Y
appears in Theorem C, and X ∼= A6 is a component of the centralizer in AutG(Y )
of the subgroup AutU0(Y ) of order 2, so Y ∼= L4(2) or L5(2), and U0 induces
an involutory outer automorphism on Y . But we can also take U1 ≤ U2 ≤ V
with m(V/U2) = 2 and U2 inducing a 2-central involutory automorphism on Y .

Therefore U2 ≤ Z(R) for some R ∈ Syl2(Y V ), so R ≤ O2′ (CG(U2)) ≤ CG(V ) since
m > 2, impossible as U0 centralizes no Sylow 2-subgroup of Y . This completes the
proof of the claim.
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We have shown that X = 〈LMV

i 〉, so that X isMV -invariant. Then as in earlier
arguments, E.6.13 supplies a contradiction.

This contradiction shows that Li = Xi, so Xi is a χ0-block of H0. But if
g ∈ MV , we can take U0 to be U ∩ Ug, and conclude Li and Lgi are blocks of
H0, so that Li = Lgi or [Li, L

g
i ] = 1 since distinct blocks commute by C.1.9. We

complete the proof just as we completed the proof of E.6.22: Y := 〈LMV

i 〉 is the
central product of the MV -conjugates of Li, which lie in NG(Li), and there are at
most two factors by 1.2.1.3. Therefore m(V/CV (Y )) ≤ 2 < m, so that CV (Y ) ∈ Γ
is T -invariant, contradicting E.6.13. This completes the proof. ¤

In the remainder of the subsection, we complete the proof of Theorem E.6.3.
As we pointed out just after Definition E.6.4, we may choose U ∈ Γ with H =
CG(U) 6≤M and m(V/U) = r < m. As m > 2, Hypothesis E.6.15 holds, and r > 1
by E.6.23. As m(V/U) = r, E.6.11 says H = MHL, where L is either a normal
component of H , or an L2(2

n)-block of H for n > 1.
We begin by obtaining restrictions on the structure of M̄V . As m(V/U) = r,

U = CV (L); and by E.6.11.2, V = U × [V,X ] where Z2r−1
∼= X ≤ L ∩M with

X ∼= X̄ E NM̄ (U), and X regular on [V,X ]#. These are the hypotheses of 10.4
in [Asc81c, 10.4] (which is a slight extension of O’Nan’s Lemma 14.2 in [GLS96,
14.2]), and that result says:

Lemma E.6.24. (1) Ȳ := 〈X̄MV 〉 = Ȳ1×· · ·× Ȳs and V = CV (Ȳ )× [V, Ȳ ] with
[V, Ȳ ] = V1 × · · · × Vs, where Vi = [Vi, Ȳi]; and MV permutes the Ȳi transitively.

(2) Either we may take X̄ = Ȳ1; or X̄ ∼= Z3, Ȳ1 = 〈X̄ Ȳ1〉 is the Frobenius group
Frob21 of order 21, and m(Vi) = 3.

We can then reduce to a very restricted situation:

Proposition E.6.25. (1) M̄V = Ȳ1 is a Frobenius group Frob21 of order 21.
(2) m(V ) = 3 and U is of order 2.
(3) T = Q.

Proof. Note that CV (Ȳ ) ≤ CV (X̄) = U as V = U×[V,X ]. Suppose CV (Ȳ ) 6=
1. Then as YMV ≤ NG(CV (Ȳ )), with M = !M(MV ) in view of Hypothesis E.6.1,
we have CG(U) ≤ CG(CV (Ȳ )) ≤ M , contradicting our choice of U ∈ Γ. So
CV (Ȳ ) = 1, and hence V = [V, Ȳ ] = V1 × · · · × Vs by E.6.24.1.

Assume next that s = |Ȳ MV

1 | > 1. Then Y0 := Y2 · · ·Ys centralizes Ȳ1, and
hence also X̄ by E.6.24.2, so Y0 normalizes CV (X) = U . Now as L ∈ C(H), Y0 ≤
O2(NG(U)) ≤ NG(L) by 1.2.1.3. As [Ȳ0, X̄] = 1, [Y0, X ] ≤ O2(L ∩M). Thus by
symmetry, Y0X contains the direct product of s copies of X , so as mp(NG(U)) ≤ 2
for p a prime divisor of 2r − 1, s = 2, and hence V = V1 × V2.

Suppose that X̄ = Ȳ1. If s = 2, then V = V1V2 with V2 = CV (Ȳ1) = CV (X̄) =
U ; thus

m(U) = m(V/U) = m(V )/2 ≥ m,

so r = m(V/U) ≥ m, contrary to our assumption that r < m. Thus s = 1, so
U = CV (X̄) = CV (Ȳ1) = 1, contradicting U ∈ Γ.

Therefore by E.6.24.2, Ȳ1 ∼= Frob21, with m(V1) = 3, and r = m(V/U) =
m([V,X ]) = 2. As Ȳ1 is maximal in GL(V1) ∼= L3(2) and subnormal in M̄V ,
Ȳ1 = AutMV (V1). If s = 1, then m(V ) = 3 and m(U) = 1, with M̄V = Ȳ ∼= Frob21;
then T = Q = CT (V ) and the lemma holds. Thus we may assume that s = 2, and
it remains to derive a contradiction.
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As m(V/U) = 2, E.6.11 says that L is either an L2(4)-block of H , or a compo-
nent of H with L/Z(L) ∼= L2(4), L

ε
3(4), or Sp4(4).

Set H2 := CG(V2). Then V2 is a hyperplane of U . Thus H ≤ H2, and O(H2) =
1 by E.6.21. Furthermore we saw Ȳ1 = AutMV (V1) is of odd order, so as CM (V2) ≤

CMV (V2) since V is a TI-subgroup of M , we see O2′(CM (V2)) ≤ CM (V ) and so
V2 ∈ Γ; in particular, Q is Sylow in H2 by E.6.5.1. Then L ∈ L(H2, Q), so by 1.2.4,
L ≤ L2 ∈ C(H2). Now if L is a component of H , then as O(H2) = 1, I.3.1.2 says
that L2 is a component of H2. Next U ≤ V ≤ Z(Q), and inspecting the list in E.6.8
for a group admitting a 2-central involution whose centralizer contains a component
isomorphic to L, we conclude that if L is a component then either L = L2 or L
is L2(4) and L2/Z(L2) is A7. On the other hand if L is an L2(4)-block, then a
similar inspection of the list in E.6.8 shows that either L2 = L or L2

∼= Sp4(4).
Now X ≤ L and Y1 ≤ CG(V2) = H2, so Y1 = O2(Y1) normalizes L2 by 1.2.1.3.
Hence Y1 = 〈XY1〉 ≤ L2, so CV (L2) ≤ CV (Y1) = V2, and then CV (L2) = V2 with
m(V/V2) = 3. Thus L 6= L2, so as L2/Z(L2) ∼= Sp4(4) or A7, m(V/CV (L2)) ≤ 2 or
m(V/CV (L2)) = 4 by E.6.8. This contradiction completes the proof of E.6.25. ¤

We are now in a position to derive the final contradiction which establishes
Theorem E.6.3. Namely by E.6.25, T = Q = CT (V ), so U E T , contrary to E.6.13.
So the proof is complete.

E.6.2. Bounding r via fixed points of (F− 1)-offenders or odd-order
elements. Notice that when m > 2, we have r ≥ m > 2 by Theorem E.6.3. Even
when m ≤ 2, we may be able to show that r > 1 by other means. In the results in
this subsection, we will assume that r > 1, and prove some results which increase
that bound in certain circumstances.

We begin with an easy corollary of E.5.2, relating r to n(H) for suitable sub-
groups H of G, and to (F − j)-modules (ie. modules V with Jj(T ) 6≤ CT (V )),
usually in the case j = 1.

Lemma E.6.26. Assume G is a finite group, T ∈ Syl2(G), V is a nontriv-
ial normal elementary abelian subgroup of T , Q := CT (V ), and NG(V ) ≤ M =
!M(NG(Q)). Further assume j is a positive integer, H ≤ G with n(H) ≤ j,
S ∈ Syl2(H) with Q ≤ S ≤ T , and

(1) r(G, V ) > j.
(2) Jj(S) ≤ CS(V ).

Then H ≤M ≥ NG(S).

Proof. Applying E.5.2 to H , 0 in the roles of “G,i”:

H = 〈NH(J(S)), J(CH (D1)) : D1 ∈ D〉, (∗)

where D consists of the subgroups D1 of corank at most j in D := Ω1(Z(Jj(S))).
By B.2.3.1, J(S) ≤ Jj(S), and by hypothesis (2), Jj(S) ≤ CS(V ) ≤ Q. Hence
J(S) = J(Q) (e.g., B.2.3.3), so NG(Q) ≤ NG(J(S)). Then as M = !M(NG(Q)),
NH(J(S)) ≤ M ≥ NG(S), so by (*), it remains to show that J(CH(D1)) ≤ M for
each D1 ∈ D.

Next by hypothesis (2), V ≤ CS(Jj(S)), so by B.2.3.2, V ≤ Ω1(Z(Jj(S))) = D.
Then J(CH(D1)) centralizes V1 := V ∩ D1 with m(V/V1) ≤ m(D/D1) = j, so
by hypothesis (1), J(CH(D1)) ≤ CG(V1) ≤ NG(V ) ≤ M . This completes the
proof. ¤
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Our next lemma extends a result for the case j = 1 in Mason (2.2.10 in [Mas])—
where the proof in effect made a delicate analysis of the possibilities for a quasithin
minimal-parabolic H (cf. B.6.8 and E.2.2). 2 However the concepts and machinery
in section E.1 make possible a much more natural statement and proof. Finally a
suitable result should hold for arbitrary p in place of 2.

Proposition E.6.27. Assume Hypothesis E.6.1, let 1 6= U ≤ V , and assume:

(1) r(G, V ) > j ≥ 1.
(2) Jj(CM (U)) ≤ CM (V ).
(3) n′(CM̄V

(U)) ≤ j.
(4) If 1 6= X is of odd order in CM (V ), then NG(X) ≤M .

Then CG(U) ≤M .

Proof. Recall CM (U) ≤ MV as V is a TI-subgroup of M by Hypothesis
E.6.1.2. Thus replacing U by an MV -conjugate if necessary, we may assume that
S := CT (U) is Sylow in CM (U) = CMV (U). By hypothesis (2), Jj(S) ≤ CS(V ) =:
Q, so an argument in the proof of E.6.26 shows that NG(S) ≤ NG(J(S)) ≤M , and
hence S is Sylow in CG(U).

Set K := CG(U) and K1 := O2′ (K) = 〈SK〉. By a Frattini Argument, K =

K1NK(S), so as NG(S) ≤M , it suffices to show that K1 ≤ S. Now K1 = O2′(K1),
so by B.6.5, it suffices to show that each minimal parabolic H of K1 is contained
in M .

If n(H) ≤ j, then the hypotheses of E.6.26 are satisfied, and hence H ≤M by
that lemma. Thus we may assume that n(H) > j, so in particular n(H) ≥ 2. Hence
H is nonsolvable by E.1.13. Then E.2.2 says H/O2(H) is an extension of a group
L/O2(H) of Lie type (possibly a product of two Bender groups) over F2n(H) . In
particular,M∩H/O2(H) contains a Borel subgroup of L/O2(H), soH∩M contains
a cyclic subgroup B of odd order 2n(H)−1. If B is faithful on V , then by Definition
E.3.37 n′(CM̄V

(U)) ≥ n(H) > j, contrary to hypothesis (3). Therefore CB(V ) 6= 1.
Let Y be a Hall 2′-subgroup of H ∩M containing B; then CB(V ) ≤ CY (V ) =: X ,
so X 6= 1. By hypothesis (4), NH(X) ≤ M . But this contradicts 4.4.13, so the
proof is complete. ¤

Corollary E.6.28. Assume Hypothesis E.6.1, and:

(1) r(G, V ) > 1.
(2) J(T ) ≤ Q.
(3) If 1 6= X is of odd order in CM (V ), then NG(X) ≤M .

Let
α := min{m(V/U) : U ≤ V and J1(CMV (U)) 6≤ CM (V )},

and
β := min{m(V/U) : n′(CMV (U)) > 1}.

Then r(G, V ) ≥ min{α, β}.

Proof. Let U ≤ V with m(V/U) = r and CG(U) 6≤ M . Then by E.6.27,
either J1(CMV (U)) 6≤ CM (V ) or n′(CM̄V

(U)) > 1. In the first case, r ≥ α, and in
the second, r ≥ β. Hence the lemma holds. ¤

2The result is stated for quasithin groups, but presumably holds in general; one would need to
check that non-quasithin minimal parabolics with n(H) = j > 1 are of Lie type over an extension
of F2j .





CHAPTER F

Weak BN-pairs and amalgams

In this chapter we first review basic definitions and results from the literature on
weak BN-pairs, amalgams, and the “amalgam method”. Then we prove a number
of theorems involving these notions.

In particular we establish sufficient conditions for a completion of a weak BN-
pair of rank 2 to be a group of Lie type. We use such theorems to identify groups
during the proof of the Main Theorem. For example we use them to identify
the groups arising in the Generic Case. Since these recognition theorems are of
independent interest, we develop them in appropriate generality.

In the final three sections of the chapter we record the basic lemmas used in
our version of the amalgam method. The results in section F.7 are either well
known or slight variations on well known results, but sections F.8 and F.9 are more
specialized; and the approach in F.9.16 and F.9.18, which produces an internal
module with q ≤ 2, is probably new.

Sections 28 and 29 of [GLS96] contain more discussion of amalgams and the
amalgam method, and section 36 in [Asc94] discusses amalgams.

F.1. Weak BN-pairs of rank 2

At various points, particularly in the treatment of the Generic Case, we re-
quire results on weak BN -pairs of rank 2 from the “Green Book” of Delgado-
Goldschmidt-Stellmacher [DGS85]; so in section F.1 we review some of their the-
ory.

The definition of a weakBN -pair of rank 2 is given in Hypothesis A in [DGS85].
One example of a weak BN-pair is the triple of parabolics over a fixed Borel sub-
group in a finite group of Lie type and Lie rank 2. We will begin instead by stating
hypotheses better suited for applications in our work. Then we will that verify our
hypotheses lead to Hypothesis A of [DGS85].

Thus throughout this section, we will assume the following hypothesis:

Hypothesis F.1.1. G is a group, and L1, L2, S are subgroups of G; set G0 :=
〈L1, L2, S〉, and for i = 1 and 2, and j := 3− i assume:

(a) S is a finite 2-subgroup of NG(Li).
(b) Si := S ∩ Li ∈ Syl2(Li).
(c) Li/O2(Li) ∼= L2(2

ni), Sz(2ni), (S)U3(2
ni), or D10.

(d) Bj := NLj (Sj) ≤ NG(Li).
(e) O2(G0) = 1.
(f) F ∗(LiSBj) = O2(LiSBj).

Remark F.1.2. Notice by (c) we may write Bj = SjDj where Dj is a Cartan
subgroup of Lj ; that is, Dj is a Hall 2′-subgroup of Bj . Then in (f) we may write
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LiSBj = LiSDj , and to check condition (d), it suffices to verify Dj ≤ NG(Li) in
view of (a).

Lemma F.1.3. For i = 1 and 2, and j := 3− i:
(1) Bi is the unique maximal subgroup of Li containing Si, and Bi/O2(Li) is

a Borel subgroup of Li/O2(Li). In particular, O2(Bi) = Si.
(2) Bj = NLj (Li).
(3) Bj acts on Bi, and hence on Si.
(4) B := B1B2S = NLiSBj (Si) is solvable.
(5) We may choose Di and Dj so that Di normalizes Dj . Then B = SD1D2

with D1D2 an abelian Hall 2′-subgroup of B.
(6) L1B ∩ L2B = B.

Proof. By F.1.1.b, Si ∈ Syl2(Li). Then since the groups Li/O2(Li) listed
in F.1.1.c are groups of Lie type in characteristic 2 of Lie rank 1 (including D10

regarded as truncated version of Sz(2)), the statements in (1) follow.
If (2) fails then as Bj is maximal in Lj , Lj acts on Li, so O2(Li) E G0. But

by (f), O2(Li) 6= 1, so (e) supplies a contradiction. This establishes (2).
By (a) and (d) of F.1.1, SBj acts on Li, so SBj acts on SBj ∩Li and of course

Si = S ∩ Li ≤ SBj ∩ Li. By (2), SBj ∩ Li ≤ NLi(Lj) = Bi, so by (1), Bi is the
unique maximal subgroup of Li containing SBj ∩ Li. Thus Bj acts on Bi, so (3)
holds.

By (c), Bi is 2-closed and Di is abelian. Thus Bi is solvable and by (3), B2

acts on B1, so B1B2 is solvable. Finally S acts on Bi by (1) and hence on B1B2,
so B is a solvable group. By construction, B acts on Si, so as Bi = NLi(Si),
B = NLiB(Si) = NLiSBj (Si), completing the proof of (4).

Visibly B ≤ BL1 ∩ BL2 and by (1), B is maximal in L1B, while by (2),
BL1 ∩ BL2 is proper in BL1, so (6) holds.

By Hall’s TheoremD2 is contained in a Hall 2′-subgroupD of B, and asB1 E B,
D∩B1 = D1 is Hall in B1 and of courseD1 E D. SimilarlyD2 E D and as B/B1B2

is a 2-group, D = D1D2. As D2 E D and D2 is abelian, D2 centralizes [D1, D2].
But we may apply Coprime Action to the field automorphisms of Out(L1/O2(L1))
acting on D1: since for an odd prime p, p does not divide 2p − 1 which does divide
2pr−1—hence we conclude that [D1, D2] = 1. Thus D is abelian and (5) holds. ¤

For the remainder of the section, we continue from F.1.3 the abbreviation

B := B1B2S.

Definition F.1.4. A rank 2 amalgam of groups is a pair α := (α1, α2) of group
homomorphisms αi : G1,2 → Gi, i = 1, 2. A morphism φ : α → α′ of amalgams
is a triple φ = (φ1, φ1,2, φ2) of group homomorphisms φJ : GJ → G′J such that
αiφi = φ1,2α

′
i for i = 1, 2. As usual Aut(α) denotes the group of automorphisms

of α.

Remark F.1.5. See section 36 in [Asc94] for a discussion of amalgams. In
particular by Example 36.2 in [Asc94], if X1 and X2 are subgroups of a group
X , then the inclusion maps ιi : X1,2 := X1 ∩ X2 → Xi define a rank 2 amalgam
which we denote by (X1, X1,2, X2), and call a subgroup amalgam (see also Defini-
tion F.2.9). For example under Hypothesis F.1.1, α = (L1B,B,L2B) is a rank 2
subgroup amalgam.
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Definition F.1.6. A completion of an amalgam α is a group X together with
homomorphisms φJ : GJ → X , such that (G1φ1, G1,2φ1,2, G2φ2) is a subgroup
amalgam, φ := (φ1, φ1,2, φ2) is a morphism from α to this subgroup amalgam, and
X = 〈G1φ1, G2φ2〉. The completion is faithful if each φJ is injective.

By Lemma 36.4 in [Asc94], there is a universal completion of α (see also Defi-
nition F.2.2). For example under Hypothesis F.1.1, G0 together with the inclusion
maps is a faithful completion of the amalgam α = (L1B,B,L2B), so G0 is a ho-
momorphic image of the universal completion of the amalgam α. We often refer to
the group G0 as a “completion” of α, when there is no danger in suppressing the
associated mappings.

The notion of “amalgam” in Definition F.1.4 is more general than that used on
page 61 of [DGS85], since we do not assume condition (A3) in (2.0) of [DGS85]
that kerX1,2(X) = 1. Of course we do include that assumption in part (e) of
Hypothesis F.1.1. Parts (c), (e), and (f) of Hypothesis F.1.1 say that the amalgam
(L1B,B,L2B) resembles the amalgam of parabolics in a group of Lie type of Lie
rank 2. As we will see in F.1.9, they ensure that the amalgam is a weak BN-pair
of rank 2 in the sense of the following definition:

Definition F.1.7. A weak BN-pair of rank 2 is a triple α = (P1, B, P2) of
subgroups of a group X , such that X = 〈P1, P2〉, B = P1 ∩ P2, kerB(X) = 1, and
the triple satisfies Hypothesis A on page 94 in the Green Book [DGS85].

For us, the prime appearing in Hypothesis A will always be 2.

Remark F.1.8. Notice that the condition kerB(X) = 1 is included in the
remark following Hypothesis A on page 94 of [DGS85]—since this condition is
part of the definition of “amalgam” used in [DGS85].

Proposition F.1.9. α := (L1B,B,L2B) = (L1SD2, D1SD2, D1SL2) is a
weak BN-pair of rank 2. Further G0 is a completion of α.

Proof. Set Pi := LiB. By F.1.3.6, B = P1 ∩ P2. Suppose Y is a nontrivial
normal subgroup of G0 contained in B. Then Y E Pi, so O2(Y ) 6= 1 by part (f) of
Hypothesis F.1.1, contrary to part (e) of that Hypothesis. Thus kerB(G0) = 1, so
it remains to show that α satisfies Hypothesis A of the Green Book.

Set P ∗i := O2(Pi)Li; by (a) and (d) of F.1.1, P ∗i E Pi = LiSBj . By construc-
tion, O2(Pi) = O2(P

∗
i ) and Pi = P ∗i B, establishing condition (i) of Hypothesis A.

Condition (ii) is a restatement of F.1.1.f. Next by construction S∗i := O2(Pi)Si ∈
Syl2(P

∗
i ) with Si = S∗i ∩ Li, so

P ∗i ∩ B = O2(Pi)Li ∩ B = O2(Pi)(Li ∩B) = O2(Pi)Bi = NP∗i (Si) = NP∗i (S
∗
i )

by F.1.3.4, and

P ∗i /O2(P
∗
i ) = LiO2(Pi)/O2(Pi) ∼= Li/O2(Li),

so condition (iii) follows from F.1.1.c. This completes the verification of the re-
quirements from [DGS85]. ¤

As indicated in section 4 of [DGS85], Hypothesis A of [DGS85] is maintained
if the amalgam (P1, B, P2) is replaced by (P ∗1B0, B0, P

∗
2B0), where B0 := (P ∗1 ∩

B)(P ∗2 ∩B)O2(B). In our setup, this amounts to replacing B by B1B2O2(B) and S
by S∩B1B2O2(B). This minimal situation corresponds essentially to the amalgam
of parabolics in a simple group L̄ of Lie type of characteristic 2 and Lie rank 2.
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However Hypothesis A is also satisfied by amalgams of extensions of L̄ by outer
automorphisms. (For example, see the discussion of “Λ0” on page 99 of [DGS85],
involving autormphisms trivial on the Dynkin diagram of a rank-2 group). We
refer to such an amalgam as an extension of the amalgam of L̄. Hypothesis B of
[DGS85] imposes the constraint that B = B0. The following lemma gives some
sufficient conditions for Hypothesis B to be satisfied.

Lemma F.1.10. (1) If S = O2(LiS)(S ∩ Li) for i = 1 and 2, then S E SBi
for each i.

(2) Assume either

(a) S E SBi for i = 1 and 2, or
(b) S ≤ Lj for j = 1 or 2.

Then S = O2(B), and Hypothesis B of section 4 of the Green Book [DGS85] is
satisfied; that is, B = B1B2O2(B).

Proof. By definition B = B1B2S and Bi = NLi(Si). Suppose first that
S = O2(LiS)Si. Then as Bi acts on Si and Bi ≤ Li ≤ NG(O2(LiS)), Bi acts on
S, establishing (1).

Assume next that either S E SBi for i = 1 and 2, or S ≤ Lj for j = 1 or
2. In the first case, S is normal in B1B2S = B. In the second case, S = Sj E B
by F.1.3.4. Thus in either case S = O2(B), since S ∈ Syl2(B). Then as Bi ≤
Li ∩B, B = B1B2S = B1B2O2(B). Since P ∗i = O2(Pi)Bi, this verifies the form of
Hypothesis B stated in [DGS85]. Thus (2) also holds. ¤

Notation F.1.11. Given a power q of a prime p, q1+2w denotes a special p-
group of order q1+2w with center of order q.

The amalgams of weak BN-pairs are isomorphic as amalgams if and only if
the weak BN-pairs are “locally isomorphic” in the sense of [DGS85]. Define two
amalgams α and α′ to be parabolic isomorphic if there exist group isomorphisms
φJ : GJ → G′J for J = {1}, {2}, {1, 2}. In particular, isomorphic amalgams are
parabolic isomorphic, but the converse need not hold. Theorem A of [DGS85]
does not determine each weak BN-pair up to isomorphism of amalgams; rather in
several cases the amalgam is determined only up to a weaker equivalence relation
such as parabolic isomorphism. Fortunately all but two of the cases left open by
Theorem A of [DGS85] and relevant to us (cases (10) and (11) below) are shown
to be unique up to isomorphism of amalgams in [Gol80] and [Fan86]. Collecting
these results we obtain:

Proposition F.1.12. Assume S E SBj for j = 1 or 2, and G0 is quasithin.
Let α := (L1B,B,L2B). Then

(I) One of the following holds, where we choose notation so that [L1, Z(S)] = 1
whenever Z(S) centralizes L1 or L2:

(1) α is the L3(q)-amalgam and either L1 and L2 are L2(q)-blocks, or q = 2
and L1

∼= L2
∼= S4.

(2) α is the Sp4(q)-amalgam and either L1 and L2 are L2(q)-blocks, or q = 2
and L1S ∼= L2S ∼= Z2 × S4.

(3) α is the G2(q)-amalgam, Li/O2(Li) ∼= L2(q), i = 1, 2, O2(L1S) ∼= q1+4,
and |O2(L2S)| = q5.
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(4) α is the 3D4(q)-amalgam, L1/O2(L1) ∼= L2(q
3), O2(L1) ∼= q1+8, L2/O2(L2)

∼= L2(q), and |O2(L2)| = q11.
(5) α is the 2F4(q)-amalgam, L1/O2(L1) ∼= Sz(q), |O2(L1)| = q10, L2/O2(L2) ∼=

L2(q), and |O2(L2)| = q11.
(6) α is the U4(q)-amalgam or its extension of degree 2, L1/O2(L1) ∼= L2(q),

O2(L1) ∼= q1+4, and L2 is an Ω−4 (q)-block.
(7) α is the U5(4)-amalgam, L1/O2(L1) ∼= SU3(4), O2(L1) ∼= 41+6, L2/O2(L2)

∼= L2(16), and |O2(L2)| = 216.
(8) α is the G2(2)

′-amalgam, Li/O2(Li) ∼= L2(2), O2(L1S) ∼= Z4 ∗ Q8, and
O2(L2S) ∼= Z2

4.
(9) α is the 2F4(2)

′-amalgam, L1/O2(L1) ∼= D10, |O2(L1)| = 210, L2/O2(L2) ∼=
L2(2), and |O2(L2)| = 210.

(10) α is parabolic-isomorphic to the J2-amalgam, L1/O2(L1) ∼= L2(4), O2(L1)
∼= Q8D8, L2/O2(L2) ∼= L2(2), and |O2(L2)| = 26.

(11) α is parabolic-isomorphic to the Aut(J2)-amalgam, L1S/O2(L1S) ∼= S5,
O2(L1) ∼= Q8D8, L2/O2(L2) ∼= S3, and |O2(L2)| = 26.

(12) α is the M12-amalgam, L1/O2(L2) ∼= L2(2), O2(L2) ∼= Q2
8, L2/O2(L2) ∼=

L2(2), and |O2(L2)| = 25.
(13) α is the Aut(M12)-amalgam, L1/O2(L1) ∼= L2(2), O2(L1) ∼= Z4 ∗ Q2

8,
L2/O2(L2) ∼= L2(2), and |O2(L2)| = 26.

(II) Either

(i) Li = L∞i and S ≤ Li for i = 1 and 2, or
(ii) α is the amalgam of L3(2), Sp4(2), G2(2),

3D4(2),
2F4(2), U4(2), G2(2)

′,
J2, Aut(J2), M12, Aut(M12), or the extension of the U4(q)-amalgam of degree 2.

Proof. By F.1.9, α is a weak BN-pair of rank 2. Then Theorem A in the Green
Book [DGS85] says that α resembles the amalgam of the extension of a simple
group L̄. Work of Fan [Fan86] and Goldschmidt [Gol80] shows that the weaker
conclusions in the cases where L̄ is G2(2)

′, M12, or
2F4(2)

′ in (b) and (c) of that
result, can be improved to an isomorphism of amalgams. Thus in our terminology,
the three papers say that either α is parabolic isomorphic to the amalgam of J2 or
Aut(J2), or α is isomorphic to an extension of the amalgam of L̄, where one of the
following holds: L̄ is listed in (1)–(6); as in (7), L̄ is U5(q), but possibly with q 6= 4;
L̄ is G2(2)

′, M12, or
2F4(2)

′, and in particular is listed in (8)–(13).
Notice that in cases (8)–(13), L̄ is G2(2)

′, 2F4(2)
′, J2 orM12, and the amalgams

of Aut(L̄) = G2(2),
2F4(2), Aut(J2), and Aut(M12) are contained in (3), (5), (11),

and (13) of our list. Indeed in (8)–(13) we check that all assertions in (I) hold, as
does alternative (ii) of (II).

Thus we may assume that we are in one of the first seven cases; in particular α
is an extension of a Lie amalgam (that is, the amalgam of a simple group L̄ of Lie
type) by a 2-group, since B = B1B2S so that B/B1B2 is a 2-group. We will show
next that Hypothesis B of the Green Book is satisfied; then we will show that α is
actually a Lie amalgam or an extension of the U4(q)-amalgam of degree 2.

Let Ĝ be the universal completion of α. Then by Theorem A in [DGS85],

there is a quotient Ḡ of Ĝ which is an extension of a rank 2 group L̄ = F ∗(Ḡ) of
Lie type by a 2-group of outer automorphisms. There are isomorphic copies of LiB
in Ḡ, which we denote by L̄iB̄. We may also assume in cases (1)–(6) that q > 2,
since if q = 2 then L̄ is the subgroup of Aut(L̄) trivial on the Dynkin diagram, so
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the amalgam of L̄ has no proper extensions, and hence α is that amalgam; indeed
one of cases (1)–(6) of (I) holds, as well as alternative (ii) of (II).

Assume first that Ḡ does not contain L ∼= U4(q) extended by an involutory outer
automorphism, and that α is not an extension of the U5(2)-amalgam. Because of
these hypotheses and our reduction to the case q > 2 in (1)–(6) in the previous
paragraph, Li = L∞i and O2(L̄iS̄) = O2(L̄i) for i = 1 and 2, Hence O2(LiS) =
O2(Li). By hypothesis S E SBj for some j; thus S induces inner automorphisms
on Lj/O2(Lj), so S = O2(LjS)Sj = O2(Lj)Sj = Sj . Thus S ≤ Lj , and hence B =
B1B2O2(B) by F.1.10.2, so that B̄ ≤ 〈L̄1, L̄2〉 ≤ L̄. Then Ḡ = 〈L̄1B̄, L̄2B̄〉 = L̄,
so that α is a Lie amalgam. This implies in turn that S̄ ≤ L̄i for i = 1 and 2,
so S ≤ Li and hence alternative (i) of (II) holds. If α is of type U5(q) for q > 2,
then (7) holds when q = 4, so it remains to eliminate the case q > 4. For the other
types, one of cases (1)–(6) of (I) holds.

Suppose next that Ḡ does contain the extension of L̄ ∼= U4(q) by an involutory
outer automorphism. Here O2(B̄) = S̄1〈σ〉, where σ induces a graph automor-
phism on L̄ (in the convention of Notation 16.1.3), and a field automorphism on
L̄2/O2(L̄2). Thus case (6) of (I) holds, and this extension is explicitly allowed in
alternative (ii) of (II).

It remains to eliminate the cases where α is an extension of the U5(2)-amalgam,
or is the U5(q)-amalgam for q > 4. But (as we saw in the proof of Theorem B (A.2.2)
) when q 6= 4 there is an odd prime divisor p of q + 1 such that mp(L1B) = 3,
contradicting our hypothesis that G is quasithin. Thus the deduction of F.1.12 is
complete. ¤

F.2. Amalgams, equivalences, and automorphisms

In the Generic Case of the proof of the Main Theorem (and in several other
places), we will produce a weak BN-pair of rank 2 in our group G. Then we apply
Theorem A of the Green Book [DGS85], via appeals to section F.1, to identify the
corresponding amalgam (G1, G1,2, G2) as isomorphic to the amalgam of parabolics
over a fixed Sylow 2-subgroup of some group of Lie type of rank 2 and characteristic
2. However it then remains to identify G0 := 〈G1, G2〉 and G; in the next few
sections we develop some machinery to help implement that identification.

In this section we begin by reviewing some notions from the literature on amal-
gams of groups; then we put in place some formalism not in the literature, but
which proceeds along familar lines. This provides a language suitable for discussing
completions, equivalences, and automorphisms of amalgams. These concepts and
results in turn will allow us (in section F.4) to describe effective sufficient conditions
to ensure that a “small” completion G0 of an amalgam α defined by a group Ḡ of
Lie type is isomorphic to Ḡ. The literature contains some geometric results of this
nature, but our principal result Theorem F.4.31 has natural local-group-theoretic
hypotheses.

In most of our work, we will be dealing with the rank-2 amalgams from Defi-
nitions F.1.4, but in this section we work in a more general setting:

Definition F.2.1. Let D be a poset with partial ordering ≤. The reader is
referred to Definition 28.1 in [GLS96] for the definitions of an amalgam α based
on D, morphisms of amalgams, Aut(α), and completions of amalgams.
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Notice Definition F.1.4 constitutes the special case of Definition F.2.1 where D
is the the poset of nonempty subsets of {1, 2} ordered by inclusion, and in F.1.6
the maps X1,2 → Xi, i = 1, 2, defining α are injective.

Definition F.2.2. Let ξ : α → gp(α) be the universal completion of α (see
28.2 in [GLS96]). By the universal property of this completion, if µ : α→ G is any
completion of α, then there exists a unique group homomorphism µ̂ : gp(α) → G
such that

µ̂ ◦ ξ = µ;

Here ξ = (ξd : Xd → gp(α) : d ∈ D) and µ = µ̂ ◦ ξ = (µ̂ ◦ ξd : d ∈ D); we may write
µd for µ̂ ◦ ξd.

We begin with the formal notions of equivalence and quasiequivalence common
to all representation theories. Then eventually we prove in section F.4 that there
is a unique quasiequivalence class of “small” completions. Indeed in in most cases
all such completions appear to be equivalent.

In section 3 of [Asc86a] and section 1 of [Asc94], a representation of a group G
on an object X in a category C is defined to be a homomorphism of G into Aut(X).
Here our “representations” are representations of amalgams, not groups: that is,
they are the completions of the amalgam. An amalgam is a family of groups, and
a completion is family of homomorphisms, so we are dealing here with a “higher
dimensional” representation theory; but the notions in section 3 of [Asc86a] and
section 1 of [Asc94] are formal and adapt without change to this setting.

Automorphisms of amalgams α and their completions are important in the
proof of our Main Theorem in at least two ways: First, in the Generic Case, the
Fundamental Setup provides subgroups Mi which may be proper extensions of the
parabolics subgroups in a group of Lie type. Second, in Theorem F.4.8, we treat
the cases where α is the amalgam of G2(2)

′ or 2F4(2)
′, groups which are of index 2

in groups of Lie type, but are not themselves of Lie type. Using the results in this
section, we can show that the automorphisms induced on α in the automorphism
group of a group of Lie type must extend to the “small” completions of α; then we
use this fact to identify those completions.

We first define the relevant notion of equivalence:

Definition F.2.3. For a fixed amalgam α, an equivalence of completions µ :
α→ G and η : α→ H is an isomorphism ϕ : G→ H such that ϕ ◦ µ = η.

Lemma F.2.4. Let µ : α→ G and η : α→ H be completions of α. Then
(1) An isomorphism ϕ : G→ H is an equivalence of µ with η iff ϕ ◦ µ̂ = η̂.
(2) µ is equivalent to η iff ker(µ̂) = ker(η̂).

Proof. For the most part this is formal, so we omit proofs. We do however
indicate how to construct the isomorphism ϕ for the converse in (2): Namely assume
K := ker(µ̂) = ker(η̂). We have induced isomorphisms µ̇ : gp(α)/K → G and η̇ :
gp(α)/K → H , and the canonical surjection p : gp(α)→ gp(α)/K. Set ϕ := η̇◦µ̇−1.
Then µ̇ ◦ p ◦ ξ = µ and η̇ ◦ p ◦ ξ = η, so ϕ ◦ µ = η. ¤

Next (as in the “1-dimensional case” for a single group in section 1 of [Asc94])
associated to each a ∈ Aut(α) is a permutation π(a) of the set of completions µ of
α, defined by
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Definition F.2.5.

π(a)(µ) = µ ◦ a−1 for a ∈ Aut(α).

Notice in particular if µ : α → G, then the completion π(a)(µ) : α → G
possesses the same completion group G. Further π affords a permutation represen-
tation of Aut(α) on the set of completions of α, and π(a) permutes the equivalence
classes of completions, so π induces a permutation representation of Aut(α) on the
set of equivalence classes of completions of α.

The action of Aut(α) leads in a standard way to the weaker notion of quasiequiv-
alence:

Definition F.2.6. Given (possibly distinct) amalgams α, γ, define comple-
tions µ : α → G and η : γ → H to be quasiequivalent (via ϕ, ψ) if there exist
isomorphisms ϕ : G→ H and ψ : α→ γ such that ϕ ◦ µ = η ◦ ψ.

In the case α = γ considered above, the isomorphism ψ is in fact an auto-
morphism of α, and µ is quasiequivalent to π(ψ)(µ) via 1, ψ. Conversely if µ is
quasiequivalent to η via ϕ, ψ, then η = ϕ ◦ (µ ◦ ψ−1), so that η is equivalent to
π(ψ)(µ). It follows that the quasiequivalence classes of completions of α are pre-
cisely the orbits of π(Aut(α)) on the classes under equivalence of completions of
α.

We observe next that Aut(α) lifts to a group of automorphisms of the universal
completion group gp(α). Notice that ξ ◦ a : α→ gp(α) is a completion, so:

Remark F.2.7. There exists a unique homomorphism π̂(a) := ξ̂ ◦ a : gp(α)→
gp(α) satisfying

ξ ◦ a = π̂(a) ◦ ξ.

Further π̂ preserves multiplication in Aut(α), and π̂(a−1) is an inverse for π̂(a), so
the map π̂ : Aut(α)→ Aut(gp(α)) is a representation of Aut(α) on gp(α).

The properties in the next lemma follow in a largely formal way from the
definitions; see for example Lemma 1.1 in [Asc94]. Let µ : α→ G be a completion
of α. Part (4) of lemma F.2.8 tells us that elements of the stabilizer Aut(α)µ lift to
elements of Aut(G); and part (5) shows that if µ is faithful, then this lift induces
an isomorphism of Aut(α)µ with the stablizer in Aut(G) of µ(α).

Lemma F.2.8. Let µ : α → G be a completion, a ∈ Aut(α), and A := gp(α).
Then

(1) π̂(a)(µ) = µ̂ ◦ π̂(a−1).

(2) ker(π̂(a)(µ)) = π̂(a)(ker(µ̂)).
(3) π(a)(µ) is equivalent to µ iff π̂(a) normalizes ker(µ̂).
(4) Assume π(a)(µ) is equivalent to µ. Set A+ := A/ ker(µ̂). Define µ+ :

A+ → G by µ+(g+) := µ̂(g), where g ∈ A and g+ := g ker(µ̂) is its image under
the canonical surjection on A+. Then

(i) a induces an automorphism a+ on A+ defined by a+ : g+ 7→ [π̂(a)(g)]+.
(ii) For x ∈ Xd, a

+(ξ(x)+) = ξ(a(x))+.
(iii) a induces an automorphism a− on G defined by a− := µ+◦a+◦(µ+)−1.
(iv) For x ∈ Xd, a

−(µ(x)) = µ(a(x)).
(v) Let Aut(α)µ be the stabilizer in Aut(α) of the equivalence class of

µ. Then π− : Aut(α)µ → Aut(G) is a representation of Aut(α)µ on G, where
π−(a) := a−.
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(5) Assume µ is faithful, and set

B := NAut(G)(µ(α)) :=
⋂

d∈D

NAut(G)(µd(Xd)).

For b ∈ B, define σd(b) : Xd → Xd by σd(b) := µ−1d ◦ b ◦ µd. Then

σ(b) := (σd(b) : d ∈ D) ∈ Aut(α),

and σ : B → Aut(α) is a representation of B on α, such that π(σ(b))(µ) is
equivalent to µ for each b ∈ B. Indeed π− and σ are inverse mappings, so that
σ(B) = Aut(α)µ.

Proof. From the definitions of µ̂, π̂(a), and π(a) we see

µ̂ ◦ π̂(a) ◦ ξ = µ̂ ◦ ξ ◦ a = µ ◦ a = π(a−1)(µ),

so that ̂π(a−1)(µ) = µ̂◦ π̂(a), and hence (1) holds. Then (1) implies (2). By F.2.4.2,

µ is equivalent to π(a)(µ) iff ker(µ̂) = ker(π̂(a)(µ)), so (2) implies (3).
Assume π(a)(µ) is equivalent to µ, and let K := ker(µ̂) and p : A → A+ the

canonical surjection. Thus µ̂ = µ+ ◦ p. By (3), π̂(a) acts on K, and hence induces
the automorphism a+ on A/K = A+ via

a+ ◦ p = p ◦ π̂(a),

establishing conclusion (i) of (4). As ξ ◦ a = π̂(a) ◦ ξ, for x ∈ Xd, π̂(a)(ξ(x)) =
ξ(a(x)); then applying p and the definition of a+ establishes (ii). Part (iii) is
immediate from (i). We saw µ+ ◦ p = µ̂, so µ+ ◦ p ◦ ξ = µ̂ ◦ ξ = µ. By (ii),
a+ ◦ p ◦ ξ = p ◦ ξ ◦ a, so

a− ◦ µ = µ+ ◦ a+ ◦ (µ+)−1 ◦ µ = µ+ ◦ a+ ◦ p ◦ ξ = µ+ ◦ p ◦ ξ ◦ a = µ ◦ a,

proving (iv). Part (v) is an easy consequence of (iii), as we vary over all a satisying
the hypothesis of part (4).

Assume the hypotheses and notation of (5). As µ is faithful, µd : Xd → G
is injective for each d ∈ D, and by hypothesis, b induces an automorphism of
µ(Xd) := µd(Xd), so σd(b) ∈ Aut(Xd). As µ is a completion, for d ≤ e ∈ D we
have µd(Xd) ≤ µe(Xe), so as these subgroups are normalized by b, it follows that
σ(b) ∈ Aut(α). Visibly σ preserves composition, and hence affords a representation
of B on α. Further

b ◦ µ̂ ◦ ξ = b ◦ µ = µ ◦ µ−1 ◦ b ◦ µ = µ ◦ σ(b) = π(σ(b−1))(µ),

so θ̂ = b ◦ µ̂, where θ := π(σ(b−1))(µ). Therefore as ker(µ̂) = ker(b ◦ µ̂) since b
is an automorphism, it follows from (2) and (3) that π(σ(b−1)(µ) is equivalent to
µ. Thus σ(b−1) ∈ Aut(α)µ. Further as µ is faithful, so is π−. The remaining
statements in (5) follow. ¤

Recall from Definition 28.1 in [GLS96]:

Definition F.2.9. Given a group Y , a Y -amalgam (based onD) is an amalgam
γ = (Yd : d ∈ D) of subgroups Yd of Y such that Y = 〈Yd : d ∈ D〉, and for d ≤ e
in D, Yd ≤ Ye and the morphism Yd → Ye is inclusion.

Of course the inclusions ηd : Yd → Y define a faithful completion η of γ. This
terminology allows us to emphasize the group Y in the completion η : γ → Y ,
without specifying the map η.
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Lemma F.2.10. Assume

(a) D has a least member e.
(b) γ is a Y -amalgam on D for some group Y .
(c) α is an X-amalgam on D where X ≤ Y , with Xd E Yd for each d ∈ D.

Then

(1) Define the conjugation map c : Ye → Aut(α) by c(y)(x) := yx = yxy−1 for
y ∈ Ye and x ∈ Xd. Then c affords a representation of Ye on α.

(2) ker(c) =
⋂
d∈D CYe(Xd).

(3) π̂(c(x)) = c′(ξ(x)) for each x ∈ Xe, where c
′ : gp(α) → Aut(gp(α)) is the

corresponding conjugation map.
(4) π̂(c(Xe)) stabilizes the equivalence class of each completion µ : α → G of

α.
(5) Define π− : Aut(α)µ → Aut(G) as in F.2.8.4.v, and assume µ is faithful.

Then π−(c(x)) = c−(µ(x)) for each x ∈ Xe, where c− : G → Aut(G) is the
conjugation map.

Proof. As e is the least element in D by (a), we have Ye ≤ Yd for all d ∈ D.
Thus Ye ≤ Yd ≤ NY (Xd) by (c), so c(y) restricts to an automorphism of α, and then
the conjugation map c affords a representation of Ye on α. Thus (1) is established,
and then (2) is straightforward. Next for y ∈ Xd and x ∈ Xe, c(x)(y) =

xy = xyx−1

and

(c′(ξ(x)) ◦ ξ)(y) = ξ(x)ξ(y) = ξ(xy) = (ξ ◦ c(x))(y);

since y ∈ Xd and d are arbitrary, we conclude c′(ξ(x)) ◦ ξ = ξ ◦ c(x) = π̂(c(x)) ◦ ξ,
and hence (3) holds. Now c′(ξ(Xe)) induces inner automorphisms of gp(α), and
hence by (3), π̂(c(Xe)) preserves the normal subgroup ker(µ̂), so that (4) follows
from F.2.8.3.

Assume the hypotheses and notation of (5), and adopt the notation of F.2.8.4.
By (4), for x ∈ Xe, c(x) ∈ Aut(α)µ, so c(x) satisfies the hypothesis of F.2.8.4 in
the role of “a”. Then

[c−(µ(x)) ◦ µ](y) = µ(x)µ(y) = µ(xy) = (µ ◦ c(x))(y),

so again as y ∈ Xd and d are arbitrary, we conclude c−(µ(x)) ◦ µ = µ ◦ c(x). By
F.2.8.4.iv, µ ◦ c(x) = c(x)− ◦ µ = π−(c(x)) ◦ µ, so c−(µ(x)) ◦ µ = π−(c(x)) ◦ µ.
Therefore (5) holds as µ is faithful by hypothesis. ¤

We remark that condition (f) in F.2.11 below can be expected to hold for the
extensions of Lie amalgams which we will study in section F.4.

Lemma F.2.11. Assume hypotheses (a), (b), and (c) of F.2.10, and in addition
assume:

(d) µ : α → G is a faithful completion of α, such that c(Ye) stabilizes the
equivalence class of µ.

(e)
⋂
d∈D CYe(Xd) = 1.

(f) Yd = YeXd and Ye ∩Xd = Xe, for each d ∈ D.

Then

(1) η : γ → G0 is a faithful completion of γ, where η(yx) := π−(c(y))◦c−(µ(x))
for y ∈ Ye and x ∈ Xd, and G0 := Inn(G)π−(c(Ye)) ≤ Aut(G).

(2) η|α = c− ◦ µ.
(3) η|α : α→ Inn(G) is a faithful completion.
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(4) If Z(G) = 1, then η|α is equivalent to µ.

Proof. By (d), c(Ye) ≤ Aut(α)µ, so π
− is defined on c(Ye) as in F.2.8.4.v.

Let y, y1 ∈ Ye and x, x1 ∈ Xd. Then

π−(c(y)) ◦ c−(µ(x)) = π−(c(y1)) ◦ c
−(µ(x1)) iff π−(c(y−11 y)) = c−(µ(x1x

−1)).

But if yx = y1x1, then y
−1
1 y = x1x

−1 ∈ Ye∩Xd = Xe using (f); then using F.2.10.5,

π−(c(y−11 y)) = c−(µ(y−11 y)) = c−(µ(xx−11 )), as required. That is, η is well-defined
on Yd = YeXd using (f).

By definition, η(x) = c−(µ(x)) = (c− ◦ µ)(x), so (2) holds. Thus η(Xd) =
c−(µ(Xd)) ≤ Inn(G). As G = 〈µ(Xd) : d ∈ D〉,

Inn(G) = 〈c−(µ(Xd)) : d ∈ D〉 = 〈η(Xd) : d ∈ D〉,

so using (f),

〈η(Yd) : d ∈ D〉 = 〈η(Xd), η(Ye) : d ∈ D〉 = Inn(G)π−(c(Ye)).

Thus η : γ → G0 and η|α : α→ Inn(G) are completions.

Suppose xy ∈ ker(η). Then π−(c(y)) = c−(µ(x−1)), so for each d ∈ D and each

z ∈ Xd, π
−(c(y))(µ(z)) = µ(x−1)(µ(z)) = µ(zx). Thus using F.2.8.4.iv,

µ(zx) = π−(c(y))(µ(z)) = c(y)−(µ(z)) = µ(c(y)(z)) = µ(yz)

Therefore as µ is faithful, x
−1

z = zx = yz, and hence xy = 1 by (e). Thus η is
faithful, completing the proofs of (1) and (3). If Z(G) = 1, then c− : G→ Inn(G)
is an isomorphism. Now by (2), η|α = c−◦µ, which has the same kernel as µ as both
are faithful by (d) and (3), so the completions are equivalent by F.2.4.2, proving
(4). ¤

F.3. Paths in rank-2 amalgams

In this short section, we review some standard facts about paths in the coset
graph of a completion of a rank-2 amalgam. This material will be used to recognize
generalized polygons in the following section F.4.

So in this section G is a group, G1 and G2 are finite subgroups of G, G1,2 :=
G1 ∩G2, and G = 〈G1, G2〉. Thus, in the language of Definitions F.2.1, F.1.4, and
F.1.6, α := (G1, G1,2, G2) is a rank-2 G-amalgam, and the inclusion α → G is a
faithful completion of α.

Definition F.3.1. Let F := {G1, G2}, and form the coset complex Γ :=
Γ(G,F) as in section 4 of [Asc94].

Thus Γ is a rank-2 geometry. Set Γi := G0/Gi for i = 1, 2; we call Γ1 the set
of points of the geometry Γ, and Γ2 the set of lines of Γ. Write x for G1 regarded
as a point and l for G2 regarded as a line. Thus the points and lines are the orbits
under G of x and l, and G1 = Gx and G2 = Gl are the stabilizers in G of x and
l, respectively. More generally for y ∈ Γ, Gy denotes the stabilizer in G of y, and
Qy := O2(Gy). Write Γi(y) for the set of objects at distance i from y in the graph
Γ, and abbreviate Γ1(y) by Γ(y). As G = 〈G1, G2〉, Γ is connected.

As in Definition F.2.2, let ξ : α → gp(α) be the universal completion of α.

Write Ĝ for gp(α), and let ĜJ := ξ(GJ ). Let Γ̂ be the geometry of Ĝ, x̂ := Ĝ1,

etc. Let θ : Ĝ → G be the map ι̂ induced by the completion ι : α → G as

in Definition F.2.2. Then θ induces a map θ : Γ̂ → Γ of coset geometries via



270 F. WEAK BN-PAIRS AND AMALGAMS

θ(Ĝig) := Giθ(g), or equivalently θ(ûg) := uθ(g) for u := x, l. Both maps θ
are coverings in the appropriate category; that is the maps are surjective local
isomorphisms. For example θ : Γ̂→ Γ induces an isomorphism of Γ̂(û) with Γ(u).

Definition F.3.2. For u ∈ Γ, let P (u) be the set of paths in Γ with origin u;
here a path is a finite sequence of vertices in which consecutive vertices are adjacent,
but which might contain circuits. A path x0 · · ·xn is said to be without backtracks
if it contains no circuits of length 2: that is, for each 0 ≤ i ≤ n − 2, xi 6= xi+2.
Write Π(u) for the paths in P (u) without backtracks, let Pn(u) be the paths in
P (u) of length n, and Πn(u) := Pn(u) ∩ Π(u).

We recall the standard way in which such paths in Γ are covered by paths in
Γ̂:

Lemma F.3.3. Let u ∈ Γ, and choose some corresponding basepoint û ∈ θ−1(u).
Then

(1) θ induces a bijection ϕ : P (û) → P (u) via ϕ(x0 · · ·xn) := θ(x0) · · · θ(xn).
The bijection ϕ restricts to bijections ϕ : Pn(û) → Pn(u), ϕ : Π(û) → Π(u), and
ϕ : Πn(û)→ Πn(u).

(2) ϕ and θ define a quasiequivalence of the permutation representations of Ĝû
on P (û) and Gu on P (u).

(3) For p ∈ P (û), θ(Ĝp) = Gϕ(p) and θ : Ĝp → Gϕ(p) is an isomorphism.

(4) If Ĝu is transitive on Πn(û), then Gu is transitive on Πn(u).

Proof. The assertions of (1) for paths are straightforward; they follow from

the fact that θ : Γ̂ → Γ is a local isomorphism. In particular any backtrack in Γ
occurs in some Γ(xi), so the restriction to paths without backtracks is also bijective.

Part (2) follows from (1), using the facts that θ(vg) = θ(v)θ(g) for v ∈ Γ̂ and g ∈ Ĝ,

and that θ : Ĝ→ G is a local isomorphism. Then (1) and (2) imply (3) and (4). ¤

Now let β : α → Ġ be any faithful completion of α, with θ̇ := β̂ : Ĝ → Ġ and
θ̇ : Γ̂ → Γ̇ the corresponding coverings. Set ĠJ = β(GJ ). Notice that β = θ̇ ◦ θ−1

as a map of amalgams, since the completion ι : α → G is inclusion. Using this
fact together with F.3.3, we can establish some relations among paths and their
stabilizers for G and Ġ:

Lemma F.3.4. Let u := x or l, and ϕ : P (û) → P (u) and ϕ̇ : P (û)→ P (u̇) be
the maps defined as in F.3.3. Set ψ := ϕ̇ ◦ ϕ−1 : P (u)→ P (u̇). Then

(1) ψ and β : Gu → Ġu̇ define a quasiequivalence of the actions of Gu on P (u)

and Ġu̇ on P (u̇).

(2) For p ∈ P (u), β(Gp) = Ġψ(p) and β : Gp → Gψ(p) is an isomorphism.

(3) If Gu is transitive on Πn(u), then Ġu̇ is transitive on Πn(u̇).

Proof. Lemma F.3.4 follows from F.3.3, recalling that β = θ̇ ◦θ−1 : Gu → Ġu̇
is an isomorphism. ¤

Recall that a geodesic between points u, v ∈ Γ is a path of minimal length. The
next lemma characterizing thick generalized polygons in terms of path-transitivity
and uniqueness of geodesics is well known (e.g., Proposition 1.1 in [Wei90]), but we
include a proof here for completeness. Recall a generalized m-gon is a connected
bipartite graph of diameter m in which the minimal length of a cycle is 2m and
each vertex has valence at least 2.
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Lemma F.3.5. Assume |Γ(x)| > 2 < |Γ(l)|, and m is a positive integer such
that Gu is transitive on Πm+1(u). Pick p := x0 · · ·xm+1 ∈ Πm+1(u). Then

(1) For each i ≤ m, xi ∈ Γi(u). Thus Πi(u) consists of geodesics from u to
members of Γi(u) and Gu is transitive on Γi(u).

(2) For each i < m, x0 · · ·xi is the unique geodesic from u to xi. Thus there is
a bijection between paths in Πi(u) and their endpoints in Γi(u).

(3) Either
(i) For each p ∈ Πm+1(u), xm+1 ∈ Γm+1(u) and x0 · · ·xm is the unique

geodesic from u to xm, or
(ii) Γ is a generalized m-gon, Γ(xm) ⊆ Γm−1(u), each member of Γ(xm)

is on a unique geodesic from u to xm, and Gu,xm is 2-transitive on Γ(xm) as well
as on the geodesics from u to xm.

(4) If Gp fixes no member of Γ(xm+1)− {xm}, then xm+1 ∈ Γm+1(u).

Proof. Since |Γ(v)| ≥ 2 for any vertex v by hypothesis, any path without
backtracks can be extended to a longer path without backtracks; thus our hy-
pothesis that Gu is transitive on Πm+1(u) implies transitivity of Gu on Πn(u) for
n ≤ m+ 1. Hence the assertion of transitivity in (1) will follow from the assertion
preceding it.

Pick 0 ≤ n ≤ m+1 maximal subject to xn ∈ Γn(u). As p has no backtracks and
m ≥ 1, n > 1. By definition of n, x0 · · ·xj is a geodesic from u to xj for each j ≤ n.
Suppose there is i < n with y0 · · · yi a second geodesic from u to xi, and choose i
minimal subject to this constraint. Then i > 1 and q := x0 · · ·xiyi−1 ∈ Πi+1(u),
since yi−1 6= xi−1 by minimality of i. This is impossible as i + 1 ≤ n ≤ m + 1, so
x0 · · ·xi+1 is conjugate to q under Gu by hypothesis, whereas xi+1 ∈ Γi+1(u) while
yi−1 ∈ Γi−1(u). This contradiction shows that for each i < n, x0 · · ·xi is the unique
geodesic from u to xi. Thus if n ≥ m then (1) and (2) hold, and if n = m+1, then
conclusion (i) of (3) holds. Thus in the remainder of the proof of (1)–(3), we may
assume that n ≤ m.

Therefore xn+1 ∈ Γn−1(u). For i ≤ m, Gx0,···xi is transitive on Γ(xi)− {xi−1}
again by hypothesis, so as n ≤ m and xn+1 ∈ Γn−1(u), it follows that Γ(xn) ⊆
Γn−1(u). Similarly as xn ∈ Γn(u), Γ(xn−1) − {xn−2} ⊆ Γn(u). Moreover Gu is
transitive on Γn−1(u), so xn+1 is conjugate to xn−1 under Gu. Thus as n > 1, by the
previous paragraph there is a unique v ∈ Γ(xn+1) ∩ Γn−2(u) and Γ(xn+1)− {v} ⊆
Γn(u). By hypothesis |Γ(x)| > 2 < |Γ(l)|, so there exists w ∈ Γ(xn+1) − {xn, v}.
Thus r := x0 · · ·xnxn+1v and s := x0 · · ·xnxn+1w are in Πn+2(u). But if n < m,
then n+2 ≤ m+1, so r and s are conjugate under Gu, impossible as v ∈ Γn−2(u)
while w ∈ Γn(u).

Therefore n = m, and hence (1) and (2) hold by an earlier observation. As
Gu is transitive on Γm(u) and Γ(xm) ⊆ Γm−1(u), it follows that Γ is of diameter
m. By (2) there is a unique geodesic from u to y for each y ∈ Γm−1(u), so there
is a unique geodesic from u to xm through each member of Γ(xm). Hence a the
minimal length of a cycle is 2m, so Γ is a generalized m-gon.

We saw that Gx0···xm is transitive on Γ(xm) − {xm−1}. By hypothesis, Gu is
transitive on Πm(u), so Gt is transitive on Γ(xm)− {xm+1}, where t is the unique
geodesic from u to xm through xm+1. Thus Gu,xm is 2-transitive on Γ(xm), and
hence also on the corresponding geodesics from u to xm. So conclusion (ii) of (3)
holds, completing the proof of (3).
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Finally suppose Gp fixes no member of Γ(xm+1) − {xm}. Then it is not the
case that xm+1 ∈ Γm−1(u) and there is a unique geodesic from u to xm+1, since
in that event Gp would fix the unique member of Γ(xm+1) ∩ Γm−2(u). Therefore
conclusion (ii) of (3) does not hold, so conclusion (i) holds, establishing (4). ¤

We close the section with two lemmas showing how the existence of suitable
involutions in the subgroupsGi affords a construction of 2m-gon subgeometries of Γ.
The first will be applied when α is the amalgam of a group of Lie type. The second
and more complicated construction is required when α is the amalgam of G2(2)

′,
where the automizer in G of an apartment in the geometry of a “small” completion
G is D6—rather than D12, as is the case for the amalgam of the G2(2)-extension
of α.

Lemma F.3.6. Let m > 1 be an integer, and assume for each u ∈ Γ and
v ∈ Γm−1(u) that there is a unique geodesic from u to v. Assume n ≤ m is an
integer, and s ∈ G1 − G1,2 and t ∈ G2 − G1,2 are involutions with (st)n ∈ G1,2.

Then n = m, Σ := x〈s,t〉 ∪ l〈s,t〉 is a 2m-gon in Γ, and 〈s, t〉/〈(st)m〉 acts faithfully
as the group of automorphisms D2m of Σ.

Proof. Let W := 〈s, t〉 and Σ := xW ∪ lW , regarded as a subgraph of Γ. Let
K := 〈st〉 ∩G1,2 and W̄ :=W/K. Then K is the kernel of the action of 〈st〉 on Σ,
and N := |〈st〉 : K| divides n. As W̄ ∼= D2N , ∆ := Γ(W̄ , {〈s̄〉, 〈t̄〉}) is a 2N -gon.
Define φ : ∆ → Σ by φ(〈s̄〉w̄) := xw and φ(〈t̄〉w̄) := lw. As s ∈ G1 and t ∈ G2, φ
is well-defined. As x and l are adjacent in Γ, φ is a morphism of geometries. As
s /∈ G2 and t /∈ G1, if y0y1y2 is a geodesic in ∆, then φ(y0)φ(y1)φ(y2) is a geodesic
in Γ and φ(y0) 6= φ(y2).

We claim that if p := x0 · · ·xk is a path without backtracks in φ(∆) with k ≤ m,
then p is a geodesic in Γ. The proof is by induction on k and is trivial if k = 0.
By induction x0 · · ·xk−1 is a geodesic, so d(x0, xk) = k − 2 or k. In the former
case as k ≤ m, there is a unique geodesic from x0 to xk−1 in Γ by hypothesis, so
xk = xk−2, impossible as we saw in the previous paragraph that xk−2xk−1xk is a
geodesic. This contradiction shows that d(x0, xk) = k, establishing the claim.

By the claim, N ≥ m, since there are two geodesics between opposites in the
2N -gon ∆. Thus as N ≤ n ≤ m by hypothesis, we have n = m. Therefore Σ is a
2m-gon. Visibly the last remark in the lemma holds, so the proof is complete. ¤

Lemma F.3.7. Let m ≥ 4 be an even integer, and assume for each u ∈ Γ and
v ∈ Γm−1(u) that there is a unique geodesic from u to v. Assume n ≤ m/2 is an
integer, c ∈ Γ(x) − {l}, and s ∈ Gc − Gx,c and t ∈ G2 −G1,2 are involutions with

(st)n ∈ Gx,l,c. Then n = m/2, Σ := x〈s,t〉 ∪ l〈s,t〉 ∪ c〈s,t〉 is a 2m-gon in Γ, and
〈s, t〉/〈(st)n〉 acts faithfully as Dm on Σ.

Proof. The proof is much like that of F.3.6. Again let W := 〈s, t〉, and this
time let Σ := xW ∪ lW ∪ cW regarded as a subgraph of Γ. Again defining K to be
the kernel of the action of 〈st〉 on Σ, N := |〈st〉 : K|, and W̄ :=W/K, we have W̄ ∼=
D2N and N divides n. Let D be the dual of the poset {{1}, {2}, {3}, {1, 2}, {1, 3}}
under inclusion, and let W̄1 := W̄1,2 = W̄1,3 = 1, W̄2 := 〈s̄〉, W̄3 := 〈t̄〉, and
F := {W̄d : d ∈ D}. This time ∆ := Γ(W̄ ,F) is a 4N -gon, since for i = 2, 3,
vertices of type i are adjacent to two vertices of type 1, i, vertices of type 1, i are
adjacent to a unique vertex of type 1 and type i, and vertices of type 1 are adjacent
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to a unique vertex of type 1, i. Define φ : ∆ → Σ by φ(w̄) := xw, φ(W̄2w̄) := cw
and φ(W̄3w̄) := lw. Then argue as in the proof of the previous lemma. ¤

F.4. Controlling completions of Lie amalgams

This section is devoted to results establishing sufficient conditions for a com-
pletion G0 of the amalgam of a weak BN-pair (as in section F.1) to be isomorphic
to the extension of a group of Lie type defining that weak BN-pair.

The literature contains various results of this type—notably the theorem of
Tits, proved as Theorem 8 of section II in [Ser80], where groups of Lie type are
characterized in terms of the rank 3 amalgam obtained by adjoining the stabilizer
of an apartment to the parabolics. (Compare with the viewpoint in 4.2 of [Asc93]).
In contrast, our ultimate goal in this section is to provide conditions more in the
spirit of local group theory; thus in our main result Theorem F.4.31 in the second
subsection, the crucial condition (b) is that the centralizer in G0 of a 2-central
involution be contained in one of the subgroups Gi defining the amalgam. This
result is in fact based primarily on geometric analysis, carried out in the first sub-
section, that culminates in Theorem F.4.8—which characterizes groups of Lie type
as those completions in which there exist at least two geodesics between vertices
at distance m in the coset graph (see (ii)–(iv) of F.4.6.8), where m is the diameter
of the building. The work of the first subsection uses material on paths from the
previous section F.2.

One further advantage of our approach is that it allows us later to identify
groups defined over F2, in addition to those defined over larger fields. Indeed our
treatment includes results for G2(2)

′ and the Tits group 2F4(2)
′, which are of index

2 in the corresponding groups of Lie type, and hence are not covered by many
standard treatments in the literature. The difficulty with most groups over F2 is
that the Cartan group is trivial, and hence one cannot retrieve the stabilizer of an
apartment within the normalizer of the Cartan group.

Definition F.4.1. In this section the term Lie group means an adjoint group
G of Lie type of Lie rank 2 over a finite field. In particular in the first subsection
we do not require G to be of characteristic 2. Thus a Lie group is one of L3(q),
Sp4(q), G2(q),

3D4(q),
2F4(q), U4(q), or U5(q) for q a power of a prime.

We use the term Lie amalgam to mean a rank-2G-amalgam α := (G1, G1,2, G2)
in the sense of Definitions F.1.4 and F.2.9, where G is a Lie group, G1,2 is a Borel
subgroup of G, and G1 and G2 are the maximal parabolics over G1,2. When we
wish to emphasize the role of G, we say α is the Lie amalgam defined by the Lie
group G.

We also consider two of the cases in which a Lie group possesses a subgroup of
index 2. We define a generalized Lie group to be G2(2)

′ ∼= U3(3) or the Tits group
2F4(2)

′. We say α is a generalized Lie amalgam if α is the amalgam defined by a
generalized Lie group. 1

Notation F.4.2. Recall the notion of the coset geometry of a completion from
Definition F.3.1. We adopt the convention (except in the case of L3(q), where

1Since A6 ∼= Sp4(2)′ has the same amalgam as L3(2), we do not consider A6 as a generalized
Lie group. Further since both L3(2) and A6 are completions of this amalgam, and the centralizer
of an involution in both groups is D8, we exclude the amalgam of L3(2) in Theorem F.4.31.



274 F. WEAK BN-PAIRS AND AMALGAMS

it makes no sense) that the points in the geometry are the cosets of the maximal
parabolic normalizing a long root group, and we choose G1 to denote this parabolic.

Recall also from Definition F.1.4 the definition of an automorphism of amal-
gams, and the discussion in section F.2, particularly in F.2.8.5, of those automor-
phisms of a generalized Lie amalgam induced by a suitable subgroup of Aut(G),
where G is a generalized Lie group.

Definition F.4.3. Define an extension of a generalized Lie group G to be a
groupM satisfying G E M ≤ Aut(G), with M trivial on the Dynkin diagram of G.
An extension of a generalized Lie amalgam α defined by the generalized Lie group
G, is an M -amalgam γ := (M1,M1,2,M2), where M is an extension of G such that
ḠJ = MJ ∩ Ḡ for each J , and M = ḠM1,2. When we wish to emphasize the role
of the group M , we will say γ an M -extension of α.

Notice that the automorphism group of G2(2)
′ or the Tits group is G2(2) or

2F4(2), respectively, and these extension are Lie groups. Consequently each exten-
sion of a generalized Lie amalgam is either an extension of a Lie amalgam, or the
amalgam of G2(2)

′ or the Tits group.

F.4.1. Small faithful completions.

Notation F.4.4. Througout this subsection α := (Ḡ1, Ḡ1,2, Ḡ2) is an extension
of a generalized Lie amalgam over a finite field of characteristic p. More precisely,
α is a Ḡ-extension of a generalized Lie amalgam defined by a generalized Lie group
Ḡ+. Let β : α → G be a faithful completion of α. Let GJ := β(ḠJ ), for J = {1},
{2}, {1, 2}, and let ι : α → Ḡ be the Lie completion determined by the inclusion
maps.

Write Ĝ for the universal completion gp(α) (cf. Definition F.2.2), and ξ : α→ Ĝ

for the universal completion. Let θ := θG = β̂ : Ĝ → G be the map from the
universal completion determined by β.

Form the coset geometries Γ, Γ̄ and Γ̂ (as in Definition F.3.1) of G, Ḡ, and Ĝ,
respectively. As in section F.3, write x := G1 and l := G2 for these cosets regarded

as members of Γ, and write x̄, l̂, etc. for the members Ḡ1, Ĝ2 of Γ̄ and Γ̂.
The Weyl group of a Lie amalgam α is the Weyl group of the corresponding

Lie group. The Weyl group of the amalgam of G2(2)
′ or the Tits group is the Weyl

group of the Lie group G2(2) or 2F4(2), respectively. Let 2m denote the order of
the Weyl group of α.

Define an apartment of Γ to be a subgraph of Γ which is a 2m-gon. Write A for
the set of apartments of Γ; it is possible that A is empty. Indeed it is a consequence
of Theorem F.4.8 that apartments exist precisely when G is the extension of a
generalized Lie group.

Define qi by qi+1 := |Gi : G1,2|. For example when α is the amalgam of G2(2)
′

or the Tits group, then qi = 2—except when α is the amalgam of the Tits group
and i = 1, where q1 = 4. For u ∈ Γi let q(u) := qi.

For ū ∈ Γ̄, let Q̄ū := Op(Ḡ+,ū) be the unipotent radical of Ḡ+,ū, and S̄ the
unipotent radical of Ḡ+,1,2. Thus S̄ ∈ Sylp(Ḡ+). Set Qu := β(Q̄ū) for u = x, l,
and S := β(S̄). For g ∈ G, let Qug := Qgu.

We first record some basic properties of the building Γ̄ of our Lie completion
Ḡ. Much of the following material is in the literature, going back for example to
the work of Tits (e.g., [Tit74]).
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Recall from Definition F.3.2 the notation of Π(Γ) for paths without backtrack.

Lemma F.4.5. Assume G = Ḡ, so that Γ = Γ̄.
(1) Γ is a generalized m-gon.
(2) If α is the amalgam of G2(2)

′ or the Tits group, then G is of index 2 in
G∗ ∼= G2(2) or

2F4(2), Gi is of index 2 in G∗i , and the map Gig 7→ G∗i g is an
isomorphism of Γ with the corresponding geometry Γ∗ for G∗.

(3) If u, v ∈ Γ with d(u, v) < m, then there is a unique geodesic in Γ from u to
v.

(4) If u and v are opposites (that is, d(u, v) = m), then there are |Γ(u)|
geodesics from u to v in Γ. Moreover the apartments of Γ containing u and v
are precisely the unions of pairs of these geodesics.

(5) If α is an extension of a Lie amalgam and u and v are opposites, then Gu,v
is a complement to Qu in Gu, and to Qv in Gv, containing a Levi complement of
each of Gu and Gv, and Gu,v is 2-transitive on the geodesics from u to v.

(6) If (u, v) is an edge in Γ and α is a generalized Lie amalgam (so that Ḡ =

Ḡ+), then O
p′(Gu,v)/Qu is regular on Γ(u)− {v} of order q(u).

(7) If α is an extension of a Lie amalgam then Gu is transitive on Πm+1(u).
(8) If α is the amalgam of the Tits group or G2(2)

′, then
(a) Gx is transitive on Πm(x), and
(b) Gl is transitive on Πm−1(l), has two orbits of equal length on Πm(l),

and Gl,v is 2-transitive on paths in Πm(l) from l to v, for each v ∈ Γm(l).
(9) Assume that α is the amalgam of the Tits group or G2(2)

′, and u and v
are opposites. If u is a line, then Gu,v is a complement to Qu. If u is a point, then
Gu,v ∼= D10 or Z3.

Proof. When Ḡ is a Lie group, these are well-known properties of rank 2
buildings; see for example Tits-Weiss [TW02]. To obtain (7), notice that a path in
Πm+1 consists of a geodesic p from u to an opposite v through some a ∈ Γm−1(u),
followed by an edge from v to some w ∈ Γm−1(u) − {a}, and that the root group
in Gp is transitive on such w.

The properties are presumably less well known in the cases of G2(2)
′ and the

Tits group, so we provide details here. Thus we assume G = Ḡ+ is G2(2)
′ or the

Tits group.
We first prove (2). Certainly G is of index 2 in G∗, and Gi is of index 2 in

maximal parabolics G∗i of G
∗ containing a Sylow 2-group S∗ of G∗, with G∗i = GiS

∗

and G1,2 = S = S∗ ∩ G. Define ϕ : Γ → Γ∗ by ϕ : Gig 7→ G∗i g for g ∈ G. As
Gi ≤ G∗i , ϕ is well-defined, and as Gi = G ∩ G∗i , ϕ is an injection. As G∗ is
transitive on Γ∗i and G

∗ = S∗G with S∗ ≤ G∗i , G is transitive on Γ∗i , and hence ϕ is
surjective. Thus ϕ : Γ→ Γ∗ is a bijection. Finally G∗1G

∗
2 = S∗G1S

∗G2 = S∗G1G2,
so G∗1G

∗
2 ∩ G = G1G2. Then G1g is incident with G2h in Γ iff gh−1 ∈ G1G2 iff

gh−1 ∈ G∗1G
∗
2 iff G∗1g is incident with G∗2h in Γ∗, so ϕ is an isomorphism. This

proves (2).
As (1), (3), and (4) are statements about Γ which hold for Γ∗, they also hold

for Γ by (2). Further G∗i = O2(G
∗
i )Gi, so again as (6) holds for G∗, it also holds

for G. Conclusions (5) and (7) are vacuous for the Tits group and G2(2)
′, so it

remains to prove (8) and (9).
Let v be an opposite to u. By (5), G∗u,v is a Levi complement in G∗u and G∗v .
Suppose first that u is a point. We may take u to be the point x defined

earlier by the coset G1. Then Gx,v = G∗x,v ∩G is of index 2 in G∗x,v, since the root
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element generating a Sylow 2-subgroup S∗v of the Levi complement G∗x,v is not in
G. This establishes (9) in the case where u is a point. In particular, S∗v 6≤ S, so
as |S∗ : S| = 2, S∗ = SS∗v . By (7), G∗u is transitive on Γm(u); so as G∗u = Q∗uG

∗
u,v

by (5), Q∗u is also transitive on Γm(u). As Q∗u ≤ S∗ = SS∗v , we conclude that S
is transitive on Γm(u). Moreover |Gx,v : Sv | = |Γ(u)| and Sv = Gx,v ∩ Gl, where
l is the line defined earlier by the coset G2. Further by (3) and (4), there is a
unique geodesic from u to v through each w ∈ Γ(x). Thus Gx,v is transitive on the
geodesics from x to v, establishing (8a).

So assume instead that u is our standard line l. This time the Levi complement
G∗l,v is contained in G, so G∗l,v = Gl,v , completing the proof of (9). Further as Gl is
of index 2 in G∗l , it also shows that Gl has two orbits of equal length on opposites
to u. Then appealing to (3) and (4) as in the previous paragraph, we conclude Gl is
transitive on Πm−1(l). As the root group S

∗
v is contained in Gl,v, Gl,v is 2-transitive

on paths in Πm(l) from l to v, completing the proof of (8b). ¤

Next we use Lemma F.3.4 to transfer certain properties of the building Γ̄,
appearing in F.4.5, to the geometry Γ of an arbitrary faithful completion G of α.
We cannot expect all properties to transfer, since our results must hold for the

universal completion Ĝ, where Γ̂ is an infinite tree.

Lemma F.4.6. Let n ≤ m, a ∈ Γ, and p := x0 · · ·xn ∈ Πn(a). Then
(1) If α is an extension of a Lie amalgam, then Ga is transitive on Πm+1(a).
(2) If α is the amalgam of G2(2)

′ or the Tits group, then
(a) if a is a point, Ga is transitive on Πm(a); while
(b) if a is a line, then Ga is transitive on Πm−1(a), Ga has two orbits of

equal length on Πm(a), and Ga,xm is transitive on paths in Πm(a) to xm.
(3) For a = x, l, there exists a bijection ψ : P (ā) → P (a) such that β, ψ is a

quasiequivalence of the actions of Ḡā and Ga on P (ā) and P (a), restricting to a
bijection of Πk(ā) and Πk(a), for each integer k.

(4) |Ga : Gp| = (qi + 1)(q1q2)
j or (qi + 1)(q1q2)

jq3−i for a ∈ Γi and 0 < n :=
2j+1 or 2j+2, respectively, unless α is the amalgam for G2(2)

′ or the Tits group,
a is a line, and n = m.

(5) If n = m then either Gp is a complement to Qxm in Gxm−1,xm; or α
is the amalgam of G2(2)

′ or the Tits group, a is a point, Gp ∩ Qxm = 1, and
|Gxm−1,xm : QxmGp| = 2.

(6) If n < m, then Ga is transitive on Γn(a), xn ∈ Γn(a), and p is the unique
geodesic from a to xn. In particular, Γ contains no 2n-gons for n < m.

(7) If n < m, then |Γn(a)| = |Ga : Gp|.
(8) If n = m and b := xn = xm, then b ∈ Γm(a), so Πm(a) consists of geodesics

from a to members of Γm(a). Further one of the following holds:
(i) p is the unique geodesic from a to b.
(ii) Ga,b is a complement to Qa in Ga, and acts 2-transitively on the

q(a) + 1 geodesics from a to b.
(iii) α is the amalgam of the Tits group, a is a point, and Ga,b ∼= D10 is

transitive on the 5 geodesics from a to b.
(iv) α is the amalgam for G2(2)

′, a is point, and Ga,b ∼= Z3 is transitive
on the 3 geodesics from a to b.

In cases (ii)–(iv), the map x0 · · ·xm 7→ x1 is a bijection between geodesics from a
to b and the members of Γ(a).
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Proof. Recall that Ga is G-conjugate to either G1 or G2; as our conclusions
describe Ga and its subgroups, we may assume a = x or l.

We will apply lemma F.3.4 with Ḡ, G in the roles of “G, Ġ”. The hypotheses of
section F.3 hold by Notation F.4.4. Thus F.3.4 implies that (3) holds. Then apply
(3) to obtain a path p̄ := ψ−1(p) = x̄0 · · · x̄n in Πn(Γ̄) corresponding to p. Applying
the quasiequivalence in (3) and appealing to the transitivity of Ḡā on Πm+1(ā) in
F.4.5.7, we conclude that (1) holds. Similarly (3) and F.4.5.8 imply (2).

We next prove (4) by induction on n: Namely by transitivity of Ga on Γ(a),

|Ga : Ga,b| = |Γ(a)| = q(a) + 1

for each a ∈ Γ and b ∈ Γ(a). Thus (4) holds when n = 1. So assume the result
at n − 1, and let r := x0 · · ·xn−1. By (1) and (2), Gr is transitive on Γ(xn−1) −
{xn−2}—except possibly when Ḡ is G2(2)

′ or the Tits group, n = m, and a is a
line, where (4) is vacuously true, as it explicitly excludes this case. Thus

|Ga : Gp| = |Ga : Gr||Gr : Gp| = |Ga : Gr|q(xn−1),

and now (4) follows using the inductive value for |Ga : Gr|.
Let n = m, and now choose notation so that our standard edge xl occurs at the

end of the m-path path p: that is, {xm−1, xm} = {x, l}. By F.4.5.3, Ḡā,x̄m−1,x̄m =

Ḡp̄. Thus by F.4.5.5 and F.4.5.9, either Ḡp̄ = L̄x̄n−1 , where L̄ is a complement to

Q̄xn in Ḡx̄n ; or α is the amalgam of G2(2)
′ or the Tits group, a is a point, and

Ḡp̄ ∩ Q̄x̄n = 1 with |Ḡx̄n−1,x̄n : Q̄x̄nḠp̄| = 2. Applying β and appealing to (3), we
conclude (5) holds.

We next prove (6) and (8). Let b := xm. Recall that Γ is thick since qi ≥ 2 for
i = 1 and 2; hence we may apply F.3.5 whenever the transitivity hypothesis of that
result holds.

Suppose first that α is an extension of a Lie amalgam. Then by (1), Ga is
transitive on Πm+1(a), so we conclude from (1) and (2) of F.3.5 that (6) holds, as
well as the initial statement in (8) that b ∈ Γm(a). By F.3.5.3, either conclusion (i)
of (8) holds, or Γ is a generalized m-gon, and Ga,b is 2-transitive on the q(a) + 1
geodesics from a to b. Suppose the latter case holds. Then F.3.5.3 also shows that
Ga,b is transitive on Γ(a), so that Ga = Ga,x1Ga,b. Then by (5), Ga = QaGpGa,b =
QaGa,b and Gp ∩ Qa = 1. But Ga,b ∩ Qa ≤ Ga,b,x1 and Ga,b,x1 ≤ Gp by (6), so
Ga,b ∩ Qa ≤ Gp ∩ Qa = 1, and hence Ga,b is a complement to Qa in Ga. Thus
conclusion (ii) of (8) holds in this case, so (8) is established when α is an extension
of a Lie amalgam.

Now assume instead that α is the amalgam of G2(2)
′ or the Tits group. We

will first establish (6). Suppose for the moment that a = x is a point. Then
Ga is transitive on Πm(a) by (2.a), and hence (as mentioned at the start of the
proof of F.3.5) also on Πn(a) for n < m. Thus we conclude from parts (1) and
(2) of F.3.5 that for n < m, xn ∈ Γn(a) and Ga is transitive on Γn(a), and for
n < m − 1, there is a unique geodesic from a to xn. If x0 · · ·xm−1 is the unique
geodesic from a to xm−1, then all parts of (6) hold in the case where a is a point.
But since m is even, xm−1 is a line, so reversing the direction of geodesics from
a to xm−1, (6) also holds in the case where a is a line. Thus if (6) fails, we may
assume that there is more than one geodesic from a to xm−1. Then by F.3.5.3, Γ
is a generalized (m− 1)-gon. We now obtain a contradiction as in F.3.5.4: Namely
let y0 := l and q := y0 · · · ym ∈ Πm(l), so that ym ∈ Γm−2(l). Since y0 = l is a
line, we conclude from (5) that Gq is a complement to Qym in Gym,ym−1 , so Gq is
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transitive on Γ(ym)− {ym−1} since Gym,ym−1 is transitive on that set. However as

Γ is a generalized (m − 1)-gon, Γm−3(l) ∩ Γ(ym) =: {y} is of order 1, so Gq fixes
y 6= ym−1, contrary to the transitivity just obtained. This contradiction completes
the proof of (6).

It follows from (6) that b ∈ Γm(a): for otherwise b ∈ Γm−2(a), so there is
a geodesic p′ of length m − 2 from a to b; and then p′xm−1 and x0 · · ·xm−1 are
distinct geodesics from a to xm−1, contrary to (6). Thus the first statement of (8)
is established.

To complete the proof of (8), we may assume that conclusion (i) of (8) does not
hold, so that there is a second geodesic q := y0 · · · yn from a to b. Notice y1 6= x1,
since by (6) there is a unique geodesic from x1 to b.

Let H := Ga,b. Then K := Gb∩Qa fixes x1, so by (6), K ≤ Gp∩Qa, and hence
K = 1 by (5). In particular, H ∩Qa = 1. Indeed by (5), either Gp is a complement
to Qa in Ga,x1 , or a is a point and |Ga,x1 : GpQa| = 2.

Assume that the second case does not hold, so that the first case holds for both
p and q, and hence Gq is a complement to Qa in Ga,y1 . But as Ga is 2-transitive
on Γ(a) and x1 6= y1, Ga = 〈Ga,x1 , Ga,y1〉, so Ga = 〈Gp, Gq〉Qa = HQa. We saw
H ∩Qa = 1, so H is a complement to Qa in Ga. Thus H is 2-transitive on Γ(a), so
(8.ii) holds, as x1 · · ·xm is the unique geodesic from x1 to b by (6).

Thus we may assume that the second case holds, and in particular a is a
point. If α is the amalgam of the Tits group then |Gp| = 2 = |Gq | by (5), so
H = 〈Gp, Gq〉 ∼= D10 as Ga/Qa ∼= Sz(2) and H ∩ Qa = 1. In particular H is
transitive on Γ(a), and hence on the 5 geodesics from a to b, so that (8.iii) holds.
Finally if α is the amalgam for G2(2)

′, then Gp = 1 by (5). Thus as H ∩ Qa = 1
and Ga/Qa ∼= S3, either H = 1 or H ∼= Z3. In the latter case, Gb is transitive on
Γ(a), and hence transitive on the 3 geodesics from a to b, so that (8.iv) holds. The
former case is impossible, since we are assuming there are at least two geodesics
from a to b, and H is transitive on these geodesics by (2.a). This completes the
proof of (8).

It remains to prove (7), so assume n < m. Then by (6), Ga is transitive on
Γn(a), so for b ∈ Γn(a), |Γn(a)| = |Ga : Ga,b|. Also by (6), Ga,b = Gp, so (7) is
established. Thus the proof of the F.4.6 is complete. ¤

Definition F.4.7. Define a faithful completion α → G of an extension of a
generalized Lie amalgam α to be large if there is a unique geodesic in Γ between
any pair of objects at distance m in Γ. A faithful completion is small if it is not
large.

Theorem F.4.8. Assume that α is an extension of a generalized Lie amalgam,
defined by an extension Ḡ of a generalized Lie group Ḡ+. Then

(1) If β : α→ G is a small completion of α, then β is equivalent to a completion

β̇ : α→ Ġ for some extension Ġ of Ḡ+. In particular, G ∼= Ġ.
(2) If α is a generalized Lie amalgam, so that Ḡ = Ḡ+, then there is a unique

quasiequivalence class of small completions β : α → G of α. In particular, G ∼=
Ḡ = Ḡ+.

Remark F.4.9. This result can probably be extended as follows: While we
have not attempted to write out a proof, it appears that under the hypotheses of
Theorem F.4.8, G ∼= Ḡ, and, with the exception of a few groups over F2, there is
even a unique equivalence class of small completions of any given extension of a
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generalized Lie amalgam α. That is (cf. Lemma F.4.11), for almost all extensions
α of Lie amalgams, Aut(α) is realized in Aut(Ḡ). But for example if Ḡ is L3(2),
then Aut(α) = S̄ × 〈τ〉, where τ centralizes Ḡ1 and induces the involutory inner
automorphism generating Z(S̄) on G2. Thus in this case there are two equivalence
classes of small completions.

Remark F.4.10. Our proof of Theorem 5.3.4 in the Generic Case originally
made use of the fact that over fields of order at least 4, a Cartan subgroup is
sufficiently large to determine the completion. While we supplied our own proof,
we could have appealed to Theorem 2 of Bennett and Shpectorov in [BS01] in that
case. Since Cartan subgroups are usually trivial in groups over F2, and since we
need to identify those groups too, we were led more recently to our present more
uniform argument applicable in all cases. This approach uses Theorem F.4.8.

Bennett and Shpectorov also prove a result in [BS01] related to Theorem F.4.8,
and it is probably worthwhile to briefly discuss the difference between that result
and ours. Theorems 1 and 3 in [BS01] do not include the case of G2(2)

′; but that
aside, those results essentially constitute a weak version of Corollary F.4.26. Using
some of the results in F.4.6, one can give a quick proof of F.4.8 by assuming F.4.26;
in this sense, F.4.8 and F.4.26 are essentially equivalent. However the quantification
in Theorems 1 and 3 of [BS01] is more restrictive than that of F.4.26, so that
those theorems do not imply Theorem F.4.8. More precisely, the hypothesis of
[BS01] amounts to restricting the subgroup of G generated by at least one pair of
involutions from a certain set of pairs, which are the image under the completion
defining G of pairs in the group Ḡ+ of Lie type which normalize some apartment
in the building of Ḡ+. However in the hypothesis of F.4.26, the restriction is on
a pair allowed to range over a larger set of pairs, and that latitude is necessary in
proving Theorem F.4.8. In particular in a small completion G apartments exist,
but pairs of involutions acting on those apartments need not a priori be images of
pairs acting on apartments of the building of Ḡ+.

Over most fields, a Cartan subgroup of Ḡ+ acts without fixed points on S̄;
when that happens, the above problem with quantification can be avoided—since
as in F.4.16 below (compare Theorem 2 in [BS01]), apartments for both G and Ḡ+

are then determined by Cartan subgroups. But over small fields this argument is
not available.

Because it presupposes no constraints on the Cartan subgroup, Theorem F.4.8
is very useful over small fields. For example, it makes possible the identification of
2F4(2) as a subgroup of the Rudvalis group in section 14.7. Also the form of the
theorem and its proof should lend itself to further generalization.

We prove Theorem F.4.8 in a series of lemmas. Until the proof is complete,
assume that β : α→ G is small.

Lemma F.4.11. (1) A faithful completion µ : α → Ġ is quasiequivalent to ι iff

Ḡ ∼= Ġ.
(2) The number of equivalence classes in the quasiequivalence class of ι is

|Aut(α) : AutAut(Ḡ)(α)|.

Proof. If ι is quasiequivalent to µ, then by definition Ḡ ∼= Ġ. Conversely
suppose ϕ : Ḡ → Ġ is an isomorphism. Let T̄ and Ṫ be Sylow p-subgroups of
Ḡ1,2 and Ġ1,2, respectively. By hypothesis µ is faithful, so |Ṫ | = |T̄ |. Then as

Ḡ ∼= Ġ, Ṫ ∈ Sylp(Ġ) and ϕ
−1(Ṫ ) ∈ Sylp(Ḡ). Therefore ϕ−1(Ġi), i = 1, 2, are the
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normalizers in Ḡ of maximal parabolics over S̄+ := ϕ−1(Ṫ )∩ Ḡ+, and ϕ
−1(Ġ1,2) is

the normalizer in Ḡ of a Borel subgroup over S̄+. Thus composing ϕ with an inner
automorphism of Ḡ mapping S̄ to S̄+, we may assume ϕ(ḠJ ) = µ(ḠJ ). As µ is
faithful, we can form µ−1 : µ(α) → α. Therefore µ−1 ◦ ϕ ◦ ι =: σ ∈ Aut(α), and
µ ◦ σ = ϕ ◦ ι, so µ and ι are quasiequivalent. Thus (1) holds.

By definition, the number of equivalence classes in the quasiequivalence class
of ι is |Aut(α) : Aut(α)ι|. Further by parts (4.v) and (5) of F.2.8, Aut(α)ι =
AutAut(Ḡ)(α), so (2) holds. ¤

Lemma F.4.12. For all a ∈ Γ and b ∈ Γm(a), there are at least two geodesics
from a to b in Γ.

Proof. By hypothesis G is small, so there exists some pair of opposites c and
d (meaning vertices at distance m in Γ) with distinct geodesics p and q from c to
d. Then for each pair u and v of vertices opposite in the cycle Σ := pq−1, there are
two geodesics from u to v in Σ. But by F.4.6.8, Πm(a) is the set of geodesics from
a to opposites of a, for each a ∈ Γ. Further by F.4.6.1 and F.4.6.2.a, G is transitive
on pairs of opposite points. Hence pq−1 contains a conjugate of each such pair, so
the result holds when a is a point. So suppose instead a, b is a pair of opposite lines.
There is a geodesic r := y0 · · · ym from a to b. Further each y ∈ Γ(b) − {ym−1} is
an opposite to the point y1, since t := y1 · · · ymy ∈ Πm(y1). As the result holds for
points, there is a second geodesic s from y1 to y. Then the lines a and b are on two
geodesics in ts−1. The proof is complete. ¤

The next result shows that various numerical parameters associated to G and
Γ are the same as those of Ḡ and Γ̄, including the order of G. This is not enough,
however, to conclude immediately that we have a group isomorphism.

Lemma F.4.13. (1) Γ is a generalized m-gon.
(2) |G| = |Ḡ|.

Proof. We remark that when α is a Lie amalgam, (1) follows from F.3.5.3, in
view of F.4.6.1 and our hypothesis that the completion is small. But the following
easy argument also works in the case of G2(2)

′ and the Tits group: Let u ∈ Γ. By
F.4.6.6, there is a unique geodesic from u to each v of distance less than m in Γ.
Further for each opposite v of u, F.4.12 and F.4.6.8 say that Gu,v is transitive on
Γ(v), and hence Γ(v) ⊆ Γm−1(u). Then (1) holds just as in the proof of F.3.5.3, so
in particular Γ has diameter m.

By (1), the set Γ1 of points is the disjoint union of the sets Γ2n(x), 0 ≤ n ≤ m/2.
Further for n < m/2, by (7) and (3) of F.4.6,

|Γ2n(x)| = |Gx : Gp| = |Ḡx̄ : Ḡp̄| = |Γ̄
2n(x̄)|.

Similarly for b ∈ Γm(x) and b̄ ∈ Γ̄m(x̄), by (1) and (2.a) of F.4.6, and the transitivity
of Gx,b on Γ(x) in (ii)–(iv) of F.4.6.8,

|Γm(x)| = |Gx : Gx,b| = |Ḡx̄ : Ḡx̄,b̄| = |Γ̄
m(x̄)|.

Thus |Γ1| = |Γ̄1|, so

|G| = |Γ1||Gx| = |Γ̄1||Ḡx̄| = |Ḡ|.

¤
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Lemma F.4.14. Let a ∈ Γ and b ∈ Γm(a). Then
(1) The apartments through a and b are the subgraphs of the form pq−1, where

p and q are distinct geodesics from a to b.
(2) There is a unique geodesic from a to b through each c ∈ Γ(a).

(3) There are
(
q(a)
2

)
apartments containing a and b.

(4) Each pair of simplices in Γ is contained in an apartment.

Proof. Part (1) is a straightforward consequence of the definition of an apart-
ment. We established (2) during the proof of F.4.13; then (1) and (2) imply (3).
Let s and t be simplices in Γ; thus s is a point, line, or incident point-line pair.
Pick a ∈ s and u ∈ t with d(a, u) =: n maximal, and let a := x0 · · ·xn := u be
a geodesic. By F.4.6 we can extend this geodesic to a geodesic p := x0 · · ·xm of
length m; without loss xm = b. If |s| = |t| = 1 we are done, so we may assume that
s = {a, c}. Thus d(c, u) < n by our maximal choice, so d(c, u) = n − 1. Similarly
either t = {u}, or t = {u, v} with d(a, v) = n− 1. Now if n < m then by F.4.6.6,
there is a unique geodesic from a to u, so c = x1, and v = xn−1 if |t| = 2. Thus we
may assume that n = m. Here by (2) we may choose p so that x1 = c, so we are
done unless |t| = 2 and v 6= xm−1. In this final case, by (2) there is a geodesic q
from u to a through v, and by (1) , pq ∈ A, completing the proof. ¤

We use the term Tits amalgam to refer to the amalgam for the Tits group
2F4(2)

′.

Lemma F.4.15. Let Σ ∈ A. Then
(1) If α is not the Tits amalgam then G is transitive on A.
(2) If α is not the G2(2)

′-amalgam then there exist reflections su ∈ Gu on Σ
for u := x, l, with W := 〈sx, sl〉 acting as D2m on Σ, and transitively on Γi ∩Σ for
i = 1, 2. If α is the Tits amalgam, then W is faithful on Σ.

(3) If α is the Tits amalgam then G has two orbits of equal length on A.
(4) If α is the G2(2)

′-amalgam then W := NG(Σ) = 〈sl, sc〉 ∼= S3 is regular on
the 6 points of Σ, and has two orbits lW and cW of length 3 on the lines of Σ, where
c ∈ Γ(x) ∩ Σ, and sl and sc act as reflections on Σ through l and c, respectively.

Proof. Let a, b be opposites in Γ, H := Ga,b, and Λ the set of geodesics from
a to b. Pick distinct p, q ∈ Λ; by F.4.14.1, Σ := pq−1 ∈ A.

Assume first that α is not the amalgam of G2(2)
′. By F.4.6.8, either H is a

complement to Qa in Ga and H is 2-transitive on Λ, or α is the Tits amalgam,
a is a point, and H ∼= D10 is transitive on Λ of order 5. In either case there is
an involution sa ∈ H interchanging p and q. Thus sa induces a reflection on the
2m-gon Σ, fixing the opposites a and b. Similarly for c ∈ Γ(a) ∩ Σ, there is an
involution sc in Gc inducing a reflection on Σ. Therefore W := 〈sa, sc〉 induces
D2m on Σ, establishing the first sentence of (2).

Suppose α is the Tits amalgam, and let K denote the kernel of W on Σ. Then
K ≤ Ga,b,c,csa = Hc,csa = 1 from the action of D10, so W is faithful on Σ. This
completes the proof of (2). Also G has two orbits on opposites (a, b) with a a line
by F.4.6.2.b, while by (2), NG(Σ) is transitive on the lines in Σ, so that (3) holds.

Suppose instead that α is an extension of a Lie amalgam. Then as H is 2-
transitive on Λ by F.4.6.8, H is transitive on the pairs of geodesics from a to b,
and hence transitive on the apartments through a and b by F.4.14.1. Thus as G is
transitive on pairs (a, b) of opposites with a ∈ Γi by F.4.6.1, (1) holds when α is an
extension of a Lie amalgam.
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Therefore we may assume α is the G2(2)
′-amalgam; thus m = 6 and it remains

to prove (1) and (4). By F.4.6.2.a, Gx is transitive on Γ6(x). If b ∈ Γ6(x) then by
F.4.6.8, Gx,b ∼= Z3 is transitive on 2-subsets of the set of three geodesics from x to
b, and hence on pairs of these geodesics. We conclude that Gx,Σ = 1, so that Gx is
regular on the set of apartments of Γ containing x, with representative Σ = pq−1.
This implies that G is transitive on A, completing the proof of (1). As Gx,Σ = 1,
W := NG(Σ) is regular on the 6 points of Σ, so that |W | = 6. On the other hand,
we may choose l ∈ Σ. Then if k is the opposite to l in Σ, F.4.6.8 says that Gl,k
acts 2-transitively as S3 on the three geodesics from l to k, so Wl = Wl,k = Wk is
of order 2, and is generated by the reflection sl on Σ through l. Thus as |W | = 6
it follows that W ∼= S3 has two orbits on the lines of Σ, with representatives l and
k. Also W = 〈sl, sc〉, where c ∈ Γ(x)− {l} and Wc = 〈sc〉. Thus (4) holds. ¤

Recall from Notation F.4.4 that S̄ ∈ Sylp(Ḡ+) and S = β(S̄).
We will supply two proofs of Proposition F.4.17. The following lemma is used

in the second of those proofs, but not elsewhere; thus the reader may safely skip
this lemma.

Lemma F.4.16. Assume α is an extension of a Lie amalgam, and let x, l ∈ Σ ∈
A. Then

(1) S E G1,2, and the kernel K of the action of NG(Σ) on Σ is a complement
to S in G1,2.

(2) NG(Σ) = KW , where W is the subgroup defined in F.4.15.

Proof. As S̄ E Ḡ1,2, applying β we conclude S E G1,2. Let b be the opposite
to x in Σ, c 6= l the second member of Γ(x) ∩ Σ, and H := Gx,b. By F.4.14.1,
Σ = pq−1, where p, q are the geodesics from x to b through l and c, respectively.
As α is an extension of a Lie amalgam, conclusion (ii) of F.4.6.8 holds, so H is a
complement to Qx in Gx. Therefore G1,2 = QxHl and Qx is regular on Γm(x).
Then as S/Qx is regular on Γ(x) − {l}, S is regular on Γm(x) × (Γ(x) − {l}), so
Hl,c is a complement to S in G1,2. Now K ≤ Hl,c, and by F.4.6.6, Hl and Hc fix
p and q pointwise, so Hl,c = K. This establishes (1). Further from F.4.15, W acts
on Σ as Aut(Σ), so (2) follows from (1). ¤

Next in Proposition F.4.17 we complete the proof of Theorem F.4.8 in the case
where α is an extension of a Lie amalgam, by quoting well-known results from the
literature. Indeed with an eye to possible future revisions after the publication of
this work, we are providing two proofs: One uses the Tits-Weiss classification of
(finite) Moufang generalizedm-gons, and the other uses the Fong-Seitz classification
of finite split BN-pairs. We regard the former as our primary proof, so we have
included the Tits-Weiss work in our Background References. Our discussion of weak
BN-pairs relies on the Green Book [DGS85], and the Green Book makes use of the
Fong-Seitz Theorem, which in turn is equivalent to the finite case of the Tits-Weiss
Theorem. Thus at the moment no purpose would be served by avoiding an appeal
to one of these results. On the other hand if the proof in the Green Book were to
be modified in some future revision, one might wish to revisit the issue of appeals
to Tits-Weiss or Fong-Seitz, to consider the desirability of a more self-contained
proof of F.4.17.

Proposition F.4.17. If α is an extension of a Lie amalgam, then Theorem
F.4.8 holds.
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Proof. By F.4.11, it suffices to show G is isomorphic to an extension of Ḡ+,
and that G ∼= Ḡ if Ḡ = Ḡ+.

We first give a proof based on Tits-Weiss: Recall Γ is a generalized m-gon by
F.4.13.1. We begin with the Moufang condition (cf. [TW02]): For p := x0 · · ·xm ∈

Πm(a), we claim that X :=
⋂m−2
i=0 GΓ(xi) is transitive on Γ(xm−1)−{xm−2}. To see

this, we may take x0 := x or l, and by F.4.6.3, we may pick a path p̄ := x̄0 · · · x̄m
in Γ̄ with ψ(p̄) = p. Let H̄ := Ḡ+, so that Ḡ is an extension of the Lie group

H̄. Then F.4.5.6 applies to H̄ , so we conclude Op
′

(H̄x̄i−1,x̄i,x̄i+1) = Q̄x̄i for each

0 < i < m, so Op
′

(H̄x̄0···x̄m−1) ≤ X̄ := β−1(X) by F.4.6.3. Then as H̄x̄0···x̄m−1 is

transitive on Γ̄(x̄m−1)−{x̄m−2} of order a power of p, Op
′

(H̄x̄0···x̄m−1) is transitive

on Γ̄(x̄m−1)− {x̄m−2}. So applying β and appealing to F.4.6.3, X is transitive on
Γ(xm−1) − {xm−2}, establishing the claim. Then as Γ is a Moufang generalized
m-gon, we can appeal to Tits and Weiss [TW02] to conclude that Γ ∼= Γ̄. This
isomorphism of geometries induces an isomorphism of groups ϕ : Aut(Γ̄)→ Aut(Γ),
which maps the subgroup Ḡ+ of Aut(Γ̄) generated by all elations of Γ̄ (that is,
automorphisms fixing either all points on some line, or all lines on some point) to the
subgroup G+ of Aut(Γ) generated by all elations of Γ. The image G+ is contained
in G, since G1 and G2 contain all elations centered at x and l, respectively, and G
is transitive on Γi. Thus Ġ := ϕ−1(G) is an extension of G+

∼= Ḡ+, with G ∼= Ġ.
Further G ∼= Ḡ if Ḡ = Ḡ+.

Next we give a second proof, based on Fong-Seitz: It will suffice to show that

T := (G,G1,2, NG(Σ), {sx, sl})

is a Tits system, or BN-pair (cf. section 43 in [Asc86a]). For observe that by
F.4.16, S is a normal complement in G1,2 to the kernel K of the action of NG(Σ) on
Σ, so that the BN-pair is split [FS73], (cf. (L2) in section 47 of [Asc86a]). Thus

G is isomorphic to an extension Ġ of a Lie group by the classification of finite split
BN-pairs of rank 2 and G ∼= Ḡ if Ḡ = Ḡ+ just as in the previous paragraph.

To show that T is a Tits system, we prove Γ is a building (cf. section 42 of
[Asc86a]), and then appeal to 43.1 in [Asc86a].

We first check that Γ is a building: We have seen Γ is a generalized m-gon, and
that as |Γ(u)| = q(u) + 1 > 2, Γ is thick. The members of A are ordinary n-gons
and hence thin. By F.4.14.4, each pair of chambers is contained in an apartment.
Further by F.4.15.2, G is transitive on the set of pairs (Φ, C), where Φ ∈ A and C
is a chamber in Φ. Thus if s and t are simplices contained in apartments Σ and Φ,
then there is g ∈ Gs with Φg = Σ. By F.4.15.2, N := NG(Σ) induces Aut(Σ) on
Σ. Thus as t, tg ∈ Σ with d(s, t) = d(s, tg), there is w ∈ Ns with gw ∈ Gt. Now
gw : Φ → Σ is an isomorphism fixing s and t. This completes the verification of
the conditions in section 42 of [Asc86a], so that Γ is a building.

We have verified the hypotheses of 43.1 in [Asc86a], so by (3) of 43.1, T is
indeed a Tits system. Hence the second proof of Proposition F.4.17 is complete. ¤

By Proposition F.4.17, we may assume during the remainder of the proof of
Theorem F.4.8 that α is the amalgam of G2(2)

′ or the Tits group. No characteri-
zation of generalized m-gons which are not Moufang is available in the literature,
so we provide a self-contained treatment in the remainder of this subsection. We
will use results from section F.2 to show that the automorphisms of α defined by
the extension F ∼= G2(2) or 2F4(2) of Ḡ in fact lift to G, at which point we can
appeal to Proposition F.4.17 to complete the proof.
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We begin by parametrizing small completions in terms of certain pairs of invo-
lutions from our amalgam.

Definition F.4.18. Pick c ∈ Γ(x)− {l} and y ∈ Γ(l)− {x}.
If α is the Tits amalgam, let u1 := x, u2 := l, v1 := y, v2 := c, and Ni the set

of involutions in Gui with cycle (u3−i, v3−i), and such that each s ∈ N1 generates
Gps for some geodesic ps of length m = 8 and origin u1. Define m0 := 8 in this
case.

If α is the G2(2)
′-amalgam, let u1 := l, u2 := c, and v1 := y; pick y′ ∈ Γ(c)−{x}

and let v2 := y′. In this case let Ni be the set of involutions in Gui with cycle (x, vi),
and define m0 := 3.

In either case, given (s, t) ∈ N1×N2, defineW (s, t) := 〈s, t〉 andm0(s, t) := |st|.
If α is the Tits amalgam let Σ(s, t) := xW (s,t) ∪ lW (s,t), and if α is the G2(2)

′-
amalgam let Σ(s, t) := xW (s,t) ∪ lW (s,t) ∪ cW (s,t).

Lemma F.4.19. Let P be the set of pairs (s, t) ∈ N1 ×N2 with m0(s, t) = m0.
Then the map φ : (s, t) 7→ Σ(s, t) is a bijection of P with the set B of apartments of Γ
containing cxly or y′cxly, for α the Tits amalgam or G2(2)

′-amalgam, respectively.

Proof. For Σ ∈ B, F.4.15 says that NG(Σ) contains reflections sx and sl of
Σ through x and l if α is the Tits amalgam, and reflections sl and sc if α is the
G2(2)

′-amalgam. Define a map ψ on B by ψ(Σ) := (sx, sl) or ψ(Σ) := (sl, sc) in
the respective cases. Then by (2) and (4) of F.4.15, ψ(Σ) ∈ P , and φ(ψ(Σ)) =
Σ(ψ(Σ))) = Σ.

Conversely let (s, t) ∈ P . Then m0(s, t) = m0, so W := W (s, t) ∼= D2m0 . If α
is the Tits amalgam, then as |st| = m0 = 8 = m, Σ := Σ(s, t) ∈ A, s = sx, and
t = sl by F.3.6. So by construction of ψ, ψ(φ(s, t)) = ψ(Σ) = (s, t). Thus ψ and
φ are inverses of each other, and the lemma holds in this case. Furthermore our
definitions are designed so that a similar argument works in the G2(2)

′-case: As
m0 = 3 = m/2 and c and l are distinct members of Γ(x), Σ := Σ(s, t) ∈ A with
s = sl and t = sc by F.3.7. Thus ψ(Σ) = (sl, sc) = (s, t). ¤

Lemma F.4.20. (1) If α is the Tits amaglam, then |N1| = 24, |N2| = 26,
|P| = 29, and Qx ∩Ql is transitive on N1.

(2) If α is the G2(2)
′-amalgam, then |Ni| = 4, |P| = 8, and Ql∩Qc is transitive

on N1.

Proof. By F.4.19, |P| = |B|, where B is the set of apartments through cxly
or y′cxly.

Suppose first that α is the Tits amalgam. By parts (2) and (3) of F.4.15, Gx has
two orbits on apartments through x, each of length |Gx|/2 = 5 ·210. Thus there are
5·211 apartments through x, and each such apartment has two paths x0x1x2x3 with
x1 = x. Since x1 has 5 neighbors and x2 has 3 neighbors, there are

(
5
2

)
· 2 · 2 = 40

such paths, which Gx also permutes transitively, so |B| = 5 · 212/40 = 29.
First consider s ∈ N1. Then s ∈ Gx,b for some b ∈ Γ8(x), and Gx,b ∼= D10

by F.4.6.8, so Gx,b = 〈s〉X where s inverts X of order 5. Next calculating in Ḡ,

s̄z̄ /∈ s̄Ḡx̄ (cf. 3.2.13 in [Asc82b]), so applying β, sz /∈ sGx . Thus CG̃x(s̃) = C̃Gx(s).

But there are two Gx-chief sections I on Qx/〈z〉, both of rank 4, and [I, s] = CI (s)
for each section, so by Exercise 2.8 in [Asc94], |CQx(s)| = 25 and Qx is transitive
on sGx ∩ sQx. Furthermore as Gx is transitive on geodesics ps of length m and
origin x, if ps′ is a second such geodesic, then sg = s′ for some g ∈ Gx. If in
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addition s′ has cycle (l, c), then s′ ∈ sQx, so as CGx(s)Qx = NGx(sQx), we may
choose g ∈ Qx. Thus sGx ∩ sQx = N1. Therefore |N1| = 24. Further Qx ∩Ql is of
index 2 in Qx, with NGx(Qx∩Ql) = Gx,l. So as s has cycle (l, c), [Qx, s] 6≤ Qx∩Ql,
and hence CQx(s) 6≤ Qx ∩Ql, so Qx = (Qx ∩Ql)CQx(s). Therefore Qx ∩Ql is also
transitive on N1.

So consider t ∈ N2. Now t inverts Y of order 3 in Gl, NGl(Y ) is the product
of Y with S ∼= D8, and t inverts 〈y〉 = CS(Y ) = S ∩ Ql ∼= Z4. This time N2 is the
union of the Ql-orbits of t and ty, |Ql| = 210, and |CQl(t)| = 25, so |N2| = 2|Ql :
CQl(t)| = 26, completing the proof of (1).

Suppose finally that α is the G2(2)
′-amalgam. Calculating as above but with

Gp = 1, there are |Gx| = 3 ·25 apartments through x, each containing two geodesics
x0 · · ·x4 with x2 = x; and Gx is transitive on the 24 such geodesics, so |P| = 8.
Let s ∈ N1. Then Gl is Z

2
4 extended by S3 with s ∈ Gl−Ql, so this time N1 = sQl

is of order 4. By symmetry, N2 = tQc is also of order 4. Also Qc ∩ Ql ∼= Z4 is a
complement to CQl(s), and hence is transitive on sQl . ¤

Let G3 := Gc, I := {1, 2, 3}, and E := (Gi : i ∈ I). Form the amalgam
λ := A(E) as in Example 36.1 in [Asc94]. Notice that G2 ∩ G3 ≤ G1 by F.4.6.6,
so G2,3 = G1,2,3.

We now begin to consider arbitrary faithful completions Ġ of α, which are
not necessarily small. Recall that α is the Ḡ-amalgam (Ḡ1, Ḡ1,2, Ḡ2); however for
notational purposes, it will be more convenient to identify α with the G-amalgam
(G1, G1,2, G2) via β. Observe that given any faithful completion ρ : α → Ġ, ρ

defines an isomorphism ρ : α → α̇ of amalgams, where α̇ := (Ġ1, Ġ1,2, Ġ2) with

ĠJ := ρ(GJ ). Further we can form the corresponding amalgam λ̇ in Ġ with respect

to ċ ∈ Γ̇(ẋ) defined by Ġẋ,ċ = ρ(Gx,c).

Lemma F.4.21. Assume ρ : α → Ġ is a faithful completion of α. Then ρ
extends to an isomorphism ρ : λ→ λ̇.

Proof. There is g ∈ Gx with lg = c. Let ġ := ρ(g), and define ϕ : Gc → Ġċ
by ϕ = c(ġ) ◦ ρ ◦ c(g−1), where c maps an element to conjugation by that element.
Then for h ∈ Gx,c,

ϕ(h) = ρ(hg
−1

)ġ = (ρ(h)ρ(g)
−1

)ġ = (ρ(h)ġ
−1

)ġ = ρ(h),

so ϕ extends ρ to Gc = G3, since G2 ∩G3 ≤ G1. ¤

The next result will provide the hypothesis for F.2.11.4.

Lemma F.4.22. Z(G) = 1.

Proof. Observe that for u ∈ Γ1, Z(Gu) is generated by an involution z(u).
Let N := m/2; we check in Ḡ that z(x̄) ∈ Ḡȳ for ȳ ∈ Γ̄N (x̄); so applying β,
z := z(x) ∈ Gy. Thus as there is a unique geodesic from x to y, z fixes each
member of that geodesic, and hence by F.4.6.6, z fixes each member of Γi(x) for
i ≤ N .

Let x0 · · ·xm be a geodesic between opposite points x0 and xm with xN ∈
{x, l}. By the previous paragraph, z(x2i) ∈ GxN for 1 ≤ i ≤ N . Furthermore as
Ḡx̄ = CḠ(z̄), z̄(x2i) 6= z(x̄2j) for i 6= j; so applying β, z(x2i) 6= z(x2j). Thus as
Γ2i(x) are orbits of Gx on Γ1, we conclude that the map u 7→ z(u) is an injection
on Γ1. Thus |zG| ≥ |Γ1| and hence as |zG||CG(z)| = |G| = |Γ1||Gx|, |CG(z)| =
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|Γ1||Gx|/|zG| ≤ |Gx|, so as Gx ≤ CG(z) we conclude that Gx = CG(z). Then as
Z(Gx) = 〈z〉 and z /∈ Z(Gl), the lemma holds. ¤

Given any faithful completion ρ : α→ Ġ of α, we have seen in F.4.21 that the
isomorphism ρ : α → α̇ extends to an isomorphism ρ : λ → λ̇. This isomorphism
therefore takesNi to Ṅi, and hence extends to a bijection ρ : N1×N2 → Ṅ1×Ṅ2; we
abuse notation and identify the two sets via this bijection. Next we can define Ṗ =
P(Ġ) as in F.4.19, now viewed as a subset of N1×N2, subject to our identification;

of course P is also a subset of N1 ×N2. We will soon see that ρ is small iff Ṗ 6= ∅,
and in that event Ṗ determines the equivalence class of the small completion ρ.

For (s, t) ∈ Ṗ , define M(s, t) to be the normal subgroup of Ĝ generated by
(ŝt̂)m0 , where r̂ := ξ(r) is the image of r := s or t under the universal completion
ξ of α.

Let γ := (F1, F1,2, F2) be the amalgam of the Lie group F ∼= G2(2) or
2F4(2),

extending our generalized Lie group Ḡ = E(F ). Recall we identify α with ᾱ via
the isomorphism β, so that GJ = ḠJ ; choose notation so that GJ ≤ FJ . As we saw
during the proof of F.4.5.2, GJ E FJ and FJ = F1,2GJ , with F1,2 a Sylow 2-group
of F . In particular, hypotheses (a), (b), and (c) of F.2.10 are satisfied with F , Ḡ in
the roles of “Y , X”, and {1, 2} is the least member “e” of our poset D. Moreover
hypotheses (e) and (f) of F.2.11 are also satisfied. By F.2.10.1, the conjugation
map c : F1,2 → Aut(α) is a representation of F1,2 on α.

We will show next that the sets Ṗ parametrize the equivalence classes of small
completions of α, and then use this fact to lift the automorphisms of α induced in
the completion F to G. Then we can complete the proof of Theorem F.4.8 using
Proposition F.4.17.

Recall from Notation F.4.4 that θG is the induced map from the universal
completion Ĝ to G, and ι : α→ Ḡ is the Lie completion.

Lemma F.4.23. Assume ρ : α→ Ġ is a faithful completion of α. Then
(1) ρ : α→ Γ̇ is small iff Ṗ 6= ∅.
(2) If (s, t) ∈ Ṗ ∩P then ker(θG) =M(s, t) = ker(θĠ) and β is equivalent to ρ.

(3) If Ṗ ∩ P 6= ∅, then β is equivalent to ρ.
(4) There are at most two equivalence classes of small completions of α.
(5) If the equivalence class of β is invariant under the image c(F1,2) of conju-

gation by elements in F1,2, then β is quasiequivalent to ι.

Proof. If Γ̇ is small then Ṗ 6= ∅ by F.4.20. Conversely if (s, t) ∈ Ṗ then an
argument in the proof of F.4.19 (based on F.3.6 and F.3.7) shows that Σ(s, t) is a

2m-gon in Γ̇, so Ġ is small. Thus (1) is established.

Now assume the hypotheses of (2). Let M := M(s, t), G∗ := Ĝ/M , and

θĠ := ρ̂ : Ĝ → Ġ the surjection induced by the completion ρ : α → Ġ as in

Definition F.2.2. As (s, t) ∈ Ṗ, (ṡṫ)m0 = 1; then (ṡṫ)m0 ∈ ker θĠ, so that θĠ induces

a surjection ϕ : G∗ → Ġ. Thus as ρ is faithful, ϕ is injective on the imageGi of Ĝi in
G∗, so G∗ is a faithful completion of α. By construction (s, t) ∈ P∗ := P(G∗), so G∗

is small by (1). Therefore |G∗| = |Ḡ| = |Ġ| by F.4.13.2, so M(s, t) = ker(θĠ). We
have symmetry as we are also assuming (s, t) ∈ P , so similarly M(s, t) = ker(θG).
The final assertion of equivalence in (2) now follows from F.2.4.2. Of course (2)
implies (3).
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For s ∈ N1 let Q(s) := {t ∈ N2 : (s, t) ∈ P}, and let P := Qx∩Ql or Qc∩Ql for
α the Tits amalgam or the G2(2)

′-amalgam, respectively. Notice P acts on the N1

and N2, and hence on P . By F.4.20, P is transitive on N1. Thus |P| = |N1||Q(s)|.
But by F.4.20, |P| = |N1×N2|/2, so |Q(s)| = |N2|/2. Further if the completions β

and ρ are not equivalent, then by (3), Q(s) ∩ Q̇(s) = ∅, so N2 is the disjoint union

of Q(s) and Q̇(s). Each subset determines an equivalence class by (3), completing
the proof of (4).

It remains to prove (5), so assume c(F1,2) stabilizes the equivalence class of β.
We have already observed that hypotheses (a), (b), and (c) of F.2.10 are satisfied, as
are hypotheses (e) and (f) of F.2.11. Further we are now assuming hypothesis (d) of

F.2.11, so we can appeal to F.2.11. Let G̃ := Inn(G), and in the notation of F.2.10

and F.2.11, let F̃ := G̃ π−(c(F1,2)). By F.2.11.1, we have a faithful completion

η : γ → F̃ . By F.4.22, Z(G) = 1, so c− : G → G̃ is an isomorphism, and by

F.2.11.4, β is equivalent to η|α. Let Φ be the geometry of F̃ . Then for f ∈ F , the

map G̃if 7→ F̃if is an injection of Γ into Φ, so as Γ possesses 2m-subgons, so does
Φ. Thus F̃ is small, so by Proposition F.4.17, η is quasiequivalent to the inclusion
ιF : γ → F . Thus F̃ ∼= F , so G̃ = E(F̃ ) ∼= E(F ) = Ḡ. We saw G ∼= G̃, so β is
quasiequivalent to ι by F.4.11.1. Thus (5) is established. ¤

We are now in a position to complete the proof of Theorem F.4.8 for our two
remaining generalized Lie amalgams. As we observed earlier, c(F1,2) ≤ Aut(α).
Therefore c(F1,2) permutes the equivalence classes of small completions of α via
the representation π of Definition F.2.5. By F.4.23.4, there are at most two such
equivalence classes. Assume that β is not quasiequivalent to ι; then in particular β
is not equivalent to ι, so that there are exactly two equivalence classes. Applying
F.2.8.5 with ι in the role of “µ”, c(F1,2) acts on the equivalence class [ι], so it must
also act on the second class [β]. But then by F.4.23.5, ι and β are quasiequivalent.
This contradicts our assumption, and so completes the proof of Theorem F.4.8.

We have the following two corollaries to Theorem F.4.8:

Corollary F.4.24. Suppose β : α→ G is a faithful completion of an extension
of a generalized Lie amalgam α, defined by an extension Ḡ of a generalized Lie
group Ḡ+. Assume also that |G| ≤ |Ḡ|. Then |G| = |Ḡ|, and G is isomorphic to
an extension of Ḡ+.

Proof. By Theorem F.4.8 and Lemma F.4.13.2, it suffices to show that β
is small. The argument establishing F.4.13.2 shows that |Γ̄m(x̄)| = |Qx|. Then
the number of pairs (p̄, b̄) where b̄ ∈ Γ̄m(x̄) and p̄ is a geodesic from x̄ to b̄ is
|Ḡx̄ : Ḡp̄| = (q1 + 1)|Qx̄|, since b̄ is on exactly q1 + 1 such geodesics. By F.4.6.3,
this value is also the number of corresponding pairs (p, b) from Γ. Assume that β
is large. Then each b determines a unique p, so that in fact

|Γm(x)| = |Gx : Gp| = (q1 + 1)|Qx|.

Define Φ(x) := {u ∈ Γ1 : d(x, u) ≤ m}. If Ḡ is not an extension of L3(q) then
m is even, so the counting argument in the proof of F.4.13, applied now just to
the points Φ(x) at distance at most m (which uses only F.4.6, and hence does not
depend on the hypothesis for Theorem F.4.8 that the completion is small) shows
that |Φ(x)| = |Γ̄1|+ q1|Qx|, so that

|G| = |Γ1||Gx| ≥ |Φ(x)||Gx| > |Γ̄1||Ḡx̄| = |Ḡ|,
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contrary to our hypothesis, establishing the corollary in this case. Similarly if Ḡ is
an extension of L3(q), the members b of Γ3(x) are lines, and as there is a unique
geodesic from x to b, there are q points in Γ(b)− Φ(x). Then |Γ1| > |Φ(x)| = |Γ̄1|,
so we obtain the same contradiction. ¤

Remark F.4.25. Notice that when Ḡ is G2(2)
′, the following Corollary holds

vacuously, as there are no involutions in G1 −Q1.

Corollary F.4.26. If β : α→ G is a faithful completion of a generalized Lie
amalgam α defined by an extension Ḡ of a generalized Lie group Ḡ+, and si is an
involution in Gi −G1,2 for i = 1, 2, then |s1s2| ≥ m; and in case of equality, G is
isomorphic to an extension of Ḡ+.

Proof. By F.3.6, |s1s2| ≥ m, and in case of equality, the completion is small.
In the latter case, G is isomorphic to an extension of Ḡ+ by Theorem F.4.8. ¤

F.4.2. Sufficient local-group-theoretic conditions for uniqueness of
completions. In this subsection, we assume that our Lie groups are defined over
fields of characteristic 2. We continue the convention that if Ḡ is the generalized Lie
group defining a generalized Lie amalgam, and Ḡ is not L3(q), then Ḡ1 is the max-
imal parabolic normalizing a long root subgroup of Ḡ. Subject to that convention,
the following facts are well known; see for example section 18 in [AS76a].

Lemma F.4.27. Let G = Ḡ be the generalized Lie group in characteristic 2
defining a generalized Lie amalgam α, with Sylow 2-group S as in Notation F.4.4.
Then

(1) If G ∼= L3(q) or G2(2)
′, then G has one conjugacy class of involutions, the

long root involutions.
(2) If G ∼= Sp4(q) then G has three classes of involutions: the long and short

root involutions and the involutions of type c2, all fused into Z(S).
(3) If G is not L3(q), Sp4(q), or G2(2)

′, then G has two classes of involutions,
the long and short root involutions. The long root involutions are the involutions
fused into Z(S).

(4) Assume G is not L3(q), and let Z1 := Z(O2′(G1)) and z ∈ Z
#
1 . Then

(i) O2′(G1) = CG(z) and z is a long root involution, and
(ii) unless G ∼= G2(2)

′, CG(t) ≤ G2, for some short root involution t in
O2(G2).

(5) If G is L3(q) then S = CG(z) for each z ∈ Z(S)#.

Recall from Definition F.4.3 the definition of an M̄-extension γ of a generalized
Lie amalgam α, defined by an extension M̄ of a generalized Lie group Ḡ, in which
Ḡ = F ∗(M̄). As in Notation F.4.4, we adopt some notational conventions:

Notation F.4.28. Let γ be an M̄ -extension of a generalized Lie amalgam α,
defined by the generalized Lie group Ḡ. Let β : γ → M0 be a faithful completion
of γ; we also write β : α → G0 for the restriction of β to α. Let S̄ := O2(Ḡ1,2)
and S := β(S̄). Typically T will denote a Sylow 2-group of M1,2, so that T is also
Sylow in each Mi. Also q denotes the order of the field of definition of Ḡ.

Lemma F.4.29. Let γ be an M̄-extension of the Lie amalgam α defined by a Lie
group Ḡ, β : γ →M0 a faithful completion, and T ∈ Syl2(M1,2). Let Li := O2′(Gi).
Then
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(1) If q = 2, then either α = γ, or Ḡ ∼= U4(2) or U5(2) is of index 2 in
M = Aut(Ḡ).

(2) T/S is cyclic and T splits over S. If t is an involution in T̄ − S̄, then one
of the following holds:

(i) t induces a field automorphism on Ḡ.
(ii) t induces a graph automorphism on Ḡ ∼= U4(q) or U5(q), and CḠ(t)

∼=
Sp4(q).

(iii) Ḡ ∼= U4(q), t = sz, where s induces a graph automorphism, z is a
long root involution in CḠ(s), and CM̄ (t) = CM̄ (s) ∩ CM̄ (z).

(3) If q > 2, then Li = G∞i .
(4) S = O2(M1,2) and O2(Mi) = O2(Gi) for i = 1, 2.
(5) Either

(i) O2(LiT ) = O2(Li), or
(ii) Ḡ ∼= U4(q), α ≤ δ ≤ γ, with δ a Z2/U4(q)-amalgam, |O2(LiT ) :

O2(Li)| = 2, i = 1, 2, and O2(LiT ) = O2(Li)〈t〉, where β−1(t) is an involution
inducing a graph automorphism on Ḡ.

(6) Either
(i) J(T ) = J(S) and Baum(T ) = Baum(S), or
(ii) Ḡ ∼= U4(2) or U5(2).

(7) Z(T ) = CZ(S)(T ) and one of the following holds:
(i) Z(S) = Z(L1).
(ii) Ḡ ∼= L3(q) and Z(S̄) is a long root subgroup of Ḡ.
(iii) Ḡ ∼= Sp4(q) and Z(S̄) is the direct product of a long and a short root

subgroup of Ḡ.
(8) β(S̄ ∩ O2(Ḡ)) ≤ O2(G0). Thus either S ≤ O2(G0), or Ḡ ∼= Sp4(2), G2(2),

or 2F4(2) and |S : S ∩ O2(G0)| = 2.

Proof. As the first seven statements are about the amalgam γ, we may work
in the extension M̄ of Ḡ in proving those statements, and we take G = Ḡ and
M = M̄ to simplify the notation. If q = 2 then either the subgroup of Out(G)
trivial on the Dynkin diagram of G is of odd order, or G is U4(2) or U5(2) and
|Out(G)| = 2. Thus (1) holds. Similarly the subgroup of Out(G) trivial on the
Dynkin diagram has cyclic Sylow 2-groups, so T/S is cyclic. Indeed the remainder
of (2) also holds; cf. [AS76a]. Similarly (3) is a well-known fact about the structure
of the maximal parabolic subgroups of G.

Now S = O2(G1,2) ≤ O2(M1,2). Suppose first that S = O2(M1,2). Then as
T ≤ M1,2 is Sylow in Mi, A.1.6 says that O2(Mi) ≤ O2(M1,2) = S ≤ Gi, so as
Gi E Mi we have O2(Mi) = O2(Gi), and (4) holds. So suppose that S < O2(M1,2).
Then by (2) there is an involution t ∈ O2(M1,2) − S, and t induces a field or
graph automorphism on G. In particular t is nontrival on B ∩ Li for i = 1 or 2,
contradicting t ∈ O2(M1,2). Thus (4) holds.

The proof of (5) is similar: If (5) fails, then there is u ∈ O2(LiT )−O2(Li), and
either u induces a nontrivial field automorphism on Li/O2(Li) or conclusion (ii) of
(5) holds.

Assume J(T ) 6≤ S. Then there is A ∈ A(T ) with A 6≤ G. Let V := R2(L2T )
and (L2T )

∗ = L2T/CL2T (V ). By our convention that G1 is the normalizer of a
long root group when Ḡ is not L3(q), L

∗
2 6= 1. From the structure of M , V is the

natural module for L∗2
∼= L2(q), the maximal nonsplit extension extension of that

module with a trivial submodule in I.2.3 if G is Sp4(q), or the orthogonal module
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for L∗2
∼= L2(q

2) ∼= Ω−4 (q) if G is unitary. When G is unitary and q = 2, no further
assertion is made in (6.ii), so we may assume that case does not hold. Thus from
B.4.2.1, all offenders in T ∗ are in S∗, contradicting A 6≤ S. Therefore J(T ) = J(S).
In each case Z(J(S)) contains a long root group, so that CT (Z(J(S))) ≤ S from
the structure of Aut(Ḡ), and hence Baum(T ) = Baum(S). Thus (6) is established.

Next we prove (7). As F ∗(Mi) = O2(Mi) for each extension M of the general-
ized Lie group G, Z(T ) ≤ O2(Mi). Thus Z(T ) ≤ O2(Gi) ≤ S by (4). The structure
of Z(S) is well known (cf. [AS76a]), so (7) holds.

Finally we prove (8). Let S̄0 := S̄ ∩ O2(Ḡ) and S0 := β(S̄0). If Li = G∞i for
i = 1 or 2, then as S ≤ Li, S ≤ O2(G0). Thus we may assume that Li is solvable for
i = 1 and 2, so Ḡ is L3(2), Sp4(2), G2(2),

2F4(2), G2(2)
′, or the Tits group. Now

Si := O2(O
2(Li)) ≤ O2(G0), so S1S2 ≤ O2(G0). Let S̄i := β−1(Si); we calculate

in Ḡ that S̄0 = S̄1S̄2, Further S̄ = S̄0 when Ḡ is L3(2), G2(2)
′, or the Tits group.

In the remaining possibilities, |S̄ : S̄0| = 2, completing the proof of (8). ¤

Lemma F.4.30. Let γ be an M̄-extension of the generalized Lie amalgam α,
T̄ ∈ Syl2(M̄1,2), β : γ → M0 a faithful completion of γ, T := β(T̄ ), and M0 ≤M .
Then if U,U ′ ⊆ T̄ are conjugate in M̄ , then β(U) is conjugate to β(U ′) in M0.

Proof. Recall from Definition 2.2.1 the Alperin-Goldschmidt conjugation fam-
ily D for T̄ in M̄ .

We claim that M̄D̄ := NM̄ (D̄) ≤ M̄j(D̄) for each D̄ ∈ D and some j(D̄). Notice

for D̄ ∈ D that D̄ = O2(M̄D̄) by condition (c) of Definition 2.2.1. From this it
follows (e.g. C.2.1.2) that:

If M̄D̄ ≤ K̄ ≤ M̄, then O2(K̄) ≤ D̄. (∗)

Next let Ē := D̄∩Ḡ. If Ē = 1, then D̄ induces outer automorphisms of Ḡ, and then
from F.4.29.2, O2′(CḠ(D̄)) 6= 1. But from conditions (b) and (c) of Definition 2.2.1,

O2′(CM̄D̄
(D̄)) ≤ D̄, contradicting that observation. Thus Ē 6= 1. Now M̄D̄ ≤ M̄Ē.

Applying (*) with M̄Ē in the role of “K̄”, we conclude

Ē ≤ O2(NḠ(Ē)) ≤ O2(M̄Ē) ∩ Ḡ ≤ D̄ ∩ Ḡ = Ē.

Thus Ē = O2(NḠ(Ē)), so by 3.1.5 in [GLS98], M̄Ē = O2(M̄J) for some ∅ 6= J ⊆
{1, 2}, and hence M̄Ē = M̄J . Therefore M̄D̄ ≤ M̄i for some i. Thus the claim is
established.

By the Alperin-Goldschmidt Fusion Theorem 16.1 in [GLS96], U,U ′ ⊆ T̄ are
conjugate in M̄ iff there exists a sequence U := U0, . . . , Un =: U ′ of subsets of T̄ ,
D̄i ∈ D, and gi ∈ M̄D̄i

, with Ui, Ui+1 ⊆ Q̄i := O2(M̄D̄i
), and Ugii = Ui+1. Then

Wi := β(Ui) ⊆ β(Q̄i) ≤ β(T̄ ) = T

and

hi := β(gi) ∈ β(M̄D̄i
) ≤ β(M̄j(D̄i)) =Mj(D̄i) ≤M0

with W hi
i =Wi+1. Thus β(U) is conjugate to β(U ′) in M0. ¤

We can now state our main result, giving sufficient local-group-theoretic con-
ditions for the uniqueness of the completion M0.

Theorem F.4.31. Let γ be an M̄ -extension of the Lie amalgam or Tits amal-
gam α, defined by Ḡ, a Lie group in characteristic 2 or the Tits group. Assume
Ḡ is not L3(2). Let β : γ → M0 be a faithful completion of γ, and M0 ≤ M a
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finite group. Let z be an involution in Z(O2′(G1)) if Ḡ is not L3(q), while we take
z ∈ Z(S) if Ḡ ∼= L3(q). Assume further:

(a) If Ḡ ∼= Sp4(q) or Un(q), then NM (Z(O2(Gi))) =Mi.
(b) CM (z) ≤M1.

(c) If Ḡ ∼= Sp4(q), then CM (t) ≤M2 for t ∈ Z(O2′(G2))
#, and F ∗(CM (u)) =

O2(CM (u)) for each involution u ∈ Z(S).
(d) If Ḡ ∼= Sp4(q) then |M :M1,2| is odd.
(e) Either M = O2(M), or Ḡ ∼= Sp4(2), G2(2), or

2F4(2).

Then either

(1) Ḡ = O2′(M̄) and M is isomorphic to an extension of Ḡ of odd degree, or
(2) M̄ ∼=M0

∼= Aut(U4(2)) ∼= PO5(3), and M ∼= L4(3) ∼= Ω+
6 (3).

Remark F.4.32. The hypothesis in (e) that M = O2(M) is not essential;
it could be eliminated, of course at the expense of modifying conclusion (1) by

removing the statement that Ḡ = O2′(M̄) and allowing any extension of Ḡ: In the
proof, simply pass to O2(M) and the subamalgam of γ obtained by intersectingMJ

with O2(M); use F.4.29.8 to ensure that the resulting amalgam is still an extension
of the amalgam of Ḡ.

We exclude the case where α is the amalgam of G2(2)
′ ∼= U3(3), primarily

because we cannot use either the Thompson order formula (as we do in F.4.43) or
Suzuki’s trick from F.4.49. We exclude the amalgam of L3(2) (which is the same
as the amalgam of A6 = Sp4(2)

′) for similar reasons.

We prove Theorem F.4.31 in a series of lemmas. Let Li := O2′(Gi), Qi :=
O2(Li), Zi := Z(Li), ZS := Z(S), T ∈ Syl2(M1,2), and Z := Z(T ). For u ∈M , let
Mu := CM (u).

Embed T ≤ T+ ∈ Syl2(M). If Ḡ ∼= Sp4(q), then T = T+ by hypothesis (d)
of Theorem F.4.31. Otherwise Z(T ) ≤ Z1, where Z1 is the root group of z, so
Z(T )# ⊆ zM1,2 from the structure of M̄ . Hence T− := NT+(NT+(T )) centralizes
someM1,2-conjugate of z, which we may take to be z. Therefore T− ≤ CM (z) ≤M1

by hypothesis (b), so that T− = T , and hence T+ = T in this case as well. Therefore:

Lemma F.4.33. T ∈ Syl2(M).

Lemma F.4.34. (1) If Ḡ is not L3(q), then Z1 is a TI-set in M and M1 =
NG(Z1).

(2) If Ḡ ∼= Sp4(q), then Z2 is a TI-set in M and M2 = NM (Z2).
(3) If Ḡ ∼= L3(q), then ZS is a TI-set in M and M1,2 = NM (ZS).

Proof. Suppose first that Ḡ is not L3(q). By hypothesis (b), CM (z) ≤M1 for

z ∈ Z#
1 , while from the structure of Ḡ1, G1 is transitive on Z#

1 . So (1) follows from
I.6.1.1. The proofs of (2) and (3) are similar; for (2), the appeal to (b) is replaced
by an appeal to (c). ¤

Lemma F.4.35. Involutions i, j ∈ S̄ are fused in Ḡ iff β(i) and β(j) are fused
in M .

Proof. By F.4.30, if i and j are fused in Ḡ, then u := β(i) and v := β(j) are
fused in M . Thus we may assume that u and v are fused in M , but i is not fused
to j in Ḡ. Then Ḡ has at least two classes of involutions, so by F.4.27.1, Ḡ is not
L3(q).



292 F. WEAK BN-PAIRS AND AMALGAMS

Suppose first that Ḡ ∼= Sp4(q). Then by F.4.29.6 and the structure of S,

A(T ) = {Q1, Q2}. Further as Qi E T , if Q1 ∈ QM2 then Q1 ∈ Q
NM (T )
2 using

Burnside’s Fusion Lemma A.1.35, a contradiction as |A(T )| = 2 while T ∈ Syl2(M)
by F.4.33. Thus Q1 is a weakly closed abelian subgroup of T , so by Burnside’s
Fusion Lemma A.1.35, NG(Q1) controls fusion in Q1. However by hypothesis (a),
NM (Q1) = M1. Now all three classes of involutions in Ḡ are fused into Q̄1, and
there is no further fusion in M1, contrary to our assumption that there is further
fusion in M .

Therefore Ḡ is not Sp4(q), so by F.4.27.3 we may take u := z and j a short
root involution. By hypothesis (b), Mz ≤M1.

Thus if Ḡ ∼= 2F4(q) and q > 2, then M∞
z is a 3′-group, and Mz is a 3′-group if

Ḡ ∼= 2F4(2) or the Tits group. However CM̄1
(j)∞ ∼= CM1(v)

∞ is not a 3′-group if

q > 2, and CM1(v) is not a 3′-group when q = 2. This contradiction shows that Ḡ
is not 2F4(q) or the Tits group.

Suppose next that Ḡ is unitary. If q > 2, then by F.4.29.6 and the structure
of Ḡ2, J(T ) =: V = Z(Q2). Again by Burnside’s Fusion Lemma A.1.35, NM (V )
controls fusion in V , so we obtain a contradiction as in the case of Sp4(q). Therefore
q = 2, and using the same argument, we may assume V is not weakly closed in T
with respect to M . Thus V h ≤ T but V h 6≤ S for some h ∈M . Also all involutions
in V are fused to z or v under L2, so by our assumption V # ⊆ zG. However as
V h ∈ A(T ) and V h 6≤ S, we conclude from F.4.29.2 that V h contains a graph
automorphism r; thus r = zy for some y ∈ M . Further we may choose r so that
Xi := CGi(r)

∼= Z2 × S4 and Vi := O2(O
2(Xi)) 6≤ O2(X3−i). However Mr ≤ My

1

and O2(M1) is 2-closed, so Vi ≤ O2(M
y
1 ), contradicting Vi 6≤ O2(X3−i). Notice this

argument shows:

Lemma F.4.36. If Ḡ ∼= U4(2) or U5(2), and f̄ is an involution in T̄ inducing a
graph automorphism on Ḡ, then β(f̄) /∈ zM .

Returning to the proof of F.4.35, we are left with the cases where Ḡ ∼= G2(q) or
3D4(q). Here Q1 is a special group with center Z1, and j is fused into Q̄1 under Ḡ,
so we may assume v ∈ Q1 by F.4.30. By F.4.29.4, Q1 = O2(M1). We could apply
the standard theory of large special groups (cf. [Smi81]) to obtain a contradiction,
but as the arguments are easy in our case, we go through the details: Let zg = v
for g ∈ M . From the structure of M̄1 and F.4.30, v centralizes at least one pair
of conjugates Zr1 and Zs1 of Z1 in Q1 with Φ(U) = Z1, where U := 〈Zr1 , Z

s
1〉. As

Z1 is a TI-set in M by F.4.34.1, U centralizes Zg1 by I.6.2.1. Now CT (Z1) = S, so
conjugating inMv, we may assume U ≤ Sg. Then as S/Q1 is abelian, Z1 = Φ(U) ≤
Qg1. Now conjugating in CMz (Z1), we may assume R := CQg1 (Z1) ≤ CT (Z1) = S.
As

Φ(Q1 ∩Q
g
1) ≤ Φ(Q1) ∩ Φ(Qg1) = Z1 ∩ Z

g
1 = 1,

R ∩ Q1 is elementary abelian; hence |R ∩ Q1| ≤ qw+1, where w = 2 or 4, for Ḡ ∼=
G2(q) or

3D4(q), respectively. Thus as |R| = q2w, |S : Q1| ≥ |R : R ∩Q1| ≥ qw−1.
As |S : Q1| = qw−1, we conclude S = RQ1; so S centralizes the image of v in
Q1/Z1, which is not the case. This contradiction completes the proof of F.4.35. ¤

We wish to reduce to the case where T = S, so we consider involutions in T
which are the image under β of outer automorphisms of Ḡ. The branch of the
argument that will lead to the exceptional conclusion (2) of Theorem F.4.31 arises
in case (ii) of F.4.37 when such involutions exist.
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Lemma F.4.37. Suppose f̄ ∈ T̄ induces a field or graph automorphism on Ḡ
such that CS̄(f̄) ∈ Syl2(CḠ(f̄)), and set f := β(f̄). Then

(1) Either q = r2 and Ḡ is of Lie type X(r2), or Ḡ ∼= Un(q). Further D̄ :=
CḠ(f̄)

∼= X(r) or Sp4(q), respectively.
(2) Let δ := (D̄1, D̄1,2, D̄2), where D̄J := CḠJ (f̄). Then δ is a D̄-amalgam,

and the restriction β : δ → D is a faithful completion, where DJ := β(D̄J ) and
D := 〈D1, D2〉.

(3) Let ĒJ := CM̄J
(f̄), Ē := CM̄ (f̄), and E∗ := Ē/〈f̄〉. Then ε = (E∗1 , E

∗
1,2, E

∗
2 )

is an E∗-extension of δ.
(4) Either

(i) CT (f) ∈ Syl2(CM (f)), or
(ii) M̄ ∼=M0

∼= Aut(U4(2)) and M ∼= L4(3).

Proof. Part (1) is standard (cf. F.4.29.2), and (2) and (3) follow easily from
(1). Thus it remains to establish (4). Therefore we assume that conclusion (i) of
(4) does not hold, and we must establish conclusion (ii).

Let Tf := CT (f) and Sf := CS(f), so that Tf ≤ CMi(f) since T ≤ M1,2.
Define Mf := CM (f), and embed Tf ≤ R ∈ Syl2(Mf ); by assumption, Tf < R.
From (3) and F.4.29.7, Z(Tf ) ≤ Z(Sf ) × 〈f〉. Further [Tf , Tf ] ≤ Sf by F.4.29.2,
and [Sf , Sf ] 6= 1. Thus Zf := Z(Tf ) ∩ [Tf , Tf ] ≤ Z(Sf ), and is normalized by
NR(Tf ). Indeed by F.4.29.7 we obtain one of three cases: either Ḡ ∼= L3(q) and
Zf ≤ Z; or Zf,1 := Zf ∩Z1 6= 1; or Ḡ ∼= Sp4(4), U4(2), or U5(2), with Z̄f generated
by an involution of type c2 in D̄′ ∼= A6. Further by F.4.35, Zf,1 is weakly closed in
Zf .

Let ZR := CZf (NR(Tf )) and EJ := β(ĒJ ). If CM (ZR) ≤MJ for some J , then
as Tf ∈ Syl2(EJ ), we conclude NR(Tf ) = Tf and hence Tf = R, contary to our
assumption. Thus CM (ZR) 6≤MJ . First assume we are in the case where Zf,1 6= 1.
Then as Zf,1 is weakly closed in Zf , NR(Tf ) normalizes Zf and hence also Zf,1, so
that 1 6= ZR ∩ Zf,1. Then CG(ZR) ≤ M1 by F.4.34.1, contradicting our previous
observation. In case Ḡ ∼= L3(q), NR(Tf ) normalizes 1 6= Zf ≤ Z ≤ ZS , so we
obtain a similar contradiction using F.4.34.3.

This leaves the case where Ḡ is Sp4(4), U4(2), or U5(2). Hence Ē = 〈f̄〉×D̄ with
D̄ ∼= Sp4(2). Thus Z(Tf ) = 〈f〉 × Z(Sf ) ∼= E8, and z is weakly closed in Z(Sf ).
But z is not weakly closed in Z(Tf ), arguing as in the previous paragraph with
NR(Tf ) but using hypothesis (b) of Theorem F.4.31. Thus zM ∩ T 6⊆ S. Suppose
first Ḡ ∼= Sp4(4). As z is fused into T−S, f = zg for some g ∈ G by F.4.29.2. Then
by hypothesis (b) of Theorem F.4.31, A4

∼= O2(Di) ≤ O2(Mg
1 ) = Lg1. Further as

Di is irreducible on Vi := O2(Di) and Vi 6≤ O2(D3−i), Vi ∩ Q
g
1 = 1, so D8

∼= V1V2
is embedded in Lg1/Q

g
1. This is impossible as L1/Q1

∼= L2(4).
Therefore Ḡ is U4(2) or U5(2). Then by F.4.36, f /∈ zM . Now if Ḡ ∼= U5(2), then

by F.4.29.2 all involutions in T−S are in fM , whereas we saw zM∩T 6⊆ S. Therefore
Ḡ ∼= U4(2). Here by F.4.29.2 there are two classes f̄ Ḡ and ēḠ of involutions in
M̄− Ḡ, with ē = f̄ z̄. Observe Z(T̄f ) contains two conjugates each of f̄ , ē, and t̄ the
short root involution, in addition to z̄. We have seen that z is not weakly closed in
Z(Tf ), and that t, f /∈ zM , so we conclude zM ∩ Z(Tf ) = {z} ∪ β(ēM̄ ∩ Z(T̄t)) is
of order 3. Also Tf < R < T as f /∈ zG, so as |Tf | = 25 and |T | = 27, we conclude
|R| = 26. Thus f is fused to some involution f ′ in T with |CT (f ′)| = 26, so f ∈ tM .
Thus M has two classes of involutions, with representatives z and f , with t ∈ fM

and fz ∈ zM .
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At this point, we put aside the remainder of the analysis of this case, relegating
it to the next section F.5. That analysis identifies M as L4(3) and is independent
of the rest of this section, aside from an inductive appeal to that final identification.
Thus we may regard the lemma as established. ¤

During the remainder of the proof of Theorem F.4.31, we assume that M is
not L4(3).

Suppose that S < T . Then we may choose f as in F.4.37. Hence Ḡ is not
Sp4(2), G2(2) or

2F4(2), and Tf ∈ Syl2(Mf ) by F.4.37.4. Now |Tf | < |CM̄ (i)|2 for
each involution i ∈ S̄ and each Ḡ. By F.4.30, eachM -class of involutions fused into
S has a representative of the form β(i) for some i ∈ S̄ with |CT (β(i))| = |CM̄ (i)|2,
so we conclude that fM ∩ S = ∅. However by F.4.29.2, T/S is cyclic, so that
fM ∩ T ⊆ fS. Thus by Generalized Thompson Transfer A.1.37.2, f /∈ O2(M),
since we saw in F.4.33 that T is Sylow in M . However we just observed that Ḡ is
not Sp4(2), G2(2), or

2F4(2), so M = O2(M) by hypothesis (e) of Theorem F.4.31.
This contradiction establishes:

Lemma F.4.38. T = S. In particular Ḡ = O2′ (M̄), so M̄ is an extension of Ḡ
of odd degree.

Thus it remains to show that M is isomorphic to an extension of Ḡ of odd
degree.

Lemma F.4.39. If Ḡ ∼= Sp4(q) and ū is an involution of type c2 in Z(S̄), then
CM (β(ū)) ≤M1,2.

Proof. Let u := β(ū). By F.4.38, S = T , so Z = ZS . By hypothesis (c)
of Theorem F.4.31, F ∗(Mu) = O2(Mu) =: Qu. As ū ∈ Z(S̄), u ∈ Z. Thus
Z ≤ Eu := Ω1(Z(Qu)). As Z = ZS , Z = Z1×Z2, and Zi is strongly closed in Z with
respect to M by F.4.35. Hence if Z = Eu, then Mu ≤ NM (Z1) ∩NM (Z2) = M1,2

by (1) and (2) of F.4.34. Thus we may assume Z < Eu. Then as Q1 and Q2

are the maximal elementary abelian subgroups of S = T , Eu ≤ Qi for i = 1 or
2. Thus Qu ≤ CS(Eu) = Qi as Eu > Z. Hence Qi ≤ Ω1(CMu (Qu)) = Eu, so
Qu = Qi. Thus Mu ≤ NG(Qu) = NG(Qi) ≤ Mi by hypothesis (a). Therefore
Mu = CMi(u) ≤M1,2. ¤

Lemma F.4.40. If v̄ is an involution in S̄ with CS̄(v̄) ∈ Syl2(CḠ(v̄)), then
CS(β(v̄)) ∈ Syl2(CM (β(v̄)).

Proof. Let v := β(v̄). If v̄ ∈ Z(S̄), the result is clear as S = T ∈ Syl2(M).
If not, then by F.4.27, v̄ is a short root involution in Ḡ, and Ḡ is not L3(q) or
Sp4(q). By F.4.35, v /∈ zM , and indeed zM and vM are the two conjugacy classes
of involutions of M . Hence v is extremal in S; that is, CS(v) ∈ Syl2(Mv).

¤

We recall (cf. page 246 of [Asc86a]) the definition of the k-generated p-core:

Definition F.4.41. Given a p-group P acting on a group H , and a positive
integer k, define:

Γk,P (H) := 〈NH(X) : X ≤ P,mp(X) ≥ k〉.

Lemma F.4.42. If Ḡ is not L3(q), there is a short root involution t̄ ∈ O2(Ḡ2)
with CM (β(t̄)) ≤M2.
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Proof. By F.4.27.4.ii, there is a short root involution t̄ ∈ Q̄2 with CM̄ (t̄)) ≤
M̄2. For ū ∈ M̄1∪M̄2, let X̄ū := CM̄ (ū), and set u := β(ū). Whenever X̄ū ≤ M̄i for
i = 1 or 2, setXu := β(X̄ū), so that Xu = CMi (u). For exampleMz = CM (z) = Xz

by hypothesis (b). Further Xt = CM2(t) by the choice of t̄.
The lemma holds by hypothesis (c) if Ḡ ∼= Sp4(q), so we may assume that Ḡ is

not Sp4(q).

Next let r denote the number of orbits of X̄z̄ on t̄M̄ ∩ X̄z̄. Since X̄z̄ = CM̄ (z̄),

X̄t̄ has r orbits on z̄M̄ ∩ X̄t̄. Choose representatives z̄ ḡj , 1 ≤ j ≤ r, with ḡj ∈ M̄

for the latter orbits; then t̄ḡ
−1
j , 1 ≤ j ≤ r are representatives for the former orbits,

and |CX̄t̄
(z̄ḡj ))| = |CX̄z̄

(t̄ḡ
−1
j )|.

By F.4.35, β(t̄ḡ
−1
j ), 1 ≤ j ≤ r, are representatives for the distinct orbits of

Xz on tM ∩ Xz and β(z̄ ḡj ), 1 ≤ j ≤ r, are representatives for the orbits of Xt on
zM ∩Xt. Therefore as Mz = Xz, Mz has r orbits on tM ∩Mz, and hence Mt has
r orbits on zM ∩Mt. Now CS̄(t̄) ∈ Syl2(CM̄ (t̄)), so by F.4.40 CS(t) ∈ Syl2(Mt);
thus each orbit has a representative in CS(t) ≤ Xt. Therefore the elements β(z̄ ḡj ),
1 ≤ j ≤ r, are representatives for the Mt-orbits. Let gj ∈M with zgj = β(z̄ ḡj ). As
Mz = Xz,

|CMt (z
gj )| = |CMz (t

g−1j )| = |CX̄z̄
(t̄ḡ

−1
j )| = |CX̄t̄

(z̄ḡj )| = |CXt(z
gj )|,

so we conclude that CXt(z
gj ) = CMt(z

gj ).
We have shown that Xt controls Mt-fusion in zM ∩Xt, and that CMt (u) ≤ Xt

for each u ∈ zM ∩ Xt. Therefore by 7.3 in [Asc94], each member of zM ∩ Mt

fixes a unique point of Mt/Xt. Then by 7.4 in [Asc94], Xt controls Mt-fusion of
2-elements in Xt.

At this point we assume Xt < Mt, and derive a contradiction. Set V := 〈zXt〉,

Kt := O2′(Xt), and Lt := 〈zMt〉. Note that F ∗(Xt) = O2(Xt) using β, so that
V ≤ Ω1(Z(O2(Xt)) by B.2.14.

Suppose first that Ḡ is not unitary; then as Ḡ is not L3(q) or Sp4(q), Ḡ is
G2(q),

3D4(q),
2F4(q), or 2F4(2)

′. In these cases V is the natural module for
Kt/CKt(V ) ∼= L2(q), so V is noncyclic and V # = zMt . Thus we have the hypotheses
of lemma I.8.5, and part (1) of that lemma says that Xt∩Lt is a Borel subgroup of
the Bender group Lt with V = Ω1(TL) for TL ∈ Syl2(Xt ∩ Lt). Further by I.8.5.2,
AutAut(Xt)(V ) is solvable, so as Xt induces L2(q) on V , it follows that q = 2. Hence
|V | = 4, so as V = Ω1(TL), Lt ∼= L2(4) or U3(4). As q = 2, Xt is a 5′-group for
each choice of Ḡ, so Lt is not U3(4), and hence Lt ∼= L2(4). Therefore as O2(Xt)
centralizes V , but V is self-centralizing in Aut(Lt), O2(Xt) = V × CO2(Xt)(Lt).
This contradicts the fact that O2(Xt) does not split over V from the structure of
X̄t.

Therefore Ḡ ∼= U4(q) or U5(q). Thus V is the 3-dimensional orthogonal Fq-
module for Kt/CKt(V ) ∼= L2(q), with t ∈ U := CV (Kt). Suppose Xt < NMt(U) =:
MU , and let M∗

U := MU/U and LU := 〈zMU 〉. Then V ∗ is the natural module for
K∗t /CK∗t (V

∗), and as z fixes a unique point of Mt/Xt, z
∗ fixes a unique point of

M∗
U/X

∗
t , so we can argue as in the previous paragraph, with V ∗, M∗

U in the roles
of “V , Mt”, and conclude that q = 2 and L∗U

∼= L2(4). Again O2(Xt) = (V ∩LU )×
CO2(Xt)(LU ), so O2(Xt) splits over V ∩ LU = [V,O2(Xt)]. This reduces us to the

case Ḡ ∼= U4(2), with NMt(U) the extension of E4 × L2(4) by an involutory outer
automorphism. But in that case, O2(NMt(U)) = CQ2(Kt) contains an element u
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of zM2 . Then Mu contains O2(LU ) ∼= L2(4)—impossible, since by hypothesis (b),
Mz ≤ M1 is solvable. This contradiction shows that Xt = NMt(U). In particular,
〈t〉 < U since we are assuming Xt < Mt; hence q > 2.

Now choose W maximal subject to 〈t〉 ≤ W ≤ U and MW := NMt(W ) >
XW := NXt(W ). By the previous paragraph, W < U . Observe first by applying
1.1.3.2 in Xt that F

∗(XW ) = O2(XW ), so in particular O(XW ) = 1. Further as
q > 2, the long root group R̄ in Q̄2 containing z̄ is noncyclic, so as Mr ≤ M1 for
each r ∈ R# by hypothesis (b), using Generation by Centralizers of Hyperplanes
A.1.17,

O(MW ) = 〈CO(MW )(r) : 1 6= r ∈ R#〉 ≤ XW ,

and hence O(MW ) = 1 as O(XW ) = 1. As z fixes a unique point of Mt/Xt, z fixes
a unique point of MW /XW , so XW controls 2-fusion in XW with respect to MW

by 7.4 in [Asc94].

Set M̃W :=MW /W and LW := 〈UMW 〉. By maximality of W , in the notation

of Definition F.4.41, Γ1,Ũ (M̃W ) ≤ X̃W , and as XW controls fusion in XW with

respect to MW , ũMW ∩ X̃W = ũXW for each ũ ∈ Ũ#. Therefore by 7.3 in [Asc94],

ũ fixes a unique point of M̃W /X̃W . Hence the hypotheses of I.8.5 are satisfied

by M̃W , X̃W , Ũ . As MW > XW and X̃W = NM̃W
(Ũ), Ũ 6= L̃W . Thus as

O(MW ) = 1, Ũ is noncyclic by I.8.5.1. Thus I.8.5.1 says that X̃W ∩ LW is a Borel

subgroup of the Bender group L̃W . As Kt centralizes U , it centralizes W ; thus
Kt ≤ MW ≤ NG(LW ). As q > 2, Kt = K∞t , so as CAut(L̃W )(Ũ) is solvable, Kt

centralizes L̃W . This is impossible as U ≤ Kt and Z(L̃W ) = 1. This contradiction
completes the proof of F.4.42. ¤

Lemma F.4.43. If Ḡ is not L3(q), then |M | = |M̄ |.

Proof. Assume that Ḡ is not L3(q). Then by F.4.27, M̄ has at least two
classes of involutions.

By F.4.38, S = T . Then by F.4.35 we may choose sets Ī and I of representatives
for the conjugacy classes of involutions of M̄ andM , such that Ī ⊆ S̄ and β : Ī → I
is a bijection. By F.4.27, CM̄ (̄i) ≤ M̄j(̄i) for j (̄i) = 1 or 2, while by Hypothesis (b) of

Theorem F.4.31, together with F.4.39 and F.4.42, β(CM̄ (̄i)) = CM (β(̄i)) ≤ Mj(i).

Then by another application of F.4.35, for involutions ū, v̄ ∈ CM̄ (̄i), v̄ ∈ ūM̄ iff
β(v̄) ∈ β(ū)M . Finally as Ḡ is not L3(q), M̄ has at least two classes of involutions,
so applying the Thompson Order Formula 45.6 in [Asc86a] we conclude that |M̄ | =
|M |. This establishes the result. ¤

Lemma F.4.44. If Ḡ is not L3(q), then M is isomorphic to an extension of Ḡ
of odd degree.

Proof. By F.4.43, |M̄ | = |M |. Therefore |M̄ | = |M0|, and M0 is isomorphic
to an extension of Ḡ by F.4.24, while that extension is of odd degree by F.4.38.
Thus |M0| = |M̄ | = |M |, so M =M0, and the lemma holds. ¤

By F.4.38, Ḡ = O2′ (M̄). Then by Lemma F.4.44, we have established con-
clusion (1) of Theorem F.4.31 when Ḡ is not L3(q). Thus we may assume in the
remainder of the section that Ḡ ∼= L3(q). We will show that the coset geometry
Γ of M is small, and then apply Theorem F.4.8; to do so, we will make use of an
observation of Suzuki.

Recall by the hypotheses of Theorem F.4.31 that Ḡ is not L3(2), so that q > 2.
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Lemma F.4.45. M =M0.

Proof. Assume that M0 < M . Then by induction on the order of G, M0 is
an extension of Ḡ ∼= L3(q). By hypothesis (b), CM (z) ≤ M1 ≤ M0. By F.4.38,

S = T , so that O2′(M0) ∼= L3(q), and hence M0 has one class of involutions. Thus
CM (j) ≤M0 for each involution j ∈M0. Also NG(S) ≤ NG(Z) ≤M0 by F.4.34.3,
so M0 is strongly embedded in M by I.8.1.3. Therefore by 7.6 in [Asc94], M0 has
a subgroup of odd order which acts transitively on the involutions in M0. But M0

has i := (q3 − 1)(q + 1) involutions, while no subgroup X of M0 of odd order is
divisible by i. (E.g., argue as in the proof of A.1.12 to show that X has a normal
subgroup of order r, where r is a Zsigmondy prime divisor of q3 − 1 if q > 4, and
r = 7 if q = 4. Then |NM0(Y )| ≤ (q2 + q + 1)3 log2(q) < i, since q > 2.) ¤

For convenience we next collect some facts established at various earlier points.
Recall Li = O2′(Gi).

Lemma F.4.46. (1) M has one class zM of involutions.

(2) For each involution j ∈M , O2(CM (j)) = O2′(CM (j)) =: T (j) ∈ Syl2(M).
(3) Qi is weakly closed in Mi with respect to M .
(4) Mi = NM (Qi) and Z

M ∩Qi = ZLi is of order q + 1.
(5) NM (T ) =M1,2.

Proof. By F.4.38, T = S; so by F.4.35, M has one class zM of involutions,
proving (1). As M1,2 ≤ NM (T ) ≤ NM (Z) = M1,2, (5) holds. By hypothesis (b),

CM (z) lies in M1 and hence in M1,2. Then S = O2(M1,2) = O2′(CM (z)), and
hence (2) holds. Next A(T ) = {Q1, Q2} and Qi E T , so if the normal subgroups
Q1 and Q2 of T are conjugate in M , they are conjugate in NM (T ) by Burnside’s
Fusion Lemma A.1.35. Then Q1 and Q2 are conjugate in M1,2 by (5), whereas
M1,2 normalizes both Q1 and Q2. Thus (3) holds. By F.4.34.3, Z is a TI-set in
M with NM (Z) =M1,2 ≤Mi, so as ZLi partitions Qi, Z

M ∩Qi = ZLi and hence
NM (Qi) ≤ LiNM (Z) ≤Mi. Finally Mi ≤ NM (Qi), so that (4) holds. ¤

Let B̄ be a Hall 2′-subgroup of M̄1,2, and B = β(B̄). Thus NM (T ) = M1,2 =
TB using F.4.46.5. Let Ȳi := CB̄(L̄i), M̄+ the subgroup of M̄ inducing inner-
diagonal automorphisms on Ḡ, and B̄0 := B̄ ∩ M̄+. Set Yi := β(Ȳi) and B0 :=
β(B̄0). Notice that since field automorphisms do not centralize Li, Yi ≤ B0 is
abelian.

Lemma F.4.47. (1) Either
(i) Y2 6= 1, or
(ii) q = 4, Mi = Li, B0 = B is of order 3, and CM (B) is of odd order.

(2) If Y2 6= 1, then B0 = CM (B0) and Y2 is not inverted in M .
(3) B0 = F (B).

Proof. By construction, B̄0L̄i is a maximal parabolic in L3(q) or PGL3(q),
with M̄i an extension of B̄0L̄i by field automorphisms, which are of odd order by
F.4.38. Therefore applying β to the structure of PΓL3(q), (3) and all parts of
(1) hold, except possibly the statement in (1.ii) that CM (B) is of odd order. In
particular if M̄ is L3(4), then Mi = Li, M1,2 = TB, and CZ(B) = 1, so Mz = T
using hypothesis (b). Then by F.4.46.1, the centralizer of each involution in M is
a 2-group, so CM (B) is of odd order. Thus (1) is established.
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It remains to prove (2), so assume that Y2 6= 1. From the structure of M̄ (cf.
18.7 in [AS76a]),

CM̄ (Ȳ2) = CM̄2
(Ȳ2) = Ȳ2 × Ī ,

where Ī is a Levi complement to Q̄2 in L̄2, and NM̄ (Y2) = ĪB̄. Then applying
β, CM2(Y2) = Y2 × I , NM1(Y2) ≤ BI , and Y2 is not inverted in M2. Similarly
CM̄ (〈̄i, Ȳ2〉) ≤ Ī Ȳ2 for each involution ī ∈ Ī ∩ T , and Ī ∩ T̄ = Z̄ x̄ for some x̄ ∈ M̄1.
Set i := β(̄i); then i ∈ ZM1 , so CM (i) ≤ M1 by hypothesis (b), and Zx is a TI-
set in M with normalizer Mx

1,2 by F.4.34.3. Then applying β, CM (〈i, Y2〉) ≤ IY2
and NM (ZxY2) ≤ IY2. Thus if CM (Y2) > Y2I , then by I.8.1.3, Y2I is strongly
embedded in CM (Y2), so by 7.6 in [Asc94], there is a subgroup of odd order in I
transitive on the involutions in I . But L2(q) has no subgroup of order q2 − 1.

This contradiction shows that CM (Y2) = Y2I ; hence as Y2 ≤ B0, we conclude
CM (B0) = Y2CI(B0) = B0. Also by a Frattini Argument,

NM (Y2) = CM (Y2)(NM (Y2) ∩NM (Zx)) ≤ Y2INM1(Y2) ≤ IB,

so Y2 is not inverted in M . ¤

Lemma F.4.48. Let g ∈M −M1,2. Then one of the following holds:
(1) T ∩ T g = 1 and zzg is of odd order.
(2) T ∩ T g = ZZg = Q1 or Q2, and |zzg| = 2.
(3) Z,Zg 6= T ∩ T g ∈ ZG and |zzg| = 4.

Proof. Suppose 1 6= T ∩T g, and let j ∈ T ∩T g be an involution. Then j ∈ Qi
for i = 1 or 2, and

Z ≤ Qi ≤ CT (j) = T ∩ O2′ (CM (j)) = T ∩ T (j) (∗)

by F.4.46.2. Similarly Zg ≤ T (j). Now if zg ∈ Qi then we may take j = zg, so
Qi = ZZg by (*) as g 6∈ M1,2, so (2) holds. On the other hand, if zg /∈ Qi, then
〈Z,Zg〉 = T (j) and (3) holds.

We have shown that if T ∩ T g 6= 1, then zzg has even order, and (2) or (3)
holds. Conversely if |zzg| is even, then there is an involution j ∈ 〈zzg〉, and

j ∈ O2′(CM (z)) ∩ O2′(CM (zg)) = T ∩ T g;

thus T ∩ T g = 1 iff |zzg| is odd, completing the proof of the lemma. ¤

Let Γ be the geometry of M defined in Notation F.4.4. By F.4.46.4, Mi =
NM (Qi), so we may identify Γi withQ

M
i , andQgi is incident withQ

h
3−i iff [Qgi , Q

h
3−i] =

Qgi ∩ Q
h
3−i ∈ Z

M . Recall that we regard Γ1 as the points of the geometry, and Γ2

as the lines of the geometry.
We now invoke a clever argument of Suzuki from [Suz65], which will allow

us to construct an apartment, and then we can finish things off via an appeal to
Theorem F.4.8.

Using β we may choose involutions si ∈ NMi(B)−M1,2.

Lemma F.4.49. Let W := NM (B) and W ∗ := W/B. Let W+ := 〈s1, s2〉B.
Then

(1) Zsi is the unique B-invariant member of ZM ∩Qi − {Z}.
(2) If g ∈ W , then either Bg contains an involution, or T ∩ T g = T , Zs1 , or

Zs2 .
(3) s∗1s

∗
2 is of order 3.

(4) Σ = Q
W+

1 ∪Q
W+

2 is an apartment in Γ.
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Proof. As Mi/Qi is an extension of L2(q), B acts on exactly two Borel sub-
groups of Li/Qi, and hence on exactly two members Z and Zsi of ZM ∩ Qi by
F.4.46.4. Hence (1) holds.

Let g ∈ W . First NT (B) = CT (B) = 1 as q > 2, so

NW (T ) =W ∩NM (T ) =W ∩ BT = BNT (B) = B.

Thus B is the stabilizer in W of T, T g, and hence if w ∈W with T g = Tw then

w ∈ {u ∈W : T u = T g} = Bg.

Next if T ∩ T g = 1, then

NM (T ) ∩NM (T g) = TB ∩ T gB = (T ∩ T g)B = B,

and |zzg| is odd by F.4.48; so there is an involution w ∈ 〈z, zg〉 with zw = zg. Then

Tw = T (z)w = T (zw) = T (zg) = T g,

and w interchanges T and T g, so w acts on NM (T ) ∩NM (T g) = B. Thus w ∈W ,
and then w ∈ Bg by the previous paragraph.

So assume 1 < T∩T g < T . Then by F.4.48, either T∩T g = Qi, or T∩T g ∈ ZG.
In the first case, from the structure of Mi, there is an involution w ∈ NMi(B) with
T g = Tw, so w ∈ Bg as in the previous paragraph. In the second, T ∩ T g = Zsi by
(1). Thus (2) is established.

Suppose T ∩ T g = Zs1 = T ∩ T h for some h ∈ W . Then Zg 6= Zs1 by F.4.48.
Hence as Q1 is the unique member of QM1 through Zs1 , Q0 := ZgZs1 is the unique
member of QM2 through Zs1 . Similarly Q0 = ZhZs1 . Thus applying (1) to Q0, Z

s1

in the roles of “Qi, Z”, Z
g = Zh is the unique B-invariant member of ZM ∩ Q0

distinct from Zs1 . Thus Bg = Bh.
In view of (2) and the previous paragraph, we have shown that there are at

most 3 cosets B,Bg1, Bg2 of B in W which do not contain involutions, where
T ∩T gi = Zsi . Thus there are at most 3 members of W ∗ which are not involutions.
Therefore the dihedral group W ∗

+ must be of order 4, 6, or 8. Now if Y2 = 1, then
by F.4.47.1, B0 = B is of order 3; then s1 and s2 invert B, so that s1s2 ∈ CM (B),
which by F.4.47.1 is of odd order. Therefore W ∗

+ is not of order 4 or 8, so that (3)
holds. Thus we may assume that Y2 6= 1, so |B0| > 3, W acts on B0 by F.4.47.3,
and B0 is the kernel of this action by F.4.47.2. Then as B0 is of rank 2, if s∗1s

∗
2

is of even order, then 〈s1s2〉 contains an element inverting B0, which contradicts
F.4.47.2. Thus (3) is established.

As Q1, Q2 ∈ Fix(B) and |s∗1s
∗
2| = 3, F.3.6 shows that Σ is an apartment in

Γ. ¤

We are now in a position to complete the proof of Theorem F.4.31. By F.4.45,
M = M0. By F.4.49.4, Γ is small. Thus by part (1) of Theorem F.4.8, M is
isomorphic to an extension of Ḡ, and that extension is of odd degree by F.4.38.

F.5. Identifying L4(3) via its U4(2)-amalgam

In this section we complete the proof of Lemma F.4.37.4 begun in the previous
section. Thus it remains to use the information produced at that point to identify
M as L4(3).

In our first two lemmas, we record information about the target group L4(3).

Let F := F3, and V the natural 6-dimensional F -module for Ṁ := Ω+
6 (3)

∼= L4(3).

Thus Ṁ preserves a quadratic form q and the associated bilinear form ( , ) on V .
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Pick an orthogonal basis X := (xi : 1 ≤ i ≤ 6) for V , with q(xi) = 1 for 1 ≤ i ≤ 5
and q(x6) = −1.

For J ⊆ I := {1, 2, 3, 4, 5} of even order, write eJ for the involution in O(V, q)
with [V, eJ ] = 〈xj : j ∈ J〉; thus CV (eJ ) = 〈x6, xi : i ∈ I − J〉.

Let Ṁ0 be the stabilizer in Ṁ of Fx6. The following facts are easily established:

Lemma F.5.1. (1) Ṁ0 = Ġ〈ḟ〉, where Ġ := CṀ (x6) ∼= Ω5(3) ∼= U4(2), and ḟ is

the involution in Ṁ fixing xi, i = 3, 4, 5, with ḟ(x6) = −x6, and with ḟ(x1) = x2.

(2) Ṁ0
∼= PO5(3) ∼= Aut(U4(2)).

(3) V −2 := [V, ḟ ] = 〈x1 − x2, x6〉 is a projective line of sign −1, and V −4 :=

〈x1 + x2, x3, x4, x5〉 = CV (ḟ) is a linear 4-space of sign −1.

(4) Ḋ := CĠ(ḟ) = CĠ(x1−x2)〈ż〉, with CĠ(x1−x2) acting faithfully as Ω
−
4 (3)

on V −4 , and ż := e1,2,3,4 the involution with [V, ż] = V +
4 := 〈xj : 1 ≤ j ≤ 4〉 of

dimension 4 and sign +1. Further −ż induces a reflection on V −4 , so Ḋ ∼= S6.

Let Ṁ1 := CṀ (ż) = NṀ (V +
4 ), and Ṁ2 the “monomial” subgroup which is the

stabilizer in Ṁ of Λ := {Fxi : 1 ≤ i ≤ 6}. Observe that:

Lemma F.5.2. (1) Ṁ2 is the split extension of {eJ : J ⊆ I and |J | is even }
=: Q̇2

∼= E16 by S5. Ṁ1 is the split extension of Q̇1
∼= Q2

8 by S3 × S3.
(2) Ṁ1 and Ṁ2 are the maximal parabolics of Ṁ0

∼= Aut(U4(2)) over Ṫ :=

Ṁ1,2 ∈ Syl2(Ṁ), where Ṫ = Ṡ〈ḟ〉 and Ṡ := O2(NṀ2
(Fx5)).

Recall we had reduced the proof of F.4.37.4 to the case where γ is the M̄ -
amalgam for M̄ ∼= Aut(U4(2)). By F.5.1 and F.5.2, there is a faithful completion

µ : γ → Ṁ0 of the M̄ -extension γ of α, with µ(M̄J) = ṀJ for J = {1}, {2},
and {1, 2}, µ(z̄) = ż, and µ(f̄) = ḟ . Thus if we write γM := (M1,M1,2,M2) and

γ̇ := (Ṁ1, Ṁ1,2, Ṁ2), then

σ := β ◦ µ−1 : γ̇ → γM

is an isomorphism of amalgams.
For X̄ a subset of M̄i for i = 1 or 2, let Ẋ := µ(X̄) and X := β(X̄). Thus

σ(Ẋ) = X . Recall the definition of ĒJ = CM̄J
(f̄) from F.4.37.3; applying µ, we

obtain Ėi = CṀi
(ḟ) ∼= E4 × S4. Set Ȧi := O2(Ėi) ∼= E16.

Lemma F.5.3. (1) Ȧi = 〈ḟ〉 × CQ̇i(ḟ)
∼= E16.

(2) CQ̇2
(ḟ) = {eJ : 1, 2 ∈ J ⊆ I and |J | is even }.

(3) CQ̇1
(ḟ)# consists of ż and the involutions u̇ with [V, u̇] a projective line in

V +
4 of sign −1.

(4) Ṁ has two classes żṀ and ḟṀ of involutions: the involutions ẇ with [V, ẇ]
a 4-space of sign +1, or a projective line of sign −1, respectively.

(5) σ(u̇Ṁ ∩ Ṫ ) = uM ∩ T for u̇ := ż and ḟ .

(6) ṫ := e1,2 generates [Q̇2, ḟ ].
(7) ftz ∈ zM .
(8) |zM ∩A1| = |zM ∩Q2| = 5 and |zM ∩ A2| = 9.

Proof. Parts (1)–(4) and (6) are either well-known or easy calculations. Recall
we showed in the proof of F.4.37.4 that M has two classes of involutions, with
representatives f and z; and M̄ has four classes, with representatives f̄ , f̄ z̄, z̄, and
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t̄, where fz ∈ zM and t ∈ fM . As Ṁ and M satisfy the same hypothesis, by

symmetry ḟ ż ∈ żṀ and ṫ ∈ ḟṀ ; or this is easy to calculate directly using (4). Then

(5) follows using F.4.35. Finally (7) and (8) are easy calculations in Ṁ ; given (5),
they follow in M also. ¤

Now recall from the proof of F.4.37.4 that Mt := CM (t), Tt := CT (t) ∈
Syl2(Mt), Tf := CT (f) ∈ Syl2(CMi (f)), and Tf < R with R Sylow in Mf :=
CM (f).

Lemma F.5.4. (1) Ai = CM (Ai).
(2) R ∼= Tt ∼= D8 ×D8.
(3) R acts on Ei and EiR ∼= D8 × S4.
(4) A(T ) = {A1, A2, A

y
2 , Q2} for y ∈ T −Tt, NM (Q2)/Q2

∼= NM (A1)/A1
∼= S5,

and NM (A2)/A2
∼= S3 × S3.

(5) AutM (Ai) contains a transvection.

Proof. As z ∈ Ai, CM (Ai) = CM1(Ai) using hypothesis (b) of Theorem

F.4.31; then (1) follows as CṀ1
(Ȧi) = Ȧi. Since Tt ∼= D8 ×D8 is Sylow in Mt, and

f ∈ tM , (2) follows. In particular by (2), R acts on each of the 4 members of A(R),
so R acts on Ai = O2(Ei). Indeed calculating in Ṁ and applying µ, we conclude
A(T ) = {A1, A2, A

y
2 , Q2} for y ∈ T −Tt. Thus A1 and Q2 are the members of A(T )

normal in T , so A1 and Q2 are not conjugate in NM (T ), since if they were then
{A1, Q2} would be an orbit of length 2. Therefore by Burnside’s Fusion Lemma
A.1.35, A1 /∈ QM2 . Also A2 /∈ AM1 ∪ QM2 , as A2 has a different fusion pattern by
F.5.3.8. Thus Mz is transitive on {Ag : z ∈ Ag}, for each A ∈ A(T ), so NM (Ai) is
transitive on zM ∩Ai. Further AutM1(A1) ∼= S4 and NM1(A2) = Tt, so we conclude
from F.5.3.8 and (1) that NM (A1)/A1 acts faithfully as S5 on zM ∩ A1, and that
|NM (A2) : A2| = 36. Then from the structure of GL4(2), (4) holds. An element
of Tt induces a transvection on Ai, so (5) holds. We saw R acts on Ai, so R acts

on O2(NMf
(Ai)). Calculating in Ṁi and applying σ, O2(Ei) ∼= A4. But by (4),

O2(NMf
(Ai)) ∼= A4, so O

2(Ei) = O2(NMf
(Ai)) is R-invariant. As |Tf | = 25 and

|R| = 26, Tf E R. Thus R acts on O2(Ei)Tf = Ei, so (3) holds. ¤

Recall from F.4.37 that D̄ := Cf̄
∼= Sp4(2), D̄J := CḠJ (f̄), and DJ := β(D̄J ).

Thus Di
∼= Z2 × S4.

Lemma F.5.5. (1) D := 〈D1, D2〉 ∼= S6.
(2) R0 := CR(O

2(D)) ∼= Z4.
(3) RD =Mf = CM (f).

(4) M0
∼= M̄ ∼= Ṁ0

∼= Aut(U4(2)).

Proof. Let M∗
f :=Mf/〈f〉. Now R ∼= D8×D8 by F.5.4.2, and u := ftz is the

diagonal element in the center of R, while u ∈ zM by F.5.3.7. Thus f is central in a
D8 factor of R, so R∗ ∼= E4×D8. Now from F.5.4, t and tz are the involutions i in
T with CT (i) = Tt = J(T ), and tz ∈ tT . We saw in the proof of F.5.3 that t ∈ fM ,
so f = tm for some m ∈ M , with Rm = Tt, and it follows that (z, t)m = (u, f).
Thus as Tt = CM (〈z, t〉), R = CMf

(u). Therefore R∗ = CM∗
f
(u∗) as u ∈ zM is not

M -conjugate to uf since fu = tz ∈ fM . Further as 〈u∗〉 = Φ(R∗), NM∗
f
(R∗) ≤

CM∗
f
(u∗) = R∗. Thus by Burnside’s Fusion Lemma A.1.35, there is no fusion

among the involutions in Z(R∗). Then as U := O2(O
2(D1))O2(O

2(D2)) ∼= D8 is
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contained in O2(Mf ), it follows from successive applications of Thompson Transfer
that U∗ ∈ Syl2(O2(M∗

f )), and O
2(M∗

f ) has one conjugacy class of involutions. As

R∗ = CM∗
f
(u∗) is a 2-group, we conclude from I.4.1.2 that O2(M∗

f )
∼= A6 or L3(2).

The latter is impossible as z∗ acts faithfully on O2(M∗
f ), with A4

∼= O2(D∗1) ≤

CO2(M∗
f )
(z∗). Thus O2(M∗

f )
∼= A6 and z

∗ induces a transposition on O2(M∗
f ). Then

as R∗ ∼= E4 ×D8, we conclude from the structure of the centralizers of involutions
in Aut(A6) that O

2(M∗
f )R

∗ ∼= Z2 × S6. As D8
∼= U ≤ O2(Mf ), O

2(Mf ) ∼= A6, so

O2(Mf ) = O2(D). Then R0 = CR(O
2(D)) = CR(O

2(Mf )) = O2(Mf ) is of order
4, and Mf/R0

∼= S6. This establishes (1) and (3).
Suppose that R0

∼= E4 rather than Z4. As f and z are representatives for the

classes of involutions in M , and CM (z) is solvable, R#
0 ⊆ fM . Then O2(Mf ) =

O2(Mr) for each r ∈ R#
0 , so by I.6.1.1, R0 is a TI-set in M . Then AutM (R0)

contains Z3 as R#
0 ⊆ fM , so as R ∼= D8 × D8, AutM (R0) ∼= S3. Then X :=

NM (R0) ∩ CM (O2(Mf )) ∼= A4, so for A ∈ A(R0 ×U), AutMf
(A) ∼= S3 × S3. Then

by F.5.4.4, up to conjugacy inM , A(R0×U) = {A2, A
y
2}. However A2∩A

y
2 = 〈z, t〉

is of order 4, whereas the members of A(R0×U) intersect in an E8-subgroup. This
contradiction completes the proof of (2). By (1), there are involutions si ∈ Di−D1,2

with |s1s2| = 4. Now (4) follows from F.4.26. ¤

Lemma F.5.6. M = 〈M0, NM (A2)〉.

Proof. By F.5.4.4,NM (A2) containsR 6≤M0; thusM0 < M+ := 〈M0, NG(A2)〉.
Suppose that M+ < M . Then M+ satisfies the hypotheses of Theorem F.4.31, and
F.4.37.4.i does not hold as Tt < R ∈ Syl2(CM+(f)). Thus by induction on |M |, we
may apply F.4.37.4 to M+ in the role of “M”, to conclude M+

∼= L4(3). Therefore
M+ has two classes of involutions, so uM+ = uM ∩M+ for u ∈ {z, f}. As D ≤M0

and R ≤ NM (A2), Mf = CM (f) = RD ≤ M+ by F.5.5.3. Also we have seen that
NM (T ) ≤ Mz = M1 ≤ M+, so M+ is strongly embedded in M by I.8.1.3. This is
impossible by 7.6 in [Asc94], as M+ has two conjugacy classes of involutions. ¤

We next construct two uniqueness systems in the sense of section 37 of [Asc94].
Let ∆ be the graph with vertex set ∆ := M/M0, and M0 adjacent to M0g iff

g ∈M0rM0 for r ∈ R−Tf . From F.5.5, 〈f〉D = CM0 (f) is of index 2 in Mf , so the
orbital M0rM0 is independent of the choice of r ∈ R − Tf and self-paired; hence
the relation on ∆ defined by the orbital is symmetric. Define H := NM (A2). Write
x for the coset M0, and y for the coset M0r. Then Mx = M0, so M = 〈H,Mx〉
by F.5.6. By F.5.4.4, H/A2

∼= S3 × S3, while from the structure of M0, Hx =
NM0(A2) ∼= D8×S4. Thus |H : Hx| = 3 is prime, so Hx is maximal in H ∼= S4×S4,
and H induces S3 on the coset space H/Hx. As 〈r〉D E Mf and 〈f〉D ≤ M0,
〈f〉D ≤M0∩Mr

0 =Mx,y. Then as 〈f〉D is maximal in M0, Mx,y = 〈f〉D. As Mx,y

is maximal in Mx = M0, but Hx 6≤ 〈f〉D = Mx,y, Mx = 〈Mx,y, Hx〉. Finally r lies
in the setwise stabilizer H({x, y}) in H of the pair {x, y} but not in Hx and Hx is
maximal in H , so H = 〈Hx, H({x, y})〉.

Set U := (M,H,∆,∆H), where ∆H := {xh : h ∈ H}. We saw that H induces
S3 on the three cosets H/Hx, and y = xr ∈ ∆H , so ∆H is a clique of order 3 with
edge set (x, y)H . In the previous paragraph, we checked the other conditions in
display (U) on page 198 of [Asc94]; so U is a uniqueness system.

Define U̇ := (Ṁ, Ḣ, ∆̇, ∆̇H), where: ∆̇ is the graph on the points Fv of V
with q(v) = −1 (i.e., on the points of discriminant 1), with Fv adjacent to Fu
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if u and v are orthogonal; Ḣ := NṀ (V +
3 ) = NṀ (Ȧ2), where V

+
3 := 〈x1, x2, x6〉

is a nondegenerate 3-space of discriminant +1, containing exactly three points:
ẋ := F x6, ẏ := F (x1 − x2), and F (x1 + x2) of ∆; and ∆̇H is this clique ∆̇ ∩ V3.
Again one can check that U̇ is a uniqueness system; indeed one can use the following
lemma, and the discussion of U in the previous paragraph:

Lemma F.5.7. (1) There is a group isomorphism σ : Ṁ0 → M0 extending the
amalgam isomorphism σ : γ̇ → γM .

(2) σ|Ḣẋ
extends to ζ : Ḣ → H, with ζ(Ḣ({ẋ, ẏ})) = H({x, y}).

(3) σ and ζ define an equivalence of the uniqueness systems U̇ and U .

Proof. By F.5.5.4, there is an isomorphism ψ : Ṁ0 →M0 with ψ(γ̇) = γM . As

in F.4.11.1, µ is quasiequivalent to ψ−1◦β, so there are τ ∈ Aut(γ) and ϕ ∈ Aut(Ṁ0)
with µ◦τ = ϕ◦ψ−1◦β. Then replacing µ by µ◦τ and ψ by ψ◦ϕ−1, ψ = β◦µ−1 = σ,
so that the new ψ is the extension σ required for (1).

By F.5.4.4, there is an isomorphism ρ : Ḣ → H with ρ(Ḣẋ) = Hx. Then

σ−1◦ρ ∈ Aut(Ḣẋ) acts on Ȧ2; so as Inn(Ḣẋ) is the group of all such automorphisms,

adjusting ρ by an inner automorphism, we obtain our extension ζ : Ḣ → H of σ|Ḣẋ
.

If ζ(Ḣẏ) 6= Hy, then replace ẏ by ḣ(ẏ) for ḣ ∈ Ḣẋ− Ḣẏ, to obtain (2). Then by (1)

and (2), and our construction, ζ(Ḣẋ) = Hx and σ(Ṁẋẏ) = Mxy, so σ and ζ define

a similarity of U̇ and U , as defined on page 199 of [Asc94].

Finally ζ(O2(Ḋ2)) = σ(O2(Ḋ2)) = O2(D2) and ζ(ḟ) = σ(ḟ ) = f , so using
F.5.4.4,

ζ(CḢ (〈ḟ〉O2(Ḋ2)) = CH(〈f〉O
2(D2)) ∼= D8.

Therefore as Ṙ0 and R0 are the unique cyclic subgroups of index 2 in the respective
D8-subgroups, ζ(Ṙ0) = R0. Pick a generator ṙ of Ṙ0 and set r := ζ(ṙ). Then ṙ

centralizes O2(Ḋ)Ṙ0 = F ∗(ḊṘ), and for ṡ ∈ Ṙ − Ḟ ∗(ḊṘ), [ṡ, ṙ] = ḟ . Similarly r

satisfies the analogous conditions; thus σ(ḃṙ) = σ(b)r for all b ∈ Ṁẋẏ = Ḋ〈ḟ〉, so
(3) follows from the definition of equivalence on page 199 of [Asc94]. ¤

The equivalence in F.5.7.3 reduces the identification of M to the following
calculations in the graph ∆:

Lemma F.5.8. (1) All triangles of ∆̇ are conjugate under Ṁ to ∆̇H .

(2) ∆̇ is simply connected.

(3) ∆̇H is a base for U̇ .

Proof. By definition (cf. p.182 of [Asc94]) ∆̇ is triangulable iff the closure

C3 of the triangles of ∆̇ is the set of all cycles of ∆̇. By 35.14 in [Asc94], ∆̇ is

simply connected iff ∆̇ is triangulable. Thus (1) and (2) will imply (3) by definition
of “base” (cf. p.200 of [Asc94]).

If θ := {Fu1, Fu2, Fu3} is a triangle, then U := 〈θ〉 is the orthogonal direct
sum of the points Fui, so U is of rank 3 and discriminant +1; thus by Witt’s
Lemma (e.g., section 20 of [Asc86a]), U is Ṁ -conjugate to V +

3 , and therefore θ is

conjugate to the triple ∆̇H = ∆̇ ∩ V +
3 . Hence (1) holds.

Next ∆̇ is a rank-3 graph under Ṁ , and the three orbits of Ṁ0 are {ẋ}, ∆̇(ẋ),

and Σ(ẋ), where Σ(ẋ) consists of the points Fw ∈ ∆̇ with 〈w, x6〉 a degenerate

2-space containing a point of discriminant 1. In particular ∆̇ is of diameter 2, so
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to prove (2), it suffices by 34.5 in [Asc94] to show that each n-gon in ∆̇ is in C3
for n ≤ 5. By definition of C3, this holds if n ≤ 3.

Let Fv be at distance 2 from ẋ = Fx6 in ∆̇; thus U := 〈v, x6〉 is a degenerate

line. Let Fu be the radical of U ; then ∆̇(ẋ, F v) is the set of points of discriminant
1 in U⊥. But u⊥ = Fu⊥W , where W is a 4-subspace of sign +1 containing x6,
and U⊥ = Fu⊥Y where Y :=W ∩ x⊥6 is a 3-space of discriminant 1. Thus ∆̇∩U⊥

is the union of the sets ∆̇ ∩ 〈u, yi〉, 1 ≤ i ≤ 3, where Fyi are the three points of

discriminant 1 in Y . Hence ∆̇(ẋ, F v) is connected. Therefore each 4-gon in ∆̇ is in
C3 by 34.6 in [Asc94].

Let Fw ∈ ∆̇(ẋ), and suppose Fv is at distance 2 from both ẋ and Fw in ∆̇.
Set P := 〈x6, w, v〉. The line U := 〈x6, v〉 contains no points of discriminant 1
orthogonal to ẋ, so dim(P ) = 3. Therefore dim(P⊥) = 3. Now P contains the
nondegenerate line X := 〈x6, w〉, so dim(Rad(P⊥)) = dim(P ∩P⊥) ≤ 1, and hence

P⊥ contains some Fa ∈ ∆̇. Thus Fa ∈ ∆̇(ẋ, Fw, Fv), so all 5-gons are in the
closure C4 of 4-gons by 34.8 in [Asc94]. But we just saw that C4 ⊆ C3. This
completes the verification of (2), and hence the proof of the lemma. ¤

We can now complete the proof of Lemma F.4.37.4, and hence also of Theorem
F.4.31. Namely F.5.7.3 and F.5.8.3, together with simplicity of Ṁ ∼= L4(3), supply

the hypotheses of Exercise 13.1 in [Asc94]. Therefore M ∼= Ṁ by that Exercise.

F.6. Goldschmidt triples

The pioneering work of Goldschmidt [Gol80] (extending earlier results of Tutte
and Sims) considered rank-2 amalgams corresponding to trivalent graphs; these are
the amalgams (G1, G1,2, G2) in which G1,2 is a 2-group of index 3 in G1 and G2.
The case in which each Gi/O2(Gi) ∼= L2(2) also plays an important role at various
places in this work, particularly in the treatment of groups over F2, and of those
groups in which Lf (G, T ) is empty. So in this section, we consider such amalgams
from a somewhat more general viewpoint than in the previous sections: essentially
we relax parts (e) and (f) of Hypothesis F.1.1. See Remark F.6.4 below for a
discussion of the relation between the Goldschmidt triples treated in this section
and the weak BN-pairs considered in earlier sections.

Definition F.6.1. A Goldschmidt triple is a 3-tuple (G,G1, G2) such that G is
a finite group and G1 and G2 are subgroups of G with G = 〈G1, G2〉, Gi/O2(Gi) ∼=
S3, and G1 ∩G2 ∈ Syl2(G). A Goldschmidt amalgam is a triple (G1, G1 ∩G2, G2)
such that (G,G1, G2) is a Goldschmidt triple with O2(G) = 1.

Throughout this section, we assume:

Hypothesis F.6.2. (G,G1, G2) is a Goldschmidt triple. Set T := G1 ∩ G2,
Qi := O2(Gi), Li := O2(Gi), and Di ∈ Syl3(Gi). Also set L := O2(G) and
Q := O2(G).

In the first part of the section, we establish some elementary consequences of
Hypothesis F.6.2; later we apply those results to the quotient G/O3′(G) to obtain
very detailed information.

First, it is immediate from the definitions that:

Lemma F.6.3. Q is the largest subgroup of T normal in G1 and G2.
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Remark F.6.4. We digress briefly to discuss the relationship of Goldschmidt
triples with the weak BN-pairs of Definition F.1.7 Let β := (G1, T,G2) and α :=
(G1/Q, T/Q,G2/Q). Observe that α and β are rank 2 amalgams and α is a Gold-
schmidt amalgam. It is straightforward to check that the hypothesis Gi/Qi ∼= S3
implies that α and β satisfy parts (a) through (d) of Hypothesis F.1.1, with Gi,
Gi/Q in the role of “Li”, and T , T/Q in the roles of “S, Si, Bi”, for β, α, respec-
tively.

Further part (e) is satisfied in α by F.6.3, but in general not in β. Thus if in
addition part (f) of Hypothesis F.1.1 holds in α, then α is a weak BN-pair of rank
2 by F.1.9. Moreover the hypothesis of F.1.12 holds, so as Gi/Qi ∼= S3, α is one of
the six weak BN-pairs listed below in F.6.5.2.

Appealing to F.6.3, Remark F.6.4, and the Corollary to Theorem A in [Gol80],
and inspecting the amalgams listed in Table 1 of [Gol80], we obtain the following
result:

Lemma F.6.5. (1) α := (G1/Q, T/Q,G2/Q) is a Goldschmidt amalgam and
(G/Q,G1/Q,G2/Q) is a Goldschmidt triple.

(2) α is described in those 11 of the 15 cases of Table 1 of [Gol80] in which
Gi/Qi ∼= S3 for i = 1 and 2. The possible pairs (G1/Q, T/Q,G2/Q) are:

(i) (S3,Z2, S3)
(ii) (D12, E4, D12)
(iii) (D24, D8, S4)
(iv) (S4, D8,Z2/(Z3 ×E4)
(v) (Z2 × S4,Z2 ×D8, S3 ×D8)
(vi) one of cases (1), (2), (3), (8), (12), or (13) of F.1.12.

(3) In each case in (vi), F ∗(Gi/Q) = O2(Gi/Q) for i = 1 and 2, so α is a
weak BN-pair of rank 2, while in cases (i)–(v), F ∗(Gj/Q) is not a 2-group for one
of j = 1 or 2.

Lemma F.6.6. L = O2(G) = 〈L1, L2〉.

Proof. First T acts on L1 and L2, so T acts on L0 := 〈L1, L2〉, and hence

G = 〈G1, G2〉 = 〈T, L0〉 = L0T,

so that L = O2(G) ≤ L0. Conversely Li = O2(Li), so L0 ≤ L. ¤

Lemma F.6.7. Assume X E E G. Then the following are equivalent:
(1) Gi ∩X ≤ Qi
(2) Gi ∩X = Qi ∩X = T ∩X ∈ Syl2(X).
(3) Li 6≤ X.

Proof. As Gi/Qi ∼= S3 and Li = O2(Gi), Li 6≤ X iff Li ∩ X ≤ O2(Li) iff
Gi ∩ X ≤ Qi iff Gi ∩ X = Qi ∩ X = T ∩ X ∈ Syl2(X), since X is subnormal in
G. ¤

Lemma F.6.8. Assume X E G with Gi ∩ X ≤ Qi for i = 1 and 2. Then
T ∩X ≤ Q, so XQ/Q is of odd order and in particular XQ/Q is solvable.

Proof. By F.6.7, G1 ∩X = T ∩X = G2 ∩X , so that T ∩X is normal in G1

and G2, and hence T ∩ X ≤ O2(G) = Q. As Q ≤ T , Q ∩X = T ∩ X ∈ Syl2(X),
and the lemma follows, using the Odd Order Theorem for the final assertion of
solvability. ¤
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Lemma F.6.9. Assume G is a solvable quotient of an SQTK-group and Li
centralizes O3(F (G)) for i = 1 or 2. Then G is a {2, 3}-group.

Proof. By hypothesis Li ≤ X := CG(O
3(F (G))). Observe that F (X) =

Z(X)O3(G).

Next by hypothesis there is an SQTK-group Ĝ and M̂ E Ĝ with G =
Ĝ/M̂ . Let P be a Sylow 3-subgroup of the preimage in Ĝ of O3(G); by B.5.2.1,

we may assume that P E Ĝ. By A.1.25.3 AutĜ(P ) is a {2, 3}-group, so as

CĜ(P )M̂/M̂ ≤ CG(O3(G)), G/CG(O3(G)) is a {2, 3}-group. Since CX(O3(G))
centralizes Z(X)O3(G) = F (X), X/Z(X) is a {2, 3}-group by Fitting’s Theorem
31.10 in [Asc86a]. Therefore X = KZ(X) where K is a Hall {2, 3}-subgroup of

X , so K = O{2,3}
′

(X) is normal in G. Now G3−i is a {2, 3}-group acting on the
{2, 3}-group K, so Y := G3−iK is a {2, 3}-group. Finally G = 〈G3−i, Li〉 ≤ Y , so
G is a {2, 3}-group. ¤

Lemma F.6.10. Assume G is a nonsolvable quotient of a quasithin K-group and
K is a component of G. Then Li ≤ K for i = 1 or 2, K E G, and G = KG3−i.
In particular, K 6≤ O3′(G).

Proof. By hypothesis G is a quotient of a quasisimple K-group, so as K0 :=
〈KG〉 is a semisimple subgroup of G, (1) of Theorem A (A.2.1) says that either K0

is also a quasithin K-group; or K0 = K1K2 with Ki
∼= U3(2

ni) where (n1, n2) = 1
or 3—but n1 = n2 as K1

∼= K2, so n1 = n2 = 3 and Ki
∼= U3(8). In the first

case applying A.3.8.1 to K0 in the role of “H”, K0 = 〈KG〉 = K or KKt for
t ∈ T − NT (K), and in the second case this clearly holds. In each case Li =
O2(Li) ≤ NG(K).

Suppose that Li 6≤ K for i = 1 or 2. As K E E G, Gi ∩ K = T ∩ K by
F.6.7. As KQ/Q is not solvable, K is not normal in G by F.6.8, so K0 = KKt by
paragraph one. Also T ∩K = Gi∩K = E LiNT (K), so as t ∈ T normalizes Li and
NT (K) = NT (K

t), R := (T ∩K)(T ∩K)t is normal in LiNT (K)〈t〉 = LiT = Gi for
each i, so R ≤ Q by F.6.3. But T ∩K ∈ Syl2(K), so K is 2-closed, contradicting
K nonsolvable.

Thus we may assume L1 ≤ K, so from paragraph one T ≤ NG(L1) ≤ NG(K)
and Li ≤ NG(K), so K E 〈L1, L2, T 〉 = G. Then G = 〈L1, L2, T 〉 ≤ KL2T =
KG2. ¤

Lemma F.6.11. (1) Q = O2(G) ∈ Syl2(O3′(G)), so O3′(G) is solvable.
(2) Let G∗ := G/O3′(G). Then either

(i) G∗1∩G
∗
2 = T ∗, (G∗, G∗1, G

∗
2) is a Goldschmidt triple, and (G∗1, T

∗, G∗2)
∼=

(G1/Q, T/Q,G2/Q) is a Goldschmidt amalgam, or
(ii) Q1 = Q2 = Q, G∗ ∼= S3, and G = G1O3′(G). Further O3′(G)/Q is

not cyclic.

Proof. Let X := O3′(G) and Ḡ := G/Q. Then

Q ≤ X ∩Gi ≤ O3′(Gi) = Qi,

so by F.6.8, T ∩X ≤ Q and hence Q = T ∩X = Gi ∩X , establishing (1). As Q =
Gi ∩X , the map ū 7→ u∗ is an isomorphism of (Ḡ1, T̄ , Ḡ2) with γ := (G∗1, T

∗, G∗2).
As T ∗ is maximal in G∗i , either G

∗
1 = G∗2

∼= S3, or G
∗
1 ∩ G

∗
2 = T ∗ ∈ Syl2(G∗).

In the latter case by F.6.5.1, (G∗, G∗1, G
∗
2) is a Goldschmidt triple and γ is a Gold-

schmidt amalgam, so that (i) holds. In the former case G = GiO3′(G) for i = 1, 2,
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so to show that (ii) holds it remains to assume that X̄ is cyclic and to exhibit a
contradiction. Passing to Ḡ and appealing to F.6.5.1, we may take Q = 1. Then
X is cyclic, so GiX = G is solvable and quasithin, and Li = [Li, T ] centralizes X .
Hence X = 1 by F.6.9, so G = GiX = Gi for each i, contradicting T = G1∩G2. ¤

Lemma F.6.12. Assume that O2(G) = 1. Then for i = 1 and 2,
(1) There is no nontrivial Di-invariant subgroup S of Qi with S E QiL3−i.
(2) There is no nontrivial characteristic subgroup S of Qi with S normal in

QiL3−i.

Proof. Notice (1) implies (2), so we assume that S is a counterexample to
(1), and without loss take i = 2. By a Frattini Argument there is t ∈ NT (D2)−Q2.
Since T = Q2〈t〉 normalizes Q2D2 and L1, SS

t E 〈Q2D2, t, L1〉 ≤ 〈G2, L1〉 = G,
contrary to our hypothesis that O2(G) = 1. ¤

Lemma F.6.13. Assume that O2(G) = 1 and L1 ≤ X E G, but L2 6≤ X. Then
(1) G = XG2, XQ2 E G, and Q2 ∈ Syl2(XQ2).
(2) L1

∼= Z3.
(3) Q2

∼= E2n , n ≤ 3. If Q2 E Q2L1, then Q2 = 1, and if O2(L2) E Q2L1,
then O2(L2) = 1.

(4) If X = O(X) then [Q1, L1] = 1.

Proof. As L1 ≤ X E G, G = 〈L1, G2〉 = XG2. Hence XQ2 E G. Next
L2 6≤ X by hypothesis, so by F.6.7, X∩Q2 ∈ Syl2(X). Therefore Q2 ∈ Syl2(Q2X),
completing the proof of (1).

Next as Q2 ∈ Syl2(Q2X), Q2 is Sylow in Y := Q2L1. By F.6.12.2 and maxi-
mality of Q2 in Y , Q2 = NY (C) for each 1 6= C char Q2.

Assume that L1 6∼= Z3. Then F
∗(Y ) = O2(Y ), so as L1 E Y we conclude from

the C(G,T)-Theorem C.1.29 that L1 is an A3-block; that is L1
∼= A4. Further as

Q = 1 by hypothesis, the amalgam α = (G1, T,G2) appears in the list of F.6.5. As
L1
∼= A4, either case (iii), (iv), or (v) holds, or case (1) or (2) of F.1.12 holds. In

each case Y ∼= S4 or S4 × Z2, so A := O2(Y ) ∈ A(Q2) and |A(Q2)| = 2. Thus
D2 = O2(D2) acts on A, contrary to F.6.12.2. This contradiction establishes (2).

As L1 is cyclic by (2), Φ(Q2) centralizes L1. Then Φ(Q2) E Y is D2-invariant,
so Φ(Q2) = 1 by F.6.12.2. Then as L1

∼= Z3, A = CQ2(L1) is of index at most 2 in
Q2. Let d be a generator of D2; as d normalizes Q2 and A centralizes L1,

B := A ∩ Ad ∩Ad
2

E Q2L1,

and B is D2-invariant, so B = 1 by F.6.12.1. Thus m(Q2) = m(Q2/B) ≤ 3 as
m(Q2/A) ≤ 1; indeed if Q2 = A, then A = Q2 = B = 1. Similarly if A2 :=
O2(L2) E Q2L1, then A2 E Y , so A2 = 1 by F.6.12.1. This completes the proof
of (3).

Finally if X = O(X), then [L1, Q1] ≤ X ∩Q1 = 1, so (4) holds. ¤

Lemma F.6.14. If L = O(G) and O2(G) = 1, then either
(1) T ∼= Z2, or
(2) Qi ∼= Z2 and T ∼= E4.

Proof. Observe [Qi, Li] ≤ Qi ∩ O(G) = 1, so Q1 ∩ Q2 is centralized by L
and normal in T , and hence Q1 ∩ Q2 ≤ Q = 1. Thus |T | = |Q1Q2| ≤ 4, and
examining the cases in F.6.5.2 for this condition, we find that only cases (i) or (ii)
can occur. ¤
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Remark F.6.15. In the remainder of this section we assume thatG = Ĝ/O3′(Ĝ),

where Ĝ is either an SQTK-group or a quasithin K-group. Observe that because
of this hypothesis, if K is a component of G, then by (a) or (b) of (1) in Theorem

A, K/Z(K) is described in Theorem B (A.2.2) or Theorem C (A.2.3), for Ĝ qua-
sithin or strongly quasithin, respectively. Notice also that this hypothesis implies
that O3′(G) = 1. In particular O2(G) = 1, so by F.6.5, α := (G1, T,G2) is a
Goldschmidt amalgam described in (i)-(vi) of part (2) of F.6.5.

Lemma F.6.16. Assume that G = Ĝ/O3′(Ĝ) for some SQTK-group Ĝ, and
that O3(G) is noncyclic. Then L is a 3-group, and either

(1) T ∼= Z2 and Q1 = Q2 = 1, or
(2) G ∼= S3 × S3 or E4/3

1+2.

Proof. Suppose first that L is a 3-group. Then L = O(G) = F ∗(G) since
G = LT and O2(G) = 1. In particular, F.6.14 applies. If T ∼= Z2 then (1) holds, so
by F.6.14, we may assume that T = Q1×Q2

∼= E4. Next Li ∼= Z3 as L is a 3-group,
so as L = 〈L1, L2〉 by F.6.6, L/Φ(L) ∼= E9, and hence L = L1L2Φ(L). Now as
G = LT and T normalizes Li, Xi := LiΦ(L) is a normal subgroup ofG. If Φ(L) = 1,
then G ∼= S3 × S3 and conclusion (2) holds, so we may assume that Φ(L) 6= 1. Let
Li(L) denote the i-th member of the descending central series for the 3-group L,
starting at L1(L) = L, and set V := L3(L). Then 1 6= Φ(L) = [L,L] = L2(L), and
hence L/V ∼= 31+2 by A.1.24, with ti ∈ Q3−i −Qi inverting Xi/V and centralizing
L3−i. In particular if V = 1 then conclusion (2) holds, so we may assume V 6= 1.
Set Ḡ := G/L4(L). Then T̄ ∼= T ∼= E4 acts on some subgroup Ū of index 3 in V̄ ,

so as V̄ ≤ Z(L̄), Ū E L̄T̄ . Set G∗ := Ḡ/Ū . As G∗ is a quotient of Ĝ, A.1.31.1
says that CL∗(t) is cyclic for each t ∈ T#. As ti inverts X

∗
i /V

∗ and V ∗ is of order
3, either ti centralizes V

∗, or X∗i is inverted by ti and in particular is abelian. As
ti centralizes L3−i and CL∗(ti) is cyclic but X̄iV̄ is noncyclic, the latter case must
hold for each i. But then V ∗ centralizes 〈X∗1 , X

∗
2 〉 = L∗, contradicting L∗ of class

3.
We have reduced to the case where L is not a 3-group; and again it remains

to derive a contradiction. By hypothesis, O3(G) is noncyclic and G = Ĝ/O3′(Ĝ)

with Ĝ strongly quasithin, so m3(O3(G)) = m3(G) = 2. By A.1.25.1 there is a
supercritical subgroup X of O3(G) with X ∼= E9 or 31+2, such that O3(H) ≤
CG(O3(G)), where H := CG(X/Φ(X)).

Suppose first that L1 ≤ X . Then L = XL2 and as L is not a 3-group, L2 6≤ X .
Thus by F.6.13.3, Q2 = O2(G2) is elementary abelian, so O2(L2) is elementary
abelian. Therefore since A4 is not involved in SL2(3), it follows that O2(L2) cen-
tralizes X/Φ(X), so that O2(L2) ≤ O3(H) ≤ CG(O3(G)) by an earlier remark. In
particular O2(L2) centralizes L1, so O2(L2) = 1 by F.6.13.3, and hence L = XL2

is a 3-group, contrary to assumption.
Thus we may assume that neither L1 nor L2 is contained inX . Now for i = 1, 2,

m3(XLi) ≤ m3(G) = 2 by an earlier remark, so as X ∼= E9 or 31+2 is of 3-rank
2, Li does not induce inner automorphisms on X , and hence [X/Φ(X), Li] 6= 1.
Further H E G with Gi ∩ H ≤ Qi and Q = 1, so H is solvable by F.6.8. Thus
as O3′(G) = 1, F ∗(H) = O3(H), so as O3(H) ≤ CH (O3(G)), H = O3(H). If
L1H = L2H , then L1H = L2H = L is a 3-group, contrary to assumption. Thus
L1H 6= L2H , so as Li = O2(Li), L induces SL2(3) on X/Φ(X). Let W denote the
preimage in G of O2(G/H); then W ∩ Gi ≤ Qi, so again using F.6.8 and Q = 1,



F.6. GOLDSCHMIDT TRIPLES 309

W is of odd order, contrary to Q8
∼= O2(G/H). This contradiction completes the

proof of F.6.16. ¤

Lemma F.6.17. Assume that G = Ĝ/O3′(Ĝ) for some quasithin K-group Ĝ,
and O3(G) is cyclic. Then either

(1) L = F ∗(G) is quasisimple, or
(2) L = K×D, where K ∼= L2(q) for some prime power q ≡ ±11 mod 24, D ∼=

Z3, T ∼= D8, G1
∼= D24, G2

∼= S4, and t ∈ T −K induces an outer automorphism
on K and D.

Proof. If F ∗(G) = O3(G) then asO3(G) is cyclic, L = O2(G) ≤ CG(O3(G)) ≤
O3(G), so that L = O3(G); but then L1 = Ω1(O3(G)) = L2, contrary to G1 ∩G2 =
T . Thus F ∗(G) > O3(G), so as O3′(G) = 1 there is a component K of G.
Hence by F.6.10 we may take L1 ≤ K E G = KG2. Now if L2 ≤ K then
O2(G) = L ≤ K ≤ O2(G), so that (1) holds; thus we may assume that L2 6≤ K.
Hence by F.6.13, L1

∼= Z3, Q2 ∈ Syl2(Q2K), and Q2
∼= E2n , n ≤ 3. By Remark

F.6.15, K/Z(K) appears in Theorem B, so we conclude that K ∼= L2(8), J1, or
L2(q) for some prime power q ≡ ±3 mod 8; notice K is simple using the list of
Schur multipliers in I.1.3 since O2(G) = 1. In the first two cases a Sylow 2-group
Q2 ∩ K of K does not act on a subgroup L1 of K of order 3, a contradiction.
Similarly in the remaining case (cf. A.1.3) we must have L1(Q2 ∩ K) ∼= D12.
As G2/Q2

∼= S3 and Out(K) is cyclic, L2 induces inner automorphisms on K.
Then as L2 6≤ K, L = K × D with D ∼= Z3, and L2 is diagonally embedded in
K×D. As Q2 centralizes L2/O2(L2), it centralizes the projection D of L2. But as
O2(G) = 1, F ∗(G) = DK, so Q2 is faithful on K. Then as G2 acts on Q2 ∩K, and
NAut(K)(Q2 ∩K) ∼= S4, it follows that Q2 ≤ K, G2

∼= S4, and G/D ∼= PGL2(q).
As D2 is inverted by some t ∈ T , so is its projection D, so t induces outer au-
tomorphisms on D and K. Further for z the generator of Z(T ), G1 ≤ CG(z) so
G1
∼= D24. Let q ≡ ε mod 4, with ε = ±1; we conclude that 3 divides q − ε, so as

q ≡ ±3 mod 8, it follows that q ∼= ±11 mod 24. Thus (2) holds. ¤

Theorem F.6.18. Assume that G = Ĝ/O3′(Ĝ) for some SQTK-group Ĝ. Then
one of the following holds:

(1) T ∼= Z2, Q1 = Q2 = 1, and O3(G) is noncyclic.
(2) G ∼= S3 × S3 or E4/3

1+2.
(3) L = K ×D where K ∼= L2(q), for some prime q ≡ ±11 mod 24, D ∼= Z3,

T ∼= D8, G1
∼= D24, G2

∼= S4, and t ∈ T −K induces an outer automorphism on
K and D.

(4) G ∼= L2(p), for some prime p ≡ ±11 mod 24, T ∼= E4, and G1
∼= G2

∼=
D12.

(5) G ∼= PGL2(q), for a prime q ≡ ±11 mod 24, T ∼= D8, G1
∼= D24, and

G2
∼= S4.
(6) G ∼= Â6 or L2(q) for some prime power pe ≡ ±7 mod 16 and e ≤ 2,

T ∼= D8, and G1
∼= G2

∼= S4.
(7) G ∼= A7 or Â7, T ∼= D8, G1

∼= S4, and G2
∼= Z2/(Z3 ×E4).

(8) G is Ŝ6 or L2(p
2) extended by a field automorphism, for some prime p ≡ 3

mod 8, T ∼= Z2 ×D8, and G1
∼= G2

∼= Z2 × S4.
(9) G ∼= S7 or Ŝ7, T ∼= Z2 ×D8, G1

∼= Z2 × S4, and G2
∼= S3 ×D8.

(10) G ∼= (S)Lε3(p), for a prime p ≡ ±3 mod 8, ε ≡ p mod 4, T ∼= Z4 wr Z2,
G1
∼= S3/(Z4 ∗Q8), and G2

∼= S3/Z
2
4.
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(11) G is (S)Lε3(p) extended by a graph automorphism, for some prime p ≡ ±3
mod 8 and ε ≡ p mod 4, T ∼= E4/Z

2
4, G1

∼= S3/Q
2
8, and G2

∼= D12/Z
2
4.

(12) G ∼=M12, T ∼= E4/Z
2
4, G1

∼= S3/Q
2
8, and G2

∼= D12/Z
2
4.

(13) G ∼= Aut(M12), T ∼= D8/Z
2
4, G1

∼= D12/Q
2
8, and G2

∼= Z2/(Z3 ×E4)/Z
2
4.

Proof. Recall from Remark F.6.15 that O3′(G) = 1 = O2(G), and if K is a
component of G then K/Z(K) appears in Theorem C. In particular if K/Z(K) ∼=
L2(q) for q odd, then q = pe for some prime p and e ≤ 2, and K ∼= L2(q) or

Â6 from the list of Schur multipliers in I.1.3 since O2(G) = 1. Further if q ≡ ±3
mod 8, then q is not a square, so e = 1 and q = p is prime. Finally if T ∼= E4, then
K ∼= L2(q) with q ≡ ±3 mod 8 by Theorem C.

Next if O3(G) is noncyclic, then F.6.16 says that conclusion (1) or (2) holds;
so we may assume that O3(G) is cyclic. Then by F.6.17, either F ∗(G) = L is
quasisimple or conclusion (3) holds—since the prime power q in that result must
now be prime using the previous paragraph.

Thus we may assume that F ∗(G) = L is quasisimple. By Remark F.6.15, the
possibilities for the Goldschmidt amalgam α = (G1, T,G2) are listed in F.6.5.2.
As F ∗(G) is quasisimple, case (i) where a Sylow 2-subgroup of G is of order 2 is
excluded by Cyclic Sylow 2-Subgroups A.1.38.

In case (ii), T ∼= E4, so L is L2(q) for some prime q ≡ ±3 mod 8 by the first
paragraph. Thus conclusion (4) holds, with the congruence mod 24 following as in
the proof of F.6.17.

In cases (iii) and (iv) of F.6.5.2 as well as case (1) of F.1.12, T ∼= D8. This
time applying Theorem C together with the list of Schur multipliers in I.1.3, G is
L2(q) for some prime power pe ≡ ±7 mod 16 and e ≤ 2, Â6, PGL2(q) for q ≡ ±3

mod 8 (with q prime by the first paragraph), A7, or Â7. Inspecting the 2-locals of
these groups for subgroups isomorphic to G1 and G2, we conclude that (6), (5), or
(7) holds; in case (5) the congruence mod 24 follows as in earlier cases. In fact there

are amalgams of type F.1.12.1 inside A7 and Â7, but those amalgams generate a
proper subgroup A6 or L3(2).

In case (v) of F.6.5.2 as well as case (2) of F.1.12, T ∼= Z2 × D8. This time
the possibilities for G are L2(p

2) extended by a field automorphism for some prime

p ≡ 3 mod 8, Ŝ6, S7, or Ŝ7. As before we inspect for G1 and G2 to conclude that
(8) or (9) holds.

In case (8) of F.1.12, T ∼= Z4 wr Z2, so G ∼= (S)Lε3(p) for some prime p ≡ ±3
mod 8 and ε ≡ p mod 4, so (10) holds.

Similarly cases (3), (12), and (13) of F.1.12 lead to conclusion (11), (12), and
(13). This completes the proof of Theorem F.6.18. ¤

F.7. Coset geometries and amalgam methodology

In section F.1 we dealt with a rank 2 amalgam (L1, L1,2, L2) with Li/O2(Li)
a group of Lie type of Lie rank 1 for i = 1 and 2. In our work, this represents a
special case of the more general setup of the Thompson strategy described in the
Introduction to Volume II, where M ∈ M(T ) and H ∈ H∗(T,M), so that (in view
of E.2.2) typically only H/O2(H) can be expected to behave like a rank 1 group.
Indeed usually we will have M = !M(〈L, T 〉) for some L, V in the Fundamental
Setup (3.2.1).
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However, the work of Meierfrankenfeld, Stellmacher, Stroth, and others has
shown that more general situations can be profitably analyzed using the the Tutte-
Sims graph methods in conjunction with techniques from local group theory. This
circle of ideas has come to be known as the “amalgam method”. In the next
few sections, we put in place some machinery, which draws upon portions of the
amalgam method and some of our own variations on that method, to use in the
proof of our Main Theorem.

So in this section, we assume:

Hypothesis F.7.1. G is a group, G1 and G2 are finite subgroups of G with
F ∗(G1) = O2(G1), G1,2 := G1 ∩ G2, T ∈ Syl2(G1,2) is Sylow in G1 and G2,
G0 := 〈G1, G2〉, and O2(G0) = 1.

Notice in particular that Hypothesis F.7.1 will be satisfied whenever G is a
QTKE-group, G1 = 〈L, T 〉 for some L ∈ L∗(G, T ) and G2 ∈ H∗(T,M), where
M = !M(LT ). This is the setup appearing in 1.4.1.

In this section we establish some immediate consequences of Hypothesis F.7.1,
and of an extension Hypothesis F.7.6; the following two sections will then develop
results in the more specialized situation described in section G.2.

We next define notation analogous to that introduced earlier, such as in F.3.1:

Definition F.7.2. Let Γ := Γ(G0;G1, G2) be the coset geometry determined
by G1 and G2 in G0: That is, Γ is the rank-2 geometry with object set Γ := Γ0∪Γ1,
where Γi−1 := G0/Gi, and G1x is adjacent to G2y in Γ if G1x ∩G1y 6= ∅.

For γ ∈ Γ, let Γi(γ) be the set of vertices at distance i from γ in Γ; we will
abbreviate Γ(γ) := Γ1(γ). Let

Γ<i(γ) :=
⋃

j<i

Γj(γ) and Γ≤i(γ) :=
⋃

j≤i

Γj(γ).

For δ = Gi (i = 1, 2) regarded as a point of Γ and g ∈ G0, write Gδg for the
conjugates Ggi stabilizing the points defined by the cosets δig = Gig. Similarly for
α1, . . . , αn ∈ Γ, define the pointwise stabilizer:

Gα1,...,αn := Gα1 ∩ · · · ∩Gαn .

Observe that G is represented as a group of automorphisms of Γ via right multi-

plication. We will use the abbreviation G
(n)
γ for the subgroup GΓ≤n(γ) of Gγ fixing

all points of Γ at distance at most n from γ in Γ.

Lemma F.7.3. Let γ ∈ Γ. Then
(1) Γ0 and Γ1 are the orbits of G0 on Γ, with representatives γ0 := G1 ∈ Γ0

and γ1 := G2 ∈ Γ1.
(2) G0 is transitive on unordered edges of Γ, with representative {γ0, γ1} and

stabilizer G1,2.
(3) Γ is connected.
(4) Gγ is the stabilizer in G0 of γ, and Gγi = Gi+1, for i = 0, 1.
(5) Gγ is transitive on Γ(γ).

(6) G
(n)
γ is a normal subgroup of Gγ .

(7) For i, i + 1 ∈ {0, 1} mod 2, G
(1)
γi = kerG1,2(Gi+1) is the largest normal

subgroup of Gi+1 contained in G1,2.

(8) There exists a positive integer n with G
(n)
γ = 1 for all γ ∈ Γ.
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Proof. Parts (1) and (2) and the second statement in (4) follow from the
definition of Γ and the action of G on Γ. Then (4) and (5) follow from (1) and (2).
As G0 = 〈G1, G2〉 by hypothesis, Γ is connected, giving (3). As Gγ permutes Γj(γ)
for each j ≤ n, (6) holds. Part (7) follows from (2) and (5).

As Gγ is finite in view of the hypothesis on G1 and G2, and since G0 has just

two orbits Γ0 and Γ1 on Γ, there exists n with G
(n)
γ = G

(m)
γ for all γ ∈ Γ and all

m ≥ n. Let K := G
(n)
γ0 . Then as Γ is connected by (3),

K = G(n+1)
γ0 ≤ G(n)

γ1 = G(n+1)
γ1 ≤ G(n)

γ0 = K.

Therefore K = G
(n)
γ0 = G

(n)
γ1 is normal in G1 and G2 by (6), and hence also in

G0 = 〈G1, G2〉. Thus as O2(G0) = 1, O2(K) = 1. Then as K E G1 and F ∗(G1) =
O2(G1), K = 1, completing the proof of (8). ¤

Lemma F.7.4. For each β ∈ Γ and γ ∈ Γ(β), O2(Gβ)∩G
(1)
γ ≤ O2(Gβ,γ)∩G

(1)
γ ≤

O2(G
(1)
γ ).

Proof. The first containment is immediate. As G
(1)
γ ≤ Gβ,γ , G

(1)
γ acts on

X := O2(Gβ,γ) ∩G
(1)
γ , so X ≤ O2(G

(1)
γ ). ¤

Lemma F.7.5. Let α ∈ Γ, n a positive integer, γ ∈ Γ<n(α), and δ ∈ Γ(γ).
Then

(1) O2(G
(n)
α ) ≤ O2(G

(1)
γ ), and

(2) O2(G
(n)
α ) ≤ O2(Gγ,δ).

Proof. The proof of (1) is by induction on d := d(α, γ). If d = 0, (1) is
trivial, so take d > 0 and let β ∈ Γ(γ) with d(α, β) = d − 1. Then by induction

on d, X := O2(G
(n)
α ) ≤ O2(G

(1)
β ) ≤ O2(Gβ) using F.7.3.6. As d < n by hypothesis,

X ≤ G
(1)
γ . Thus F.7.4 completes the proof of (1). Further G

(1)
γ ≤ Gδ, so (1) implies

(2), again using F.7.3.6. ¤

In the remainder of this section, we assume:

Hypothesis F.7.6. (1) Hypothesis F.7.1 holds.
(2) There is V ∈ R2(G1) such that CT (V ) = O2(CG1(V )). Set Ḡ1 := G1/CG1(V ).

This hypothesis will for example be satisfied in the setup of 1.4.1.4—notably
in the Fundamental Setup (3.2.1).

Lemma F.7.7. (1) O2′(CG1(V )) = O2(G
(1)
γ0 ) = O2(G1).

(2) For each α ∈ Γ and β ∈ Γ(α), O2(Gα) = O2(Gα,β) ∩G
(1)
α .

Proof. Let Q := CT (V ). By Hypothesis F.7.6, Q = O2(CG1(V )) E G1, and
V is 2-reduced so that Q = O2(G1); but also Q = CT (V ) is Sylow in CG1(V ), so

that Q = O2′ (CG1(V )). Next Q ≤ T ≤ G1,2; so as G1 is transitive on Γ(γ0) by

F.7.3.5 and Q E G1, Q ≤ G
(1)
1 . Thus

O2(G1) = Q ≤ O2(G
(1)
1 ) ≤ O2(G1),

completing the proof of (1). As Gα,β contains a Sylow 2-subgroup of Gα, Qα :=

O2(Gα) ≤ O2(Gα,β) by A.1.6. Then as G
(1)
α = kerGα,β(Gα), Qα ≤ G

(1)
α , so Qα ≤

P := O2(Gα,β) ∩ G
(1)
α . On the other hand, G

(1)
α ≤ Gα,β ≤ NG(P ), so P ≤

O2(G
(1)
α ) ≤ Qα. Thus (2) holds. ¤
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Definition F.7.8. We introduce the “track” parameter of the amalgammethod:

By F.7.3.8, there is greatest positive integer b := b(Γ, V ) such that V ≤ G
(b)
γ0 .

Notice in particular that we define b with respect to γ0, rather than minimal
with respect to both types; the latter is perhaps more common in the literature.

Lemma F.7.9. (1) For each γ ∈ Γ<b(γ0) and each δ ∈ Γ(γ), V ≤ O2(G
(1)
γ ) and

V ≤ O2(Gγ,δ).

(2) There exists α ∈ Γb(γ0) with V 6≤ G
(1)
α .

(3) b is the least n such that V 6≤ G
(1)
γ for some γ ∈ Γn(γ0).

(4) If W0(T, V ) ≤ O2(G2), then b is even.

Proof. By definition of b, V ≤ G
(b)
γ0 , so as V ≤ O2(Gγ0), also V ≤ O2(G

(b)
γ0 ).

Hence (1) follows from F.7.5. On the other hand by definition of b, V 6≤ G
(b+1)
γ0 ,

so there is β ∈ Γb+1(γ0) not fixed by V . Then there is α ∈ Γ(β) ∩ Γb(γ0), and by

construction V 6≤ G
(1)
α . This establishes (2), and (1) and (2) imply (3). Finally

O2(G2) ≤ G
(1)
γ1 by F.7.7. But for γ at odd distance from γ0, if V ≤ Gγ then V ≤ T g

for suitable g ∈ G with γ1g = γ, so if W0(T, V ) ≤ O2(G2) then V ≤ W0(T
g, V ) ≤

O2(Gγ) ≤ G
(1)
γ . Hence b is not odd, establishing (4). ¤

Definition F.7.10. If γ ∈ Γ0, then γ = γ0g for some g ∈ G0, and we define
Vγ := V g . Then for δ ∈ Γ1 we define

Vδ := 〈Vγ : γ ∈ Γ(δ)〉.

Notice using F.7.9.1 that when b ≥ 2, we have Vγ1 ≤ O2(G1), so in particular
Vγ1 is a 2-group in this case.

Lemma F.7.11. Let γ ∈ Γ with d(γ0, γ) = b(Γ, V ) =: b and V 6≤ G
(1)
γ . Then

(1) If n ≤ b then V fixes each n-path α := γ0, . . . , γn in Γ pointwise.
(2) If b is even, then 1 6= [V, Vγ ] ≤ V ∩ Vγ , Vγ ≤ G1, and 1 6= V̄γ is quadratic

on V .
(3) [V, Vδ] = 1 for each δ ∈ Γ0 with d(γ0, δ) < b.
(4) If b > 2 then Φ(Vγ1) = 1.
(5) If γ1 and γb−1 ∈ Γ(γ) are on a geodesic from γ0 to γ, then Vγ1 ≤ O2(Gγb−1,γ).

(6) If b ≥ 3 is odd then Vγ ≤ O2(Gγ1,γ2) for each γ2 ∈ Γ(γ1)∩Γb−2(γ). Further
[Vγ1 , Vγ ] ≤ Vγ1 ∩ Vγ , so the action of Vγ1 and Vγ on each other is quadratic.

(7) If V is not an FF-module for Ḡ1, then b is odd.
(8) If V ≤ O2(G2) and V is not an FF-module for Ḡ1, then 〈V G2〉 is elementary

abelian.

Proof. Part (1) is immediate from the definition of b. In particular, V ≤
Gγ ≤ NG0(Vγ). Suppose b is even. Then by symmetry, Vγ ≤ Gγ0 = G1 ≤ NG0(V ),
so that [V, Vγ ] ≤ V ∩ Vγ . Then as V ∼= Vγ is abelian, Vγ is quadratic on V . If

[Vγ , V ] = 1, then by F.7.7.1 applied to γ in the role of “γ0”, V ≤ G
(1)
γ , contrary to

the choice of γ. So (2) is established.

Suppose δ ∈ Γ0 with d := d(γ0, δ) < b. Then as d < b, Vδ ≤ O2(G
(1)
γ0 ) by

F.7.9.1 with δ, γ0 in the roles of “γ0, γ”, so Vδ centralizes V by F.7.7.1. That is,
(3) holds. Further if b > 2 and ν, µ ∈ Γ(γ1) are distinct, then d(ν, µ) = 2 < b, so
Vν and Vµ commute by (3). Thus (4) holds.
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Assume the hypotheses of (5). For γ ′ ∈ Γ(γ1), we have d(γ′, γb−1) < b; thus
applying F.7.9.1 to γ ′, γb−1, γ in the roles of “γ0, γ, δ”, Vγ′ ≤ O2(Gγb−1,γ). There-
fore by Definition F.7.10, Vγ1 ≤ O2(Gγb−1 ,γ), so that (5) is established. A similar
argument establishes the first assertion of (6). Then Vγ1 and Vγ normalize each
other, so [Vγ1 , Vγ ] ≤ Vγ1 ∩ Vγ . Further each is elementary by (4), so the actions are
quadratic.

Assume V is not an FF-module for Ḡ1. If b is even, then 1 6= [V, Vγ ] ≤ V ∩ Vγ
by (2), so interchanging V and Vγ if necessary, we may assume that m(V̄γ) ≥
m(V/CV (Vγ)), contrary to our assumption that V is not an FF-module for Ḡ1.
This establishes (7). Assume in addition that V ≤ O2(G2). Then b > 1 by F.7.7.2,
so b ≥ 3 as b is odd by (7), and then (8) follows from (4). ¤

Remark F.7.12. For G1 and G2 determined by M , L, V in the Fundamental
Setup (3.2.1), and H ∈ H∗(T,M) as discussed at the start of the section, we will
develop further methods depending on the value of b: When V 6≤ O2(H), we have
b = 1 by F.7.9.3; and techniques for this situation are developed in the subsections
starting at E.2.2, particularly under the corresponding Hypothesis E.2.8. When
V ≤ O2(H) but Vγ1 is nonabelian, we obtain b = 2 from F.7.11.4; for this case,
see the methods developed for “U∗ 6= 1” and certain L in the latter part of section
G.2. Finally when V ≤ O2(H) and b ≥ 3 so that Vγ1 is abelian by F.7.11.4, often
we can show that b is odd (for example via F.7.11.6). We develop methods for this
situation in F.7.11.3, F.7.13, and under the corresponding Hypotheses F.8.1 and
F.9.8 of the following two sections; see F.8.5.1 and F.9.11.1 for the deduction that
b is odd.

Lemma F.7.13. Let γ ∈ Γ with d(γ0, γ) = b, and V 6≤ G
(1)
γ . Assume γ1 is on a

geodesic from γ0 to γ and

(a) b ≥ 3 is odd.
(b) NG2(V ) is the unique maximal subgroup of G2 containing T .
(c) n(G2) = 1.

Let A ≤ Vγ1 with A 6≤ G
(1)
γ . Then

(1) There exists α ∈ Γ(γ) such that |A : NA(Vα)| = 2.
(2) If G2 is an SQTK-group, then we can choose α and h ∈ Gγ such that

Ah ≤ Gα and 〈A,Ah〉 is not a 2-group.

Proof. By (a), b ≥ 3, so by F.7.11.4, Φ(Vγ1) = 1. Thus Φ(A) = 1. Also
by (a), b is odd, so γ = γ1g for some g ∈ G0. Let Ω := AGγ , β ∈ Γ(γ) on the
geodesic from γ0 to γ, M := NGγ (Vβ), A ≤ Tγ ∈ Syl2(M), and W0 := W0(Tγ ,Ω).

As A 6≤ G
(1)
γ by hypothesis, A 6≤ O2(Gγ) by F.7.7.2, so Gγ 6≤ NG(W0). Therefore

as Tγ ≤ NGγ (W0), (b) implies that NGγ (W0) ≤M . By (c) and Definition E.1.6,

Gγ = 〈E1(Gγ , Tγ ,Ω), NGγ (W0)〉 ≤ 〈E1(Gγ , Tγ ,Ω),M〉,

so as M < Gγ , there exists A0 ∈ Tγ ∩ Ω and H0 ∈ E1(Gγ , Tγ , A0) with H0 6≤ M .
Now Ax0 = A for some x ∈ Gγ ; set H := Hx

0 and S := T xγ . Then H ∈ E1(Gγ , S, A)

and H 6≤ NGγ (Vβx). Thus as S acts on Vβx and H = 〈AH〉S by E.1.4, A 6≤
NGγ (Vα) for some α ∈ βxH . Then by the definition in E.1.2 of H ∈ E1(Gγ , S, A),
B := A ∩O2(H) is of index 2 in A. Further S fixes βx, so O2(H) fixes α, and thus
B = NA(Vα), completing the proof of (1).
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It remains to prove (2), so we must show that we can choose α and h ∈ H ≤
Gγ such that Ah ≤ Gα and 〈A,Ah〉 is not a 2-group. Following the convention
in Definition E.1.2, set H∗ := H/O2(H) if H is solvable and H∗ := H/O∞(H)
otherwise. As |A : B| = 2, A∗ is generated by an involution a∗, so we want
h with |a∗ah∗| not a power of 2. Let ∆ := a∗H , and for u ∈ ∆, let ∆(u) :=
{v ∈ ∆ : |uv| is not a power of 2} and Fix(u) the fixed point set of u on H/Hα.
As 1 6= O2(K∗) ≤ 〈A∗H〉 by E.1.4, ∆(u) 6= ∅ by the Baer-Suzuki Theorem. If
v ∈ ∆(a∗) with Fix(v) 6⊆ Fix(a∗) then (2) holds for any α in Fix(v) − Fix(a∗).
Thus as members of ∆ are conjugate, we may assume that Fix(v) = Fix(u) for all
u ∈ ∆ and all v ∈ ∆(u).

Regard ∆ has a graph with u adjacent to the vertices in ∆(u), and let Σ(u)
be the connected component of u. Then Fix(u) = Fix(v) for all v ∈ Σ(u). As
H ∈ E1(Gγ , S, A), E.1.4 says H∗ = K∗S∗ where K∗ := [O2(H∗), a∗], and replacing
H∗ by its subgroup K∗CS∗(a

∗), and the Sylow group S∗ by its subgroup (S ∩
K)∗CS∗(a

∗), we may assume 〈∆〉 = K∗〈a∗〉. Thus as S∗ fixes βx but H∗ does
not, Σ(a∗) 6= ∆; so since H∗ is transitive on ∆, H∗ does not act on Σ(a∗). Now
CH∗(a

∗) and Σ(a∗) act on Σ(a∗), so H∗ > 〈Σ(a∗), CH∗(a∗)〉 =: J∗. Since ∅ 6=
∆(a∗) ⊆ Σ(a∗), J > CH∗(a

∗), so CH∗(a
∗) is not maximal in H∗.

If K∗ is a p-group for some odd prime p, then ∆ = {a∗} ∪ ∆(a∗) = Σ(a∗),
contrary to the previous paragraph. Similarly ifK∗ = L∗×L∗a with L∗ simple, then
CH∗(a

∗) is maximal in H∗, again contrary to the previous paragraph. Therefore
by the definition E.1.2 of H ∈ E1(Gγ , S, A), K∗ is the direct product of simple
components L∗ = [L∗, a∗], and replacing H∗ by L∗〈a∗〉, we may assume H∗ =
L∗〈a∗〉.

As H is not solvable, G2 is not solvable, and so in particular T is not normal
in G2; then G2 ∈ Û(T ) by hypothesis (b). Now for the first time, we use the
hypothesis in (2) that G2 is an SQTK-group: as n(G2) = 1, we conclude from
E.2.2 that (G2/O∞(G2))

∞ is L2(p
e) or Lε3(p) for some odd prime p. Thus the

simple section K∗ is also such a group. But then as CH∗(a
∗) is not maximal in H∗,

K∗ is L2(5) or L2(7), where one checks directly that H∗ = 〈Σ(a∗)〉, a contradiction
completing the proof. ¤

Lemma F.7.14. If W0(T, V ) ≤ O2(Gi) for i = 0 or 1, then b ≡ i+ 1 mod 2.

Proof. By F.7.9.2, there is γ ∈ Γb(γ0) with V 6≤ G
(1)
γ . Now γ = γig for

some g ∈ G where i = 0, 1; thus i ≡ b mod 2. But if W0(T, V ) ≤ O2(Gi), then

W0(T
g, V ) ≤ O2(G

g
i ) = O2(Gγ) ≤ G

(1)
γ by F.7.7.2, so V G ∩ Gγ ⊆ G

(1)
γ . This

contradicts V 6≤ G
(1)
γ , and establishes the lemma. ¤

F.8. Coset geometries with b > 2

In this section we establish results under a variant of Hypothesis F.7.6 with
b > 2, where we assume V contains a subgroup V1 normal in G2 leading to a con-
figuration satisfying Hypothesis G.2.1. In applications in the Fundamental Setup
(3.2.1), V often admits a vector space structure FV over F := F2n preserved by a
group L with L/CL(V ) ∼= SL(FV ), and V1 is a 1-dimensional F -subspace of FV .

As mentioned in Remark F.7.12, this situation will correspond to the case where
the amalgam parameter b is odd and at least 3; cf. F.8.5.1.

Thus in this section we assume:
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Hypothesis F.8.1. G is a finite group, T ∈ Syl2(G), V is an elementary
abelian 2-subgroup of G, L = O2(L) is a T -invariant subgroup of G with F ∗(L) =
O2(L), and V ∈ R2(LT ) with CT (V ) = O2(LT ). Further 1 6= V1 is a T -invariant
subgroup of V satisfying:

(a) If g ∈ G with 1 6= V1 ∩ V
g then [V, V g ] = 1.

(b) Set GV1 := NG(V1), G̃V1 := GV1/V1, and L1 := O2(NL(V1)). Then L1T is

irreducible on Ṽ .
(c) H is a subgroup of GV1 containing L1T , such that QH := O2(H) = F ∗(H)

and kerCH(Ṽ )(H) ≤ QH . Set UH := 〈V H〉 and H∗ := H/QH .

(d) O2(〈LT,H〉) = 1.

Lemma F.8.2. Hypothesis G.2.1 is satisfied, with GV1 , UH in the roles of “G1,
U”. Further:

(1) ŨH ≤ Ω1(Z(Q̃H)) and O2(H/CH (ŨH)) = 1. In particular UH is a 2-group.
(2) Φ(UH) ≤ V1.

(3) QH = CH (ŨH).

Proof. It is an easy exercise to verify that Hypothesis F.8.1 implies Hypothesis
G.2.1. Then (1) and (2) follow from G.2.2. By (1) and F.8.1.c,

QH ≤ CH(ŨH) ≤ kerCH(Ṽ )(H) ≤ QH ,

so (3) holds. ¤

Lemma F.8.3. Hypothesis F.7.6 is satisfied with LT , H, V in the roles of “G1,
G2, V ”. In particular, L1T = LT ∩H plays the role of “G1,2”.

Proof. Hypothesis F.8.1 includes Hypothesis F.7.1, since LT ∈ He as L ∈
He. Further O2(LT ) = CT (V ) and V ∈ R2(LT ) by F.8.1, so that O2(LT ) =
O2(CLT (V )), and hence part (2) of Hypothesis F.7.6 holds. As L1 = O2(NL(V1)),
L1T = NLT (V1), so that the final statement of F.8.3 holds. ¤

Definition F.8.4. By F.8.3 we may adopt the notation of section F.7. In
particular define Γ as in Definition F.7.2 and b := b(Γ, V ) as in Definition F.7.8.
Observe UH = 〈V H〉 plays the role of “Vγ1” in Definition F.7.10. Choose γ ∈ Γ

with d(γ0, γ) = b and V 6≤ G
(1)
γ . Without loss, γ1 is on a geodesic

γ0, γ1, . . . , γb−1, γb := γ

from γ0 to γ.

Lemma F.8.5. (1) b ≥ 3 is odd.
(2) UH is elementary abelian.

Proof. By F.8.2.1 and F.7.7.2, V ≤ O2(H) ≤ O2(G
(1)
2 ), so that b > 1. Hence

(1) will follow once we prove b is odd. Then once (1) holds, UH = Vγ1 is elementary
abelian by F.7.11.4, so that (2) will also follow.

So assume b is even. Then there is g ∈ G0 := 〈LT,H〉 with γ0g = γ; indeed by
F.7.3.2 we may assume g takes the edge γ0, γ1 to the edge γ, γb−1. Now by F.7.9.1
and F.8.3,

V ≤ O2(Gγb−1,γ) = O2((L1T )
g),

so [V, V g ] ≤ [O2((L1T )
g), V g ] ≤ V g1 , since (L1T )

g is irreducible on V g/V g1 by
F.8.1.b. Now by F.7.11.2, 1 6= [V, V g ] ≤ V ∩ V g , so in particular 1 6= V ∩ V g1 .
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Hence by Hypothesis F.8.1.a applied to V g1 , V
g in the roles of “V1, V ”, [V, V g ] = 1,

a contradiction completing the proof. ¤

As b is odd by F.8.5.1, by F.7.3.2 we may choose gb ∈ G0 to take the edge
γ0, γ1 to γb−1, γ. Let Lγ := Lgb1 and Uγ := UgbH . Notice that Lγ = O2(Gγb−1,γ)
using F.8.3.

We will exploit the symmetry between the edges γ0, γ1 and γb−1, γ, and the
groups UH and Uγ defined at the vertices γ1 and γ. Notice however we do not have

complete symmetry, since by choice of γ, V 6≤ G
(1)
γ so that UH 6≤ G

(1)
γ ; but we do

not know that Uγ 6≤ G
(1)
γ1 .

Definition F.8.6. Set A1 := V gb1 ,DH := CUH (Uγ/A1), and Dγ := CUγ (ŨH).

Lemma F.8.2 gives information about the conjugate Uγ of UH , with A1 playing
the role of “V1”. We see next that UH and Uγ normalize each other, and later we
analyze those actions.

Lemma F.8.7. (1) Gγ0,γ1 = L1T .
(2) UH ≤ O2(Gγb−1,γ) and Uγ ≤ O2(Gγ1,γ2).
(3) [UH , Uγ ] leqUH ∩ Uγ.
(4) Uγ acts on Vγ1 .
(5) [Uγ , V ] 6≤ A1, so V1 ∩ A1 = 1.
(6) [Uγ , DH ] ≤ A1 and [UH , Dγ ] ≤ V1.
(7) [DH , Dγ ] = 1.

Proof. Part (1) follows from F.8.3, and parts (2) and (3) follow from F.8.5.1
and parts (5) and (6) of F.7.11. Part (4) follows from (2).

Suppose [Uγ/A1, V ] = 1. Then by F.8.2.3 with Gγ , Uγ in the roles of “H , UH”,

V ≤ O2(Gγ), so V ≤ G
(1)
γ by F.7.7.2. This contradicts the choice of γ, proving the

first part of (5). Suppose V1 ∩ A1 6= 1. As H ≤ GV1 , A1 ≤ Vβ for all β ∈ Γ(γ), so
[V, Vβ ] = 1 by Hypothesis F.8.1.a. Then V centralizes Uγ , contrary to the previous
reduction. This establishes the remaining part of (5).

Part (6) follows from the definitions in F.8.6; then [DH , Dγ ] ≤ A1 ∩ V1 = 1 by
(5) and (6), so that (7) holds. ¤

F.9. Coset geometries with b > 2 and m(V1) = 1

In the most difficult cases in the Fundamental Setup (3.2.1), EndF2L(V ) = F2,
and we need to control the centralizer of a 1-dimensional F2-subspace V1 of V .
Further NLT (V1) is not always irreducible on V/V1. Thus in this section we assume
a slight modification of the hypotheses of section F.8: on the one hand we add the
restriction m(V1) = 1, while on the other we add some flexibility by letting L1T
be irreducible on V+/V1 for some V+ with V1 < V+ ≤ V . Also we replace F.8.1.a
by the weaker condition F.9.1.e. Many of the results and proofs will be similar to
those in section F.8.

Specifically in this section we assume:

Hypothesis F.9.1. G is a finite group, T ∈ Syl2(G), V is an elementary
abelian 2-subgroup of G, L = O2(L) is a T -invariant subgroup of G with F ∗(L) =
O2(L), V ∈ R2(LT ) with CT (V ) = O2(LT ), and V1 = 〈z〉 is a T -invariant subgroup
of V of order 2. Set Gz := CG(z), G̃z := Gz/V1, L1 := O2(CL(z)), UH := 〈V H+ 〉,

VH := 〈V H〉, and H∗ := H/CH(ŨH). Assume V1 < V+ ≤ V and:
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(a) H is a subgroup of Gz containing L1T such that QH := O2(H) = F ∗(H)
and kerCH(Ṽ+)

(H) ≤ QH .

(b) L1T is irreducible on Ṽ+.
(c) NH(V+) ≤ NH(V ).
(d) O2(〈LT,H〉) = 1.

(e) If g ∈ H with [V, V g ] ≤ V ∩V g and [Ṽ+, V
g] = 1 = [Ṽ g+ , V ], then [V+, V

g ] =
1 = [V g+, V ].

Lemma F.9.2. Hypothesis G.2.1 is satisfied with Gz, V+, UH in the roles of
“G1, V , U”. Further

(1) ŨH ≤ Ω1(Z(Q̃H)) and O2(H/CH(ŨH)) = 1.
(2) Φ(UH) ≤ V1.

(3) QH = CH (ŨH) ≤ CH(Ṽ+) ≤ NH(V ).
(4) Hypothesis F.7.6 of section F.7 is satisfied with LT , H, V in the roles of

“G1 , G2, V ”. In particular, L1T = LT ∩H plays the role of “G1,2”.

Proof. Again it is an easy exercise to verify that Hypothesis F.9.1 implies
Hypothesis G.2.1. Then, just as in the proof of F.8.2, (1) and (2) follow from
G.2.2. Similarly as in the proof of F.8.3, (4) follows from Hypothesis F.9.1. By

F.9.1.c, CH(Ṽ+) ≤ NH(V ), and by (1) and F.9.1.a,

QH ≤ CH(ŨH) ≤ kerCH(Ṽ+)
(H) ≤ QH ,

so (3) holds. ¤

Lemma F.9.3. The following are equivalent:
(1) V ≤ QH .
(2) V ≤ CH(UH).

(3) V ≤ CH(ŨH).

Proof. It is immediate that (2) implies (3). By F.9.2.3, QH = CH(ŨH)), so

(1) and (3) are equivalent. If V ≤ QH then for each h ∈ H , [Ṽ h+ , V ] ≤ [ŨH , V ] = 1

by F.9.2.1. Further V h ≤ QH , so similarly [Ṽ+, V
h] = 1. Also QH ≤ T ≤ NG(V ),

so [V, V h] ≤ V ∩ V h. Hence by F.9.1.e, [V h+ , V ] = 1, so V centralizes 〈V H+ 〉 = UH .
That is (1) implies (2). Hence (1)–(3) are equivalent. ¤

Lemma F.9.4. (1) If V ≤ QH , then UH is elementary abelian.

(2) If [Ṽ , CH(V+) ∩NH(V )] = 1 and UH is abelian, then V ≤ QH .
(3) If CH (V+) ∩NH(V ) = CH(V ), then the following are equivalent:

(i) V ≤ QH .
(ii) UH is elementary abelian.
(iii) VH is elementary abelian.

Proof. If V ≤ QH , then V+ ≤ V ≤ CH(UH) by F.9.3, so UH = 〈V H+ 〉 is
abelian. Hence (1) holds. Assume the hypotheses of (2). Then UH ≤ CH(V+) ∩
NH(V ) ≤ CH(Ṽ ), so V ≤ CH (ŨH), and hence V ≤ QH by F.9.3. Thus (2) is
established.

Assume the hypotheses of (3). Trivially (iii) implies (i), and (i) implies (ii) by
(1). By F.9.1.c, NH(V+) = NH(V+) ∩ NH(V ), so that CH (V+) = CH (V ) by the
hypotheses of (3). Therefore if (ii) holds then for each h ∈ H , V h

+ ≤ CH(V+) =

CH(V ), so V ≤ CH(V
h
+ ) = CH(V

h); that is, (ii) implies (iii). ¤
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In two difficult cases in the Fundamental Setup, V/CV (L) is the natural module
for L/CL(V ) ∼= Sp4(2)

′ or Ω−4 (2). In these cases we take V+ := V ⊥1 , so that
|V : V+| = 2, and we appeal to the next lemma:

Lemma F.9.5. Assume |V : V+| = 2 and V ∗ 6= 1. Then
(1) V ∗ is of order 2.

(2) [Q̃H , V
∗] = [ŨH , V

∗] = Ṽ+.
(3) CH∗(V

∗) = NH(V+)
∗ = NH(V )∗.

(4) V is weakly closed in CH (ŨH)V with respect to H.
(5) Assume 〈V, V g〉 is a 2-group for each g ∈ H with V1 < V ∩ V g. Then for

each h ∈ H with I∗ := 〈V ∗, V ∗h〉 not a 2-group, I∗ acts faithfully on UI := V+V
h
+ ,

ŨH = ŨI ⊕ CŨH (I
∗), and ŨI = Ṽ+ ⊕ Ṽ h+ with Ṽ+ = [ŨI , V

∗] = CŨI (V
∗). Further

UI = I ∩QH .
(6) Assume the hypotheses of (5), and in addition assume [V,CH(V+)] ≤ V1.

Then
(i) If m(V ) = 4, then UI = V+V

h
+
∼= Q2

8, and I
∗ ∼= S3.

(ii) If m(V ) = 6 and CH (V+) = CH(V ), then UI = V+V
h
+
∼= Q4

8, and
I∗ ∼= D6, D10, or D12.

Proof. As |V : V+| = 2 and V ∗ 6= 1 by hypothesis, while V+ ≤ V ∩ QH =

CV (ŨH) by F.9.2.3, V+ = V ∩ QH and (1) holds. Then [QH , V ] ≤ V ∩ QH = V+.

Now L∗1T
∗ centralizes V ∗ by (1), and so normalizes [ŨH , V

∗] 6= 1. Therefore as

L1T is irreducible on Ṽ+ by F.9.1.b, (2) holds. Then by (2) and F.9.1.c,

CH∗(V
∗) ≤ NH(Ṽ+)

∗ ≤ NH(V )∗ ≤ CH∗(V
∗),

so (3) holds.

If V h ≤ CH(ŨH)V for h ∈ H , then V ∗ = V ∗h, and so by (2),

Ṽ h+ = [ŨH , V
∗h] = [ŨH , V

∗] = Ṽ+,

so V+ = V h+ . Hence V = V h by F.9.1.c; that is, (4) holds.

Assume the hypotheses of (5), and suppose h ∈ H such that I∗ = 〈V ∗, V ∗h〉
is not a 2-group. Thus by the hypotheses of (5), V1 = V ∩ V h. By (2), I acts on

V+V
h
+ = UI . Next let D be the preimage in V+ of CṼ+(V

∗h). Then D̃ ≤ Z(Ĩ) and

D ≤ V+, so D ≤ V ∩V g for each g ∈ I . Hence if V1 < D, then by the hypotheses of
(5), each 〈V, V g〉 is a 2-group; it then follows from the Baer-Suzuki Theorem that
V ≤ O2(I), contradicting I = 〈V, V h〉 not a 2-group. Therefore D = V1 and so

D̃ = 1. Thus CŨI (V
∗) = Ṽ+ and ŨI = Ṽ+ ⊕ Ṽ h+ . Then by (2), m(ŨH/CŨH (V

∗)) =

m(ŨI/CŨI (V
∗)), and similarly m(ŨH/CŨH (V

∗h)) = m(ŨI/CŨI (V
∗h)), so ŨH =

ŨI ⊕ CŨH (I
∗). In particular, I∗ is faithful on ŨI . Finally I/UI is dihedral and

generated by V UI and V hUI by (1). Thus if UI < I ∩ QH , then 1 6= X/UI :=
Z(I/UI) ≤ (I ∩ QH)/UI , and X = V V jUI , where either j ∈ I or j = hi for some
i ∈ I . In either case V j 6= V but V ∗ = V j∗, contradicting (4). Therefore the proof
of (5) is complete.

Assume the hypotheses of (6). Then by hypothesis, [V,CH (V+)] ≤ V1, so as
V ∗ 6= 1, UH is nonabelian by F.9.4.2. Let V ∗ = 〈v∗〉 and V ∗h = 〈i∗〉. As V ∗ is of

order 2, I∗ is dihedral. Let P := UI ; by (5), I∗ is faithful on P̃ .
We first prove (6.ii), so assume that m(V ) = 6 and CH (V+) = CH(V ). Then

CV h+ (V+) = CV h
+
(V ) = V1, since CŨI (V

∗) = Ṽ+ by (5). Thus as P = V+V
h
+ , P is
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extraspecial of order 29. Then as V+ ∼= E32, P ∼= Q4
8, and as V+ = [P, V ], v∗ is of

Suzuki type a4 (cf. definition E.2.6) on the orthogonal space P̃ . Similarly i∗ is of

type a4 on P̃ . Let x∗ be of odd order m > 1 in I∗. Applying (5) to 〈V ∗, V ∗x〉 in the

role of “I∗”, we conclude [ŨH , x] = Ṽ+⊕ Ṽ
x
+ , so [UH , x] = P and hence CP̃ (x

∗) = 0.

Therefore the irreducibles for 〈x∗〉 on P̃ are of dimension d(m), where d(m) is the
order of 2 modulo m. Thus d(m) divides 8, so either m is 3, 5, or 15, or 17 divides

m. As 17 does not divide the order of O+
8 (2)

∼= Out(P̃ ) := OP , the last case is out.
Suppose m = 5. Now O2(OP ) ∼= Ω+

8 (2) has 3 classes of elements of order 5,
permuted transitively by the triality outer automorphism. Let y ∈ OP be of order
5 with W1 := CP̃ (y) 6= 0. Then W1 and W2 := W⊥

1 are 4-dimensional of sign −1,
so O := NOP (〈y〉) = O1 × O2, where O1

∼= Sz(2) centralizes W1, and O2
∼= S5

centralizes W2. The involutions in O inverting y are the involutions in O1 of type
c2 and the diagonals are of type c4 and b3. But x

∗ is conjugate to y under triality,
and only c2 and a4 involutions are conjugate under triality to a4 involutions. Thus
as v∗ is of type a4, v

∗ is not diagonal, so that m 6= 15; similarly |I∗| 6= 20 as a pair
of elements of type c2 in O do not generate a dihedral subgroup of order 20. We
conclude that if 5 divides |I∗|, then I∗ ∼= D10, in which case (6.ii) holds.

Thus we may assume |I∗| = 2e · 3 and m = 3. As x∗ is fixed-point-free on

P̃ , O := NOP (〈x
∗〉) is GU4(2) extended by a graph-field automorphism, and there

are two classes of involutions under O inverting x∗: involutions j∗ of type a4 with
CO(j

∗) ∼= Z2×S6, and involutions of type c4. Thus v
∗ and i∗ are in the first class,

which projects on a class of 3-transpositions in O/〈x∗〉. Therefore |v∗i∗| = 3 or 6,
so I∗ ∼= D6 or D12, and again (6.ii) holds.

Finally we prove (6.i), so we assume that m(V ) = 4. If P is extraspecial then
as V+ ≤ P , P ∼= Q2

8; then from the structure of Out(P ) ∼= O+
4 (2), I

∗ ∼= S3 or D12.
But in the latter case, one of the two classes of involutions not in Z(I∗) is of type

c2, whereas v
∗ and i∗ are of type a2 on P̃ . So suppose that P is not extraspecial.

Then P ∼= D8 × E4, so |A(P )| = 2. Therefore O2(I) acts on both members of

A(P ) = {V+, V h+}, contrary to the faithful action of O2(I∗) on P̃ in (5). Thus the
proof of the lemma is complete. ¤

Lemma F.9.6. Let g ∈ L with V1 6= V g1 , and define DH := UH ∩ Q
g
H , DHg :=

UgH ∩QH , EH := VH ∩Q
g
H , and EHg := V gH ∩QH . Then

(1) For each y ∈ LT with V g1 = V y1 , we have Xg = Xy for each X ∈
{H,QH , UH , VH}.

(2) If there is g0 ∈ L with V g01 = V g1 and g20 ∈ L1T , then (DH)
g = DHg and

(EH)
g = EHg .
(3) [EH , U

g
H ] ≤ V g1 and [DH , DHg ] = 1.

Proof. Recall NLT (V1) = L1T ≤ H . Thus if y ∈ L with V g1 = V y1 , then
Hg = Hy; so if X is an H-invariant subgroup of G, then Xg = XHg = XHy = Xy.
Hence (1) holds. In proving (2), appealing to (1) we may assume g0 = g, so that
g ∈ H . Then g2 ∈ H , so g2 acts on each H-invariant subgroup of G, and hence

Dg
H = (UH ∩Q

g
H)

g = UgH ∩QH = DHg .

Similarly EgH = EHg , so (2) holds. Next

[EH , U
g
H ] ≤ [QgH , U

g
H ] ≤ V g1
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by F.9.2. Similarly as DH ≤ EH and Dg
H ≤ UgH , [DH , DHg ] ≤ V1 ∩ V

g
1 = 1, as

V1 6= V g1 and m(V1) = 1, so (3) holds. ¤

Lemma F.9.7. Assume UH is elementary abelian, and set QC := CQH (UH)
and ZH := CUH (QH). Then there is an H-isomorphism ϕ from QH/QC to the
dual space of UH/ZH , defined by ϕ(xQC) : uZH 7→ [x, u] for all u ∈ UH .

Proof. As UH is elementary abelian, we may regard it as a vector space over
F := F2. Let D denote the dual space HomF (UH/ZH , F ). By F.9.2.1,

[UH , QH ] ≤ V1 ≤ Z(H), (∗)

so if we identify V1 with F , for each xQC ∈ QH/QC , the mapping ϕxQC : uZH 7→
[x, u] ∈ F on UH/ZH is well defined and F -linear by (*) and the standard commuta-
tor relation 8.5.4 in [Asc86a]. Next define ϕ : QH/QC → D by ϕ : xQC 7→ ϕxQC .
Using (*) and the commutator relations, we conclude that ϕ is an H-equivariant
homomorphism. By construction ϕ is injective, and CUH/ZH (ϕ(QH/QC)) = 0, so
ϕ is a surjection. ¤

In the remainder of this section we essentially add Hypothesis F.8.1.a, as well
as a hypothesis we used in F.9.5.6, and in a stronger form in F.9.4.3; namely we
assume:

Hypothesis F.9.8. Hypothesis F.9.1 holds and
(f) If g ∈ G with V1 ≤ V g then [V, V g ] = 1.
(g) One of the following holds:

(i) [V,CH(V+)] ≤ V1.
(ii) If x ∈ CH(V+) and [V, x] 6= 1, then V G ∩NG([V, x]) ⊆ CG(V ).

Remark F.9.9. Observe that the following two hypotheses are equivalent:
(1) Hypothesis F.8.1 with |V1| = 2.
(2) Hypothesis F.9.8 with V+ = V .

Proof. When |V1| = 2, F.8.1.2 and F.9.8.f are equivalent. Similarly when
V+ = V , F.8.1.b is equivalent to F.9.1.b, and F.8.1.c is equivalent to F.9.1.a. Of
course F.8.1.d and F.9.1.d are the same. Thus when V+ = V , Hypothesis F.9.8
implies Hypothesis F.8.1 with |V1| = 2. Also when V+ = V , F.9.1.e is a consequence
of F.9.8, while F.9.8.g.1 and F.9.1.c are trivial. Thus if |V1| = 2, then Hypothesis
F.8.1 implies Hypothesis F.9.8 with V+ = V . ¤

Definition F.9.10. By F.9.2.4, we may adopt the notation of section F.7. In
particular define Γ as in Definition F.7.2, and b := b(Γ, V ) as in Definition F.7.8.
Observe VH = 〈V H+ 〉 plays the role of “Vγ1” in Definition F.7.10. Choose γ ∈ Γ

with d(γ0, γ) = b and V 6≤ G
(1)
γ . Without loss, γ1 is on a geodesic

γ0, γ1, . . . , γb = γ

from γ0 to γ.

We next establish the analogues of F.8.5 and F.8.7; the proofs will of course be
similar and in many cases can be repeated essentially verbatim.

Lemma F.9.11. (1) b ≥ 3 is odd.
(2) VH is abelian.
(3) UH is abelian.
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Proof. Part (2) follows from Hypothesis F.9.8.f, as H ≤ CG(V1). Then (3)

follows from (2) as UH ≤ VH . By (2), V ≤ QH so V ≤ O2(G
(1)
1 ) by F.7.7.2. Thus

b > 1. Hence (1) will follow once we prove b is odd.
So we assume that b is even, and derive a contradiction. Then there is g ∈ G0

with γ0g = γ. Indeed by F.7.3.2, we may assume g takes the edge γ0, γ1 to the edge
γ, γb−1. By F.7.9.1 and F.9.2.4,

V ≤ O2(Gγb−1,γ) = O2((L1T )
g).

Therefore
[V, V g+] ≤ [O2((L1T )

g), V g+ ] ≤ V g1 , (∗)

since (L1T )
g is irreducible on V g+/V

g
1 by F.9.1.b. Further by F.7.11.2,

1 6= [V, V g ] ≤ V ∩ V g . (∗∗)

We claim that V g1 ≤ [V, V g ] ≤ V : For by (*), [V, V g+ ] ≤ V g1 . Thus if V g1 =
[V, V g+], then V

g
1 ≤ [V, V g ] ≤ V by (**), and the claim holds. Otherwise [V, V g+] = 1,

so that V ≤ CHg (V g+). In case (i) of F.9.8.g, [V, V g ] ≤ [CHg (V g+), V
g ] ≤ V g1

by hypothesis, so [V, V g ] = V g1 by (**), and again the claim holds. So suppose
case (ii) of F.9.8.g holds. By (**) there is x ∈ V with 1 6= [V g , x] ≤ V , so
V ≤ CG([V

g, x]) ≤ CG(V
g) as (ii) holds, contrary to (**). This contradiction

completes the proof of the claim.
Now V g1 ≤ V by the claim, so we may apply Hypothesis F.9.8.f with the roles

of V and V g reversed, to conclude that [V, V g] = 1 by that hypothesis, contrary to
(**). This contradiction shows b is odd, completing the proof of F.9.11. ¤

As b is odd by F.9.11.1, by F.7.3.2 we may choose gb ∈ G0 to take the edge
γ0, γ1 to γb−1, γ. Let Lγ := Lgb1 and Uγ := UgbH . Notice that Lγ = O2(Gγb−1,γ)
using F.9.2.4.

As in Definition F.8.6, we will exploit the symmetry between the edges γ0, γ1
and γb−1, γ, and the subgroups UH and Uγ defined at the vertices γ1 and γ.

Definition F.9.12. Set A1 := V gb1 , DH := CUH (Uγ/A1), Dγ := CUγ (ŨH),

EH := CVH (Uγ/A1), and Eγ := CVγ (ŨH).

Lemma F.9.13. (1) Gγ0,γ1 = L1T .
(2) VH ≤ O2(Gγb−1,γ) and Vγ ≤ O2(Gγ1,γ2).
(3) [XH , Yγ ] ≤ XH ∩ Yγ for each choice of X,Y ∈ {U, V }.
(4) Vγ acts on VH and UH .
(5) [Uγ , V ] 6≤ A1 but V1 ∩ A1 = 1.
(6) [Uγ , EH ] ≤ A1 and [UH , Eγ ] ≤ V1.
(7) [DH , Dγ ] = 1.

Proof. Part (1) follows by construction, as we saw in F.9.2.4, and (2) follows
from F.7.11.5. By (2), XH and Yγ normalize each other, so (3) and (4) hold.

The remainder of the proof is exactly like that of the corresponding statements
in F.8.7, whose proof can be repeated essentally verbatim. ¤

Lemma F.9.14. Set UL := 〈ULH〉. Then:
(1) UL is abelian iff b > 3.
(2) If b = 3 then A1 ≤ V h for some h ∈ H.
(3) Assume that L is transitive on V # and H = Gz. If Ah1 ≤ V for some

h ∈ H, then b = 3 and Uγh ∈ ULH .
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Proof. For g ∈ L −H , U gH = Uβ for some β ∈ Γ(γ0) at distance 2 from γ1.
Thus if b > 3, then [UH , U

g
H ] = 1 by F.7.11.3, so UL is abelian. So suppose instead

that b = 3. By edge-transitivity in F.7.3.2, we can pick g ∈ L and δ ∈ Γ(γ1) so that

d(δ, γ1g) = 3 and Vδ 6≤ G
(1)

γg1
; hence Vδ 6≤ O2(G

g
γ1) by F.7.7.2, so [UgH/Z

g, Vδ] 6= 1 in

view of F.9.2.3. Then as Vδ ≤ UH , [U
g
H , UH ] 6= 1, so UL is nonabelian. Thus (1)

holds.
Next assume that b = 3. Then for some h ∈ H , γ0h = γ2 ∈ Γ(γ). Thus

setting y := gbh
−1, γ1y = γh−1 is adjacent to γ2h

−1 = γ0. Therefore γ1y = γ1x

for some x ∈ L, so xy−1 ∈ H and hence V1 = V xy
−1

1 ≤ V xy
−1

= V y
−1

= V hg
−1
b , so

A1 = V gb1 ≤ V h. Thus (2) holds.

Finally assume that H = Gz and A
h
1 ≤ V for some h ∈ H . Then V1A1 ≤ V h

−1

,

so since L is transitive on V #, there is x ∈ Lh
−1

with V x1 = A1 = V gb1 . Thus
gbx

−1 ∈ CG(V1) = H , so as the subgroup H is the stabilizer of the vertex γ1 of Γ,
γ1x = γ1gb = γ. Now xh ∈ L ≤ Gγ0 , so that γh = γ1xh = γ1x

h ∈ Γ(γ0); hence

applying h−1, d(γ, γ1) = 2, so that b = 3. It also follows that Uγh = Ux
h

H ∈ ULH ,
completing the proof of (3). ¤

Lemma F.9.15. VH ∩G
(1)
γ = EH and Vγ ∩G

(1)
γ1 = Eγ.

Proof. By F.9.13.2, VH ∩ G
(1)
γ = VH ∩ O2(Gγb−1,γ) ∩ G

(1)
γ , so VH ∩ G

(1)
γ =

VH ∩O2(Gγ) by F.7.7.2. But as QH = CH(ŨH) by F.9.2.3, VH ∩O2(Gγ) = EH , so
the first statement in the lemma holds. Similarly the second holds. ¤

Lemma F.9.16. (1) If Uγ = Dγ , then either
(i) DH < UH and UH induces a nontrivial group of transvections with

center V1 on Uγ, or
(ii) DH = UH , so [UH , Uγ ] = 1, and V induces a nontrivial group of

transvections with center V1 on Uγ.

(2) If 0 < m(Uγ/Dγ) ≥ m(UH/DH), then U
∗
γ ∈ Q(H

∗, ŨH); and in case

2 m(U∗γ ) = m(ŨH/CŨH (U
∗
γ )),

then also m(Uγ/Dγ) = m(UH/DH) and U
∗
γ acts faithfully on D̃H as a group of

transvections with center Ã1.
(3) q(H∗, ŨH) ≤ 2. Indeed there is B ≤ O2(Gγ0,γ1) with B

∗ ∈ Q(H∗, ŨH).
(4) If there is γ with Uγ > Dγ, then we can choose γ with 0 < m(Uγ/Dγ) ≥

m(UH/DH), in which case U∗γ ∈ Q(H
∗, ŨH).

Proof. By F.9.13.5, V does not centralize Uγ/A1.
Assume that Uγ = Dγ , so that [Uγ , UH ] ≤ V1. Therefore if UH acts nontrivially

on Uγ , then [Uγ , UH ] = V1, so that conclusion (i) of (1) holds; DH < UH since
UH is nontrivial on Uγ/A1. Thus we may assume that [UH , Uγ ] = 1, and hence
DH = UH and Uγ ≤ CH(V+). Suppose first that case (i) of F.9.8.g holds. Then
[Uγ , V ] ≤ [CH(V+), V ] ≤ V1 by (i), so since V does not centralize Uγ by F.9.13.5,
[Uγ , V ] = V1 and hence conclusion (ii) of (1) holds. Suppose instead that case (ii) of
F.9.8.g holds. Since b is odd by F.9.11.1, for γb+1 ∈ Γ(γ)− {γb−1}, F.7.3.2 says we
may choose g ∈ G0 to take the edge γ0, γ1 to the edge γb+1, γ, and thus Vb+1 = V g.
Since V does not centralize Uγ , it does not centralize Vγ ; then we may choose g so
that V does not centralize V g = Vb+1. Thus there is x ∈ V g with [V, x] 6= 1. Since
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V g centralizes x and normalizes V , V g ≤ NG([V, x]), so that V g centralizes V by
(ii), contrary to [V, x] 6= 1. This contradiction completes the proof of (1).

Next by F.9.2.3, Uγ/Dγ = U∗γ . Assume that 0 < m(U∗γ ) ≥ m(UH/DH). By
F.9.13.6 and as |A1| = 2, DH induces a group of transvections on Uγ with center
A1, so m(DH/CDH (Uγ)) = m(Uγ/CUγ (DH)). Also by F.9.13.7, [DH , Dγ ] = 1, so
m(DH/CDH (Uγ)) ≤ m(Uγ/Dγ) = m(U∗γ ), with equality only if Dγ = CUγ (DH).
Therefore

m(ŨH/CŨH (U
∗
γ )) ≤ m(UH/CDH (U

∗
γ )) ≤ m(UH/DH) +m(DH/CDH (Uγ))

≤ m(UH/DH) +m(U∗γ ) ≤ 2 m(U∗γ ),

where the last inequality uses the hypothesis m(U ∗γ ) ≥ m(UH/DH). This es-

tablishes the first statement of (2): U∗γ ∈ Q(H
∗, ŨH). Moreover if 2 m(U∗γ ) =

m(ŨH/CŨH (U
∗
γ )), then Dγ = CUγ (DH) and all the inequalities in the display are

equalities. In particular m(U∗γ ) = m(UH/DH), and Dγ < Uγ . By F.9.13.6, Uγ
induces a group of transvections on DH with center A1, so as Dγ = CUγ (DH), U

∗
γ

acts faithfully on D̃H as a group of transvections with center Ã1. This completes
the proof of (2).

We turn to the proof of (3) and (4). First suppose Uγ = Dγ . Then as (γ, γb−1)
is conjugate to (γ1, γ0), if (1i) holds, then some conjugate U gH of UH induces a

group of transvections on ŨH with center Ṽ g1 . Indeed by F.9.13.2, UH ≤ VH ≤
O2(Gγb−1,γ), so we can pick g with U gH ≤ O2(Gγ0,γ1), so that (3) holds in this case.

Similarly in case (1ii), V induces a group of transvections on Ũγ with center Ṽ1 and
V ≤ O2(Gγb−1,γ), so for some g ∈ G0 with V g ≤ O2(Gγ0,γ1), V

g induces a group

of transvections on ŨH , and hence (3) holds in this case also.

Thus we may assume that Uγ > Dγ , so Vγb+1
6≤ G

(1)
γ1 for some γb+1 ∈ Γ(γ).

Thus we have symmetry between the geodesics p := γ0, γ1, . . . , γ, γb+1 and p′ :=
γb+1, γ . . . , γ1, γ0, so if necessary replacing p by p

′g for some g ∈ G0 with (γb+1, γ)g =

(γ0, γ1), we may assume that 0 < m(U∗γ ) ≥ m(UH/DH). Now U∗γ ∈ Q(H
∗, ŨH) by

(2), so q(H∗, ŨH) ≤ 2, and hence (3) and (4) hold. ¤

Remark F.9.17. We expand on the use of symmetry such as in the last para-
graph of the proof of F.9.13.4, as we use similar arguments elsewhere.

Suppose that m(U∗γ ) > 0. Then Vγ 6≤ G
(1)
γ1 by F.9.15, so there is β ∈ Γ(γ)

with Vβ 6≤ G
(1)
γ1 . Thus by transitivity of G on Γ0, minimality of b, and F.7.9.3,

d(β, γ1) = b. Thus we have the symmetry between the geodesics γ0, γ1, · · · , γ and
β, γ, · · · , γ1, and hence we also have symmetry between γ1 and γ.

Further Uγ > Dγ , so by F.9.16.4, we can choose γ with m(U ∗γ ) ≥ m(UH/DH).
Indeed the proof of that result showed that for suitable γb+1 ∈ Γ(γ) − {γb−1}, we
have symmetry between the geodesics γ0, γ1, . . . , γ, γb+1 and γb+1, γ, . . . , γ1, γ0.

Then if we can show that m(Uγ) = m(UH/DH), we also have m(UH/DH) ≥
m(Uγ/Dγ), so that this additional hypothesis is also symmetric in γ and γ1. We
can use this symmetry to conclude that all results of the form S(γ1, γ) (that is,
involving only γ1 and γ), proved under the choice m(U∗γ ) ≥ m(UH/DH), also hold
with the roles of γ and γ1 reversed: that is, S(γ, γ1) also holds.

Later we will invoke such arguments using the phrase symmetry between γ1 and
γ. Similarly a statement of the form S(γ0, γ1, γ) implies the statement S(β, γ, γ1).
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Lemma F.9.18. Assume H is an SQTK-group and there is K ∈ C(H) with

K/O2(K) quasisimple and H = K0(LT ∩ H), where K0 := 〈KT 〉. Let ÛH :=

ŨH/CŨH (K
∗
0 ). Then

(1) Case (i) of Hypothesis D.3.2 is satisfied with H, K, UH , V1, I in the roles

of “Ṁ , L̇, Q+, Q−, QV ”, respectively, where Ĩ ∈ Irr+(K0, ŨH , T ).

(2) There is B ≤ O2(Gγ0,γ1) with B
∗ ∈ Q(H∗, ŨH), and B∗ faithful on K∗0 .

(3) Let IT := 〈IT 〉 and IH := 〈IH 〉. Then for X := T and H, CK∗0 (ĨT ) ≤

Z(K∗0 ) and B
∗ ∼= AutB∗(ĨX ) ∈ Q(AutK∗0T∗(ĨX ), ĨX ), so q(AutKT (ĨX), ĨX ) ≤ 2.

(4) If K = K0, then K
∗/Z(K∗) is a Bender group, L3(2

n), Sp4(2
n)′, G2(2

n)′,

L4(2), L5(2), or A7 (but K∗ is not Â7), or K
∗ ∼= M22 or M̂22. Moreover one of

the following holds:
(i) I E H.

(ii) Ĩ = ĨT is an FF-module for AutKT (Ĩ).

(iii) Either Î is the natural module for K∗ ∼= SL3(2
n), Sp4(2

n), A6, L4(2),

or L5(2), or Ĩ is a 4-dimensional module for K∗ ∼= A7. Further ÎH = Î ⊕ Ît for

t ∈ T −NT (I), and Ît is not F2K-isomorphic to Î.
(5) If K < K0, then K∗ ∼= L2(2

n), Sz(2n), A5, or L3(2), and one of the
following holds:

(i) I E H, K∗ ∼= L2(2
n), and Ĩ is the Ω+

4 (2
n)-module for K∗0 .

(ii) I E H, K∗ ∼= L3(2), and Ĩ is the tensor product of natural modules
for the factors of K∗0 .

(iii) ÎH = ÎK ⊕ ÎtK for t ∈ T −NT (K), where ĨK = [ĨH ,K] = CĨH (K
t),

and one of the following holds:
(a) ÎK = Î is the natural module for K∗, or the 2n-dimensional or-

thogonal module for K∗ ∼= L2(2
n) with n even.

(b) ĨK = Ĩ ⊕ Ĩs for s ∈ NT (K) − NT (I), and K∗ ∼= L3(2) with

m(Ĩ) = 3.

(c) ĨK is the sum of four isomorphic natural modules for K∗ ∼= L3(2),
and

O2(AutCH∗ (K∗0 )(ĨH))
∼= Z5 or E25.

(6) If 0 6= W̃ = [W̃ ,K0] is a K0T -submodule of ŨH , then one of the following
holds:

(a) W̃ = [ŨH ,K0].

(b) W̃ and UH/W are FF-modules for K∗0T
∗.

(c) W̃ or UH/W is a strong FF-module for K∗0T
∗.

(7) If K∗0T
∗ has no FF-modules, then ĨH = [ŨH ,K0].

Proof. Part (1) is straightforward; in particular O2(K
∗
0T

∗) = 1 as CH (ŨH) =
QH by F.9.2.3. Thus we may apply suitable results from section D.3. The first
statement in (2) is a restatement of F.9.16.3. As LT = Gγ0 , H = Gγ1 , and
B ≤ O2(Gγ0,γ1), B ≤ O2(LT ∩ H). Thus as O2(H

∗) = 1 by F.9.2.3, and H =
K0(LT ∩H), B∗ is faithful on K∗0 , completing the proof of (2).

Adopt the notation of (3); then as B ≤ O2(Gγ0,γ1) ≤ T , B∗ acts on ĨX . As

K∗ is quasisimple and K0 = 〈KT 〉, CK∗0 (ĨX ) ≤ Z(K∗0 ). Thus as B∗ is faithful

on K∗0 , B
∗ is faithful on ĨX , so as B∗ ∈ Q(H∗, ŨH), also B∗ ∼= AutB(ĨX ) ∈

Q(AutK0T (ĨX ), ĨX ), so (3) holds.
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Assume K = K0. Then by Theorem D.3.10, either I = IT or (4iii) holds, so
we may assume the former. Then the hypotheses of D.3.9 are satisfied, so as B∗

is faithful on K∗0 , D.3.9.1 says (4i) or (4ii) holds. Moreover by (3), K∗ is one of
the groups listed in the initial statement of (4), using B.4.2, and the values of “q”
given in B.4.5. Thus (4) is established.

Finally assume that K < K0. Then by Theorem D.3.21, either IT = IH E H
or (5iiic) holds, so we may assume the former. If I = IT then (5i) or (5ii) holds by
D.3.7, so we may asume I < IT . Then conclusion (a) or (b) of (5iii) holds by D.3.6;
the possibilities for K∗ and the modules in (5iiia) are as stated using A.3.8.3, B.4.2,
and B.4.5.

Assume the hypotheses of (6), and assume also that (a) fails. As K0 = 〈KT 〉,
CK∗0 (E) ≤ Z(K∗0 ) for E := W̃ and UH/W ; so as B∗ is faithful on K∗0 , B

∗ is faithful

on E. Thus as B∗ ∈ Q(H∗, ŨH), (6b) or (6c) holds. Thus (6) is established, and
of course (6) implies (7). ¤



CHAPTER G

Various representation-theoretic lemmas

This chapter contains some technical results (for the most part on F2-modules)
which are useful in various situations. Some are essentially available from other
sources, but we include details here for completeness.

G.1. Characterizing direct sums of natural SLn(F2e)-modules

Assume q := 2e for some e. We will establish a “local” criterion for an
F2SLn(Fq)-module to be a direct sum of natural modules; this extends a well-
known result of G. Higman [Hig68] for the case n = 2.

So in this section let n > 1 be an integer, F := Fq , V an n-dimensional vector
space over F , and L := SL(V ). We first establish some notation:

Definition G.1.1. Let Λ be the set of F -points (1-dimensional F -subspaces of
V ) in the projective space PG(V ) over F , and θ the set of incident point-hyperplane
pairs. For (A,B) ∈ θ, let RA,B denote the root group of all transvections in L with
center A and axis B.

Fix a decomposition V = V1 ⊕ · · · ⊕ Vn with Vi ∈ Λ. For i 6= j, set Ri,j :=

RVi,V̂j and Li,j := 〈Ri,j , Rj,i〉, where V̂j := 〈Vk : k 6= j〉. Set Vi,j := Vi + Vj and

V̂i,j := V̂i ∩ V̂j .

Next we record some standard facts:

Lemma G.1.2. (1) [V, Li,j ] = Vi,j , CV (Li,j) = V̂i,j , and Li,j = CSL(V )(V̂i,j) ∩
NSL(V )(Vi + Vj), so Li,j ∼= SL2(F ).

(2) L = 〈Li,i+1 : 1 ≤ i < n〉.

We now turn our attention to modules U for L over F2 rather than F . In
particular, we adopt the convention that dimensions are over F2, unless otherwise
specified; for example, dim(F ) = e since F = F2e .

Our main result in the section characterizes direct sums of natural modules as
the modules U on which the root groups RA,B act quadratically, with the commu-
tator subspaces [U,RA,B] satisfying suitable regularity conditions:

Theorem G.1.3. Let U be an F2L-module, and assume ϕ : Λ→ PG(U) is an
L-equivariant map such that:

(i) For all (A,B) ∈ θ, [U,RA,B ] ≤ ϕ(A); and for all D ∈ Λ with D ≤ B,
ϕ(D) ≤ CU (RA,B).

(ii) For each pair of distinct A1, A2 ∈ Λ, ϕ(A1) ∩ ϕ(A2) = 0.
(iii) U = 〈ϕ(A) : A ∈ Λ〉.

Let s := dimF2(ϕ(A))/e. Then U is the direct sum of s F2L-submodules, which are
F2L-isomorphic to V .

327
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Remark G.1.4. Recall L acts F -flag-transitively on V , and 2-transitively on
Λ. Further in the decomposition of G.1.2, (V1, V̂2) ∈ θ with R1,2 = RV1,V̂2 , and

NL(V1)∩NL(V̂2) is transitive on Λ∩ V̂2−{V1}. Thus given an F2L-module U and
an L-equivariant map ϕ : Λ → PG(U), if we define Ui := ϕ(Vi), then to verify
hypotheses (i)–(iii) of Theorem G.1.3, it suffices to show that U = U1 + · · · + Un,
U1 ∩ U2 = 0, [U2, R1,2] ≤ U1 ≤ CU (R1,2), and if n > 2 also U3 ≤ CU (R1,2).

Before begining the proof of Theorem G.1.3, we prove three results in the special
case where n = 2.

Lemma G.1.5. Assume n = 2 and R ∈ Syl2(L). Then
(1) R = RA,A for some A ∈ Λ.
(2) If the hypotheses of Theorem G.1.3 are satisfied, then ϕ(A) = [U,R] =

CU (R) and U = [U,R]⊕ [U,Rg] for each g ∈ L−NL(R).
(3) If U = ψ(R)⊕ ψ(R)g for some g ∈ L and some NL(R)-invariant subspace

ψ(R) with [U,R] ≤ ψ(R) ≤ CU (R), then the hypotheses of Theorem G.1.3 are
satisfied with ϕ(Ax) := ψ(R)x for x ∈ L.

(4) The following are equivalent:
(a) U = CU (R)⊕ CU (Rg) for some g ∈ L.
(b) R is quadratic on U , and CU (x) = 0 for each x ∈ L# of odd order.
(c) R is quadratic on U , and CU (x) = 0 for some x ∈ L# of odd order.

Proof. Part (1) is well known. Assume the hypotheses of G.1.3 are satisfied.
By hypothesis (i) of G.1.3, [U,R] ≤ ϕ(A) ≤ CU (R). Let g ∈ L − NL(R) and
W := [U,R] + [U,Rg]. As L = 〈R,Rg〉, W = [U,L]. Thus using hypothesis
(iii), U = [U,L] + ϕ(A) = W + ϕ(A), so as [U,R] ≤ ϕ(A), U = [U,Rg] + ϕ(A).
Then as [U,Rg] ≤ ϕ(Ag), we conclude from (ii) that U = [U,Rg] ⊕ ϕ(A). Finally
suppose that [U,R] < CU (R). Then Z := CU (R) ∩ ϕ(Ag) 6= 0, so as L = 〈R,Rg〉,

Z ≤ CU (L). But then 0 6= Z = Zg
−1

≤ ϕ(Ag) ∩ ϕ(A) = 0, a contradiction. This
completes the proof of (2).

Assume the hypotheses of (3) and define ϕ(Ax) := ψ(R)x for x ∈ L. As ψ(R)
is NL(R)-invariant, ϕ(Ax) is well-defined, and ϕ is L-equivariant. By construction
and the hypothesis on ψ, [U,R] ≤ ϕ(A) ≤ CU (A); thus (i) holds. As L is 2-transitive
on Λ and U = ψ(R)⊕ ψ(R)g , (ii) and (iii) hold. So (3) is established.

It remains to prove (4). Suppose first that (a) holds. We claim first that
CU (R) = CU (r) for each r ∈ R#: For if CU (R) < CU (r), then as U = CU (R) ⊕
CU (R

g), CCU (Rg)(r) 6= 0. But then L = 〈Rg , r〉 centralizes CCU (Rg)(r), so 0 6=
CCU (Rg)(r) ≤ CU (R

g) ∩ CU (R) = 0, and this contradiction establishes the claim.

Now [U, r] ≤ CU (r) = CU (R), so R is quadratic on U . Let x ∈ L# be of odd order.
Then x is inverted in L, so as L is 2-transitive on Λ, we may assume that x = rsg

for some r, s ∈ R#. Assume that CU (x) 6= 0. Then as r normalizes 〈x〉,

0 6= CU (x) ∩ CU (r) ≤ CU (s
g) ∩ CU (r) = 0,

using hypothesis (a) and the claim. This contradiction shows that (a) implies
(b). Trivially (b) implies (c), so we may assume that (c) holds, and it remains
to show that (a) holds. Thus there is x ∈ L# of odd order with CU (x) = 0,
and as above we may assume that x = rsg with r, s ∈ R#. As CU (x) = 0, by
A.1.44, U = [U, r] ⊕ [U, sg] with [U, r] = CU (r). Then as R is quadratic on U ,
CU (R) ≤ CU (r) = [U, r] ≤ [U,R] ≤ CU (R), so CU (R) = [U, r] = [U,R] and (a)
holds. ¤
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We often use G.1.5 in the form of the following corollary:

Lemma G.1.6. Let L := L2(2
e) with e > 1, R ∈ Syl2(L), and U an F2L-

module. Assume U = 〈CU (R)
L〉, and CU (R) = CU (r) for each r ∈ R#. Then

U/CU (L) is a direct sum of natural modules for L.

Proof. Let U∗ := U/CU (L), g ∈ L−NL(R), and S := Rg. As U = 〈CU (R)L〉,
U = [U,L] +CU (R). Then by Gaschütz’s Theorem A.1.39, U = [U,L] +CU (L), so
that U∗ = [U∗, L]. Next as L = O2(L) since e > 1, by Coprime Action

CU∗(L) = CU (L)
∗ = 0.

Also

L = 〈R,S〉,

so U∗ = [U∗, L] = [U∗, R] + [U∗, S]. For r ∈ R#, [U, r] ≤ CU (r) = CU (R). Thus
[U∗, R] = [U,R]∗ ≤ CU (R)

∗ ≤ CU∗(R). Hence

[U∗, R] ∩ [U∗, S] ≤ CU∗(R) ∩ CU∗(S) = CU∗(L) = 0,

so U∗ = [U∗, R] ⊕ [U∗, S]. We have shown that the hypotheses of G.1.5.3 are
satisfied with [U∗, R], U∗ in the roles of “ψ(R), U”, so by G.1.5.3 and G.1.3, U ∗ is
a direct sum of natural modules for L. ¤

The next lemma G.1.7, together with G.1.5.2, establishes Theorem G.1.3 in the
case where n = 2. Notice that by G.1.5.4, the hypotheses of G.1.7 are equivalent
to the conditions that R is quadratic on U and CU (x) = 0 for x of order 3 in L.
Thus G.1.7 can be regarded as a special case of the well-known result of G.Higman
(Theorem 8.2 in G. Higman’s U. Michigan lecture notes [Hig68]), stating that
modules for SL2(2

n) on which elements of order 3 are fixed point free are direct
sums of natural modules. Since Higman’s work was never published, we include
here a short, independent proof under the extra condition that the Sylow 2-group
R of L is quadratic on U . (Higman’s treatment also used (without proof) the fact
that if N is the natural FL2(2

n)-module and σ ∈ Aut(F ) then Ext1(N,Nσ) = 0;
nowadays a proof of this fact can be found in various places in the literature, such
as Corollary 4.5 in [AJL83, Cor 4.5].)

Lemma G.1.7. Assume that n = 2 and U = CU (R) ⊕ CU (R
g) for some R ∈

Syl2(L) and g ∈ L. Then U is the direct sum of s := dimF2([U,R])/e natural
F2L-submodules.

Proof. The proof is by induction on dim(U) = dimF2(U). The lemma holds if
dim(U) = 0, so we may assume that dim(U) > 0. The hypotheses fail if dim(U) = 1,
so dim(U) > 1. Notice if W is an L-submodule of U , then W and U/W satisfy the
hypotheses of the lemma: For by G.1.5.4, the hypothesis that U = CU (R)⊕CU (Rg)
is equivalent to the hypothesis that R is quadratic on U and CU (x) = 0 for x ∈ L#

of odd order, and the latter hypotheses are inherited by submodules and quotient
modules.

Using the Steinberg Tensor Product Theorem (cf. 2.8.5 in [GLS98]) and a
tensor computation, the natural FqL-module (regarded as an F2L-module) is the
only irreducible for L of dimension at least 2 on which R is quadratic. Thus we
may assume that L is reducible on U . Let W be a maximal L-submodule of U . By
the previous paragraph and induction on dim(V ), W is the sum of natural modules
and U/W is natural. Thus it remains to show that U splits over W .
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Let X be a subgroup of order q+1. Then X is inverted by a unique involution
from each Sylow 2-group of L. So let r ∈ R# invert X ; from the proof of G.1.5,
[U,R] = CU (R) = [U, r] = CU (r). In particular r is free on U , so U splits over
W as an 〈r〉X-module. Let Z be an 〈r〉X-complement to W in U . If q = 2, then
L = 〈r〉X and we are done. So assume that q > 2 for the remainder of the proof.

Next X = 〈rt〉 for some involution t and t ∈ T ∈ Syl2(L) − {R}. As q > 2,
there is h ∈ T − 〈t〉, and so t = th inverts Xh. On the other hand 〈t〉 = NT (X), so
Xh 6= X . Set I := Z + Zh. As CU (X) = 0, by A.1.44,

Z = [Z, r] ⊕ [Z, t], (+)

and [Z, t] ≤ CU (t) = CU (T ), so [Z, t] = [Zh, t]. Further there is a unique involution
s ∈ R inverting Xh, and s 6= r since Xh 6= X = 〈rt〉. As X〈r〉 is maximal
in L, L = 〈r, s, t〉. But t acts on Z and Zh, and hence on I . As CU (st) = 0,
Zh = [Zh, s] + [Zh, t] = [Zh, s] + [Z, t], so we conclude from (+) that

I = Z + Zh = [Z, r] + [Zh, s] + [Z, t]. (++)

Now [Z, r] + [Zh, s] ≤ [U,R] ≤ CU (R), while [Z, t, r] ≤ Z ≤ I , and we saw [Z, t] =
[Zh, t] so that [Z, t, s] = [Zh, t, s] ≤ Zh ≤ I . Thus using (++), we see that r and
s also act on I . Hence I is an L-submodule of U , and then so is I ∩ W . But
U = W ⊕ Z = W + I , while dim(Z) = 2 dim([Z, t]) = 2e by (+), and dim(I) ≤
3 dim([Z, t]) = 3e using (++). Thus dim(I ∩W ) ≤ e. As the minimal dimension of
a faithful FL-module is 2e, we conclude that I ∩W ≤ CU (L) ≤ CU (X) = 0. Hence
I = Z is an L-complement to W in U , completing the proof. ¤

We now begin the proof of Theorem G.1.3. The proof involves a series of
reductions. Assume the hypotheses of Theorem G.1.3, and choose notation as in
G.1.2. Set Ui := ϕ(Vi) and s := dimF2(ϕ(A))/e.

Lemma G.1.8. U = U1 + · · ·+ Un.

Proof. By hypothesis (i) of Theorem G.1.3, [U,Ri,j ] ≤ Ui, so each Ri,j acts on
U ′ := U1+· · ·+Un. Hence by G.1.2.2, U ′ is L-invariant. Then as ϕ is L-equivariant,
ϕ(A) ≤ U ′ for each A ∈ Λ, so U ≤ U ′ by hypothesis (iii). ¤

We define some notation similar to that in Definition G.1.1:

Definition G.1.9. Set Ui,j := Ui + Uj , Ûi := 〈Uk : k 6= i〉, and Ûi,j := 〈Uk :
k 6= i, j〉.

We will proceed by induction on n, using G.1.7 for the base step n = 2.

Lemma G.1.10. U1,2 = U1 ⊕ U2 is the sum of s natural modules for L1,2.

Furthermore U = U1,2 ⊕ Û1,2, Û1,2 = CU (L1,2), Û2 = U1 ⊕ Û1,2 = CU (R1,2), and

U = U1 ⊕ Û1.

Proof. The argument used to prove G.1.8 shows that L1,2 acts on U1,2. Ob-
serve that the hypotheses of Theorem G.1.3 are satisfied with L1,2, V1,2, ψ, U1,2

in the roles of “L, V , ϕ, U”, where ψ(A) := ϕ(A) for A a point in V1,2. Thus by
G.1.5.2, we may apply G.1.7 to conclude that U1,2 = U1 ⊕ U2, and U1,2 is a sum

of s natural modules for L1,2. By (i), L1,2 centralizes Û1,2, and R1,2 centralizes

U1. By G.1.8, U = U1,2 + Û1,2. As U1,2 is a sum of natural modules for L1,2,

CU1,2(L1,2) = 0, so Û1,2 = CU (L1,2) and U = U1,2 ⊕ Û1,2. Thus U = U1 ⊕ Û1. As

U1,2 is a sum of natural modules for L1,2, U1 = CU1,2 (R1,2), so Û2 = CU (R1,2). ¤
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Observe that G.1.10 says that Theorem G.1.3 holds when n = 2. So we may
assume during the remainder of the proof that n ≥ 3.

Lemma G.1.11. U = U1 ⊕ · · · ⊕ Un.

Proof. By G.1.10 and the L-equivariance of ϕ, Ui ∩ Ûi = 0 for each i. Then
the lemma follows from this fact and G.1.8. ¤

Let T be the Sylow 2-subgroup of L acting on the F -flag 0 < V1 < V1 + V2 <
· · · < V from Definition G.1.1.

Lemma G.1.12. (1) U1 = CU (T ) = CU (L1), where L1 := O2′ (NL(V1)).
(2) U1 is the direct sum of s e-dimensional F2NL(V1)-irreducibles.

Proof. As T is the product of root groups RA,B with V1 ≤ B, we conclude

from (i) that U1 ≤ CU (T ). Similarly as L1 = O2′ (NL(V1)) is generated by such
root groups, U1 ≤ CU (L1). Conversely as R1,m ≤ T for each 1 < m ≤ n, using
G.1.10 and G.1.11 we see

CU (L1) ≤ CU (T ) ≤
⋂

1<m≤n

CU (R1,m) =
⋂

1<m≤n

Ûm = U1,

establishing (1). Next NL(V1) = L1H , where H is a Cartan subgroup of L1,2,
and H acts irreducibly on V1 of F2-dimension e in the natural F2L1,2-module V1,2.
Thus (1) and G.1.10 imply (2). ¤

We now complete the proof of Theorem G.1.3. Let ∆ be the set of e-dimensional
F2NL(V1)-irreducibles on U1 supplied by G.1.12.2. For W1 ∈ ∆, let U(W1) :=
〈WL

1 〉. We will show the modules U(W1), W1 ∈ ∆, are F2L-submodules which are
F2L-isomorphic to V . This will suffice: for by G.1.12,

U1 ≤ U ′ := 〈U(W1) : W1 ∈ ∆〉,

so that U = 〈UL1 〉 ≤ U ′; hence U will be the direct sum of some subcollection of s
of these submodules, and so the proof of Theorem G.1.3 will be complete.

So pick W1 ∈ ∆, and for l ∈ L, let W (V l1 ) := W l
1. This is well-defined as

NL(V1) acts on W1. Let Wi :=W (Vi) for 1 ≤ i ≤ n. It will suffice to show that

U(W1) =W1 + · · ·+Wn. (∗)

For then as Wi ≤ Ui, by G.1.11 U(W1) = W1 ⊕ · · · ⊕Wn is of F2-dimension ne,
and by G.1.12, CU(W1)(T ) = W1 of F2-dimension e is an irreducible for NL(V1).
However if I is an L-irreducible submodule of U(W1), then CI(T ) 6= 0, so as NL(V1)
is irreducible on CU(W1)(T ) = W1, W1 ≤ I ; thus U(W1) = 〈WL

1 〉 ≤ I . That is
U(W1) is an irreducible L-module. Now as the natural module for SL(V ) is the
unique F2-irreducible of dimension ne in which NL(V1) stabilizes an e-dimensional
subspace, it follows that U(W1) is F2L-isomorphic to V .

So it remains to establish (*). By G.1.2.2, it suffices to show that [Wj , Ri,j ] ≤
Wi for each i, j. By G.1.10, Ui,j is the sum of s natural modules for Li,j , so

qs − 1

q − 1
= |Irr(Li,j , Ui,j)| = |Irr(NLi,j (Vi), Ui,j)|, (∗∗)

recalling that NLi,j (Vi) acts indecomposably on Vi,j . By (**):

The map W 7→ 〈WLi,j 〉 is a bijection between Irr(NLi,j (Vi), Ui) and Irr(Li,j , Ui,j).
(!)
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Further using G.1.12 together with the fact that NL(Vi) = NLi,j (Vi)Li for Li :=

O2′(NL(Vi)), we have Wi ∈ Irr(NLi,j (Vi), Ui,j). Hence by (!),

〈W
Li,j
i 〉 =: I ∈ Irr(Li,j , Ui,j).

So as I is a natural module for Li,j , for l ∈ Li,j with V li = Vj , we have I =
Wi +W l

i =Wi +Wj , and then [Wj , Ri,j ] =Wi as desired.
This completes the proof of Theorem G.1.3.

G.2. Almost-special groups

During the proof of the Main Theorem, (cf. Remark F.7.12) we often con-
sider the normal closure UH of a suitable submodule of the internal module V for
L ∈ L∗f (L, T ), under the action of H ∈ H∗(T,M). The analysis then bifurcates
depending on whether UH is abelian or non-abelian. When UH is nonabelian, the
structure of UH resembles that of a special 2-group. In this section we assume
hypotheses which hold in this situation, and derive a few consequences of the hy-
potheses. In particular we use the results on F2-modules in the previous section to
obtain information about 2-chief factors for L.

So in this section, we assume:

Hypothesis G.2.1. G is a finite group, V is an elementary abelian 2-subgroup
of G, 1 6= V1 ≤ V , and L = O2(L) is a subgroup of G, with T a 2-subgroup of G
such that

V ≤ T ≤ NG(V1) ∩NG(V ) ∩NG(L)

and T ∈ Syl2(LT ). Set G1 := NG(V1), G̃1 := G1/V1, and L1 := O2(NL(V1)).
Assume H is a subgroup of G1 containing L1T such that T ∈ Syl2(H), QH :=

O2(H) = F ∗(H), and L1T is irreducible on Ṽ . Set (LT )∗ := LT/O2(LT ), U :=
〈V H〉, and VL := 〈V L1 〉.

Lemma G.2.2. (1) Ṽ ≤ Ũ ≤ Ω1(Z(Q̃H)).
(2) Φ(U) ≤ V1.
(3) U E T .

(4) Ũ ∈ R2(H̃).

Proof. As H ≤ G1 = NG(V1), V ≤ CH (V1) E H . By hypothesis F ∗(H) =
O2(H), so using 1.1.3.2, F ∗(CH (V1)) = O2(CH(V1)) =: Q1, and hence as V1 is

central in CH (V1), F
∗(C̃H (V1)) = O2(C̃H (V1)) = Q̃1 ≤ Q̃H , using A.1.8. Next

since V E T ∈ Syl2(H), by B.2.14 applied in C̃H(V1),

1 6= Z(T̃ ) ∩ Ṽ ≤ Z(Q̃1) ≤ Q̃H .

Then as L1T ≤ H and L1T is irreducible on Ṽ , Ṽ ≤ Ω1(Z(Q̃H)). Hence (1) holds
as U = 〈V H〉, and then (1) implies (2), and B.2.13 implies (4). By (1), U ≤ T , so
(3) holds. ¤

Next we consider the normal closure of U in L under the assumption that
U is not abelian and VL is the natural module for L∗ ∼= L2(2

n), SL3(2
n), or

Ωε4(2). Under these hypotheses, the 2-chief factors of L are almost determined
using Theorem G.1.3.

The hypothesis that U∗ 6= 1 in the next two lemmas is equivalent to the hy-
pothesis that U is nonabelian, which is in turn equivalent to the hypothesis that
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b = 2, where b is the amalgam parameter defined by the pair LT ,H , discussed in
Remark F.7.12. When b = 2, U resembles a special group by G.2.2; hence the
terminology “almost special” .

Lemma G.2.3. Assume L∗ ∼= L2(2
n)′, V = VL is the natural module for L∗,

V1 is a 1-dimensional F2n-subspace of V , and U
∗ 6= 1. Let g ∈ L−NL(V1) and set

I := 〈U,Ug〉 and W := U ∩O2(I). Then
(1) L∗U∗ ∼= L2(2

n), and U∗ ∈ Syl2(L∗U∗).
(2) I = LU .
(3) S := O2(I) =WW g.
(4) S has an I-series

1 =: S0 ≤ S1 ≤ S2 ≤ S3 := S

with S1 := V ≤ Z(S) and S2 := U ∩ Ug.
(5) [S2, I ] ≤ S1, and S2 is elementary abelian.
(6) S/S2 =W/S2⊕W g/S2 is the sum of s natural modules for L∗U∗ for some

nonnegative integer s, with W/S2 = CS/S2(U
∗).

(7) |U | = 2n(s+3)|S2 : S1|.

Proof. This is essentially 8.15 in [Asc94], or 17.7 in [Asc86b]; but we include
a proof here for completeness. As L∗ = F ∗(L∗T ∗) and U∗ 6= 1, U∗ is a nontrivial
2-subgroup of Aut(L∗), and NL∗(U

∗) is a proper subgroup of L∗. Thus if n = 1,
then L∗ ∼= Z3 and L∗U∗ = Aut(L∗) ∼= L2(2

n). In this case set K := LU ; if n > 1,
set K := L. Thus in any case K∗ ∼= L2(2

n) and K∗U∗ ≤ Aut(K∗).
As V1 is a 1-dimensionalF2n-subspace of the natural module V forK∗,NK(V1)

∗

is a Borel subgroup of K∗. By Hypothesis G.2.1, L1T ≤ H and hence NK(V1) =
L1(T ∩ K) ≤ NK(U), with NK(U)∗ ≤ NK∗(U

∗). Thus NK∗(U
∗) = NK(V1)

∗ is
a Borel subgroup of K∗ by maximality of NK(V1)

∗ in K∗. As T ≤ H ≤ NG(U),
1 6= Z(T ∗) ∩U∗ ≤ T ∗ ∩K∗, so as NL(V1)

∗ is irreducible on (T ∩K)∗, we conclude
that U∗ = (T ∩K)∗ ∈ Syl2(K∗), completing the proof of (1).

Let g ∈ L−NL(V1); as U
∗ is Sylow in K∗ ∼= L2(2

n), K∗ = 〈U∗, Ug∗〉 = I∗, so
LU = O2(LU)I . As O2(LU) ≤ T ≤ NG(U), ULU = UO2(LU)I = U I ; in particular,
we can take g ∈ I , and we make this choice during the remainder of the proof.
Then I ≤ 〈ULU 〉 = 〈U I〉 ≤ I , so LU acts on 〈ULU 〉 = I . Then as LU = O2(LU)I ,

LU/I = O2(LU)I/I ∼= O2(LU)/(O2(LU) ∩ I),

so LU/I is a 2-group and hence L = O2(L) ≤ O2(LU) ≤ I , so I = LU , completing
the proof of (2).

We turn to the proofs of (3)–(5). By hypothesis V = VL E LT , so S1 := V
is normal in I . As L is irreducible on V , S := O2(I) centralizes V . As V ≤ U by
construction, S1 = V ≤ U ∩ U g =: S2. Indeed [U, S2] ≤ V1 ≤ V by G.2.2.1, and
similarly [Ug, S2] ≤ V g1 ≤ V , so [S2, I ] ≤ S1. Further Φ(S2) ≤ Φ(U) ∩ Φ(U g) =
V1 ∩ V

g
1 = 1, as the 1-space V1 is a TI-set under L, completing the proof of (5). In

particular, S2 is normal in I , completing the proof of (4).
Set W := U ∩ S; as g ∈ I ≤ NG(S), W

g = Ug ∩ S, and as S acts on U , S
acts on W and W g . Set P := WW g . As S acts on U , [U, S] ≤ U ∩ S = W ≤ P ,
and similarly [Ug , S] ≤ P . Therefore P is normal in I = 〈U,U g〉 and [S, I ] ≤ P so
S/P ≤ Z(I/P ).

Set I+ := I/P , so that S+ ≤ Z(I+). We have seen that

L2(2
n) ∼= L∗U∗ = I∗ ∼= I/O2(I) ∼= I+/S+.
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Therefore as U ∩ S = W = U ∩ P , U+ ∼= U∗ ∼= E2n , and as S+ ≤ Z(I+),
S+ = Z(I+).

Assume first that n = 1. Then U∗ ∼= U+ is of order 2, so I+ = 〈U+, Ug+〉 is
dihedral. Then as I+/S+ ∼= I∗ ∼= S3 and S+ = Z(I+), we conclude I+ ∼= S3 or
D12. The latter case is impossible, as we saw U is conjugate to U g in I . Therefore
S+ = 1 and hence O2(I) = S = P , so (3) holds in this case.

So assume that n > 1. As L ≤ I and I+/Z(I+) ∼= L2(2
n), L+/Z(L+) ∼=

L2(2
n). From the proof of (1), U∗ = [U∗, L∗1] ∈ Syl2(L

∗), so as L1 acts on U ,
[U+, L+

1 ] ≤ U+ ∩L+ and [U+, L+
1 ]Z(L

+) ∈ Syl2(L+). Thus |[U+, L+
1 ] : [U

+, L+
1 ]∩

Z(L+)| = 2n = |U+|, so U+ = [U+, L+
1 ] is a complement to Z(L+) in a Sylow

2-group of L+, and hence Z(L+) = 1 using Gaschutz’s Theorem A.1.39. Then
I+ = 〈U+, Ug+〉 = L+ is simple, completing the proof of (3).

Let Î := I/S2. Then Ŝ = Ŵ⊕Ŵ g by construction, and [Ŝ, U∗] ≤ Ŵ ≤ CŜ(U
∗).

Thus the hypotheses of G.1.5.3 are satisfied with respect to the action of I∗ on Ŝ
and ψ(U∗) = Ŵ , so (6) holds by G.1.5.3 and Theorem G.1.3. Finally (1)–(6) imply
(7); for example |V | = 22n, |W : S2| = 2ns, and |U :W | = |U∗| = 2n. ¤

We have an analogue of G.2.3 in the case L∗ ∼= A5 and V the A5-module:

Lemma G.2.4. Assume L∗ ∼= A5, VL is the A5-module for L
∗, V1 is of order

2, V = [VL, L1], and U∗ 6= 1. Let g ∈ L − NL(V1) and set I := 〈U,Ug〉 and
W := U ∩ O2(I). Then

(1) U∗ = O2(L
∗
1) ∈ Syl2(L

∗).
(2) I = LU .
(3) S := O2(I) =WW g.
(4) S has an I-series

1 =: S0 ≤ S1 ≤ S2 ≤ S3 := S

with S1 := VL ≤ Z(S) and S2 := VL(U ∩ Ug).
(5) [S2, I ] ≤ S1.
(6) S/S2 = W/S2 ⊕W g/S2 is the sum of s natural L2(4)-modules for L

∗ for
some nonnegative integer s, with W/S2 = CS/S2(U

∗).

(7) |U | = 22s+5|S2 : S1|.
(8) If [Ũ , L1] = Ũ and O2(L1) ≤ QH , then I = L is an A5-block, S = VL, and

U = O2(L1) ∼= Q2
8.

Proof. Much of the proof is the same as that of G.2.3; we supply details that
are different. As VL is the natural module for L∗ and V1 is a T -invariant point of
VL, V1 is a singular point in VL, and L

∗
1 = CL∗(V1) is a Borel subgroup of L∗. As

1 6= U∗ E L∗1T
∗, U∗ = O2(L

∗
1), so (1) holds. Then the proof of (2) is exactly like

that of G.2.3.2.
Next V is a hyperplane of VL and [VL, U

∗] = V > V1, so VL ∩ U = V by
G.2.2.1. Next VL = V V g ≤ S, and S1 := VL is normalized by I . Then we
argue as in the proof of (3)–(6) of G.2.3, with only a few differences: VL serves
in the role of “V ” for most of those arguments; also VL 6≤ U , but by definition
S1 = VL ≤ VL(U ∩ Ug) = S2. Then as V = VL ∩ U , (1) and (6) imply (7).

Finally assume the hypotheses of (8), and set H+ := H/QH . As Ũ = [Ũ , L1]
and V1 = [V, L1], U = [U,L1] ≤ L1 ≤ L, so I = L by (2). As O2(L1) ≤ QH by

hypothesis, L+
1
∼= Z3. Then as Ũ = [Ũ , L1], V1 is the unique central chief factor for

L1 on U , and U ≤ O2(L1). In particular as L1 centralizes S2/S1 = (U ∩Ug)S1/S1
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by (5), S1 = S2. Then by (6), S/S1 = [S/S1, L1], so S ≤ O2(L1)VL ≤ QHVL.
Thus [S/VL, U ] ≤ [QHVL/VL, U ] ≤ V1VL/VL = 1, so S = VL by (6). That is L is
an A5-block with S = VL. Therefore O2(L1) ∼= Q2

8 and V = VL ∩ O2(L1), so as
U∗ = O2(L

∗
1) and U ≤ O2(L1), it follows that U = O2(L1), completing the proof

of (8) and the lemma. ¤

The methods for the 2-dimensional case in G.2.3 can be extended to the 3-
dimensional case:

Lemma G.2.5. Assume L∗ ∼= SL3(2
n), V = VL is the natural module for L∗,

and V1 is a 1-dimensional F2n-subspace of V . Further assume U
∗ 6= 1, let g, h ∈ L

with V = V1 ⊕ V
g
1 ⊕ V

h
1 , and set I := 〈U,Ug, Uh〉 and W := U ∩ O2(I). Then

(1) U∗ = O2(NL(V1)
∗) ∼= E22n and V1 = [V, U∗].

(2) I = LU .
(3) S := O2(I) =WW gW h.
(4) S has an I-series

1 =: S0 ≤ S1 ≤ S2 ≤ S3 ≤ S4 := S,

with S1 := V ≤ Z(S), S2 := U∩Ug∩Uh, and S3 := (W ∩W g)(W ∩W h)(W g∩W h).
(5) [S2, I ] ≤ S1.
(6) S3/S2 = (W ∩W g)/S2 ⊕ (W ∩W h)/S2 ⊕ (W g ∩W h)/S2 is the sum of s

copies of the dual of V as an F2L-module for some nonnegative integer s.
(7) S/S3 = W/S3 ⊕W g/S3 ⊕W h/S3 is the sum of r copies of V as an F2L-

module for some nonnegative integer r.
(8) |U | = 2n(2s+r+5)|S2 : S1|, and L1 has r + s+ 2 noncentral 2-chief factors,

each of which is a natural L2(2
n)-module.

Proof. The proof is similar to that of G.2.3, and is essentially contained in
8.16 in [Asc94] or 17.7 in [Asc86b]; still we sketch a proof here for completeness.
Let F := F2n . The proofs of (1)–(5) are essentially the same as those in G.2.3, so
we will simply mention a few differences: This time NL(V1) is not a Borel subgroup,
but the maximal parabolic stabilizing the point V1, so U

∗ is the unipotent radical of
that parabolic. Arguments based on the pair U,U g are now extended to the triple
U,Ug, Uh, and lead to an extra term in the series in (4) defined by the intersection
of pairs from the triple. The L-invariance of S3 also emerges in the details provided
below.

It remains to establish (6)–(8). Adopt the notation of section G.1 in discussing
the action of L∗ on V . In particular if (A,B) is an incident F -point-line pair in V ,
let R∗A,B be the root group of transvections in L∗ with center A and axis B. For
example U∗ is partitioned by the root groups R∗V1,B as B ranges over the lines of V

through V1. Write V̂ for the dual space of V ; then R∗A,B = R∗
B̂,Â

where for C ≤ V ,

Ĉ is the annihilator of C in V̂ . Let Λ̂ be the set of F -points of V̂ .

Let Ŝ := S/S2, W1 :=W , W2 :=W g , W3 :=W h, andWi,j :=Wi∩Wj , so that

S3 = W1,2W1,3W2,3. Define ϕ : Λ̂ → PG(Ŝ3) by ϕ(D̂) := Ŵ1,2 for D := V1 + V g1 ,
and extend to an L∗-equivariant map. This makes sense as U ∗ and Ug∗ centralize
Ŵ1,2, so that O2′(NL∗(D)) = 〈U∗, Ug∗〉 centralizes Ŵ1,2, and then

NL(D
∗) = O2′ (NL(D))∗(NL(V1)

∗ ∩NL(V
g
1 )
∗)
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acts on Ŵ1,2. Similarly

R∗
D̂,V̂1

= R∗V1,D ≤ U∗ ≤ CL(Ŵ1,2)
∗ ∩ CL(Ŵ1,3)

∗

and R∗V1,D ≤ NL(V2)
∗ ≤ NL(W2)

∗, so

[W2,3, R
∗
V1,D] ≤W2 ∩ [U, S] ≤W2 ∩W1 =W1,2.

Therefore, in the notation of G.1.2, [Ŵk , R
∗
i,j ] = 0 for k 6= j and [Ŵj , R

∗
i,j ] = Ŵi,

so L∗ = 〈R∗i,j : i, j〉 acts on Ŝ3. Then the restriction ϕ : Λ̂ → PG(Ŝ3) satisfies the
hypotheses of Theorem G.1.3 using Remark G.1.4, so G.1.3 implies (6).

Similarly let S̄ = S/S3 and observe Theorem G.1.3 implies (7), when we define
ϕ : Λ → PG(S̄) by ϕ(V1) := W̄ and extend to an L∗-equivariant map. Finally
(1)–(7) imply (8). ¤

Lemma G.2.6. Relax the assumptions in Hypothesis G.2.1 that L1T is irre-
ducible on Ṽ , and assume instead that G.2.2 holds. Assume L∗ ∼= E9, VL is the
Ω+
4 (2)-module for L∗U∗ = Ω+

4 (2), V1 is of order 2, and V := V ⊥1 is the hyper-
plane of VL orthogonal to V1. Let g ∈ L with V g1 6≤ V and set I := 〈U,U g〉 and
W := U ∩ O2(I). Then

(1) I = LU .
(2) S := O2(I) =WW g.
(3) S has an I-series

1 =: S0 ≤ S1 ≤ S2 ≤ S3 := S

with S1 := VL ≤ Z(S) and S2 := VL(U ∩ Ug).
(4) [S2, I ] ≤ S1.
(5) L∗U∗ = M∗

1 ×M∗
2 with M∗

i
∼= S3, and S/S2 = S1/S2 ⊕ S2/S2, where

Si/S2 = [S,Mi]S2/S2 = CS/S2(M3−i) is the sum of s natural modules for M ∗
i for

some nonnegative integer s.

Proof. As VL is the natural module for L∗U∗ = Ω+
4 (2), and V1 is a T -invariant

point of VL, V1 is a singular point in V1, and U∗ = CL∗U∗(V1). As V g1 is not
orthogonal to V1, I

∗ = L∗U∗. Then the proof of (1) is exactly like that of G.2.3.2.
Set P := WW g, S1 := VL, and S2 := VL(U ∩ Ug). Arguing as in the proof

of G.2.3, with VL in the role of “V ”, P E I , [I, S] ≤ P , and [I, S2] ≤ S1. Set
I+ := I/P . Then S+

2 ≤ Z(I+), U+ ∼= U∗ ∼= E4 since U ∩ O2(I) ≤ P , and L+ ∼=
L∗ ∼= E9 as [S, I ] ≤ P and L = O2(L). Then as g ∈ L, I+ = 〈U+, Ug+〉 = U+L+,
so S+ = O2(I

+) = 1, and hence S = P . This establishes (2)–(4).

Let Î := I/S2. Then Ŝ = Ŵ ⊕ Ŵ g and [Ŝ, U∗] ≤ Ŵ ≤ CŜ(U
∗), so U∗ is

quadratic on Ŝ. Now L∗U∗ = M∗
1 ×M∗

2 with M∗
i
∼= S3. Let Li := O2(Mi) and

〈u∗i 〉 = U∗ ∩M∗
i . Now S1 := [Ŝ, L1] = [Ŝ, L1, u1] ⊕ [Ŝ, L1, u

l
1] for some l∗ ∈ L∗#1 .

Further u2 centralizes [Ŝ, L1, u1] by the quadratic action, and u2 centralizes M∗
1 ,

so u2 centralizes Ŝ1. Thus M∗
2 = 〈u∗L2

2 〉 centralizes Ŝ1. Therefore as CŜ(L) = 1

since L = O2(L), We conclude that Ŝ = Ŝ0 ⊕ CŜ(L), where Ŝ0 := Ŝ1 ⊕ Ŝ2 and

CŜ0(U) = [S0, U ]. Also Ŝ = Ŝ0Ŵ , so as [Ŝ, U ] ≤ Ŵ ≤ CŜ(U), CŜ(U) = Ŵ . Then

as Ŵ ∩ Ŵ g = 0, Ŝ = Ŝ0 and Ŝi = CŜ(M3−i). As Ŝi = [Ŝ, Li], Ŝ
i is the sum of

natural modules for M∗
i , completing the proof of (5). ¤
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G.3. Some groups generated by transvections

In this section we prove a result on groups containing a subgroup of rank at
least 2 consisting of F2-transvections with a common center. The result may well
be in the literature in some form; at least it can be easily derived from results in
the literature. As usual in such cases, for completeness we provide a proof.

Lemma G.3.1. Let V be an F2-space and G ≤ GL(V ). For X a point in V , let
A(X) be the group of F2-transvections in G with center X. Assume ∆0 is an orbit
of G on points such that m(A(X)O2(G)/O2(G)) > 1 for X ∈ ∆0. Set V0 := 〈∆0〉
and G0 := 〈A(X) : X ∈ ∆0〉. Let ∆1, . . . ,∆s denote the orbits of G0 on ∆0,
Vi := 〈∆i〉, and Gi := 〈A(X) : X ∈ ∆i〉. Then

(1) V0 = V1 ⊕ · · · ⊕ Vs, G0 = G1 × · · · ×Gs, [Gi, Vj ] = 0 for 1 ≤ i, j ≤ s with
i 6= j, and G is transitive on {Gi : 1 ≤ i ≤ s} and {Vi : 1 ≤ i ≤ s}.

(2) AutG1(V1) = GL(V1), ∆1 is the set of points in V1, CG1(V1) is an elemen-
tary abelian 2-group, and m(A(X)) = dim(V1)− 1 +m(CA(X)(V1)).

(3) dimV1 ≥ 3.

Proof. For Γ ⊆ ∆0, set KΓ := 〈A(X) : X ∈ Γ〉 and WΓ := 〈Γ〉. For X ∈ Γ,
[V,A(X)] ≤ WΓ, so KΓ acts on WΓ and centralizes V/WΓ. Thus CKΓ(WΓ) is
quadratic on V , and hence is elementary abelian.

Define S to be the set of Γ ⊆ ∆0 such that KΓ acts on Γ and AutKΓ(WΓ) =
GL(WΓ). Observe that if Γ ∈ S, then the triple Γ, KΓ, WΓ satisfies the con-
clusions of (2) in the roles of “∆1, G1, V1”. This follows from the discussion in
the previous paragraph, and the following remark: For X ∈ Γ, A(X) is NG(X)-
invariant with AutA(X)(WΓ) 6= 1, so as P := NGL(WΓ)(X) is irreducible on O2(P ) =
CGL(WΓ)(WΓ/X), it follows that AutA(X)(WΓ) = O2(P ) is of rank dim(WΓ)− 1.

Let X,Y ∈ ∆0. If X ≤ CV (A(Y )), then A(Y ) acts on A(X), so as A(X)
and A(Y ) are TI-sets in G and |A(X)| = |A(Y )| as X and Y are conjugate,
[A(X), A(Y )] = 1 by I.6.2.1. Then A(X) acts on [V,A(Y )] = Y , so also Y ≤
CV (A(X)). Thus if X 6≤ CV (A(Y )), then by symmetry also Y 6≤ CV (A(X)). Set
K := K{X,Y } and W := W{X,Y }. Then AutK(W ) = GL(W ) ∼= L2(2), so X

K ∈ S
by paragraph two.

We now prove (1). Since G is transitive on ∆0, it is transitive on the orbits
{∆1, . . . ,∆s} of G0 on ∆0, and hence also transitive on {Vi : i} and {Gi : i}. As
∆0 =

⋃
i∆i, V0 = 〈Vi : 1 ≤ i ≤ s〉. If i 6= j, then X ∈ ∆i is not G0-conjugate to

Y ∈ ∆j , so it follows from the discussion above that Gi centralizes Vj and Gj . In
particularW1 := V1∩〈Vi : i > 1〉 ≤ CV1(G1). Once we have established (2), we will
know that G1 induces GL(V1) on V1, so CV1(G1) = 0, and hence V0 = V1⊕· · ·⊕Vs.
Similarly [V,G1 ∩ 〈Gi : i > 2〉] ≤ W1 = 0, so that G0 = G1 × · · · ×Gs, completing
the proof of (1) modulo (2).

Thus it remains to prove (2), so without loss G1 = G0 = G, and so ∆1 = ∆0 =:
∆. The proof is by induction on |∆|. For X ∈ ∆, A(X) 6≤ O2(G) by hypothesis, so
by earlier discussion there is Y ∈ ∆ with [A(X), A(Y )] 6= 1, Σ := X 〈A(X),A(Y )〉 ∈ S,
and |Σ| = 3. Pick Γ ∈ S of maximal order. If Γ = ∆, then (2) holds as Γ ∈ S.
Thus we may assume that Γ 6= ∆.

If W := WΓ ≤ CV (Y ) for each Y ∈ ∆ − Γ, then the earlier discussion shows
that 〈A(Y ) : Y ∈ ∆ − Γ〉 centralizes K := KΓ; then K E 〈∆〉 = G, contradicting
transitivity of G on ∆. Thus there exist X ∈ Γ and Y ∈ ∆− Γ with X 6≤ CV (Y ).
Set I := W + Y , H := 〈K,A(Y )〉, and θ := XH . By paragraph one, H acts on
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I ; set H∗ := H/CH(I) and N∗ := NGL(I)(W ). As Γ ∈ S, AutK(W ) = GL(W ),
so N∗ = NH(W )∗O2(N

∗) and NH(W ) acts irreducibly on the unipotent radical
O2(N

∗). Hence either N∗ = NH∗(W ), or NH∗(W ) = K∗ is a complement to
O2(N

∗) in N∗.
Assume that NH∗(W ) = N∗. Then NH∗(W ) is maximal in GL(I), so as A(Y )

does not act on W , we conclude that H∗ = GL(I) and hence θ ∈ S, contradicting
the maximality of |Γ|. Therefore NH∗(W ) = K∗. Thus m(A(X)∗) = m(W ) − 1 =
m(I)− 2, so

m(CI(A(X))) = 2.

Suppose that |Γ| = 3, so that m(W ) = 2. Then m(A(X)/CA(X)(W )) =
1 = m(I/W ), so as m(A(X)O2(G)/O2(G)) > 1 by hypothesis, there is 1 6= a ∈
CA(X)(W ) with a /∈ O2(G). But if ∆−Γ ⊆ CV (a), then a ∈ CG(W )∩CG(V/W ) ≤
O2(G), contrary to our choice of a. Therefore we can pick Y so that Y 6≤ CV (a).
Thus a /∈ CH(I). But a centralizes W and I/W , so that 1 6= a∗ ∈ O2(K

∗) by
Coprime Action, contradicting K∗ ∼= GL(W ) ∼= L2(2).

Therefore |Γ| > 3, so that m(W ) > 2. As K∗ is irreducible on W and as
A(Y ) does not act on W , or on CV (K) if CV (K) 6= 0, H∗ is irreducible on I . If
m(W ) = 3, then H∗ is an irreducible subgroup of GL4(2) containing an L3(2)-
subgroup K∗ generated by transvections, so that H∗ = GL(I), contradicting the
maximality of |Γ|.

Thus m(W ) > 3. Let W1 be a hyperplane of W containing X , I1 := W1 + Y ,
H1 := 〈A(Y ), A(X1) : X1 ≤W1〉, and Γ1 := XH1 . As m(W ) > 3,

m(A(X)/CA(X)(W1)) = m(W1)− 1 ≥ 2.

Thus by induction on |∆|, (2) holds for the triple Γ1, H1, I1, so that AutH1(I1) =
GL(I1) and X = CI1(A(X)). However each point of I is contained in some I1, so we
conclude X = CI (A(X)). This contradicts our earlier remark that m(CI (A(X))) =
2, and completes the proof of (2).

Finally (3) follows from our hypothesis that m(AO2(G)/O2(G)) > 1, because
m2(L2(2)) = 1. This completes the proof of G.3.1. ¤

G.4. Some subgroups of Sp4(2
n)

In this section, V is a 4-dimensional symplectic space over F := F2n , and
Ĝ := Sp(V ). We establish a result needed for E.2.7:

Theorem G.4.1. Let G0 be a K-subgroup of Ĝ = Sp(V ), and assume G0 is
irreducible on V and the set D of F -transvections in G0 is nonempty. Let G := 〈D〉.
Then one of the following holds:

(1) G = G0 = CĜ(σ) for some field automorphism σ of Ĝ. Thus G ∼= Sp4(2
k)

for some divisor k of n.
(2) G0 = G preserves a quadratic form Q on V , and G = CO(V,Q)(σ) for some

field automorphism σ of Ĝ. Thus G ∼= Oε4(2
k) for some divisor k of n and ε := ±1.

(3) G0 preserves a decomposition V = V1⊕V2 of V , where V1 is a nondegenerate
projective line, V2 := V ⊥1 , G0 = G〈t〉 where t is an involution with V t1 = V2 and
G = G1 × G2, where Gi := 〈CD(V3−i)〉 is isomorphic to L2(2

k) or D2m for some
divisor k of n, or m of 2n ± 1.

Remark G.4.2. In [McL67] and [McL69], McLaughlin considers subgroups
G of GL(V ) generated by root groups of transvections, without the assumption that
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dim(V ) = 4 or that G preserves a symplectic form. In [Kan79], Kantor considers
the general case. To keep our treatment self-contained, we sketch a proof in the
case of subgroups of Sp4(2

n).

Notice as G0 is faithful and irreducible on V and G E G0, that

Lemma G.4.3. O2(G0) = 1 = O2(G). In particular G is not abelian.

Definition G.4.4. Let D̂ denote the set of transvections in Ĝ. For d ∈ D̂,
let R̂d be the root group of d in Ĝ, Rd := R̂d ∩ G, and Vd := [V, d] the center of

d. Let Dd := CD(d) − Rd and Ad := D − CD(d). For J ⊆ D̂, let LJ = 〈J〉 and

VJ := 〈Vj : j ∈ J〉. If P is a projective point in V , then P := Vd for some d ∈ D̂,

and we set X̂P := 〈CD̂(d)〉, X̂
+
P := X̂P /O2(X̂P ), and XP := 〈Dd〉. Let A denote

the graph on D in which a is adjacent to b iff b ∈ Aa. Let Σ denote the set of field
automorphisms of Ĝ. Let I consist of all involutions in G of the form ab, where
a ∈ D and b ∈ Da.

Observe that as G is not abelian by G.4.3, Ad 6= ∅. Also X̂P = O2′(Q̂) for

Q̂ a maximal parabolic of Ĝ, so X̂+
P
∼= L2(2

n), and O2(X̂P ) is the 3-dimensional
orthogonal module (nonsplit when n > 1) for L2(2

n) described in I.2.3.1, with

Z(X̂P ) = R̂d.
The following facts are well known and easy:

Lemma G.4.5. (1) D is a set of odd transpositions of G; that is, |ab| = 2 or
|ab| is odd for each a, b ∈ D.

(2) If a ∈ D and b ∈ Aa, then Va,b is a nondegenerate line.
(3) If a ∈ D and b ∈ Da, then Va,b is a totally singular line, and CĜ(ab) ∈

Syl2(Ĝ).

Lemma G.4.6. The following are equivalent:
(1) A is disconnected.
(2) G is not transitive on D by conjugation.
(3) G0 is imprimitive on V .
(4) Case (3) of Theorem G.4.1 holds.

Proof. Let a ∈ D. By G.4.5, D is a set of odd transpositions of G; thus an
elementary argument shows that (1) and (2) are equivalent; cf. Exercise 2.2.1 in
[Asc97].

Assume that V = V1⊕· · ·⊕Vr is a G0-invariant decomposition of V with r > 1.
Then r = 2 or 4 and dim(Vi) = 4/r.

Suppose first that r = 4. Then a has a cycle (V1, V2) on X := {V1, . . . , V4}, so
as a is a transvection, Va ≤ V1 + V2 =: U and V1 6≤ V ⊥a , so U is nondegenerate.
Then a centralizes V3+V4, so a induces a transposition on X . As G0 is irreducible
on V , G0 is transitive on X , so G0 induces S4 or D8 on X . As O2(G0) = 1 by
G.4.3, F ∗(G0) is contained in the kernel K of the action of G0 on X . As K is
abelian of odd order and [K, a] 6= 1, there is b ∈ Aa ∩ aK. As 〈a〉K acts on U
and on V3 + V4, U = Va,b and V3 + V4 = U⊥ by G.4.5.2. Thus {U,U⊥} is also a
system of imprimitivity for G0, with two summands, so we may take r = 2. But
now dim(V1) > dim(Va), so a acts on V1 and Va ≤ Vi for i = 1 or 2. Then the
connected components of A are Di := {d ∈ D : Vd ≤ Vi}, so (3) implies (1).

Visibly (4) implies (2) and (3), so it remains to assume (1) and show that (4)
holds. Let D1 be a connected component of A, D2 := D − D1, Gi := 〈Di〉, and
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a ∈ D1. Recall there exists b ∈ Aa. Let V1 := Va,b and V2 := V ⊥1 ; by G.4.5, V1
is a nondegenerate line and VD2 ≤ V2. Let d ∈ D2; by symmetry there is e ∈ Ad
and Vd,e is a line contained in VD2 ≤ V2, so V2 = Vd,e. Thus G2 = 〈CD(V1)〉,
and by symmetry G1 = 〈CD(V2)〉. As G0 is irreducible on V , there exists t ∈ G0

interchanging G1 and G2. From the structure of Sp(Vi), Gi is described in case (3)
of Theorem G.4.1. Thus Gi is self-normalizing in CĜ(V3−i)

∼= L2(2
n), so G1×G2 =

NG0(V1), completing the verification of case (3) of Theorem G.4.1. ¤

By lemma G.4.6 we may assume that A is connected. Thus by G.4.6, G is
transitive on D and G0 is primitive on V .

Lemma G.4.7. G0 = G.

Proof. Suppose U is a nonzero G-submodule of V . As G0 is irreducible on
V and G E G0, CV (G) = 0 and V = [V,G]. Thus [U, a] 6= 0 for some a ∈ D, so
Va ≤ U . Then as G is transitive on D, VD ≤ U . Thus G = 〈D〉 centralizes V/U , so
as V = [V,G], U = V ; that is, G is irreducible on V . Therefore if G0 > G, then by
induction on the order of G0, G is described in (1) or (2) of Theorem G.4.1. But

then G is self-normalizing in Ĝ, so G0 = G. ¤

Lemma G.4.8. Assume that a ∈ D and H is an a-invariant subgroup of G
irreducible on V . Let G1 := H〈a〉, I an irreducible F2G1-submodule of V , F0 :=
EndF2G1(I), and write V0 for I regarded as an F0G1-module. Then F0 is a subfield
of F , F0 = EndF2H(V0), V0 is an absolutely irreducible self-dual F0H-module, V =

V0 ⊗F0 F , G1 ≤ CĜ(σ)
∼= Sp4(F0) for some field automorphism σ of Ĝ determined

by a generator of Gal(F/F0), and, up to scalar multiplication, G1 preserves a unique
symplectic form on V .

Proof. As H is irreducible on V , V is a homogeneous F2H-module, and hence
I is also an irreducible H-module and there is a G1-chief series S on V in which
each factor is F2H-isomorphic to I . Let E := EndF2H(I). Then either E = F0, or
a induces an automorphism of order 2 on E and m([I, a]) = m(I)/2. However in
the latter case, the existence of S says that m([V, a]) = m(V )/2, impossible as a
induces a transvection on V . Therefore E = F0.

Let F1 := F ∩ F0, and let V1 be I regarded as an F1G1-module. By 26.4 in
[Asc86a], V = V F1 = V1 ⊗F1 F , so a induces an F1-transvection on V1. Thus as
[V1, a] is a 1-dimensional F0-subspace of V1, F0 = F1 ≤ F and V0 = V1. Then
by Theorem 26.6 in [Asc86a], V0 is an absolutely irreducible F0G-module and
V0 can be written over no proper subfield of F0. As V = V F0 , G is contained in
CGL(V )(σ) for a suitable field automorphism σ of GL(V ) determined by a generator
σ̄ of Gal(F/F0).

As G ≤ Sp(V ), V is isomorphic to its dual V ∗ as an FG-module, so V F0
∼=

(V F0 )∗ ∼= (V ∗0 )
F , and hence V ∗0

∼= V τ0 for some τ ∈ Aut(F0) by 26.6 in [Asc86a].
Let F2 be the fixed field of τ and ρ the lift of τ to F with fixed field F2. Then
V ∼= V ∗ = (V τ0 )F ∼= (V F0 )ρ = V ρ, so V0 can be written over F2 by 26.3 in [Asc86a].
Thus F ∼= F2 and hence V0 ∼= V ∗0 .

As V0 is self-dual, G preserves a symplectic form f on V0. Then f extends to
an F -form fK on V = V F0 preserved by G. As V is absolutely irreducible, fK

is unique up to scalar multiplication, so Ĝ is the isometry group of fK σ̄ and fK .
Thus σ acts on Ĝ, completing the proof. ¤
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Lemma G.4.9. Either
(1) F ∗(G) is a nonabelian simple group containing a member of I, and irre-

ducible on V ; or
(2) F ∗(G) ∼= Ω+

4 (2
k) for some k > 1 dividing n, and case (2) of Theorem G.4.1

holds.

Proof. Let a ∈ D. We first establish a preliminary result: Suppose that X
is a normal subgroup of G which is irreducible on V and not in the center of G.
We claim that there is e ∈ Da ∩ aX so that ae ∈ I: Assume the claim fails. As
G = 〈D〉 is transitive on D, while X is normal but not central in G, [X, a] 6= 1.
Thus as O2(G) = 1, by the Baer-Suzuki Theorem there exists b ∈ Aa ∩ aX . As X
is irreducible on V , there is c ∈ aX with Vc 6≤ Va,b. Then Va,b,c is of F -dimension

3, so P := V ⊥a,b,c is a point of V . Let L := La,b,c and d ∈ D̂ with P = Vd; then

L ≤ X̂P . Recall the definition of X̂+
P from G.4.4, and that X̂+

P
∼= L2(2

n). As

La,b ∼= D2m
∼= L+

a,b for some odd m > 1, Dickson’s Theorem A.1.3 says:

(a) L+ is isomorphic either to D2m0 for some odd m0, or L2(2
k) for some k > 1,

and
(b) each La,b-invariant 2-subgroup of X̂P is contained in O2(X̂P ).

By (b), O2(L) ≤ O2(X̂P ), so as R̂a ∩ O2(X̂P ) = 1, [O2(L), a]
# ⊆ I, and therefore

[O2(L), a] = 1 by our assumption. Hence O2(L) ≤ CO2(X̂P )
(La,b) = R̂d ≤ CG(L).

If d ∈ D ∩ aX then ad ∈ I ∩X , again contrary to assumption; thus

(c) O2(L) ∩ aX ⊆ R̂d ∩ a(X ∩ L) = ∅.

By (c), c /∈ O2(L), so by (a), c lies in Aa or Ab. Thus a, b, c are fused under O2(L),
so L = 〈a〉O2(L). As |L : L∩X | ≤ 2, O2(L) ≤ X , so (c) says that O2(L) ≤ O2(L).
As dim(Va,b,c) = 3, L is not dihedral, so L+ is not dihedral. Thus L+ ∼= L2(2

k) for
some k > 1 by (a). If Ra ∩ L ∈ Syl2(L), then Va,b,c ≤ [V,Ra] + [V,Rb] = Va,b, a
contradiction. Thus there is e ∈ Da ∩ L, and hence ae ∈ I, establishing the claim.

We now turn to the proof of the lemma. Applying the claim to G in the role
of “X”, we conclude that there is e ∈ Da, so that i := ae ∈ I.

Suppose first that W := Op(G) 6= 1 for some odd prime p. By G.4.5.3, CG(i)
is a 2-group, so i inverts W . Thus if W is cyclic, W is centralized by a or e, and
hence centralized by G = 〈D〉 as G is transitive on D. Therefore W is noncyclic.
But the Sylow p-subgroups of G are abelian, so W is noncyclic abelian and hence
not homogeneous on V , contradicting our assumption that G is primitive on V .

Therefore Op(G) = 1 for each odd prime p, while O2(G) = 1 by G.4.3. Thus
H := F ∗(G) is the product of simple components. Let K be a component of G and
set G1 := 〈K, a〉.

Suppose first that Ka 6= K. Then CKKa(a) =: J ∼= K, so K ∼= L2(2
k) for some

k > 1 dividing n, since these are the only nonabelian simple sections of CĜ(a).
Further for j an involution in J , aj ∈ Da, so j ∈ I. Thus CG(j) is a 2-group, so
H = KKa. As G is primitive on V , V is a homogeneous H-module, so if H is
not irreducible on V , then V is the sum of two faithful 2-dimensional irreducible
FH-modules, impossible as GL2(F ) contains no subgroup isomorphic to H . Thus
H is irreducible on V , so by G.4.8, V = V F0 = V0 ⊗F0 F for some subfield F0
of F and F2G1-submodule V0 satisfying the various restrictions in G.4.8. As V0
is a homogeneous F0K-module, V0 is the sum of two isomorphic natural F2K-
modules, so F0 = EndF2H(V0) = F2k . Further as an F0H-module, V0 is the tensor
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product of natural modules for K and Ka, so V0 is the orthogonal module for
G1

∼= Ω+
4 (2

k). Thus G1 E NGL(V0)(H), so as G = 〈D〉, G = G1. Moreover the
representation of G on V is determined up to quasiequivalence; and by G.4.8, up to
scalar multiplication, G preserves a unique symplectic form on V , so Ĝ is transitive
on its subgroups whose representation is quasiequivalent to that of G1. Now for Q a
quadratic form of Witt index 2 on V , and σ a field automorphism of Ĝ determined
by a generator of Gal(F/F0), CO(V,Q)(σ) is such a subgroup, so case (2) of Theorem
G.4.1 holds, and hence also conclusion (2) of our lemma.

Thus we may suppose instead that a acts on each component of G, so as
G = 〈D〉, K E G. If K is not irreducible on V , then V is the sum of two 2-
dimensional FK-modules, so K ∼= L2(2

k) and the modules are natural. But then
m(Va) = m(V )/2, contrary to dimF (Va) = 1. Therefore K is irreducible on V , so
by the claim with K in the role of “X”, K contains j ∈ I. Then as CG(j) is a
2-group by G.4.5.3, K = F ∗(G), and hence (1) holds. ¤

We can now complete the proof of Theorem G.4.1. Let a ∈ D, H := F ∗(G),
and G1 := H〈a〉. Then G1 is an SQTK-group with F ∗(G1) = H . By G.4.9 we may
assume that H is simple and irreducible on V , and there is i ∈ I ∩H . By G.4.5.3,
CG1(i) is a 2-group. Inspecting the centralizers of involutions in the groups in Theo-
rem C (A.2.3) (cf. 16.1.4 and 16.1.5 where most cases are considered), we conclude
that H ∼= L2(p) for p a Fermat or Mersenne prime, L2(2

r), Sz(2r), Sp4(2
r), or

L3(4). By G.4.8, V = V F = V ⊗F0 V0 for a subfield F0 and F0G-module V0 satis-
fiying the restrictions of that lemma. In particular V0 is an absolutely irreducible
4-dimensional H-module on which a induces a transvection, so we conclude that
either

(i) G1
∼= Sp4(2

k), F0 = F2k , and V0 is the natural H-module, or
(ii) H ∼= L2(2

2k), a induces a field automorphism on H , F0 = F2k , and V0 is
the orthogonal module for G1

∼= O−4 (2
k).

Then arguing as in the proof of lemma G.4.9, Theorem G.4.1 holds.

G.5. F2-modules for A6

The results of this section are known, and can be found in various places in
the literature. However for the convenience of the reader and to maintain a self-
contained treatment, we provide the easy proofs here.

In this section G := A6, T ∈ Syl2(G), and G1 and G2 are the two subgroups
of G of index 15 containing T . Let F := F2 be the field of order 2, and S6 ∼= G0 ≤
Aut(G).

Lemma G.5.1. (1) There are four irreducible FG-modules, denoted 1, 41, 42,
and 16.

(2) The module 4i is the 4-dimensional irreducible on which Gi fixes a point
and G3−i fixes a line.

(3) The module 16 is the restriction V of the 16-dimensional Steinberg module
for G0 to G, and F4 ⊗F V = U1 ⊕U2, where U1 is an 8-dimensional F4G-module,
and U2 = U t1 = Uσ1 for t ∈ G0 −G, and 〈σ〉 = Gal(F4/F ).

Proof. As in H.6.1, it follows from the list on page 77 of [GLS98] that the
F -irreducibles for G0

∼= Sp4(2) may be denoted by 1, 41, 42, and the projective
Steinberg module V0 ∼= 41 ⊗ 42. Further 4i restricts to an absolutely irreducible
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FG-module, so (2) holds. Write V for the restriction of V0 to G. By Clifford’s
Theorem, either V is an irreducible FG-module or V = V1 ⊕ V2 is the sum of two
irreducible FG-modules interchanged by members of G0 − G. Moreover another
application of Clifford’s Theorem tells us that each irreducible FG-module not in
∆ := {1, 41, 42} is isomorphic to a summand of V .

Let K be a minimal splitting field for G over F , and for D an FG-module let
DK := K ⊗F D. Since G has 5 conjugacy classes of elements of odd order, the set
Γ of irreducible KG-modules is of order 5; and as the members of ∆ are absolutely
irreducible, ∆K := {DK : D ∈ ∆} is a subset of Γ of order 3. Thus either

(a) V is irreducible, K = F4, and VK = U1⊕U2 with dimK(U1) = 8, U2 = Uσ1 ,
and Γ−∆K = {U1, U2}; or

(b) V is not irreducible, V1 is absolutely irreducible, K = F , and Γ − ∆ =
{V1, V2}.

In case (a), as V0 is an absolutely irreducible FG0-module, U t1 = U2 for t ∈
G0 − G, so the lemma holds. So assume that case (b) holds. As V0 = 41 ⊗ 42,
dim(CV0(X)) = 4 for each X of order 3 in G using (2); so as V t

1 = V2 and t acts
on XG, dim(CVi (X)) = 2 for i = 1, 2. Thus the character χi of Ui := F4 ⊗F Vi on
each element of odd order distinct from 5 in G is the same on V1 and V2, so the
characters differ on elements of order 5. This is impossible as Ui = Uσi , and we
may choose t ∈ G0 −G and y of order 5, such that yt = y2, so

χi(y) = χσi (y) = χi(y
2) = χi(y

t) = χ3−i(y).

¤

Lemma G.5.2. If V is an irreducible FG0-module on which G1 and G2 fix lines,
then V is the 16-dimensional Steinberg module for G0.

Proof. From G.5.1, G0 has four irreducibles: 1, 41, 42, and the Steinberg
module 16. Further Gi fixes no line in 4i. ¤

In the remainder of the section, let V be the module 41.
The goal of the section is to describe the 15-dimensional permutation module

U on Ω := G/G1. As G is transitive on V # and G1 is the stabilizer of a point of
V , the permutation representations of G on V # and Ω are equivalent, so we may
view the two sets as the same. We also view U as the power set of Ω with addition
equal to symmetric difference. For S ⊆ Ω, write S ′ for the complement Ω− S of S
in Ω. The weight of S is its order as a subset of Ω. Let U0 be the core of U ; that
is U0 is the submodule of vectors of even weight.

Recall that V has the structure of a symplectic space preserved by G. For
X ⊆ Ω, write X⊥ for the subset of Ω orthogonal to X in V . Let L be the set
of totally singular lines of V ; we abuse notation and regard l ∈ L as the 3-subset
l# of Ω. As G is transitive on L and G2 is the stabilizer of a member of L, the
permutation representations of G on G/G2 and L are equivalent.

Recall that the radical J(M) of a module M is the intersection of all maximal
submodules ofM , so thatM/J(M) is the largest semisimple quotient ofM . Define
J1(M) := J(M) and J i(M) := J(J i−1(M)) for i > 1 recursively. Recall the notion
of a covering of a module from Remark I.1.5, and the description of the covering of
4i from I.2.3.1.

Lemma G.5.3. (1) U = U0 ⊕ FΩ.
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(2) U0 has G-chief series

0 = U5 < U4 < · · · < U1 < U0

where Un := Jn(U0).
(3) U2 = 〈l′ : l ∈ L〉, and U0/U2 is the 5-dimensional cover of 41.
(4) U4 = {Cx : x ∈ Ω} ∪ {0} is isomorphic to 41, where Cx := (x⊥)′.
(5) U2/U4 is the 5-dimensional cover of 42.
(6) If W is an FG-module such that W = 〈wG〉 for some w ∈ W# fixed by

G1, and 〈wG2〉 is a line, then W is isomorphic to 41 or its 5-dimensional cover.

Proof. Recall G1 and G2 are the stabilizers of x ∈ Ω and l ∈ L with x ∈ l.
Assume the hypotheses of (6), and let W (x) := Fw, and W (l) := 〈wG2〉. Thus

W (l) is a line by hypothesis. For g ∈ G, let W (xg) :=W (x)g and W (lg) :=W (l)g.
Finally let S(x) := 〈W (k) : x ∈ k ∈ L〉. As x is on three members of L, it
follows that m(S(x)) ≤ 4, and S(x) contains W (y) for each point y in x⊥. Next
l = {x, x1, x2} and each v ∈ Ω is orthogonal to some point of l, so W = 〈wG〉 =
S(x) +S(x1) +S(x2). Then as m(S(x)) ≤ 4 and W (l) ≤ S(x) +S(xi), m(W ) ≤ 8.

Let UL := 〈L〉 ≤ U and Ū := U/UL. Then Ū is the largest FG-module
satisfying the hypotheses of W in (6), so W = Ū/ŪW for some ŪW ≤ Ū and
dim(Ū) ≤ 8. Also the 5-dimensional cover of 41 satisfies the hypotheses for W ,
so there is Ū+ ≤ Ū , such that Ū/Ū+ is that cover. In particular m(Ū+) ≤ 3, so
by G.5.1.1, G centralizes Ū+. On the other hand, as x̄ ∈ 〈x̄G2〉 = [〈x̄G2〉, G2],
Ū = [Ū , G]. Thus as Ū/Ū+ has no proper cover since H1(G, 41) is 1-dimensional
by I.1.6.1, it follows that Ū = U/UL is of rank 5. This establishes (6).

Next U has a nondegenerate G-invariant quadratic form q over F , in which Ω
is an orthonormal basis; that is, q(u) is the weight of u mod 2, and (u, v) is the
weight of u ∩ v mod 2. Thus FΩ is a fixed point of G, and U0 is the orthogonal
complement to FΩ in U , so (1) holds. Moreover this shows that U0 is self-dual.

The projection of x on U0 is x′ of weight 14. Similarly the projection of UL
on U0 is U2 := 〈l′ : l ∈ L〉, U0/U2

∼= U/UL is the 5-dimensional cover of 41, and
J2(U) ≤ U2. Thus (3) holds, modulo showing U2 = J2(U). Further m(U2) =
14− 5 = 9.

Next observe that for distinct u, v ∈ Ω, Cu+Cv = Cu+v : Namely w ∈ Cu+Cv
iff w is orthogonal in V to exactly one of u and v iff w is not orthogonal to u+ v.
It follows that

U4 := {Cy : y ∈ Ω} ∪ {0}

is a subspace of U isomorphic to V under the FG-isomorphism y 7→ Cy.
Let li, 1 ≤ i ≤ 3 be the members of L through x. Observe next that l1+l2+l3 =

Cx, since u ∈ l1 + l2 + l3 iff u is on an even number of the three lines iff u is on
none of the lines. Thus U4 ≤ U2, with m(U2/U4) = 5 as m(U2) = 9. So applying
the analogue of (6) obtained via an outer automorphism nontrivial on the Dynkin
diagram, it follows that U2/U4 is isomorphic to the 5-dimensional cover of 42.

We have shown that U0 has five composition factors, two isomorphic to each of
1 and 41, and one isomorphic to 42. In particular there is a 1-dimensional factor in
each of J(U0/U2) and J(U2/U4), so it follows that all 1-dimensional factors are in
J(U0). Thus U0 has no 1-dimensional quotient modules, and then as U0 is self-dual,
U0 has no 1-dimensional submodules. Similarly U2/U4 has a 42-quotient but no 42-
submodule, so U0 has no 42-submodule, and hence no 42 quotient. Thus U0/J(U0)
and its dual Soc(U0) are the sum of s := 1 or 2 copies of 41. As U0/U2 is the cover
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of 41, Soc(U0) has at most one 41 summand, so s = 1. Thus U2 = J2(U0) is of
codimension 1 in J(U0). Finally as U0 has no 1-dimensional submodule, neither
does U2, so as J(U2/U4) is of rank 1, the preimage U3/U4 of J(U2/U4) does not
split over U4, so U4 = J2(U2) = J4(U0). This completes the proof of (2)–(5) and
hence of the lemma. ¤

G.6. Modules with m(G,V) ≤ 2

In this section we assume:

Hypothesis G.6.1. G is a finite group with O2(G) = 1, which is a quotient
of an SQTK-group, V is a faithful F2G-module, and a is an involution in G such
that m([V, a]) ≤ 2 and V := 〈[V, a]G〉. Set K := 〈aG〉.

Lemma G.6.2. (1) V = [V,K].
(2) V = [V,O2(K)].
(3) If H ≤ G with K = 〈aH 〉, and U is an H-submodule of V with [V, a] ≤ U ,

then U = V .

Proof. First [V, a] ≤ [V,K] as a ∈ K by Hypothesis G.6.1. Further as K E

G, [V,K] is G-invariant, so V = 〈[V, a]G〉 ≤ [V,K], proving (1). Next if W :=
[V,O2(K)] < V , then as K/O2(K) is a 2-group,

[V,K]/W = [V/W,K/O2(K)] < V/W,

contrary to (1). Thus (2) holds. Similarly under the hypotheses of (3), [V,K] =
〈[V, a]H〉 ≤ U , so (1) implies (3). ¤

Lemma G.6.3. Assume U is a K-submodule of V , and either K = 〈aK〉 or U
is G-invariant. Then one of the following holds:

(1) [U,K] = 0.
(2) U = V .
(3) a induces a transvection on U and V/U .

Proof. Let H := G if U is G-invariant, and H := K otherwise. Thus by
hypothesis, K = 〈aH〉 and U is H-invariant. If [U, a] = 0, then as K = 〈aH〉 and U
is H-invariant, (1) holds. Thus we may assume [U, a] 6= 0. Similarly if [V, a] ≤ U
then (2) holds by G.6.2.3. Thus as m([V, a]) ≤ 2, we may assume [U, a] = [V, a]∩U
is of rank 1, and that m([V/U, a]) = 1. Hence (3) holds. ¤

The following result describes groups generated by a conjugacy class of F2-
transvections. While the result could presumably be extracted from the literature,
(cf. also Remark G.4.2) we will deduce it from Theorem B.5.6 on FF-modules.

Lemma G.6.4. Assume Hypothesis G.6.1 and that a induces an F2-transvection
on V . Then

(1) K = K1 × · · ·Ks and V = V1 + · · · + Vs, where s ≤ 2, Vi := [V,Ki],
[Vj ,Ki] = 0 for i 6= j, a ∈ K1, and G is transitive on {K1, . . . ,Ks}.

(2) One of the following holds:
(a) Ki

∼= Ln(2), 2 ≤ n ≤ 5, and Vi is the natural module for Ki.
(b) Ki

∼= Sn, 5 ≤ n ≤ 8, and Vi is the natural module for Ki.
(c) Ki

∼= S6 or S8, and Vi is the core of the permutation module for Ki.
(3) Either

(i) s = 1 and G = K, or
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(ii) s = 2, Ki
∼= L2(2), L3(2), or S5, and G = K〈t〉, where t is an

involution with Kt
1 = K2.

(4) If a is in the center of a Sylow 2-subgroup of G, then s = 1 and G = K ∼=
Ln(2), S6, or S7.

Proof. Let A := 〈a〉. As a induces an F2-transvection on V , A ∈ P(G, V ).
Thus Hypothesis B.5.3 holds with K in the role of “G” by Hypothesis G.6.1. There-
fore we can appeal to Theorem B.5.6, to conclude that one of the following holds:

(I) F ∗(K) is quasisimple, and its action on V is described in Theorem B.5.1.

(II) K = K1 ×K2 and Ṽ := V/CV (K) = Ṽ1 ⊕ Ṽ2, where Vi := [V,Ki], and Ṽi
is the natural module for Ki

∼= L2(2), L3(2), or S5.
(III) K ∼= L2(2) and V = [V,K]⊕ CV (K) with m([V,K]) = 2.

Notice that the fact that m(A) = 1 excludes conclusions (4) and (5) of B.5.6, as
well as cases (b) and (c) of B.5.6.3, and shows that Ki is L2(2), L3(2), or S5 in case
(a) of B.5.6.3.

By Hypothesis G.6.1, K = 〈aG〉, so in case II we may choose a ∈ K1, and there
is t ∈ G interchanging K1 and K2. Furthermore in case II, V = [V,K] ⊕ CV (K),

since the 1-cohomology of Ṽi is zero when Ki is L2(2) or S5, and by an appeal to
B.4.8.2 and the fact that m(A) = 1 when Ki is L3(2). Thus in cases II and III,
V = [V,K] ⊕ CV (K). But by G.6.2.1, V = [V,K], so CV (K) = 0. Further Ki is
self-normalizing in GL(Vi), so we conclude G = K〈t〉 when s = 2 and G = K when
s = 1. Thus (1)–(3) hold in cases II and III.

Thus we may assume case I holds. Here we appeal to Theorem B.5.1.1, to
conclude that U := [V, F ∗(K)] ∈ Irr+(V, F

∗(K)) and Ũ := U/CU (F
∗(K)) is de-

scribed in B.4.2. Cases (ii)–(iv) of B.5.1.1 do not hold as m(A) = 1. Then as

m(A) = 1, B.4.2 says that K and Ũ are described in (a) or (b) of (2). Now V = U

by G.6.2.2. From the 1-cohomology of Ṽ in I.1.6, or from B.4.8.2 when K is L3(2),

either CV (K) = 0 giving U = Ũ in (a) and (b) of (2), or (2c) holds. Once again
K is self-normalizing in GL(V ), and hence K = G. Thus (1)–(3) are established in
case I also.

It remains to prove (4), so we may assume that a ∈ Z(T ) for some T ∈ Syl2(G).
As a ∈ Z(T ), and we chose a ∈ K1 when s = 2 in (1), T acts on K1. Therefore
as s ≤ 2 and G is transitive on {K1, . . . ,Ks}, we conclude that s = 1 and hence
G = K by (3). Further if K is S5 or S8, then transpositions are not 2-central, so
these cases do not occur. Hence (4) holds. This completes the proof of G.6.4. ¤

G.7. Small-degree representations for some SQTK-groups

In our treatment of L ∈ L∗f (G, T ) with L/O2(L) ∼= Ln(2), and particularly
in section 12.8, it is useful to have a classification of irreducible F2-modules for
SQTK-groups G which are “small” in the sense that their degree is bounded above
roughly by 2(m2(G)+1). In some cases where F ∗(G) is quasisimple and irreducible,
one could appeal to lists of modular character degrees in the literature, such as in
the Modular Atlas [JLPW95]; but as those results often appear without explicit
proof, and as we usually only require lower bounds on the minimal degree of a
nontrivial irreducible, we will avoid extensive appeals to the literature, and instead
provide a more self-contained treatment.

This first short section produces results for many of the groups appearing in
Theorem C (A.2.3). By contrast, the groups of Lie type and characteristic 2 will be
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treated in section G.9, using knowledge of the F2-representations of small degree
obtainable from the Lie theoretic literature; we will quote [GLS98] as a standard
reference. Results on 2-ranks of automorphism groups of simple groups can be
found in [Asc82a] and 5.2.10 and 5.6.1 in [GLS98]; we have also listed many of
these in Table 7.2.1 and chapter H. We quote those standard results below without
explicit reference.

So in this section, G is a finite group and V is a faithful F2G-module. Set
m := m2(G) and d := m(V ).

Lemma G.7.1. Let p be an odd prime, d(p) the order of 2 in the multiplicative
group of Fp, and P a p-subgroup of G. Then

(1) If |P | = p, then d ≥ d(p).
(2) If P ∼= p1+2, then d ≥ p · d(p).
(3) If P is elementary abelian, and n is the minimal length of an orbit of NG(P )

on hyperplanes of P , then d ≥ n · d(p), and in case of equality m(CV (H)) = d(p)
for each hyperplane H of P with CV (H) 6= 0.

Proof. As d(p) is the degree of each faithful irreducible for Zp over F2, (1)
holds. Let E be an elementary abelian subgroup of P , and 0 < U = [U,E] ≤ V .
Then by Generation by Centralizers of Hyperplanes A.1.17,

U =
⊕

H∈H

CU (H),

where H is the set of hyperplanes H of E with CU (H) > 0. By (1), m(CU (H)) ≥
d(p), so d ≥ |H|d(p). In particular if K ≤ NG(E) ∩NG(U) then d ≥ kd(p), where
k is the minimal length of an orbit of K on hyperplanes of E. Applying this
observation with E := P , U := [V, P ], and K := NG(E), we obtain (3). Finally if
P ∼= p1+2 take U := [V, Z(P )], E any subgroup of P of index p, and K := P . Then
n = p, so (2) follows. ¤

Our next result provides rough lower bounds on d for most cases in Theorem
C which are not of Lie type and characteristic 2:

Lemma G.7.2. Assume L := F ∗(G) is a quasisimple SQTK-group irreducible
on V . Then

(1) If L/Z(L) is sporadic, then d ≥ 10.
(2) If L ∼= L2(p

e) with p an odd prime and pe > 9, then d > 6, and d > 8
unless pe = 17.

(3) If L ∼= (S)Lε3(p) with p an odd prime and d ≤ 8, then L ∼= U3(3) and d = 6.
(4) If L ∼= J4, then d ≥ 110.
(5) If L ∼= J2 then d ≥ 12.
(6) If L ∼= HS, He, or Ru, then d ≥ 20.

Proof. As L is an SQTK-group, L/Z(L) is listed in Theorem C. Note that if
11 divides the order of Ln(2), then n ≥ 10. Therefore as the order of each sporadic
SQTK-group in Theorem C other than J2, He, and Ru is divisible by 11, (1) follows
for those remaining sporadics. Thus (5) and (6) will complete the proof of (1).

Similarly if p is a prime divisor of |L8(2)|, then p ≤ 7 or p = 17, 31, or 127,
while p2 does not divide the order of |L8(2)| for p > 7. Thus if L ∼= L2(p

e) and
d ≤ 8 then pe ≤ 9 or pe = 25, 49, 17, 31, or 127. As L8(2) has no Frobenius
subgroup of order 25 · 12, 49 · 24, 31 · 15, or 127 · 63, and 17 does not divide |L6(2)|,
(2) holds.
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Assume L ∼= (S)Lε3(p) and d ≤ 8. As p3 does not divide |L8(2)| for p > 3, we
conclude p = 3. Now U3(3) ∼= G2(2)

′; so if L is U3(3), then from the Lie theoretic
literature, L has an irreducible of degree 6, but no other faithful irreducible of
degree less than 14. Since 13 divides the order of L3(3) and d(13) = 12, G.7.1.1
implies that L 6∼= L3(3). So (3) is established.

Assume that L ∼= J4, HS, He, or Ru. Then G has a subgroup P ∼= p1+2, for
p = 11, 5, 7, or 5, respectively. Thus (4) and (6) follow from G.7.1.2.

Finally assume that L ∼= J2. Then a Sylow 5-group P of L is isomorphic to
E25, and NL(P ) has two orbits of length 3 on the hyperplanes of P , so (5) follows
from G.7.1.3. ¤

We can compare the lower bounds in G.7.2 with the following upper bound (*),
which holds for suitable modules in sections G.10 and 12.8:

Lemma G.7.3. Assume L := F ∗(G) is a quasisimple SQTK-group irreducible
on V , and

d ≤ 2(m+ 1). (∗)

Then
(1) If L/Z(L) is of Lie type and odd characteristic, then either L is isomorphic

to L2(4), L3(2), Sp4(2)
′, or Â6; or L ∼= G2(2)

′ and d = 6.
(2) If L/Z(L) is sporadic, then one of the following holds:

(i) G ∼= Aut(M12) and V is the 10-dimensional core of a 12-dimensional
permutation module.

(ii) L ∼=M22 or M24, and V is either the Todd (cocode) module or its dual
the code module.

(iii) G ∼= Z2/M̂22 and d = 12.
(3) If L/Z(L) ∼= A7 then L ∼= A7 and d = 4 or 6.

Proof. Suppose L/Z(L) is of Lie type and odd characteristic. Then as L is

an SQTK-group, it follows from Theorem C that L ∼= L2(p
e), (S)Lε3(p), or Â6. In

the first case m ≤ 3, and m = 2 if pe = 17. Thus d ≤ 8 and d ≤ 6 if pe = 17 by
(*). Then by G.7.2.2, pe ≤ 9, so L ∼= L2(4), L3(2), or Sp4(2)

′. In the second case,
m ≤ 3, so d ≤ 8 by (*). Then L ∼= U3(3) ∼= G2(2)

′ and d = 6 by G.7.2.3. Therefore
(1) is established.

Suppose next that L/Z(L) is sporadic, and recall the references for 2-ranks
indicated before G.7.1. By G.7.2, d ≥ 10, so m ≥ 4 by (*). Thus L/Z(L) is
not M11 or J1, as m2(Aut(L)) ≤ 3 in those groups; and if L/Z(L) ∼= M12, then
G ∼= Aut(M12) as m2(M12) = 3. Similarly if L/Z(L) ∼= J4, then m2(Aut(L)) = 11,
so G.7.2.4 supplies a contradiction. If L/Z(L) ∼= M12, M22, M23, or M24, then
m2(Aut(L)) = 4, 5, 4, or 6, respectively, so d ≤ 10, 12, 10, 14 by (*). Now James
[Jam73] shows that if L is simple then the minimum dimension of a faithful
F2L-irreducible is 10, 10, 11, 11. Therefore L is not M23, and if L ∼= M12 then
d = 10 and G ∼= Aut(M12) by an earlier remark. Further James shows that the
only irreducibles whose degrees satisfy this bound are those in conclusions (i) and

(ii) of (2). When L ∼= M̂22, James shows d ≥ 12, so (*) forces m ≥ 5. Thus G is

M̂22 extended by an involutory outer automorphism, as m2(M22) = 4.
The remaining sporadics in Theorem C are J2, HS, He, and Ru. For these,

m2(Aut(L)) = 4, 5, 6, 6, respectively, so that d ≤ 10, 12, 14, 14 by (*). Then parts
(5) and (6) of G.7.2 complete the proof of (2).
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Finally suppose L/Z(L) = A7. Then m ≤ 3, so d ≤ 8 by (*). Thus if L ∼= A7,

then (3) holds by B.4.11. Finally observe that Â7 has Sylow 3-group P ∼= 31+2,
whose faithful irreducibles have dimension 6 by G.7.1.2; then as Z(P ) = Z(L),
d ≡ 0 mod 6. Thus d = 6 and L ≤ SL3(4) as F4 = EndF2Z(L)(V ), contrary

to Â7 6≤ SL3(4). This contradiction shows L is not Â7, completing the proof of
(4). ¤

G.8. An extension of Thompson’s dihedral lemma

In order to determine the representations of solvable SQTK-groups satisfying
condition (*) of G.7.3, we will prove a slight extension of Thompson’s dihedral
lemma. Throughout the section we assume:

Hypothesis G.8.1. A is an elementary abelian 2-subgroup of a 2-group P
acting on a nontrivial nilpotent group X of odd order. Form the semidirect product
G of X by P , and regard X and P as subgroups of G.

Lemma G.8.2. Assume B ≤ A with B faithful on X. Then there exists a
complement D to B in A, such that B is faithful on CX (D); in particular D =
CA(CX (D)).

Proof. Choose a counterexample with n := m(B) and |X | minimal; observe
that n > 0 as we may take D to be A when B = 1. Thus B is nontrivial on X , so B
is nontrivial on CX (E) for some hyperplane E of A by Generation by Centralizers
of Hyperplanes A.1.17. If n = 1, B is faithful on CX(E), and we may take D = E;
hence n > 1.

Let F be a hyperplane of B. By minimality of n, there is a complement D′ to
F in A, with D′ = CA(CX (D′)). Notice B = F ×B′ with B′ := B ∩D′ of rank 1.
By Coprime Action B′ is faithful on [X,D′], so by minimality of n, B′ is faithful
on C[X,D′](D) for some complement D to B′ in D′. Thus D is a complement to B
in A, and

CB(CX (D)) ≤ B ∩ CA(CX (D′)) ∩ CA(C[X,D′](D)) ≤ CB′(C[X,D′](D)) = 1,

so that B is faithful on CX(D), completing the proof. ¤

Lemma G.8.3. If U ≤ X then O2(CG(U)) = O2(G).

Proof. This follows from 31.14.2 in [Asc86a] by induction on |π(U)|. ¤

The next lemma is Thompson’s A × B-Lemma A.1.18, stated for nilpotent
groups rather than p-groups.

Lemma G.8.4. If P centralizes Y ≤ X and P is faithful on X, then P is faithful
on CX (Y ).

Proof. As P is faithful on X , O2(G) = 1. Let U := CX (Y )Y , and observe
CX(U) ≤ CX (Y ) ≤ U . If P is not faithful on CX(Y ), then 1 6= B := CP (CX(Y )) ≤
O2(PU) ≤ CG(U) ≤ PU , so 1 6= O2(CG(U)), contrary to G.8.3, since O2(G) =
1. ¤

Lemma G.8.5. Assume B ≤ A, B centralizes an A-invariant subgroup Y of X,
and B is faithful on X. Then B is faithful on CX(DY ) for some complement D to
B in A.
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Proof. By G.8.4, B is faithful on X ′ := CX(Y ). Then the lemma follows
from G.8.2 applied to X ′ in the role of “X”. ¤

Now we restate and prove Thompson’s Dihedral Lemma A.1.5:

Lemma G.8.6. Assume n := m(A) > 0 and A is faithful on X. Then there
exists H ≤ G with A ≤ H = H1× · · · ×Hn, and Hi

∼= D2pi for suitable odd primes
pi.

Proof. Assume false, and pick a counterexample with n minimal. As A is
faithful on X , each involution in A inverts an element of odd prime order in X .
Thus the result holds if n = 1, so we may assume that n > 1. Let B be a hyperplane
of A. By G.8.2, there exists a ∈ A − B such that B is faithful on X ′ := CX (a)
and 〈a〉 = CA(X

′). By G.8.5 with 〈a〉, X ′ in the roles of “B, Y ”, a is faithful on
CX(X

′B′) for some complement B′ to 〈a〉 in A. Now the complement B′ is also
faithful on X ′, so without loss, B = B′. As B is faithful on X ′, by minimality of n
there exists H1 × · · · ×Hn−1 ≤ X ′B as in the lemma, and we let Hn := 〈a, h〉 for
h ∈ CX(X ′B) of prime order inverted by a. This completes the proof. ¤

Lemma G.8.7. Assume A is faithful on X, Y is an A-invariant subgroup of X,
and set B := CA(Y ), n := m(A), and m := m(B). Assume that 0 < m < n. Then
there exists a complement D to B in A, with B ≤ H1 × · · · × Hm ≤ BCX (DY ),
and D ≤ Hm+1 × · · · ×Hn ≤ Y D with Hi

∼= D2pi for suitable odd primes pi.

Proof. By G.8.5, there exists a complement D to B in A with B faithful
on CX(Y D). As B = CA(Y ), D is faithful on Y . Now the lemma follows from
applications of G.8.5 to the actions of B on CX(Y D) and D on Y . ¤

Finally to prove G.9.2 in the next section, we will require the following ex-
tension of Thompson’s dihedral lemma, which gives more information about the
factorization in the lemma.

Lemma G.8.8. If A is faithful on X and nontrivial on Op(X), then there exists
H ≤ G with A ≤ H = H1 × · · · × Hn, n := m(A), Hi

∼= D2pi for suitable odd
primes pi, and p1 = p.

Proof. Let B := CA(Op(X)); then m := m(B) < n := m(A) by hypothesis.
If B = 1, the result is the usual dihedral lemma G.8.6, so we may take m > 0.
Thus the lemma follows from G.8.7 applied with Op(X) in the role of “Y ”. ¤

We close the section with a well-known consequence of G.8.4, which we use at
various places in the proof of the Main Theorem.

Lemma G.8.9. Let H be a finite group with O2(H) = 1, for K ≤ H, write
Λ(K) for the subgroup generated by all elements of K of prime order, and let Θ(H)
be the set of all subgroups θ of H such that

θ = E(H)
∏

d∈π(F (H))

θd,

for some choice of supercritical subgroups θd of Od(H).

(1) If Λ(CF∗(X)(X)) ≤ X E E F ∗(H) and U is a 2-subgroup of NH(X), then
U is faithful on X.

(2) Let θ ∈ Θ(H). Then each 2-subgroup of H is faithful on θ.
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Proof. Assume the hypotheses of (1). As X E E F ∗(H), X = F (X)E(X),
with E(X) the product of components of H and F (X) ≤ F (H). For each compo-
nent L of H , L = Λ(L), and L centralizes F (H) and all other components in E(H).
So as Λ(CF∗(H)(X)) ≤ X by hypothesis, E(H) = E(X). Thus

X = F (X)E(H) with F (X) ≤ F (H). (+)

Let V := CU (E(H)); then V is faithful on F (H), and by (+) it suffices to show
C := CV (F (X)) = 1. Applying G.8.4 to F (H), F (X), C in the roles of “X , Y , P”,
we conclude from that C is faithful on CF (H)(F (X)) = CF (H)(X) in view of (+).
So by Coprime Action, C is faithful on Λ(CF (H)(X)) ≤ X ∩ F (H) = F (X). As C
centralizes F (X) by definition, we conclude C = 1, so (1) is established.

Assume the hypotheses of (2) and let U be a 2-subgroup of H ; then U acts
on the characteristic subgroup θ of F ∗(H). By construction E(H) ≤ θ, while
Λ(COd(H)(θd)) ≤ θd as θd is a supercritical subgroup of Od(H). Thus Λ(CF∗(H)(θ))
≤ θ, so (1) completes the proof. ¤

G.9. Small-degree representations for more general SQTK-groups

Throughout this section we assume:

Hypothesis G.9.1. G is a finite group, V is a faithful F2G-module, d := m(V ),
E2m

∼= A ≤ G, and
d ≤ 2(m+ 1). (∗)

We first show that if F ∗(G) is of odd order, then the upper bound in (*) is also
a lower bound—unless A centralizes O3(F (G)), in which case at least we obtain
the lower bound (**) in G.9.2 below.

Lemma G.9.2. Assume that A acts faithfully on a nilpotent subgroup X of G
of odd order. Assume further that:

d ≤ 2m if [O3(X), A] = 1. (∗∗)

Then
(1) [O3,5(X), A] = 1,

and there exists a subgroup H = G1 × · · · ×Gr of XA containing A such that:
(2) V = U1 ⊕ · · · ⊕ Ur, where Ui := [V,Gi].
(3) If [O3(X), A] 6= 1, then G1

∼= D10 and m(U1) = 4.
(4) Set e := 1 if [O3(X), A] 6= 1 and e := 0 otherwise. Then for e < i ≤ r,

either Gi ∼= S3 and m(Ui) = 2, or Ui is the orthogonal module of rank 4 for
Gi = Ω+

4 (2).
(5) If [O3(X), A] = 1 then d = 2m.
(6) If [O3(X), A] 6= 1 then d = 2(m+ 1).

Proof. We begin with some observations which we apply to proper subspaces
of V in an inductive context. First, observe that (5) and (6) say that if an elemen-
tary abelian 2-groupB of rank b acts on a nilpotent subgroup Y of odd order, and U
is a faithful F2Y B-module, then m(U) ≥ 2b, andm(U) ≥ 2(b+1) if [O3(Y ), B] 6= 1.
Second, if Y B = K1×· · ·Kb with Ki

∼= D2pi for suitable primes pi, then this is the
unique such decomposition of Y B by the Krull-Schmidt Theorem A.1.15. Third,
if the inequalities m(U) ≥ 2b or 2(b+ 1) are equalities, then hypothesis (*) or (**)
holds, so the lemma says that Y B = I1 × · · · × Is and U = U1 ⊕ · · · ⊕ Us, where
Ui = [U, Ii], I1 = K1

∼= D10 if [O3(Y ), B] 6= 1, the Ii are products of one or two of
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the Kj , and the action of Ii on Ui is as described in (4). Fourth, when m(Ui) = 4,

Ii ∼= Ω+
4 (2) since the subgroup S3×S3 of O+

4 (2) generated by transvections decom-
poses into two factors of rank 2.

Fifth, by G.8.6, A is contained in a subgroup H = H1 × · · · × Hm of AX
such that Hi

∼= D2pi ; indeed by G.8.8, we can choose p := p1 to be large in some
situations: If [O3(X), A] = 1, then of course pi = 3 for all i, and in particular p = 3.
On the other hand if (1) fails, then [Oq(X), A] 6= 1 for some prime q > 5, while if
(1) holds but [O3(X), A] 6= 1, then [O5(X), A] 6= 1. Then by G.8.8 we may choose
p = q > 5 or p = 5 in the respective cases.

Now we begin the proof of the lemma, starting with the case m = 1. Here we
take r := 1 and G1 := H1 = H . By (*), d ≤ 2(m + 1) = 4, so by G.7.1.1, p ≤ 5,
with d = 4 in case p = 5. Similarly if [O3(X), A] = 1 then d ≤ 2m = 2 by (**), so
that p = 3 and d = 2 by G.7.1.1. Thus the lemma holds when m = 1.

Thus we assume for the rest of the proof that m ≥ 2. Let 〈a〉 := Hm ∩ A
and 〈x〉 := O(Hm). Then by A.1.44, V = U ⊕W ⊕W x, where U := CV (x) and
W := C[V,x](a). Let J consist of those indices j < m such that O(Hj) is non-
trivial on [V, x] = W ⊕ W x; then as O(Hj) has prime order, O(Hj) is faithful
on [V, x]. Set n := |J |, and notice n < m since m 6∈ J . Set P :=

∏
j∈J Hj ,

I := {1, . . . ,m− 1}−J , k := |I | = m− 1−n, and Q :=
∏
i∈I Hi. Then {I, J, {m}}

is a partition of {1, . . . ,m}, so H = P × Q × 〈a〉〈x〉. As each nontrivial normal
subgroup of P contains O(Hj) for some j ∈ J , and O(Hj) is faithful on [V, x], P is
faithful on [V, x] =W ⊕W x, and hence also on W as P centralizes Hm. As O(Q)
centralizes [V, x] =W ⊕W x, Q is faithful on U .

Now we obtain some useful information by induction on m:

(J1) m(W ) ≥ 2n, and in case of equality pj = 3 for all j ∈ J , and the action of
P on W is as described in (4).

As n < m and P is faithful on W , (J1) follows by induction on m and observations
one and three.

(J2) Assume 1 ∈ J . Then (1) holds. If in addition [O3(X), A] 6= 1, then p = 5,
m(W ) ≥ 2(m+ 1), and in case of equality the action of P on W is as described in
(4).

As 1 ∈ J , induction on m and observation five show that (1) holds, and that p = 5
if [O3(F (X)), A] 6= 1. Then the remaining remarks in (J2) follow from our first and
third observations.

By similar inductive arguments using k < m we obtain:

(I1) m(U) ≥ 2k, and if equality holds, then the action of Q on U described in
(4), with pi = 3 for all i ∈ I .

(I2) Assume that 1 ∈ I . Then (1) holds. If in addition [O3(X), A] 6= 1, then
p = 5, m(U) ≥ 2(k+1), and if equality holds, then the action of Q on U is described
in (4).

The remainder of the proof is broken into several cases. As m ≥ 2, 1 ∈ I ∪ J ,
so that at least one of I or J is nonempty, and (1) follows from (J2) and (I2).

We first consider the case where [O3(X), A] = 1. Then (3) and (6) hold vacu-
ously, pi = 3 for all i, and d ≤ 2m by (**). Thus it remains to establish (2), (4),
and (5).
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First suppose that J 6= ∅. Then n ≥ 1 and appealing to (I1) and (J1),

d = m(U) + 2m(W ) ≥ 2k + 4n = 2(m− 1) + 2n ≥ 2m (!)

since n ≥ 1. Therefore (5) holds and all inequalities in (!) are equalities, so that
n = 1, m(W ) = 2, and m(U) = 2k. Then by (I1), the action of Q on U = [V,Q]
is described in (4). We choose notation so that J = {m − 1}, and let Gi := Hi

and Ui := [V,Gi] for i ≤ m − 2. As the action of Q on [V,Q] is described in (4),
Q = G1×· · ·×Gm−2 and [V,Q] = U1⊕· · ·⊕Um−2. Finally set Gm−1 := Hm−1×Hm,
and observe that [V,Gm−1] =W +W x is of rank 4, and then that (2) and (4) hold
in this subcase.

So we may suppose that J = ∅. Then by (I1), m(U) ≥ 2k = 2(m − 1). Since
m([V,Hm]) ≥ 2, d ≥ 2m, so that d = 2m and (5) holds. As the inequality is
an equality, m([V,Hm]) = 2 and m(U) = 2(m − 1) = 2k. Therefore by (I1), the
action of Q on U is given in (4). This time we take Gi := Hi for i < m, and take
Gm := Hm

∼= S3. Now (2) and (4) hold.
We now turn to the case [O3(X), A] 6= 1. Here (5) is vacuous. If 1 ∈ J then

n ≥ 1, and using (I1) and (J2),

d ≥ 2k + 4(n+ 1) = 2m+ 2(n+ 1) > 2(m+ 1),

contradicting (*). Therefore 1 ∈ I , and using (I2) and (J1),

d ≥ 2(k + 1) + 4n = 2m+ 2n = 2(m+ 1) + 2n− 2. (!!)

Suppose first that J 6= ∅. Now n ≥ 1, and d ≥ 2(m+1), and hence d = 2(m+1) by
(*), so that (6) holds. As all inequalities in (!!) are equalities, n = 1, m(W ) = 2,
andm(U) = 2(k+1). By (I2) the action ofQ on U is described in (4). Asm(W ) = 2
and n = 1, we may choose notation so that J = {m−1} and pm−1 = 3. Once again
we take Gi := Hi for i < m− 1 and Gm−1 := Hm−1 ×Hm = Ω+(W +W x). Thus
(2), (3), and (4) hold.

Finally suppose that J = ∅. Here (I2) says m(U) ≥ 2(k + 1) = 2m, so as
m([V,Hm]) ≥ 2, we conclude d ≥ 2(m+1). Again (*) implies d = 2(m+1), so that
(6) holds. As the inequality is an equality, m([V,Hm]) = 2 and hence pm = 3 and
m(U) = 2m = 2(k + 1). Now (I2) shows that the action of Q on U is described in
(4). Take Gi := Hi for i < m and Gm := Hm. Then (2), (3), and (4) hold. This
finally completes the proof of G.9.2. ¤

The following two results are the main theorems in this section. They determine
the irreducible F2G-modules satisfying (*) for a larger class of SQTK-groups.

Theorem G.9.3. Assume G is a quotient of an SQTK-group, L is a component
of G with [L,A] 6= 1, and H E G is irreducible on V , where either H = L, or
H = LL2 with L2 a component of G such that the representation of L on V is
quasiequivalent to the representation of L2 on V or its dual. Then one of the
following holds:

(0) m = 4, d = 10, H ∼= M12, and V is the 10-dimensional core of a 12-
dimensional permutation module.

(1) H ∼= M22 or M24; d = 10 or 11; m ≥ 4 or 5; and V is a Todd module or
code module in either case.

(2) m = 5, d = 12, and G ∼= Z2/M̂22.
(3) m = 2, d = 4, and G ∼= A7.
(4) m ≥ 2, d = 6, and H ∼= A7.
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(5) m ≥ 2, d = 6, and H ∼= Â6.
(6) V is the natural module for H ∼= L2(2

n), d = 2n, and m ≥ n− 1.
(7) H ∼= L2(2

n), n even, d = 2n, m ≥ n− 1, and V is the Ω−4 (2
n/2)-module.

(8) V is a natural module for H ∼= SL3(2
n), d = 3n, and m ≥ (3n− 2)/2.

(9) V is a natural module for H ∼= Sp4(2
n)′, d = 4n, and m ≥ 2n− 1.

(10) V is a natural module for H ∼= G2(2
n)′, d = 6n, and m ≥ 3n− 1.

(11) V is a natural module for G ∼= L4(2), d = 4, and m ≥ 1.
(12) V is the 6-dimensional orthogonal module for H ∼= A8, d = 6, and m ≥ 2.
(13) d = 5 or 10, G ∼= L5(2), and m ≥ 2 or 4, respectively.
(14) d = 9, G ∼= L3(2)× L3(2), m = 4, and V is the tensor product of natural

modules for the factors.
(15) V is the orthogonal module for H ∼= Ω+

4 (2
n), n > 1, d = 4n, and m ≥

2n− 1.
(16) d = 8, m = 3, H ∼= L2(8), and V ⊗F2 F8

∼= N ⊗Nσ ⊗Nσ2 , where N is
the natural module for H, and 〈σ〉 = Gal(F8/F2).

(17) H ∼= (S)L3(2
2n) for n ≤ 2, d = 9n, m = 4n, and V ⊗F2n

F22n
∼= N⊗Nσ,

where N is the natural SL3(2
2n)-module and σ is the involutory automorphism of

F22n .

Theorem G.9.4. Assume G is a quotient of an SQTK-group, and G is irre-
ducible on V . Assume further that A is faithful on F (G), and set K := 〈AG〉. Then
one of the following holds:

(1) m = 1, d = 2, and G ∼= S3.
(2) m = 1, d = 4, and K ∼= D10.
(3) m = 1, d = 4, and either G = ΓL2(4) or O3(O

+
4 (2)) ≤ G ≤ O+

4 (2).
(4) m = 2, d = 4, and G is of index at most 2 in O+

4 (2).
(5) m = 2, d = 6, and G is a subgroup of SD16/3

1+2 containing E4/3
1+2.

By hypothesis, in each Theorem there is an SQTK-group Ĝ and a normal
subgroup N̂ of Ĝ, such that G = Ĝ/N̂ . Thus by B.5.2 we may assume:

The preimage of F (G) in Ĝ is nilpotent, (!)

and:

If L is a component of G, then L = L̂N̂/N̂ for some component L̂ of Ĝ. (!!)

Observe that as G is faithful and irreducible on V , O2(G) = 1.

We first prove Theorem G.9.4. So assume A is faithful on F (G). Let B :=
O3(G).

Suppose that [F (G), A] is not a 3-group. By G.9.2 we can pick A ≤ H =
G1 × · · · × Gr ≤ G as in G.9.2 with O(H) ≤ F (G). In particular G1

∼= D10 by
G.9.2.3, so X := O(G1) ≤ O5(G), and for i > 1, Gi ∼= S3 or Ω+

4 (2) by G.9.2.4,
so O(Gi) ≤ B. By G.9.2, V = U1 ⊕ · · · ⊕ Ur with Ui := [Gi, V ], m(U1) = 4, and
m(Ui) = 2 or 4 for i > 1.

Now O5(G) centralizes B ≥ O3(Gi), and hence acts on Ui. Thus O5(G) cen-
tralizes Ui if m(Ui) = 2. Similarly if m(Ui) = 4 then O3(Gi) = Xi,1 × Xi,2 with
Xi,j

∼= Z3 centralized by O5(G), and Ui = [V,Xi,i]⊕ [V,Xi,2] with [V,Xi,j ] of rank
2 acted on by O5(G), so again O5(G) centralizes Ui. Therefore [V,O5(G)] = U1, so
as G is faithful and irreducible on V , V = U1 is of rank 4. As a Sylow 5-subgroup
of GL(V ) ∼= L4(2) has order 5, O5(G) = X = O5(G1). Also G1 is the subgroup
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generated by all involutions in NGL(V )(X), so conclusion (2) of Theorem G.9.4
holds.

Therefore we may assume that [F (G), A] is a 3-group. As A is faithful on F (G),

A is faithful on B, and m3(B) ≥ m by A.1.5. Let B̂ be a Sylow 3-subgroup of the

preimage in Ĝ of B; by (!), B̂ E Ĝ. As A is faithful on B, A is a section of

AutĜ(B̂). However as Ĝ is an SQTK-group, m3(B̂) ≤ 2, sections of AutĜ(B̂) are
of 2-rank at most 2, and hence m ≤ 2.

As G is faithful and irreducible on V , V = [V,B], so d is even. Suppose first
that m = 1; then d ≤ 2(m + 1) = 4 by (*), so d = 2 or 4. In the first case
conclusion (1) of Theorem G.9.4 holds. In the second case G ≤ GL(V ) ∼= L4(2)
and V = [V,B], so either

(a) F ∼= Z3 and NGL(V )(B) = ΓL2(4), or

(b) F ∼= E9 and NGL(V )(F ) = O+
4 (2).

As G is an irreducible on V and A centralizes O5(G), it follows that conclusion (3)
of the Theorem holds.

Thus we may take m = 2. Therefore d ≤ 6 by (*), so as d is even and m = 2,
d = 4 or 6. Also m3(B) ≥ 2 as observed earlier. If d = 4 then (b) holds, and hence
conclusion (4) of the Theorem holds. Thus we may assume that d = 6.

Let B ≤ Q ∈ Syl3(GL(V )); then Q ∼= Z3 wr Z3, so J(Q) ∼= E27. Thus if
m3(B) > 2, then J(B) = J(Q), so J(B) is weakly closed in B and hence G ≤
NGL(V )(J(B)) ∼= S3 wr S3. Indeed B = B1 × B2 × B3 and V = V1 ⊕ V2 ⊕ V3,
here {B1, B2, B3} are the hyperplanes of B with nontrivial fixed points on V , and
Vi := CV (Bi) is of rank 2. Then as G is irreducible on V , G is transitive on
{V1, V2, V3}, so we may take Q ≤ G. Now if Q 6≤ B then from the structure of
S3 wr S3, G is irrreducible on J(Q). As m = 2, this is impossible by A.1.31.3.
Thus B = Q, so as NGL(V )(Q)/Q ∼= E4, G = NGL(V )(Q). But then there is an
involution t ∈ NG(Q) with CQ(t) noncyclic, contrary to A.1.31.1.

Therefore m3(B) = 2. Let R be a supercritical subgroup of B. As A is faithful
on B, A is faithful on R, so as m = 2, R is noncyclic by A.1.5. Thus R ∼= E9 or
31+2 by A.1.24.

Suppose that R ∼= E9. Then as G is irreducible on V , the set ∆ of subgroups
of R of order 3 with fixed points on V is of order 3, G is transitive on ∆, and

V =
⊕

D∈∆

CV (D).

Thus up to conjugacy in GL(V ), ∆ = {V1, V2, V3} for Vi as above, so NGL(V )(R) ≤
NGL(V )(J(Q)). Then as m3(B) = 2 = m, it follows from the structure of S3 wr S3
that R = CG(R) and G/R ∼= Z2 × S3; hence G ∼= E4/3

1+2, whereas O3(G) has no
characteristic subgroup R ∼= E9.

This leaves the case where R ∼= 31+2. Then R is a maximal subgroup of Q,
so R = B as m3(B) = 2. Then NGL(V )(R)/R ∼= GL2(3). Since m = 2, some

a ∈ A# inverts R/Z(R), so if Q ≤ G then CQ(a) is noncyclic, contrary to A.1.31.1.
Therefore R is Sylow in G, so G ≤ SD16/3

1+2, and now (5) holds.
This completes the proof of Theorem G.9.4.

We next prove Theorem G.9.3, so we may assume the hypotheses of that The-
orem. By (!!) there is L̂ ∈ C(Ĝ) such that L̂N̂/N̂ = L. Similarly if H = LL2, there

is L̂2 ∈ C(Ĝ) with L2 = L̂2N̂/N̂ . By hypothesis H is irreducible on V .
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Suppose first that H = LL2 > L. Let I ∈ Irr+(L, V ), F := EndL(I) = F2n ,
and k := dimF (I). By hypothesis the representation of L on V is quasiequivalent
to the representation of L2 on V or its dual, so L2

∼= L, and J ∈ Irr+(L2, V )
is quasiequivalent to I or I∗. Therefore F = EndL2(J), k = dim(J), and as an
FH-module, V = I ⊗F J , so d = nk2.

As L2
∼= L and G is a quotient of an SQTK-group, A.1.34.3 says that L ∼=

L2(2
r), Sz(2r), L2(p), or J1. Set mL := m2(L); then m2(L) = m2(Aut(L)) in each

case, so m2(G) = 2mL, and replacing A by a subgroup of higher rank if necessary,
we may take m = m2(G) and A ≤ H . If k = 2, then L ∼= L2(2

n) and by (*),

4n = nk2 = d ≤ 2(m+ 1),

so m ≥ 2n−1 and conclusion (15) of Theorem G.9.3 holds. Similarly if k = 3, then
L ∼= L2(7) ∼= L3(2) and n = 1, so that (14) holds. Thus we may assume k ≥ 4,
so d ≥ 16, and hence 2mL = m ≥ 7 by (*), so mL ≥ 4. Therefore L ∼= L2(2

r) or
Sz(2r) with r = mL ≥ 4.

Now F2r is a splitting field for L, so n ≤ r. If nk > 2(r + 1), then

d = nk2 =
(nk)2

n
>

4(r + 1)2

n
≥

4(r + 1)2

r
> 4r + 8 > 2(2r + 1) = 2(m+ 1),

contrary to (*). Therefore m(I) = nk ≤ 2(r+1) = 2(m2(L) + 1), so (*) is satisfied
for the action of L on I . Thus by induction on d, L ∼= L2(2

r), as Sz(2r) does not
appear in G.9.3. As k ≥ 4, the pair L, I does not appear in case (6) of G.9.3, so we
are in case (7) with r = 2n and I the orthogonal module for L of dimension k = 4
over F2n . Then d = nk2 = 16n = 4m > 2(m+ 1), contrary to (*).

Thus we may assume that H = L. Then either H is simple and described in
Theorem C (A.2.3), or H is one of the quasisimple groups described in A.3.6.2. If
L/Z(L) is not of Lie type and characteristic 2, then G and its representation on
V are described in cases (2) and (3) of G.7.3, which in turn appear as conclusions
(0)–(4) of G.9.3. Thus we may assume L/Z(L) is of Lie type and characteristic 2.

If L ∼= Â6 then V = [V, Z(L)]. As in our argument for Â7 in G.7.3, all faithful
irreducibles for a Sylow 3-subgroup of G are of rank 6, and hence d ≡ 0 mod 6.
Then as m2(Aut(L)) = 3, d = 6, so conclusion (5) holds. Therefore we may assume

L is not Â6.
In all remaining cases, L is a quotient of the universal group of its type de-

fined by the Steinberg relations (cf. sec 2.9 of [GLS98]), so the small dimensional
representations of L are known. (Cf. pages 26–27 and 77–78 of [GLS98].) If
L/Z(L) ∼= L2(2

n), Sz(2n), U3(2
n), L3(2

n), Sp4(2
n)′, G2(2

n)′, 3D4(2
n), 2F4(2

n),
L4(2), or L5(2), then the 2-rank of Aut(L) is n, n, n+ 1, 2n, 3n, 3n, 5n, 5n, 4, or
6, respectively. Then (*) rules out Sz(2n), U3(2

n), 3D4(2
n), and 2F4(2

n), since the
standard theory of the representations of these groups in their defining character-
istic (cf. section 2.8 of [GLS98]) shows that d = 4n (with n ≥ 3), 6n, 24n, 26n,
respectively. For L3(2

n), Sp4(2
n)′, and G2(2

n)′, the natural module satisfies (*),
and these appear in conclusions (8), (9), and (10) of G.9.3; but (*) rules out the
irreducibles of the next higher dimension, in the respective cases: 8n or 9n/2 if n
is even; 16n or 16n/2 if n is even; or 14n—except for n ≤ 2 and H ∼= (S)L3(2

n),
which appears in conclusion (17) ofG.9.3. Finally up to quasisequivalence, L2(2

n),
L4(2), and L5(2) each admit two modules satisfying the bound, and these appear as
conclusions (6), (7), (11), (12), (13) of G.9.3. Further (*) rules out the irreducibles
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of the next higher dimension 8n/3 if 3 divides n, 14, 24—except for L2(8), which
appears as conclusion (16) of G.9.3.

This completes the proof of Theorem G.9.3.

G.10. Small-degree representations on extraspecial groups

In this section we axiomatize the situation which arises in section 12.8 (see
especially 12.8.12.1), where the centralizer of an involution acts on the central
quotient of a normal “almost-extraspecial” 2-subgroup U (i.e., U is nonabelian and
|Φ(U)| = 2) preserving the symplectic form defined by the commutator map.

So in this section, we assume the following hypothesis:

Hypothesis G.10.1. (1) V , ( , ) is a d-dimensional symplectic space over F2,
and G is a group of isometries of V .

(2) V1 = 〈v1〉 is a point of V , W is a totally isotropic subspace of V containing
V1, X is an elementary abelian 2-subgroup of CG(V1), and X0 ≤ X such that

(a) V = 〈V G1 〉 and |G : CG(V1)| is odd.
(b) m(W ) +m(X/X0) = d− 1.
(c) [X,V ⊥1 ] ≤W .
(d) CV (x) ≤ V ⊥1 for each x ∈ X −X0.
(e) X induces the full group of transvections on W with center V1.

We observe first that this hypothesis implies the upper bound (*) discussed in
the previous sections G.7 and G.9; however we will not need to quote the results of
section G.9 until section G.11.

Lemma G.10.2. d ≤ 2(m(X/X0) + 1) ≤ 2(m2(G) + 1).

Proof. AsW is totally isotropic,m(W ) ≤ d/2, so by (b) of Hypothesis G.10.1,

m(X/X0) = d−m(W )− 1 ≥
d

2
− 1,

so the lemma holds. ¤

Lemma G.10.3. If U is a nonzero G-submodule of V then O2(G/CG(U)) = 1.
In particular O2(G) = 1.

Proof. Let V̂ := V/U⊥. Then V̂ is dual to U as a G-module, so it suffices

to show that O2(G/CG(V̂ )) = 1. By Hypothesis G.10.1.2.1, V = 〈V G1 〉 and V̂1 is

centralized by a Sylow 2-group of G, so V̂ = 〈V̂ G1 〉 ∈ R2(Ĝ) by B.2.13, and the
lemma follows. ¤

Lemma G.10.4. Assume 1 6= H E G, U is a nonzero proper irreducible HX-
submodule of V , and either

(1) H = G, or
(2) V1 6≤ U and [U,X ] 6= 0.

Then d = 4, m(U) = 2, and G is solvable.

Proof. Set A := V ⊥1 ∩ U . In case (1), U is a proper nonzero G-submodule
of V . Thus also U⊥ < V , so as V = 〈V G1 〉, V1 is contained in neither U nor U⊥.
Therefore A is a hyperplane of U . In case (2), V1 6≤ U by hypothesis, so that
V1 6≤ U in either case; we will see in a moment that A is a hyperplane of U in case
(2) also.
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By Hypothesis G.10.1.2.e, CW (X) = V1, so as V1 6≤ U , W ∩ U = 0. Thus
[A,X ] ≤W∩U = 0 by Hypothesis G.10.1.2.c. In case (2), [U,X ] 6= 0 by hypothesis,
so A < U and hence as promised A is a hyperplane of U .

Therefore in either case, X induces a group of transvections on U with axis A.
Thus A = CU (x) for x ∈ X−X0 by Hypothesis G.10.1.2.d, and hence CX(U) ≤ X0.
Then using Hypothesis G.10.1.2.b and recalling U ∩W = 0,

m(U)− 1 ≥ m(X/CX(U)) ≥ m(X/X0) = d−m(W )− 1 ≥ m(U)− 1,

and hence all inequalities are equalities. Therefore X induces the full group of
transvections on U with axis A, m(U) = m(X/X0) + 1, and W is a complement to
U in V . By Hypothesis G.10.1.2, W is totally isotropic, so m(W ) ≤ d/2 and hence
m(U) ≥ d/2. By hypothesis HX is irreducible on U , so A contains no nonzero
HX-submodule of U . Therefore as X induces the full group of transvections on U
with axis A, it follows from the dual of G.3.1 that AutHX (U) = GL(U). Further

O2(HX) ≤ R0 := CHX (U)

as HX is irreducible on U .
Suppose that m(U) = 1. Then d = 2, so G is irreducible on V by Hypothesis

G.10.1.2.a, so case (1) of our lemma does not hold. Further asm(U) = 1, [X,U ] = 0
and hence neither does case (2). Next suppose m(U) = 2. Then d ≤ 4, so as U
is proper and the dimension d of the symplectic space V is even, d = 4. As
H E G ≤ Sp(V ) ∼= S6 and H acts on a 2-dimensional subspace of V , we conclude
G is solvable, so the conclusion of the lemma holds. Thus we may assume that
m(U) > 2, and it remains to derive a contradiction.

By hypothesis HX is irreducible on U , so [U,H ] 6= 0 as m(U) > 1. Further
H E G, so 1 6= AutH(U) E AutG(U). Then as AutHX (U) = GL(U) is simple,
AutHX(U) = AutH(U). Thus HX = HR0, and U is the natural module for
H/CH(U) = GL(U). As dim(U) > 2, U is not a self-dual H-module. Thus U
is not nondegenerate, so as H is irreducible on U , U is totally isotropic. Thus
m(U) ≤ d/2, so as we showed earlier that m(U) ≥ d/2, we conclude m(U) = d/2.
Therefore d > 4 as m(U) > 2. Also U = U⊥, so V/U is isomorphic to the dual
of U as an HX-module. In particular R0 also centralizes V/U , so R0 ≤ O2(HX),
and we conclude R0 = O2(HX) using an earlier observation. But as H E G,
O2(H) ≤ O2(G) = 1 by G.10.3, so that R0 centralizes H . However R0 is contained
in the unipotent radical R in Sp(V ) of the stabilizer P of U , and now H ∼= GL(U)
is a complement to R in P , so CR(H) = Z(P ) = 1 as d > 4. Thus R0 = 1, so
HX = H = GL(U) is faithful on U , and in particular X ≤ H .

We show next that V splits overU as anHX-module. By Hypothesis G.10.1.2.a,
V1 is centralized by a Sylow 2-subgroup T of G. Then T ∩H ∈ Syl2(H), and T ∩H
acts on V ⊥1 ∩ U = A, so A1 := CA(T ∩H) is a point. As X induces the full group
of transvections on U with axis A, there is x ∈ X with A1 = [U, x]; let Y be the
subgroup of H inducing transvections on U with center A1, so in particular x ∈ Y .
Now Y is the unipotent radical of the stablizer in Sp(V ) of A1, so that Y ≤ T ∩H ,
and Y induces the group of transvections on V/U with axis A⊥1 /U . We saw earlier
that W is an X-complement to U in V . Thus [V, x] = [U, x] ⊕ [W,x] = A1 ⊕ V1.
Now Y ≤ T ≤ CG(V1) and Y centralizes A1, so [V, x, Y ] = 0. Therefore as NH(Y )
is 2-transitive on Y # and x ∈ Y #, Y is quadratic on V . Therefore V splits over U
as an H-module by B.4.9. Thus V = U ⊕U ′ for some H-submodule U ′ isomorphic
to the dual of U .
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Observe that we have symmetry between U and U ′: In case (1) this is clear.
Furthermore only case (1) is used in the proof of the next lemma to show when d > 4
that G is irreducible on V ; thus in case (2) we may assume that G is irreducible on
V . As U ′ is the dual of U , H is irreducible on U ′ and [U ′, X ] 6= 0. By Hypothesis
G.10.1.2.a, CG(V1) contains a Sylow 2-group T of G. Then as {U,U ′} = Irr+(H,V )
and G is irreducible on V , there exists t ∈ T with U t = U ′; so as V1 6≤ U , also
V1 6≤ U ′. This establishes the symmetry in case (2).

By symmetry X induces the full group of transvections with axis V ⊥1 ∩ U ′ on
U ′; but this is impossible as dim(U) > 2 and U ′ is dual to U as an X-module, so
that X induces transvections on U ′ with a common center. ¤

Lemma G.10.5. Either
(1) G is irreducible on V , or
(2) d = 4, and either G ∼= S3 × S3 is generated by transvections on V , or G is

the extension of O3(G) ∼= E9 by an involution inverting O3(G).

Proof. Assume 0 < U is a proper G-submodule of V , and choose U minimal
subject to this constraint, so that G is irreducible on U . Then by G.10.4, m(U) = 2
and d = 4. Now O2(G) = 1 by G.10.3, so G is a subgroup of GL(U)×GL(V/U) ∼=
L2(2) × L2(2). If O(G) ∼= Z3, then G ∼= S3, so as V = 〈V G1 〉 and |V G1 | ≤ 3,
m(V ) ≤ 3, contrary to d = 4. Thus O(G) ∼= E9, so O(G) has two 2-dimensional
irreducibles U and U⊥, which must be G-invariant. If m(G) > 1 then G ∼= S3×S3,
so (2) holds; otherwise by Hypothesis G.10.1, m(X) = 1 and X is nontrivial on
a totally isotropic line W , so X is not generated by a transvection, and again (2)
holds. ¤

In the remainder of the section assume:

Hypothesis G.10.6. G is irreducible on V and L is a component of G with
[L,X ] 6= 1. Set H := 〈LG〉.

Lemma G.10.7. CV (H) = 0, V = [V,H ], and for each I ∈ Irr+(H,V ):
(1) I is an irreducible H-module, I is a TI-set under G, and V is a semisimple

H-module.
(2) Either I is totally isotropic or I is nondegenerate.
(3) V = I1 ⊕ · · · ⊕ Ik with I1 := I and Ii ∈ Irr+(H,V ) such that either

(a) I is nondegenerate and I⊥ = I2 ⊕ · · · ⊕ Ik, or
(b) I is totally isotropic, and we may order the summands so that I2 is

dual to I as an H-module, I + I2 is nondegenerate, and (I + I2)
⊥ = I3 ⊕ · · · ⊕ Ik.

(4) m(I) > 2.

Proof. As H is normal in G and G is faithful and irreducible on V , V = [V,H ]
and CV (H) = 0. Thus each I ∈ Irr+(H,V ) is an irreducible H-module. Then by
Clifford’s Theorem, V is the direct sum of G-conjugates of I , so (1) holds. Further
Rad(I) := I ∩ I⊥ is either I or 0. In the first case I is totally isotropic, and in the
second I is nondegenerate, so (2) holds. If I is nondegenerate, V = I ⊕ I⊥, and
as V is the direct sum of copies of conjugates of I , so is I⊥, and hence (3a) holds.
If I is totally isotropic, then I ≤ I⊥ and V = I⊥ ⊕ I2 for some I2 ∈ Irr+(H,V )
with I2 ∼= V/I⊥ isomorphic to the dual of I . Then I + I2 is nondegenerate, so
V = (I+I2)⊕(I+I2)

⊥, and (3b) holds. Of course (4) holds as L is nonsolvable. ¤

During the remainder of the section, we assume:
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Hypothesis G.10.8. Hypotheses G.10.1 and G.10.6 hold, and in addition:
(3) Either:

(i) V1 = CV (X), or
(ii) |LG| ≤ 2.

(4) X E T ∈ Syl2(CG(V1)).

Lemma G.10.9. (1) T ∈ Syl2(G).
(2) [X,T ∩H ] ≤ X ∩H, so Φ([X,T ∩H ]) = 1.

Proof. Part (1) follows from G.10.1.2.a. By Hypothesis G.10.8.4, X E T ,
so [X,T ∩ H ] ≤ X ∩ H . Also Φ([X,T ∩ H ]) ≤ Φ(X ∩ H) = 1 using Hypothesis
G.10.1.2, so (2) holds. ¤

Lemma G.10.10. If U is a nonzero HX-submodule of V , then V1 ≤ U and
[U,X ] 6= 0.

Proof. Replacing U by a minimal nonzero HX-submodule of U , we may
assume HX is irreducible on U . The conclusion of G.10.4 does not hold as H is
not solvable; therefore if [U,X ] 6= 0, then V1 ≤ U , so the lemma holds. Thus we
may assume [U,X ] = 0, and it remains to derive a contradiction. As CU (H) = 0
by G.10.7, m(U) > 1, so CV (X) > V1 as m(V1) = 1. Thus |LG| ≤ 2 by Hypothesis
G.10.8.3. Now [H,X ] < H as X ≤ CG(U) and CV (H) = 0. Therefore as H is the
product of at most two components, and [H,X ] is a proper normal subgroup of H ,
[H,X ] is a component L of H by 31.4 in [Asc86a]. Hence |LG| = 2, and so by
G.10.9.1 there is t ∈ T −NT (L) with H = LLt. This is impossible, as T normalizes
X by Hypothesis G.10.8.4, so T normalizes [H,X ] = L, contrary to L 6= Lt. ¤

Lemma G.10.11. For I ∈ Irr+(H,V ), X acts on I iff V1 ≤ I.

Proof. If V1 ≤ I then X acts on I as I is a TI-set by G.10.7.1. Conversely if
X acts on I then V1 ≤ I by G.10.10. ¤

Lemma G.10.12. If I ∈ Irr+(H,V ) with V1 6≤ I then
(1) m(W ∩ I) ≤ 1, and
(2) If I ∩W 6= 0, then NX(I) is a hyperplane of X.

Proof. By part (e) of Hypothesis G.10.1.2, CX(w) is a hyperplane of X for
each w ∈ W − V1. If 0 6= w ∈ I ∩ W , this hyperplane normalizes I as I is a
TI-set by G.10.7.1, while X does not normalize I by G.10.11, so (2) holds. Further
if w′ ∈ W − (V1 + w), then CX(w) 6= CX(w

′) by Hypothesis G.10.1.2.e. Thus
if w,w′ ∈ I , then X = CX(w)CX (w′) acts on I , contrary to G.10.11. Thus (1)
holds. ¤

Lemma G.10.13. If V1 ≤ I ∈ Irr+(H,V ), then either I is totally isotropic, or
H is irreducible on V = I.

Proof. Assume that I is not totally isotropic. Thus by G.10.7.2, I is nonde-
generate, so V = I⊕ I⊥. By G.10.11, X acts on I , so X acts on I⊥. Thus if I < V ,
V1 ≤ I ∩ I⊥ = 0 by G.10.10, a contradiction. ¤

Lemma G.10.14. Assume V1 6≤ I ∈ Irr+(H,V ) and x ∈ NX(I)# with [H, x] 6≤
CH(I). Then one of the following holds:

(1) I ≤ V ⊥1 and x induces an F2-transvection on I with center I ∩W .
(2) I 6≤ V ⊥1 and x induces a transvection on I with axis I ∩ V ⊥1 .
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(3) I 6≤ V ⊥1 , m([I, x]) ≤ 2, and x induces a transvection on I ∩ V ⊥1 with center
I ∩W .

Proof. As [H, x] 6≤ CH (I), [I, x] 6= 0. By G.10.12.1, either I∩W = 0 or I∩W
is a point. By Hypothesis G.10.1.2.c, [I ∩ V ⊥1 , x] ≤ I ∩W , so if I ≤ V ⊥1 then (1)
holds. Thus we may assume I 6≤ V ⊥1 . If x centralizes V ⊥1 ∩ I , then (2) holds, so we
may assume [I ∩ V ⊥1 , x] = I ∩W is a point. Thus (3) holds. ¤

Theorem G.10.15. (1) One of the following holds:
(i) V is a homogeneous H-module, and there exists a unique X-invariant

I ∈ Irr+(H,V ): the one containing V1.
(ii) V = I ⊕ Ix for I ∈ Irr+(H,X), where x ∈ X −NX(I) and I is not

H-isomorphic to Ix. Further v1 = i + ix, where I ∩W = 〈i〉, 〈i〉 = CI(NX(I)) if
V1 = CV (X), NX(I) is faithful on H and on I, and NX(I) induces the full group
of transvections on I ∩ V ⊥1 with center 〈i〉.

(2) One of the following holds:
(I) V is a homogeneous H-module, I is self-dual, H is faithful on I, and

either I is totally isotropic or I = V .
(II) V is not a homogeneous H-module, I is not self-dual, H is faithful on

I, I is totally isotropic, and Ix is isomorphic to the dual of I as an H-module for
x ∈ X −NX(I).

(III) V is not a homogeneous H-module, I is self-dual and nondegenerate,
H is not faithful on I, d = 8, H = LLx for x ∈ X−NX(I), X = (X ∩H)〈x〉 ∼= E8,
I = [V, L] is the A5-module for L ∼= L2(4), and I

x = CV (L).
(3) H/CH(I) < GL(I).

Proof. Recall from G.10.7 that each I ∈ Irr+(H,V ) is an irreducible H-
module of rank at least 3. By A.1.42, there exists I ∈ Irr+(H,V, T ∩ HX), I
is an H-homogeneous component of IX := 〈IX 〉, and IX is the direct sum of the
X-conjugates of I .

Suppose that IX = I . Then by G.10.11, V1 ≤ I and I is the unique X-invariant
member of Irr+(H,V ). Thus X acts on the H-homogeneous component of I in V ,
and hence on the sum of the remainingH-homogeneous components, so by G.10.10,
V is H-homogeneous and conclusion (i) of (1) holds. Thus as H is faithful on V ,
H is faithful on I . If I = V , then I is a self-dual H-module as H ≤ Sp(V ), so
conclusion (I) of (2) holds. If I < V , then by G.10.7.3, some I ′ ∈ Irr+(H,V ) is
isomorphic to the dual I∗ of I , so I is a self-dual H-module as V is H-homogeneous.
Also I is totally isotropic by G.10.13, so again conclusion (I) of (2) holds. Finally
if H/CH(I) = GL(I) then I is not self-dual under H since m(I) > 2, whereas we
just saw I is self-dual. Thus (3) holds.

Therefore for the remainder of the proof, we assume I < IX . Let x ∈ X with
Ix 6= I ; then by definition of Irr+(H,V,X), Ix 6∼= I as H-module. Also V1 6≤ I by
G.10.11. Set Wx := [V ⊥1 ∩ I, x]; then Wx ≤W by Hypothesis G.10.1.2.c. As Wx is
isomorphic to V ⊥1 ∩ I under the X-equivariant map ϕ : v 7→ v+ vx of V into [V, x],
m(Wx) = m(V ⊥1 ∩ I) ≥ m(I)− 1 ≥ 2. Suppose that V1 ≤ Wx. Then V1 ≤ I + Ix,
so since IX is the direct sum of the X-conjugates of I and X centralizes V1, X acts
on I + Ix. Hence X permutes {I, Ix}, and so Y := NX(I) is a hyperplane of X .
On the other hand if V1 6≤Wx, then for w ∈W#

x , CX (w) is a hyperplane of X and
CX(w) 6= CX(w

′) for w′ ∈ Wx − (V1 + w), so X = CX(w)CX (w′) acts on I + Ix,
and hence again X permutes {I, Ix} so that |X : Y | = 2.
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Therefore in any case IX = I ⊕ Ix and |X : Y | = 2. Thus V1 ≤ IX by G.10.10.
Define VI to be the H-homogeneous component of V containing I . Then X acts
on VI ⊕ V xI , and hence on the sum of the remaining H-homogeneous components,
so V = VI ⊕ V xI by G.10.10. As CV (X) = CVI (Y )ϕ and V1 ≤ IX , v1 = iϕ for some
i ∈ CI(Y ). In particular V1 ≤Wx, and if V1 = CV (X), then CI (Y ) = 〈i〉.

By Hypothesis G.10.1.2.e, X induces the full group of transvections onW with
center V1, and hence also on any subspace of W containing V1. Therefore the
complement Y to 〈x〉 in X induces the full group of transvections with center V1
on Wx. Thus as ϕ : I ∩ V ⊥1 → Wx is a Y -isomorphism, Y induces the full group
of transvections on I ∩ V ⊥1 with center 〈i〉. Therefore i ∈ [V ⊥1 , X ] ≤ W , so by
G.10.12.1, 〈i〉 =W ∩ I .

To complete the proof that conclusion (ii) of (1) holds, and hence complete
the proof of (1), it remains to show that IX = V and that Y is faithful on I and
H . We now show that (3) implies each of these statements: Namely assume that
H/CH(I) < GL(I). As HX is irreducible on IX , IX is either totally isotropic or
nondegenerate. If IX is totally isotropic, then as V1 ≤ IX , IX ≤ V ⊥1 . Then by
the previous paragraph, Y induces the full group of transvections on V ⊥1 ∩ I = I
with center 〈i〉, so G.3.1 shows H/CH(I) = GL(I), contrary to our assumption that
(3) holds. Thus IX is nondegenerate, so HX acts on I⊥X , and as usual V = IX by
G.10.10. Therefore Y is faithful on I . Since H is irreducible on I , CGL(I)(AutH (I))
is of odd order, so CY (H) ≤ CY (I) = 1. Thus we have established our claim that
(3) suffices to complete the proof of (1).

Therefore it remains to establish (2) and (3). Notice that as V = VI ⊕ V xI is
the direct sum of copies of I ⊕ Ix = IX , H is faithful on IX . Further by G.10.7.3,
the dual I∗ of I is isomorphic to I or Ix; and in the latter case CH(I) = CH(I

∗) =
CH(I

x), so H is faithful on I . Put another way, if H is not faithful on I , then I is
self-dual.

Assume that CH(I) 6≤ Z(H). Then some component K of H centralizes I , so
asK is faithful on IX = I⊕Ix and H is irreducible on I and Ix, I = CIX (K) andK
is faithful on Ix. Therefore as G is transitive on the components of H , H = HIH

x
I ,

where HI is the product of those components of H faithful on I , HI centralizes I
x,

and Hx
I is faithful on Ix and centralizes I . Indeed H = HI ×Hx

I as H is faithful
on IX .

Next by G.10.9.3, XH := [x, T ∩H ] ≤ X ∩H and Φ(XH) = 1. So as T ∩H ∈
Syl2(H) and H = HI × HIx , Φ(T ∩ H) ∼= Φ(XH) = 1 and XH = [x, T ∩ H ] =
CT∩H(x) is the full x-diagonal subgroup of T ∩H = (T ∩HI )×(T ∩Hx

I ). Then since
X is elementary abelian by hypothesis, X ∩H ≤ CT∩H(x) = XH , so X ∩H = XH .
Thus AutXH (I) = AutT∩HI (I)

∼= T ∩HI ∈ Syl2(HI) is elementary abelian.
Notice that XH ≤ NX(I) = Y , and XH is faithful on I . If an element of XH

induces an F2-transvection on I , then as HI is semisimple, faithful, and irreducible
on I , a result of McLaughlin [McL69] shows that HI = GL(I) or Sp(I). (We
only need the case where H is an SQTK-group, so that G.6.4 suffices). This is
impossible as HI has abelian Sylow 2-subgroups, so no element of XH induces a
transvection on I . Hence I 6≤ V ⊥1 by G.10.14, so V ⊥1 ∩ I is a hyperplane of I .
We saw that Y induces the full group of transvections on I ∩ V ⊥1 with center 〈i〉,
and as H is not faithful on I , that I is self-dual. Therefore as H is irreducible
on I , G.12.12 says that HY preserves a symplectic form f on I for which V ⊥1 ∩ I
is the subspace of I orthogonal to i under f , and AutHY (I) satisfies one of the
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conclusions of Theorem G.12.1 on I : AutHIY (I) is Sp(I); O(I, q) or Ω(I, q) for
some quadratic form q on I ; or m(I) = 4 and AutHIY (I) is Sp(I)

′ ∼= A6 or S5 with
I the L2(4)-module. As HI has abelian Sylow 2-groups it follows that m(I) = 4
and either I is the orthogonal module for AutHIY (I)

∼= O−4 (2) or Ω
−
4 (2), or I is the

L2(4)-module for AutHIY (I)
∼= S5. The latter case is impossible, as there the Sylow

2-group AutXH (I) of AutH(I) does not induce a group of transvections on V ⊥1 ∩ I
with center 〈i〉. In the former case X = XH〈x〉 as X is abelian, so conclusion (III)
of (2) holds, as does (3). Hence by our earlier reduction, the proof is complete in
the case where CH (I) 6≤ Z(H).

We turn to the remaining case where CH (I) ≤ Z(H) and we must show that
(3) and conclusion (II) of (2) hold. We will prove (3) first, so assume H/CH(I) =
GL(I). Since O2(H) = 1 by G.10.3, and the Schur multiplier of GL(I) is a 2-group,
we conclude CH (I) = 1 and H ∼= GL(I). As Ix 6∼= I as an H-module, andm(I) ≥ 3,
x induces an outer automorphism on H . This is impossible as Φ([T ∩H, x]) = 1 by
G.10.9.2 and T ∩H ∈ Syl2(H).

This contradiction establishes (3), and hence by our earlier remark completes
the proof of (1). Thus it remains to show conclusion (II) of (2) holds. Recall (3)
also implies that V = I ⊕ Ix.

Suppose first that I is nondegenerate. Then AutHY (I) ≤ Sp(I), and Ix = I⊥

by G.10.7.3. As before we may apply G.12.12 to conclude AutHY (I) is Sp(I); or
contains Ω(I, q) for some quadratic form q on I associated to ( , ); orm(I) = 4, and
AutH(I) is Sp(I)

′, or S5 with I the L2(4)-module. However as Ix is not isomorphic
to I , x induces an outer automorphism on H/CH(I) = E(H/CH(I)) not stabilizing
the equivalence class (under conjugacy in Inn(H)) over F2 of I , which is impossible
in each case: Namely the equivalence class is Aut(E(H/CH(I))-invariant unless
E(H/CH(I)) ∼= Sp(V ) or A6, and in those cases Φ([x, T ∩ H ]) 6= 1, contrary to
G.10.9.2.

Therefore by G.10.7.3, I is totally isotropic and Ix is dual to I as an H-module,
so H is faithful on I by an earlier remark. Thus we have shown that conclusion
(II) of (2) holds in this case, completing the proof of Theorem G.10.15 at last. ¤

Lemma G.10.16. Assume a ∈ X# with m([V, a]) ≤ 2, and let K := 〈aG〉. Then
(1) [H, a] 6= 1.
(2) a acts on each member of Irr+(H,V ).
(3) H ≤ K and Irr+(H,V ) = Irr+(K,V ).
(4) Either

(i) H is irreducible on V , or
(ii) V = I1 ⊕ I2, where I1 and I2 are isomorphic H〈a〉-submodules of V ,

and a induces a transvection on Ii. In addition either H〈a〉 ∼= Sp(I1) or O(I1, q)
for some quadratic from q on I1, or I1 is the natural module for H〈a〉 ∼= Sn.

Proof. Let I ∈ Irr+(H,V ). If [H, a] = 1 then H acts on [V, a], impossible
as each irreducible for H on V is of rank at least 3. Thus (1) holds. Similarly if
I 6= Ia, then m([V, a]) ≥ m([I, a]) = m(I) > 2, contrary to hypothesis. Thus (2)
holds. By (1), 1 6= [H, a] ≤ K, so K contains some component of H . Then as G
is transitive on the components of H = 〈LG〉, H ≤ K. By (2), K acts on each
member of Irr+(H,V ), so (3) holds.

If H is not faithful on I , then conclusion (III) of Theorem G.10.15.2 holds. But
then X = (X ∩ H)〈x〉 with V = I ⊕ Ix and X ∩ H diagonally embedded in H .
Hence m([V, y]) > 2 for each y ∈ X# as no element of H induces a transvection
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on I , contrary to the hypothesis that m([V, a]) ≤ 2 for some a ∈ X#. Therefore H
is faithful on I . Thus by (1), [I, a] 6= 0. By Clifford’s Theorem, V is the sum of k
conjugates of I for some k ≥ 1. By (2), m([V, a]) ≥ k, and a induces a transvection
on each conjugate of I in case of equality. Thus as m([V, a]) ≤ 2, either k = 1 so
that (4i) holds, or k = 2, V = I1 ⊕ I2 for some Ii ∈ Irr+(H,V ), and a induces
a transvection on Ii. In the latter case by [McL69] (again we only need the case
where H is an SQTK-group, so that G.6.4 suffices.), Ii is the natural module for
H〈a〉 ∼= GL(Ii), Sp(Ii), O

±(Ii), or Sn. The first case is out by Theorem G.10.15.3.
In the remaining cases, (4.ii) holds. ¤

G.11. Representations on extraspecial groups for SQTK-groups

In this section we assume Hypothesis G.11.1, which strengthens Hypothesis
G.10.1 by adding some extra conditions which are satisfied in section 12.8. See in
particular 12.8.12.4.

Hypothesis G.11.1. Hypothesis G.10.1 holds, and
(3) Either

(i) V1 = CV (X), or
(ii) there exists a ∈ X with m([V, a]) ≤ 2 and V1 ≤ [V, a].

(4) X E T for some T ∈ Syl2(CG(V1)).

The next result is an analogue of the Main Theorem of Timmesfeld [Tim78],

in that we use it to determine the list of possibilities for Ḣ := H/CH(Û) and its
action on the quotient U/Z(U) of the almost-extraspecial group U in section 12.8.
We prove:

Theorem G.11.2. Assume Hypothesis G.11.1, and in addition assume G is a
quotient of an SQTK-group. Then one of the following holds:

(1) d = 2 and G ∼= S3.
(2) d = 4 and G is a subgroup of Sp(V ) ∼= S6 of order divisible by 10 or 18.
(3) d = 6 and G is a subgroup of SD16/3

1+2 containing E4/3
1+2.

(4) d = 6 and V is the natural module for F ∗(G) ∼= A7.
(5) d = 6 and G is of index at most 2 in O(V, q) ∼= S8 for some quadratic form

q on V of Witt index 3 associated to ( , ).
(6) d = 6 and V is the natural module for G ∼= G2(2).
(7) d = 8, V is the orthogonal module for F ∗(G) ∼= Ω+

4 (4), and X 6≤ F ∗(G).
(8) d = 8, G ∼= S7, and V = I ⊕ Ix, where I is a totally isotropic E(G)-

submodule of rank 4 and x ∈ X −NX(I).
(9) d = 8, G ∼= S3 × S5 or S3 ×A5, and V is the tensor product of the natural

module for S3 and the natural module or A5-module for L2(4).
(10) d = 8, G is the extension of A6 × Z3 by x ∈ X inverting O3(G) and in-

ducing a transposition on E(G), and V is the tensor product of the natural modules
for A6 and Z3.

(11) d = 8, F ∗(G) ∼= L2(8), and V ⊗F2 F8
∼= N ⊗Nσ ⊗Nσ2 , where N is the

natural module for F ∗(G), and 〈σ〉 = Gal(F8/F2).
(12) d = 8, F ∗(G) = L×Lx, and V = [V, L]⊕ [V, Lx], with [V, L] the orthogonal

module for L ∼= L2(4), and X = 〈x〉(X ∩ LLx) ∼= E8.

(13) d = 12 and G ∼= Z2/M̂22.

Remark G.11.3. As is to be expected, many of these possibilities do arise in
simple QTKE-groups: for example, conclusions (1), (2), (11), and (13) arise as
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sections of centralizers of involutions with large extraspecial 2-subgroups in M12;
G2(3), U4(2), L

ε
4(3), J2 and J3;

3D4(2); and J4. Similarly (3), (7), and (9) arise in
the non-quasithin shadows U5(2), HN , and Ω−8 (2).

For the remainder of the section assume G, V is a counterexample to Theorem
G.11.2.

By Hypothesis G.11.1.4, X E T for some Sylow 2-subgroup T of NG(V1), and
by Hypothesis G.10.1.2.a, T ∈ Syl2(G). By Hypothesis G.10.1.1, G ≤ Sp(V ) and
by G.10.3, O2(G) = 1.

Lemma G.11.4. G is irreducible on V .

Proof. If not then by G.10.5, G, V is described in G.10.5.2. But then G is a
subgroup of Sp4(2) of order divisible by 18, so conclusion (2) of Theorem G.11.2
holds, contrary to the choice of G, V as a counterexample. ¤

As we observed earlier, G.10.2 allows us to use the results of section G.9 in this
section. The primary applications of Theorem G.9.4 and Theorem G.9.3 appear in
lemmas G.11.5 and G.11.7—although at other times we obtain the hypotheses of
section G.9 by other means than G.10.2.

Lemma G.11.5. X is not faithful on F (G).

Proof. By G.10.2, d ≤ 2(m(X)+1), so if X is faithful on F (G), then G, V , X
appear in one of the cases of Theorem G.9.4. But then either conclusion (1), (2), or
(3) of Theorem G.11.2 holds, or d = 4 and G is ΓL2(4). The first case contradicts
the choice of G, V as a counterexample to Theorem G.11.2. In the second as X is
faithful on F (G), X is of order 2 and not normal in a Sylow 2-group of G, contrary
to a remark above. ¤

By G.11.5 there is a component L ofG with 1 6= [L,CX(F (G))] ≤ [L,X ], and by
G.11.4, G is irreducible on V . Thus Hypothesis G.10.6 is satisfied with H := 〈LG〉.
As in the proof of Theorem G.9.3, L is simple and described in Theorem C (A.2.3),
or L is quasisimple and described in A.3.6.2. Further either H = L, or H = LLt

for some t ∈ T −NT (L) and L is isomorphic to L2(2
n), Sz(2n), L2(p), or J1. In

particular case (ii) of Hypothesis G.10.8.3 is satisfied, while Hypothesis G.10.8.4
holds by Hypothesis G.11.1.4. Thus Hypothesis G.10.8 is satisfied, so we may
appeal to the results in section G.10, and in particular to Theorem G.10.15.

Lemma G.11.6. (1) V is a homogeneous H-module.
(2) There is a unique X-invariant I ∈ Irr+(H,V ): the one containing V1.
(3) Either I = V or I is totally isotropic.
(4) I is a self-dual H-module.
(5) H is faithful on I.
(6) H < GL(I).

Proof. Suppose first that conclusion (III) of Theorem G.10.15.2 holds. Thus
H = LLx and V = [L, V ] ⊕ [Lx, V ] with [L, V ] the A5-module for L ∼= L2(4),
and X = 〈x〉XH , where XH := X ∩ H ∼= E4. In particular EndL([V, L]) = F2,
so CG(H) = 1, and hence H = F ∗(G). Thus conclusion (12) of Theorem G.11.2
holds, contrary to choice of G, V as a counterexample.

Assume next that conclusion (II) of Theorem G.10.15.2 holds. Then H is
faithful on each I ∈ Irr+(H,V ), and conclusion (ii) of Theorem G.10.15.1 holds,
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so Y := NX(I) is also faithful on I . Observe that the hypotheses of Theorem G.9.3
are now satisfied with AutHY (I), I in the roles of “G, V ”: namely by Theorem
G.10.15.1, Y induces the full group of transvections on V ⊥1 ∩ I with center 〈i〉, so
that m(Y ) ≥ m(I) − 2. Thus m(I) ≤ m(Y ) + 2 ≤ 2(m2(AutHY (I)) + 1), and
hence (*) of section G.9 holds. Further if H 6= L then Lt is the second component
of H , and t defines a quasiequivalence of the L-module I with the Lt-module It.
Finally by G.10.15, I t = I or Ix and Ix is isomorphic to I∗, so the L-module I
is quasiequivalent to the Lt-module I or its dual. Therefore AutHY (I) and I are
described in Theorem G.9.3. Since I is not a self-dual H-module in G.10.15.2.II,
one of conclusions (1), (3), (5), (8), (11), (13), (14), or (17) of Theorem G.9.3 holds.
By Theorem G.10.15.3, conclusion (11) and also conclusion (13) with d = 5 are out,
as is conclusion (8) when n = 1. As m2(Aut(H)) ≥ m(Y ) ≥ m(I)− 2, conclusions
(1), (5), the remaining case of (13) with d = 10, (14), and (17) are out. Similarly
in conclusion (8) we must have n ≤ 2, so that H ∼= SL3(4) since we just saw that
n > 1. This last case is out by G.10.9.2, as then x induces an outer automorphism
on H with Φ([x, T ∩H ]) 6= 1. Finally in case (3), I is totally isotropic by Theorem
G.10.15.2, and Ix 6∼= I so that x induces an outer automorphism on H ∼= A7. Also
EndL(I) ∼= F2 so that CG(H) = 1. Thus conclusion (8) of Theorem G.11.2 holds,
contrary to the choice of G, V as a counterexample.

Therefore conclusion (I) of Theorem G.10.15.2 holds. Thus V is a homoge-
neous H-module, so conclusion (i) of Theorem G.10.15.1 also holds. Now all the
conclusions of G.11.6 follow from Theorem G.10.15. This completes the proof of
G.11.6. ¤

Lemma G.11.7. (1) X is not faithful on I.
(2) H is not irreducible on V .

Proof. If (2) fails, then V = I , so that X is faithful on I , and hence (1) fails
also; thus (2) is a consequence of (1), and it suffices to assume X is faithful on I
and derive a contradiction.

By G.10.2, d ≤ 2(m(X/X0) + 1). Also if L < H then by G.11.6.1, the repre-
sentations of L and Lt on I are quasiequivalent. Thus the hypotheses of Theorem
G.9.3 are satisfied with AutHX (I), I in the roles of “G, V ”. As I is a self-dual H-
module by G.11.6.4, we must consider the complement of the set of cases analyzed
in the proof of G.11.6: namely conclusions (0), (2), (4), (6), (7), (9), (10), (12),
(15), and (16) of Theorem G.9.3. Conclusion (4) is out, as in that case conclusion
(4) of Theorem G.11.2 holds: for example H = F ∗(G) since EndH(I) ∼= F2.

Suppose that I < V . Then as V is a homogeneous H-module by G.11.6.1,
m(V ) = kdI , where dI := m(I) and k := d/dI ≥ 2, so

dI ≤
2(m(X) + 1)

k
≤ m(X) + 1 ≤ m2(AutG(I)) + 1.

Inspecting the remaining conclusions, we conclude case (9) holds with n = 1 and
k = 2: namely I is the natural module for AutE(G)(I) ∼= A6, and AutG(I) ∼= S6
since the inequality requires m2(AutG(I)) = 3. As V is homogeneous and k = 2,
|Irr+(H,V )| = 3 and CGL(V )(H) ∼= L2(2). As G is irreducible on V by G.11.4, G
is transitive on Irr+(G, V ), so O3(CG(H)) 6= 1 and hence CG(H) ∼= Z3 or L2(2).
As S6 contains S3×S3, we conclude from A.1.31.1 that the former case holds, and
further that some x ∈ X −H inverts O3(G). But now conclusion (10) of Theorem
G.11.2 holds, contrary to our choice of G, V as a counterexample.
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Therefore G is irreducible on V . Then conclusions (2), (12), and (16) of Theo-
rem G.9.3 are out, since they appear as conclusions (13), (5), and (11) of Theorem
G.11.2: In cases (12) and (16) of Theorem G.9.3, EndH(I) ∼= F2, so F

∗(G) = H .
In case (2) of Theorem G.9.3, EndH(I) ∼= F4, with Z(H) = EndH(I)

#, so
CG(H) = Z(H) and again F ∗(G) = H .

This leaves conclusions (0), (6), (7), (9), (10), and (15) of Theorem G.9.3.
We begin by excluding some small cases: In conclusion (7), if n = 2 then d = 4

and conclusion (2) of Theorem G.11.2 holds, contrary to our choice of G, V as a
counterexample. Thus we may assume that n ≥ 4 when conclusion (7) of Theorem
G.9.3 holds. Similarly n > 2, 1 when conclusions (6), (9) of Theorem G.9.3 hold,
respectively. Suppose that conclusion (10) of Theorem G.9.3 holds with n = 1.
By the usual argument F ∗(G) = H , so G ∼= U3(3) or G2(2). If G is U3(3), then
m2(G) = 2, so by G.10.2, X is a normal 4-subgroup of T and X0 = 1. But then
X is uniquely determined in T , and centralizes the unique T -invariant 2-subspace
V2 of V . Thus V2 must be contained in the T -invariant 3-subspace W , contrary
to Hypothesis G.10.1.2.e. This contradiction shows G ∼= G2(2), so conclusion (6)
of Theorem G.11.2 holds, contrary to our choice of G, V as a counterexample.
Therefore n > 1 when conclusion (10) of Theorem G.9.3 holds.

A similar argument eliminates conclusion (0): As usual F ∗(G) = H ∼=M12, so
that G ∼= Aut(M12) as m2(G) = 4 by G.10.2. But then G.10.2 also forces X0 = 1,
so X ∼= E16. Then for x ∈ X − H , CG(x) ∼= E4 × L2(4), so X ∈ Syl2(CG(x)).
Also x inverts an element of order 11 in H , so CV (x) = [V, x] is of rank 5. Now
as in the proof of H.11.1, [V, x, E(CG(x))] is the L2(4)-module for E(CG(x)), so
m(C[V,x](X)) ≥ 2, and hence case (i) of Hypothesis G.11.1.3 does not hold. But
m([V, a]) > 2 for each involution a ∈ X by H.11.1.2, so case (ii) of Hypothesis
G.11.1.3 also fails. This shows case (0) cannot hold.

We have reduced to cases: (6) with n ≥ 3; (7) with n ≥ 4; (9) and (10) with
n ≥ 2; and (15). Thus in all cases, H preserves an F2m-structure on V for m > 1,
and indeed we can take m = n in all cases except (7), where we take m = n/2.

We restrict ourselves for the time being to the cases other than (15). First
assume that X preserves an F2r -structure on V for some r > 1 dividing n. Then
(3.i) of Hypothesis G.11.1 does not hold, so (3.ii) holds; that is m([V, a]) ≤ 2 for
some a ∈ X . Thus r = 2 and a induces an F4-transvection on V . This eliminates
conclusion (10) of Theorem G.9.3, and as we are excluding (15) by assumption,
conclusion (7) or (9) of Theorem G.9.3 holds in this case, with d = 8, H ∼= Ω−4 (4)
or Sp4(4), and HX ∼= O−4 (4) in the former case. By G.10.2, m(X/X0) ≥ 3, so for
some x ∈ X , dimF4(CV (x)) = 2. Let V2 be the F4-point containing V1; then V

⊥
2

is a 3-dimensional F4-subspace contained in V ⊥1 , so as dimF4(CV (x)) = 2, [V ⊥2 , x]
contains an F4-point U . By Hypothesis G.10.1.2.c, U ≤W , contrary to Hypothesis
G.10.1.2.e.

Therefore X does not preserve an F2r -structure on V for any r > 1 dividing n,
except possibly in case (15) of Theorem G.9.3. However in case (7), HX preserves
an F2n/2-structure and n ≥ 4, so conclusion (7) of Theorem G.9.3 cannot hold.

Thus conclusion (6), (9), or (10) holds, and HX induces inner-field automor-
phisms on V , since in case (9) of Theorem G.9.3, any automorphism nontrivial on
the Dynkin diagram does not preserve V . Hence H preserves an F2n-structure on
V , so X preserves an F2n/2-structure on V . Therefore by the previous paragraph,
n = 2 and some x ∈ X induces a field automorphism on L; so case (9) or (10)
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holds, and L ∼= Sp4(4) or G2(4), respectively. But then Φ([x, T ∩H ]) 6= 1, contrary
to G.10.9.2.

This leaves conclusion (15) of Theorem G.9.3. Here there exists τ ∈ O+
4 (2

n)
interchanging the two components of H and preserving the F2n-structure. Further
all involutions inNSp(V )(H) are contained inH〈τ, t〉, where t centralizes τ , induces a
field automorphism on H , andm([V, t]) = m([V, tτ ]) = 2n. Thusm(CV (X)) ≥ n/2,
andm([V, x]) ≥ n for all x ∈ X#, so it follows from Hypothesis G.11.1.3 that n = 2.
Further ifX ≤ H , thenm(CV (X)) ≥ 2 andm([V, x]) = 4 for each x ∈ X#, contrary
to Hypothesis G.11.1.3. ThusX 6≤ H . Also EndH(V ) ∼= F4, so CG(H) is of order at
most 3. But Ω+

4 (4) contains a subgroup isomorphic to S3×S3, so as G is a quotient
of an SQTK-group, we conclude CG(H) = 1 from A.1.31.1. Thus conclusion (7) of
Theorem G.11.2 holds, contrary to our choice of G, V as a counterexample. This
completes the proof of G.11.7. ¤

Set dI := dim(I) and k := d/dI ; thus by G.11.6.1, V is the direct sum of k
copies of I as an H-module, and by G.11.7.2, k > 1. Let F := F2e = EndH(I),
G0 := NGL(V )(H), C0 := CG0(H), and U := HomH(I, V ). As H is homogeneous
on V , by 13.4 in [Asc86a], there is an F -space structure UF on the F2-space U ;
hence there is a representation ϕ : G0 → PΓL(UF ) with C0ϕ = PGL(UF ), and
a bijection ψ : Irr+(H,V ) → ∆, where ∆ is the set of F -points of UF , such that
dimF (UF ) = k, ker(ϕ) = HF#, and (Jg)ψ = (Jψ)(gϕ) for each J ∈ Irr+(H,V )
and g ∈ G0.

Let C := CG(H) and mC := m(CX(H)). Observe also that CX (H) = CX(I) <
X , as H is faithful and irreducible on I and as X acts on I . By G.11.7.1, mC > 0,
so C 6= 1. As O2(G) = 1, also O2(C) = 1. As C ≤ C0, Cϕ ≤ PGLk(F ). If F = F2,
then PGL(UF ) ∼= GL(UF ), so ϕ is faithful on C0, and then C ≤ Lk(2).

Lemma G.11.8. (1) k > 2.
(2) CV (X) = V1.

Proof. First assume (2) fails. Then by Hypothesis G.11.1.3, m([V, a]) ≤ 2
for some a ∈ X#. Thus H has at most two chief factors on V by G.10.16.4, so
k ≤ 2, and hence (1) also fails. Thus it will suffice to assume k = 2, and derive a
contradiction.

We first claim that I is not the natural module for H ∼= An, or a rank-4
module for H ∼= A7. For if so, F = F2, so C ≤ Lk(2) = L2(2). Thus as mC > 0
and O2(C) = 1, C ∼= L2(2). Then, unless H ∼= A5, a 2-element of C centralizes
a noncyclic 3-subgroup of H , contrary to A.1.31.1 in view of our hypothesis that
G is a quotient of an SQTK-group. On the other hand if H ∼= A5, then as C =
CG(H) ∼= S3, we conclude F

∗(G) = H×O3(C), so that G ∼= S3×A5 or S3×S5, and
d = 8, with V the tensor product of the natural modules for A5 and S3 ∼= L2(2).
Thus conclusion (9) of Theorem G.11.2 holds, contrary to our choice of G, V as a
counterexample. This establishes the claim.

Using the claim, we can also complete the proof of (2): For if (2) fails, then
case (ii) of Hypothesis G.11.1.3 holds, and so case (ii) of G.10.16.4 holds. Since G
is a quotient of an SQTK-group, I is the natural module for H ∼= An by G.6.4, a
case which we just eliminated. So (2) holds.

Recall by construction that X 6≤ CG(H), so that X ∩ C < X . Let x ∈ X − C.
Suppose W ≤ I . Then as [V ⊥1 , x] ≤ W by G.10.1.2.c, x induces a transvection on
V/I with axis V ⊥1 /I . So by G.6.4, V/I is the natural module for HX/CHX(I) ∼=
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Ln(2) or Sn. As I ∼= V/I as an H-module, the latter case is impossible by the
claim, and the former by G.11.6.6. This contradiction shows there is w ∈W − I .

Let Y := CX (H) and recall that Y = CX (I) < X . Further Y ϕ ≤ PGL2(F ), so
Y ϕ is semiregular on ∆− {Iψ}, and hence Y is semiregular on Irr+(H,V )− {I}.
Thus I = CV (Y ) = CV (y) for y ∈ Y

#. Then as a hyperplane of X centralizes w ∈
W − I by G.10.1.2.e, we conclude that mC = m(Y ) = 1. Let HX = HX/CHX(I).
Then m(X̄) = m(X/Y ) = m(X)− 1, so

2dI = d ≤ 2(m(X) + 1) = 2(m(X̄) + 2),

so dI ≤ m(X̄)+2 < 2(m(X̄)+1), since Y < X . Thus H̄X̄ , I satisfy the hypotheses
of Theorem G.9.3, so examining the list of Theorem G.9.3 for those cases where
dI ≤ m(X̄) + 2, we conclude that I is either the natural module for H ∼= L2(4),
Ln(2) or An for suitable n, SL3(4), or Sp4(4), or I is the 4-dimensional module
for H ∼= A7. By the claim, I is not the An-module or the rank-4 module for
A7. By G.11.6.6, I is not the Ln(2)-module. In the remaining cases, H ∼= L2(4),
SL3(4), Sp4(4), so that F = F4 and hence Cϕ ≤ L2(4). Then as O2(C) = 1,

O2′(C) ∼= L2(4), S3, or D10. Further by (2), CV (X) = V1, so some x ∈ X induces
a field automorphism on H ; hence m(X̄) ≤ m2(CH̄X̄(x̄)) = 2, 3, or 4, respectively.
Thus as dI ≤ m(X̄) + 2, H ∼= L2(4). Moreover X does not act on a D10-subgroup

of C0
∼= GL2(4). Thus O2′(C) is L2(4) or S3. We check as usual that F ∗(G) =

H ×O2(C) in the respective cases, and then that conclusion (7) or (9) of Theorem
G.11.2 holds, contrary to our choice of G, V as a counterexample. This completes
the proof of G.11.8. ¤

Define

J := {J ∈ Irr+(H,V ) : J ≤ I⊥}.

As I < V by G.11.7.2, I ∈ J by G.11.6.3.

Lemma G.11.9. (1) Each x ∈ X − CX(H) fixes some Ix ∈ J − {I}.
(2) x induces a transvection on Ix with center W ∩ Ix.
(3) I is the natural module for H ∼= An, 5 ≤ n ≤ 8.
(4) |X : CX(H)| = 2.

Proof. Recall ψ : Irr+(H,V )→ ∆ is an X-equivariant bijection. Thus if I is
the unique fixed point of x on J , then Iψ is the unique F -point of UF fixed by x in
the F -hyperplane U0 of UF whose points are those in Jψ. Thus k = dimF (UF ) ≤ 3,
so k = 3 by G.11.8.1. Thus x fixes some Jψ not in U0. But now J 6∈ J so that
J 6≤ I⊥, and hence I + J is nondegenerate. Then as k = 3, (I + J)⊥ is in J − {I}
and is fixed by x, contrary to our assumption. This establishes (1). Now V1 ≤ I by
G.11.6.2, so Ix ≤ I⊥ ≤ V ⊥1 , and hence (2) follows from G.10.14. By (2), and since
G is a quotient of an SQTK-group, we may apply G.6.4 to conclude that I is the
natural module for H ∼= An or Ln(2). Then (3) holds by G.11.6.6. In particular x
induces an outer automorphism in Sn on H . As this holds for each x ∈ X−CX(H),
we conclude that (4) holds. This completes the proof of G.11.9. ¤

Observe that we can now derive a contradiction from G.11.9, establishing The-
orem G.11.2: Namely by G.11.9.4, X = 〈x〉CX (H), so as we saw CX(H) = CX (I),
0 6= CI (x) = CI(X). Thus V1 = CV (X) = CI(X) = CI(x) by G.11.8.2. This is
impossible, as m(CI (x)) ≥ 3 by parts (2) and (3) of G.11.9. Thus the proof of
Theorem G.11.2 is at last complete.
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G.12. Subgroups of Sp(V) containing transvections on hyperplanes

In this section, we assume V is a d-dimensional symplectic space over F2 with
bilinear form ( , ), and G ≤ Sp(V ). For v ∈ V #, let Q(v) := CG(v) ∩ CG(v⊥/v);
and define V = V(G) to consist of those v ∈ V # which satisfy the condition arising
in G.10.15.1.ii:

Q(v) induces the full group of transvections on v⊥ with center 〈v〉. (∗)

The main result in this section is:

Theorem G.12.1. Assume u, v ∈ V with (u, v) 6= 0 and d ≥ 4. Then one of
the following holds:

(1) G = Sp(V ).
(2) There is a quadratic form q on V with bilinear form ( , ) such that G =

O(V, q) or Ω(V, q), and vG is the set of nonzero q-singular vectors in V .
(3) d = 4, and either

(a) G = Sp(V )′ ∼= A6, or
(b) G ∼= S5, and V is the L2(4)-module for E(G).

Throughout this section, we assume the hypotheses of Theorem G.12.1.
Let S := Sp(V ), and pick u, v ∈ V with (u, v) 6= 0. Set Ṽ := V/〈v〉 and

W := v⊥. For H ≤ S and z ∈ V , let Hz be the stabilizer in H of z.

Lemma G.12.2. (1) CV (x) ≤W for each x ∈ Q(v)#.
(2) Either

(i) Q(v) is faithful on W and is of rank d− 2, or
(ii) Q(v) is the full unipotent radical of Sv of rank d− 1, and in particular

contains the transvection tv with center v.
(3) Q(v) induces the full group of transvections on Ṽ with axis W̃ .

Proof. As G ≤ S, the action of Q(v) on Ṽ is dual to its action on W , so (3)

follows from (*). If x ∈ Q(v) with CV (x) 6≤ W , then by (3), x centralizes Ṽ , so
x ∈ 〈tv〉. Then as W = CV (tv), (1) holds.

Let K be the kernel of the action of Q(v) on W . By (*), |Q(v) : K| = 2d−2,
and of course K ≤ 〈tv〉, so either (2i) holds, or K = 〈tv〉 and |Q(v)| = 2d−1. But
Q(v) is contained in the unipotent radical R(v) of Sv , and |R(v)| = 2d−1, so in the
latter case, (2ii) holds. ¤

Lemma G.12.3. (1) 〈Q(v), Q(u)〉 is irreducible on V .
(2) There exists g ∈ 〈Q(v), Q(u)〉 with vg ∈ V −W .

Proof. Let H := 〈Q(v), Q(u)〉. By (*) and G.12.2.1, 〈v〉 = CV (Q(v)). Thus
if 0 6= U is an H-submodule of V , then v ∈ U , and similarly u ∈ U as u ∈ V .
By G.12.2.3, [ũ, Q(v)] = W̃ , so W ≤ U . Then as u 6∈ v⊥ = W by hypothesis,
V = 〈W,u〉 ≤ U , so (1) is established. Part (1) implies (2). ¤

Lemma G.12.4. (1) If V −W ⊆ vG then G is transitive on V #.
(2) If W# ⊆ vG then G is transitive on V #.

Proof. Assume V −W ⊆ vG. As d ≥ 4, there is w ∈ W − 〈v〉. There is
u ∈ V −W with (u,w) 6= 0, so as u ∈ vG and w /∈ u⊥, by assumption w ∈ uG = vG.
This establishes (1).

Next assume thatW# ⊆ vG. Then again for z ∈ V −W , there is w ∈ W#∩z⊥.
Then as w⊥−{0} ⊆ wG by assumption, while w ∈ vG, z ∈ vG, establishing (2). ¤
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Lemma G.12.5. If Q(v) is not faithful on W , then G = Sp(V ).

Proof. Assume Q(v) is not faithful on W . Then by G.12.2.2, Q(v) is the full
unipotent radical of Sv and tv ∈ G. Thus |Q(v)| = 2d−1, and by G.12.2.1, Q(v) is
semiregular on V −W . Thus as |V −W | = 2d−1 = |Q(v)|, Q(v) is transitive on
V −W , so V −W ⊆ vG by G.12.3.2. Therefore G is transitive on V # by G.12.4.1,
so as tv ∈ G, tz ∈ G for each z ∈ V #. Thus G = S, as S is generated by its
transvections. (cf. 22.4 in [Asc86a]). ¤

Because of G.12.5, we may assume during the remainder of the section that
Q(v) is faithful on W . So by G.12.2.2.i, |Q(v)| = 2d−2.

Lemma G.12.6. (1) Q(v) has two regular orbits on V −W , with representatives
u and u+ v.

(2) For w ∈W − 〈v〉, w ∈ (v + w)Q(v), so w ∈ vG iff w + v ∈ vG.
(3) Either G is transitive on V #, or exactly one of u or u+ v is in vG.

Proof. Part (2) follows from (*). By G.12.2.3, Q(v) is transitive on Ṽ − W̃ ,
so each z ∈ V −W is conjugate under Q(v) to u or u+ v. As Q(v) is faithful on
W , an argument in the proof of G.12.5 shows that Q(v) has two regular orbits on
V −W , each of length 2d−2, so (1) holds. If both u and u + v are in vG, then
V −W ⊆ vG by (1), so G is transitive on V # by G.12.4.1. On the other hand by
G.12.3.2, either u or u+ v is in vG, so (3) is established. ¤

By G.12.3.2, vG ∩ (V −W ) 6= ∅, so we may take u ∈ vG. In the remainder
of this section, assume G, V is a counterexample to Theorem G.12.1 of minimal
dimension d.

Lemma G.12.7. If d = 4, then G is not transitive on V #.

Proof. Assume d = 4 and G is transitive on V #. Then

|G| = |V #| · |Gv| = 15 · |Gv |. (!)

Further as Q(v) is faithful on W , so is Gv, so Gv is a subgroup of the stabilizer
GL(W )v of v in GL(W ), containing Q(v) = O2(GL(W )v) ∼= E4, and hence Gv ∼=
E4, D8, A4, or S4. Thus by (!), |G| = 60, 120, 180, 360 in the respective case.
Inspecting the subgroups of Sp(V ) ∼= S6 transitive on V #, we conclude that the
third case is impossible; in the first case that G ∼= L2(4) with V the L2(4)-module,
also impossible as (*) is not satisfied; in the second case that G is the extension
of this first group by an involutory outer automorphism; and in the fourth case
that G = Sp(V )′ ∼= A6. The second and fourth cases appear as conclusion (3) of
Theorem G.12.1, contrary to the choice of G, V as a counterexample. ¤

Lemma G.12.8. Suppose there exists w ∈ W ∩ vG − {v}. Let U := w⊥, Û :=

U/〈w〉, and G∗w := Gw/CGw(Û). Then

(1) Û is a symplectic space for the bilinear form (x̂, ŷ) := (x, y) for x, y ∈ U .

Moreover G∗w ≤ Sp(Û).
(2) There exists u ∈ vG ∩ (U −W ).
(3) v̂, û ∈ V(G∗w).

(4) If d > 4 there is a quadratic form qw on Û with bilinear form ( , ), such

that G∗w = O(Û , qw) or Ω(Û , qw), and v̂
Gw is the set of qw-singular vectors in Û .

(5) If d > 4 and z ∈ U − 〈w〉, then z ∈ vG iff qw(ẑ) = 0.
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Proof. Part (1) is easy and well-known. As w 6= v and d ≥ 4, there exists
z ∈ U − W . By G.12.6.3, at least one of z or z + v is in vG, so (2) holds and
we may take u ∈ U . For x ∈ U#, let P (x) := CQ(x)(w). If x ∈ vG, then by (*),

|Q(x) : P (x)| = 2, and P (x)∗ induces the full group of transvections on x̂⊥ with
center 〈x̂〉. Thus (3) holds.

We next prove (4). Suppose d > 4. Then by (1)–(3), the pair G∗w, Û satisfies
the hypotheses of Theorem G.12.1, so by minimality of d, the pair satisfies one of
the conclusions of G.12.1. If conclusion (2) of Theorem G.12.1 holds, we obtain
conclusion (4) of G.12.8. Thus we may assume conclusion (1) or (3) of Theorem
G.12.1 holds, and it remains to derive a contradiction. In both cases (1) and (3) of

Theorem G.12.1, G∗w is transitive on Û#, so as w ∈ vG, we conclude from G.12.6.2
that W# ⊆ vG, and then conclude from G.12.4.2 that G is transitive on V #.

By G.12.2.3, Q(v) is regular on Ṽ − W̃ , so by a Frattini Argument Gv,ũ is a
complement to Q(v) in Gv . Observe that the line l := 〈u, v〉 is nondegenerate and
O2(Gv,ũ) centralizes l, so O2(Gv,ũ) acts on l⊥, and l⊥ is O2(Gv,ũ)-isomorphic to

W̃ .
Assume first that d > 6. Then the pair appears in case (1) of Theorem G.12.1,

so G∗w = Sp(Û) and O2(G∗w) contains a transvection on Û ; hence O2(Gu,v) contains
a transvection on l⊥. Then as G is transitive on V #, we have a contradiction to
our assumption that Q(v) is faithful on W .

Therefore d = 6. Then as G is transitive on V #,

|G| = |V #||Gv| = (26 − 1)|Q(v)||G∗w| = (26 − 1)24|G∗w|,

so as G∗w is S5, A6, or S6 (since (1) or (3) of G.12.1 holds for G∗w), |G| = (26−1) ·27 ·
15·a, with a := 1, 3, or 6 in the respective case. Then as |Sp6(2)| = (26−1)·29·15·3,
|Sp(V ) : G| ≤ 12—impossible, as Sp(V ) is simple and is not isomorphic to a
subgroup of S12. This contradiction completes the proof of (4).

It remains to prove (5). By (4) and G.12.6.2, for z ∈ U , qw(ẑ) = 0 iff z ∈ vGw .
Thus it remains to take y ∈ U with qw(ŷ) = 1, assume y = vg for some g ∈ G, and
derive a contradiction. Let H := Gw,y; then Q(w) ∩ H =: R(w) is of index 2 in
Q(w), and H/R(w) is the stabilizer of the nonsingular vector ŷ in the orthogonal
group G∗w of dimension d − 2 by (4), so H∗ ∼= H/R(w) is isomorphic to Spd−4(2)

or Z2 × Spd−4(2). For r ∈ Q(v) let αr be the element of the dual space D of Û

with kernel ĈU (r). Then the map r 7→ αr is a Gw-isomorphism of Q(w) with D
which restricts to an H-isomorphism ϕ of R(w) with the subspace Dy of D trivial
on ŷ. Let ry ∈ R(w) with CU (ry) = y⊥ ∩ U and α := αry . Then H acts on ŷ⊥/〈ŷ〉
and ϕ induces an H-isomorphism r + 〈ry〉 7→ αr + 〈α〉 of R(w)/〈ry〉 with Dy/〈α〉,
which is in turn isomorphic with the dual space of ŷ⊥/〈ŷ〉 via αr+ 〈α〉 7→ βr, where
βr : û + 〈ŷ〉 7→ αr(û). Therefore CR(w)(H) = 〈ry〉 is of order 2, R(w) ∩ Q(y) ≤
CR(w)(H), and H/R(w) acts as Spd−4(2) on R(w)/CR(w)(H).

Let Y := y⊥, Ẏ := Y/〈y〉, and G+
y :=: Gy/Q(y). We have shown that

R(w)+/CR(w)+(H
+) is the natural module for H+/R(w)+ ∼= Spd−4(2). Now by

(4), v̂Gw is the set of qw-singular vectors in Û , so that H+ contains a Sylow 2-
subgroup of G+

y , and hence lies in a parabolic subgroup of G+
y . But as G+

y is
Oεd−2(2) or Ωεd−2(2), the Levi complements of those parabolics are of structure

Lr(2) × Ωεd−2−2r(2) for 1 ≤ r ≤ b(d − 2)/2c; so no such parabolic of G+
y contains

Spd−4(2) unless d = 6 and G∗w
∼= O−4 (2) (ε 6= + since (1) or (3) of G.12.1 holds for
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G∗w). Then arguing as above, |Sp(V ) : G| = 12, for the same contradiction. This
completes the proof of (5), and hence of G.12.8. ¤

Lemma G.12.9. G is not transitive on V #.

Proof. If G is transitive on V #, then d > 4 by G.12.7; further the hypothesis
of G.12.8 holds, and then G.12.8.5 says U# 6⊆ vG, a contradiction. ¤

Define q : V → F2 by q(z) := 0 if z = 0 or z ∈ vG, and q(z) := 1 otherwise.
Observe G preserves q, as q is constant on orbits of G on V . Define z ∈ V # to be
singular if q(z) = 0, and nonsingular otherwise. Thus by definition vG is the set of
singular vectors.

Lemma G.12.10. Assume

q(x+ y) = q(x) + q(y) + (x, y) for all x, y ∈ V. (!)

Then
(1) q is a quadratic form on V with bilinear form ( , ).
(2) G = O(V, q) or Ω(V, q).

Proof. Part (1) is trivial, since by definition a function q : V → F2 is a
quadratic form with bilinear form ( , ) precisely when (!) is satisfied. By an
earlier remark, G preserves q, so G ≤ O(V, q) =: H . But the unipotent radical
R(v) of Hv is of order 2d−2 = |Q(v)|, and Q(v) ≤ R(v), so Q(v) = R(v). Thus
Ω(V, q) = 〈R(v), R(u)〉 ≤ G, so (2) holds. ¤

Lemma G.12.11. (1) G is transitive on nonsingular vectors.
(2) d > 4.
(3) For e := 0, 1, G is transitive on lines le := 〈x, y〉 where q(x) = q(y) = 1

and (x, y) = e. Further for each such line, q(x+ y) = e.

Proof. By G.12.9, G is not transitive on V #, so as we took u ∈ vG, u+v 6∈ vG

by G.12.6.3. Thus by G.12.6.1, the singular and nonsingular vectors in V −W each
form regular orbits under Q(v) of size 2d−2. By G.12.3.1, G is irreducible on V , so
each vector in W# is fused into V −W under G, so (1) holds as Q(v) is transitive
on the nonsingular vectors in V −W .

Suppose that vG ∩W = {v}. Then vG = {v} ∪ uQ(v), so G is 2-transitive on
vG of order 2d−2 + 1. Thus the order of Spd(2) is divisible by 2d−2 + 1, so d = 4.
Now G is 2-transitive on the 5 singular vectors of V , and contains the E4-subgroup
Q(v), so we conclude G ∼= A5 or S5 with V the orthogonal module; then conclusion
(2) of Theorem G.12.1 holds, contrary to our choice of G, V as a counterexample.
This contradiction shows there is w 6= v in vG∩W , so that the hypothesis of G.12.8
holds.

Assume that d = 4, and define a quadratic form qw on Û by qw(ẑ) := q(z)

for z ∈ U . By G.12.8.3, Û contains distinct singular vectors û and v̂, so as u + v
is nonsingular, the Witt index of Û is 1 and U contains 5 singular vectors. As
there are 2d−2 = 4 singular vectors in V − U , there are 9 singular vectors in
V . Further |Gv | = 4 or 8 as |O+

2 (2)| = 2, and hence |G| = 36 or 72. Then as
G ≤ Sp(V ), G is of index at most 2 in the normalizer of a Sylow 3-subgroup of
Sp(V ). As these normalizers stabilize quadratic forms, conclusion (2) of Theorem
G.12.1 holds, contrary to our choice of G, V as a counterexample. This establishes
(2).
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Let l := le be a line as in (3). Observe that to prove (3), it suffices to show l is
conjugate to a line in U : For if l ≤ U , then qw(ẑ) = q(z) for z ∈ l# by G.12.8.5, so

the result holds as it holds for G∗w on Û . Since Û contains nonsingular vectors, by
(1) we may assume x ∈ U and y /∈ U . Then y⊥ ∩ U =: Y is a complement to 〈w〉

in U with (Y, q) ∼= (Û , qw). Therefore as d > 4, Y ∩ x⊥ contains a singular vector,
so we are done by transitivity of G on singular vectors. ¤

To complete the proof of Theorem G.12.1, it suffices by G.12.10 to show that
q satisfies condition (!) of G.12.10. Suppose first x ∈ vG; then q(x) = 0 and as
G preserves q, we may take x = v. If y ∈ W then v + y ∈ yG by G.12.6.2, so
q(y) = q(y + v), and hence (!) holds as (v, y) = 0. Similarly if y /∈ W , then by
G.12.9 and G.12.6.3, exactly one of y, y+v lies in vG, so q(y) 6= q(y+v), and again
(!) is satified. Thus we may assume q(x) = 1 = q(y). Then G.12.11.2 completes
the proof.

Therefore Theorem G.12.1 is at last established.
We close the section with an application of Theorem G.12.1.

Lemma G.12.12. Assume H is a finite group, U is a faithful F2H-module of
dimension d > 2, and:

(i) K E H and U is an irreducible self-dual K-module.
(ii) There exist an elementary abelian 2-subgroup Q of H, a hyperplane W

of U , and v ∈ W#, such that Q induces the full group of transvections on W with
center 〈v〉.

Then

(1) There exists a KQ-invariant symplectic form f on U .
(2) W is the subspace v⊥ of U orthogonal to v with respect to f .
(3) vK ⊆ V(KQ) and vH 6⊆W .
(4) Either

(a) f is H-invariant, or
(b) H = ΓL2(UF4) for some F4-space structure UF4 on U preserved by H.

(5) KQ and its action on U satisfy one of the conclusions of Theorem G.12.1,
as does the action of H on U , if H preserves f .

Proof. Let L be the space of K-invariant bilinear forms on U and F :=
EndK(U). By (i) and Exercise 9.1 in [Asc86a], L is a 1-dimensional F -space,
where F -scalar multiplication on L is defined by

(α · f)(x, y) := f(xα, y), for f ∈ L, α ∈ F, and x, y ∈ U,

and each nonzero member of L is nondegenerate. Further the F2-subspace S of
symmetric forms is nonzero, and H acts on L via the diagonal action. As |S#|
is odd, Q fixes some f ∈ S#, so KQ ≤ O(U, f) = Sp(U). Thus (1) holds. In
particular d is even by (1), so as d > 2, d ≥ 4.

Suppose (2) fails. Then there exists w ∈ W − v⊥. Thus l := 〈v, w〉 is nonde-
generate, so W = l ⊕W ′, where W ′ := l⊥ ∩W . As [W,Q] ≤ 〈v〉, Q acts on l, and
hence on W ′. Thus [W ′, Q′] ≤ 〈v〉 ∩W ′ = 0. But by (ii), CW (Q) = 〈v〉, so W ′ = 0.
Thus W = l is of rank 2, contradicting d ≥ 4. Hence (2) holds.

By (1), (2), and (ii), v ∈ V(KQ), so vK ⊆ V(KQ). As K is irreducible on
U , vK 6⊆ W . Thus (3) holds. Further (3) says that KQ satisfies the hypotheses
of Theorem G.12.1, and hence also the conclusions of that theorem, as does H
if H preserves f . Thus (5) is established. Now by inspection of the groups in
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Theorem G.12.1, either F = F2; or d = 4, KQ ∼= S5, and U is the L2(4)-module for
K ∼= L2(4), and F = F4. In the first case f is the unique symplectic form preserved
by K, so as K E H , (4a) holds. In the latter case (4a) or (4b) holds. ¤





CHAPTER H

Parameters for some modules

The main purpose of this chapter is to establish the values of various parameters
for the F2G-modules V with 1 < q̂(G, V ) ≤ 2 appearing in Tables 7.1.1 and 7.2.1.
However we do not require each value in each case, so in those cases where the
values are not needed (or where the proofs are particularly straightforward), we
will not supply proofs that the values are correct. In some cases, we also establish
more specialized facts required elsewhere in the proof of the Main Theorem.

There are also several sections on F2-permutation modules for L3(2), again
used in various places in the proof of the Main Theorem.

Throughout most of this chapter M is a finite group, V is a faithful F2M -
module, L := M∞, and T ∈ Syl2(M). We will be determining the values of the
following parameters, the latter two given in Definitions E.3.1 and E.3.9:

m2 := m2(M)

m := m(M,V )

a := a(M,V )

as well as the following parameters discussed before Table 7.2.1, the latter related
to the existence of (F − 1)-offenders:

β := min{m(V/U) : U < V and O2(CM (U)) 6= 1}

α := min{m(V/U) : m(V/U) ≥ 2 and m2(CM (U)) ≥ m(V/U)− 1}

If m2(CM (U)) < m(V/U)− 1 for all proper subspaces U of V , set α :=∞.

The chapter is divided into sections primarily corresponding to the groups L
occurring in Table 7.2.1, with subsections devoted to the various F2L-modules in
that Table.

Sometimes we will need to assume the following hypothesis:

M is a homomorphic image of an SQTK-group. (!)

In a number of cases we use the following elementary fact:

Lemma H.0.1. Let F := F2n , and suppose V admits the structure VF of an
FL-module, with dimF (VF ) = d. Assume x ∈ M is of odd prime order p, and x
induces a field automorphism on VF . Then

m(V/CV (x)) =
(p− 1)nd

p
≥

2nd

3
.

377
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H.1. Ωε
4(2

n) on an orthogonal module of dimension 4n (n > 1)

Here ε = +1 or −1. We assume that n > 1, since when n = 1, ε = −1 and
the module is the A5-module, which is an FF-module and well understood. Recall
that L2(2

2n) ∼= Ω−4 (2
n), L2(2

n) × L2(2
n) ∼= Ω+

4 (2
n), and V can be viewed as a

4-dimensional module for L over F := F2n .

m2 = 2n: Achieved on the Sylow group T ∩ L of L.
m = n: Achieved by an orthogonal F -transvection.
a = n: We do not need this fact and do not supply a proof.
β ≥ 2n: Again this is not a fact we need.
α ≥ 2 for n = 2, and α = ∞ if n > 2 : We establish this in the following

lemma:

Lemma H.1.1. For A ∈ A2(M),
(1) m(A) ≤ m(V/CV (A))− n+ 1.
(2) Either m(A) ≤ m(V/CV (A)) − 2, or n = 2 and A = 〈t〉, where t induces

an F -transvection on V .
(3) m(A) ≤ m(V/CV (A))− n if A ≤ L.

Proof. Let t ∈ M be an involution. If t ∈ L, then dimF (CV (t)) = 2 and
m2(CL(CV (t))) = n. So if A ≤ L, then either m(A) ≤ n and m(V/CV (A)) ≥ 2n,
or m(V/CV (A)) = 3n and m(A) ≤ m2(L) = 2n; thus the lemma holds in this
case. So suppose that t ∈ A − L. If A contains no orthogonal transvection then
ε = +1, m(V/CV (t)) = 2n, 〈t〉 = CM (CV (t)), and m(A) ≤ m2(CL(t)) + 1 = n+ 1,
so the lemma holds in this case. Thus we may assume that t is a transvection,
so m(V/CV (t)) = n, 〈t〉 = CM (CV (t)), and CV (t) is the 3-dimensional orthogonal
module for CL(t) ∼= Ω3(2

n). Now it is easy to check that the lemma holds, recalling
our assumption that n ≥ 2. ¤

H.2. SU3(2
n) on a natural 6n-dimensional module

The module V can be regarded as a 3-dimensional module for L over F := F22n .

m2 = n+ 1: Achieved by Ω1(T ∩ L) extended by a graph automorphism.
m = 2n: achieved by unitary F -transvections.
a ≤ n: A graph automorphism induces a field automorphism on V , and hence

is contained in no member of A2(M,V ).
β ≥ 4n assuming Hypothesis (!): If not, there is x ∈ M of odd prime order

with m(V/CV (x)) < 4n. By H.0.1, x does not induce a field automorphism on L,
so x induces an inner-diagonal automorphism, and hence preserves the F -structure.
Therefore dimF (CV (x)) = 2, so V = CV (x) ⊥ [V, x], and [V, x] is a 1-dimensional
F -eigenspace for x with eigenvalue λ of order p dividing 2n + 1. But now there is
E = 〈e1, e2, e3〉 ≤ L〈x〉, with V = V1 ⊥ V2 ⊥ V3 the sum of 1-dimensional subspaces
Vi, and ei of order p with Vi := [V, ei]. Finally there is a transvection s ∈ L
interchanging e1 and e2 and centralizing V3, so CE(s) is noncyclic, contradicting
(!) and A.1.31.1.

α =∞: V is not an (F − 1)-module as m2 + 1 < 2n = m.
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H.3. Sz(2n) on a natural 4n-dimensional module

The module V can be regarded as a 4-dimensional symplectic space for L over
F := F2n . Since n is odd, T contains no field automorphisms, so T ≤ L.

We recall Definition E.2.6 of the Suzuki type of an involution in the overgroup
Sp4(2

n) of L in GL(V ).

m2 = n: Achieved by Ω1(T ).
m = 2n: Involutions are of Suzuki type c2 in Sp4(2

n) and act freely on V .
a ≤ n: As m2 = n, nothing is being asserted.
β ≥ 8n/3: If x ∈ L is of odd prime order, then |x| divides 2n − 1 or 22n + 1;

in the latter case x is fixed-point-free on V , while in the former the eigenvalues of
x are of multiplicity 1 (cf. p.133 in [Suz62]). Thus we may assume that x 6∈ L.
Next if x induces an inner automorphism on L, then as EndL(V ) ∼= F and x /∈ L,
the projection y of x on L has order dividing 2n − 1; thus codimF (CV (x)) ≥ 3 as
x acts as a scalar if y = 1, and the eigenvalues of y are of multiplicity 1 otherwise.
If x induces a field automorphism, then m(V/CV (x)) ≥ 8n/3 by H.0.1.

α =∞: V is not (F − 1)-module as m = 2m2 and m2 > 1.

H.4. (S)L3(2
n) on modules of dimension 6 and 9

m2 = 2n: Achieved on the unipotent radical of either maximal parabolic.

H.4.1. SL3(2
n) on a natural module 3n plus its dual (3n)∗.

Recall that we typically denote the dual of module X by X∗.
Let F := F2n . Then V = V1 ⊕ V2, where we can view V has a 3-dimensional

F -module for L and V2 as the dual V ∗1 of V1.

m = 2n: realized by a transvection on V1 (and hence also on V2).
a = n: Realized by a root group, so a ≥ n. To prove a ≤ n, suppose

A ∈ An+1(M,V ). If a ∈ A# induces an outer automorphism on L, then 〈a〉 =
CM (CV (a)), a contradiction. Thus A ≤ L and A is contained in the unipotent
radical Q of some maximal parabolic. Let R be a root subgroup of Q. Then
m(A/A ∩ R) ≤ m(Q/R) = n, so A ∩ R 6= 1, and hence A ≤ CM (CV (A ∩ R)) = R,
contradicting m(A) > n.

β ≥ 4n assuming Hypothesis (!): Arguing as in the treatment of SU3(2
n),

if x is of odd prime order with m(V/CV (x)) < 4n, then by H.0.1, x induces an
inner-diagonal automorphism on L. Thus x preserves the F -structure on V , and
dimF (CVj (x)) = 2 for j = 1 or 2. Then again arguing as in the case SU3(2

n),
x ∈ L by (!) and A.1.31.1, so the determinant of x on Vj is 1, contradicting
dimF (CVj (x)) = 2.

α = ∞ unless n = 1, where α = 2: This follows as m = 2n = m2, and
m(V/CV (A)) ≥ 3n unless A is contained in a root subgroup of L.

We need a few more facts in the case where n = 1. Pick a standard basis {1, 2, 3}
for V1, and (enlargingM if necessary) pick t ∈M−L acting as the transpose-inverse
automorphism on L with {1t, 2t, 3t} the dual basis for the dual space V2 of V1. Thus
if A is the matrix of g ∈ L on V1 with respect to our standard basis, then the matrix
of g on V2 with respect to {1t, 2t, 3t} is given by the transpose-inverse of A. The
proofs of the following two lemmas are straightforward.
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Lemma H.4.1. LT preserves the orthogonal form on V with associated sym-
plectic form (v1, v2) = v2(v1) for vi ∈ Vi (regarding v2 as a member of V ∗1 ), which
makes V1 and V2 totally singular. In particular

(i, jt) = δi,j .

Lemma H.4.2. There are three orbits of nonzero vectors on V under LT , with
representatives 1 which is singular and not 2-central, 1 + 2t which is singular and
2-central, and 1 + 1t which is nonsingular.

Lemma H.4.3. Let E4
∼= A ≤M and W := 〈CV (a) : a ∈ A#〉. Then

(1) If A 6≤ L, then m(CV (A)) = 2 and m(W ) = 5.
(2) If A ≤ L, then up to conjugacy, CV (A) = 〈1〉 ⊕ 〈2t, 3t〉 is of rank 3,

W = V1 + CV (A) is of rank 5, and [W,A] = 〈1〉.

Proof. If A ≤ L, then conjugating in L〈t〉, we may take A to be the group of
transvections on V1 with center 〈1〉, and then (2) is easy. If A 6≤ L, conjugating in
L we may take A = 〈t, i〉, where i is the involution in L with center 〈1〉 and axis
〈1, 2〉. Then CV (A) = 〈1 + 1t, 2 + 2t〉 and W = CV (t) + CV (i) is of rank

dim(CV (t)) + dim(CV (i))− dim(CV (A)) = 3 + 4− 2 = 5,

establishing (1). ¤

H.4.2. L3(2
2n).2 on the tensor module 9n.

Let L̂ := SL3(2
2n), F := F2n , E := F22n , N the natural EL̂-module, and σ

the involutory automorphism of E. Let B := {x1, x2, x3} be a basis for N , and Nσ

the Galois conjugate of N as an EL̂-module. That is, if g ∈ L̂ has matrix (gi,j)

on N with respect to B, then Nσ is the EL̂-module with basis Bσ = {xσ1 , x
σ
2 , x

σ
3}

such that g has matrix (gσi,j) on N
σ with respect to Bσ.

Let U := N ⊗Nσ regarded as an EL̂-module. Let γ be the semilinear map on
U such that (eu)γ = eσ(uγ) for each u ∈ U and e ∈ E, and such that (xi ⊗ xσj )γ =

xj ⊗ xσi for all i, j. Then by construction, γ commutes with L̂ on U . Therefore (cf.
25.7 in [Asc86a]) we can regard V as the FL-space CU (γ) of fixed points of γ on

U , where L := L̂/CL̂(U). Observe V is the F -span of

{xj ⊗ x
σ
j , e(xj ⊗ x

σ
k ) + eσ(xk ⊗ x

σ
j ) : j 6= k, e ∈ E}.

Further NGL(V )(L) is L extended by the scalar maps in F# and a field automor-
phism; so in particular each involution in M preserves the F -structure. We also
write σ for the field automorphism induced on L̂ by σ; then σ acts as the semilinear
map on N and U fixing the bases B and B ⊗ Bσ, with (ew)σ = eσ(wσ) for e ∈ E
and w ∈ N,U .

Let 0 < Z < W < N be the maximal (T ∩ L)-invariant E-flag in N , and for
X := Z,W set PX := NL(X), and let QX be the unipotent radical of PX . We
may choose notation so that Z = Ex1 and W = Ex1 + Ex2. For Y a σ-invariant
subgroup of L, let Yσ denote the fixed points of σ on Y .

Lemma H.4.4. (1) CU (QW ) =W ⊗W σ is the 4−dimensional orthogonal mod-
ule for PW /QW .

(2) For r ∈ Lσ an involution, m(CV (r)) = 5n and CM (CV (r)) = Rσ, where R
is the root subgroup of L containing r.
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(3) Assume A ∈ A2(M) and either m(A) ≥ 3n, or A ≤ L with m(A) > n.
Then m(V/CV (A)) ≥ 5n.

(4) If A ∈ A2(L) with m(A) = 4n, then there is no x of order 22n−1 in NM (A)
with m(CV (A〈x〉)) = 3n.

(5) Assume A ∈ A2(M) with m(A) = 4n and m(V/CV (A)) = 5n. Then there
does not exist 1 6= x of order 2n − 1 centralizing CV (A).

(6) For i an involution in M − L, m(CV (i)) = 6n, 〈i〉 = CM (CV (i)), and
CL(i) ∼= SL3(2

n) acts faithfully on 3-dimensional modules [V, i], CV (i)/[V, i], and
V/CV (i).

(7) L ∼= L3(2
2n) if n is odd, and SL3(2

2n) if n is even.

Proof. For λ ∈ E, define r(λ) to be the element of L fixing x1 and x2 with
r(λ) : x3 7→ x3+λx1. Then setting r := r(1), an easy tensor calculation shows that
CU (r) = (W ⊗W σ) + Eu, where u := x1 ⊗ xσ3 + x3 ⊗ xσ1 , and CM (CU (r)) = Rσ.
This establishes (1) and (2). Similarly CL̂(U) is the set of scalar maps on N with

respect to a scalar λ with λ2
n+1 = λλσ = 1, so (7) holds.

Each involution in M − L is conjugate to the field automorphism σ. Further
CU (σ) is the F -span of B ⊗ Bσ, which is isomorphic to the F -tensor product
CN (σ) ⊗ CN (σ) as an F -module for CL(σ) ∼= SL3(2

n). Then from our earlier
description of V as CU (γ), (6) holds.

Let A ∈ A2(M). Suppose first that either m(A) ≥ 3n, or m(A) > n with
A ≤ L. Then either A ≤ L, or n = 1 and there is i ∈ A − L. In the latter case,
m(A) = 3 = m2(CM (i)), and (6) says m(V/CV (i)) = 3, and m(CV (i)/CV (A)) ≥ 2,
so (3) holds in this case. Thus we may take A ≤ L, so as m(A) > n, A 6≤ Rσ for
any root group R, so (3) follows from (2).

Thus it remains to prove (4) and (5), so we may assume m(A) = 4n, and
x is a counterexample to (4) or (5). Hence A = QX for X = Z or W—and as
m(CV (QZ)) = n, A = QW . But then we calculate using (1) that CM (CV (A)) =
AD, where D consists of those elements inducing scalar action via λ on W with
λ2

n+1 = 1. This establishes (5), since (2n + 1, 2n − 1) = 1. Similarly (4) follows
from (1). ¤

Recall the notation Γ̌k,A(V ) from Definition E.3.30.

Lemma H.4.5. Assume A ∈ A2n+1(T, V ). Then

(1) A ≤ QW .
(2) If m(A) > 3n, then H := Γ̌3n,A(V ) is an F -hyperplane of V , so A is not

quadratic on H.
(3) a = 3n.

Proof. If a ∈ A − L then 〈a〉 = CM (CV (a)) by H.4.4.6, contradicting A ∈
A2(M,V ). Thus A ≤ L, and as A ≤ T , A ≤ PW . Then as m(PW /QW ) = 2n A
centralizes CV (A ∩ QW ) as A ∈ A2n+1(T, V ), so (1) holds. Assume m(A) > 3n.
Then for each root group R of QW and each r ∈ R#, there is a NL̂(R)-conjugate τ
of σ centralizing r. Then B := A ∩ Rτ is of corank at most 3n in A, so CV (Rτ ) =
CV (B) ≤ H using H.4.4.2. Indeed from the description of CU (Rσ) in paragraph
one of the proof of H.4.4.2, E⊗F H is the E-hyperplane of U spanned by W ⊗W σ,
xj ⊗ xσ3 , x3 ⊗ xσj , j = 1, 2. Thus (2) holds. Finally if A ∈ A3n+1(M,V ), then A
centralizes H , so (2) implies (3). ¤

m = 3n: This follows from (2) and (6) of H.4.4.
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a = 3n: This is H.4.5.3.
β ≥ 4n: Suppose x ∈M is of odd prime order p, with m(V/CV (x)) ≤ 4n. Then

by H.0.1, x induces inner-diagonal automorphisms on L. Extending E if necessary,
we may assume x is diagonalizable on N with eigenvalues αi on basis vectors xi
for N , 1 ≤ i ≤ 3. Then x has eigenvalue αiα

q
j on xi ⊗ x

σ
j , where q := 2n. Thus by

hypothesis there are at least 5 pairs (i, j) with αi = α−qj . We conclude that, up to

a permutation of {1, 2, 3}, α1 = α2 = λ and α3 = µ with λq+1 = µq+1 = 1, and so
dimF (CV (x)) = 5 exactly.

α =∞—unless n = 1, where α = 5: If we assume that we are given A ∈ A2(M)
with m(V/CV (A)) ≤ m(A)+1, then as m = 3n, m(A) ≥ 3n−1. If a ∈ A−L, then
by H.4.4.6, m(A) ≤ m(CM (a)) = 2n+1 and m(V/CV (A)) > 3n, contradicting our
assumption. Thus A ≤ L, som(A) ≤ 4n = m2, and by H.4.4.3, m(V/CV (A)) ≥ 5n,
with equality only when A is the radical QW . Thus the assertion holds.

Again we require extra information in the case n = 1.

Lemma H.4.6. Assume n = 1. Then

(1) If y ∈ M is of odd order with CV (y) of rank 5, then 〈y〉 = CM (CV (y)) is
of order 3.

(2) LW := P∞W acts as A5 on CV (QW ), and as L2(4) on [V, LW ]/CV (QW ).
(3) CM (CV (QW )) = QW or QWD, where D ∼= Z3 and LD ∼= PGL3(4).
(4) Let LZ := P∞Z . Then LZ has chief series 0 < V1 < V2 < V on V , where:

V1 := CV (QZ) is of rank 1; V2/V1 is the L2(4)-module for LZ/QZ and QZ induces
the full group of F -transvections on V2 with center V1; and V/V2 is the A5-module
for LZ/QZ .

(5) V2 ≤ [V, LW ].
(6) V2/V1 = CV/V1(QZ).

Proof. The first part of (2) follows from H.4.4.1, and an easy calculation
completes the proof of (2). Then (4) follows from (2) and the fact that the action
of PZ on V is dual to that of PW . From the discussion of β above, the element y in
(1) is of order 3 with CN (y) =W = 〈x1, x2〉 and CU (y) = W ⊗W σ + F (x3 ⊗ xσ3 ).
Thus (1) holds. Similarly the proof of H.4.4.5 establishes (3).

Let V̂ := V/V1. As LZ is irreducible on V̂2 and V/V2, V̂2 = CV̂ (QZ), establish-
ing (6). As V2 = [V2, LW ∩ LZ ], (5) holds. ¤

H.4.3. Modules for L3(4).

Lemma H.4.7. Let L3(4) ∼= L := F ∗(M) be irreducible on V and t an involution
in M . Then m([V, t]) ≥ 3, with equality iff V is the tensor module 9 or its dual and
t is a field automorphism.

Proof. Let σ denote a field automorphism of L, and B, N , N∗, and A be the
basic irreducibles (in the usual Lie-theoretic language; cf. H.6.1 and the discussion

before it) for L̂ = SL3(4) of dimensions 1, 3, 3, and 8 over F4. Then the nontrivial

F4L̂-irreducibles are of the form U = M1 ⊗Mσ
2 , with M1 and M2 basic and not

both B. A generator z for Z(L̂) has eigenvalue λ := ω1ω
2
2 on U , where ωi is the

eigenvalue for z on Mi. Thus U is an L-module iff λ = 1 iff one of: M1 =M2 = N ,
or M1 = M2 = N∗, or M1 and M2 are both in {B,A}. Let E be the field of
definition of V ; then F4⊗E V is one of these irreducibles. If M1 =M2 is N or N∗,
then V is the tensor module 9 or its dual, and the lemma follows from H.4.4. Thus
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we may assume that M1,M2 ∈ {A,B}, but not both are B. Now each involution in
M inverts an element y of order 3 in L, and we compute directly thatm([V, y]) ≥ 12,
so m([V, t]) ≥ 6, establishing the lemma. ¤

H.4.4. L3(2) o Z2 on its 9-dimensional tensor product module.
As this module is perhaps less familiar than those in the other sections, more

details are provided. For the parameter values of Table 7.2.1:

m2 = 4: Obvious.
m = 3: See H.4.10 below.
a = 2: See H.4.11.1.
β ≥ 6 and α = 3: See the end of the subsection.

In this subsection for i = 1, 2, Vi is a 3-dimensional vector space over F2 with
basis {xij : 1 ≤ j ≤ 3}, and V := V1 ⊗ V2 is the tensor product space. Define

xi,j := x1i ⊗ x
2
j and yi,j := xi,j + xj,i

Further set Li := GL(Vi), and let t : V1 → V2 be the isomorphism defined by
t : x1j 7→ x2j . Represent L0 := L1 × L2 on V via the tensor product representation,
and extend t to V by defining

t : xi,j 7→ xj,i.

The representations of L0 and the involution t on V are faithful, so we can view L0

and 〈t〉 as subgroups of GL(V ), and let G := L0〈t〉 ≤ GL(V ). Define

Vi,m := 〈xij : 1 ≤ j ≤ m〉,

and for m = 1, 2, define

Gm := (NL1(V1,m)×NL2(V2,m))〈t〉.

Define Ri := CLi(Vi,2) and R := R1R2 = O2(G2). Let Ti be the Sylow 2-group of Li
stabilizing the flag 0 < Vi,1 < Vi,2 < Vi, and T := T1T2〈t〉. We have immediately:

Lemma H.4.8. (1) Lt1 = L2; and the isomorphism l 7→ lt of L1 with L2 is
induced by the isomorphism t : V1 → V2.

(2) G = L0〈t〉 is the wreath product of L3(2) by Z2.
(3) Gm (m = 1, 2) are maximal parabolic subgroups of G.
(4) T ∈ Syl2(G).
(5) [V, t] = 〈y1,2, y1,3, y2,3〉 is of dimension 3, and

CV (t) = [V, t]⊕ 〈x1,1, x2,2, x3,3〉.

Lemma H.4.9. (1) L0 has 3 orbits on V # with representatives x1,1, y1,2, and
d := x1,1 + x2,2 + x3,3.

(2) Let V5 := 〈x1,1, x1,2, x1,3, x2,1, x3,1〉. Then CG(x1,1) = G1
∼= S4 wr Z2

and G1 is irreducible on V5/〈x1,1〉 and V/V5.
(3) CG(y1,2) is of index 6 in G2 and isomorphic to (S3 × Z2)/E16.
(4) CG(d) ∼= Aut(L3(2)) and V = [V,CG(d)]⊕〈d〉 with [V,CG(d)] the Steinberg

module for CG(d).

Proof. Visibly G1 ≤ CG(x1,1), so as G1 is maximal in G, G1 = CG(x1,1). The
remainder of (2) is an easy calculation. Similarly CG2(y1,2)

∼= (S3×Z2)/E16, andG2

is the unique maximal subgroup ofG containing CG2(y1,2), so CG(y1,2) = CG2(y1,2),
establishing (3). Finally as the Steinberg module is a summand of the tensor
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product of the natural module and its dual, there is a diagonal copy L of L3(2) in
L0 such that V = CV (L) ⊕ [V, L] with [V, L] the Steinberg module; by a Frattini
Argument, we may take t to act on L. As L is maximal in L0, L = CL0(v) for
v ∈ CV (L)#. By a counting argument, x1,1, y1,2, and v are representatives for the
orbits of L0 on V #, so d ∈ vL0 and the lemma is established. ¤

Lemma H.4.10. G has three conjugacy classes of involutions:

(1) The involutions in L1 ∪ L2, with representative s ∈ L1, such that V1,2 =
CV1(s) and V1,1 = [V1, s]. Further [V, s] = 〈x1,1, x1,2, x1,3〉.

(2) The diagonal involutions in L0 with representative r := sst. Further

[V, r] = 〈x1,1, x1,2, x2,1, y1,3〉

and CV (r) = 〈[V, r], x2,2〉.
(3) The involutions in G − L0 with representative t. Further m([V, t]) = 3,

CV (t) contains d, and t is contained in no (F − 1)-offender.

Proof. This is straightforward, except possibly for the last sentence of (3),
which we now prove: By H.4.8, CL0(t)

∼= L3(2) acts faithfully on [V, t] and on
CV (t)/[V, t], so m(V/CV (A)) ≥ 5 for each noncyclic A ∈ A2(CG(t)) containing t,
and such A are of rank at most 3. ¤

Lemma H.4.11. (1) a(G, V ) = 2.
(2) 〈A2(T, V )〉 = R.

Proof. Suppose A ∈ A2(T, V ). Then CV (A) = CV (B) for each hyperplane B
of A, so m(A) > 1. If furthermore A ∈ A3(T, V ), then B ∈ A2(T, V ) so m(A) > 2.

Suppose first that t ∈ A. Let Gt := CG(t), Tt := CT (t), and Ḡt := Gt/〈t〉.
Then by H.4.8, Ḡt ∼= L3(2) acts faithfully on [V, t] and on CV (t)/[V, t], with Ā ∈
A2(T̄t, CV (t)). Hence as the maps

α : L1 → CL0(t) defined by l 7→ llt

and
β : V ∗1 → [V, t] defined by x1∗i 7→ yj,k

for {1, 2, 3} = {i, j, k} define a quasiequivalence of the actions of Ḡt on the dual V ∗1
of V1 with [V, t], we conclude that Ā = 〈r̄, b̄〉: where r is as in H.4.10.2, and b := ff t

where f ∈ T1 is the transvection on V1 with axis 〈x11, x
1
3〉 and center 〈x11〉. This is

impossible as x2,2 ∈ CV (〈t, r〉) − CV (b). Thus in view of H.4.10, we conclude that
A2(T, V ) ⊆ L0.

If AutA(V1) = 1, then A ≤ T2, so A ≤ R2 and hence A = R2 ≤ R. Otherwise
AutA(V1) 6= 1, so AutA(V1) ∈ A2(AutT (V1), V1), so AutA(V1) is the group R1 of
transvections on V1 with axis V1,2. Similarly either A = R1 or AutA(V2) = R2.
So A ≤ R1R2 = R. Conversely Ri ∈ A2(T, V ) for i = 1, 2, so (2) is established.
Further if A ∈ A3(T, V ), we saw in the first paragraph that m(A) > 2, so Ai :=
A ∩ Ri 6= 1 for i = 1, 2. Therefore A ≤ CR(CV (Ai)) = Ri, a contradiction. Hence
(1) holds. ¤

Lemma H.4.12. (1) Each subgroup of order 3 in G has exactly three noncentral
chief factors on V .

(2) If P is a diagonal subgroup of order 3 in G1, then P has two noncentral
chief factors on O2(G1).

(3) CG(U) is a 2-group for each U ≤ V with m(V/U) < 6.
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Proof. An easy calculation. ¤

By H.4.12.1, m(V/CV (x)) = 6 for each element x of order 3 in M , and an easy
calculation gives m(V/CV (y)) ≥ 6 for y of order 7. Thus β ≥ 6.

Finally we show α = 3: By definition, R1 centralizes the 6-space V1,2 ⊗ V2, so
R1 is an (F − 1)-offender with m(V/CV (R1)) = 3. On the other hand as m = 3,
α > 2, so we are done.

H.5. 7-dimensional permutation modules for L3(2)

In this section V is a 3-dimensional vector space over F2, and L := GL(V ) ∼=
L3(2). Let T ∈ Syl2(L), p ∈ V # the vector (projective point) fixed by T , and l the
projective line in V fixed by T . For x := p, l, let Lx be the stabilizer in L of x; thus
Lp and Ll are the maximal parabolics of L over T .

Let L be the set of lines in V , Ω := V # the set of points, and U0 the permutation
module for L on Ω over F2. As usual we regard U0 as the power set of Ω, with
addition given by symmetric difference. Let U be the core (the subspace of subsets
of even order) of U0.

The following results on U are all well known; for completeness we supply the
easy proofs. First as |Ω| is odd:

Lemma H.5.1. U0 = U ⊕ F2Ω as an F2L-module.

For S ⊆ Ω, write uS for the complement S +Ω of S in Ω. Define:

O1 := {uq : q ∈ Ω}, O2 := {ur : r ∈ L}, O4 := {uB : B is a basis of V },

and let O3 be the set of vectors in U0 of weight 2.

Lemma H.5.2. (1) For r, s ∈ L, ur + us = ut, where t is the third line through
the common point r ∩ s.

(2) CU (T ) = 〈up, ul〉 is of dimension 2.
(3) dim(CU (O2(Lp))) = dim(CU (O2(Ll))) = 3.
(4) dim([U,O2(Lp)]) = dim([U,O2(Ll)]) = 3.
(5) CU (Lp) = 〈up〉 and CU (Ll) = 〈ul〉.
(6) U is a self-dual F2L-module.
(7) For Y ∈ Syl3(Ll), CU (Y ) = 〈ul, uq〉, where 〈q〉 = CV (Y ).

Proof. Part (1) is an easy calculation. For X ≤ L, dim(CU0 (X)) is the
number o(X) of orbits of X on Ω, so dim(CU (X)) = o(X) − 1 since X centralizes
Ω. Then it is easy to calculate that (3) holds, dim(CU (T )) = 2 = dim(CU (Y )), and
dim(CU (Lp)) = dim(CU (Ll)) = 1. As T fixes p and l, it centralizes up and ul, so
as dim(CU (T )) = 2, (2) holds. Similarly (5) and (7) follow.

As U is nondegenerate with respect to the quadratic form on U0 in which the
basis Ω is orthonormal, (6) holds. By (6), dim(CU (X)) = dim(U/[U,X ]), so (3)
implies (4). ¤

Lemma H.5.3. Let W := O2 ∪ {0}. Then

(1) W is an F2L-submodule of U isomorphic to the dual of V .
(2) U/W is F2L-isomorphic to V .
(3) Oi, 1 ≤ i ≤ 4, are the orbits of L on U#.
(4) |O1| = |O2| = 7, |O3| = 21, and |O4| = 28.
(5) U is indecomposable, and hence W is the socle of U .
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Proof. By H.5.2.1, W is a subspace of U . As |W#| = |L| = 7, dim(W ) = 3.
As L is faithful on L, L is faithful on W . Therefore L = GL(W ), and then as Ll
stabilizes ul ∈W , U is isomorphic to the dual of V . Thus (1) is established.

By (1), dim(U/W ) = 3. As U = 〈uLp 〉, U/W = 〈(W + up)
L〉, so L is nontrivial

on U/W . Thus L is faithful on U/W as L is simple, so L = GL(U/W ); then as Lp
stabilizes W + up, (2) holds.

Visibly L is transitive on Oi for 1 ≤ i ≤ 4 and (4) holds. Then as
∑
i |Oi| =

63 = |U#|, (3) holds. By (4), O1 is the only orbit of length 7 on U −W , while for
distinct p, q ∈ Ω, up+uq = {p, q} ∈ O3 is of weight 2, so O1 ∪{0} is not a subspace
of U . On the other hand L is transitive on (U/W )# by (2). Therefore U does not
split over W , and hence (5) holds. ¤

Lemma H.5.4. Let Z := CU (T ). Then

(1) CU (Lp) 6≤ [Z,Ll].
(2) CU (Ll) ≤ [Z,Lp].
(3) If a, b, c are distinct elements of O1, then a+ b+ c 6= 0.

Proof. By H.5.3.1, CW (Ll) ≤ [CW (T ), Lp], so (2) follows from H.5.2.5.
Let S be a subset of Ω of order 3. Then

∑
s∈S us = uS is of weight 4, so (3)

holds. By parts (2) and (5) of H.5.2, 〈ZLl〉 = [Z,Ll]⊕ 〈ul〉, with dim([Z,Ll]) = 2.
Thus up /∈ [Z,Ll] by (3), so (1) follows from H.5.2.5. ¤

Lemma H.5.5. Assume M is an F2L-module such that

(1) M = 〈xM 〉 for some 1 6= x ∈ CM (Lp), and
(2) dim(〈xLl〉) = 2.

Then M is isomorphic to V as an F2L-module.

Proof. By (1), there is a surjection ϕ : U0 → M with ϕ(p) = x; let K :=
ker(ϕ). By (2), ul+Ω ∈ K; hence the sum Ω of the L-conjugates of ul+Ω lies in K,
so that W + F2Ω ≤ K. Then K =W + F2Ω and M ∼= U0/K ∼= V by H.5.3.2. ¤

H.6. The 21-dimensional permutation module for L3(2)

In this section, V is a 3-dimensional vector space over F2, and L := GL(V ) ∼=
L3(2). Let T ∈ Syl2(L), with p ∈ V # the vector (projective point) fixed by T and
l the projective line in V fixed by T . For x = p, l, let Lx be the stabilizer in L of
x; thus Lp and Ll are the maximal parabolics of L over T .

In this section, and at a few other points in our work, we describe irreducible
modules via the highest-weight representation theory of the Lie type groups in their
natural characterstic, using section 2.8 of [GLS98] as our standard reference. In
particular we recall that the Steinberg Tensor Product Theorem (2.8.5 in [GLS98])
expresses those irreducibles as algebraic conjugates of basic irreducible modules
M(λi) for fundamental weights λi.

So now for L ∼= L3(2), we assume the familiar list of irreducible F2L-modules
(e.g., page 77 of [GLS98]) indexed by sums of the fundamental weights λ1 and λ2:

Lemma H.6.1. L has four irreducible F2L-modules up to isomorphism:

(1) The 1-dimensional F2L-module M(0).
(2) M(λ1) ∼= V .
(3) M(λ2) isomorphic to the dual V

∗ of V .
(4) The 8-dimensional adjoint (also, Steinberg) module M(λ1 + λ2).
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Let U be the permutation module for L on Ω := L/T over F2. Thus U is the
21-dimensional transitive permutation module for L over F2. The following results
on U are well known; for completeness we supply the easy proofs.

As usual let J(M) denote the radical of a module M , namely the intersection
of all maximal submodules.

Lemma H.6.2. (1) There exist F2L-submodules Ui of U , 1 ≤ i ≤ 4, such that

U = U1 ⊕ U2 ⊕ U3 ⊕ U4,

U1
∼= M(0) is the trivial module, U2 and U3 are the 6-dimensional cores of the

7-dimensional permutation modules on L/Lp and L/Ll with quotients M(λ1) and
M(λ2), respectively, and U4 is the Steinberg module M(λ1 + λ2).

(2) J(U) = J(U2)⊕ J(U3) ∼=M(λ1)⊕M(λ2) is of dimension 6.

Proof. Define W := W1 ⊕ W2 ⊕ W3 ⊕ W4 with W1
∼= M(0), W2 and W3

the cores of the permutation modules on L/Lp and L/Ll, respectively, and W4 the
Steinberg module. Thus

J(W ) =
4⊕

i=1

J(Wi),

and W0 and W4 are irreducible, so J(W ) = J(W2)⊕ J(W3). By H.5.3, for i = 2, 3,
Wi/J(Wi) ∼=M(λi−1) and J(Wi) ∼=M(λ5−i). Thus (1) implies (2).

Let 0 6= wi be a fixed point of T on Wi. For i = 1 and 4, Wi is irreducible, so
Wi = 〈wLi 〉. For i = 2, 3, Wi is the core of the permutation module for L on L/Lxi,
where x2 := p and x3 := l, so we can choose wi to be a fixed point of Lxi such that

Wi = 〈w
Li
i 〉. Let w :=

∑
i wi; then w is a fixed point of T , and we will show that

W = 〈wL〉. Thus W is a homomorphic image of U , so as dim(U) = 21 = dim(W ),
the lemma will follow.

Let M := 〈wL〉; it remains to show that W = M . Set Ŵ :=W/J(W ). As the

projection ŵi of ŵ on Ŵi is nontrivial and Ŵi is irreducible, Ŵi is a homomorphic

image of M̂ . Thus as Ŵi is a homogeneous component of Ŵ , it follows that M̂ = Ŵ .
That is, W =M + J(W ), so indeed M =W . ¤

During the remainder of the section, define Ui as in H.6.2.

Lemma H.6.3. Let M be the Steinberg module for L. Then

(1) M is projective.
(2) M is self-dual and invariant under Aut(L).
(3) Lp and Ll each have three noncentral chief factors on M .
(4) T stabilizes a unique point m of M , and T = CM (m).
(5) M = [M,Ll] = [M,Lp].

Proof. Part (1) is well known. By H.6.1, M is the unique irreducible of its
dimension, so (2) holds.

LetX be of order 3 in L. ThenX has 7 orbits of length 3 on Ω, so dim(CU (X)) =
7. Further U1 ≤ CU (X), and dim(CUi(X)) = 2 for i = 2, 3 by H.5.2.7. Hence
dim(CU4(X)) = 2, so X has three noncentral chief factors on U4. Thus (3) holds.

Let Z(T ) =: 〈z〉. Then we compute that T has 1,2,2,1 orbits of length 1,2,4,8
on zL, where |zz′| = 1, 2, 4, 3 for z′ in the respective class of orbits. Thus T has
6 orbits on Ω, so dim(CU (T )) = 6. But by H.5.2.2, dim(CUi(T )) = 2 for i = 2, 3,
so T has a unique fixed point m on U4. If T < CL(m), then CL(m) is a maximal
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parabolic Lx for x := p or l. This is impossible, as M is not a quotient of the
permutation module on L/Lx by H.5.3. Thus T = CL(m), completing the proof of
(4), and further CM (Lx) = 0. This last fact, together with (2), implies (5). ¤

We need the following general technical lemma:

Lemma H.6.4. Assume M = A + B is a module with a finite composition
series, such that A/J(A) ∼= S is simple, and B has no quotient isomorphic to
S. Let K ≤ M be a submodule. Then either A ≤ K, or M/K has a quotient
isomorphic to S.

Proof. Choose a counterexampleM with a minimal number n of composition
factors. If n = 1, then M = A ∼= S and the lemma is trivial, so we may assume
that n > 1. Also we may assume that M/K has no quotient isomorphic to S,
and it remains to show that A ≤ K. Let C be a simple submodule of K, and set
M̂ := M/C. Then M̂ = Â + B̂, and neither B̂ nor M̂/K̂ ∼= M/K has a quotient

S. Next Â = (A + C)/C ∼= A/(A ∩ C) ∼= A/C or A, for C ≤ A or C 6≤ A,
respectively. Assume either that the latter case holds, or that the former case holds
with C ≤ J(A). Then S ∼= A/J(A) ∼= Â/J(Â), so Â ≤ K̂ by minimality of n.
Then A ≤ K under either of our present assumptions, so the lemma holds. Finally
if C ≤ A but C 6≤ J(A), then A = C + J(A), so A = C ≤ K, completing the
proof. ¤

Lemma H.6.5. Assume M is a faithful F2L-module such that for some m ∈
CM (T ), M = 〈mL〉 and dim(〈mLl〉) = 2. Then M is a quotient of U2 ⊕ U4. In
particular, M is isomorphic to one of: the core U2 of the permutation module on
L/Lp, the Steinberg module S, V , V ⊕ S, or U2 ⊕ S.

Proof. As T fixes m and M = 〈mL〉, there is a surjective homomorphism
π : U → M with uπ = m, where u ∈ U is the fixed point of T of weight 1 when
regarded as a subset of Ω. Let K := ker(π).

We first observe that M has no quotient module M+ isomorphic to the dual
V ∗ of V or to the trivial module U1: Namely V ∗ contains a unique nonzero vector
v fixed by T , and v is also fixed by Ll. However as v is unique, the image m+ of
m in M+ is v; so as Ll is nontrivial and irreducible on W := 〈mLl〉 by hypothesis,
W ∼= 〈m+Ll〉, whereas Ll fixes v = m+.

Now we may apply H.6.4 with U , U1 or U3, U1 or V ∗ in the roles of “M , A,
S”, and the complement in H.6.2.1 to U1 or U3 in the role of “B”. In view of
the previous paragraph, we conclude from H.6.4 that K contains U1 and U3, so
M ∼= U/K is a quotient of U/(U1 + U3) ∼= U2 ⊕ U4. Thus the lemma holds. ¤

H.7. Sp4(2
n) on natural 4n plus the conjugate 4nt.

Here V = V1 ⊕ V2 is a module for L over F := F2n ; with V1 natural, and
V2 := V t1 conjugate to V1 via an outer automorphism t nontrivial on the Dynkin
diagram of L.

m2 = 3n: Achieved by unipotent radicals of maximal parabolics.
m = 3n: Achieved by root involutions. Involutions of Suzuki type c2 (cf.

Definition E.2.6), and involutions in M − L, are free on V .
a < 2n: Let W be the 2-subspace of V1 stabilized by NT (V1). We first claim

that a(NM (V1), V1) = 2n, with B ∈ A2n(NT (V1), V1) precisely when B ≤ CT (W )
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and m(B/(B ∩ R)) = 2n for each root subgroup R of NT (V1) acting as transvec-
tions on V1: For each such subgroup B is indeed in A2n(NT (V1), V1). Conversely,
assume B ∈ A2n(NM (V1), V1). If B centralizes W , then m(B/B ∩ R) ≥ 2n as
CV1(B ∩ R) > W , so m(B/(B ∩ R)) = 2n since m(CT (W )/R) = 2n. In par-
ticular, B 6∈ A2n+1(NM (V1), V1). If B does not centralize W , then AutB(W ) ∈
A2n(AutT (W ),W ), which is impossible asm(T/CT (W )) = n, completing the proof
of the claim.

Next if A ∈ A2n(T, V ), then 1 6= NA(V1) has corank at most 1 in A and 1 < 2n,
so 0 6= CV1(NA(V1)) ≤ CV1(A); hence A ≤ NT (V1) and then A ∈ A2n(NM (V1), V1),
so A ≤ CT (W ) by the claim. By symmetry, A ≤ CT (U), where U is the 2-subspace
of V2 stabilized by NT (V1). Thus A ≤ CT (W )∩CT (U) = Z(TL), where TL := T ∩L
if n > 1, or TL := T ∩L0 if n = 1 where L0

∼= S6. Then as m(A) ≥ 2n = m(Z(TL)),
A = Z(TL); thus A ∩ R 6= 1, where R is the root subgroup of Z(TL) acting as
transvections on V1, giving the contradiction CV (A ∩ R) > CV (A).

β ≥ 4n, assuming Hypothesis (!): Suppose x is of odd prime order p and
m(V/CV (x)) < 4n. Then x does not induce a field automorphism on L by H.0.1,
so arguing as in the treatment of SL3(2

n) on the sum of a natural module and its
dual, (!) and A.1.31.1 say x ∈ L. Therefore m(Vi/CVi(x)) = 2n or 4n as Vi is a
symplectic space, contradicting m(V/CV (x)) < 4n. In case n = 1, each element of
order 3 is fixed-point-free on one of the two modules, so that β ≥ 6.

V is not an (F − 1)-module, so α = ∞: Suppose m(A) ≥ m(V/CV (A)) − 1.
As m = 3n, m(A) ≥ 3n − 1. If a ∈ A − NA(V1), then m(V/CV (a)) = 4n, while
m2(CM (a)) ≤ n + 1, a contradiction. Thus A acts on V1, and as m(A) ≥ 3n− 1,
A ≤ TL. Then either A is not contained in a conjugate of Z(TL), som(V/CV (A)) ≥
5n > m(A) + 1, or we may take A ≤ Z(TL) of rank 2n, so that A = Z(TL), n = 1,
and m(V/CV (A)) = 4 > m(A) + 1.

H.8. A7 on 4⊕ 4̄

We can take M ∼= S7 and V = V1 ⊕ V2, with V t1 =: V2 for t an involution in
M − L.

m2 = 3: Achieved on the two classes of E8-subgroups of M .
m = 4: Achieved by all involutions.
a = 2: A2(T, V ) = {A}, where A is the 4-subgroup of L with m(CVi(A)) = 2.
β ≥ 4: There is x is of order 3 in L with m(CVi(x)) = 2.
V is not an (F −1)-module, so α =∞: As m = 4, if m(V/CV (A)) ≤ m(A)+1,

then m(A) = m2 = 3 and CV (a) = CV (A) for each a ∈ A#. But there is a ∈ A−L
with CV1(a) = 0 6= CV1(A ∩ L).

H.9. Aut(Ln(2)) on the natural n plus the dual n∗

The following lemmas are needed in section 12.1.
In this section assume M ∼= Aut(Ln(2)), with n = 4 or 5, T ∈ Syl2(M),

L := E(M), V is an F2M -module, and V = V1 ⊕ V2, with V1 the natural module
for L and V2 = V t1 for t ∈ T −L. Thus V2 is the dual of V1 as an F2L-module. Let
T1 := NT (V1), and for v ∈ V , let Mv := CM (v) and Lv := O2(CL(v)).

Lemma H.9.1. (1) There is a unique nondegenerate quadratic form q on V
preserved by M in which V1 is totally singular.
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(2) M has three orbits Om, 1 ≤ m ≤ 3 on V #: Namely O1 := V #
1 ∪ V #

2

consists of singular vectors; O2 consists of the singular diagonal vectors, which are
also the nonzero vectors centralized by a Sylow 2-subgroup of M ; and O3 is the set
of nonsingular diagonal vectors.

(3) Let v1 generate CV1(T1). Then Mv1 = Lv1
∼= Ln−1(2)/E2n−1 with V1 =

[V1, Lv1 ] and U2 := [V2, Lv1 ] = V2 ∩ v⊥1 a hyperplane of V2 and a natural module for
Lv/O2(Lv). Further T1 = CT (v1) ∈ Syl2(Mv1).

(4) Let v2 ∈ V2 − U2 and v := v1 + v2. Then v ∈ O3, Mv = 〈t〉Lv ∼=
Aut(Ln−1(2)) with Lv = O2(Mv1,v2) and t ∈ Tv − T1, where Tv := CT (v) ∈
Syl2(Mv). Further Vi = 〈vi〉 ⊕Wi, where Wi := Vi ∩ 〈v1, v2〉⊥, Lv acts naturally
on W1, and W2 is dual to W1.

Proof. Part (1) follows as V2 is the dual of V1. As L is transitive on V #
i , O1

is an orbit, and as Lv1 is transitive on V #
2 ∩ v⊥1 and V2 − v⊥1 , O2 and O3 are the

remaining orbits. Thus (2) holds. Part (3) is straightforward. By construction, the
vector v of (4) is in O3, and its stabilizer is Gv1,v2〈t〉, where t ∈ T −T1 interchanges
v1 and v2. Then (4) also follows in a straightforward way. ¤

Again we recall the notation of Definition E.3.30.

Lemma H.9.2. Assume that n = 5. Let A denote an elementary abelian 2-
subgroup of M . Then

(1) M is transitive on involutions in M − L. If t is such an involution, then
CL(t) ∼= S6 and the map θ : V1 → [V, t] = CV (t) given by θ : w 7→ w + wt is a
CL(t)-isomorphism. In particular CV (t) = 〈v〉 ⊕ [CV (t), CL(t)] with [CV (t), CL(t)]
a natural module for CL(t), and v nonsingular centralizing CL(t).

(2) If m(A) ≥ 5 then A ≤ L.
(3) Let U be the T1-invariant 3-subspace of V1, and A0 the unipotent radical of

NL(U). Then AM0 is the set of E64-subgroups of M , and if m(A) = 5, then A is
conjugate to a hyperplane of A0.

(4) If A is a hyperplane of A0, then

CV (A) = [V,A] = CV (A0) = [V,A0] = U ⊕ (V2 ∩ U
⊥)

is of rank 5.
(5) If m(A) ≥ 5, then V = Γ̌3,A(V ).

Proof. The first two statements in part (1) are well known; cf. [AS76a] for
example. As V t1 = V2, the map θ is a CL(t)-isomorphism. By Lemma H.9.1.4, each
v ∈ O3 is centralized by an involution t ∈ M − L such that CLv(t)

∼= S6. Thus
CL(t) = CLv(t), and hence by H.9.1.4, V1 = 〈v〉 ⊕ W1 as an Lv-module, so we
conclude that the rest of (1) holds. Part (1) implies (2).

Let U and A0 be defined as in (3). Assume m(A) ≥ 5. Then by (2), A ≤ L.
Thus we may take A ≤ T1, so A acts on A0 as A0 E T1. Now NL(A0) = K
where K/A0 = K1/A0 ×K2/A0, K1/A0

∼= L3(2), K2/A0
∼= L2(2), and A0 is the

tensor product of the natural modules for the factors. Further A(T ) = {A1, A0},
where A1 = At0 for t ∈ T − T1. Also A1 ≤ K1, A0 ∩ A1

∼= E16, and A0 and A1 are
the maximal elementary abelian subgroups of J(T ) = A0A1. Thus to prove (3), it
suffices to show that each A of rank at least 5 is conjugate to a subgroup of J(T ).

Suppose first that A ≤ K1. Then asm2(L3(2)) = 2 andm(A) ≥ 5,m(A∩A0) ≥
3. Thus as A0 is a sum of isomorphic natural modules E for K1/A0, AA0/A0 is
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conjugate to a subgroup of the group J(T )/A0 of transvections on E with a common
axis, so A is conjugate to a subgroup of J(T ) as required. So we may suppose that
A 6≤ K1. Then there is a ∈ A −K1, and for each such a, A ∩ A0 ≤ Aa := CA0(a)
of rank 3; and choosing E to be a K1-irreducible in A0 which is not a-invariant,
e 7→ [a, e] is an (A ∩ K1)-isomorphism of E with Aa. Thus A ∩ K1 6≤ A0 and
m(CAa(A)) = m(CE(A ∩K1)) ≤ 2. Therefore

5 ≤ m(A) = m(AA0/A0) +m(A ∩A0) ≤ 3 +m(CAa(A)) ≤ 5,

so we conclude that A is of rank 5, m(AA0/A0) = 3, and A ∩ A0 = CAa(A) is
of rank 2. It follows that AA0 = J(T )〈a〉, where a is an involution in K2, so
A∩ J(T ) 6≤ A0 and |A : A∩ J(T )| = 2. As A0 and A1 are the maximal elementary
abelian subgroups of J(T ), A∩J(T ) ≤ A1, so |A : A∩A1| = 2. Thus |AA1 : A1| = 2,
so by symmetry between A0 and A1, our argument shows that A is conjugate in
NM (A1) to a subgroup of A0. This completes the proof of (3).

Take A to be a hyperplane of A0. If A centralizes some W ≤ V1 properly
containing U , then A ≤ B, where B is the group of transvections on V1 with axis
W . As m(B) = 4, this contradicts m(A) = 5. Thus U = CV1(A). Similarly if A
centralizes some W ≤ V2 with U⊥ ∩ V2 =: U2 < W , then A ≤ CA0(W ) of rank
at most 4, again contrary to m(A) = 5. Thus CV (A) = U ⊕ U2, and by duality,
[V,A] = [V,A0] = U ⊕ U2. Hence (4) is established.

Let Ui := CVi(A0) and Ui < Wi < Vi with m(Wi/Ui) = 1. Since AutA0(Wi)
induces a group of transvections on Wi with axis Ui, m(A0/CA0(Wi)) ≤ 3, 2, for
i = 1, 2, respectively. Thus 1 6= A ∩ CA0(Wi) is of corank at most 3 in A, so
Wi ≤ Γ̌3,A(V ), and hence (5) follows. ¤

Lemma H.9.3. Assume that n = 4, and regard M as S8. Then

(1)M has two orbits on involutions inM−L: the transpositions t with CL(t) ∼=
S6, and u of cycle type 23, 12 with CL(u) ∼= Z2 × S4.

(2) If t is an involution in M − L, then θ : V1 → CV (t) = [V, t] defined by
θ : v 7→ v + vt is a CL̄(t)-isomorphism.

(3) M has three orbits on the E16-subgroups of M , with representatives Ai,
0 ≤ i ≤ 2, where A0 := J(T1) has orbit structure 42, and A1 and A2 have orbit
structure 24 and 22, 4, respectively, and are not contained in L.

(4) CV (A0) is of rank 4, and V = Γ̌2,A0(V ).

(5) CV (A1) is of rank 1, and Γ̌2,A1(V ) = CV (r) is of rank 6, where r is the
element in A1 inducing a transvection on V1.

(6) CV (A2) = {v + va : v ∈ CV1(B2)} is of rank 2, where B2 := A2 ∩ L, and a
is any element in A2 −B2. Further Γ̌2,A2(V ) = CV (B2) + CV (a) is of rank 6.

Proof. Parts (1) and (3) follow from the representation of M as S8. Part (2)
follows as V t1 = V2. The group A0 is the unipotent radical of the parabolic of L
stabilizing a 2-subspace U1 of V1. As in the proof of H.9.2.5, for each hyperplane
U1 < W1 < V1, m(A0/CA0(W1)) = 2, so that W1 ≤ Γ̌2,A0(V ), and (4) holds.

Let r be the element of B1 := A1 ∩L inducing a transvection of V1; that is, r is
the element of cycle type 24. Then B1 is a hyperplane of A1 and CVi(r) =: Ui is a
hyperplane of Vi, with the kernel Ki of the action of CL(r) on Ui given by the E8-
subgroup of transvections on Vi with axis Ui. Now B1Ki = O2(CL(r)) acts on Ui
as the group of transvections with center 〈vi〉 := [Vi, r]. Then CV (A1) = 〈v1 + v2〉
and Γ̌1,B1(Ui) = Γ̌1,B1/〈r〉(Ui) = Ui. It follows that U1 ⊕ U2 = CV (r) ≤ Γ̌2,A1(V ).
But any 4-subgroup of A1 contains some 1 6= b ∈ B1, and CVi(b) ≤ Ui, so (5) holds.
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Let B2 := A2 ∩ L. By construction, the set R of elements in B2 acting as
transvections on V1 is of order 3, while CVi(b) = CVi(B2) =: Wi is of rank 2

for each b ∈ B#
2 − R. Thus CV (A2) = {v + va : a ∈ W1} is of rank 2, where

a ∈ A2 − B2. Moreover as the three transvections in B2 have distinct axes on V1,
Γ̌2,B2(V1) = V1. Then CV (a) = Γ̌2,A2/〈a〉(CV (a)) = Γ̌2,A2(CV (a)) by (2). Further
CV (a) + CV (B2) = [V,A2] = CV (a

′) + CV (B2) for each a′ ∈ A2 − B2, so (6)
follows. ¤

H.10. A foreword on Mathieu groups

In the remainder of the chapter, we consider small modules for the Mathieu
groups, where most of the parameters were originally computed in Table 11.2 of
[Asc82a]. In keeping with our philosophy of minimizing appeals to outside refer-
ences, we reprove those results here. In the case of the Mathieu groups, a bound
on the parameter a(M,V ) was established in section E.4.

The parameter β (measuring the codimension of the fixed points of elements
of odd order) can be retrieved for the Mathieu groups M22, M23, and M24 on their
code and cocode modules by elementary means from section 21 in [Asc94].

Definition H.10.1. For A ∈ A2(M), define

ξV (A) := 〈CV (a) : a ∈ A
#〉.

Notice that ξV (A) = Γ̌m(A)−1,A(V ) using the notation of Definition E.3.30.

H.11. M12 on its 10-dimensional module

m2 = 4: See Lemma H.11.1.1 below.
m = 4: Lemma H.11.1.2.
a ≤ 2: Lemma E.4.3.
β ≥ 6: As V is the 10-dimensional noncentral chief factor in the 12-dimensional

permutation module, m(CV (x)) = o(x)−2 for x ∈ L of odd order, where o(x) is the
number of orbits of x on the 12 points. Hence the value is achieved by an element
x of cycle type 13, 33.

Not an (F − 1)-module, so α =∞: Lemma H.11.1.3.

Lemma H.11.1. (1) m2 = 4.
(2) m = 4.
(3) V is not an (F − 1)-module.
(4) If E16

∼= A ≤M , then M ∼= Aut(M12), m(CV (A)) ≤ 3, and m(ξV (A)) ≥ 8.
(5) If A is a noncyclic quadratic subgroup of M , then either each member of

A# is 2-central, or m(A) = 2 and m(V/CV (A)) > 4.

Proof. From the list of centralizers of involutions in Aut(M12) (cf. Table
5.3b in [GLS98]), L has two classes zL and iL of involutions, there is one class
jL in Aut(L) − L, m2(L) = 3, and m2(Aut(L)) = 4. Thus (1) holds. As V is the
10-dimensional noncentral chief factor in the 12-dimensional permutation module
V0 for L, while z, i fix 4, 0 points from the set Ω of 12 points permuted by L, it
follows that m(CV (z)) = 6 = m(CV (i)). Also CL(i) ∼= 〈i〉×S5, and we may choose
j so that CL(j) = 〈i〉 × E, where E := E(CL(i)). Moreover j inverts an element
of order 11 which is fixed-point-free on V , so CV (j) = [V, j] is of rank 5. Thus (2)
holds.
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Let D := 〈i, j〉 and d ∈ D#. By the Thompson A × B-Lemma, E is faithful
on CV (D); and then as m(CV (d)/[V, d]) ≤ 2, E is faithful on [V, d]. Thus as
D = CM (d) ∩CM (E), if d ∈ A with A noncyclic and quadratic on V , then A = D,
establishing (5).

Assume that E16
∼= A ≤ M . Then from the first paragraph, M ∼= Aut(M12)

and we may assume j ∈ A, and A = D× (A∩E) ∈ Syl2(CM (j)). Then as E ∼= A5

is faithful on CV (j) of rank 5, CV (A) = CCV (j)(A) is of rank at most 3. Finally as
A ∈ Syl2(CM (j)), there is a 2-central involution z in A with m(CCV (t)(z)) = 3, so
as m(CV (z)) = 6, m(ξV (A)) ≥ m(CV (t) + CV (z)) = 8, establishing (4).

Suppose B is an (F−1)-offender on V . Thenm(B) < 4 by (1) and (4); therefore
by (2), m(B) = 3 and CV (B) = CV (b) is of rank 6 for each b ∈ B#. Then B is
quadratic on V , so we may assume that z ∈ B by (5). Thus CV (B) = CV (z), and
hence B is in the pointwise stabilizer of the 4 points of Ω fixed by z, a contradiction
since that stabilizer is isomorphic to Q8. This completes the proof of (3). ¤

H.12. 3M22 on its 12-dimensional modules

m2 ≤ 5: See Lemma H.12.1.13 below.
m = 4: Lemma H.12.1.10.
a ≤ 3: E.4.3.
β = 8: H.12.1.11.
V is not an (F − 1)-module, so that α =∞: Lemma H.12.1.12.

Lemma H.12.1. Let L = M̂22 and G a finite group with F ∗(G) = L.

(1) There is a unique 12-dimensional faithful irreducible F2L-module V .
(2) There is an F4-space structure VF4 on V and a unitary F4-form f on V

with L ≤ O(VF4 , f). Thus L ≤ O(V, q), where q is the F2-quadratic form on V
defined by q(u) := f(u, u) for u ∈ V .

(3) If U is a faithful irreducible F2G-module with m([V, t]) ≤ 4 for some invo-
lution t of G, then U is F2L-isomorphic to V .

(4) Let T ∈ Syl2(L). There are exactly two maximal subgroups M ∼= Â6/E16

and N ∼= (S5/E16)× Z3 of L containing T .
(5) T stabilizes a unique isotropic F4-point V1 in (V, f), and NL(V1) = N .
(6) Let QM := O2(M) and VM := CV (QM ). Then VM = [V,QM ] is totally

isotropic of F4-dimension 3, and QM = CL(VM ).
(7) M has two orbits on isotropic F4-points in VM with representatives V1 and

V2. Further NM (V2) = NL(V2) ∼= (A5/E16)×Z3, and V1 and V2 are representatives
for the orbits of L on isotropic F4-points.

(8) We can choose notation so that [V, t] = V1+V2 for some involution t ∈ QM .
(9) Let T ≤ TG ∈ Syl2(G). Then CV (TG) = CV1(TG), and m(CV (TG)) = 1 if

L < G.
(10) m(G, V ) = 4.
(11) β = 8.
(12) V is not an (F − 1)-module.
(13) m2(G) ≤ 5.

Proof. By lemma 8.3 in James [Jam73], (1) holds, and m(W ) ≥ 12 for each
faithful irreducible F2L-moduleW . Further as Z := Z(L) is of order 3, L preserves
an F4-space structure VF4 on V . By uniqueness of V , VF4

∼= V ∗F4
or V ∗θF4

, where
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〈θ〉 = Gal(F4/F2) and V ∗F4
is the dual of VF4 as an F4L-module. As 11 does not

divide the order of Sp6(4), it must be the latter, so (2) holds.
Let U be a faithful irreducible F2G-module and P ∈ Syl3(L). Then P ∼= 31+2

with Z = Z(P ). As U is faithful and irreducible, CU (Z) = 0, so each irreducible
F2P -submodule I of V is of rank 6, and m([I,X ]) = 4 for each X of order 3 in P
distinct from Z. Thus m(U) = 6k and m([U,X ]) = 4k, where k := m(U)/6 ≥ 2
since m(U) ≥ 12 by the previous paragraph. In particular m([V,X ]) = 8, so to
complete the proof of (11), it remains to show m([V, y]) ≥ 8 for y of prime order
p > 3 in L.

Let t be an involution in G; then t inverts some Y of order 3 in G, som([U, t]) ≥
m([U, Y ])/2 ≥ 4k/2 = 2k. Thus if m([U, t]) ≤ 4 then k ≤ 2, so that k = 2 by
the previous paragraph.; thus (3) follows from (1). Moreover k = 2 for V , so
m(G, V ) ≥ 2k = 4. Part (4) is well-known (cf. p. 9 in [Asc86b]).

Let V1 be an isotropic F4-point in (V, f) stabilized by T ∈ Syl2(L). There
are 693 isotropic points in (V, f), so |V L1 | ≤ 693. But by (4) the only overgroups
H of T with |L : H | ≤ 693 are M and N , so NL(V1) is one of these groups. As
Z ≤ M = M∞, while Z is faithful on V1, it follows that NL(V1) = N so that (5)
holds. Similarly we may take P ≤ M , so from paragraph two, VM ∈ Irr+(P, V )
is of F4-dimension 3. Then VM is not M -isomorphic to V ∗θM , so VM is totally
isotropic. As M is maximal in L, M = NL(VM ), so (6) holds. The first statement
in (7) follows from the structure of the 3-dimensional F4(M/QM )-modules. As M
and K ∼= SL3(4) are the only maximal subgroups of L containing NM (V2), and K
fixes no F4-point since Z ≤ K∞, NL(V2) = NM (V2). Then 693 = |V L1 | + |V

L
2 |,

completing the proof of (7).
Let QN := O2(N). We’ve seen that m([V, x]) = 8 for x of order 3 in N∞, so

N∞ has two chief factors on V ⊥1 /V1, and these factors are distinct Galois conju-
gate L2(4)-modules for N∞/QN . So s ∈ T − N∞ must interchange two distinct
F4-irreducibles, and hence N is irreducible on V ⊥1 /V1. Thus [V ⊥1 , QN ] = V1, so

dimF4([V, t]) = 2 for t ∈ QN ∩Q
#
M . Furthermore any involution u in G−L inverts

Z, so that m([V, u]) = 6, completing the proof of (10). Now (8) follows from the
structure of VM .

From the structure of the 3-dimensional F4-module VM = CV (QM ) for M/QM
≤ ΓL3(4), CVM (T ) is the F4-point V1. If L < G, then elements of TG−T invert Z,
so m(CV1(TG)) = 1. Thus (9) holds as CV (T ) ≤ CV (QM ).

As the minimal dimension of a faithful F4Z11-module is 5, m([V, y]) ≥ 10 for
y of order 11 in L. Then as L has a Frobenius subgroup of order 55, m([V, y′]) ≥ 8
for y′ of order 5, completing the proof of (11).

RecallK ∼= SL3(4) is the stabilizer of one of the 22 points permuted by L. As V
is self-dual, V is an extension of a natural module for K by its dual. Thus if A is an
elementary abelian 2-subgroup of K, then m(V/CV (A)) ≥ 4, and m(V/CV (A)) ≥ 6
if m(A) > 2, so V is not an (F −1)-module for K. Choose TK := T ∩K ∈ Syl2(K).
By H.14.3.1, TK = J(T ∩ L) = QMQN and m2(Aut(M22)) = 5. Thus (13) holds.

Suppose A is an (F − 1)-offender in T ; then 3 ≤ m(A) ≤ 5 by (10) and (13).
But if a ∈ A − L, then a induces a field automorphism on CV (b) of rank 8 for
b ∈ A ∩ L#, so m(V/CV (A)) ≥ 8, contradicting A an (F − 1)-offender. Thus
A ≤ L, so m(A) = 3 or 4, and in the latter case A ∈ A(T ∩ L), so that A ≤ TK
by the previous paragraph. In the former case, we may take a ∈ A ∩ Q#

M and
CV (A) = CV (a). But then A ≤ QM ≤ TK by (6). Thus in any case, A ≤ K,
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whereas by the previous paragraph, V is not an (F−1)-module forK; this completes
the proof of (12). ¤

H.13. Preliminaries on the binary code and cocode modules

In this section, let M0 := M24 be the largest Mathieu group and (X, C) the
Steiner system for M0, as described in chapter 6 of [Asc94].

Definition H.13.1. As in section 19 of [Asc94], let V0 denote the binary
permutation module for M0 on X := {1, . . . , 24}, and identify V0 with the power
set of X by identifying v ∈ V0 with its support. Under this identification, addition
is symmetric difference. Let VC be the 12-dimensional (Golay) code submodule of

V0 generated by C, and form Ṽ0 := V0/VC as in section 19 of [Asc94]. Thus Ṽ0 is
the 12-dimensional Todd module or 12-dimensional cocode module for M 0.

The weight of a vector v ∈ V0 is just its size as a set. We also speak of the
weight of ṽ ∈ Ṽ0, which is the minimum of the weights of the vectors in the coset ṽ.
Similarly we set V̄0 := V0/〈X〉 and define the weight of v̄ to be the weight of either
v or v +X .

Let Vcore be the core of V0, consisting of those vectors in V0 of even weight.
Then Ṽcore is an 11-dimensional irreducible F2M

0-module called the 11-dimensional
Todd module or 11-dimensional cocode module for M 0.

For Y ⊆ X , write eY for the subset Y regarded as a vector of V0. Then e1
and e1,2 are of weight 1 and 2, respectively. The corresponding stabilizers M 0

1 :=
M0
e1 = M0

ẽ1
and M0

1,2 := M0
e1,e2 = M0

ẽ1,ẽ2
are M23 and M22, respectively, and

M0({1, 2}) := M0
e1,2 = M0

ẽ1,2
is Aut(M22), an extension of M22 by Z2. Therefore

Ṽcore/〈ẽ1,2〉 is a 10-dimensional module for M22 called the 10-dimensional Todd
module or 10-dimensional cocode module. The restriction of a Todd module for
M24 to M23 is the corresponding Todd module for M23.

There is a nondegenerate symmetric bilinear form ( , ) over F2 on V0, defined
by (u, v) := |u∩v|, and of course this form is preserved byM 0. Notice Vcore = X⊥,

and VC is a totally singular subspace of V0, so Ṽ0 is dual to V0 as an M0-module
via ( , ). We also have the 11-dimensional code module V̄C for M0 ∼=M24 and M23,

and the cocode module Ṽcore is dual to the code module V̄C via ( , ). Finally the
10-dimensional code module for M22 is the submodule of V̄C orthogonal to ē1,2, and
is dual to the 10-dimensional cocode module.

It is well known that:

Proposition H.13.2. The code and cocode modules of dimensions 10, 11, and
11, for M ∼= M22, M23, and M24, respectively, are absolutely irreducible F2M -
modules.

Proof. See 22.5 in [Asc97] for the cocode modules. Then the result holds for
the code modules by duality. ¤

In the remainder of this chapter, let L be M22, M23, or M24; let M be a
subgroup of Aut(L) containing L; and let V be a code or cocode module for M
of dimension 10, 11, or 11, respectively. Observe that if L is M23 or M24 then
L = Aut(L), so M = L, while if L is M22 then |M : L| ≤ 2.

We conclude this section by recording the values of our parameters for the
code and cocode modules. Note that as the code module is dual to the cocode
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module, the values of m and β on the two modules are the same, and of course m2

is independent of the module.
The value of β can be retrieved by elementary means from section 21 of [Asc94],

so we do not supply a proof here; the value turns out to be always achieved only
by the class 3A in the Modular Atlas [JLPW95]. For the determination of α, see
H.15.2 and H.16.5 below.

Parameters for M24 on the code and cocode modules.
m2 = 6: See H.14.1.1 below.
m = 4: H.14.4.3.
a ≤ 3: E.4.3.
β = 6.
α ≥ 5 on the cocode module, and α ≥ 7 on the code module.

Parameters for M23 on the code and cocode modules.
m2 = 4: H.14.2.1.
m = 4: H.14.4.3.
a ≤ 3: E.4.3.
β = 6.
α ≥ 5 on the cocode module, and the code module is not an (F − 1)-module.

Parameters for M22 on the code and cocode modules.
m2 ≤ 5: H.14.3.1.
m ≥ 3: H.14.4.4.
a ≤ 3: E.4.3.
β = 6.
α ≥ 5 on the cocode module, and α ≥ 6 on the code module.

In the remaining sections of the chapter, we will verify the information in our
tables above, and establish a few supporting results.

H.14. Some stabilizers in Mathieu groups

We refer the reader to chapter 6 of [Asc94] for a discussion of the Steiner
system (X, C) and the definition of the terminology used in this section. Much of
this language is originally due to Todd in [Tod66] and some to Conway [Con71].

Pick an octad O, trio T, and sextet S in the Steiner system, stabilized by the
same Sylow 2-subgroup T0 of M0. Thus O is one of the three octads in T, each of
which is the union of a pair of the tetrads in S. Choose notation so that 1 and 2
are in the same tetrad B of S and in O, and define T := T0 ∩M .

If M = M23, let Q := S − B be a quintet and H := O − {1} be a heptad.
If L = M22, let Q := S − B be a quintet and H := O − {1,2} be a hexad. For
Y ∈ {O,T,S,Q,H}, letMY be the global stabilizer inM of Y , andKY := O2(MY )
be the “kernel” of the global stabilizer.

Lemma H.14.1. Let L =M24. Then

(1) KS and KT are the unique E64-subgroups of T .

(2) KS is the natural module for MS/KS
∼= Ŝ6, so KS has an F4-structure

preserved by M∞
S .

(3) KT is the tensor product of the natural modules for the factors ofMT/KT
∼=

L3(2)× S3.
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(4) KO is the natural module for MO/KO
∼= L4(2).

(5) Each A ∈ A2(M) with m(A) ≥ 5 is fused into KS or KT.
(6) KO∩KS

∼= E4 is a 1-dimensional F4-subspace of KS with 15MS-conjugates.

Proof. Parts (2)–(4) are well known; see e.g. 19.9, 20.2, and 19.8 in [Asc94]
for (2), (3), and (4), respectively. In particular, KS and KT are E64-subgroups of
T . Conversely let M∗

O := MO/KO
∼= L4(2), and A ∈ A2(T ) with m(A) ≥ 5 so

that A∗ 6= 1. Then K∗S is the unipotent radical of the parabolic stabilizing the line
E := KS ∩KO of KO, K

∗
T is the unipotent radical of the parabolic stabilizing the

plane KT ∩KO, and setting B := A ∩KO,

m(A∗) ≥ 5−m(B) = m(KO/B) + 1 > m(KO/CKO(A
∗)). (∗)

Thus A∗ ≤ K∗S orK∗T, since the latter groups are the maximal strong FF∗-offenders
in T ∗ of M∗

O
∼= L4(2) on its natural module KO. Also from the action of KT on

KO, KT and KO are the maximal elementary abelian 2-subgroups of KTKO, so
A ≤ KT if A∗ ≤ K∗T. Thus we may assume that A∗ ≤ K∗S but A∗ does not lie in
any MO-conjugate of K∗T; then as A∗ is a strong FF∗-offender in K∗T, m(A∗) > 2,
so there is a ∈ A with CKO(a) = E, and hence A ≤ CKSKO(a) = KS. Thus (1) and
(5) are established. Further E ∼= E4 and NMO(E) ≤ NM (KS)∩NM (E) = NMS(E),
which implies (6). ¤

From H.14.1 we can deduce analogous statements for the smaller Mathieu
groups:

Lemma H.14.2. Let L =M23. Then

(1) KQ and KH are the unique E16-subgroups of T .
(2) KQ is the natural module for MQ/KQ

∼= ΓL2(4).
(3) KH is a 4-dimensional irreducible for MH/KH

∼= A7.

Lemma H.14.3. Let L =M22. Then

(1) KQ ∩ L and KH are the unique E16-subgroups of T ∩ L; and if M > L,
then KQ is the unique E32-subgroup of T .

(2) KQ ∩ L is the L2(4)-module; and if M > L, then KQ is a 5-dimensional
indecomposable for MQ/KQ

∼= S5.
(3) KH is a natural module for MH/KH

∼= A6,S6—for M = L, M > L,
respectively.

We sketch a proof of the two lemmas. As M 0
O acts as A8 on the octad O with

kernel KO, part (3) of each lemma follows from H.14.1.4. Similarly M 0
S acts as S6

on the 6 tetrads of S with kernel O2,3(M
0
S) acting as A4 on each tetrad, so part (2)

of each lemma follows from H.14.1.2. The proof of part (1) is analogous to that of
H.14.1.1.

Lemma H.14.4. (1) M24 has two classes of involutions: the 2-central invo-
lutions z with FixX (z) an octad, and the non-2-central involutions t which are
fixed-point-free on X.

(2) M23 and M22 each have one class of involutions, and involutions fix point-
wise a heptad or hexad.

(3) If z is a 2-central involution in L, then m(V/CV (z)) = 4, while if t is a
non-2-central involution in M24, then m(V/CV (t)) = 5.
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(4) If M ∼= Aut(M22) there are two classes of involutions in M −L, one fixed-
point-free on X and one fixing pointwise an octad not containing {1, 2}. Further
m(V/CV (i)) = 5, 3, for i in the respective cases.

Proof. Part (1) is well known; cf. 21.1 in [Asc94]. Further if z is 2-central,
then CM0(z) is transitive on FixX(z), so (cf. 5.21 in [Asc86a]) L = M23 or M22

is transitive on zM
0

∩ L, and (2) holds. Next t inverts a subgroup Y of order 11
in M0, and m(CV (Y )) = 1, so CV (t) = CV (Y )⊕ [V, Y, t] is of rank 6. Similarly if
M ∼= Aut(M22), m(V/CV (i)) = 5 if i is fixed-point-free on X .

It is convenient to postpone proofs of the remainder of (3) and (4) until the
discussion of the cocode module in the next section; note that codimensions of
involution centralizers on the code module are the same as those on the cocode
module by duality. ¤

H.15. The cocode modules for the Mathieu groups

In this section we assume V is the cocode module forM . We recall (cf. 19.10 in

[Asc94]) thatM0 has two orbitsO2 and O4 on its cocode module V := Ṽcore, where
Ok consists of the vectors of weight k. Further each coset ṽ of weight 2 contains
a unique vector of weight 2, so M 0

ṽ
∼= Aut(M22), while the vectors of weight 4 in

a coset ũ of weight 4 form a sextet S and M 0
ũ = M0

S. Similarly the orbits of M23

and M22 on their cocode modules V are described in 22.3 and 22.4 in [Asc97]; in
particular there is an orbit O2 of vectors of weight 2 intersecting the fixed set of L
in exactly one point, so that part (1) of the following lemma holds:

Lemma H.15.1. (1) M has an orbit O2 on V # such that Mv
∼= Aut(M22),

M22, L3(4), for L ∼=M24, M23, M22 respectively.
(2) V = [V,Mv].

Proof. To prove the second part of the lemma, observe that V/〈v〉 is the
cocode module forMv, so in particularMv is irreducible on V/〈v〉, and the extension
does not split sinceMv stabilizes no vector in the code module, and hence stabilizes
no hyperplane in its dual V . ¤

Lemma H.15.2. (1) KY is the unique (F − 1)-offender in T , where Y := O,
H, H is an octad, heptad, or hexad in the respective cases.

(2) U := CV (KY ) is an orthogonal module of rank d := 6, 6, 5, for MY /KY
∼=

Ω+
6 (2), A7, O5(2), respectively.
(3) If I ≤ U with O2 ∩ I = ∅, then m(I) ≤ 3, 4, 4, respectively.
(4) W := ξV (KY ) is a hyperplane of V .
(5) 〈z〉 = CM (CV (z)) for each 2-central involution z, and U = CV (A) for each

noncyclic subgroup A of KY .
(6) KY induces the full group of transvections on V/U with axis W/U , so W/U

is isomorphic to KY as an MY /KY -module.

Proof. By 19.1 in [Asc94], M0
O is the split extension of KO

∼= E16 by L4(2)
acting naturally on KO, and M

0
O acts as A8 on O with kernel KO. Let U0 be the

subspace of Ṽcore consisting of those ṽ with v ∈ O. It follows that U0 = CV (KO)
and |U0| = 26 with O2∩U0 of order 28, and then that (2) holds forM 0 =M24, with
O2 ∩ U0 the set of nonsingular vectors in the orthogonal space U0. In particular if
I ≤ U0 with I ∩ O2 = ∅, then I is totally singular, so m(I) ≤ 3, and (3) holds in
this case.
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Further this shows that (2) holds when L isM23 orM22, as KH = KO andMH

is the stabilizer in MO of 1 or {1, 2}, respectively. If L =M23, then O2∩U consists
of the seven vectors ṽ with 1 ∈ v. As MH is irreducible on U , each hyperplane of
U contains such a vector by A.1.43, so (3) holds. Similarly (3) holds if L = M22

since U has rank 5 while O2 ∩ U consists of the images of the six vectors v with
v ∩ {1, 2} = 1, and in particular is nonempty.

Next we complete the proof of parts (3) and (4) of H.14.4, postponed from the
previous section: we first complete the proof of part (3) of that lemma, establish
(4)–(6) of the present lemma, and then complete the proof of part (4) of H.14.4 at

the end of the paragraph. For z ∈ K#
O , z is 2-central, and z inverts a subgroup D of

order 5 with m([V,D]) = 8, so m(V/CV (z)) ≥ 4. On the other hand z centralizes
U0, and if v ∈ V is of weight 2 with |v∩O| = 1, then [ṽ, z] ∈ V −U0, so CV (z) 6≤ U0;
hence m(CV (z)) ≥ 7, so m(V/CV (z)) = 4 and CV (z) = U0 + 〈[ṽ, z]〉. Further (4)–
(6) hold in this case, with W := ξV (KY ) the image of O⊥∩Vcore in V = Ṽcore. The
cocode module for M23 is the restriction to M23 of the cocode module for M24 and
KO = KH, so m(V/CV (z)) = 4 for M23 also. This also shows that (4)–(6) hold
for M23, as they hold for M24, and that if (1) holds for M24, it also holds for M23.

Finally if L =M22, then V = Ṽcore/〈ẽ1,2〉, so m(V/CV (z)) ≤ m(Ṽcore/CṼcore(z)) =
4, and z still inverts a subgroup of order 5 in M22; therefore the inequality is an
equality, and CV (z) = CṼcore(z)/〈ẽ1,2〉. This last fact says that (4)–(6) hold for
M22, since they hold for M24. Furthermore when M > L, there is i ∈ KQ − L

fixing 4 points of O, with ẽ1,2 ∈ [U0, i], so m(V/CV (i)) < m(Ṽcore/CṼcore(i)) = 4;

hence m(V/CV (i)) = 3, since i is 2-central in M24 so that m(CV (i)) ≤ 7. This
completes the postponed parts of the proof of H.14.4, as well as of (4)–(6) of the
present lemma.

Thus it remains to establish (1) for M24 and M22, since we saw (1) holds for
M23 if it holds for M24. As U = CV (KY ) and m(V/U) = m(KY ) + 1, KY is an
(F − 1)-offender on V . Conversely, suppose A ≤ T is an (F − 1)-offender distinct
from KY . By (5), U = CV (B) for each noncyclic subgroup B of KY , so as m ≥ 3
by H.14.4, no proper subgroup of KY is an (F − 1)-offender, and hence A 6≤ KY .

Next for a ∈ A#,

m(A) ≥ m(V/CV (A)) − 1 ≥ m(V/CV (a))− 1 ≥ m− 1 ≥ 2, (∗)

as m ≥ 3. In particular A ∩ L 6= 1, so we can choose a ∈ A ∩ L; therefore
m(V/CV (a)) = 4 and hence m(A) ≥ 3 by (*). In case of equality, CV (A) = CV (a)
has corank 4 in V , so that a is 2-central for each a ∈ A∩L, and A∩L is of rank at
least 2, contrary to (5). Hence m(A) > 3, so as m2(T/KY ) = 4 or 3 for L ∼=M24 or
M22, respectively, either A ∩KY 6= 1, or A ∩KY = 1, M =M24, and AKY /KY =
J(T/KY ) is of rank 4. But in the latter case m(A) = 4, m(U/CU (A)) = 5, and
[W/U,A] 6= 0 by (6), contradicting A an (F − 1)-offender.

Hence B := A∩KY 6= 1, so U ≤ CV (B). Alsom(V/CV (B)) ≥ m(V/CV (b)) = 4
for b ∈ B# as KY ≤ L, and as B 6= 1, m(U/CU (A)) > 1 by (2). Thus

m(A) ≥ m(V/CV (A))−1 ≥ m(V/CV (B))+m(U/CU (A))−1 > m(V/CV (B)) ≥ 4.
(∗∗)

Now arguing as before on m2(T/KY ), we conclude that B is noncyclic, so U =
CV (B) by (5). Thus m(V/CV (A)) > m(V/CV (B)) = 5 by (**), so L is M24

and A = KT or KS by H.14.1.1. However we will see in later H.15.3.1 that
m(CV (KS)) = 1, and in H.15.6 thatm(CV (KT)) = 3, so (as the proofs of these later
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lemmas are independent of this lemma) neither KS nor KT is an (F − 1)-offender,
completing the proof of the lemma. ¤

Lemma H.15.3. Let M :=M24. Then

(1) MS has chief series 0 < V1 < V7 < V , where V1 := CV (KS) = 〈ẽB〉 for B a
tetrad of S, V7/V1 is of rank 6 and isomorphic to the dual of KS as a MS-module,
and V/V7 is a natural module for MS/O2,3(MS) ∼= S6.

(2) KS is the full group of transvections on V7 with center V1.
(3) V = ξV (KS).
(4) V7/V1 = CV/V1(KS).

Proof. The dual of 20.4 in [Asc94] and its proof says that MS has a chief
series whose terms have the desired rank and structure as MS-modules. Thus
V1 = CV (MS), so as MS fixes ẽB , V1 = 〈ẽB〉. Now for a ∈ K#

S , [V7, a] ≤ V1.
Further we can choose a non-2-central, so that m(CV (a)) = 6 by H.14.4.3; thus
a induces a transvection on V7 with center V1, and CV (a) ≤ V7. Then as MS is
irreducible onKS, it follows thatKS acts faithfully as the full group of transvections
on V7 with center V1, establishing (2), and showing that V1 = CV (KS), so that the
proof of (1) is complete. But we can also choose a 2-central, so that m(CV (a)) = 7
by H.14.4.3; thus CV (a) 6≤ V7 as KS is faithful on V7, and hence (3) holds as MS is
irreducible on V/V7. Finally (4) holds as MS is irreducible on V7/V1 and V/V7. ¤

Lemma H.15.4. Let M := Aut(M22). Then

(1) MQ has chief series 0 < V1 < V2 < V6 < V , where V1 := CV (KQ) is of
rank 1, V2 := CV (KQ ∩ L) is of rank 2, V6/V1 is isomorphic to the dual of KQ as
a MQ-module, and V/V6 is the S5-module for MQ/KQ.

(2) KQ is the full group of transvections on V6 with center V1.
(3) V = ξV (A), and m(CV (A)) = 2 for each hyperplane A of KQ.
(4) V = 〈CV (B) : E4

∼= B ≤ KQ〉.

Proof. Write 0 < U1 < U7 < U := Ṽcore for the series of H.15.3 under M 0
S.

Then V = U/〈ẽ1,2〉 and ẽ1,2 ∈ U7; let V1 be the image of U1 and V6 the image
of U7 in V , so that 0 < V1 < V6 < V is an MQ-series, since MQ is the stabilizer
of ẽ1,2 in M0

S. Then (2) follows from H.15.3.2, V1 = CV (KQ), and V6/V1 is the
dual of KQ as MQ-module. In particular as A0 := KQ ∩ L is of index 2 in KQ,
V0 := CV6(A0) is an MQ-invariant subspace of dimension 2. Next m(CV (x)) = 4
for x of order 3 inMQ, so m(CV/V6 (x)) = 2. Therefore as U/U7 is a natural module
for MS/O2,3(MS) ∼= S6, and MQ/KQ

∼= S5, V/V6 is the S5-module for MQ/KQ.
ThusMQ is irreducible on V/V6, so V2 = V0, completing the proof of (1). Further if
A 6= A0 is a hyperplane of KQ, then A contains an involution i with m(CV (i)) = 5,
so CV (i) = CV6(i), and thus CV (A) = CV6(A) is of rank 2 by (2).

Next from the structure of KO, E := KO ∩ KS
∼= E4, and by H.15.3.2,

m(CU7(E)) = 5. So as CU (E) = CU (KO) is of rank 6 by H.15.2.5, CU (E) 6≤ U7.
As KO = KH, E ≤ KH ∩ KQ, so that CV (E) 6≤ V6. Thus (4) holds as MQ is
irreducible on V/V6. Finally if D is a hyperplane of KQ and B a 4-subgroup of
KQ, then there is b ∈ B∩D#, so as CV (B) ≤ CV (b) ≤ ξV (D), (4) says V = ξV (D),
completing the proof of (3). ¤

Lemma H.15.5. Let M := Aut(M22), E16
∼= A ≤ T , and W := ξV (A). Then

one of the following holds:
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(1) A = KH, m(CV (A)) = 5, and m(V/W ) = 1.
(2) A is fused into KQ under M , m(CV (A)) = 2, and W = V .
(3) A = O2(CM (i)) for some i ∈ A − L fixing an octad not containing {1, 2},

so that CM (i)/A ∼= L3(2), m(CV (A)) = 3, and W = V .
(4) m(A ∩KH) = 3, m(CV (A)) = 3, and m(V/W ) ≤ 1.

Proof. Suppose A ≤ L. Then A is as described in (1) or (2) by H.14.3.1, as
are CV (A) and W by H.15.2 and H.15.4.3.

Thus we may assume that A 6≤ L. Set M ∗
H :=MH/KH and U := CV (KH), so

that m(U) = 5 and U = CV (B) for each noncyclic subgroup B of KH by (2) and
(5) of H.15.2. As m(A) = m(KH) and KH = CMH(KH),

m(A∗) = m(A) −m(A ∩KH) ≥ m(KH/CKH(A)),

so A∗ is an FF∗-offender in M∗
H
∼= S6 on KH. Now K∗Q is the E8-subgroup of

M∗
H generated by three transpositions, so by B.3.2.5, either A∗ ≤ K∗Q or A∗ is the

remaining E8-subgroup “A0” of T ∗.
First assume that the latter case holds, and let PZ := O2(O

2(CMH(Z)), where
Z := Z(T ). Now CM (Z) ≤ MH and PZ ∼= Q2

8. Further there is i ∈ A centralizing
the hyperplane PZ ∩KH of KH and the supplement B := A∩PZ to PZ ∩KH in PZ ;
thus i ∈ CM (PZ) ∼= E4, and hence Z〈i〉 = CM (PZ). Therefore FixX(i) is an octad
not containing {1, 2}, and CL(i) ∼= L3(2)/E8. Now up to conjugacy under CL(Z),
there are three E8-subgroups of PZ : PZ ∩KH, O2(CL(i)), and KQ ∩ PZ . Thus as
B is contained in neither KH nor any CL(Z)-conjugate of KQ, B = O2(CL(i)), so
A = O2(CM (i)). Therefore by H.14.4.4, CV (A) = [V, i] is of rank 3 and CV (Z) 6≤
CV (i), so as CL(i) is irreducible on V/CV (i), (3) holds in this case.

Next assume A∗ is of order 2 in K∗Q. Then A is conjugate to 〈i〉(PZ ∩KH). As

PZ ∩KH is noncyclic, CV (PZ ∩KH) = U , and then CV (A) = CU (i) is of rank 3.
Hence W contains U + CV (i) of rank 9, and (4) holds.

Finally we may take A∗ ≤ K∗Q with m(A∗) > 1. Thus there is a ∈ A∩L−KH,

so a ∈ KH(KQ ∩L). Then as KQ ∩L and KH are the maximal elementary abelian
subgroups of KH(KQ ∩L), a ∈ KQ ∩L and A ≤ CAKH(a) ≤ CKQKH(a) = KQ. As
m(CV (KQ)) = 1 = m(KQ/A), m(CV (A)) ≤ 2. Hence (2) holds by H.15.4.3. ¤

Lemma H.15.6. Let M :=M24. Then

(1) MT has chief series 0 < V3 < V9 < V , where V3 := CV (KT) is of rank 3,
and V9 := [M∞

T , V ] = [KT, V ] is of corank 2 in V .
(2) MT induces GL(V3) on V3, and GL(V/V9) on V/V9.
(3) V9/V is the tensor product of the natural modules for the factors ofMT/KT.

Proof. This is essentially the dual of 20.7 in [Asc94]. ¤

Lemma H.15.7. Let M := M23 or M24, with D of odd prime order p in M ,
and assume W := CV (D) is of rank at least 4. Then

(1) p = 3, m(W ) = 5, and up to conjugacy in M 0, NM0(D) is a complement
to KS in MS.

(2) W is isomorphic to the core of a 6-dimensional permutation module for
NM0(D)/D ∼= S6 on FixX(D) with CV (KS) = CV (NM0(D)).

(3) If I ≤W with I∩O2 = ∅, then m(I) ≤ 2, 4 forM =M24, M23, respectively.

Proof. Part (1) is contained in section 21 of [Asc94], while (2) is contained
in Exercise 7.4 in [Asc97]. In particular if M = M24, then W := O2 ∩W is the
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set of vectors ẽv with v ∈ FixX(D) of weight 2; thus if I ∩ O2 = ∅, I is a totally
singular subspace of W , so (3) holds in this case. If M =M23, then 1 ∈ FixX(D),
and W consists of those ẽv with 1 ∈ v, so W 6= ∅ and hence I < W for each such
I , so again (3) holds. ¤

Lemma H.15.8. Let M :=M24, and define V7 and V9 as in H.15.3 and H.15.6.
Then V7 ≤ V9, but V7 6≤ V3.

Proof. Let Y ∈ Syl3(O2,3(MS)). Then from H.15.3, V7 = V1 + [V, Y ]. Next
Y ≤M∞

T , so from H.15.6.1, [V, Y ] ≤ V9 and V1 = CV (T ) ≤ V9, so V7 = V1+[V, Y ] ≤
V9. ¤

H.16. The code modules for the Mathieu groups

In this section, we assume that V is the code module for M .

Lemma H.16.1. Let M :=M24. Then

(1) MS has chief series 0 < V4 < V10 < V , where V4 := CV (KS) is of rank 4,
and V10 := [V,M∞

S ] is a hyperplane of V .
(2) V4 is a natural module for MS/O2,3(MS) ∼= Sp4(2).
(3) KS induces the full group of transvections on V/V4 with axis V10/V4, so

V10/V4 is isomorphic to KS as an MS-module.

Proof. Each part of the lemma follows by dualizing the corresponding state-
ment in H.15.3. ¤

Lemma H.16.2. Let M := M24, V4 := CV (KS), 〈z〉 = Z(T ), and Pz :=
O2(CM (z)). Then

(1) MO has chief series 0 < V1 < V5 < V , where V1 := CV (KO) and m(Vk) =
k.

(2) KO induces the full group of transvections on V5 with center V1, so V5/V1
is isomorphic to the dual of KO as an MO-module.

(3) V/V5 is the 6-dimensional orthogonal module forMO/KO, with (V4+V5)/V5
a singular point and (CV (z) + V5)/V5 a totally singular 3-subspace.

(4) V4 = CV (KO ∩KS).
(5) 〈z〉 = CM (CV (z)).
(6) Pz = KOD, where Vz := CV5(z) is of rank 4, and D := CM (Vz) ∼= E16.
(7) m(CV (B)) = 8−m(B) for each B with z ∈ B ≤ D.
(8) All elements of CM (z) inducing transvections on CV (z) are in Pz.

Proof. Parts (1) and (2) follow by dualizing corresponding statements in
H.15.2. Part (3) is 20.6.2 in [Asc94]. By H.14.1.6, E := KO ∩ KS

∼= E4. By
(3),

(CV (z) + V5) ∩ (CV (e) + V5) = V4 + V5

for e ∈ E − 〈z〉, and m(CV5 (E)) = 3 by (2), so m(CV (E)) = 4 and hence (4) holds.
Next by (1) and (2), Mz := CM (z) induces the full stabilizer in GL(Vz) of V1

on Vz = CV5(z), so CMz (Vz) ≤ Pz and |D| = |Mz|/|NGL(Vz)(V1)| = 16. Thus D
is the unique Mz-supplement to KO in Pz of order 16, so defining U1 and U2 as
in 39.1 of [Asc94], KO = U1 and D = U2

∼= E16. In particular (6) holds, and
Mz is irreducible on D/〈z〉, so CM (CV (z)) = 〈z〉 or D. But in the latter case,
NM (D) = 〈CM (d) : d ∈ D#〉 induces L4(2) on D, impossible as MO is the unique
proper overgroup of Mz in M . Thus (5) holds. We saw CMz (Vz) ≤ Pz , while by
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(3), CMz (CV (z)/Vz) ≤ Pz , so (8) holds. By 39.1.3 in [Asc94], KS ∩D ∼= E8. Now
KS ∩ D centralizes V4 + Vz of rank 5, and then as Mz induces GL(CV (z)/Vz) on
CV (z)/Vz, and induces the stabilizer in GL(D) of z on D, (7) holds. ¤

Lemma H.16.3. Let M := Aut(M22). Then

(1) MQ has chief series 0 < V4 < V8 < V9 < V , where V4 := CV (KQ) and Vk
is of rank k for k = 4, 8, 9.

(2) V4 is the S5-module for MQ/KQ.
(3) KQ is the full group of transvections with axis V9/V4 on V/V4, so V9/V4 is

isomorphic to KQ as an MQ-module.
(4) CM (V4) = KQ is a 2-group.

Proof. Each of the first three parts is the dual of the corresponding statement
in H.15.4. As MQ is maximal in M , NM (V4) = MQ, so CM (V4) = CMQ(V4) =
KQ. ¤

Lemma H.16.4. Let M := Aut(M22). Then

(1) MH has chief series 0 < V1 < V5 < V6 < V , where m(Vk) = k, V1 :=
CV (KH), and V5 := [V,KH].

(2) KH is the full group of transvections on V5 with center V1, so V5/V1 is
isomorphic to the dual of KH as an MH-module.

(3) V/V5 is the core of a 6-dimensional permutation module for MH/KH
∼= S6.

(4) V5 ≤ V9 but V5 6≤ V4.
(5) V5/V1 = CV/V1(KH).

Proof. Parts (1)–(3) are the duals of corresponding statements in H.15.2.
Indeed froom 20.6 in [Asc94], V5 is the union of the 15 trios through O, while
from 20.4 in [Asc94], V4 consists of the 15 octads through S. In particular the 7
octads in the 3 trios through O and S form the rank-3 subspace V4 ∩ V5 invariant
under MH ∩MQ, so MH ∩MQ is the parabolic of MH irreducible on (V4 ∩ V5)/V1
and V5/(V4 ∩ V5). Thus as the hyperplane V9 is (MH ∩MQ)-invariant, V5 ≤ V9,
establishing (4).

Let V̂ := V/V1. As MH is irreducible on V̂5, V̂5 ≤ CV̂ (KH). Then as V5 =

[V,KH] andMH is irreducible on V/V6, CV̂ (KH) = V̂5 or V̂6. Let Y be of order 3 in

CMH(z), for z ∈ K
#
H . As [Y, z] = 1, m([V5, Y ]) = 2 by (2); therefore as m([V, Y ]) =

6, we conclude [V/V6, Y ] = V/V6. However m(CV (z)) = 6 and m(CV5(z)) = 4,
so m((V5 + CV (z))/V5) = 2, and hence V5 + CV (z) = V5 + [CV (z), Y ]. Therefore

CV6(z) = CV5(z), so [V̂6, z] 6= 1, completing the proof of (5). ¤

Lemma H.16.5. (1) Up to conjugation, KS is the unique (F − 1)-offender in
M24.

(2) M23 has no (F − 1)-offenders.
(3) Up to conjugation, KQ is the unique (F − 1)-offender in Aut(M22).
(4) If M ∼= Aut(M22), then CM (CV (z)) = CM (O2(CM (z))) ∼= E4 for each

2-central involution z.

Proof. Let z generate Z(T ); we first prove (4). Now V is a hyperplane of
U := V̄C , and CV (z) is a hyperplane of CU (z). By H.16.2.8, all elements inducing
transvections on CU (z) are in Pz , so CM (CV (z)) ≤ Pz ∩M = KO〈d〉, where d is
an element of the subgroup D defined in that result, and d has cycle (1, 2). Now
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〈z, d〉 = CM (O2(CM (z))), and using H.16.2.6, CU (〈z, d〉) is the CM (z)-invariant
hyperplane of CU (z) and 〈z, d〉 = CM0(CU (〈z, d〉)), establishing (4).

Next by H.16.1.1 and H.16.3.1, KS and KQ are (F − 1)-offenders in M24 and
Aut(M22), respectively. Further (1) implies (2), so we may take M to be M24 or
Aut(M22), and assume that A ≤ T is an (F − 1)-offender, but A is not KS or KQ,
and it remains to derive a contradiction. Proceeding as in the proof of H.15.2,

m(A) ≥ m(V/CV (a)) − 1 ≥ 2, (∗)

for a ∈ A#, so we can pick a ∈ L and hence m(V/CV (a)) ≥ 4. Thus by (*),
m(A) ≥ 3, with equality only if a is 2-central and CV (a) = CV (A), so that H.16.2.5
and (4) supply a contradiction. Thus m(A) ≥ 4.

Assume first that M = Aut(M22). As A is not KQ, m(A) = 4 by H.14.3.1,
so A is described in H.15.5. If A = KH, then m(CV (A)) = 1 by H.16.4.1, so
A is not an (F − 1)-offender. If A = O2(CM (i)) for i ∈ M − L fixing an octad
not containing {1, 2}, we saw CM (i)/A ∼= L3(2), which has three natural or dual
constituents on the cocode module, and hence also on the code module V . Since
m(CV (A)) < 6 in view of (4), we see m(CV (A)) ≤ 4, so again A is not an (F − 1)-
offender. In the fourth case of H.15.5, we saw KH ∩ A is a hyperplane of KH, and
we must have m(CV (KH ∩ A)) ≥ m(CV (A)) ≥ 5, so m(CV (KH)) > 1, contrary to
H.16.4.1. This leaves the case where A is a hyperplane of KQ. Here KQ ∩ L =: D
is partitioned by the five MQ-conjugates of E := KH ∩ KQ of rank 2, and the
hyperplane A∩D must contain one of these conjugates, say E. But using H.16.2.4,
we see CV (E) = V4 = CV (KQ), so m(CV (A)) ≤ 4, contrary to m(CV (A)) ≥ 5.

Therefore we may takeM to beM24. Assume m(A) = 4. Then m(CV (A)) ≥ 6.
If A consists entirely of non-2-central involutions, then CV (A) = CV (a) for all
a ∈ A#. But we may take a ∈ KS, so A ≤ KS by H.16.1.1, whereas E16-subgroups
of KS contain 2-central involutions. Thus there is a 2-central involution z in A,
so A centralizes a hyperplane of CV (z), and hence A ≤ Pz by H.16.2.8. Since A
centralizes a hyperplane of Vz, |A : A ∩D| ≤ 2 by H.16.2.2, and in case of equality
A∩D centralizes CV (A) + Vz = CV (z), contrary to H.16.2.5. Therefore A = D, so
that m(CV (A)) = 4 by H.16.2.7, contrary to A an (F − 1)-offender.

If m(A) = 6, then as A 6= KS, A = KT by H.14.1.1. This is impossible, as on
the dual V ∗ of V , [V ∗,KT]) is of codimension 2 by H.15.6.1, so m(CV (KT)) = 2.
Therefore m(A) = 5, so by H.14.1.5 we may take A ≤ KT or KS. In the first
case, as m(KO ∩ KT) = 3, KO ∩ A is noncyclic. But then m(CV (KO ∩ A)) ≥
m(CV (A)) ≥ 5, so m(CV (B)) ≥ 3 for B a hyperplane of KO containing KO ∩ A,
and then m(CV (KO)) > 1, contrary to H.16.2.1. Hence A ≤ KS, and using the
previous argument, A ∩ (KO ∩ KS)

g is cyclic for each of the 15 conjugates of
KO ∩KS under MS. Thus A contains at most one vector from each of those F4-
points, while from H.14.1.6, there are only six other F4-points, so A contains at
least 16 vectors living in those six points, and hence contains at least four of those
six points. However as MS is 2-transitive on the six points, any three generate KS,
so A = KS, contradicting our assumption. ¤

Lemma H.16.6. Let M := M24, and Z3
∼= Y ≤ M with m(V/CV (Y )) = 6.

Then Y = CM (CV (Y )).

Proof. Let W := CV (Y ). By the dual of H.15.7, up to conjugacy in M ,
NM (Y ) =:MY is a complement to KS in MS, CV (KS) ≤W , and W is a quotient
of the permutation module for MY /Y ∼= S6. As MY is irreducible on KS, while
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m(CV (KS)) = 4, CKS(W ) = 1. As MS is maximal in M , MS = NM (CV (KS)), so
as KS = CMS(CV (KS)) and Y = CMY (W ), CM (W ) = CMS(W ) = CKSMY (W ) =
Y CKS(W ) = Y . ¤

Lemma H.16.7. Assume L ∼= M22 or M24, s := 2 or 3, and E22s
∼= A and

Z3
∼= Y are subgroups of M with A = [A, Y ]. Then m(V/CV (AY )) 6= 2(s+ 1).

Proof. Assume otherwise. As A = [A, Y ], A ≤ L.
Assume first that L ∼=M22. Then by H.14.3.1, s = 2 and we may take A = KH

or KQ ∩L. Now m(CV (KH)) = 1 by H.16.4.1, so m(V/CV (KHY )) ≥ 9 > 2(s+1),
and hence A = KQ∩L. From the series in H.16.3.1, V4 := CV (KQ) = CV (KQ∩L)
is of rank 4. Now Y ≤ NM (KQ ∩L) =MQ since this group is maximal in M . Also
H.16.3 shows V4 is the S5-module, so m(V/CV (AY )) = 8 rather than 6.

Therefore M = M24. Suppose first s = 3. Then A = KS or KT by H.14.1.1.
Howeverm(CV (KT)) = 2 by the dual of H.15.6, so that A = KS. Hence by H.16.1,
V4 := CV (A) is of rank 4, and no element of order 3 in MS centralizes exactly a
hyperplane of V4. But again we have Y ≤ NM (A) = MS since MS is maximal in
M , so that m(V/CV (AY )) 6= 8.

This leaves the case s = 2, where m(A) = 4 and m(CV (AY )) = 5. But by
the dual of H.15.7.1, m(CV (Y )) = 5, so CV (A) = CV (Y ). Now H.16.6 supplies a
contradiction. This completes the proof of the lemma. ¤

Lemma H.16.8. If M :=M23 and E16
∼= A ≤ T , then m(V/ξV (A)) ≤ 1.

Proof. By H.14.2.1, A = KH or KQ. Assume first that A = KH, and define
V5 as in H.16.2.1. Now V is the restriction of the code module for M 0 to M , and

KO = KH, while m((CV (a)+V5)/V5) ≥ 2 for a ∈ K#
H, since m(CV (a)) = 7. Hence

ξV (A) = V using H.16.2.3. Thus we may take A = KQ. Define V10 as in H.16.1.1;
we will prove that V10 = ξV (A). Now the subgroup KO∩KS ofM0 lies in KQ, and
KO ∩KS = 〈a, b〉 with CV (a)∩CV (b) = CV (KO ∩KS) = V4 of rank 4 by H.16.2.4.
Thus

m(CV (a) + CV (b)) = m(CV (a)) +m(CV (b))− 4 = 10,

so as CV (c) ≤ V10 for all c ∈ K#
S by H.16.1.3, ξV (KQ) = V10, completing the

proof. ¤





CHAPTER I

Statements of some quoted results

In this chapter we continue to follow the conventions of section A.1 with regard
to quoted results: typically we provide statements and at least a reference for the
proof, with fuller proofs given where no good reference seems available.

I.1. Elementary results on cohomology

In this section we record various standard facts on cohomology involving the
simple SQTK-groups listed in Theorem C (A.2.3), and the quasithin K-groups listed
in Theorem B (A.2.2).

Remark I.1.1. We recall some well known concepts. Let G be a perfect (i.e.,
G = [G,G]) finite group. A covering (perfect central extension) of G is a surjective

group homomorphism ϕ : Ĝ → G such that Ĝ is perfect and ker(ϕ) ≤ Z(Ĝ). The

group Ĝ is called a covering group of G. There is a universal covering ψ : G̃ →
G with the property that for each covering ϕ of G there exists a unique group
homorphism θ : G̃→ Ĝ with θϕ = ψ. The group G̃ is the universal covering group
and ker(ψ) is the Schur multiplier of G. See for example section 33 in [Asc86a] for
proofs of these facts and further discussion.

Lemma I.1.2. If G is perfect and mr(G) ≤ 1 for r an odd prime, then the Schur
multiplier of G is an r′-group.

Proof. Standard; e.g., 33.14 in [Asc86a]. ¤

One reference for the next two results is [GLS98, Sec 6.1]; see in particular
Definition 6.1.1 and Tables 6.1.2 and 6.1.3. A briefer discussion appears in the
Atlas [C+85], pages xv–xvi and the tables.

Lemma I.1.3. The simple SQTK-groups G with a nontrivial Schur multiplier
are listed below. Except where otherwise indicated, the multiplier is cyclic of order
d, where d is given by:

(1) d = 2 when G is L4(2), G2(4), M12, J2, HS, Ru, or L2(q), q 6= 9 is an
odd prime power.

(2) d = 3 when G is Lε3(q), q ≡ ε mod 3, and G is not L3(4).
(3) d = 6 when G is A6 or A7.
(4) M22 has multiplier Z12.
(5) Sz(8) has multiplier E4.
(6) The multiplier of L3(4) is Z4 × Z4 × Z3.

Lemma I.1.4. The simple quasithin K-groups G which are not strongly quasithin
and have a nontrivial Schur multiplier are listed below. Except where otherwise
indicated, the multiplier is cyclic of order d, where d is given by:

407
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(1) d = 2 when G is A9, L2(q), q > 9 an odd prime power, U4(2), or L4(3).
(2) d = 3 when G is J3, McL, G2(3), or L

ε
3(q), q ≡ ε mod 3 an odd prime

power.
(3) d = 4 if G is L4(r), r > 3 a Fermat prime, or U4(s), s > 3 a Mersenne

prime.
(4) The multiplier of U5(4) is Z5.
(5) The multiplier of U4(3) is E9 × Z4.

Remark I.1.5. We recall more well known concepts, this time concerning covers
of modules. Let G be a finite group and V a faithful F2G-module. Assume first
that CV (G) = 0, and define a dual covering of V to be an F2G-module W such
that [W,G] ≤ V ≤ W and CW (G) = 0. There exists a universal dual covering
U := U(G, V ); that is U is a dual covering, and each dual covering of V is a
submodule of U(G, V ). The 1-cohomology group H1(G, V ) is the group U(G, V )/V .
(This group is often denoted by Ext1G(F2, V )). In particular if V is projective, then
H1(G, V ) = 0.

Now assume instead that V = [V,G]. A covering of V is an F2G-module
W = [W,G] such that W/W0

∼= V for some W0 ≤ CW (G). Again there is a
universal covering U ; that is, U is a covering such that each covering of V is a
quotient of U . Indeed U = U(G, V ∗)∗, where W ∗ denotes the dual of W , so
m(U0) = m(H1(G, V ∗)).

Lemma I.1.6. Let G be a group, V a F2G-module, and d := dimF2(H
1(G, V )).

Then

(1) If V is the natural module for G = An, then d = 0 when n = 5, 7, and
d = 1 when n = 6, 8. The A5-module is projective.

(2) If V is the natural module for G = L2(2
n), n > 1, then d = n.

(3) If V is the 4-dimensional orthogonal module for G = L2(2
2n) ∼= Ω−4 (2

n),
then d = 0. The orthogonal module for L2(4) is the A5-module, and hence is
projective.

(4) If V is the natural module for G = SL3(2
n), then d = 0 when n > 1, and

d = 1 when n = 1.
(5) If V is the natural module for G = Sp4(2

n)′ or G2(2
n)′, then d = n.

(6) If V is the natural module for G = L4(2) or L5(2), then d = 0.
(7) If V is a 10-dimensional irreducible for G = L5(2), then d = 0.
(8) d = 0 for each 4-dimensional irreducible for G = A7.

(9) If V is a faithful irreducible for G = Â6 of dimension 6, then d = 0.

Proof. A standard reference for the Chevalley groups is Jones-Parshall [JP76].
For the alternating groups, see e.g. Exercise 6.3 in [Asc86a]. ¤

Remark I.1.7. (a) By Remark I.1.5, the results about H1(G, V ) in I.1.6 give
us information about the coverings and dual coverings of the modules V discussed
in that lemma. For example, we recorded I.1.6.1 earlier as B.3.3.1, and used it to
establish B.3.3.3.

(b) We can also use Remark I.1.5 and I.1.6 to study FF-modules: For example
let L ∼= G2(2

n)′ and suppose that W is an FF-module for a group G with L =
F ∗(G), and W is a dual covering of the natural module V . We claim that W = V :
Part (13) of B.4.6 shows that up to conjugacy, there is a unique FF∗-offender A1

on V , and that m(V/CV (A1)) = m(A1). Thus W = V CW (A1), so W splits over V
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as an A1-module. Next V is self-dual, so from Remark I.1.5, W ∗ is a covering of
V . As W splits over V as an A1-module, W ∗ splits over CW∗(L) as an A1-module.
But by B.4.6.3, CW∗(L) ≤ [W ∗, A1], so W

∗ = V and hence W = V .

I.2. Results on structure of nonsplit extensions

Sometimes we require more detailed information on the structure of the nonsplit
extensions in I.1.3 and I.1.6.

The following result is needed only to show that certain coverings groups of
groups in Theorems B (A.2.2) and C (A.2.3) are not strongly quasithin groups:

Lemma I.2.1. Let G be a covering group of G∗ ∼= U4(3), G2(3), Ω7(3), O
′N ,

J3, or McL, with Z(G) a 3-group. Then m3(G) > 2.

Proof. From the list of Schur multipliers in I.1.4, Z(G) is of order 3, except
possibly when G∗ ∼= U4(3), in which case Z(G) is a subgroup of E9.

We apply A.1.31.1 to a suitable subgroup X of G in the role of “G”; thus it will
suffice to produce a subgroup X with Y := F ∗(X) = O3(X), a normal subgroup H
of X , and an involution t in X with CȲ (t̄) noncyclic, where X̄ := X/H .

Take X to be the preimage in G of a subgroup X∗ of G∗ isomorphic to A6/E34 ,
Ω5(3)/E35 , Z2/E34 , Z2/E33 , A6/E34 , for G

∗ isomorphic to U4(3), Ω7(3), O
′N , J3,

McL, respectively. When G∗ is O′N or J3, chooseX
∗ inside a subgroup isomorphic

to E9×A6 or Z3×A6, respectively. When G∗ is G2(3), takeX to be a Sylow 3-group
of G extended by an involution. Let H := Z(G) unless G∗ is J3, where H := 1.

By construction, X satisfies the necessary conditions, except possibly in the
case where G∗ is J3, where we must show that CY (t) is noncyclic. This holds
as CY ∗(t) is of order 3 and its preimage splits over Z(G): the splitting occurs as
CG(t)

∗ ∼= A5/Q8D8, and Z(G) 6≤ [CG(t), CG(t)] by I.1.2. ¤

Our next result collects facts about coverings of groups in Theorem C which
are needed at various points during the proof of the Main Theorem.

Lemma I.2.2. Let K be quasisimple with Z := Z(K) 6= 1, let S ∈ Syl2(K),
and set K∗ := K/Z.

(1) If K∗ is A5 or A6 and Z is a 2-group, then K ∼= SL2(5) or SL2(9),
respectively.

(2) If K∗ is A6 or A7 then m3(K) = 2.
(3) Assume K∗ ∼= L3(4) and Z is a 2-group, and let P be the preimage of a

maximal parabolic of K∗ and R := O2(P ). Then

(a) If Φ(Z) 6= 1 then Z(S) = Z and R is nonabelian.
(b) If Φ(Z) = 1 then involutions in K∗ lift to involutions in K, Φ(R) = 1,

R = [R,P ], and Z is centralized by a graph-field automorphism of K.

(4) If K∗ ∼= Sz(8) then involutions in K∗ lift to involutions in K, and Z =
Z(S).

(5) Assume K∗ is G2(4), J2, M12, or HS. Then

(a) 2-central involutions of K∗ lift to involutions of K.
(b) Non-2-central involutions of K∗ lift to elements of order 4, and each

involutory outer automorphism of K inverts some such element of order 4.
(c) Assume K∗ is not G2(4), let u ∈ K − Z with u an involution, and

set X := O2(CK(u)). Then there exists a unique v ∈ uZ such that there exists
x ∈ O2(X) with x2 = v.
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(6) Assume K∗ ∼= M22 and Z is a 2-group. Let J be the preimage in K of a
subgroup of K∗ isomorphic to S5/E16. Then

(a) Z ≤ O2(J), Φ(O2(J)) = 1 if |Z| = 2, and O2(J) ∼= Z4 ∗Q2
8 if |Z| = 4.

(b) Assume |Z| = 2, u ∈ K−Z is an involution, and set X := O2(CK(u)).
Then there exists a unique v ∈ uZ such that there exists x ∈ O2(X) with x2 = v.

(7) Assume K∗ ∼= Ru, let i∗ be a non-2-central involution in K∗, and I the
preimage in K of E(CK∗(i

∗)). Then

(a) I splits over Z.
(b) i∗ lifts to an element of order 4, and 2-central involutions of K∗ lift to

involutions, so that m2(K) ≥ 6.
(c) Let u ∈ K − Z be an involution and set X := O2(CK(u)) and Y :=

CO2(X)(Φ(O2(X))). Then [Y, Y ] is of order 2 and [Y, Y ]∗ = 〈u∗〉.

Proof. Many of these facts can be retrieved from the literature; but in most
cases no good direct reference exists, so we sketch proofs.

We will begin with some standard observations which are often useful. Using
the well known result of Cartan-Eilenberg that the restriction of mod-p cohomology
to a Sylow p-subgroup is injective (Generalized Thompson Transfer A.1.37 suffices
in this case), we have:

(i) If Z is a p-group and H is the preimage in K of a subgroup H∗ of K∗ such
that (|H∗ : K∗|, p) = 1, then Z ≤ [H,H ], and if H∗ = Op(H∗) then H = Op(H).

Also:

(ii) Assume |Z| = 2, H∗ ≤ K∗, and the Sylow 2-subgroups of H∗ are not cyclic
or dihedral. Then some involution in H∗ lifts to an involution of H , and if all
involutions in H∗ are fused in K∗, then each involution in H∗ lifts to an involution
of H .

For by the restriction in (ii) on the Sylow 2-groups of H∗, a Sylow 2-group of H
is not cyclic or quaternion, so there are involutions in H − Z (cf. Exercise 8.4 in
[Asc86a]), and hence (ii) follows.

Part (1) of the lemma is well known; it follows from I.1.3.1 and the existence
of SL2(5) and SL2(9).

Assume K∗ is A6 or A7, Z is a 3-group, and let P ∈ Syl3(K). By I.1.3.3,
|Z| = 3, so as P ∗ ∼= E9 is inverted in K∗, it follows that P is of exponent 3, and P
is nonabelian by (i), so P ∼= 31+2. Thus (2) holds.

Assume the hypothesis and notation of (3), and let L be the preimage of a Levi

complement of P ∗. By (i), P is perfect. Suppose Z ∼= E4; then K = K̃/W

for some characteristic subgroup of the universal covering group K̃ of K∗, so
Aut(K∗) = Aut(K). A diagonal outer automorphism of order 3 is irreducible
on Z and centralizes a graph-field automorphism β, so β centralizes Z, establishing
the last statement in (3b).

Suppose that Z is of order 2. Then asK has one class of involutions, involutions
in K∗ lift to involutions by (ii). Thus Φ(R) = 1, and L splits over Z by (1), so
R = [R,L] as P is perfect. Therefore (b) holds when |Z| = 2, and hence also when
Z ∼= E4, considering the quotients K/U for the three subgroups U of order 2 in Z.

It remains to prove (a), where by I.1.3.4 we may assume that Z ∼= Z4 by
passing to a suitable quotient of K. Suppose R is abelian and let X ∈ Syl5(P ). As
CR∗(X) = 1, R = [R,X ]× Z by Coprime Action, so V := [R,X ]Φ(Z) = Ω1(R) E
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P . Hence R/Φ(Z) splits over Z/Φ(Z) as a P -module, contrary to the previous
paragraph. Therefore R is nonabelian, so as P is irreducible on R∗, Z = Z(R), and
hence Z(S) = Z, completing the proof of (3).

The first statement of (4) follows from (ii) and the fact that K∗ has one class of
involutions. Next NK∗(S

∗) is irreducible on Z(S∗) and on S∗/Z(S∗), each of rank
3. Thus either S is of class 3 with Z = Z(S), or S is of class 2 with Z(S)∗ = Z(S∗);
since it remains to prove the second part of (4), we may assume the latter. Then

m([S, S]) ≤
(
m(S/Z(S)

2

)
= 3 = m([S, S]∗), so [S, S] is a complement to Z in Z(S),

contrary to (i). This completes the proof of (4).
Assume that K∗ is one of the four groups in (5), and let i∗ be a non-2-central

involution in K∗. We claim that to establish (a) and (b), it suffices to prove:

(iii) i∗ lifts to an element of order 4, and a conjugate t of each involutory outer
automorphism of K∗ centralizes i∗ with i∗t ∈ tK

∗

.

For as K∗ has two classes of involutions, (a) follows from (ii) and (iii). Further as

i∗t ∈ tK
∗

and t is an involution, so is it; so t inverts i, establishing (b).
We next establish the second statement in (iii): Unless K∗ is HS, K∗ is tran-

sitive on the set ∆ of involutory outer automorphisms, and from the structure of
CAut(K∗)(i

∗), i∗ centralizes a member of ∆. So assume instead that K∗ is HS.
Then there are two orbits of K∗ on ∆ with representatives t1 and t2, where K

∗
1 :=

CK∗(t1) ∼= S8, K
∗
2 := CK∗(t2) ∼= O−4 (2)/E16, and K

∗
i := CK∗(i

∗) ∼= Z2 ×Aut(A6).
The involutions in K∗1 with cycle structure 22 or 24 are 2-central, while those with
cycle structure 2 or 23 are fused to i∗, with t1z fused to t1 if z is of cycle type 24 as
〈t1, z〉 is the center of a Sylow 2-subgroup of K∗1 〈t1〉. Further we may take t1 to cen-
tralize the subgroup Z2×S6 of index 2 in K∗i ; in particular we may take [t1, t2] = 1.

Thus K∗1 has two orbits on i∗K
∗

∩K∗1 , so K
∗
i has two orbits on K∗i 〈t1〉∩ t

K∗

1 . Hence
these orbits have representatives t1 and t1y, where y induces an outer automor-

phism in S6 on E(K∗i ). Further t1i
∗ ∈ t

K∗i
1 ; and for e an involution in E(K∗i ),

t1e ∈ tK
∗

2 as t1e is not fused to t1, while t1ei
∗ ∈ (t1e)

K∗i . This establishes the
second statement in (iii) when K∗ ∼= HS. Therefore to complete the proof of (iii),
it remains to show that i∗ lifts to an element of order 4.

We first treat the case K∗ ∼= G2(4). Let H be ·0 and H̄ := H/Z(H), so that H
is the universal covering group of H̄ ∼= Co1. We quote some results from [Asc94]:
The “root 4-involutions” ī of H̄ are the H̄-conjugates of root 4-involutions of Suz-
subgroups of H̄ , which are in turn defined on page 269 of [Asc94]. By Lemma
46.9, these involutions lift to elements of order 4 in H . Further by Lemma 49.5,
J̄ := E(CH̄ (̄i)) ∼= G2(4) with the non-2-central involutions in J̄ fused to ī. Thus
the preimage J of J̄ is the universal covering group of G2(4). This completes the
proof of (5) when K∗ ∼= G2(4).

Thus we may assume that K∗ is J2, M12, or HS. Let u
∗ be a 2-central involu-

tion in K∗, and set X := O2(CK(u)) and R := O2(X). In each case R∗ = [R∗, X∗]
is of symplectic type with Φ(R∗) = 〈u∗〉, so by Coprime Action Z(R)∗ = Z(R∗), X
centralizes Z(R), and R is of class 2 with [R,R]Z = 〈u〉Z. Therefore [R,R], and
hence also 〈u〉Z, is of exponent 2, so u∗ lifts to an involution u. In particular, this
establishes (a), and shows that [R,R]Z = Φ(R)Z = 〈u〉 × Z ∼= E4. Let R be the
set of r ∈ R− Z(R) with |r∗| = 4.

Suppose that K∗ is J2. Then X∗ = CK∗(u
∗) ∼= A5/Q8D8, so X is perfect by

(i). As X is transitive on R∗, r2 =: v is independent of the choice of r ∈ R, and
R/〈v〉 is elementary abelian, establishing (c). Let X̄ := X/〈v〉. Then as R∗/〈u∗〉 is
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a projective X/R-module, R̄ splits over Z̄, so as X is perfect, X/[R,X ] ∼= SL2(5).
Thus as R = [R,X ]Z, there are no involutions in X − R, so that i∗ lifts to an
element of order 4. This completes the proof of (5) when K∗ is J2.

Assume that K∗ is M12. Then X∗ ∼= Z3/Q
2
8 has five orbits O∗j of length 3 on

(R∗/〈u∗〉)#, with O1 ∪ O2 containing the images of non-2-central involutions, O3

the images of 2-central involutions, and O4 ∪ O5 = R∗. For j = 4, 5, let vj := r2j
for rj ∈ Oj , Vj := 〈vj〉, and X̄ := X/V4. As X has two irreducibles of rank 2 on
R̄/Z̄, R̄ ∼= E32, Q

2
8, or E4 × Q8, so the number c of cosets of Z̄ in R̄ containing

elements of order 4 is 0, 6, or 12, respectively. If i∗ lifts to an involution then c = 0
or 3, and the latter is impossible, so V4 = Φ(R). But then R̄ = [R̄,X ]× Z̄, and as
there is a 2-central involution w∗ in CK∗(u

∗)−X∗, CK(u) = X〈w〉 × Z, contrary
to (i). Therefore i∗ lifts to i of order 4, establishing (b). Furthermore c = 6 or 9,
and the latter is impossible, so v4 = v5, establishing (c), and completing the proof
of (5) when K∗ ∼=M12.

Finally assume that K∗ is HS. As X∗ ∼= A5/(Z4 ∗Q2
8) is transitive on R∗, we

argue as in the case of J2 that (c) holds. LetM be the preimage ofM ∗ ∼= L3(2)/Z
3
4;

by (i), M is perfect. Let Q := O2(M) and V := Z(R). Then Q ≤ X ≤ CK(V )
and Q = 〈V M 〉, so Q is abelian. Thus Q = [Q, Y ] × Z by Coprime Action, where
Y ∈ Syl7(M), and Φ(Q) =: E ∼= E8. Set M̄ := M/E. If Q̄ splits over Z̄ then
as M is perfect, M/[Q,M ] ∼= SL2(7), impossible as M∗ − Q∗ contains 2-central
involutions. Each involution in M/Q is fused in M to jQ, where j ∈ R is an
involution. As Q̄ is indecomposable, CQ̄(j) = [Q̄, j] by B.4.8.2, so all involutions in

j̄Q̄ are conjugate to j̄. Finally jE ⊆ R and all involutions in R∗ are 2-central, so
i∗ lifts to an element of order 4, completing the proof of (5).

Assume the hypothesis of (6). Then K∗ has one class of involutions, so involu-
tions lift to involutions by (ii). Let I be the preimage in K of an A6/E16-subgroup
of K∗ and R the preimage of O2(I

∗). By (i), I is perfect. As there is a complement
L∗ to R∗ in I∗ and involutions lift, there is a complement L ∼= A6 to R. Thus as I
is perfect, R = [R,L] is the core of the permutation module for L if |Z| = 2, and
R ∼= Z4 ∗ Q2

8 if |Z| = 4. In particular (6b) is now an easy calculation in the split
extension I , as I∗ contains CK∗(u

∗) for a suitable involution u∗ ∈ R∗. Further we
calculate in this extension that Z ≤ O2(I ∩ J), so (6a) holds.

Assume the hypotheses and notation of (7). Then I∗ ∼= Sz(8), and there is an
element of order 3 in K∗ faithful on I∗. As this automorphism is irreducible on the
Schur multiplier of I∗ of order 4 whereas Z is of order 2, it follows that (7a) holds.
Then as the involutions in I∗ are 2-central in K∗, such involutions lift to involutions
of K. Pick u as in (7c) to be such an involution, and set Q∗ := O2(CK∗(u

∗))
and U∗ := Φ(Q∗). The structure of X and Y is described in section J.2. Let
B ∈ Syl5(X). By J.2.2, J.2.4, and J.2.5, U∗ ∼= E32 and Y ∗ = CY ∗(B) × [U∗, B]
with CY ∗(B) ∼= Q8. By J.2.6.3, all involutions in U∗ are 2-central, so the preimage
U of U∗ is elementary abelian as such involutions lift to involutions. Thus Y Z =
CY Z(B) × [U,B] and X centralizes u by Coprime Action so Y Z ≤ XZ ≤ CK(u).
Therefore [Y, Y ] = 〈[y, x]〉 is of order 2, where CY ∗(B) = 〈y∗, x∗〉. That is, (7c)
holds. Further [y, x] is centralized by CK(u∗), so u is in the center of a Sylow
2-subgroup S of K.

Let M be the preimage in K∗ of a L3(2)/2
3+8-subgroup of K∗ with S ≤ M ;

by (i), M is perfect. Let P ∗ := O2(M
∗) and V ∗ := Z(P ∗); thus P ∗ is special, V ∗

is the natural module for M∗/P ∗, and P ∗/V ∗ is the Steinberg module for M∗/P ∗.
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Then V ∼= E16 and as u ∈ Z(S), V splits over Z as an M -module by B.4.8.2.
Let M̄ := M/[V,M ]. If Z 6≤ [P,M ], then as M is perfect, M/[P,M ] ∼= SL2(7),
a contradiction as involutions in M∗ − P ∗ are 2-central by J.2.6, and hence lift to
involutions in K. Therefore P̄ is extraspecial of width 4. However we can choose
notation so that a Sylow 2-subgroup R of the preimage of NK∗(I

∗) is contained in
P with R ∩ V = [V,M ]. If R splits over Z, then R̄ ∼= E64, whereas m2(P̄ ) ≤ 5 as
P̄ is extraspecial of width 4. Thus R does not split over Z, establishing (7b) and
completing the proof of the lemma. ¤

We also sometimes require additional information on the structure of coverings
of certain F2G-modules:

Lemma I.2.3. Let G = LT with L = F ∗(G) isomorphic to L2(2
n) (n > 1),

Sp4(2
n)′, or G2(2

n)′. Let T ∈ Syl2(G), F := F2n , and V a covering of the nat-
ural F2G-module V̄ . For i = 1, 2, let V̄i be the T -invariant F -subspace of V̄ with
dimF (V̄i) = i, where V̄ is regarded as an FL-module, and Vi the preimage in V
of V̄i. If L is L2(2

n) or L = Sp4(2
n)′, let R denote the root group of L inducing

transvections on V̄ with center V̄1. Let S denote the long root group in Z(T ∩L) if
L = G2(2

n)′. Then

(1) If V is the universal covering of V̄ , then as an FL-module, V is the orthog-
onal module for G of dimension 3, 5, or 7 over F , respectively, and VL := CV (L)
is the radical of V of F -dimension 1. Further:

(a) V1 = CV (T ∩L) = P ⊕ VL, for a unique singular projective point P of
V .

(b) For r ∈ R#, [V, r] is a nonsingular point in V1 distinct from VL.
Further if n > 1 and s ∈ R− 〈r〉, then [V, r] ∩ [V, s] = 0, so V1 = [V,R] ≤ CV (R).

(c) [V, S] is a totally singular F -subspace of dimension 2, which is a com-
plement to VL in V2.

(2) CV1(T ) 6≤ CV (L) and Vi ≤ Z(O2(NG(Vi))).
(3) If n > 1, then CV (L) ≤ V1 = [V,R] ≤ CV (R).

Proof. We recall that L2(2
n) ∼= Ω3(2

n) and Sp4(2
n) ∼= Ω5(2

n), where the
notation Ω2m−1(q) denotes the stabilizer in Ω2m(q) of a nonsingular point WL in
a 2m-dimensional orthogonal space U over Fq . Similarly G2(2

n) is contained in
the stabilizer Sp6(q) of a nonsingular point WL of an 8-dimensional orthogonal
space U ; see e.g. B.4.6, based on [Asc87] and its references. Moreover in each
case L is indecomposable on the subspace W := W⊥

L of U orthogonal to WL, and
V̄ ∼= W/WL. Hence as n = dim(H1(L, V̄ )) by I.1.6, the first statement of (1) is
established. Then we compute directly in the orthogonal space W that (a)–(c)
hold.

Next by Remark I.1.5, V is a quotient of W . Now parts (a) and (b) of (1)
imply (2) and (3); for example in proving (2), observe that NG(V̄i) is irreducible
on V̄i and acts on the unique totally singular complement to WL in Vi. ¤

Lemma I.2.4. Let G be finite group, p a prime, P ∈ Sylp(G), and D the
Alperin-Goldschmidt conjugation family for P in G. Let Q ≤ P . Then

(1) If Q E NG(D) for each D ∈ D such that Q ≤ D, then Q is weakly closed
in P with respect to G.

(2) Assume that NG(E) ≤ NG(D) whenever D,E ∈ D with D ≤ E. Then each
member of D is weakly closed in P with respect to G.
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Proof. Visibly (1) implies (2). Assume the hypotheses of (1) and let R ∈ QG

with R ≤ P . Then by the Alperin-Goldschmidt Fusion Theorem (cf. Theorem
16.1 in [GLS96]), there exist subgroups Q =: Q1, . . . , Qn := R of P , Di ∈ D, and
xi ∈ NG(Di) such that 〈Qi, Qi+1〉 ≤ Di and Q

xi
i = Qi+1 for 1 ≤ i < n. We show

that Q = Qi for each i to complete the proof. If the claim fails, pick i minimal
subject toQ 6= Qi+1. Then Q = Qi ≤ Di, so by the hypotheses of (1), Q E NG(Di),
and hence Qi+1 = Qxi = Q, contrary to the choice of i. ¤

The next result seems to have been well-known to experts since the description
of the Bruhat decomposition; the only explicit statement and proof we know of in
the literature is 4.1 of Grodal [Gro02]. Here is an easy proof using the approach
of the previous lemma:

Lemma I.2.5. If G if a finite group of Lie type in characteristic p, then each
unipotent radical is weakly closed (with respect to G) in each unipotent overgroup.

Proof. Let P ∈ Sylp(G) and D the set of unipotent radicals of the proper
parabolics of G over P . Then (see e.g. 3.1.6 in [GLS98], using the Borel-Tits
Theorem 3.1.3 in [GLS98]) D is the Alperin-Goldschmidt conjugation family for
P in G. Further (see e.g. 47.4.1 in [Asc86a] and the definition of the parabolic
subgroups and their radicals just before that result) NG(E) ≤ NG(D) whenever
D,E ∈ D with D ≤ E. Finally the unipotent subgroups of G are its p-subgroups.
Therefore the lemma follows from I.2.4. ¤

I.3. Balance and 2-components

Next we record some standard results on “L-balance”, taken from the first two
sections of [GLS96]. We first recall two notions from Definition 4.5 on page 18
in [GLS96], expressed in the language of section A.3: A 2-component of a finite
group H is some L ∈ C(H) such that L/O(L) is quasisimple. The 2-layer L2′(H)
of H is the product of the 2-components of H . Notice O2′,E(H) = O(H)L2′(H).

Lemma I.3.1. Let H be a finite K-group, P a 2-subgroup of H, and L a 2-
component of CH(P ). Then

(1) 〈LO2′,E(H)〉 = 〈KP 〉 for some 2-component K of H.
(2) If L centralizes O(H), then L and K are components of CH (P ) and H,

respectively.
(3) If H is an SQTK-group and m3(L) = 2, then L ≤ K E H and L and K

are quasisimple.

Proof. Part (1) is essentially parts (i) and (ii) of 5.22 in [GLS96], with H , 2,
L in the roles of “X , p, I”. As H is a K-group and each simple group S in K satisfies
the Schreier Property (i.e., Out(S) is solvable), H satisfies property (S2) on page 5

of [GLS96]: for T ∈ Syl2(S), CAut(S)(T ) is 2-solvable. Let X := 〈LO2′,E(H)〉 and
H̄ := H/O(H). Lemma 5.22 in [GLS96] also says that the projection L̄K of L̄ on
K̄ is a 2-component of CK̄(NP (K)); indeed L̄K is quasisimple as K-groups satisfy
the B2-property (cf. Def. 2.4 on page 5 of [GLS96]), a fact we need in order to
establish (2) in the next paragraph.

Assume that L centralizes O(H); then so does X , so K is a component of H .
Then as L̄K is a component of NK̄(NP (K)), L is a component of NH(P ), so (2)
holds.
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Finally assume the hypotheses of (3). Then m3(K̄) ≥ m3(L̄K), so (2) of
Theorem A (A.2.1) says that m3(K) = 2 as m3(L) = 2. Thus A.3.8.3 says that
K E H , and K and L are quasismple as K/O(K) and L/O(L) are quasisimple. ¤

Usually we use the following special case of lemma I.3.1:

Lemma I.3.2. Let H be a finite K-group, t an involution in H, and L a 2-
component of CH(t). Set K := 〈LO2′,E(H)〉. Then either

(1) K is a t-invariant 2-component of H, or
(2) K = JJ t for some 2-component J of H such that J 6= J t and J/O2′,2(J) ∼=

L/O2′,2(L).

Proof. By I.3.1 with 〈t〉 in the role of “P”, either (1) holds, or K = KK t for
some 2-component J of H with J 6= J t, and we may assume the latter. Setting
K̄ := K/O2′,2(K), L̄ is a 2-component of CK̄(t). Further K̄ = J̄× J̄ t, so CK̄(t) ∼= J̄
is a full diagonal subgroup of K̄. Therefore as L̄ is a 2-component of CK̄(t) and J̄
is simple, L̄ = CK̄(t) ∼= J̄ , so (2) holds. ¤

I.4. Recognition Theorems

In this section we list and discuss certain recognition theorems used to identify
groups, usually by 2-local hypotheses. In some cases we prove our own recognition
theorems; but when there is an outside appeal, we include some discussion of the
appeal and an indication of how difficult the proof of that external result is. In
particular we indicate how more modern proofs of such results (sometimes just
restricted to our special case) are relatively easy, so that we are not relying on major
classification theorems from the earlier literature. This requires some discussion of
history, since the modern proof is usually a second or third proof of the original
result.

Lemma I.4.1. Let G be a finite group with one conjugacy class of involutions,
such that CG(z) is the dihedral group D2n for an involution z in G and some integer
n ≥ 2. Then

(1) If n = 2, then G ∼= A4 or A5.
(2) If n = 3, then G ∼= L3(2) or A6.
(3) If n > 3, then G ∼= L2(p) for some Fermat or Mersenne prime p.

Proof. All of these results follow from the classification of groups with di-
hedral Sylow 2-subgroups by Gorenstein and Walter in [GW64]. However with
modern techniques and the strong condition on CG(z), there are much easier proofs:
For example, all parts of the lemma can be retrieved from Bender’s elementary proof
of the Brauer-Suzuki-Wall Theorem in [Ben74a] and Gorenstein’s discussion of
Zassenhaus groups in [Gor80]. However, since Bender treats the cases n = 2 and
n = 3 differently from the case n > 3, and only supplies a sketch of a proof in those
first two cases, we supply a few more details below:

First, part (1) follows from Exercise 16.6 in [Asc86a]. Second, part (2) is a
special case of Theorem 3 in [AMS01], so assume n > 3. Then by the Brauer-
Suzuki-Wall Theorem (cf. [Ben74a]), G is a Zassenhaus group satisfying the hy-
potheses of Theorem 13.3.5 in chapter 13 of [Gor80], with the parameter “n” of
that Theorem odd. Hence by that result, G ∼= L2(q) for some odd prime power q.
Then as CG(z) is a 2-group, the restrictions on q in conclusion (3) of the lemma
follow. ¤
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We recall also that simple groups with semidihedral Sylow 2-subgroups were
classified by Alperin-Brauer-Gorenstein in [ABG70]. However to deduce our
result I.4.3 below, it will suffice to quote an earlier special case of the general result,
namely:

Lemma I.4.2. Let G be a finite group with one conjugacy class of involutions,
such that CG(z) ∼= GL2(3) for an involution z in G. Then G ∼= L3(3) or M11.

Proof. This is a special case of a result announced by Brauer [Bra57]; a proof
of this special case also appears in Theorem 6 of Wong [Won64a]. A more modern
elementary proof using no character theory appears in Theorem 1.2 of R. Solomon
and S. K. Wong [SW91]. ¤

Now adding our hypothesis (E) of even characteristic, we can use the results
above to deduce a more general result. Recall that a groupG is of even characteristic
if each maximal 2-local M of G of odd index satisfies F ∗(M) = O2(M). By the
standard result 31.16 in [Asc86a], this is equivalent to the hypothesis that F ∗(H) =
O2(H) for each 2-local H of odd index in G.

Lemma I.4.3. Let G be a finite group with no subgroup of index 2 such that G
is of even characteristic. Let T ∈ Syl2(G).

(1) If T is dihedral then G ∼= A6 or L2(p) for some Fermat or Mersenne prime
p.

(2) If T is semidihedral then G ∼= L3(3) or M11.

Proof. Since G = O2(G) and T is dihedral or semidihedral, the following easy
and standard transfer argument shows that G has one class of involutions and one
class of elements of order 4: Let S denote the cyclic subgroup of index 2 in T .
Then Thompson Transfer A.1.36 shows that each involution in T − S is conjugate
to the involution z of S. Hence G has one class of involutions. Now assume that
T has elements of order 4, so that |T | ≥ 8. Then T is transitive on the set {j, j−1}
of elements of order 4 in S. We claim that G has one class of elements of order
4. If T is dihedral, then {j, j−1} is the set of elements of order 4 in T ; so we may
assume that T is semidihedral. Let D be the dihedral subgroup of T of index 2.
Then Generalized Thompson Transfer A.1.37 shows that each element of order 4
in T −D is conjugate to j, so again G has a unique class of elements of order 4.

Let z be the involution in Z(T ), and set H := CG(z). Assume T is dihedral.
Then involutions a in H−〈z〉 are not H-conjugate to z as z ∈ Z(H), so Thompson
Transfer shows a 6∈ O2(H). Then Cyclic Sylow 2-Subgroups A.1.38 shows that
H = TO(H). But as G is of even characteristic, O(H) = 1, so H = T . Thus
we have the hypotheses of I.4.1, so (1) follows since A4

∼= L2(3), A5
∼= L2(5), and

L3(2) ∼= L2(7).

So assume T is semidihedral of order 2n+1. Set H̃ := H/〈z〉. Now T̃ ∼= D2n

with n ≥ 3, so Z(T̃ ) = 〈j̃〉, where j2 = z. As G is of even characteristic, F ∗(H) =

O2(H), and hence F ∗(H̃) = O2(H̃) by A.1.8. Therefore by B.2.14, Ũ := 〈j̃H 〉 is an
elementary abelian subgroup of Z(O2(H̃)). As G is transitive on its elements v of
order 4, and as z = v2 for each v of order 4 in H , CG(z) = H is also transitive on its

elements of order 4. Let U be the preimage of Ũ in H ; then U = 〈v ∈ T : v2 = z〉, so
U ∼= Q2n as T is semidihedral. Therefore as Ũ is abelian, n = 3. As Ũ ≤ Z(O2(H̃))

with Ũ of index 2 in T̃ but not central in T̃ , U = O2(H). As F ∗(H) = O2(H),

CH(U) = Z(U) = 〈z〉, so H̃ ≤ Aut(U) ∼= S4. Then as |T : U | = 2 and H
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is transitive on the 6 elements of order 4 in U , H̃ = Aut(U). Hence H is the
semidirect product of U with S3, so that H ∼= GL2(3). Then (2) holds by I.4.2. ¤

Define a finite group G to be of U3(3)-type if G has an involution z such
that F ∗(CG(z)) ∼= Z4 ∗Q8, CG(z)/F

∗(CG(z)) ∼= S3, and z is not weakly closed in
O2(CG(z)) with respect to G.

Lemma I.4.4. Each group of U3(3)-type is isomorphic to U3(3).

Proof. The original proof of this result is due to P. Fong in [Fon67]. Fong
considers a slightly more general class of groups. He shows the group is 2-transitive
on the normalizers of Sylow 3-subgroups, and appeals to a result of Suzuki. A more
modern elementary proof in [Asc02a] avoids character theory and the appeal to
Suzuki. After calculating the group order, U3(3) is identified using Corollary F.4.24
of this work. ¤

Define a finite group G to be of G2(3)-type if G has subgroups H and M such
that

(G1) H has normal subgroups H1 and H2 with H1
∼= H2

∼= SL2(3), |H :
H1H2| = 2, Z2

∼= H1 ∩H2, and H = CG(H1 ∩H2); and
(G2) F ∗(M) ∼= E8 and M/F ∗(M) ∼= L3(2).

Lemma I.4.5. Each group of G2(3)-type is isomorphic to G2(3).

Proof. The group G2(3) was first characterized by Janko via the centralizer of
an involution in [Jan69]. In [FW69] and [Fon70], Fong and Wong characterized
groups with related but more general centralizers, although in the special case of
G2(3), they appeal to Janko’s paper to handle the case where H is strongly 3-
embedded in G. On the other hand, Janko appeals to Thompson’s N-group paper
[Tho68] to handle the case where H is not stongly 3-embedded in G. Both Fong-
Wong and Thompson identify G as G2(3) essentially by constructing a BN-pair
for G. A more modern elementary proof in [Asc02b] avoids character theory,
and identifies G2(3) using the results of Delgado-Stellmacher in the Green Book
[DGS85], and Corollary F.4.26 of this work. ¤

We need a means for identifying M12 and A9; the following result suffices:

Lemma I.4.6. Let G be a finite group, z an involution in G, H := CG(z),
Q := F ∗(H), and X ∈ Syl3(H). Assume

(a) Q is extraspecial of order 32,
(b) H/Q ∼= S3 and CQ(X) = 〈z〉, and
(c) z is not weakly closed in Q with respect to G.

Then one of the following holds:
(1) There is a normal E8-subgroup V of G with G/V ∼= L3(2).
(2) G ∼= A8 or A9, and the two Q8-subgroups of Q are not normal in H.
(3) G ∼=M12, and the two Q8-subgroups of Q are normal in H.

Proof. In [Won64b], W. Wong characterizes M12 via the centralizer of a 2-
central involution and the condition that G has at most two classes of involutions;
of course there is also a nonsimple example arising in (1). Wong’s result can also be
retrieved from a theorem of Brauer and Fong with less natural hypotheses. Both
proofs are highly character-theoretic. For a short, modern, character-free proof of
I.4.6, see [Asc03b]. ¤
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Define a finite group G to be of type H(2,Ω−4 (2)) if G has an involution z such
that for H := CG(z), Q := F ∗(H) ∼= Q8D8, H/Q ∼= A5, and z is not weakly closed
in Q with respect to G. We say G is of type J2 or J3 if G is of type H(2,Ω−4 (2)),
and G has 2 or 1 classes of involutions, respectively.

Lemma I.4.7. (1) Each group of type J2 is isomorphic to J2.
(2) Each group of type J3 is isomorphic to J3.

Proof. The general structure of groups of type J2 and J3 was determined by
Janko in [Jan68]. The uniqueness of J2 as a rank 3 group of permutations on the
cosets of U3(3) was proved by Hall and Wales in [HW68]. A modern treatment
of the uniqueness of groups of type J2 appears in section 47 of [Asc94].

In unpublished work, Thompson showed J3 has a Z2/L2(16)-subgroup. In
[HM69], G. Higman and J. McKay proved the uniqueness of groups of type J3 via
a coset enumeration on such a subgroup. There is a less computational uniqueness
proof for J3 in [Fro83], which at least for the time being we quote. B. Baumeister
is working on a geometric characterization of J3 that we hope might be used for
this work. ¤

Define a finite group G to be of type HS if there exists an involution z in G
and E8

∼= V ≤ G, such that H := CG(z) and M := NG(V ) satisfy:

(HS1) F ∗(H) =: Q ∼= Z4 ∗Q2
8 and H/Q ∼= S5.

(HS2) V ≤ Q, F ∗(M) ∼= Z3
4, and M/F ∗(M) ∼= L3(2).

Lemma I.4.8. Each group of type HS is isomorphic to HS.

Proof. The original 2-local characterization of HS is due to D. Parrott and
S. K. Wong in [PW70], and Z. Janko and S. K. Wong in [JW69]. Parrott and
Wong prove there is a unique simple group of order |HS| by using character theory
to show that such a group has a rank 3 permutation representation of degree 100
on the cosets of a subgroup isomorphic to M22, and then appealing to a theorem of
Wales on rank 3 groups. Janko and Wong characterize HS by the general structure
of the centralizer of a 2-central involution; they use the Thompson Order Formula
45.6 in [Asc86a] to calculate the group order, and then appeal to Parrott-Wong.

There is a short, modern, character-free proof in [Asc03a]. which uses Corol-
lary F.4.26 of this work to produce an L3(4)-subgroup, after which the construction
of an M22-subgroup is easy. ¤

We say a simple group G is of type J1 if G contains a 2-central involution z
such that CG(z) ∼= L2(4)× Z2.

Lemma I.4.9. Each simple group of type J1 is isomorphic to J1.

Proof. The original uniqueness proof is due to Janko in [Jan66]. We mention
also that in [Ben74b], Bender uses a counting argument to calculate the order of
a group of type J1; this can be used to simplify Janko’s proof. ¤

I.5. Characterizations of L4(2) and Sp6(2)

In this section we prove a recognition theorem for L4(2) and Sp6(2).
Let G be a group and F := (Gi : i ∈ I) a family of subgroups of G. As in

section 4 of [Asc94], for J ⊆ I define

GJ :=
⋂

j∈J

Gj .
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Further set QJ := O2(GJ ) and LJ := O2(GJ ).
Let D be a Coxeter diagram of type A3 or C3, and write D = A3 or D = C3, in

the respective cases. Define a D-system to be a pair (G,F), where F := (G0, G1, G2)
is a family of subgroups of G such that

(D1) G0/Q0
∼= L3(2) if D = A3, and G0/O2(G0) ∼= A6 or S6 if D = C3.

(D2) G1/Q1
∼= L2(2)× L2(2) and G2/Q2

∼= L3(2).
(D3) For each i ∈ I := {0, 1, 2}, T := GI ∈ Syl2(Gi), and Gi,j , j ∈ I −{i}, are

the rank-1 parabolics of Gi over T .
(D4) G = 〈F〉 and kerT (G) = 1.
(D5) If D = C3, then either Z(G0) 6= 1 or |Q0| > 25.

The main theorem of this section is:

Theorem I.5.1. Let (G,F) be a D-system. Then
(1) If D = A3, then G ∼= L4(2).
(2) If D = C3, then G ∼= Sp6(2).

Remark I.5.2. Theorem I.5.1 follows as a special case from more general re-
sults: Theorem 3 in [Asc84] plus Tits’ classification of spherical buildings [Tit74].
However as is our usual practice, we give here an elementary proof of this more spe-
cialized result, which we use to identify Sp6(2) in the proof of the Main Theorem
and to eliminate certain configurations of 2-local subgroups during that proof.

Hypothesis (D5) in the definition of D-system is not actually necessary, and
could be eliminated at the expense of a longer proof. However in the situations in
which we apply the Theorem, this hypothesis is obviously satisfied, so we include
it here in order to simplify the proof.

In the remainder of this section, assume (G,F) is a D-system. Form the coset
geometry Γ := Γ(G,F) as in Example 4 in section 4 of [Asc94]. For i ∈ I , let Γi be
the coset space G/Gi; we call the members of Γi points, lines, and planes for i = 0,
1, 2, respectively. These are the vertices of Γ regarded as a simplicial complex.
Adopt the notation of section 4 of [Asc94], and let Fi := {Gi,j : j ∈ I − {i} }.

Set x := G0, l := G1, and π := G2, regarding these subgroups as cosets and
hence members of Γ. Thus G0 is the stabilizer Gx in G of the point x, and similarly
G1 = Gl and G2 = Gπ. For F a simplex of Γ, write QF for O2(GF ) and G∗F

for GF /QF . Set LF := O2(GF ). Let Rx be the subgroup of Qx fixing each point
collinear with x. (That is, points y such that x and y are incident with a common
line of the geometry).

For a vertex v, let Γ(v) denote the residue of V : the subcomplex of all simplices
F − {v} such that F is a simplex of Γ containing v. Γ is residually connected if Γ
and each residue Γ(v) is connected.

Lemma I.5.3. (1) Γ is residually connected.
(2) G is flag-transitive on Γ.
(3) Γ(Gi) ∼= Γ(Gi,Fi).
(4) Γ(l) is a generalized digon with three points and three planes.
(5) Γ has a string diagram with string ordering 0, 1, 2.

Proof. By (D4), G = 〈F〉, and by (D3), Gi = 〈Fi〉 for each i ∈ I . Then (1)
follows from 4.5 in [Asc94]. By (D2) and (D3), G1 = G0,1G1,2 with |G1 : G1,i| = 3
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for i = 0, 2, so (4) follows from 4.2 in [Asc94]. Part (4) implies (5); while (1), (5),
and 4.11 in [Asc94] imply (2) and (3). ¤

The polar space for Sp4(2) is the generalized quadrangle determined by points
and isotropic lines in the natural module.

Lemma I.5.4. (1) Γ(x) is the projective plane of order 2 if D = A3, and the
polar space of Sp4(2) if D = C3.

(2) Γ(π) is the projective plane of order 2.
(3) QJ is the kernel of the action of GJ on Γ(GJ ).
(4) G is faithful on Γ.

Proof. By construction, kerGI (G) is the kernel of the action of G on Γ, so (4)
follows from (D4). Similarly kerGI (Gi) is the kernel of the action of Gi on Γ(Gi),
so as GI = T ∈ Syl2(Gi) by (D3), (3) holds. Parts (1) and (2) follow from I.5.3.3,
the description of Gi/Qi in (D1) and (D2), and the description of Gi,j in (D3). ¤

Remark I.5.5. By lemmas I.5.3.3 and I.5.4, Hypothesis (Γ0) of section 38 of
[Asc94] is satisfied. Thus we can appeal to results in that section. As in that
section, write Γi(a) for the vertices of type i in the residue Γ(a).

Lemma I.5.6. Γ0(l) ⊆ Γ0(π), and Γ2(l) ⊆ Γ2(x).

Proof. This is 38.1 in [Asc94]. ¤

Lemma I.5.7. (1) Q0,1 = Q0Q1 and Q1,2 = Q1Q2.
(2) For i = 0, 2, Qi is transitive on Γi(l)− {Gi}.
(3) G∗ll = L∗l0,1Q

∗l
2 × L

∗l
1,2Q

∗l
0 acts faithfully as L2(2)× L2(2) on Γ2(l)× Γ0(l).

(4) G0,1 = Gl,x,yQ0 for y ∈ Γ0(l).
(5) Rx ≤ Q2.
(6) Q0 ∩Q1 6= Q0 ∩Q

g
1 for g ∈ G0 −G0,1.

Proof. By I.5.4.2, Γ(π) is the plane of order 2. In this plane, each point is
collinear with x, so Rx is contained in the kernel Q2 of the action of G2 on Γ0(π).
Thus (5) holds.

We next prove (1). By (D2), G∗l1
∼= L2(2) × L2(2), so |Q1,i : Q1| = 2 for

i = 0, 2. Thus as |Q∗Gi1,i | > 2 for i = 0, 2, Q∗Gi1 6= 1. But Qj E Gj,k, so that

QiQ1 ≤ O2(G1,i) = Q1,i; and unless i = 0 and G0/Q0
∼= S6, G1,i is irreducible on

Q∗Gi1,i , so that Q∗Gi1 = Q∗Gi1,i and hence Qi,1 = Q1Qi. Thus to complete the proof of

(1), it remains to consider the case where G0/Q0
∼= S6 and Q0,1 > Q0Q1, and to

derive a contradiction. As |Q1,0 : Q1| = 2, it follows that Q0 ≤ Q1. Thus Q0 fixes
Γ0(l) pointwise, so as Q0 E G0, Q0 = Rx. Thus Q0 ≤ Q2 by (5). As G0/Q0

∼= S6,
|T : Q0| = 16. As we have shown that Q1,2 = Q1Q2, |Q∗π1 | = |Q

∗π
1,2| = 4 and |Q2 :

Q1 ∩Q2| = |Q1,2 : Q1| = 2. Thus |T : Q1 ∩Q2| = 2|T ∗π| = 16, so as Q0 ≤ Q1 ∩Q2,
Q0 = Q1∩Q2. Thus Q0 E G1,2, so Q0 is normal in 〈G0, G1,2〉 = 〈F〉 = G by (D4),
so Q0 ≤ kerT (G) = 1 again using (D4). Then G0

∼= A6 or S6 has trivial center,
contrary to (D5), so the proof of (1) is complete.

Next by I.5.6, Γ0(l) ⊆ Γ0(π), so Q2 is trivial on Γ0(l). As |Γ0(l)| = 3 and L0,1

fixes x, L0,1 = O2(G0,1) is also trivial on Γ0(l). Similarly L1,2Q0 is trivial on Γ2(l).
Then by I.5.3.3.2, Q2L0,1 acts transitively on Γ2(l) as S3, and the corresponding
statement for Q0L1,2 also holds. That is (3) is established. In particular (2) holds.
As G0,1 fixes x and acts on Γ0(l), (2) implies (4).
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Suppose Q0∩Q1 = Q0∩Q
g
1 for some g ∈ G0−G0,1. Then Q0∩Q1 E 〈G0,1, g〉 =

G0, as G0,1 is maximal in G0 by (D3). Then as Q0∩Q1 is the subgroup of Q0 fixing
Γ0(l) pointwise, Q0 ∩Q1 = Rx, so Q0 ∩Q1 ≤ Q2 by (5). As |Q1 : Q0 ∩Q1| = 2, it
follows that |Q∗π1 | ≤ 2, whereas we saw earlier that |Q∗π1 | = 4. This contradiction
establishes (6). ¤

Lemma I.5.8. (1) Each pair x, y of distinct collinear points is incident with a
unique line x¯ y of Γ.

(2) G is faithful on Γ0.

Proof. Part (1) follows from 38.8 in [Asc94]: Namely from I.5.4.1 and (D1),
Gx is primitive on points and planes of Γ(x). This observation together with I.5.7
verifies the hypotheses of 38.8 in [Asc94].

Let K be the kernel of the action of G on Γ0; then K ≤ G0. As G0/Q0 is
faithful on Γ1(x), (1) says K ≤ Q0. Thus K ≤ kerT (G) = 1 by (D4). ¤

Let Λ be the bipartite graph Γ0∪Γ1 and ∆ the collinearity graph on Γ; that is,
the points are the vertices of ∆, and points are adjacent if they are collinear. Let
x⊥ be the set of points collinear with x, and ∆(x) := x⊥ − {x}. Write ∆2(x) for
the set of points at distance 2 from x in ∆. For y ∈ ∆(x), define x¯ y as in I.5.8.1.

Lemma I.5.9. (1) Gx is transitive on ∆(x), and |∆(x)| = 14 or 30 for D = A3

or C3, respectively.
(2) If D = A3, then ∆ is of diameter 1 and G is 2-transitive on ∆ of order 15.
(3) If D = C3, then

(i) Gx is transitive on geodesics in Λ of length 4 with origin x, and there
are 25 · 15 such geodesics.

(ii) For each z ∈ ∆2(x) and each r ∈ Γ1(x), z is collinear with a unique
point on r.

(iii) |∆2(x)| = 32.
(iv) ∆ is of diameter 2 and order 63.
(v) For each l ∈ Γ1 and p ∈ ∆, p is collinear with one or all points on l.
(vi) For a, b ∈ ∆(x) − {x}, a ∈ ∆(b) iff x ¯ a and x ¯ b are coplanar in

Γ(x).

Proof. By construction, Gx is transitive on Γ1(x) of order k, where k := 7 or
15 for D = A3 or C3, respectively. Next by I.5.8.1, each y ∈ ∆(x) is on a unique
line l through x; while by I.5.3.4, l has three points, and by I.5.7.2, Gx,l is transitive
on Γ0(l)− {x}. Thus (1) holds.

Assume that D = A3. We prove (2); notice by (1) and connectivity of ∆ in
I.5.3.3.1, it suffices to show that if y ∈ Γ0(l) − {x}, then y⊥ = x⊥. Let z ∈ ∆(y);
then as Γ(y) is a projective plane, there exists a plane π incident with l and y¯ z.
Then by I.5.6, x, z are incident with π, so as Γ(π) is a projective plane, x and z are
incident with a common line x¯ z in Γ(π). This completes the proof of (2).

Finally assume that D = C3. From the first paragraph, Gx is transitive on the
30 geodesics xly in Λ of length 2. Let z ∈ ∆(y) and k := y ¯ z. If π is a plane in
Γ(y) incident with l and k, then as in the previous paragraph, z ∈ ∆(x). Thus z is
collinear with all points on each line through y coplanar with k, and if dΛ(x, z) = 4,
then k is not coplanar with l in Γ(y). By I.5.4.1, Γ(y) is the polar space for Sp4(2),
so the set S of lines k in Γ(y) not coplanar with l has size 8; now Gl,y is transitive
on S and hence so is Gx,y,l snce Gl,y = Gx,y,lQy by I.5.7.4.
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Next Ql ∩ Qy =: Qx,y is of index 2 in Qy, and by I.5.7.6, Ql ∩Qy 6= Qk ∩ Qy.
Thus Qx,y is transitive on Γ0(k)− {y}. Therefore if there exists z ∈ ∆(y) −∆(x),
then (3i) holds. So suppose instead that ∆(y) ⊆ ∆(x). Then x⊥ = y⊥, so ∆ is of
diameter 1, and hence |∆| = 31 by (1). But then

|G| = |∆| · |Gx| = 31 · 9 · 5 · |T |,

so |G| is not divisible by 7, whereas |G2| is divisible by 7. This contradiction
establishes (3i), so there exists z ∈ ∆(y) with dΛ(x, z) = 4. As Qx,y is transitive
on Γ0(k)− {y}, {y} = ∆(z) ∩ Γ0(l); thus for each r ∈ Γ1(x), z is collinear with at
most one point on r. This completes the proof of (3vi) and establishes (3v) modulo
(3iv).

Now in the polar space Γ(y), there are three lines li, 1 ≤ i ≤ 3, which are
coplanar with both l and k. Let πi be the plane through l and li in Γ(y). Then
there are three lines li,j (including l) through x in πi, and each contains a unique
point yi,j on li. As k and li are coplanar, yi,j ∈ ∆(z), so yi,j is the unique point on
li,j collinear with z.

Next the 7 lines li,j are those coplanar with l in the polar space Γ(x). Then by
symmetry between l and li,j , each line in Γ(x) coplanar with li,j contains a unique
point in ∆(z), so (3ii) holds. Now by (3ii) and I.5.8.1, there are exactly 15 geodesics
from x to z in Λ, so (3iii) follows from (3i). Further by (3ii), ∆ is of diameter 2: for
if a ∈ ∆(x), then z is collinear with a point on x ¯ a ∈ Γ1(x), so that d(a, z) ≤ 2.
Now (3iv) follows from (1) and (3iii). ¤

Let U be the F2G-permutation module on ∆. By I.5.9, U is of dimension 15 or
63 for D = A3 or C3, respectively. As usual view U as the power set of ∆. Let K
be the submodule of U generated by the vectors ul = Γ0(l), l ∈ Γ1. Set Ū := U/K.

Lemma I.5.10. If D = A3, then dim(Ū) = 4 and G acts faithfully on Ū as
GL(Ū) ∼= L4(2).

Proof. For a ∈ Γ0 ∪ Γ2, define K(a) := 〈ul : l ∈ Γ1(a)〉. Then dim(K(x)) ≤
|Γ1(x)| = 7. Let K∗ := K/K(x).

Next Γ0(π) is a basis for the permutation module U(π) := 〈Γ0(π)〉 on G2/G0,2,
andK(π) is the 4-dimensional subspace F2Γ0(π)⊕W whereW is described in H.5.3.
FurtherK(x)∩K(π) contains 〈ul : l ∈ Γ1(x, π)〉 of dimension 3, so dim(K(π)∗) ≤ 1.
However there are 7 planes through x, and each line r is on at least one of those
planes, so K∗ = 〈K(π)∗ : π ∈ Γ2(x)〉 is of dimension at most 7. Thus dim(K) ≤ 14,
so Ū 6= 0.

Suppose that x, y ∈ ∆ with x̄ = ȳ. Then x+ y ∈ K. But x+ y = z̄, where z is
the third point on x ¯ y. Thus z ∈ K, so ∆ = zG ⊆ K, contrary to Ū 6= 0. Hence
the map ϕ : x 7→ x̄ is an injection of ∆ into Ū . On the other hand for all x 6= y ∈ ∆,
x+ y ∈ ∆̄, so ∆̄ ∪ {0} is a subspace of Ū , and hence Ū# = ∆̄. Thus |Ū#| = 15,
so dim(Ū) = 4. Further by I.5.8.2, G is faithful on ∆, so as ϕ is an injection, G
is faithful on Ū . Thus G ≤ H := GL(Ū) ∼= L4(2). Further G0 is the stabilizer in
G of x̄ ∈ Ū#, so G0 ≤ Hx̄. As G0/Q0

∼= L3(2), G0 is irreducible on O2(Hx̄) and
Q0 = G0 ∩ O2(Hx̄), so either G0 = Hx̄ or Q0 = 1. The latter is impossible by
I.5.7.2, and in the former G0 = H as G0 is transitive on Ū#. Thus the lemma is
established. ¤

Because of I.5.10, we may assume during the remainder of the section that
D = C3.
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Let Σ be the set of pairs (a, b) with a ∈ ∆ and b ∈ ∆2(a). For (x, y) ∈ Σ, let
∆(x, y) := ∆(x) ∩∆(y) and

L(x, y) := {a¯ b : a, b ∈ ∆(x, y) with a and b collinear}.

By I.5.9.3:

Lemma I.5.11. (∆(x, y),L(x, y)) is the geometry of points and lines for Sp4(2).

For (x, y) ∈ Σ, define

x¤y :=
⋂

z∈∆(x,y)

z⊥.

That is, x¤y is the nonsingular line through x and y in Γ. Further for (a, b) ∈ Σ,
set Σ(a, b) := Σ ∩ (∆(a, b) × ∆(a, b)); observe that if (x, y) ∈ Σ(a, b), then also
(a, b) ∈ Σ(x, y). For (x, y) ∈ Σ(a, b), define

na,b(x, y) :=
⋂

d∈∆(x,y)∩∆(a,b)

d⊥ ∩∆(a, b).

Thus na,b(x, y) is the nonsingular line through x and y in ∆(a, b).

Lemma I.5.12. For (x, y) ∈ Σ, either
(1) x¤y = {x, y}, or
(2) x¤y = na,b(x, y) for all (a, b) ∈ Σ(x, y), so x¤y is of order 3.

Proof. By definition, x, y ∈ x¤y ⊆ na,b(x, y). By I.5.11, na,b(x, y) is of order
3. Now if na,b(x, y) is independent of (a, b), then (2) holds; and otherwise (1)
holds. ¤

Lemma I.5.13. For each (x, y) ∈ Σ, x¤y is of order 3.

Proof. Assume the lemma is false. Then by I.5.12 and I.5.9.3i, x¤y = {x, y}
for all (x, y) ∈ Σ. Let Ξ := ∆(x, y) and R the subgroup of Q0 acting on Ξ. Thus
Rx ≤ R. Further for each l ∈ Γ0(x), R fixes l and hence also fixes the unique point
of Ξ on l, so R fixes l pointwise. Thus R = Rx.

As Rx fixes each point of Ξ, Rx acts on x¤y; so as x¤y = {x, y}, Rx fixes y.
As this holds for each y ∈ ∆2(x), Rx is in the kernel of the action of G on ∆, so
Rx = 1 by I.5.8.2.

Next Gx,y ∩ Q0 ≤ R = Rx = 1, so by I.5.9, 32 = |G0 : Gx,y| ≥ |Q0|. Thus
Z := Z(Gx) 6= 1 by (D5). As Z(Gx/Qx) = 1, Z ≤ Qx, and in particular Z fixes
Γ2(l) pointwise. Similarly as Z(G∗π0,2) = 1, Z ≤ Q2, so Z fixes Γ0(l) pointwise, and
hence Z ≤ Qx ∩Ql. But then as Z E Gx, Z ≤ Rx, contradicting Rx = 1. ¤

Lemma I.5.14. For each (x, y) ∈ Σ and each d ∈ ∆, d is collinear with one or
all members of x¤y.

Proof. In view of I.5.13, x¤y = {x, y, z} for some point z. By I.5.12.2,
x¤y = na,b(x, y) for all (a, b) ∈ Σ(x, y); but we saw that (x, y) ∈ Σ(a, b), so from
the polar-space structure on ∆(a, b) in I.5.11, distinct members of x¤y are not
collinear. Then each distinct pair (a, b) from x¤y lies in Σ(x, y), so by transitivity
of G on Σ in I.5.9.3i, Σ(x, y) = Σ(a, b) for each such pair (a, b). For a ∈ x¤y, let
θ(a) := ∆(a)−Σ(x, y). Thus |θ(a)| = 15, so as |∆2(x)| = 32 by I.5.9.3iii, it follows
that

{x¤y,Σ(x, y), θ(x), θ(y), θ(z)}
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is a partition of ∆. Finally if p ∈ Σ(x, y), p is collinear with all members of x¤y,
while if p is in any other member of the partition, then p is collinear with exactly
one member of x¤y. This completes the proof. ¤

Let J be the submodule of U generated by K and x¤y, (x, y) ∈ Σ. Define

Ũ := U/J .
Define a symmetric bilinear form f on U by f(x, y) = 0 if x and y are collinear,

and f(x, y) = 1 otherwise. For z ∈ ∆, z is collinear with one or all of the points on
x¯y by I.5.9.3ii, so f(z, ux¯y) = 0 and hence K is in the radical of f . Similarly by
I.5.14, x¤y is in the radical of f for each (x, y) ∈ Σ. Thus J is a proper subspace

of U , and there is an induced form f on Ũ defined by f(ũ, ṽ) := f(u, v).

Lemma I.5.15. If D = C3, then (Ũ , f) is a 6-dimensional symplectic space over

F2, and G acts faithfully on Ũ as Sp(Ũ , f) ∼= Sp6(2).

Proof. The proof is much like that of I.5.10. First as we just observed, J < U ,
so Ũ 6= 0. Next as x¯ y ∈ J for y ∈ ∆(x), and x¤z ∈ J for z ∈ ∆2(x), x̃ + ỹ ∈ ∆̃
for each pair of distinct x, y ∈ ∆. Then an argument in the last paragraph of the
proof of I.5.10 shows that ϕ : ∆ → Ũ defined by ϕ : x 7→ x̃ is a bijection of ∆
with Ũ#. In particular by I.5.8.2, G is faithful on Ũ . As |∆| = 63, dim(Ũ) = 6.

As f(x̃, ỹ) = 1 for (x, y) ∈ Σ, f is a nondegenerate form on Ũ , so (Ũ , f) is a

6-dimensional symplectic space. Thus G ≤ H := Sp(Ũ , f) and G0 ≤ Hx̃. By
I.5.7.6, G∞0 is nontrivial on Q0, and Z(Gx) 6= 1 by (D5); so |Q0| ≥ 32, and hence
Q0 = O2(Hx̃) and |Hx̃ : G0| ≤ 2. Therefore |H : G| ≤ 2, so as H is simple,
H = G. ¤

Notice I.5.10 and I.5.15 complete the proof of Theorem I.5.1.

I.6. Some results on TI-sets

Lemma I.6.1. Let X be a 2-subgroup of a group G and M = NG(X). Then
each of the following implies that X is a TI-set in G:

(1) For each x ∈ X#, CG(x) ≤M and M controls fusion of elements of X.
(2) M = !M(L) for some L ≤ CG(X).

Proof. First A.1.7.2 implies (1). Next assume the hypotheses of (2). As
M =!M(L) and L centralizes X , CG(x) ≤M for each x ∈ X#. If xg ∈ X then

M = !M(L) = !M(CG(x
g)) = !M((Lg) =Mg ,

so g ∈M as M ∈ M. Thus M controls fusion in X , so X is a TI-set by (1). ¤

A natural module for a dihedral group G of order 2m, m > 1 odd, is a faithful
irreducible F2G-module.

Lemma I.6.2. Let V , A be elementary abelian 2-subgroups of the same rank
which are TI-subgroups of a finite group G, such that Ag ∩V = 1 for all g ∈ G with
V 6= Ag. Assume U := NV (A) 6= 1 and set X := 〈V,A〉 and Y := UNA(V ).

(1) If U = V then X = V ×A. In particular, this holds if CA(V ) 6= 1.
(2) If U < V , then

(a) Y = U ×NA(V ) E X and U = CY (v) = [Y, v] for each v ∈ V − U .
(b) X̄ := X/Y ∼= D2m (m odd), L2(2

n), or Sz(2n), and m(V̄ ) = m2(X̄).
(c) The X̄-composition factors of Y are natural modules for X̄, and afford

a direct sum if Ȳ ∼= L2(2
n) or D2m.
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Proof. This is essentially lemma 2.14 in Timmesfeld [Tim75];
here is a proof:
Set B := NA(V ). As V ∩ A = 1, Y = B × U ; then as V is a TI-subgroup of

G, B = CA(u) 6= 1 for each u ∈ U#. As u is an involution, [A, u] ≤ CA(u) = B,
and hence A acts on Y ; by symmetry so does V , and thus Y E X . Notice also
for v ∈ V − U that CY (v) = UCB(v) = U , since U = CV (b) for b ∈ B# again by
symmetry. Thus conclusion (a) of (2) holds and m(U) = m(CY (v)) ≥ m(B×U)/2,
so m(U) ≥ m(B). By symmetry m(B) = m(U) = m(BU)/2.

If U = V then B = A since m(V ) = m(A) by hypothesis, establishing (1).
Thus we may assume that U < V , so V and A are noncyclic.

We claim that V̄ is a TI-set in X̄ and V̄ is the strong closure of V̄ ∪ Ā in
NX̄(V̄ ): For let C ∈ {A, V } and suppose that c̄x ∈ NX̄(V̄ ) for some x ∈ X and
c̄ ∈ C̄#. Then (C ∩ Y )x = CY (c

x), while cx acts on CY (V̄ ) = U , so CU (c
x) 6= 1.

Thus 1 6= V ∩ Cx, and hence C ∈ V G by hypothesis, and x ∈ NX(V ) as V is a
TI-set in G, establishing the claim.

By the claim, Ā ∈ V̄ X̄ and V̄ satisfies the hypotheses of Shult’s Fusion Theorem
I.8.3 in X̄. Let n := m(V̄ ). If n = 1, then X̄ = 〈V̄ , Ā〉 ∼= D2m, and m > 1 is odd

since Ā ∈ V̄ X̄ ; thus (2) holds in this case. Otherwise I.8.3 shows that X̄ is L2(2
n),

Sz(2n), or (S)U3(2
n). Then since X̄ = 〈V̄ , Ā〉, X̄ is L2(2

n) or Sz(2n). Thus (b)
holds. Finally (c) follows as CY (v) = U for v ∈ V −U ; for the direct sum, cf. G.1.3
when X̄ is L2(2

n), and observe that a Sylow 2-subgroup of order 2 acts freely when
X̄ is D2m. ¤

I.7. Tightly embedded subgroups

In this section, we state and prove some elementary lemmas on tightly embed-
ded subgroups from [Asc75] and [Asc76]. The proofs are sometimes simpler than
the originals, but in keeping with the style of exposition in this work, we supply
more details.

Throughout this section we assume
G is a finite group and K is a tightly embedded subgroup of G.

Recall this means that K has even order, while K ∩ Kg is of odd order for each
g ∈ G−NG(K). We work in the following setup:

H ≤ G, 1 6= Q ∈ Syl2(H ∩K), and S is a 2-subgroup of H containing Q.
For example this setup is satisfied when H = G, Q ∈ Syl2(K), and S is any
2-subgroup of G containing Q. We also often use the following observation:

Remark I.7.1. If g ∈ H , then Qg is Sylow in H ∩Kg, so Qg, Kg satisfy the
hypotheses of our setup in the roles of “Q, K”.

Lemma I.7.2. (1) Q = S ∩K
(2) If g ∈ H with Q 6= Qg ≤ S, then Q ∩Qg = 1.
(3) Q is a TI-subgroup of S under NG(S).
(4) If T is a nontrivial TI-subgroup of S then T is tightly embedded in S.
(5) For each 1 6= X ≤ Q, NG(X) ≤ NG(K) and NS(X) ≤ NS(Q).

Proof. As Q is Sylow in H ∩K, and S is a 2-subgroup of H containing Q, (1)
holds. Assume the hypotheses of (2). If Q∩Qg 6= 1, then as K is tightly embedded
in G, K = Kg, so by (1) and I.7.1, Q = S ∩ K = S ∩ Kg = Qg, contrary to
assumption. Thus (2) holds. A similar proof establishes (3), and (4) is immediate
from the definitions. Assume 1 6= X ≤ Q. For g ∈ NG(X), 1 6= X ≤ K ∩Kg, so



426 I. STATEMENTS OF SOME QUOTED RESULTS

g ∈ NG(K) as K is tightly embedded. Then if g ∈ S, g normalizes S ∩ K = Q,
completing the proof of (5). ¤

Lemma I.7.3. If |S : Q| ≤ |Q|, then Q E S.

Proof. This is essentially 4.4.1 in [Asc75]. If Q is weakly closed in NS(Q)
with respect to S, then NS(NS(Q)) ≤ NS(Q), so that S = NS(Q), and the lemma
holds. Thus we may assume there is s ∈ S with Q 6= Qs ≤ NS(Q). Thus Q∩Qs = 1
by I.7.2.2, so

|S| ≥ |NS(Q)| ≥ |QQs| = |Q|2 ≥ |S : Q||Q| = |S|,

so that all inequalities are equalities. In particular S = NS(Q), completing the
proof. ¤

Lemma I.7.4. Assume Q 6= Qg ≤ NS(Q) for some g ∈ H. Then 〈Q,Qg〉 =
Q×Qg.

Proof. This is essentially 4.4.2 in [Asc75]. As Qg ≤ NS(Q), 〈Q,Qg〉 = QQg.
As |QQg| ≤ |Q|2, the triple Qg, QQg, Kg satisfies the hypotheses of “Q, S, K” in
I.7.3, so Qg E QQg by that lemma. Then as Q ∩Qg = 1 by I.7.2.2, the lemma is
established. ¤

Lemma I.7.5. Assume Φ(Q) 6= 1. Then for distinct Qh, Qk ∈ QH∩S, 〈QhQk〉 =
Qh ×Qk.

Proof. As Qh ∩ Qk = 1 by I.7.2.2, so we must show that distinct members
of QH ∩ S commute. This is essentially 2.5 in [Asc76]. Let ∆ := QH ∩ S, Γ a
maximal set of pairwise commuting members of ∆, and W := 〈Γ〉. Conjugating in
H if necessary, we may assume that Q ∈ Γ. As distinct members of Γ commute, Γ ⊆
∆∩W ⊆ N∆(Γ). Suppose Γ = N∆(Γ). Then Γ = ∆∩W , so that NS(W ) = NS(Γ),
and hence Γ = ∆ ∩ NS(W ), so that NS(NS(W )) ≤ NS(Γ) = NS(W ). Therefore
S = NS(W ) and Γ = ∆, so the lemma holds in this case.

Thus we may assume there is T ∈ N∆(Γ) − Γ, and it remains to derive a
contradiction. We first show:

If NT (Q) 6= 1, then [T,Q] = 1. (∗)

For if NT (Q) 6= 1, there is an involution x in NT (Q). Let z be an involution in
CZ(Q)(x); as distinct members of Γ commute, z ∈ Z(W ). Then as z centralizes
x, z ∈ NS(T ) by I.7.2.5, and hence [z, T ] ≤ Z(W ) ∩ T . Thus if [z, T ] 6= 1 then
Q ≤ CS([z, T ])) ≤ NS(T ) by I.7.2.5, so Q centralizes T by I.7.4. On the other
hand, if [z, T ] = 1, then T ≤ CS(z) ≤ NS(Q) by I.7.2.5, so that T centralizes Q by
I.7.4. Thus (*) is established.

By maximality of Γ, T does not centralize some member of Γ, say Q. Thus
NT (Q) = 1 by (*), so T acts regularly on QT . Then as Q E W , T ∩W = 1.
Now Φ(Q) 6= 1 by hypothesis, so there is x of order 4 in T ; then t := x2 is an
involution in T . As NT (Q) = 1, Q 6= Qt, so as Q E W , 〈Q,Qt〉 = Q×Qt by I.7.4.
Therefore Y := {qqt : q ∈ Q} = CQQt(t) ≤ CW (t). By I.7.2.5, CW (t) acts on T , so
[T,CW (t)] ≤ T ∩W = 1. Thus x centralizes CW (t) and in particular centralizes Y .

Let u be an involution in Q, and set A := 〈u〈x〉〉. As T is regular on QT , A is
elementary abelian, and u 6= ut, so that 〈x〉 is faithful on A. Also uut ∈ Y ≤ CA(x),
so uut = uxutx, and hence m(A) ≤ 3. Then as t is an involution, B := CA(t)
satisfies m(B) ≥ m(A)/2 ≥ m(A)− 1. Hence x centralizes A/B, and x centralizes
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B as B ≤ CW (t). Thus 〈x〉 is faithful and quadratic on A, impossible as x is of
order 4. ¤

Lemma I.7.6. If g ∈ H with Q 6= Qg ≤ S and NQg (Q) 6= 1, then QQg = Q×Qg.

Proof. If Φ(Q) 6= 1, the result follows from I.7.5, while if Φ(Q) = 1 it follows
from I.6.2.1 as 〈Q,Qg〉 is a 2-group. ¤

Lemma I.7.7. Assume g ∈ G − NG(K) and 1 6= R ∈ Syl2(NK(Kg)). Let
R ≤ S ∈ Syl2(K

gR), and set S0 := S ∩Kg and S1 := NS0(R). Then

(1) NS(R) = S1 ×R with S1 = CS0(R).
(2) S1 ∼= R.
(3) S1 ∈ Syl2(NKg (K)).
(4) If S1 < S0, then R is abelian.
(5) Assume S1 < S0 and let W := 〈RS〉. Then one of the following holds:

(a) |R| = 2 and S is dihedral or semidihedral.
(b) W = RS1 = R× S1 ∼= R×R.
(c) R ∼= E2n for some n ≥ 2, W is special of order 23n with center S1, and

|S : W | = 2.

(6) S1 E S0.

Proof. This is essentially Theorem 3 in [Asc75], together with part (1) of
Theorem 2 in [Asc75]. Observe that the setup we’ve been working in is satisfied
with KgR, R, S in the roles of “H , Q, S”, so we can appeal to the earlier lemmas
in this section.

As K is tightly embedded in G and K 6= Kg, R ∩ Kg = 1, so S0 ∩ R = 1.
Thus [S1, R] ≤ S0 ∩ R = 1, so S1R = S1 × R and S1 = CS0(R). Further using the
Dedekind Modular Law, S = RS0 and NS(R) = RNS0(R) = RS1, completing the
proof of (1).

Suppose that S1 = S0. Then parts (4) and (5) of the lemma are vacuous,
and (6) is immediate. As S0 ∈ Syl2(K

g), (3) holds. Further S0 normalizes some
R1 ∈ Syl2(K) containing R, and applying I.7.3 to S0, S0R1 in the roles of “Q, S”,
we conclude that R1 ≤ NK(S0), so R1 ≤ NK(Kg) by I.7.2.5. Then R = R1 by
definition of R, so that (2) holds.

Thus we may assume that S1 < S0, so there is x ∈ NS(RS1) − RS1 and
R 6= Rx ≤ RS1. By I.7.4, 〈R,Rx〉 = R × Rx, so |S1| = |NS(R) : R| ≥ |R

x| = |R|.
Let S1 ≤ S2 ∈ Syl2(NKg (K)); then

|NKg (K)|2 = |S2| ≥ |S1| ≥ |R| = |NK(Kg)|2. (∗)

Indeed (*) also holds when S1 = S0 by the previous paragraph.
By (*), |NKg(K)|2 > 1, so we have symmetry between K and Kg; then by

that symmetry and (*), |NK(Kg)|2 ≥ |NKg (K)|2. Hence all inequalities in (*) are
equalities, so that |S1| = |R| and S1 = S2 ∈ Syl2(NKg (K)), establishing (3). As
|S1| = |R|, S1×R = Rx×R, so Rx ∼= S1R/R ∼= S1, proving (2). Also S1R = S1R

x

and S1 and Rx centralize R, so R ≤ Z(S1R), proving (4).
If |R| = 2, then CS(R) = RS1 ∼= E4, so S is dihedral or semidihedral by a

lemma of Suzuki. (cf. Exercise 8.6 in [Asc86a]). Thus conclusion (a) of (5) holds
in this case, and then S1 = Z(S) ∩ S0 E S, so (6) holds. Thus we may assume
that |R| > 2.
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Recall W = 〈RS〉. If W = RS1, then conclusion (b) of (5) holds, and S1 =
S ∩ W E S, so (6) holds. Thus we may assume that RS1 < W . However if
Φ(R) 6= 1, then W ≤ NS(R) = RS1 by I.7.5 and (1), contrary to assumption;
thus Φ(R) = 1, so R ∼= E2n for some n ≥ 2. Also there is y ∈ NS(RS1) − RS1
with Ry ≤ NS(RS1), but R

y 6≤ RS1 = NS(R). Then by I.7.6, NRy (R) = 1, so
|RR

y

| = 2n. Then as R ∩ Ra = 1 for a ∈ Ry#,

|(
⋃

b∈Ry

Rb#) ∪ S#
1 | = (2n − 1)(2n + 1) = 22n − 1 = |(RS1)

#|,

so each element in RS1 − S1 is in a unique Rb with b ∈ Ry. Therefore RS ∩
RS1 = RR

y

for any such y, and CS1R(a) ≤ S1 for a ∈ Ry#, so as m(CS1R(a)) ≥
m(S1R)/2 = n, we conclude S1 = CS1R(a) = [S1R, a]. It follows that U := S1RR

y

is special of order 23n, and S1 = Z(U). As RS1 = NS(R) and R
y is transitive on

RS ∩ RS1, NS(RS1) = U . Then as RS1 and RyS1 are the maximal elementary
abelian subgroups of U , |NS(U) : U | = 2. Thus if U = W , then (5c) and (6) hold,
so we may assume that U < W , and it remains to derive a contradiction.

As U < W , there is s ∈ S with Rs ≤ NS(U) but Rs 6≤ U . As |NS(U) : U | =
2 < |Rs|, there is an involution i ∈ Rs∩U . Then as RS1 and R

yS1 are the maximal
elementary abelian subgroups of U , i is contained in one of these subgroups, say
RS1. But then 1 6= i ∈ NRs(R), so R

s ≤ NS(R) = RS1 ≤ U by I.7.6 and (1),
contrary to the choice of Rs. ¤

I.8. Discussion of certain results from the Bibliography

In this section we discuss several results from our bibliography, and provide
proofs of some of the easier results, rather than quoting them as Background Ref-
erences.

I.8.1. Some results related to strongly embedded subgroups. In this
subsection, for the convenience of the reader we provide a brief discussion of several
results related to the notion of a “strongly embedded subgroup”. This notion is
originally due to Thompson.

Recall (see Definition 17.1 in [GLS96]) that a proper subgroup M of a finite
group G is strongly embedded in G if M has even order, and for some T ∈ Syl2(M),
NG(Q) ≤M for each 1 6= Q ≤ T . There are various equivalent formulations of this
definition, such as:

Lemma I.8.1. Let G be a finite group, M a proper subgroup of G of even order,
and T ∈ Syl2(M). Then the following are equivalent:

(1) M is strongly embedded in G.
(2) |M ∩Mg| is odd for each g ∈ G−M .
(3) NG(T ) ≤M and CG(i) ≤M for each involution i ∈ T .
(4) Each involution in G fixes a unique point in the permutation representation

of G on G/M .

Proof. See 17.11 in [GLS96] or 46.1 in [Asc86a]. ¤

For the most part we will need only elementary results on strongly embedded
subgroups due to Feit and Thompson. In particular, we will usually only need
Exercise 16.5 in [Asc86a] or Lemma 7.6 in [Asc94]. Occasionally however we
will need deeper results, like the classification of groups with a strongly embedded
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subgroup due to Bender [Ben71] and Suzuki [Suz62]; this is stated as Theorem
SE on page 20 of [GLS99] in our Background References.

Sometimes we will need one of a number of theorems related to the Bender-
Suzuki Theorem. Historically the first such theorem was due to Shult in [Shu];
a special case appears as Theorem I.8.3 below. Shult proved his theorem before
Bender completed the classification of groups with a strongly embedded subgroup.
However Shult’s Fusion Theorem can be derived as a corollary to Theorem I.8.2
below, which is essentially part (2) of Theorem 2 in [Asc75]. Theorem I.8.2 is in
turn a corollary of any one of a number of results originally proved by Aschbacher,
such as the main result Theorem 1 of [Asc73]. We will derive Theorem I.8.2 from
Theorem ZD in [GLS96]; a somewhat weaker version of Theorem ZD was proved
by Aschbacher as Theorem 3.3 in [Asc75].

Recall a subgroup K of a finite group G is tightly embedded in G if K is of
even order but K ∩Kg is of odd order for each g ∈ G −NG(K). Also recall that
a Bender group is a simple group of Lie type in characteristic 2 of Lie rank 1: i.e.,
L2(2

n), Sz(2n), or U3(2
n).

Theorem I.8.2. Let G be a finite group, K a tightly embedded subgroup of G,
Z := I(K)G where I(K) is the set of involutions in K, and L := 〈Z〉. Assume K
is not normal in G, and NJ(K) is of odd order for each J ∈ KG − {K}. Then
either

(1) L is of 2-rank 1 and L = O(L)〈z〉, where z ∈ I(K), or
(2) L/O(L) is a Bender group, O(L) ≤M := NG(K), and (M ∩L)/O(L) is a

Borel subgroup of L/O(L).

Proof. We first claim that Z is product-disconnected in G with respect to
M , in the sense of Definition ZD on page 20 of [GLS99]: As K is of even order,
Z ∩M ⊇ I(K) 6= ∅, giving condition (a) of that definition. Let z ∈ Z ∩M ; then
z ∈ Kg for some g ∈ G. But by hypothesis, |NJ(K)| is odd for J ∈ KG − {K},
so Kg = K and hence g ∈ NG(K) = M . This gives condition (b) of the definition
and shows that

Z ∩M = I(K). (∗)

Finally if v ∈ CZ(z) − {z}, then as K is tightly embedded by hypothesis, v ∈ M
by I.7.2.5. Hence v ∈ Z ∩M = I(K) by (*), so that also vz ∈ I(K) ⊆ Z . Since
any member of Z is conjugate to a member of I(K), we conclude Z is closed under
products of commuting pairs. In particular if 1 6= xy ∈ M for some commuting
pair x, y from Z , then xy ∈ I(K) by (*), so that CG(xy) ≤ M . This establishes
condition (c) of the definition, completing the proof of the claim.

Set Ḡ := G/O(L), X := [L,L],ML :=M∩L, andMX :=M∩X . By the claim,
Z is product-disconnected in G with respect to M , so L̄ and M̄L are described in
Theorem ZD in [GLS99]. If L is of 2-rank 1, then by the Brauer-Suzuki Theorem
(XII.7.1 in [Fei82]), z̄ ∈ Z(L̄), so L̄ = 〈Z̄〉 = 〈z̄〉, and hence (1) holds. Thus we
may assume that m2(L) =: n > 1. Then by Theorem ZD in [GLS99], X̄ is a
Bender group, O(L) ≤ MX , and M̄X is a Borel subgroup of X̄ . Further there is
u ∈ M with u2 = 1 such that L̄ = 〈ū〉 × X̄ with Z̄ ⊆ ūX̄ − {ū}. In particular if
u = 1, then (2) holds, so we may assume that u is an involution, and it remains to
derive a contradiction.

Let z ∈ I(K), z, u ∈ S ∈ Syl2(ML), and V := Ω1(S∩X). Since Z̄ ⊆ ūX̄−{ū},
z = ui for some involution i in V . As M̄X is a Borel subgroup of the Bender group
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X̄, V̄ = [M̄X , ī] = [M̄X , z̄], so as z ∈ K E M , V ≤ K. Therefore u ∈ 〈z〉V ≤ K;
thus u ∈ Z , contrary to Z̄ ⊆ ūX̄ − {ū}. This contradiction completes the proof of
Theorem I.8.2. ¤

Theorem I.8.3 (Shult’s Fusion Theorem). Assume G is a finite group, T ∈
Syl2(G), and V is an elementary abelian TI-subgroup of G strongly closed in T
with respect to G. Assume further that m2(V ) =: n > 0, and V is not normal in
G. Set L := 〈V G〉. Then either

(1) n = 1 and L = O(L)V .
(2) n > 1, L is quasisimple, L ∼= L2(2

n), Sz(2n), or (S)U3(2
n), and V =

Ω1(T ∩ L).

Proof. Set L̄ := L/O(L) andML := NL(V ). As V is a TI-subgroup of G, V is
tightly embedded in G. As V is strongly closed in T with respect to G, NJ(V ) = 1
for J ∈ V G−{V }. Thus L is described in Theorem I.8.2. If m := m2(L) = 1, then
(1) holds, so we may assume that m > 1. Thus by I.8.2, L̄ is a Bender group, and
M̄L a Borel subgroup of L̄ with O(L) ≤ ML. Then VT := Ω1(T ∩ L) is abelian of

rank m, and M̄L is transitive on V̄ #
T , so as ML = NL(V ) it follows that V = VT

and hence n = m. Finally as O(L) ≤ML, [O(L), V ] ≤ O(L) ∩ V = 1, so L = 〈V G〉
centralizes O(L), and hence L is quasisimple. Then inspecting the Schur multipliers
of Bender groups in I.1.3, we conclude that L is either simple or SU3(2

n), so (2)
holds. ¤

Remark I.8.4. Assume that V is a strongly closed abelian subgroup of T .
Then NG(V ) controls fusion in V by Burnside’s Fusion Lemma A.1.35. Thus by
I.6.1.1, V is a TI-subgroup of G iff CG(v) ≤ NG(V ) for each v ∈ V #. This gives an
equivalent set of hypotheses for applying Theorem I.8.3 which is sometimes more
convenient.

Lemma I.8.5. Let G be a finite group, M a proper subgroup of G, and V a
nontrivial normal elementary abelian 2-subgroup of M such that

Each v ∈ V # fixes a unique point in G/M by right multiplication. (∗)

Set L := 〈V G〉; then:

(1) Either

(i) |V | = 2 and L = O(L)V , or
(ii) L is a quasisimple Bender group, V = Ω1(TL) for some TL ∈ Syl2(L),

and M ∩ L = NL(V ) is a Borel subgroup of L.

(2) M/CM (V ) is solvable.

Proof. By (*) and 7.3 in [Asc94], V is strongly closed in M with respect to
G and CG(v) ≤ M for each v ∈ V #. Hence by Remark I.8.4, we can appeal to
Theorem I.8.3 to conclude that (1) holds. Thus it remains to prove (2). If |V | = 2,
thenM = CG(V ), so we may assume that L is a Bender group. Thus AutAut(L)(V )
is solvable, so (2) also holds in this case. ¤



CHAPTER J

A characterization of the Rudvalis group

In this chapter we obtain a 2-local characterization of the Rudvalis sporadic
simple group Ru; that is we, prove that Ru is the unique group satisfying certain
2-local hypotheses, and use this result to recognize Ru in the proof of Theorem
14.7.75.

J.1. Groups of type Ru

Define a finite group G to be of type Ru if

(Ru1) There is a subgroup L of G such that S := O2(L) is special with center
V , V is the natural module for L/S ∼= L3(2), S/V is the Steinberg module, and
L = NG(V ).

(Ru2) Let T ∈ Syl2(G), Z := Z(T ), H := CG(Z), Q := O2(H), U := 〈V H〉,
H̃ := H/Z, and H∗ := H/Q. Assume H∗ ∼= S5, Ũ is the L2(4)-module for H∗, and
Q/U is a 6-dimensional indecomposable for H∗.

The main theorem of this chapter is:

Theorem J.1.1. Each group of type Ru is isomorphic to Ru.

Rudvalis [Rud84] discovered the Rudvalis group Ru: that is in studying rank
3 permutation groups, he discovered that the properties defining “Rudvalis rank 3
groups” (in the sense of Definition J.5.1 in section 5) appeared to be consistent,
and he generated considerable information about such groups. In [CW73], Conway
and Wales proved the existence of Rudvalis rank 3 groups; uniqueness follows from
a result of Wales in [Wal69] For completeness, we have included a proof of the
uniqueness of Rudvalis rank 3 groups in the final section of this chapter.

In [Par76], Parrott characterizes Ru via the centralizer of a 2-central involu-
tion; these hypotheses are weaker than our hypotheses of “type Ru”. In this chapter
we give a shorter, less computational proof of our weak version of Parrott’s theo-
rem. To produce a subgroup of G isomorphic to 2F4(2), Parrott generates a portion
of the character table of G, and then uses the Brauer trick to show that a suitable
subgroup F of G is proper. Then he uses his involution-centralizer characterization
[Par72] of the Tits group 2F4(2)

′ to identify F as 2F4(2).
We instead identify F using Theorem F.4.8. In particular, we avoid the char-

acter theory and its associated computations, and we avoid reliance on Parrott’s
work in [Par72] on the Tits group.

For X ≤ G, let I(X) denote the set of involutions in X .
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432 J. A CHARACTERIZATION OF THE RUDVALIS GROUP

J.2. Basic properties of groups of type Ru

In this section, we assume G is a group of type Ru.

We choose T so that NT (V ) ∈ Syl2(L). Then:

Lemma J.2.1. (1) T ≤ L.
(2) Z = CV (T ) is of order 2.

Proof. We chose NT (V ) ∈ Syl2(L), Z = Z(T ) by (Ru2), and from the struc-
ture of L described in (Ru1), |CV (T )| = 2. Thus (2) holds. Then using (Ru2),
|H |2 = 214 = |L|2, so (1) holds. ¤

Set K := O2(H), L1 := O2(CL(Z)), R1 := O2(L1), HC := CH(U), and choose
B ∈ Syl3(L1). Let z be a generator of Z.

Lemma J.2.2. (1) H ∩ L = L1T and QS = O2(L1T ) = R1. In particular,
Q ≤ K.

(2) U ∼= E32.
(3) HC/U = CQ/U (K) and Q/HC is the L2(4)-module for K

∗.
(4) Q induces the group of transvections on U with center Z.
(5) For each L-conjugate Uα of U distinct from U , U∗α is of order 2 and V =

Uα ∩HC .

Proof. We use (Ru1) and (Ru2) without further reference to deduce various

properties: As H is transitive on Ũ#, and V ≤ U with Φ(V ) = 1, Φ(U) = 1. Then

since Ũ ∼= E16, and Z is of order 2 by J.2.1.2, (2) holds.
As V is the natural module for L/S, H = CG(Z), and T ≤ L by J.2.1.1,

H ∩ L = L1T is the minimal parabolic of L centralizing Z. Further V = [V, L1],
and as S is the Steinberg module for L/S, also S/V = [S/V, L1]. Hence S = [S,L1],
so that S ≤ O2(L1) = R1. Then as O2(L1T ) = R1S, R1 = O2(L1T ). If S = Q
then V = Z(S) = Z(Q) E H , contradicting U = 〈V H〉 of rank 5. Thus as
|S| = 211 = |Q|, S 6≤ Q, so as L1 is irreducible on R1/Q, R1 = QS, completing the
proof of (1).

Next as V = Z(S), [V,Q] = [V,QS] = [V,R1] = Z, so that [U,Q] = Z since

U = 〈V H〉. Then as H is irreducible on Ũ , CU (Q) = Z, establishing (4).
Observe that Hypothesis F.9.1 is satisfied, with Z, H , H , V , V in the roles of

“V1, Gz , H , V+, V ”. Then by F.9.7, U/HC is dual to U/CU (Q) = U/Z = Ũ as
an H-module, so since Q/U is a 6-dimensional indecomposable for H∗, HC/U =
CQ/U (K), and hence (3) holds.

Let Uα := U l ∈ UL−{U}, Zα := Zl, and Q+ := Q/HC . Then Uα E CG(Zα),
and as V E L, V ≤ U ∩ Uα and m(Uα/V ) = m(U/V ) = 2. As H ∩ L = L1T
and L/S ∼= L3(2), L is 2-transitive on L/(H ∩ L), and hence also on UL. Next
U ≤ CT (V ) = S, so as L is irreducible on S/V and V < U , S = 〈UL〉. Thus
Uα 6≤ Q, since QS 6≤ Q and L is 2-transitive on UL. So 1 6= U∗α ≤ S∗ = R∗1. On
the other hand S/V is abelian, so [U,Uα] ≤ V .

Suppose U∗α = R∗1. Then m(U∗α) = 2 = m(Uα/V ), so V = Uα ∩ Q. On the
other hand as Zα ≤ U , CQ(Zα) is of index 2 in Q by (4). Then [CQ(Zα), Uα] ≤
Uα ∩ Q = V , so Uα centralizes the hyperplane CQ(Zα)

+ of Q+, a contradiction
since H∗ contains no F2-transvections on the natural L2(4)-module Q+.
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Thus U∗α is of order 2, and the argument of the previous paragraph also shows
that Uα ∩ Q 6≤ HC . Then Uα > Uα ∩ Q > Uα ∩ HC ≥ V while m(Uα/V ) = 2, so
Uα ∩HC = V , completing the proof of (5). ¤

Recall B ∈ Syl3(L1). Let B7 denote a B-invariant subgroup of L of order 7,

set S0 := CS(B7), and let s denote an element of S#
0 .

Recall from Definition 2.4.13 that a Suzuki 2-group is a 2-group admitting a
cyclic group of automorphisms transitive on its involutions.

Lemma J.2.3. (1) S0 = [S0, B] ∼= E4.
(2) zG ∩ S0 = ∅.
(3) CL(s) = S0[CS(s), B7]B7, with CS(s) = S0 × [CS(s), B7] ∈ Syl2(CL(s)) of

order 28 and exponent 4.
(4) B normalizes CS(s), S0, and [CS(s), B7].
(5) [CS(s), B7] is a nonabelian Suzuki 2-group.
(6) For each t ∈ S − V , [t, S] = V and m(CS(t)/V ) = 5.
(7) CQ(B) ∼= Q8.
(8) CS/V (R1) = U/V .

(9) U ∩ U l = V for each l ∈ L−H.

Proof. We first observe:

For each t ∈ S, m(S/CS(t)) = m([S, t]) ≤ 3. (∗)

This follows as S is special with center V ; cf. 8.5.4 in [Asc86a].
Let S+ := S/V . As S+ is the Steinberg module, T fixes a unique point 〈u+〉

of S+, which must lie in U+ since U E T . Then since L1 is irreducible on U+,
CS+(R1) = 〈CS+(T )

L1〉 = U+, establishing (8). Also CL(u
+) = T ≤ NL(U

+), and
NL(U

+) is transitive on U+#, so U+ is the unique member of UL containing u+

by A.1.7.2, and (9) holds.
We next claim for any preimage u of u+:

V = [u, S]. (!)

For by J.2.2.1, R1 = QS, so [ũ, S] = [ũ, R1] = Ṽ as Ũ is the natural module for K∗.
Further as T centralizes u+, T acts on [〈u〉V, S] = [u, S], so Z = CV (T ) ≤ [u, S],
completing the verification of (!).

Assume t ∈ S−V with W := [S, t] < V , let P be the parabolic of L stabilizing
W , and SP := 〈tP 〉. As [t, S] = W E P , [SP , S] = W . But P contains a
Sylow 2-subgroup T0 of L, and T0 acts on SP , so 〈w

+〉 := CS+(T0) ≤ S+
P . Thus

[w, S] ≤ W < V , contrary to (!). Thus [t, S] = V , and (*) completes the proof of
(6).

As S+ is the Steinberg module for L/S and V is the natural module,

S0 ∼= S+
0 = CS+(B7) ∼= E4,

and S0 = [S0, B], so that (1) holds. As H is a 7′-group, (2) holds. By (6),
|CS(s)| = 28. As S is special, CS(s) is of exponent at most 4. As m(CS(s)

+) = 5,
as B7 acts on CS(s)

+, and as B7 has two noncentral chief factors of rank 3 on S+, it
follows that CS(s) = S0[CS(s), B7]. Now the only maximal subgroup of L̄ := L/S
containing B̄7 is B̄7B̄, so CL̄(s) = B̄7 using (1).

Let L̇ := L/S; as Aut(L̇) ∼= Aut(L3(2)) acts on the Steinberg module S+,
[S+, B7] = S+

1 ⊕ S+
2 is the sum of two nonisomorphic irreducibles of rank 3 for

B7. By the previous paragraph, we may take S1 = [CS(s), B7]. Then B normalizes
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CS(B7) = S0 and S1 and S2, so (4) holds. As B is transitive on S+#
0 , and acts on

S0 and on S1, S3 := S0S1 = S0 × S1.
As B7 is transitive on S

+#
1 and on V #, either (5) holds or S1 is abelian. Suppose

the latter case holds. Then S3 is abelian, so by (6), S3 = CS(t) for each t ∈ S3−V .
But for l ∈ L−NL(S3), there exists t ∈ S3∩S

l
3−V as m(S+

3 ) = 5 > m(S+)/2, and
then S3 6= Sl3 ≤ CS(t), contradicting S3 = CS(t). This establishes (5) and shows
CS(s) has exponent 4, so the proof of (3) is also complete.

Finally SB := CQ(B) ≤ HC ≤ CT (V ) = S, and from J.2.2.3, |SB | = 8 with
Z = SB ∩ V . Thus S+

B := S+
B,1 ⊕ S

+
B,2, where SB,i := SB ∩ Si. Let S

+
Bi

=: 〈t+i 〉; an

involution j in Aut(L̇) acting on Ḃ7 and centralizing Ḃ interchanges S+
1 and S+

2 ,

and hence t+1 t
+
2 = CS+B

(j). Therefore an involution in NL̇(Ḃ) ∩ CL̇(j) centralizes

t+1 t
+
2 and hence interchanges t+1 and t+2 . Therefore by (5), SBi

∼= Z4. Then as
|SB | = 8, either (7) holds or SB is abelian, and we may assume the latter. By (6),
m(S/CS(t1)) = 3. But B acts on S/CS(t1), and as SB is abelian, SB ≤ CS(t1); so
all B-chief factors on S/CS(t1) are of rank 2, whereas m(S/CS(t1)) is odd. This
completes the proof of (7), and hence of the lemma. ¤

Lemma J.2.4. For h ∈ HC − U :

(1) [h̃, Q] = Ũ .
(2) [h,Q] = U .
(3) CQ(h) = 〈h〉U .

Proof. Set HB := CQ(B). It follows from J.2.2.3 that HC = HBU .

We first prove (1). Since Q centralizes Ũ , if h1 ∈ hU with [h̃1, Q] = Ũ , then also

[h̃, Q] = Ũ , so we may assume that h ∈ HB . As h 6∈ U and B is irreducible on R1/S,
CR1(h) ≤ S by J.2.3.8. By J.2.2.1, R1 = QS and 4 = |QS : S| = |Q : Q ∩ S|, so as

Q̃ = Q/Z with |Z| = 2, [h̃, Q] 6= 1. Then as Q centralizes Ũ , 1 6= [h̃, Q] = [〈h̃〉Ũ , Q].

Therefore as [h,K] ≤ U by J.2.2.3, and K is irreducible on Ũ , (1) follows.
By J.2.3.7, HB

∼= Q8, so Z = [h,HB ]. Thus (2) follows from (1). By (1),

CQ(h̃) = HC , so CQ(h) ≤ HC . Thus as U ≤ Z(HC) with HC = HBU and
HB

∼= Q8, (3) follows. ¤

Lemma J.2.5. CQ(B) ∼= Q8 and CH (B)/B ∼= SD16.

Proof. By J.2.3.7, CQ(B) ∼= Q8. We will see during the proof of the next
lemma (before the only appeal to the present lemma in the final sentence of that
proof) that there is an involution j ∈ H − K centralizing B. As Q/U is a 6-
dimensional indecomposable forH∗ withHC/U = CQ/U (K) by J.2.2.3, [HC/U, j] 6=
1, so [CQ(B), j] 6≤ Z, and hence the lemma holds. ¤

Lemma J.2.6. (1) H is transitive on the involutions in H −K, there are 640
such involutions, and all are in zG.

(2) All involutions in L− S are in zG.
(3) All involutions in Q are in zG.
(4) U = Ω1(HC), Z = Φ(HC), and U

# ⊆ zG.

Proof. As HC = CQ(B)U with CQ(B) ∼= Q8, and Φ(CQ(B)) = Z while
U = Z(HC) is of exponent 2, we conclude that U = Ω1(HC) and Z = Φ(HC).
Then as all elements of U# are fused to z under H ∪L, (4) holds. In particular all
involutions in HC are in zG. Further defining Uα as in part (5) of J.2.2, that result
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shows Uα ∩ Q 6⊆ HC , so z
G ∩ Q 6⊆ HC . By (3) and (1) of J.2.2, H is transitive on

(Q/HC)
# and Q 6≤ S, so each involution in Q − HC is fused to an involution in

L−S. Next each involution in L−S is fused to an involution in T inverting B, and
all such involutions are in H −K. Thus there are involutions in zG ∩ (H −K), (2)
implies (3), and (2) will follow when we establish transitivity of H on involutions
in H −K. So it suffices to prove (1).

Now H∗ is transitive on the 10 involutions in H∗−K∗, and if i is any involution
in H−K, then i is free on Q/U and Ũ . So all involutions in H−K are H-conjugate
to i or iz, there are 10·8·4·2 = 640 such involutions, and O2(CH∗(i

∗)) = O2(CH (i))∗.
Thus we may take i ∈ CH(B). Then by J.2.5, iz is fused to i in CQ(B), completing
the proof of (1), and hence of J.2.6. ¤

Set LB := CG(B)∞.

Lemma J.2.7. (1) LB ∼= Â6.
(2) CG(B)/B ∼=M10.
(3) NG(B)/B ∼= Aut(A6).
(4) G has two classes of involutions, with representatives s and z.
(5) For B5 ∈ Syl5(H), CG(B5) = O5(CG(B5))CQ(B5) with CQ(B5) ∼= Q8 and

|O5(CG(B5))| = 53.
(6) B5 is not conjugate to a Sylow 5-subgroup of LB.
(7) Involutions in LB and also involutions inducing a transposition on LB are

in zG, while involutions inducing diagonal outer automorphisms on LB are in sG.
(8) K has two orbits on involutions in K − Q, one each in sG and zG. Also

sG ∩H = sH ⊆ K −Q, and |zG ∩ (K −Q)| = 480.
(9) All involutions in CG(B) lie in zG.
(10) Ts := CS(B7)[CS(s), B7] = CH (s) ∈ Syl2(CG(s)).
(11) G has one conjugacy class of elements of order 3.

Proof. Let TB ∈ Syl2(CH(B)) and set GB := CG(B). By J.2.5, TB is
semidihedral of order 16, so Z = Z(TB) and hence TB ∈ Syl2(GB). Further
TB = CQ(B)〈j〉 where j ∈ H −K is an involution, so by J.2.6.1, j ∈ zG. As B is
Sylow in H = CG(z), B

G ∩H = BH , so zG ∩ GB = zGB using A.1.7.1. Thus j is
fused to z in GB .

Set G+
B := NG(B) and Ĝ+

B := G+
B/B; then T̂B = CĜB (ẑ) is isomorphic to

TB ∼= SD16. Thus all involutions in TB are contained in the dihedral subgroup
SB ∼= D8 of TB . Take f ∈ TB − SB of order 4; then f2 = z, so if f is GB-
fused into SB , the fusion occurs in CH(B) = TBB, which is not the case. Hence
by Generalized Thompson Transfer A.1.37, f 6∈ O2(GB). We saw j ∈ zGB , so
|GB : O2(GB)| = 2, and O2(GB) has Sylow group SB ∼= D8 and one conjugacy

class of involutions. Thus by I.4.1, Ô2(GB) = L̂B is isomorphic to L3(2) or A6.

Then as TB ∼= SD16, L̂B is not L3(2) and ĜB ∼= M10, proving (2). Also (9) is
established.

We next consider a Sylow 5-subgroup B5 of H . First CH (B5) = B5T5, where
T5 := CQ(B5) = CHC (B5), and AutH(B5) ∼= Z4. As HC = CQ(B)U with CQ(B)
centralizing U , and CQ(B) ∼= Q8, also T5 ∼= Q8, with T5 ∩ U = Z. Set GB5 :=
CG(B5). As Z = Z(T5) and T5 ∈ Syl2(CH(B5)), T5 ∈ Syl2(GB5). By the Brauer-
Suzuki Theorem (cf. Theorem 15.2 in [GLS96]), Z ≤ Z∗(GB5), so setting P :=
O(GB5 ), GB5 = PCH(B5) = PT5.
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Next from the structure of K∗ and the Baer-Suzuki Theorem, each involution
in K − Q is fused in H to an involution inverting B5. Now for l ∈ L − H , U l

contains such an involution by J.2.2.5, so we may choose notation so that there is
i ∈ zG ∩ H ∩ U l inverting B5. We claim [i, T5] 6= 1; for assume otherwise: First
T5 ≤ CG(V ) ≤ CG(Z

l) = H l, so as T5 centralizes the hyperplane V 〈i〉 of U l, and
H∗ contains no F2-transvections on the natural L2(4)-module Ũ , T5 ≤ Ql. By

J.2.2.5, there is w ∈ U l ∩ Q − HC . By J.2.4.1, CQ̃(t̃) = H̃C for t ∈ T5 − Z, so

[T̃5, w] ∼= E4 and hence [w, T5] 6= Zl, contradicting T5 ≤ Ql. Thus the claim is
established.

By the claim i is fused to iz under T5. Thus as CP (z) = B5 since CH(B5) =
B5T5, and B5 is inverted by i, using Generation by Centralizers of Hyperplanes
A.1.17, we conclude

P = B5CP (i)CP (iz),

with CP (i) ∼= CP (iz) and CP (i) ∩ CP (iz) = CP (〈i, z〉) = 1, so |P | = 5|CP (i)|2. As
the subgroups of H of odd order are of order 1, 3, or 5, |CP (i)| = 1, 3 or 5. If
|CP (i)| = 3, then P is a subgroup of order 45 in GB , contrary to (2). Thus P is a
5-group, so CG(B5) is a {2, 5}-group, and hence (6) holds. By (6), B5 6∈ Syl5(G),
so B5 6∈ Syl5(GB5), and hence B5 < P , so |P | = |B||CP (i)|2 = 53, completing the
proof of (5).

Set Ts := CS(s). Then s 6∈ zG by J.2.3.2, so s 6∈ Q by J.2.6.3, and hence
1 6= s∗ ∈ R∗1 ≤ K∗ by J.2.2.1. Then CH∗(s

∗) ≤ T ∗, so that CH (s) = Ts. Next
there is h ∈ H such that s0 := sh inverts B, so T+ := 〈s0〉TB ∈ Syl2(G+), and then

Ĝ+ = 〈ŝ0〉ĜB ∼= Z2 ×M10 or Aut(A6). Similarly each involution in K −Q inverts
some conjugate of B, so some conjugate of z inverts B by J.2.6.1.

Assume that Ĝ+
∼= Z2×M10. Then GB has two orbits on involutions inverting

B, with representatives c ∈ Z(LBT+) and cz. From the previous paragraph, one
of these GB-orbits lies in s

G
0 = sG 6= zG, and one lies in zG. Further c centralizes

CQ(B), so since HC = CQ(B)U , c ∈ CH(HC/U) = K. Let r be an involution in
TB − Z; by J.2.5, all such involutions are in H − K, so rc ∈ H − K and hence
rc ∈ zG by J.2.6.1. As r ∈ TB , r ∈ zGB by (9), so rc ∈ (cz)GB , and hence cz ∈ zG

so that c ∈ sG. Thus {c} = sG ∩ G+, so c = s0 = sh. Now sG ∩ H ⊆ K − Q in
view of parts (1) and (3) of J.2.6, and by the previous paragraph, each involution
in K − Q is conjugate to an involution inverting B, so sG ∩ H = sH . Hence by
A.1.7.1, zG ∩ CG(s) = zCG(s). As z is 2-central in G, each Sylow 2-subgroup of
CG(s) contains an element of zG in is center, so that z is in the center of some Sylow
group of CG(s). Then as Ts ∈ Syl2(CH (s)), Ts ∈ Syl2(CG(s)). This is impossible,
as Ts is of exponent 4 by J.2.3.3, while T+ ≤ CG(c) contains TB ∼= SD16 of exponent
8.

Thus ĜB ∼= Aut(A6), so (3) is established. This time GB has two orbits on
involutions inverting B with representatives f and d, where f induces a transposi-
tion on L̂B ∼= A6, and d a diagonal outer automorphism in PGL2(9). Arguing as
in the previous paragraph, one of f or d is in sG, and the other in zG. By J.2.6,
involutions in H −K and Q lie in zG, and as each involution in K − Q inverts a
K-conjugate of B, all involutions in K −Q lie in sG or zG. Hence (4) holds. As d
centralizes an element of LB of order 5, d /∈ zG by (6), so d ∈ sG by (4), and hence
(7) holds.

Next T+ is transitive on the set dGB ∩ T+ of involutions in T+ ∩ dLB , so
sG ∩ H = sH as before. Also {f, fz} = fT+ is the set of involutions in T+ − Z
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centralizing CQ̃(B), so as earlier, f ∈ K. On the other hand if R is the set of

involutions in TB − Z, then {fr : r ∈ R} ⊆ H − K. Thus T+ is transitive on
members of zG ∩ T+ ∩ K inverting B, so we conclude that H is transitive on
zG ∩K −Q. Finally K∗ has 15 involutions, and each involution i ∈ K −H is free
on Q/HC and Ũ , and inverts a conjugate of B, so

|zG ∩ (K −Q)| = 15 · 16 · β = 240β,

where β := |zG ∩ iCQ(B)|. We just showed that {f, fz} = zG ∩ fCQ(B), so β = 2,
and hence the proof of (8) is complete.

Since sG ∩ H = sH and Ts = CH(s), an argument above shows that Ts ∈
Syl2(CG(s)), so the remainder of (10) follows from J.2.3.3.

Let R be a Sylow 3-subgroup of G+; we may choose notation so that 〈f, z〉 ≤
TR := NT+(R) ∈ Syl2(NG+(R)). From the structure of Aut(A6), R/B ∼= E9,
B = CR(z), NG+(R) = TRR, TR ∼= SD16, and R = CR(f)CR(fz)B, with Rf :=

CR(f) ∼= CR(fz) ∼= Z3. As f ∈ zG and B ∈ Syl3(H), we conclude Rf ∈ BG.
Suppose that R ∼= 31+2. Then (1) holds. Further as B = Z(R) char R,

R ∈ Syl3(G). Therefore as TR is transitive on R̂#, andRf ∈ B
G, (11) is established,

and hence also the lemma.
Thus we may assume instead that R ∼= E27, and it remains to derive a contra-

diction. Set GR := NG(R). Then CG(R) ≤ CGB (R) = R, so that GR/R ≤ GL3(3).
As R is an abelian Sylow subgroup of NG(B), GR is transitive on BG ∩ R by Sy-
low’s Theorem and A.1.7.1; in particular, Rf is conjugate to B in GR. On the other
hand, GR ∩ H acts on CR(z) = B, so GR ∩ H = TRB ≤ NGR(B). Therefore as
Z = Z(TR) char TR, TR ∈ Syl2(GR), and hence |BGR | = |GR : RTR| is odd. Now
TR has orbits of length 1, 4, and 8 on the points of R, and NTR(Rf ) = 〈z, f〉 is of
index 4 in TR, so Rf lies in the TR-orbit of length 4. Since the order of GL3(3) is
not divisible by 5, it follows that |GR : RTR| = 13. But this is also impossible, as
GL3(3) has no subgroup of order 24 · 13. This contradiction finally completes the
proof of J.2.7. ¤

Lemma J.2.8. (1) H is transitive on the involutions in Q − U , and there are
240 such involutions, all in zG.

(2) All involutions in S ∩Q are fused into U under L.
(3) For u ∈ U − V , all involutions in CS(u) are in zG.

Proof. Define Uα := U l as in J.2.2.5, and set Dα := Uα∩Q and Zα := Zl; by
J.2.2.5, m(Uα/Dα) = m(U∗α) = 1, while Uα ∩HC = V with m(Uα/V ) = 2, so that
Dα 6≤ HC . As H is transitive on (Q/HC)

# of order 15, all involutions in Q−U are
conjugate to a member of wHC , for w ∈ Dα −HC . Thus there are 15 · |I(wHC)|
involutions in Q− U .

By J.2.2.4, D := CU (w) is of order 16, [w,U ] = Z, and [Dα, HC ] ≤ [S, S] = V .

Notice D contains V since V ≤ Dα. By J.2.4.3, [H̃C , w] ∼= E4, so as Z = [U,w] ≤
[HC , w] ≤ V , we conclude that [HC , w] = V . Also for h ∈ HC − U , w does not

invert h as [h̃, w] 6= 1. Thus I(wHC) = wCU (w) = wD is of order 16, and hence
there are 240 involutions in Q− U .

Next for d ∈ D − V , HCDα is a subgroup of CS(d) of order 28, so CS(d) =
HCDα by J.2.3.6. We just saw that I(wHC) = wD, so UDα = Ω1(CS(d)) ∼=
E8 × D8. Let y ∈ Q − CG(Zα); then Dy

α ∩ Dα = V by J.2.3.9, while y acts on
wHC , so that wy ∈ I(wHC) = wD. Thus wy ∈ wD −Dα = wdV , so [w,Q] = D
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as [w,HC ] = V . Therefore Q is transitive on wD, completing the proof of (1). By
(1), all involutions in (S ∩Q)−U are fused into Uα under L1, so (2) holds. Finally
as CS(d) = HCDα ≤ Q, and each involution in U − V is fused to d in L, J.2.6.3
implies (3). ¤

Lemma J.2.9. (1) CG(s) = S0 × Ls, where Ls ∼= Sz(8).
(2) NG(S0) = CG(s)B, and B induces outer automorphisms on Ls.
(3) zG ∩ CG(s) = I(Ls).

Proof. Set Gs := CG(s). By J.2.7.10, Ts := CS(s) = S0S1 ∈ Syl2(Gs), and
Ts = CH(s), where S1 := [CS(s), B7]. By parts (1) and (5) of J.2.3, Ts = S0 × S1
with S0 ∼= E4, and S1 is a Suzuki 2-group. Thus V = Ω1(S1).

Set Ls := O2(Gs). By Generalized Thompson Transfer A.1.37.2, S0 ∩ Ls = 1,
so S1 ∈ Syl2(Ls). Further as S1 ≤ CLs(z) ≤ CH(s) = S0S1, CLs(z) = S1 since
S0 ∩Ls = 1. Therefore as B7 is transitive on V #, CLs(v) = S1 for all v ∈ V #, and
V is a TI-subgroup of Ls by I.6.1.1.

By J.2.7.8, sG ∩ H = sH , so zG ∩ Gs = zGs by A.1.7.1. By J.2.7.7, there is
t ∈ sG∩NG(B) with X := NG(B)∩CG(t) ∼= Z2×Sz(2). In particular, the members
of zG ∩X are not contained in O2(CG(t)), so z /∈ O2(Gs) as z

G ∩Gs = zGs . Thus
V is not normal in Ls, so NLs(V ) is a strongly embedded subgroup of Ls as V is a
TI-subgroup of Ls and V = Ω1(S1). Therefore as Ls is a SQTK-group, Ls ∼= Sz(8).
As S0 centralizes the Borel subgroup B7S1 of Ls, [Ls, S0] = 1, establishing (1). As

S#
0 is fused in G, it follows that Ls = Ls0 for each s0 ∈ S

#
0 . Hence B acts on Ls,

and as B is faithful on S1, B is faithful on Ls, so (2) follows. As [s0, S] = V for

all s0 ∈ S#
0 by J.2.3.6, each element of S0V − V is fused into S0 under S, so (3)

holds. ¤

Lemma J.2.10. Let p := 7 or 13, and Y ∈ Sylp(O2(CG(s))). Then

(1) Y ∈ Sylp(G) is of order p.
(2) NG(Y ) ≤ NG(S0).
(3) Y S0 = CG(Y ), and AutG(Y ) is cyclic of order p− 1.

Proof. Notice (2) and J.2.9 imply (1) and (3), so it suffices to establish
(2). By J.2.9, S0 × Y = CGs(Y ) and S0 = CG(Y ) ∩ NG(S0). Thus S0 ∈
Syl2(CG(Y )), and then by Burnside’s Normal p-Complement Theorem 39.1 in
[Asc86a], CG(Y ) = O(CG(Y ))S0. Using Generation by Centralizers of Hyper-
planes A.1.17 and CGs(Y ) = S0 × Y , we conclude that Y = O(CG(Y )). Finally
since AutNG(S0)(Y ) = Aut(Y ), (2) holds. ¤

J.3. The order of a group of type Ru

In this section, we continue the hypotheses and notation of section J.2. We
calculate the order of our group G of type Ru using the order estimate in A.6.5.

Theorem J.3.1. For each group G of type Ru, |G| = 214 · 33 · 53 · 7 · 13 · 29.

We first establish some preliminary numerical results. By J.2.7.4, G has two
classes of involutions with representatives z and s. Moreover by J.2.9.3:

Lemma J.3.2. If u, v ∈ zG with uv = vu 6= 1, then uv ∈ zG.

Observe that J.3.2 gives hypothesis (*) of A.6.5, with z, s in the roles of “z, t”.
Also J.2.9.3 shows:



J.3. THE ORDER OF A GROUP OF TYPE RU 439

Lemma J.3.3. |zG ∩ CG(s)| = |I(Ls)| = 5 · 7 · 13 = 455.

Lemma J.3.4. |zG ∩H | = 1391.

Proof. From J.2.6.1, J.2.7.8, J.2.8.1, and J.2.6.3:

zG ∩H = jH ∪ iH ∪ uH ∪ U#,

where j ∈ H −K, i ∈ K −Q, and u ∈ Q− U ; further jH , iH , uH , and U# are of
orders 640, 480, 240, and 31, respectively. Hence the lemma holds. ¤

We conclude from J.3.3, J.3.4, and A.6.5 that |G : H | ≤ 455(455 + 1391) =
455 · 1846. So as 1846 < 1890 = 42 · 45, we obtain:

Lemma J.3.5. |G : H | ≤ 5 · 7 · 13 · 1846 < mH · 42, where mH := 32 · 52 · 7 · 13.

We are now in a position to establish Theorem J.3.1. Observe by J.2.7 and
J.2.10 that |G : H | = mH · kH for some odd integer kH , and by J.3.5, kH < 42.
Thus it remains to show that kH = 29. Indeed it suffices to show kH ≡ 29 ≡ 3
mod 13: for by parts (3) and (11) of J.2.7, |G|3 = 27, so kH 6= 3. Thus if kH 6= 29,
then as kH is odd, kH ≥ 29 + 13 = 42, contrary to J.3.5.

Let Y ∈ Syl13(Ls). By J.2.10, Y ∈ Syl13(G) and

|NG(Y ) : Y | = 48 ≡ −4 mod 13.

Thus by Sylow’s Theorem, |G : Y | ≡ −4 mod 13. But

|H | = 214 · 3 · 5 ≡ −5 mod 13,

and mH/13 ≡ 2 mod 13. So as |G : Y | · 13 = |G| = |H |mHkH ,

kH ≡
−4

2 · (−5)
≡

2

5
≡ 3 mod 13

completing the proof of Theorem J.3.1.

We close this section by determining the normalizer of a Sylow 5-subgroup of
G:

Lemma J.3.6. NG(B5) = PR, where P := F ∗(NG(B5)) ∼= 51+2 is a Sylow
5-subgroup of G, and R ∼= Z4 wr Z2 with z ∈ Z(R).

Proof. By J.2.7, CG(B5) = PCQ(B5), with P := O(CG(B5)) of order 5
3 and

CQ(B5) ∼= Q8. Then as Aut(B5) = AutH(B5) ∼= Z4, NG(B5) = PR with R a
subgroup of H of order 32. Now R acts faithfully and irreducibly on P/B5, so
P/B5

∼= E25; hence P ∼= 51+2 or E53 , and R is a Sylow 2-subgroup of GL2(5), so
R ∼= Z4 wr Z2.

By Theorem J.3.1, P ∈ Syl5(G). Further if P ∼= 51+2 then NG(P ) = NG(B5) =
PR, so the lemma holds. Thus we may assume that P ∼= E53 , and it remains to
derive a contradiction.

Let MP := NG(P ). Then H ∩MP acts on CP (z) = B5, so PR = H ∩MP .
Then as Z = Ω1(Z(R)), R ∈ Syl2(MP ). Also CG(P ) ≤ CG(B5) = B5CQ(B5), so
CG(P ) = P and MP/P ≤ GL3(5). As R is Sylow in MP and |MP /P | is coprime to
5, we conclude that either MP = RP or |MP /P | = 3 · 32. But by Sylow’s Theorem
|G : NG(P )| ≡ 1 mod 5, so the latter case is impossible.

Therefore MP = RP = NG(B5). But from the proof of J.2.7, R contains
zg 6= z, so CP (z

g) ∈ BG5 ; then by Burnside’s Fusion Lemma A.1.35 applied to P ,

CP (z
g) ∈ BMP

5 , contradicting B5 E MP . ¤
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J.4. A 2F4(2)-subgroup

In this section, we continue the hypotheses and notation of section J.2. Our
object in this section is to construct a subgroup of G isomorphic to 2F4(2).

Let V2 denote the T -invariant 4-subgroup of V . Set Ĥ := H/U , L2 :=
O2(NL(V2)), and R2 := O2(L2T ). Pick g ∈ L2 − H , write Uα for Ug , Zα for
Zg, and let Dα := Ug ∩Q. By J.2.2.5, there is v := vα ∈ Uα −Dα.

Lemma J.4.1. (1) 〈v∗〉 = U∗α = Z(T ∗) is of order 2.
(2) v inverts some B5 ∈ Syl5(H), and v∗ inverts exactly two members of

Syl5(H
∗).

(3) Let Q5 := [Q,B5]. Then U ≤ Q5, Q̂5
∼= E16, CQ(B5) ∼= Q8, and Q̂ =

ĈQ(B5)⊕ Q̂5.

(4) Z(Ĥ) is of order 2.
(5) V = Uα ∩HC .

(6) D̂α = [ĈQ(V2), Uα] ≤ Q̂5 is of order 2.

(7) [Q̂, Uα] ≤ Q̂5.

Proof. By J.2.2.5, U∗α is of order 2. Further as g ∈ L2−H , V2 = ZZα, so as V2
is T -invariant, so is Z̃α. Then as [Zα, Q] = Z by J.2.2.4, T ∗ = CH∗(Z̃α) = CH (Zα)

∗,
so as Uα E Hg, U∗α = Z(T ∗), establishing (1). The final remarks in (2) follow from
(1) and the structure of S5, and then the first remark follows from the Baer-Suzuki
Theorem.

As Q5 E Q, Z = Z(Q) ≤ Q5, so U = [U,B5]Z ≤ Q5. By J.2.7.5, CQ(B5) ∼= Q8.
The remainder of (3) follows from J.2.2.3, as does (4). Part (5) follows from J.2.2.5.

Then by (1) and (5), D̂α is of order 2. From the action ofK on Q̂, m(Q̂/CQ̂(Uα)) =

2, so as m(Q/CQ(V2)) = 1 by J.2.2.4, and [CQ(V2), Uα] ≤ Q ∩ Uα = Dα, the

equality in (6) holds. As Q̂ = CQ̂(K)Q̂5, and Dα ≤ Q ≤ K by J.2.2.1, it follows

that [Q̂, Uα] ≤ Q̂5, so (7) holds, as does (6). ¤

Let Q0 be the preimage of Z(Ĥ) in H , W0 := 〈UL2〉, and W := W0Q0. By
J.4.1, we may choose B5 ∈ Syl5(H) inverted by v =: vα; set Q5 := [Q,B5].

Lemma J.4.2. (1) T = R2Q.

(2) Ŵ ∼= E16 and |W | = 29.
(3) Q5/(Q5 ∩W ) ∼= E4.

Proof. First T = R1R2 from (Ru1), and R1 = SQ by J.2.2.1, so (1) holds.
Next L1T = NL(U), with R2 = L2S∩L1T of index 3 in L2S, so L2T induces S3

on UL2 = {U,Uα, U tα} for t ∈ T −R2, and hence W0 = UUαU
t
α. Thus as T = R2Q,

W0 = UUα[Uα, Q]. Finally by J.4.1.1 and the structure of the K-module Q̂ (cf.

Remark 14.7.64), [Q̂, Uα] ∼= E4, with [Q̂, Uα]∩ ĤC = 0. Thus as D̂α ≤ [Q̂, Uα] with

|Uα : Dα| = 2, |W | = 29. Then as U∗α centralizes [Q̂, Uα]Q̂0
∼= E8, (2) holds. Indeed

[Q̂, Uα] ≤ Q̂5 by J.4.1.7, so Ŵ0 ∩ Q̂5 ≥ [Q̂, Uα] ∼= E4. Then as Q̂0 ∩ Q̂5 = 0, (3)
holds. ¤

Set L+ := L/V , S+
2 := [S+, R2], G2 := L2T , and G−2 := G2/S2, where S2 is

the preimage of S+
2 in S.

Lemma J.4.3. (1) m(S+
2 ) = 6.

(2) S2 =W .
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Proof. First the Steinberg module S+ for L/S ∼= L3(2) is a free T/S-module,
so as m(Ri/S) = 2 for i = 1, 2, m(CS+(Ri)) = 2 = m(S+/[S+, Ri]). In particular,
(1) holds. Further as m(S+

2 ) = 6 and R1/S is a 4-group, m(CS+2
(R1)) ≥ 2, so

CS+2
(R1) = CS+(R1). Thus U ≤ S2 by J.2.3.8, so W0 = 〈UG2〉 ≤ S2 as G2 acts

on S2. Finally by J.4.2.1, T = R2Q, so Q̂0 = [ĤC , T ] = [ĤC , R2], and hence
Q+

0 ≤ [S+, R2] = S+
2 as HC ≤ CT (V ) = S and U ≤ S2. Thus W = Q0W0 ≤ S2,

while by J.4.2.2, |W | = 29 = |S2|, so (2) holds. ¤

Lemma J.4.4. Let X ∈ Syl3(G2).

(1) Q−5
∼= E4, and Q

−
5 ∩R

−
2 = 〈a−〉 ≤ Z(T−), with a− of order 2.

(2) A− := 〈(a−)G2〉 ∼= E4 is a complement to S
− in R−2 , and X is irreducible

on R2/A.
(3) Let A denote the preimage of A− in G2. Then A acts on B5Q5 and Q5,

and AB5Q5/O2(ABQ5) ∼= Sz(2).
(4) AQ5S = T .
(5) Q5 acts on XA for some X ∈ Syl3(G2), and Q5XA/A ∼= L2(2).

Proof. As Q = Q5HC , R1 = QS = Q5S from J.2.2.1. Also

Q−5 = Q5S2/S2 ∼= Q5/(Q5 ∩ S2) = Q5/(Q5 ∩W ) ∼= E4

by J.4.3.2 and J.4.2.3. Therefore as |R1 : S| = 4, Q−5 is a complement to S− in R−1 .
As m((R2 ∩ R1)/S) = 1, S− is a hyperplane of R−2 ∩ R

−
1 , so Q

−
5 ∩ R

−
2 is of order

2. Let a− denote the involution generating Q−5 ∩ R
−
2 .

As X is transitive on (S−)# and (R2/S)
#, and a− is an involution in R−2 −S

−,
it follows that Φ(R−2 ) = 1, and (2) holds if a− ∈ Z(T−). Then as T = R1R2 =
Q5SR2 = Q5R2, and Q

−
5 and R−2 are elementary abelian, R−2 ∩Q

−
5 ≤ Z(T−). Thus

(1) and (2) are established. Further [A−, Q5] = CA−(Q
−
5 ) = 〈a−〉, so [A,Q5] ≤

Q5S2 = Q5W by J.4.3.2. Thus A acts on Q5W , so A acts on Q5W ∩ Q = Q0Q5,
and hence also on O2(NH(Q0Q5)) = B5Q5 and on O2(B5Q5) = Q5.

We saw in paragraph one that R1 = Q5S, and by (2), R2 = AS, so T = R1R2 =
AQ5S, establishing (4). By (4), A∗S∗ = T ∗, with S∗ < T ∗ since S∗ is abelian, so
that A∗ 6≤ S∗; so as 1 6= W ∗ = S∗2 ≤ S∗ and A∗ act on B∗5 , |NT∗(B

∗
5 )| > 2. Thus

as NH∗(B
∗
5 )
∼= Sz(2), A∗W ∗B∗5 = NH∗(B

∗
5 ), completing the proof of (3). Part (5)

follows from the Baer-Suzuki Theorem, since |Q5A : A| = 2 and |G2| = 214 · 3. ¤

We next define certain subgroups of G that provide an amalgam, which we will
show generates a subgroup of G isomorphic to 2F4(2).

Set TF := AQ5 and F1 := TFB5; observe TF and F1 are subgroups of G by
J.4.4.3.

By J.4.4.5, Q5 acts on XA for some X ∈ Syl3(G2). Set F2 := TFX ; then F2 is
a subgroup of G.

By J.4.4.3, F1/O2(F1) ∼= Sz(2), and by J.4.4.5, F2/O2(F2) ∼= L2(2). In particu-
lar for i = 1, 2, TF is self-normalizing in Fi, and F

∗(Fi) = O2(Fi). Set F := 〈F1, F2〉.
To establish Hypothesis F.1.1 with F , F1, F2, TF in the roles of “G0, L1, L2, S”,
it remains only to verify condition (e) of that hypothesis, which we do next:

Lemma J.4.5. (1) O2(F ) = 1.
(2) α := (F1, TF , F2) is the amalgam of 2F4(2), and the inclusion map from α

into F is a faithful completion.
(3) O2(F1) = Q5Q0 = F1 ∩Q.
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(4) G2 = F2S, O2(F2) = A, F2 ∩ S = W = S2, and F2 is irreducible on
R2/O2(F2).

Proof. Set KF := O2(F ). If (1) fails then CKF (TF ) 6= 1. But using J.4.1.3,
U ≤ Q5Q0 ≤ TF , with CG(U) = HC and CHC (Q0Q5) = Z by J.2.4 and J.2.2.4.
So as Z is of order 2, we conclude that Z ≤ KF . Then V2 = 〈ZF2〉 ≤ KF , so

that U = 〈V F12 〉 ≤ KF . Therefore W0 = 〈UF2〉 ≤ KF . This is impossible, as
Ug 6≤ O2(F1) for g ∈ L2 − L1 by J.2.2.5. So (1) is established.

In particular we have established part (e) of Hypothesis F.1.1. Thus by F.1.9,
α := (F1, TF , F2) is a weak BN-pair of rank 2, and as TF is self-normalizing in Fi,
α appears in the list of F.1.12.

Now G2 = XT , so by J.4.4.4, G2 = XAQ5S = F2S. Therefore F2/(S ∩ F2) ∼=
G2/S is isomorphic to the symmetric group S4. By construction, A E F2 and
F2/A ∼= S3. By J.4.4.2, F2 is irreducible on R2/O2(F2). Again by construction of
A in J.4.4.2, A∩S = S2 =W by J.4.3.2; thus as S∩F2 ≤ O2(F2) = A, S∩F2 =W ,
establishing (4). Then using J.4.2.2,

|TF | = |TF : A||A :W ||W | = 2 · 4 · 29 = 212.

Therefore α is the amalgam of 2F4(2), since F1/O2(F1) ∼= Sz(2), so (2) follows.
As F ∗1

∼= Sz(2) has a Sylow 2-subgroup isomorphic to Z4, and |TF | = 212,
O2(F1) = TF ∩ Q has order 210. Then as O2(F1) contains Q5Q0 of order 210, (3)
holds. ¤

Definition J.4.6. Form the coset geometry Γ of the completion F of the
amalgam α in J.4.5 as in Definition F.3.1, and adopt the notational conventions of
section F.4 such as Definition F.4.1 for the Lie amalgam α. In particular, write x
and l for F1 and F2 regarded as points and lines in the geometry Γ, and for y ∈ Γ,
write Fy for the stabilizer in F of y. Thus Fx = F1 and Fl = F2. Recall that Γ1

and Γ2 are the F -orbits of x and l, respectively. For y ∈ Γ1, y = xg for some g ∈ F ,
and we set z(y) := zg; thus z(y) is a generator for Z(Fy), since we saw in the proof
of J.4.5.1 that Z = Z(TF ).

The main result in this section is:

Theorem J.4.7. F ∼= 2F4(2).

During the remainder of the section, we work toward a proof of this Theorem
using Theorem F.4.8.

Let ᾱ := (F̄1, F̄1,2, F̄2) be the amalgam of parabolics in F̄ := 2F4(2), and
β : ᾱ→ α an isomorphism. For E ⊆ Fi let Ē := β−1(E).

Let x4 ∈ Γ4(x); recall this means x4 is at distance 4 from x in the graph Γ. Set
u := z(x4); thus u ∈ zF . Computing in the generalized octagon Γ̄ for F̄ , ū inverts a
Sylow 5-subgroup of F̄1, so applying β and conjugating in F1, we may take u ∈ TF
to invert B5, and NF1(B5) = B5I , where u, z ∈ I ∼= Z2

4. By J.3.2, uz ∈ zG. Next
by J.3.6, NG(B5) = PR, where P := F ∗(NG(B5)) ∼= 51+2, and R ∈ Syl2(NG(B5))
is isomorphic to Z4 wr Z2 with z ∈ Z(R). Let Iz := Q0 ∩ I , and observe that
Iz is the cyclic subgroup of order 4 in I inverted by elements in R − I . Moreover
I is the unique abelian subgroup of R of index 2, so I is weakly closed in R with
respect to G.

Next, as we saw in the proof of J.2.7.5, but now using u in the role of “i”,
P = B5BuBuz , where Bv := CP (v) ∼= Z5 for v = u, uz. Observe I = CR(u)
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acts on P and hence on Bu. Further (u,Bu) ∈ (z,B5)
G, and so by the previous

paragraph, I is weakly closed in a suitable Ru ∈ Syl2(CG(u)∩NG(Bu)) with respect

to CG(u) ∩NG(Bu), and Iu = I ∩Qf0
∼= Z4, where z

f = u. Then R and Ru induce
transvections on 〈u, z〉 with centers z, u, respectively, so 〈R,Ru〉 induces L2(2) on
〈u, z〉.

For g ∈ F , let F(zg) := (F g1 )
Hg

, and for v ∈ 〈u, z〉#, let

E(v) := {E ∈ F(v) : 〈u, z〉 ≤ E}.

Now F1 = IB5Q5 with Q5 = [Q,B5], and I is weakly closed in a Sylow 2-group R
of NH(B5), so as H = CG(z), F1 =: θ(z,B5) is canonically determined by the pair
(z,B5). Further by J.4.1.2, u∗ acts on exactly two subgroups of H∗ of order 5, so
|E(z)| = 2. Thus

E :=
⋃

v∈〈u,z〉#

E(v)

is of order 6 since 〈z〉 = Z(F1) ∩ 〈u, z〉. Further IBv [Bv, O2(CG(v))] = θ(v,Bv) ∈
E(v).

Next by symmetry between Bz := B5 and Bu, O5(NG(Bu)) = BzBuB
′
uz,

where B′uz := CO5(NG(Bu))(uz). Further [Buz , BuBz] = Bz and [B′uz , BuBz] = Bu,
so Kuz := 〈Buz , B′uz〉 induces SL2(5) on BuBz and centralizes uz; thus Kuz

∼=
SL2(5) as BuBz is self-centralizing in G by J.3.6. In particular Buz 6= B′uz , so
θ(uz,Buz) 6= θ(uz,B′uz), and hence

E(uz) = {θ(uz,Buz), θ(uz,B
′
uz)}.

Also Buz and B′uz centralize Iuz , so Kuz centralizes Iuz .
By symmetry: E(u) = {θ(u,Bu), θ(u,B′u)}, whereB

′
u := CG(u)∩O5(NG(Buz));

B5 6= B5,v, where B5,v := CO5(NG(B′v))
(z) for v ∈ {u, uz};

and Kz,v := 〈B5, B5,v〉 ∼= SL2(5) centralizes Iz . Now for r ∈ R − I , (BuB
′
uz)

r =
BuzB

′
u, so K

r
z,u = Kz,uz. On the other hand, using J.2.4.3, CG(Iz) = IUKz,u =

IUKz,uz, and as CU (B5) = Z, B5 is contained in a unique conjugate of Kz,u under
CG(Iz). Hence Kz,u = Kz,uz is r-invariant, and therefore B′z := B5,u = B5,uz is
the I-invariant subgroup of Kz := Ku,z of order 5, other than B5 (cf. J.4.1.2).
Therefore B′z is r-invariant. In particular:

Lemma J.4.8. B := {Bv, B′v : v ∈ 〈u, z〉
#} is of order 6.

Lemma J.4.9. (1) The commuting graph on B makes B into a 6-gon with
〈B1, B2〉 isomorphic to 51+2 or SL2(5) for B2 at distance 2 or 3 from B1, re-
spectively.

(2) Let

W (B, I) := 〈NG(I)∩NG(B
′), NG(I)∩NG(B

′B′′) : B′, B′′ ∈ B and [B′, B′′] = 1〉.

Then W (B, I) acts transitively as D12 on the 6-gon B with kernel I.

Proof. Part (1) is immediate from the discussion above. Similarly from that
discussion, R := NG(B5) ∩ NG(I) acts on B as the reflection fixing B5 and B′5,
with kernel I . Further KuzI acts as GL2(5) on B5Bu, so R′ := NKuzI(I) is a
Sylow 2-group of KuzI , interchanging the following pairs: the two I-invariant F5-
points B5 and Bu of B5Bu; the I-invariant points B

′
uz and Buz in the I-invariant

Sylow 5-groups of KuzI ; and the I-invariant points B′z and B
′
u in O5(CG(B

′
uz) and
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O5(CG(Buz). Thus R
′ induces the reflection on B fixing the edges BuBz and B

′
uB

′
z,

so (2) holds. ¤

Lemma J.4.10. E is a 6-gon, where E1 and E2 in E are adjacent if there exist
〈u, z〉-invariant subgroups Bi of order 5 in Ei with [B1, B2] = 1.

Proof. Let v ∈ {u, uz}. Observe first that as 〈u, v〉 = Ω1(I), and I ∈
Syl2(NF1(B5)), by Sylow’s Theorem and A.1.7.1, NF1(〈u, z〉) is transitive on the
〈u, z〉-invariant subgroups of F1 of order 5.

We claim that if B5 centralizes some subgroup B of order 5 in E ∈ E(v), then
B is the unique subgroup of order 5 in E such that 〈B5, B〉 is a 5-group. We first
show that this claim establishes the lemma: For suppose [B1, B2] = 1 for some
〈u, z〉-invariant subgroups Bi of order 5 in Ei ∈ E . By J.4.9 and paragraph one, we
may take B1 = B5 and E1 = F1. Then as 〈B5, B

′
v〉
∼= 51+2 for v ∈ {u, uz}, by the

uniqueness of B2 in the claim, E2 6= θ(v,B′v). Further by J.4.5.3, O2(θ(z,B′z)
∗) =

(B′z)
∗ and O2(F ∗1 ) = B∗5 , so B5 commutes with no subgroup of order 5 in θ(z,B′z),

and hence E2 is θ(v,Bv) where v is u or uz. Thus the map θ(w,B′) 7→ B′ is an
isomorphism of the graphs E and B, and hence the lemma holds. This completes
the proof that the claim is sufficient.

Thus it remains to prove the claim. Suppose B1 and B2 are distinct subgroups
of E of order 5, with [B5, B1] = 1 and 〈B5, B2〉 a 5-group. Then from the structure

of E, 1 6= O2(〈B1, B2〉) 6≤ Z(〈B1, B2〉), while P := O5′(CG(B5)) is a 5-group by
J.2.7.5, so [B5, B2] =: D2 6= 1. Therefore as a Sylow 5-group of G is isomorphic
to 51+2 by J.3.6, P2 := 〈B5, B2〉 ∼= 51+2 and D2 = Z(P2) is of order 5. Then
B5D2 is normal in P2 containing B2, and in P containing B1, so B1 and B2 act on
B5D2. This is impossible, asNG(B5D2)/B5D2 ≤ GL2(5), with 1 6= O2(〈B1, B2〉) 6≤
Z(〈B1, B2〉). This contradiction completes the proof of the claim, and hence of the
lemma. ¤

We are now in a position to establish Theorem J.4.7.
Let p := y0 · · · y6 be a geodesic in Γ with y3 := l, and let zi := z(y2i). Then

z1, z2 ∈ V2. By F.4.6.2, p corresponds to a geodesic p̄ in the building Γ̄ of F̄ . By
F.4.27.4.i, z̄i is a long-root involution, so from the structure of F̄1, z̄i+2 fixes ȳ2i,
and since d(ȳ0, ȳ6) = 6, z̄0, z̄3 ∈ O2(F̄2), |z̄0z̄3| = 4, and t̄ = [z̄0, z̄3] is a short-
root involution in V̄ , with CF̄ (t̄) ≤ F̄2 by F.4.27.4.ii, so CF̄2(t̄) = O2(F̄2)F̄2. We
apply β to obtain the corresponding statements in F . In particular z3 fixes y2,
so y0 · y1 · y2 · y1z3 · y0z3 is a path in Γ of length 4 from y0 to y0z3, and hence
d(y0, y0z3) = 4. Thus by F.4.6.1, there is f ∈ F with (y0, y0z3)f = (x, x4), so

(z0, z
z3
0 )f = (z, u); hence as [z0, z3] = t, tf = (z0z

z3
0 )f = zu. Let j := zf3 , so that

xj = x4. For y ∈ zG, let Gy := CG(y). Recall from the remarks at the beginning
of the proof of Theorem J.4.7 that uz ∈ zG. As z /∈ O2(Guz), z0 /∈ O2(Gt).

Let G∗t := Gt/O2(Gt). By construction, z0 ∈ O2(CF2(t)) − O2(Gt), and we
saw F2 = O2(F2)CF2(t), so CF2(t)

∗ ∼= S4 and 1 6= z∗0 ∈ O2(CF2(t))
∗. Next by

uniqueness of geodesics of length less than 8 in F.4.6.6, y2 = Γ(l) ∩ Γ2(y0) and
y4 = Γ(l) ∩ Γ2(y6). Choose fi ∈ F so that zfi = zi and set U(zi) := Ufi . Then
z0 ∈ U(z1), z3 ∈ U(z2), and by J.4.1.1, O2(CF2(t))

∗ = U(z1)
∗ × U(z2)

∗ = 〈z∗0 , z
∗
3〉.

Thus z∗3 interchanges the two subgroups of G∗t of order 5 inverted by z∗0 supplied by
J.4.1.2, so j interchanges the two subgroups of Guz/O2(Guz) of order 5 inverted by
z, and hence j interchanges the two members of E(uz), which are opposite in the
6-gon E . Therefore j induces the reflection on E through the axis perpendicular to
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the axis through the members of E(uz). Thus j interchanges F1 with a member of
E(u) which is adjacent to F1 in the 6-gon E , and of course as zj = u, that member

is F j1 = Fxj = Fx4 . Therefore by J.4.10, [B5, Bu] = 1 for a suitable Bu ≤ Fx4 . Now
for b ∈ B#

u , xb ∈ Γ8(x), and as B acts on B5 and B5 ≤ Fx, B5 = Bb5 ≤ F bx = Fxb,
so that B5 is transitive on Γ(xb). Hence there is more than one geodesic in Γ from
x to xb. That is, Γ is small in the sense of section F.4, so by part (1) of Theorem
F.4.8, F ∼= 2F4(2).

This completes the proof of Theorem J.4.7.

J.5. Identifying G as Ru

Let L2(25)
+ denote the unique extension of L2(25) by an outer automorphism

of order 2 with semidihedral Sylow 2-subgroups.

Definition J.5.1. Define a groupG of permutations on a set Ω to be a Rudvalis
rank 3 group if

(Rua) G is a rank 3 permutation group on Ω, and for ω ∈ Ω, F := Gω ∼= 2F 4(2).
(Rub) There is δ ∈ Ω with stabilizer Fδ a parabolic subgroup of F of order

212 · 5.
(Ruc) There is γ ∈ Ω with Fγ ∼= L2(25)

+.

Our first task is to show that each group G of type Ru is a Rudvalis rank 3
group on G/F . Then we prove that Rudvalis rank 3 groups are determined up to
isomorphism; hence as Ru is such a group, each is isomorphic to Ru. This will
establish Theorem J.1.1.

Initially in this section, we continue the hypotheses and notation of section J.2.
Let Ω := G/F , and write ω for F regarded as a point in Ω. Thus F = Gω. Theorem
J.4.7 showed that F ∼= 2F 4(2), so |F | = |2F4(2)| = 212 · 33 · 52 · 13, and hence we
conclude from Theorem J.3.1 that

Lemma J.5.2. |Ω| = 22 · 5 · 7 · 29 = 4060.

For α, β ∈ Ω, we let G({α, β}) denote the setwise stabilizer of {α, β}.

Lemma J.5.3. F has an orbit δF on Ω of length 1755 with Fδ = F1 and
G({ω, δ}) = F1Q.

Proof. Observe F1 that is of index 2 and in particular normal in F1Q, so
F1 ≤ F ∩F h for h ∈ Q−F1. As F1 is maximal in F , it follows that F1 = Fδ, where
δ := ωh. Hence F1 = Gω,δ, so the lemma follows. ¤

In the remainder of the section, define δ as in J.5.3.

Lemma J.5.4. (1) Ω = {ω} ∪ δF ∪ γF with γF of length 2304, and Fγ ∼=
L2(25)

+.
(2) G({ω, δ}) ∼= Aut(L2(25)).
(3) G is a Rudvalis rank 3 group on Ω.

Proof. Let P ∈ Syl5(F ). Then NG(P ) 6≤ F by J.3.6, so P ≤ F ∩ F g for
some g ∈ NG(P ) − F . Let γ := ωg. Then γF ⊆ Σ := Ω − ({ω} ∪ δF ), and
|Σ| = 2304 = 28 · 32 using J.5.2 and J.5.3. Thus

|Fγ | ≥
|F |

2304
= 24 · 3 · 52 · 13 =: N.
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But up to conjugacy, there are two maximal subgroups NF (P ) and F+ of F con-
taining P , and F+ ∼= L2(25)

+. As |NF (P )| < N and |F+| = N , we conclude that
Fγ is conjugate to F+ and Σ = γF , so that (1) and (2) hold. Then (1) and J.5.3
imply (3). ¤

In the remainder of this section, assume G is a Rudvalis rank 3 group on a set
Ω, pick ω ∈ Ω, and let F := Gω, and δ and γ satisfy (Rub) and (Ruc). We appeal
to the basic theory of rank 3 permutation groups (cf. section 16 of [Asc86a]), and
adopt much of the usual notation used in that theory. For g ∈ G let ∆(ωg) := δFg
and Σ(ωg) := γFg. From the theory of rank 3 groups, the relation * defined by
ω ∗ δ if δ ∈ ∆(ω) is symmetric. Thus we can regard Ω as the (undirected) graph
such that for ρ ∈ Ω, ∆(ρ) is the set of vertices adjacent to ρ in Ω. Further Σ(ρ) is
the set of vertices at distance two from ρ in Ω.

We often abbreviate ∆ := ∆(ω), and we set ∆(ω, δ) := ∆ ∩∆(δ).

Lemma J.5.5. (1) G is a rank 3 permutation group on Ω, with parameters
k := 1755, l := 2304, λ := 730, and µ := 22 · 3 · 5 · 13 = 780.

(2) We can identify ∆ with the set Γ1 of points in the building Γ of F so that
∆(ω, δ) = {ρ ∈ ∆ : 0 < dΓ(δ, ρ) < 8}.

(3) Fδ has three orbits on ∆(ω, δ), of lengths 10, 80, and 640.
(4) Fγ is transitive on ∆(ω, γ) of order 780, and on ∆ ∩ Σ(γ) of order 975,

with Fγ,σ ∼= Sz(2) for σ ∈ ∆(ω, γ), and Fγ,τ ∈ Syl2(Fγ) for τ ∈ ∆(ω) ∩ Σ(γ).
(5) Fγ is transitive on ∆(γ) ∩ Σ(ω) of order 975, and this is the unique orbit

of Fγ on Σ(ω) of order 975.

Proof. As G is a Rudvalis rank 3 group on Ω, F has orbits ∆ = δF and
Σ = γF of lengths k := |F : Fδ| = 1755 and l := |F : Fγ | = 2304, respectively.
As ∆ ∼= F/F1, we can identify ∆ with the set of points of the coset complex Γ of
Definition J.4.6. Thus from F.4.6, Fδ has five orbits on ∆, of lengths 1, 10, 80, 640,
and 210. From 16.3.2 in [Asc86a],

32 · 28 = l =
k(k − λ− 1)

µ
=

33 · 5 · 13 · (k − λ− 1)

µ
,

and so

|Σ(δ) ∩∆| = k − λ− 1 =
28 · µ

3 · 5 · 13
.

Thus Σ(δ)∩∆ is a union of orbits of Fδ on ∆, with the order of this union divisible
by 28. From the lengths of the Fδ-orbits given above, it follows that Σ(δ)∩∆ is the
orbit of length 210, so (1)–(3) follow. In particular, G is transitive on paths ω0ω1ω2
with dΩ(ω0, ω2) = 2, and we can choose as a representative the path δωρ, where
ρ ∈ Σ(δ) ∩∆. Then by (2), ρ is opposite to δ in the building ∆, so Gδ,ω,ρ ∼= Sz(2).
This transitivity implies that Fγ is transitive on ∆(ω, γ) and Fγ,σ ∼= Sz(2) for
σ ∈ ∆(ω, γ), so |∆(ω, γ)| = |Fγ |/20 = 780. This leaves k − 780 = 975 points in
∆(ω)∩Σ(γ). Let Oi, 1 ≤ i ≤ r, denote the orbits of Fγ on these points. If ui ∈ Oi,
then |Fγ,ui | divides |F1| = 212 · 5, so either Fγ,ui is a 2-group, or |Fγ,ui | = 5 · 2a for
some a. In the first case, |Fγ,ui | ≤ |Fγ |2 = 16 using J.5.4.1, so |Oi| ≥ |Fγ |2′ = 975,
with equality iff Fγ,ui ∈ Syl2(Fγ). In the second case, from the subgroup structure
of Fγ , |Fγ,ui | = 5, 10, or 20, so |Oi| = 3120, 1560, or 780. Thus the first case
occurs, and the remainder of (4) holds.

By (4), G is transitive on triples η := (ω1, ω2, ω3) with ω2 ∈ ∆(ω1) and ω3 ∈
Σ(ω1, ω2) := Σ(ω1) ∩ Σ(ω2); further |Gη| = 16. This implies the first remark in
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(5), and leaves l − 976 = 1328 points in Σ(ω, γ). So as 1328 ≡ 2 mod 13, a Sylow
13-subgroup P13 of Fγ fixes a point u ∈ Σ(ω, γ). As NFγ (P13) is of order 4 ·13, and
is the unique maximal subgroup of Fγ containing P13, |uFγ | = 300, 600, or 1200,
and is congruent to 1, 2, or 4 modulo 13, respectively. It follows that Fγ has either
one orbit of length 600, or two of length 300, leaving 728 points. Thus there is no
orbit of length 975 on Σ(ω, γ), completing the proof of (5). ¤

Write Aut(Ω) for the automorphism group of the graph Ω. The following
theorem is our main tool in proving the uniqueness of Rudvalis rank 3 groups:

Lemma J.5.6. G = Aut(Ω).

Proof. Let I := Aut(Ω). Then G ≤ I and G is transitive on Ω, so it suffices
to show that F = Gω = Iω . Further Iω induces a group of automorphisms on
the subgraph ∆ = ∆(ω) of Ω, so it suffices to show that Iω is faithful on ∆ and
Aut(∆) = F .

As Fγ is a maximal subgroup of F , F is primitive on Σ := Σ(ω), so

{γ} = {u ∈ Σ : ∆(ω, u) = ∆(ω, γ)}.

Hence the kernel Iω,∆ of the action of Iω on ∆ fixes each γ ∈ Σ, so Iω,∆ = 1; that
is Iω is faithful on ∆.

Thus to complete the proof of J.5.6, it remains to establish that F = Aut(∆) =:
A. Observe that A = Aut(∆c), where ∆c is the complementary graph of ∆. By
J.5.4, we can identify ∆ with the set of points Γ1 in the building Γ of F via δg 7→ F1g
for g ∈ F . By J.5.5.2, ∆c(δ) is the set of opposites of δ in Γ.

It is presumably well-known that the opposite relation determines the building
Γ; moreover this fact implies A = Aut(Γ) = F , completing the proof of J.5.6
(and hence of Theorem J.1.1, as we see at the end of the section). However for
completeness, we also provide below a fairly detailed sketch of a proof that F =
A. ¤

By the previous remarks, we must retrieve the lines of the building Γ from
the opposite relation; this is more or less equivalent to identifying the set Γ2(u) of
points at distance 2 in Γ from a point u. Thus we are led to the following definition:
For u ∈ ∆, let θ(u) denote the orbit of Fu on ∆(ω, u) of length 10 discussed in the
proof of J.5.5; subject to the identification in J.5.5.2, θ(u) = Γ2(u).

The next lemma shows how the sets θ(u) are determined from the opposite
relation defined by Σ:

Lemma J.5.7. (1) θ(δ) = {u ∈ ∆(ω, δ) : |∆(u, ω) ∩ Σ(δ)| = |Σ(δ)|/2 = 29}.
(2) Let u ∈ θ(δ), {l} = Γ(δ) ∩ Γ(u), and {u′} = Γ(l) − {δ, u}. Then u′ is the

unique w ∈ θ(δ) such that ∆(w, ω) ∩ Σ(δ) is a complement to ∆(u, ω) ∩ Σ(δ) in
∆ ∩ Σ(δ).

We first show that J.5.7 implies that F = A: For by J.5.7.1, Aδ acts on θ(δ).
Then as F2 is 2-transitive on the set Γ(l) of three points on the line l ∈ Γ2, it
follows from J.5.7.2 that A permutes the collection {Γ(k) : k ∈ Γ2}. Thus A acts
on the geometry Γ′ with point set ∆, line set {Γ(k) : k ∈ Γ2}, and incidence equal
to inclusion. Of course Γ′ ∼= Γ, so F ≤ A ≤ Aut(Γ) = F , completing the proof of
the claim.

So to complete the proof of J.5.6, it remains to establish J.5.7. We will require
some lemmas which allow us to count geodesics. We first establish some notation:



448 J. A CHARACTERIZATION OF THE RUDVALIS GROUP

Let u denote a member of ∆(ω, δ), and set d := d(δ, u) = dΓ(δ, u), so that d = 2 or
4 or 6. Set Λ(u) := ∆(ω, u) ∩ Σ(δ). Thus Λ(u) consists of the points v which are
opposite to δ in the building Γ, but not opposite to u, so that d(u, v) = 2 or 4 or 6.

Recall as Γ is a generalized octagon that there is a unique geodesic from u to
any point v of Γ with d(u, v) ≤ 6; write p(v) for this geodesic and let G(u) denote
the set of geodesics with origin u and end in Λ(u). Since p(v) is unique:

Lemma J.5.8. The map v 7→ p(v) is a bijection of Λ(u) with G(u).

Because of the uniqueness of such geodesics, we have the following convexity
property:

Lemma J.5.9. If y ∈ Γ with e := d(δ, y) < 8, then there is a unique member of
Γ(y) ∩ Γe−1(δ).

Given a path q := w0 · · ·ws in Γ and 0 ≤ i ≤ i′ ≤ s, we say that q increases on
[i, i′) if d(δ, wj) = d(δ, wi) + j for each 0 ≤ j ≤ i′ − i.

Let p := y0 · · · yr ∈ G(u) and set di := d(δ, yi) for i ≤ r. Then y0 = u, r ≤ 6,
d0 = d, and di ≤ 8 = dr since the path p ends in yr opposite to δ.

Lemma J.5.10. (1) If di < di+1 then p increases on [i,min{i+ 8− di, r}).
(2) If di = 8− (r − i) then p increases on [i, r).
(3) If d = 4 then one of the following holds:

(a) r = 4 and p increases on [0, 4).
(b) r = 6, p increases on [0, 4), and d5 = 7.
(c) r = 6, d1 = 3, and p increases on [1, 6).

(4) If d = 6 then one of the following holds:

(i) di ≥ 7 for all i > 0.
(ii) d4 = 6 and di ≥ 7 for all i 6= 0, 4.
(iii) d1 = 5 and di ≥ 6 for all i 6= 1.
(iv) d2 = 4 and p increases on [2, 6).

Proof. Assume that di < di+1. In particular, di ≤ 7. By assumption p
increases on [i, i + 1), so (1) holds if di = 7; hence we may assume di ≤ 6. Then
di+1 ≤ 7, so by J.5.9, {yi} = Γ(yi+1) ∩ Γdi(δ). Further yi+2 6= yi since p is a
geodesic, so di+2 = di+1 + 1 > di+1. Then (1) follows by induction on 8− di.

Assume that di = 8− (r − i). Then

8 = dr ≤ di+1+d(yi+1, yr) ≤ (di+1)+(r−(i+1)) = (8−(r−i)+1)+(r−(i+1)) = 8,

so all inequalities are equalities. In particular di+1 = di + 1, so that (2) follows
from (1).

Assume that d = 4. If r = 4, then (a) holds by (2), so we may assume that
r = 6. If d1 = 5, then p increases on [0, 4) by (1), and in particular d4 = 8, so that
d5 = 7; that is, (b) holds. Finally if d1 = 3, then (c) holds by (2).

Assume that d = 6. Suppose that d1 = 7. Then d2 = 8 by (1); in particular
(i) holds if r = 2, so we may assume that r = 4 or 6. Then d3 = 7, so that d4 = 6
or 8. In the second case, (i) holds, and in the first case, (ii) holds by (2). Suppose
instead that d1 = 5, so that d2 = 4 or 6. In the second case, (iii) holds by (1). In
the first case , (iv) holds by (2). ¤
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Lemma J.5.11. Let y ∈ Γ with e := d(δ, y) < 8, and Ne the number of geodesics
beginning at y and increasing on [0, 8− e). For y′ ∈ Γ(y) ∩ Γe+1(δ), let N ′e be the
number of such geodesics which do not contain y′. Then

(1) If e is even, then Ne = 8(8−e)/2 and N ′e = 6 · 8(6−e)/2.
(2) If e is odd, then Ne = 2 · 8(7−e)/2 and N ′e = 8(7−e)/2.

Proof. Set N8 := 1. If e is even then y is a point so as there are 5 lines
incident with each point, we conclude from J.5.9 that |Γ(y) ∩ Γe+1(δ)| = 4. Thus
Ne = 4Ne+1 and N ′e = 3Ne+1. Similarly if e is odd then y is a line, so as there are
3 points incident with each line, from J.5.9 we obtain Ne = 2Ne+1 and N ′e = Ne+1.
Then the lemma follows by induction on 8− e. ¤

Notice the next lemma implies J.5.7.1. During the proof of the lemma, we will
also establish J.5.7.2.

Lemma J.5.12. For d := 2, 4, or 6, |Λ(u)| ≤ 29 for each u ∈ Γd(δ), with
equality iff d = 2.

Proof. By J.5.8, it suffices to establish the analogous result for |G(u)|.
Suppose first that d = 2; then by J.5.9, there is a unique line k through δ

and u in Γ and p is a geodesic from u to v ∈ Γ8(δ) iff δkp is a geodesic from δ to
v. Further there is a unique geodesic from δ to v through k, so there are exactly
210 = |∆∩Σ(δ)| geodesics from δ to Γ8(δ) through k. Therefore as Fδ,k is transitive
on {u, u′} := Γ(k) − {δ}, |G(u)| = 29. Thus |Λ(u)| = 29 by J.5.8, and we see that
Λ(u′) is a complement to Λ(u) in ∆ ∩ Σ(δ). Conversely suppose Λ(u′) = Λ(w) for
some w ∈ θ(δ)−{u′}. Then O2(F1) = Fδ,u′Fδ,w acts on Λ(u′), which is impossible,
as O2(F1) is regular on the opposites to δ. This proves J.5.7.2.

Next suppose that d = 6; we count the number of geodesics arising in each of
the subcases of part (4) of J.5.10, using J.5.11.

In subcase (i), we claim that there are 8 · 4(r−2)/2 geodesics of length r: First
dj = 7 if j is odd and dj = 8 if j is even. Therefore by J.5.11.1, there are N6 = 8
choices for y0y1y2, so the claim holds when r = 2. Then if r > 2, y3 is one of the
4 members of Γ(y2) distinct from y1; thus d3 = 7, and y4 is determined uniquely
as N ′7 = 1 by J.5.11.2, so the claim holds when r = 4. Similarly if r = 6, there
are 4 choice for y5y6, completing the proof of the claim. By the claim, there are
23 + 25 + 27 = 21 · 23 geodesics in subcase (i).

Next we claim that there are 3 · 26 = 23 · 24 geodesics in subcase (ii): From the
previous paragraph, there are 32 choices for y0 · · · y3; then {y4} = Γ(y3) ∩ Γ6(δ) by
J.5.9, and by J.5.11.1 there are N ′6 = 6 choices for y5y6, establishing the claim.

In the remaining two subcases, {y1} = Γ(u)∩Γ5(δ). In subcase (iii), p increases
on [1, 4), so by J.5.11.2 there areN ′5 = 8 choices for y0 · · · y4; then as earlier, if r = 6,
there are 4 choices for y5y6, so there are 8 + 32 = 40 = 23 · 5 geodesics in subcase
(iii). Finally in subcase (iv), {y2} = Γ(y1) ∩ Γ4(δ), and then by J.5.11.1, there are
N ′4 = 48 geodesics in this subcase.

Summing, we get a total of 23(21+24+5+6) = 26 ·7 < 29 geodesics, completing
the proof when d = 6.

Finally suppose that d = 4. We consider the subcases of part (3) of J.5.10. By
J.5.11.1, there are N4 = 26 geodesics in subcase (a), 28 choices in subcase (b), and
26 in subcase (c). This gives a total of 27 · 3 < 29 geodesics, and completes the
proof of J.5.12. ¤
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As mentioned previously, J.5.12 completes the proof of J.5.7, and hence of J.5.6.

To complete our uniqueness proof for Rudvalis rank 3 groups, we recall next
that there is a canonical construction of the graph Ω, depending only on F . This
result is essentially Theorem 1 in [Wal69], but we provide a proof: Let

Ω′ := {∞} ∪ Γ1 ∪ F/E,

where E := Fγ . Define adjacency in Ω′ as follows: The vertex ∞ is adjacent to the
members of Γ1. Vertices u, v ∈ Γ1 are adjacent iff dΓ(u, v) ≤ 6. Vertices u and Ef
are adjacent iff u is in the orbit of Ef on Γ1 of length 780. Finally Ef and Eg are
adjacent iff Eg is in the orbit of Ef of length 975.

By J.5.5:

Lemma J.5.13. The graphs Ω and Ω′ are isomorphic.

Lemma J.5.14. Each Rudvalis rank 3 group is isomorphic to Ru.

Proof. If Ġ is a Rudvalis rank 3 group on Ω̇, then by J.5.13 and symmetry
between G and Ġ, Ω̇ ∼= Ω′ ∼= Ω as graphs. Then by J.5.6, Ġ = Aut(Ω̇) ∼= Aut(Ω) =
G. ¤

We are now in a position to complete the proof of Theorem J.1.1, by showing
that if G is of type Ru, then G ∼= Ru. Namely by J.5.4.3, G is a Rudvalis rank 3
group, so the Theorem follows from J.5.14.



CHAPTER K

Modules for SQTK-groups with q̂(G, V ) ≤ 2.

In this chapter, we supply a proof of Theorems B.4.2 and B.4.5, results which
are stated in chapter A.

That is, we consider pairs G, V such that G is an SQTK-group, L := F ∗(G)
is quasisimple, V is a faithful F2G-module, L is irreducible on V, and q̂(G, V ) ≤ 2.
The quasisimple groups L and modules V which arise are determined by Guralnick
and Malle in [GM02] and [GM04], without the assumption that G is strongly
quasithin. We appeal to their papers to obtain a list of pairs (L, V ); thus Guralnick
and Malle do most of the work for us. There is a bit more to be done however:
we obtain information about the possible offending subgroups and the parameters
q(G, V ) and q̂(G, V ).

This version of the proof of Theorems B.4.2 and B.4.5 replaces an earlier draft
of ours, which was direct but very ad-hoc. That draft was based in part on un-
published work such as Cooperstein-Mason [CM]. Those unpublished results are
now subsumed by the more general results of Guralnick-Malle. We are grateful
to Robert Guralnick and Gunter Malle for providing us with prepublication copies
of their work. Indeed the group theory community is in their debt for filling this
long-standing gap in the literature on representations.

Notation and overview of the approach

Let T denote a Sylow 2-subgroup of G, and TL := T ∩L. As in Theorem B.4.5,
we set q := q(G, V ) and q̂ := q̂(G, V ); thus we are assuming in this section that
q̂ ≤ 2.

We recall the parameters q(G, V ) and q̂(G, V ) from Definitions B.1.1 and B.4.1,

and the sets Q(G, V ) and Q̂(G, V ) from Definition D.2.1. In particular q and q̂
denote the minimal value of the ratio rA,V = m(V/CV (A))/m(A), as A varies over
elementary abelian 2-subgroups of T such that A is quadratic ([V,A,A] = 0) or
cubic ([V,A,A,A] = 0) on V , respectively. Thus q̂ ≤ q.

Our proofs of Theorems B.4.2 and B.4.5 are organized as follows: We succes-
sively examine each of the families of simple groups arising in Theorem C (A.2.3).
For each group, we appeal to Guralnick-Malle to determine the possible modules
V . Since we are assuming that L is faithful and irreducible on an F2-module,
O2(L) = 1, so Z(L) is of odd order. Then from I.1.3, Z(L) is of order 1 or 3.

To complete the treatment of a pair (L, V ), we determine or bound the values of
q̂ and q, and in some instances we determine the offending subgroups. In treating a
pair (L, V ), we often begin by exhibiting an elementary abelian 2-subgroup X of G
such that q0 := rX,V is a candidate for q or q̂. To show that q0 is indeed minimal, we
need to show rA,V ≥ q0 for each elementary abelian 2-group A which is quadratic
or cubic, respectively. Sometimes we show that A is uniquely determined.

451
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Recall the definition in E.3.1 of the parameter m := m(G, V ); namely m is the
minimum value of m(V/CV (a)) for a an involution in G. Note for example that

m(V/CV (A)) = rA,Vm(A); so if m > rA,V , then m(A) > 1. (∗)

Recall from Definition B.1.1 that V is an FF-module if rA,V ≤ 1 for some nontrivial
elementary abelian 2-subgroup A of G. In that event, the Thompson Replacement
Theorem B.1.4.3 says that there exists a quadratic offender A with rA,V ≤ 1, so
q ≤ 1. In particular if q̂ ≤ 1, then q ≤ 1. Moreover in this case we are only
concerned with the parameter q, so we do not bother to calulate q̂. The pairs with
q ≤ 1 appear in Theorem B.4.2. In that Theorem, we must determine the group
〈P(G, V )〉, as defined in Definition B.1.2. In some cases we show that A is uniquely
determined in T . Sometimes we appeal to results in sections B.3 and B.4.

K.1. Alternating groups

Assume that case (1) of Theorem C holds. Then L/Z(L) ∼= An for 5 ≤ n ≤ 8.
Because of the isomorphisms A5

∼= L2(4) and A8
∼= L4(2), we postpone the

discussion of these groups until section K.3 on groups of Lie type in characteristic
2. Thus in the remainder of this section, we assume that n = 6 or 7. Then by
Theorem 6.2 and Table 6.3 of [GM02], L is A6, Â6, or A7. The natural An-
module V for L is discussed in section B.3. The natural module is an FF-module
for NGL(V )(L) ∼= Sn, and the value of q and the FF-offenders are listed in B.3.2 and
B.3.4, as required either for cases (3), (5), and (6) of Theorem B.4.2, or to verify
the row of Table B.4.5 if G = A7. Thus we need only concern ourselves with the
remaining modules.

K.1.1. A6. When L ∼= A6, Table 6.3 of [GM02] shows that dim(V ) = 4.
Up to equivalence, there are exactly two choices for V , but these two modules
are quasiequivalent (conjugate under Aut(L)). The A6-module is a representative
for the quasiequivalence class, so our treatment of this case is complete by the
discussion above.

K.1.2. A7. Next assume that L ∼= A7. Then Table 6.3 of [GM02] shows that
dim(V ) = 4 or 6; the case in that table with dim(V ) = 8 for G = S7 is ruled out
here by our assumption that L is irreducible on V , although it appears in case (2)
of Theorem D.3.10, where that assumption is relaxed.

When m(V ) = 6, V is the A7-module discussed above, so we may assume that
m(V ) = 4. Here there are two choices for V , but the modules are quasiequivalent,
with L the stabilizer of a quasiequivalence class, so that G = L ∼= A7. The module
is obtained by restriction from GL(V ) ∼= A8 to L.

Let R1 := 〈(1, 2)(3, 4), (1, 3)(2, 4)〉 and X := 〈(5, 6, 7)〉. Transvections in L4(2)
are of cycle type 24 in A8 and centralize elements of order 3 of cycle type 32, so this
is the class of elements of order 3 with nonzero fixed points on V . Thus V = [V,X ],
so as X centralizes R1 and is inverted by (1, 2)(5, 6), CV (R1) = CV (r) = [V, r] is of

rank 2 for each r ∈ R#
1 , whilem(CV (R2)) = 1 where R2 := 〈(1, 2)(3, 4), (1, 2)(5, 6)〉.

Thus R1 acts quadratically on V with rR1,V = 1, and R1 is the unique FF-offender
on V in T . Hence case (7) of B.4.2 holds.
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K.1.3. Â6. Finally assume that L ∼= Â6. Again from Table 6.3 of [GM02]

there are two modules V of rank 6, but the modules are quasiequivalent, with Ŝ6 the
stabilizer of an equivalence class. Thus G is Â6 or Ŝ6. Further V can be viewed as a
3-dimensional module V F over F := F4 for L, with an involution in Ŝ6−L inducing
a field automorphism on V F . Thus L ≤ SL(V F ) =: J and TL ≤ S ∈ Syl2(J) with
Z(TL) ≤ Z(S). Let T1 and T2 be the 4-subgroups of TL. Then Ti ≤ Si, where Si is
the unipotent radical of a maximal parabolic Ji of J over S, since the radicals are
the maximal elementary abelian 2-subgroups of S. Since TL is nonabelian, S1 6= S2.
We may take Ji to stabilize an i-dimensional subspace of V F . Thus R2 is quadratic
on V with rR2,V = 1, but rR1,V = 2. If G = Ŝ6, then each involution t ∈ T − TL
induces a field automorphism on V F , so t lies in no FF∗-offender. That is R2 is the
unique offender in T . Hence case (8) of Theorem B.4.2 holds.

K.2. Groups of Lie type and odd characteristic

Assume that case (2) of Theorem C holds. Then L/Z(L) ∼= L2(p), L2(p
2), or

Lε3(p) for an odd prime p. Moreover we may assume in this section that L/Z(L)
is not A6

∼= L2(9), as that case was treated in the previous section. Finally as
L2(5) ∼= L2(4), L2(7) ∼= L3(2), and U3(3) ∼= G2(2)

′, we may assume L/Z(L) is
none of those groups, and instead we treat them in section K.3 as groups of Lie
type in characteristic 2. It follows from Guralnick-Malle [GM02] that q̂ > 2 for all
remaining choices of V .

K.3. Groups of Lie type and characteristic 2

Now assume that case (3) or (4) of Theorem C holds, so that L/Z(L) is of Lie
type and characteristic 2. Choose r so that L/Z(L) is defined over F := F2r for

some r. Let L̂ be the universal group of Lie type such that L/Z(L) is a quotient of

L̂.
We recall from the Steinberg Tensor Product Theorem (see e.g. 2.8.5 in [GLS98])

that the irreducible F L̂-modules are of the formMσ1
1 ⊗· · ·⊗M

σk
k , whereM1, . . . ,Mk

are basic F L̂-modules and σ1, . . . , σk are suitable members of Aut(F ). Further set-

ting K := EndF2L̂
(V ), we can regard V as a KL̂-module V K , and V F := V K⊗KF

is an irreducible F L̂-module, and hence has a decomposition

Mσ1
1 ⊗ · · · ⊗Mσk

k . (!)

Finally

m(V ) =

k∏

i=1

dimF (Mi) · |K : F2|. (!!)

We recall also (e.g. 2.8.7 in [GLS98]) that the Steinberg module for L̂ is the tensor
product of the algebraic conjugates of a basic Steinberg module; this has dimension
equal to the order of a Sylow 2-subgroup of L̄, and is projective.

We first consider the cases where L/Z(L) is a classical group. From Theorem
C, L/Z(L) is L2(2

r), U3(2
r/2), L3(2

r), Sp4(2
r)′, L4(2), or L5(2).

K.3.1. L2(2
r). Assume that L/Z(L) ∼= L2(2

r). As Z(L) has order 1 or 3, and
the Schur multiplier of L2(2

r) is a 2-group by I.1.3, L ∼= L2(2
r) is simple. Further

L = L̂. Then by Proposition 4.1 and Table 7 of Guralnick-Malle [GM04], V is of
rank 2r over F2; and either K = F and V F is the natural module N = M(λ1), or
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r = 2s is even, |F : K| = 2, and V F = N ⊗Nσ where 〈σ〉 = Gal(F/K). Finally
in the latter case, we can regard V K as a 4-dimensional orthogonal space over K;
that is, V is the orthogonal module for L ∼= Ω−4 (2

s).
K.3.1.1. The natural module. Assume that V F = N . Let X := TL; then

CV F (X) = [V F , X ] is an F -point of V F , so that rR,V = 1 and X is an FF-offender
on V . As involutions in T −TL induce field automorphisms on V F and L, X is the
unique offender in T and q = 1. Hence case (1) of B.4.2 holds.

K.3.1.2. The orthogonal module. Next assume r = 2s is even and V is the
orthogonal module for L = Ω−4 (2

s). Recall |F : K| = 2 and V K is an orthogonal
space of Witt index 1 for L. Let t be an involution in NO(V K)(TL) inducing a field

automorphism on L; then t induces a K-transvection on the orthogonal space V K .
Hence Vt := [V K , t] is a nonsingular K-point in V K .

If s = 1, then G ∼= A5 or S5, and V is the A5-module for L. Thus when s = 1,
from the information in B.3.2.4 we conclude when G ∼= S5 that conclusion (5) of
Theorem B.4.2 holds, and when G ∼= A5 we verify Table B.4.5 for this case. So we
assume from now on that s > 1. Hence by H.1.1.1, V is not an FF-module for G.

Let Lt := CL(t), Rt := CTL(t), and X := Rt〈t〉; then Lt is the stabilizer in L of
Vt, so Lt ∼= L2(2

s) is a 3-dimensional orthogonal group on V ⊥t , and hence X acts
quadratically on V K with dimK(CV K (X)) = 2. In particular rX,V = 2s/(s + 1)
and rRt,V = 2.

Next TL is partitioned by the NL(TL)-conjugates of Rt, and for g ∈ TL − Rt,
CVK (〈Rt, g〉) is aK-point of V K . Therefore for each A ≤ TL which is not contained
in a conjugate of Rt, rA,V ≥ 3/2 with equality iff A = TL, and A is cubic but not
quadratic on V . Thus q = 2 and q̂ = 3/2 when G = L, so B.4.5 holds in that case.

Therefore we may assume that t ∈ G. Then from the previous two paragraphs,
q = 2s/(s+1), q̂ ≤ 3/2, and each member of Q(G, V ) is conjugate to X , completing
the verification of Table B.4.5 in this case.

K.3.2. Ln(2
r) for n ≥ 3. Assume that L/Z(L) ∼= Ln(2

r) for n ≥ 3. Then

by Theorem C, either n = 3, or n = 4, 5 with r = 1. By I.1.3, either L = L̂ is
simple, or L/Z(L) ∼= L3(2

r) with r even, L̂ ∼= SL3(2
r), and L = L̂ or L̂/Z(L̂). By

Proposition 4.6 and Table 7 of [GM04], up to quasiequivalence one of the following
holds:

(a) K = F and V F is the natural module N =M(λ1) for L ∼= SLn(2
r).

(b) L is L4(2) or L5(2), F = K = F2, and dim(V ) = 6 or 10, respectively.
(c) r = 2s is even, n = 3, |F : K| = 2, and V F = N ⊗ Nσ, where 〈σ〉 =

Gal(F/K).

Observe also that if L < O2′(G), then r = 2s is even, so n = 3 and the stabilizer of
the equivalence class of V is the subgroup of Aut(L) trivial on the Dynkin diagram
of L, so G is contained in that group.

K.3.2.1. The natural module. Assume that V F is the natural module of dimen-
sion n over F . As V is a G-module, G is trivial on the Dynkin diagram of L, so
if t ∈ G − L is an involution, then t induces a field automorphisms on L and V F .
Let X be the centralizer in L of a hyperplane of V ; then m(X) = r(n − 1) and
m(V/CV (X)) = r, so that rX,V = 1/(n− 1). Thus q ≤ 1, and our initial candidate
X for a subgroup exhibiting the minimal value q satisfies q0 := 1/(n − 1). Let
A ∈ P(T, V ).
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Assume that a ∈ A − L. Then by an earlier remark, n = 3, r = 2s is even,
and t induces a field automorphism on L and V F . As m(V/CV (s)) = 3s > 1,
A > 〈a〉. Thus m(A) ≤ m(CG(a)) = 2s + 1 and m(CV (A)) ≤ 2s, so that rA,V ≥
4s/(2s+ 1) > 1, contrary to A ∈ P(G, V ).

Therefore A ≤ L. For n = 3, 4, 5, m(A) ≤ j := m2(SLn(2
r)) = 2r, 4, 6. Thus if

rA,V < q0, then m(V/CV (A)) < q0j = r, 4/3, 3/2. This forces A to centralize an F -
hyperplane of V F , so A is contained in a conjugate of X and rA,V = r/m(A) ≥ q0.
This completes the proof that q = 1/(n−1), and that conclusion (3) or (9) of B.4.2
holds in this case.

K.3.2.2. The 6-dimensional module for L4(2). When L ∼= L4(2) and dim(V ) =
6, V is the orthogonal module for L regarded as Ω+

6 (2). This module is also the
A8-module for L regarded as A8, and hence the information contained in B.3.2
shows that one of the possibilities in case (10) of Theorem B.4.2 holds.

K.3.2.3. The 10-dimensional module for L5(2). We turn to the remaining sub-
case of (b), where L ∼= L5(2) with dim(V ) = 10. Again V is determined up to
quasiequivalence with L the stabilizer of the equivalence class of V , so G = L.
Further F = K = F2 and V is the exterior square of a natural module Γ for L.
In section 12.5 there is a fairly complete description of V , and a list of various
subspaces of V and their stabilizers in L; we adopt the notation established there,
and appeal to lemmas 12.5.2 and 12.5.5.

Let X be the centralizer of the hyperplane Γ4 of Γ; thus X is denoted by R̄6

in section 12.5, and from the discussion in 12.5.2 and using the description of V as
the exterior square of Γ, m(X) = 4 and V6 = CV (X) is of rank 6, so that rX,V = 1,
and hence q ≤ 1. We will show that X is the unique member of P(T, V ), so that
case (11) of B.4.2 holds.

Assume A ∈ P(T, V ) − {X}. First by 12.5.5.1, the set of all CV (x)/V6 for
x ∈ X# is the set of points of V/V6, so V6 = CV (Y ) for each noncyclic subgroup Y
of X . Hence X ∈ P∗(G, V ). Thus as X = CT (X), each B ∈ P∗(G, T ) contained in
A is not contained in X , so we may take A ∈ P∗(G, T ). Now by B.7.1, AutA(V6) ∈
P∗(AutT (V6), V6), and if rAutA(V6),V6 = 1 then V = V6 +CV (A). But from B.3.2.6,
q(AutG(V6), V6) = 1 since AutG(V6) ∼= A8, so indeed V = V6 + CV (A). This is
contrary to rA,V ≤ 1 since L6/V6 is faithful on V/V6.

K.3.2.4. The tensor product module for L3(2
2s). Finally we assume that case

(c) holds. Then V is of rank 9s over F2. Recall that this module is discussed in
detail in chapter H, especially in H.4.4; we adopt the notation of the subsection
containing that result. In particular the Galois automorphism σ is also regarded as
a field automorphism of L. The stabilizer of the quasiequivalence class of V is the
subgroup of Aut(L) trivial on the Dynkin diagram of L, so G is contained in that
group.

Let z be an involution in TL and R the root group of z; without loss z centralizes
σ. From the discussion in the proof of H.4.4.2, [V, z] is of rank 5s, and CG([V, z]) =:
Rσ is the group of fixed points of σ on R, and by that lemma, m(Rσ) = s while
m(V/CV (Rσ)) = 4s. By H.4.4.6, m(V/CV (σ)) = 3s and CL(σ) acts faithfully as
SL3(2

s) on [V, σ] and CV (σ)/[V, σ]. Thus if A is quadratic on V with rA,V ≤ 2, then
m(A) > 1 by (*), so that A ≤ L as CL(σ) is faithful on [V, σ]. Thenm(V/CV (A)) ≥
4s, so m(A) ≥ 2s by (*), contrary to m(CG([V, z])) = s. We conclude that q > 2.

Let X be the centralizer in L of an F -lineW in the natural module N ; thus X is
the group denoted byQW in the discussion preceding H.4.4. AsX acts quadratically
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on N , it acts cubically on V . Further by H.4.4.1, m(X) = 4s = m(CV (X)) so that
rX,V = 5/4. Hence q̂ ≤ 5/4.

Conversely assume that A is an elementary abelian subgroup of T with rA,V ≤
5/4. From the discussion above of CG(σ) and its action on V , m(V/CV (B)) ≥ 5s
for 〈σ〉 < B ≤ CG(σ) and m2(CG(σ)) = 2s + 1, so A ≤ L; thus A ≤ Y , where
Y = X or Y is the unipotent radical QZ of the stabilizer of an F -point Z in N .
We saw m(CV (z)) = 5s, so m(A) ≥ 16s/5. Hence A ∩ R 6= 1 for each root group
R in Y , which allows us to compute that CV (A) = CV (Y ) is of rank 4s or s for
Y = X or QZ , respectively. Therefore as rA,V ≤ 5/4, A = X , which completes the
verification of Table B.4.5 in this case.

K.3.3. U3(2
s). Assume L/Z(L) ∼= U3(2

s). Then s ≥ 2 as L is quasisimple.

Here r = 2s, and when s is even, L = L̂ is simple, while when s is odd, L̂ ∼= SU3(2
s)

with Z(L̂) of order 3. By Theorem 4.10 and Table 7 of [GM04], V F is the natural

module for L = L̂ of dimension 3 over F = K and of rank 6s over F2.
Now X := Ω1(TL) is of rank s, and X induces a group of transvections on V F

with fixed axis and center. Thus CV (X) is of rank 4s and rX,V = 2. Next if t is
an involution in T − L, then t induces a field automorphism on V F , so X is the
unique offender in T , and q = q̂ = 2, completing the verification of Table B.4.5 in
this case.

K.3.4. Sp4(2
r). Assume that L/Z(L) is Sp4(2

r)′. As we have already treated
Sp4(2)

′ = A6, we may assume that r > 1. Hence L/Z(L) is Sp4(2
r), with Schur

multiplier a 2-group by I.1.3, so that L ∼= Sp4(2
r). Also L̂ = L.

By Proposition 6.2 and Table 9 of [GM04], up to quasiequivalence either V F

is a natural module N for L = L̂ of dimension 4 over F = K, or r = 2s is even,
|F : K| = 2, and V F = N ⊗Nσ, where 〈σ〉 = Gal(F/K).

K.3.4.1. The natural module. Assume first that V F is the natural module. The
stabilizer of the equivalence class of V is the subgroup of Aut(L) trivial on the
Dynkin diagram, so G is contained in that subgroup.

Let X be the centralizer in L of a totally isotropic 2-dimensional F -subspace
of V F ; then m(X) = 3r and m(CV (X)) = 2r, so that rX,V = 2/3. In particular
q ≤ 2/3.

Involutions t in G−L induce field automorphisms on L and V , so m2(CG(t)) =
(3r + 2)/2 and m(CV (t)) = 2r. Further if 1 6= A ≤ CL(t), then m(V/CV (A〈t〉)) ≥
5r/2. Thus t is contained in no FF-offender on V .

Finally let A be an elementary abelian subgroup of TL. Then m(A) ≤ 3r and
either A ≤ X or A is contained in the unipotent radical of the stabilizer of the
F -point of V F centralized by TL. In particular if A 6≤ X then m(V/CV (A)) = 3r,
so rA,V ≥ 1. Thus q = 2/3, so that case (3) of B.4.2 holds.

K.3.4.2. The tensor product module. Assume r = 2s is even and V F = N⊗Nσ.
Again G is contained in the subgroup of Aut(L) trivial on the Dynkin diagram of
L. Also |F : K| = 2 and V is of rank 16s over F2. Define X as in the previous case;
then X centralizes an F -line U in N and CV F (X) = U ⊗ Uσ, so m(CV (X)) = 4s
and rX,V = 2. As X acts quadratically on N , it acts cubically on V , so q̂ ≤ 2.

Our argument is similar to that used to deal with the tensor product module
for (S)L3(2

2s); but we do not have the elementary calculations already exhibited
in chapter H as we did in that case. We will show that q > q̂ = 2; so assume A is
an elementary abelian subgroup of T with rA,V ≤ 2.
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Arguing as in the proof of H.4.4.6, m(CV (σ)) = 10s and CL(σ) acts faithfully
on [V, σ] and CV (σ)/[V, σ]. Thus m2(CL(σ)) = 3s and m(V/CV (B)) ≥ 8s for
〈σ〉 < B ≤ CG(σ) (and m(V/CV (B)) > 8s if m(B) = 3s+ 1), so A ≤ L.

Next L has three classes b1, a2, and c2 of involutions in the notation of Definition
E.2.6. A standard tensor calculation shows that m(CV (i)) = 10s for i ∈ b1, and
involutions in a2 and c2 are free on V . Further if we pick j ∈ L to be an involution
centralizing σ, then CT ([V, j]) =: Rj,σ of rank s is the subgroup of fixed points of σ
on Rj , where Rj is the root group of j if j ∈ b1 or a2, and Rj = α(j) is the group
defined in section 11 of [AS76a] if j ∈ c2. Thus A is not quadratic on V , so q > 2.
Further m(A) ≥ 3s, and m(A) ≥ 4s unless A# ⊆ b1. However for i, i

′ ∈ b1, ii′ ∈ b1
only if Ri = Ri′ , so m(A) ≥ 4s. Similarly for each j /∈ b1, CT (CV (j)) = Rj,σ is of
rank s, so m(A) > 4s.

LetX ′ be the unipotent radical of the stabilizer of the F -point Z ofN stabilized
by TL. Thus X and X ′ are the maximal elementary abelian subgroups of TL, each
is of rank 6s, and X ∩X ′ = RiRj is of rank 4s, for some i ∈ b1 and j ∈ a2. Thus A
is contained in Y ∈ {X,X ′}. From the previous paragraph, m(A) > 4s = |Y : Rk|
for each root group Rk ≤ Y , so A∩Rk 6= 1. However we calculate that given any set
∆ of nontrivial elements from the various root groups contained in Y , CV F (〈∆〉))
is either U ⊗ Uσ or Z ⊗ Zσ for Y = X or X ′, respectively. It follows that A = X
and q̂ = 2, so that case (iii) of B.4.5 holds in this case.

We have completed the treatment of the cases where L/Z(L) is a classical
group. The groups in (3) or (4) of Theorem C which are not classical are G2(2

r)′,
Sz(2r), 2F4(2

r)′, and 3D4(2
r). As Z(L) is of order 1 or 3, and the Schur multiplier

of each of these groups is a 2-group by I.1.3, L is simple. By Theorem 8.1 and
Table 17 of [GM04], L is G2(2

r)′ or Sz(2r) and V is the natural module.

K.3.5. G2(2
r)′. Assume V is the natural module of rank 6m forG2(2

r)′. Then
V is described in B.4.6. In particular, that lemma shows that case (4) of B.4.2 holds
unless r = 1 and G = L = G2(2)

′, where it shows that the row in Table B.4.5 for
G2(2)

′ is correct.

K.3.6. Sz(2r). Assume finally that V is the natural module of rank 4r for

Sz(2r), where r ≥ 3 is odd. Then |Out(L)| is odd, so L = O2′ (G) and Ω1(T ) =: X
is of rank r. Now involutions of X are free on V , and m(CV (X)) = 2r so that
rR,V = 2. As X is quadratic on V , we conclude that q̂ = q = 2, and X is the
unique member of Q(T, V ). This verifies the row for Sz(2r) in Table B.4.5.

K.4. Sporadic groups

It remains to consider the case where L/Z(L) is a sporadic group appearing in
conclusion (5) of Theorem C. Then by Theorem 6.6 and Table 6.7 of [GM02], L

is M12, M̂22, M22, M23, M24, or J2, and V is of dimension 10,12,10,11,11,12 over
F2, respectively. In the last three cases, the module of dimension 10 or 11 can be
either the code module or the cocode module, as described in chapter H.

Observe that V is not an FF-module, so q̂ > 1; this follows from H.11.1.3,
H.12.1, H.15.2, and H.16.5 for the Mathieu groups; for J2, see the discussion in the
final subsection of this section. Thus the sporadic groups do not appear in Theorem
B.4.2, and to establish Theorem B.4.5, it remains to show: If L is M24 or M23 on
either of its 11-dimensional modules, or M22 on its cocode module, or M12 on its
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10-dimensional module, then q > 2; if V is the code module for M22, then q ≥ 2;
and if L is J2 then q̂ = 2 < q. Thus we may assume that (L, V ) is one of these
pairs, and in addition we may assume that A ≤ T with rA,V ≤ 2, and that A is
quadratic unless possibly L is J2.

Next observe that m > 2 when L is not J2 by H.14.4. The module for J2 is the
natural module for the overgroup G2(4), so that m = 4 in that case using B.4.6.4.
Thus by (*) we have:

m(V/CV (A)) ≤ 2 m(A) and m(A) > 1. (∗∗)

Given a group M and a faithful F2M -module U , write D(M,U) for the set of
noncyclic elementary abelian 2-subgroups of M which are quadratic on U .

K.4.1. Preliminaries for M23 and M24. In this subsection, assume that
M ∼=M24 and V is the code or cocode module for M . Since the restriction of V to
M23 is the code or cocode module for M23, the results we obtain apply to L given
by either M23 and M24.

By H.14.4,M has two classes of involutions with representatives z and t, where
z is 2-central, t is not 2-central, m([V, z)] = 4, and m([V, t]) = 5. By H.15.2.5 and
H.16.2.5, CM (CV (z)) = 〈z〉. Hence m(CV (B)) ≤ 6 for each 4-subgroup B of M .
Then since m(A) > 1 by (**), we conclude:

Lemma K.4.1. If L is M23 or M24, then m(A) > 2.

Lemma K.4.2. If D ∈ D(M,V ) such that D# ⊆ tM , then m(D) ≤ 2.

Proof. Assume D is such a subgroup. By B.4.7.3, D is quadratic on V iff
D is quadratic on the dual of V ; so we may assume that V is the code module.
By 21.1.4 in [Asc94], we may take t ∈ KS (as defined before H.14.1). By H.16.1,
V4 = CV (KS) is of rank 4 and m([V/V4, t]) = 1. Therefore V4 ≤ [V, t] as m([V, t]) =
5. Thus as D is quadratic on V , D ≤ CMS(V4) = KS. But by H.14.1.2, KS is a

natural module for MS/KS
∼= Â6; so from the structure of that module, KS is the

kernel of the action of CL(t) on V4, and the maximal rank of a subgroup E of KS

with E# ⊆ tG is 2, achieved by a 1-dimensional F4-subspace. ¤

K.4.2. The code and cocode modules for the Mathieu groups.
In this subsection M is M24, (X, C) the Steiner system for M , and U is the

code module for M . See section 5 of chapter H for a discussion of this setup, and
as in that section let O ∈ C be an octad and let KO, MO be the pointwise, global
stabilizer of O in M , respectively. From H.14.1.4, KO is the natural module for

M̄O := MO/KO
∼= L4(2). Adopt the notation in H.16.2.1, and let z ∈ K#

O ; by
that lemma FixX(z) = O (so CM (z) ≤MO), V1 = CU (KO) is of rank 1, and V5 is
MO-invariant of rank 5, with KO inducing the group of transvections with center
V1 on V5. Set Vz := CV5(z) and Dz := CM (Vz).

Lemma K.4.3. Let d ∈ Dz − 〈z〉 and E := 〈d, z〉. Then

(1) O2(CM (z)) = KODz, Dz ∩KO = 〈z〉, m(Vz) = 4, and Dz
∼= E16.

(2) [U, z] = Vz is of rank 4.
(3) E = Dz ∩Dd.
(4) If z ∈ D for D ∈ D(M,U) ∪ D(M,U∗), then D ∈ EMO .
(5) CU (E) = [U,E] = Vz + Vd is of rank 6.
(6) Let U∗ be the dual of U ; then m(U∗/CU∗(E)) = 6.
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Proof. Part (1) follows from H.16.2.6. By H.16.2.1, KO centralizes U/V5, so
[U, z] ≤ CV5(z) = Vz . From the previous subsection, m([U, z]) = 4, so (1) implies
(2).

Let ME := CM (E). As O2(CM (z)) is extraspecial with d ∈ O2(CM (z)), there
is (cf. 8.7.3 in [Asc94]) g ∈ M interchanging z and d via conjugation. Thus

E ≤ Dz ∩ Dd. As CM (z) is the stabilizer in M̄O = GL(KO) of z, we conclude
from (1) that CM (z) induces the stabilizer in GL(Dz) of z on Dz, with kernel Dz.
Thus ME is irreducible on Dz/E; so if (3) fails, then Dz = Dd. Then by symmetry
between z and d, 〈CM (z), CM (d)〉 induces GL(Dz) on Dz, which is not the case as
MO is the unique overgroup inM of the form L4(2)/E16. This establishes (3). Then
(2) and (3) imply (4) in the case where D ∈ D(M,U), and say that E centralizes
[U,E] = Vz+Vd. As U/V5 is the orthogonal module for M̄O, (Vd+V5)/V5 = [U/V5, d]
is of rank 2, so m([U,E]) = 6. Then as we saw that CM (CU (z)) = 〈z〉, (5) follows.
Finally (5) and B.4.7 imply (6); while as (4) holds when D ∈ D(M,U), B.4.7 says
it also holds when D ∈ D(M,U∗). ¤

Lemma K.4.4. Assume L is M22 and V is the code module for G. Then

(1) If D ∈ D(G, V ), then m(D) = 2 and m(V/CV (D)) ≥ 4.
(2) Let V ∗ be the dual space of V . If D ∈ D(G, V ∗), then m(D) = 2 and also

m(V ∗/CV ∗(D)) ≥ 5.

Proof. First V is a hyperplane of U containing V5, and by H.14.4.2, zL is the
unique class of involutions in L.

Suppose D ∈ D(G, V ). As |G : L| ≤ 2 and m(D) > 1 by definition, D ∩L 6= 1.
Thus we may take z ∈ D. By H.14.4.3, m([V, z]) = 4, so Vz = [U, z] = [V, z] by
K.4.3.2. Hence D lies in the subgroup Dz ofM . Since m(D) > 1, D is a 4-subgroup
of Dz by K.4.3.3. By K.4.3.4, m(U/CU (D)) = 5, so as V is a hyperplane of U , we
conclude that m(V/CV (D)) ≥ 4, establishing (1).

Next suppose D ∈ D(G, V ∗). Then by B.4.7.3, also D ∈ D(G, V ); so by the
previous paragraph, we may take z ∈ D, [V, z] = Vz is of rank 4, and D is a
4-subgroup of Dz. Therefore [U,D] = Vz + Vd is of rank 6 for d ∈ D − 〈z〉 by
K.4.3.5. Thus m(Vz ∩ Vd) = 2, and as V is a hyperplane of U , [V, d] is of corank
at most 1 in [U, d] = Vd. Therefore [V,D] = Vz + [V, d] is of rank at least 5, so
m(V ∗/CV ∗(D)) = m([V,D]) ≥ 5 by B.4.7. This establishes (2). ¤

K.4.3. The parameter q on the code and cocode modules. We now
turn to the proof of B.4.5 when V is the code or cocode module for L =M22, M23,
or M24. By (**), m(A) > 1, so we may that assume A ∈ D(G, V ).

If L isM24 orM23, then V is the code module U or its dual, the cocode module
U∗. Then m(A) > 2 by K.4.1. Further if L is M24, then we may take z ∈ A by
K.4.2; while if L isM23, all involutions in L are in zM , so again we may take z ∈ A.
But now m(A) = 2 by K.4.3.4, a contradiction completing the proof in these cases.

Thus we may assume that L ∼= M22. By K.4.4, m(A) = 2 and V is not the
cocode module; and if V is the code module, then m(V/CV (A)) ≥ 4 = 2 m(A), so
q ≥ 2. Thus the proof is complete.

K.4.4. M12. Recall that Aut(M12) is the subgroup ofM24 stabilizing a vector
ēY in the code module U , where Y is a dodecad in the Steiner system X for
M =M24. Hence the 10-dimensional irreducible V for M12 is the quotient U/〈ēY 〉
of U , and a hyperplane of the dual U∗. Thus we may take V ≤ U∗.
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We observed during the proof of H.11.1 that an involution z in the 2-central
class fixes points of Y , and m([V, z]) = 4. Then z fixes points of X , so z is 2-central
in M . Also m([V, z]) = m([U∗, z]), so as V ≤ U∗, [V, z] = [U∗, z].

Assume that A ∈ D(G, V ) satisfies (**). Then by H.11.1.5, each member of A#

is 2-central, so we may take z ∈ A, and from the previous paragraph, [V, a] = [U ∗, a]
for each a ∈ A. Thus as A ∈ D(G, V ), also A ∈ D(M,U ∗). Then we conclude from
parts (4) and (6) of K.4.3 that m(A) = 2 and m(U ∗/CU∗(A)) = 6. Therefore as V
is a hyperplane of U∗, m(V/CV (A)) ≥ 5 > 2 m(A), contradicting (**).

K.4.5. J2. In our final case, L ∼= J2. Therefore as |Out(J2)| = 2, |G : L| ≤ 2.
Further V is obtained by restriction from the 12-dimensional module forM = G2(4)
to L, and information about this module can be derived from B.4.6. In addition
if L < G, then an involution i ∈ G − L induces a field automorphism on M , and
hence also of L and V , so m([V, i]) = 6 = m(CV (i)). Then as CL(i) ∼= PGL2(7),
CL(i) acts faithfully on [V, i]; thus if i ∈ A, then m(A) ≤ m(CG(i)) = 3 while
m(CV (A)) ≤ m(C[V,i](A)) ≤ 4, so m(V/CV (A)) ≥ 8, contrary to (**). Therefore
A ≤ L.

Observe that G contains no FF∗-offenders, since the offenders in M are of rank
6 by B.4.6, whereas m2(Aut(J2)) = 4. Thus q̂ > 1.

Let z be a 2-central involution of G, and t a non-2-central involution of L. From
parts (4) and (6) of B.4.6, m([V, z]) = 4 and m([V, t]) = 6.

By (**), m(A) ≥ 2, and m(V/CV (A)) ≤ 4 in case m(A) = 2. Thus if m(A) = 2
then A# ⊆ zG, we may take z ∈ A, and CV (A) = CV (z) is of rank 8. But B.4.6.4
shows that CM (CV (z)) is the root group Rz ofM containing z—whereasG contains
no such root group, since 〈z〉 = Z(CL(z)) and Rz ≤ Z(CM (z)).

Therefore m(A) ≥ 3. Hence as zG ∩ CG(z) ⊆ O2(CG(z)) (e.g. see Note 2
on page 268 of [GLS98]), while m2(O2(CG(z))) = 2, A contains a conjugate of t.
Thus we may assume that t ∈ A.

Next CL(t) = C × E where C ∼= E4 and E ∼= A5. Also from B.4.6.6, W :=
[V,C] = CV (C) = CV (t) = [V, t] is of rank 6, and the E-module W is the extension
of CW (E) of rank 2 by the L2(4)-module. Asm(A) ≥ 3, A 6≤ C, so CV (A) = CW (A)
is of rank 4. Then by (**), m(A) = 4 = m2(G), so A ∈ Syl2(CG(t)) and q̂ = 2.
As W = [V, t] is not centralized by A, A is not quadratic on V , so q > 2. This
completes the proof of Theorem B.4.5 when L is J2.
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Volume II: Main Theorems; the
classification of simple

QTKE-groups



In Volume II we establish our Main Theorem classifying the simple QTKE-
groups. The proof uses machinery from Volume I. Also in chapter 16 we establish
the Even Type Theorem, which uses our Main Theorem to provide a classification
of the quasithin group satisfying the “even type” hypothesis of the Gorenstein-
Lyons-Solomon project [GLS94].



Introduction to Volume II

The treatment of the “quasithin groups of even characteristic” is one of the
major steps in the Classification of the Finite Simple Groups (for short, the Clas-
sification). Geoff Mason announced a classification of a subclass of the quasithin
groups in about 1980, but he never published his work, and the preprint he dis-
tributed [Mas] is incomplete in various ways. In two lengthy volumes, we treat the
quasithin groups of even characteristic; in particular we close that gap in the proof
of the Classification.

Each volume contains an Introduction discussing its contents. For further back-
ground, the reader may also wish to consult the Introduction to Volume I; that
volume records and develops the machinery needed to prove our Main Theorem,
which classifies the simple quasithin K-groups of even characteristic. Volume II
implements the proof of the Main Theorem.

Section 0.1 of this Introduction to Volume II gives the statement of the two
main results of the paper, together with a few definitions necessary to state those
results. Section 0.2 discusses the role of quasithin groups in the larger context of
the Classification; we also compare the hypotheses of the original quasithin problem
with those of more recent alternatives, and give some history of the problem. In
sections 0.3 and 0.4, we introduce further fundamental concepts and notation, and
give an outline of the proofs of our two main theorems.

The Introduction to Volume I describes the references we appeal to during the
course of the proof; see section 0.12 on recognition theorems and section 0.13 on
Background References.

0.1. Statement of Main Results

We begin by defining the class of groups considered in our Main Theorem, and
since the definitions are somewhat technical, we also supply some motivation. For
definitions of more basic group-theoretic notation and terminology, the reader is
directed to Aschbacher’s text [Asc86a].

The quasithin groups are the “small” groups in that part of the Classification
where the actual examples are primarily the groups of Lie type defined over a field
of characteristic 2. We first translate the notion of the “characteristic” of a linear
group into the setting of abstract groups: Let G be a finite group, T ∈ Syl2(G),
and let M denote the set of maximal 2-local subgroups of G. 1 We define G to be
of even characteristic if

CM (O2(M)) ≤ O2(M) for all M ∈ M(T ),

1A 2-local subgroup is the normalizer of a nonidentity 2-subgroup.
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whereM(T ) denotes those members ofM containing T . The class of simple groups
of even characteristic contains some families in addition to the groups of Lie type
in characteristic 2. In particular it is larger than the class of simple groups of
characteristic 2-type (discussed in the next section), which played the analogous
role in the original proof of the Classification.

The Classification proceeds by induction on the group order. Thus if G is a
minimal counterexample to the Classification, then each proper subgroup H of G
is a K-group; that is, all composition factors of each subgroup of H lie in the set K
of known finite simple groups.

Finally quasithin groups are “small” by a measure of size introduced by Thomp-
son in the N-group paper [Tho68]. Define

e(G) := max{mp(M) :M ∈M and p is an odd prime}

where mp(M) is the p-rank of M (namely the maximum rank of an elementary
abelian p-subgroup of M). When G is of Lie type in characteristic 2, e(G) is a
good abstract approximation of the Lie rank of G. Janko called the groups with
e(G) ≤ 1 “thin groups”, leading Gorenstein to define G to be quasithin if e(G) ≤ 2.
The groups of Lie type of characteristic 2 and Lie rank 1 or 2 are the “generic”
simple quasithin groups of even characteristic.

Define a finite group H to be strongly quasithin if mp(H) ≤ 2 for all odd primes
p. Thus the 2-locals of quasithin groups are strongly quasithin.

We combine the three principal conditions into a single hypothesis:

Main Hypothesis. Define G to be a QTKE-group if

(QT) G is quasithin,
(K) all proper subgroups of G are K-groups, and
(E) G is of even characteristic.

We prove:

Theorem 0.1.1 (Main Theorem). The finite simple QTKE-groups consist of:
(1) (Generic case) Groups of Lie type of characteristic 2 and Lie rank at most

2, but U5(q) only for q = 4.
(2) (Certain groups of rank 3 or 4) L4(2), L5(2), Sp6(2).
(3) (Alternating groups:) A5, A6, A8, A9.
(4) (Lie type of odd characteristic) L2(p), p a Mersenne or Fermat prime;

Lε3(3), L
ε
4(3), G2(3).

(5) (sporadic) M11, M12, M22, M23, M24, J2, J3, J4, HS, He, Ru.

We recall that there is an “original” or “first generation” proof of the Classifi-
cation, made up by and large of work done before 1980; and a “second generation”
program in progress, whose aim is to produce a somewhat different and simpler
proof of the Classification. The two programs take the same general approach, but
often differ in detail. Our work is a part of both efforts.

In particular Gorenstein, Lyons, and Solomon (GLS) are in the midst of a
major program to revise and simplify the proof of part of the Classification. We
also prove a corollary to our Main Theorem, which supplies a bridge between that
result and the GLS program. We now discuss that corollary:

There is yet another way to approach the characterization of the groups of Lie
type of characteristic 2. The GLS program requires a classification of quasithin
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groups which again satisfy (QT) and (K), but instead of condition (E) they impose
a more technical condition (see p. 55 of [GLS94], and 16.1.1 in this work):

(E′) G is of even type.

The condition (E′) allows certain components 2 in the centralizers of involutions t
(including involutions in Z(T ), which are not allowed under our hypothesis of even
characteristic); but these components can only come from a restricted list. To be
precise, a quasithin group G is of even type if:

(E′1) O(CG(t)) = 1 for each involution t ∈ G, and
(E′2) If L is a component of CG(t) for some involution t ∈ G, then one of the

following holds:
(i) L/O2(L) is of Lie type and in characteristic 2, but L is not SL2(q),

q = 5, 7, 9 or A8/Z2, and if L/O2(L) ∼= L3(4) then O2(L) is elementary abelian.
(ii) L ∼= L3(3) or L2(p), p a Fermat or Mersenne prime.
(iii) L/O2(L) is a Mathieu group, J2, J4, HS, or Ru.

In order to supply a bridge between our Main Theorem and the GLS program,
we also establish (as Theorem 16.5.14):

Theorem 0.1.2 (Even Type Theorem). The Janko group J1 is the only simple
group of even type satisfying (QT) and (K) but which is not of even characteristic.

Since the groups appearing as conclusions to our Main Theorem are in fact of
even type, the quasithin simple groups of even type consist of J1 together with that
list of groups.

0.2. Context and History

In this section we discuss the role of quasithin groups in the Classification,
focusing on motivation for our basic hypotheses. We also recall some of the history
of the quasithin problem. Occasionally we abbreviate ‘Classification of the Finite
Simple Groups” by CFSG.

0.2.1. Case division according to notions of even or odd “character-
istic”. The Classification of the Finite Simple Groups proceeds by analyzing the
p-local subgroups of an abstract finite simple group G for various primes p. Further
for various reasons, which we touch upon later, the 2-local subgroups are preferred.

On the other hand the generic example of a simple group is a group G of
Lie type over a field of some prime characteristic p, which is the characteristic of
that group of Lie type. Such a group G can be realized as a linear group acting
on some space V over a finite field of characteristic p, and the local structure of
G is visible from this representation. For example if g ∈ G is a p′-element (i.e.,
(|g|, p) = 1) then g is semisimple (i.e., diagonalizable over some extension field), so
its centralizer CG(g) is well-behaved in that it is essentially the direct product of
quasisimple groups of Lie type in characteristic p corresponding to the eigenspaces
of g. There are standard methods for exploiting the structure of these components.
On the other hand, if g is a p-element, then g is unipotent (i.e., all its eigenvalues
are 1), so CG(g) has no components; instead its structure is dominated by the
unipotent subgroup

F ∗(CG(g)) = Op(CG(g))

2See section 31 of [Asc86a] for the definition of a component of a finite group (namely
quasisimple subnormal subgroup), and corresponding properties.
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and in particular is more complex, so that this centralizer is more difficult to deal
with.

We seek to translate these properties of linear groups, and in particular the
notion of “characteristic”, into analogous notions for abstract groups. If G is a
finite group and p is a prime, G is defined to be of characteristic p-type if each
p-local subgroup H of G satisfies

F ∗(H) = Op(H),

or equivalently CH(Op(H)) ≤ Op(H). Every group of Lie type in characteristic p
is of characteristic p-type; indeed for large p, they are the only examples of p-rank
at least 2—though for small primes, there are groups of characteristic p-type which
are not of Lie type in characteristic p.

If a simple group G of p-rank at least 3 is “connected” at the prime p (as
discussed in the next section) but is not of characteristic p-type, then the centralizer
of some element of order p will behave like the centralizer of a semisimple element
in a group of Lie type—that is, it will have components, making it easier to analyze.
Thus the aim is to find a prime p such that G has a reasonably rich p-local structure,
but G is not of characteristic p-type. Recall also that one chooses p to be 2 whenever
possible. The original proof of the Classification partitioned the simple groups into
two classes: those of characteristic 2-type, and those not of characteristic 2-type;
furthermore different techniques were used to analyze the two classes.

In the remainder of this subsection, we’ll try to give some insight into how more
recent work (done since the original proof of the Classification) has suggested that
it is useful and natural to change the boundary of this even/odd partition. We
mentioned earlier that in the GLS program, the notion of even type replaces the
notion of characteristic 2-type. However for the purpose of dealing with quasithin
groups, our notion of even characteristic seems to be more natural than that of even
type. Notice that a group of characteristic 2-type is of even characteristic, since
the former hypothesis requires all 2-locals to be of characteristic 2, while the latter
imposes this constraint only on locals containing the Sylow group T . Thus the class
of groups of even characteristic is larger than the class of groups of characteristic
2-type, since the 2-locals in the former class are more varied.

In a moment, we will discuss two classes of groups where this extra flexibil-
ity is useful. But before doing so, we’ll say a word about the influence of these
groups and others on our work. In December 1996, Helmut Bender gave a talk at
the conference in honor of Bernd Fischer’s 60th birthday, in which he suggested
approaching classification problems like ours with a list of groups in mind, to serve
as a guide to where difficulties are likely to occur. However, that list should include
not only the “examples”—the groups which appear in the conclusion of the the-
orem; it should also include “shadows”—groups not in the conclusion, but whose
local structure is very close to that of actual examples, since these configurations of
local subgroups will also arise in the analysis, and typically they can be eliminated
only with real effort. Thus in our exposition, we try to emphasize not only how the
examples arise, but also where the shadows are finally eliminated. Our Index lists
occurrences in the proof of examples and shadows.

In particular we must deal with shadows of the following two classes which are
QTKE-groups but not simple—since it is hard to recognize locally that the groups
are not simple.
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Two non-simple configurations. Let L be a simple group of Lie type in char-
acteristic 2, and assume either

(a) G = L〈t〉 is L extended by an involutory outer automorphism t, or
(b) G = (L × Lt)〈t〉, for some involution t; i.e., G is the wreath product of L

by Z2.

Then G is in fact of even characteristic, but rarely of characteristic 2-type, since
CG(t) usually has a component. However the components of CG(t) are of Lie type
in characteristic 2, so G is also usually of even type. During the proof of the CFSG,
groups with the 2-local structure of those in (a) and (b) often arise. Under the
original approach, lengthy and difficult computations were required, to reduce to
a situation where transfer could be applied to show the group was not simple. In
the opinion of GLS (and we agree), the proof should be restructured to avoid these
difficulties.

This is achieved in GLS by replacing the old partition into characteristic 2-
type/not characteristic 2-type by the partition into even type/odd type, while we
achieve it for quasithin groups with the partition into even characteristic/not even
characteristic. Locals like those in the two classes of nonsimple groups above are
allowed under both the even characteristic hypothesis and the even type hypothesis,
but were not allowed under the older characteristic 2-type hypothesis. Thus under
the old approach, such groups would be treated in the “odd” case by focusing on
the “semisimple” element t—rather artificially, as its order is not coprime to the
characteristic of its components—and usually at great expense in effort. Under
the new approach, such groups arise in the “even” case, where the focus is not on
CG(t).

In the generic situation when G is “large” (see the next subsection for a dis-
cussion of size), GLS are able to avoid considering such centralizers by passing to
centralizers of elements of odd prime order, which can therefore be naturally re-
garded as semisimple. However, quasithin groups G are “small”, and in particular
the p-rank of G is too small to pass to p-locals for odd p; so we avoid difficulties
when G is of even characteristic by using unipotent methods applied to overgroups
of T , rather than semisimple methods applied to CG(t). The case where G is of
even type but not of even characteristic is discussed later in section 0.4 of this In-
troduction. There we will again encounter local subgroups resembling those in our
two classes, when they appear as shadows in the proof of the Even Type Theorem.

0.2.2. Case division according to size. After the case division into char-
acteristic 2-type/not characteristic 2-type or even type/odd type described above,
both generations of the CFSG proceed by also partitioning the simple groups ac-
cording to notions of size. Here the underlying idea is that above some critical size,
there should be standard “generic” (i.e., size-independent) methods of analysis; but
that “small” groups will probably have to be treated separately.

In the even/odd division of the previous subsection, we indicated that the
generic examples for the even part of the partition should be the groups of Lie type
in characteristic 2. For these groups the appropriate measure of size is the Lie rank
of the group, and as we mentioned in section 0.1, e(G) is a good approximation of
the Lie rank for G of Lie type and characteristic 2. From this point of view, the
quasithin groups are the small groups of even characteristic, so our critical value
defining the partition into large and small groups occurs at e(G) = 2.
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This leaves the question of why the boundary of the partition according to
size occurs when e(G) = 2, rather than e(G) = 1 or 3 or something else. The
answer is that when one passes to p-locals for odd primes p, e(G) ≥ 3 is needed
in order to use signalizer functors. (See e.g. chapter 15 of [Asc86a]). Namely
such methods can only be applied to subgroups E which are elementary abelian
p-groups of rank at least 3, and E needs to be in a 2-local because of connectedness
theorems for the prime 2 (which will be discussed briefly in the next section). Using
both signalizer functors and connectedness theorems for the prime 2, one can show
that the centralizer of some element of E looks like the centralizer of a semisimple
element in a group of Lie type and characteristic 2. Then this information is used
to recognize G as a group of Lie type. 3

Thus, in both programs, the two partitions of the simple groups indicated
above, into groups of “even” and “odd” characteristic, and into large and small
groups, give rise to a partition of the proof of the Classification into four parts.
Since groups of even characteristic include those of characteristic 2-type, our Main
Theorem determines the groups in one of the four parts—the small even part—in
the first generation program.

To integrate our result into the GLS second-generation proof, we need to rec-
oncile our notion of “even characteristic” with the GLS notion of “even type”. The
former notion is more natural in the context of the unipotent methods of this work,
but the latter fits better with the GLS semisimple methods. Our Even Type Theo-
rem provides the transition between the two notions, and is relatively easy to prove.
We will say a little more about that result in section 0.4 of this introduction. The
Main Theorem, together with the Even Type Theorem, determine the groups in
the small even part of the second generation program.

0.2.3. Some history of the quasithin problem. We close this section with
a few historical remarks about quasithin groups, and more generally small groups
of even characteristic.

The methods used in attacking the problem go back to Thompson in the N-
group paper [Tho68]; in anN -group, all local subgroups are assumed to be solvable.
In particular, Thompson introduced the parameter e(G), and used weak closure
arguments, uniqueness theorems, and work of Tutte [Tut47] and Sims [Sim67].
We discuss some of these techniques in the next section; a more extended discussion
appears in the Introduction to Volume I.

Groups G of characteristic 2-type with e(G) small were subsequently studied
by various authors. Note that e(G) = 0 means that all 2-locals are 2-groups, which
is impossible in a nonabelian simple group of even order by an elementary argument
going back to Frobenius; cf. the Frobenius Normal p-Complement Theorem 39.4 in
[Asc86a]. In [Jan72], Janko defined G to be thin if e(G) = 1, and used Thompson’s
methods to determine all thin groups of characteristic 2-type in which all 2-locals are
solvable. His student Fred Smith extended that classification from thin to quasithin
groups in [Smi75]. The general thin group problem was solved by Aschbacher in
[Asc78b]. Mason went a long way toward a complete treatment of the general
quasithin case in [Mas], which unfortunately has never been published. See however
his discussion of that work in [Mas80].

3In both the original proof of CFSG and in the GLS project, the case e(G) = 3 requires
special treatment.
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There have since been new treatments of portions of the N-group problem due
to Stellmacher [Ste97] and to Gomi and his collaborators [GT85], using an ex-
tension of the Tutte-Sims theory which has come to be known as the amalgam
method. The Thin Group Paper [Asc78b] used some early versions of such exten-
sions due to Glauberman, which eventually were incorporated in the proof of the
Glauberman-Niles/Campbell Theorem [GN83]. Goldschmidt initiated the “mod-
ern” amalgam method in [Gol80], and this was extended and the amalgam method
modified in [DGS85] by Goldschmidt, Delgado, and Stellmacher, and in [Ste92]
by Stellmacher. Those techniques and more recent developments are used in places
in this work; our approach is a bit different from the standard approach, and is
described briefly in section 0.10 of the Introduction to Volume I.

0.3. An Outline of the Proof of the Main Theorem

In this section we introduce some fundamental concepts and notation, and give
a rough outline of the proof of the Main Theorem. Throughout the section, assume
G is a simple QTKE-group and T ∈ Syl2(G). Recall that M is the set of maximal
2-local subgroups of G, and M(T ) is the collection of maximal 2-locals containing
T .

0.3.1. Setting up the Thompson amalgam strategy. An overall strategy
for studying groups of even characteristic originated in Thompson’s N-group paper
[Tho68]; generically it involves exploiting the interaction of distinct maximal 2-
locals M,N ∈ M(T ). (We sometimes refer to this as the “Thompson amalgam
strategy”).

Of course prior to this generic case, we must first deal with the “disconnected”
case where T lies in a unique maximal 2-local. To indicate that |M(T )| = 1, we will
usually write ∃!M(T ), to emphasize the existence of the unique maximal 2-local
overgroup of T . Recall that in the generic conclusion of the Main Theorem, where
G is of Lie type of Lie rank at least 2, there are distinct maximal parabolics above
T . So for us, the disconnected case will have as its generic conclusion the groups
of Lie type of characteristic 2 and Lie rank 1. We handle this in Theorem 2.1.1,
which says:

Theorem 2.1.1 If G is a simple QTKE-group such that ∃!M(T ), then G is
a rank 1 group of Lie type and characteristic 2, L2(p) with p > 7 a Mersenne or
Fermat prime, L3(3), or M11.

A finite group G is disconnected at the prime 2 if the commuting graph on
vertices given by the set of nonidentity 2-elements of G (whose edges are pairs of
vertices which commute as subgroups) is disconnected. The groups of Lie type and
characteristic 2 of Lie rank 1 are the simple groups of 2-rank at least 2 which are
disconnected at the prime 2. The classification of these groups is due to Bender
[Ben71] and Suzuki [Suz64]; indeed the groups (namely L2(2

n), Sz(2n), U3(2
n))

are often referred to as Bender groups. However when working with groups of even
characteristic, a weaker notion of disconnected group is also important: namely a
group G of even characteristic should be regarded as disconnected if ∃!M(T ) for
T ∈ Syl2(G).

In view of Theorem 2.1.1, henceforth we will assume that |M(T )| ≥ 2. Thomp-
son’s strategy now fixes a particular maximal 2-local M ∈ M(T ). Then instead of
working with another maximal 2-local, it will be more advantageous (for reasons
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which will emerge below) to work with a subgroup H which is minimal subject to
T ≤ H , H 6≤ M , and O2(H) 6= 1. For example if G is a group of Lie type and

characteristic 2, then M is a maximal parabolic over T , and H = O2′(P ), where P
is the unique parabolic of Lie rank 1 over T not contained in M . Similar remarks
hold for other simple groups G with diagram geometries.

We introduce some further definitions to formalize this approach in our abstract
setting. We will need to work not only with 2-local subgroups, but also with various
subgroups of 2-locals, so we define

H = HG := {H ≤ G : O2(H) 6= 1},

and for X ⊆ G, define H(X) = HG(X) := {H ∈ H : X ⊆ H}. Note that any
H ∈ H lies in the 2-local NG(O2(H)), and hence is contained in some member of
M. Thus as G is quasithin, each H ∈ H is in fact strongly quasithin; that is H
satisfies:

(SQT) mp(H) ≤ 2 for each odd prime p.

In addition each H ∈ H must also be a K-group by our hypothesis (K), so H in
fact satisfies

(SQTK) H is a K-group satisfying (SQT).

The possible simple composition factors for SQTK-groups are determined in The-
orem C (A.2.3) in Volume I. The proof of the Main Theorem depends on general
properties of K-groups, but also on numerous special properties of the groups in
Theorem C, so we refer to the list of groups in that Theorem frequently through-
out our proof. We must also occasionally deal with proper subgroups which are
not contained in 2-locals. Such groups are quasithin K-groups but not necessarily
SQTK-groups; thus we also require Theorem B (A.2.2), which determines all simple
composition factors of such groups.

In view of Theorem 2.1.1, the set

H(T,M) := {H ∈ H(T ) : H 6≤M}

is nonempty. Write H∗(T,M) for the minimal members of H(T,M), partially
ordered by inclusion. Note that for H ∈ H∗(T,M), H ∩M is the unique maximal
subgroup of H containing T by the minimality of H . Further if NG(T ) ≤ M
(and we will show in Theorem 3.3.1 that this is usually the case), then T is not
normal in H . These conditions give the definition of an abstract minimal parabolic,
originating in work of McBride; see our definition B.6.1. The condition strongly
restricts the structure of H . In particular, the possibilities for H are described
in sections B.6 and E.2. In the most interesting case, O2(H/O2(H)) is a Bender
group, so H does resemble a minimal parabolic in the Lie theoretic sense for a group
of Lie type: namely O2′(P ) where P is a parabolic of Lie rank 1.

Thus for each M ∈ M(T ), we can choose some H ∈ H∗(T,M). By the maxi-
mality ofM , 〈M,H〉 is not contained in a 2-local subgroup, so that O2(〈M,H〉) = 1.
Thompson’s weak closure methods and the later amalgam method depend on the
latter condition, rather than on the maximality of M , so often we will be able
to replace M by a smaller subgroup. We say U is a uniqueness subgroup of G if
∃!M(U). Furthermore we usually write M = !M(U) to indicate that M is the
unique overgroup of U in M. Notice that if M = !M(U), then from the defini-
tion of uniqueness subgroup, O2(〈U,H〉) = 1, so again we can apply weak closure
arguments or the amalgam method to the pair U,H .
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In the next subsection 0.3.2, we describe how to obtain a uniqueness subgroup
U with useful properties, while subsection 0.3.3 discusses how to determine a list of
possiblities for U . Here is a brief summary: No nontrivial subgroup T0 of T can be
normal in both U and H ; in particular, Z := Ω1(Z(T )) is not in the center of Y for
some Y ∈ {U,H}. This places strong restrictions on the F2-module 〈ZY 〉, and on
the action of Y on this module. Our approach concentrates on the situation where
Y is the uniqueness group U . Roughly speaking, we can classify the possibilities
for U and 〈ZU 〉, resulting in a list of cases to be analyzed when Y = U . The bulk
of the proof of the Main Theorem then involves the treatment of these cases, a
process which is outlined in the final subsection 0.3.4.

0.3.2. Finding a uniqueness subgroup. We put aside for a while the groups
M and H from the previous subsection, to see how the hypothesis that G is a
QTKE-group gives strong restrictions on the structure of 2-local subgroups of G.

We begin with the definition of objects similar to components: For H ≤ G, let
C(H) be the set of subgroups L of H minimal subject to

1 6= L = L∞ E E H.

We call the members of C(H) the C-components of H . To illustrate and motivate
this definition, consider the following

Example. Suppose G is a group of Lie type over a field F2n with n > 1,
and H is a maximal parabolic. If H corresponds to an end node of the Dynkin
diagram ∆ of G, then H∞ will be the unique member of C(H). But suppose
instead that G is of Lie rank at least 3 and H corresponds to an interior node δ
of ∆. Then the minimality of a C-component L of H says that L covers only that
part of the Levi complement corresponding to just one connected component of
∆ − {δ}. Furthermore H∞ is then the product of the C-components of H , and
distinct C-components commute modulo O2(H).

We list some facts about C-components and indicate where these facts can
be found; see also section 0.5 of the Introduction to Volume I. In section A.3 we
develop a theory of C-components in SQTK-groups. Then in 1.2.1 we use this theory
to show that two of the properties in the Example in fact hold for each H ∈ H
in a QTKE-group G: namely 〈C(H)〉 = H∞, and for distinct L1, L2 ∈ C(H),
[L1, L2] ≤ O2(L1) ∩ O2(L2) ≤ O2(H). The quasithin hypothesis further restricts
the number of factors and the structure of the factors in such commuting products:
If L ∈ C(H), then either L E H , or |LH | = 2 and L/O2(L) ∼= L2(2

n), Sz(2n),
L2(p) with p an odd prime, or J1. In particular for S ∈ Syl2(H), 〈LS〉 E H ,
and 〈LS〉 is L or LLs for some s ∈ S. Moreover 1.2.1.4 shows that almost always
L/O2(L) is quasisimple. Since the cases where L/O2(L) is not quasisimple cause
little difficulty, it is probably best for the expository purposes of this Introduction
to ignore the non-quasisimple cases.

To get some control over how 2-locals intersect, and in particular to produce
uniqueness subgroups, we also wish to see how C-components of H ∈ H embed in
other members of H. To do so, we keep appropriate 2-subgroups S of H in the
picture, and define L(H,S) to be the set of subgroups L of H with

L ∈ C(〈L, S〉), S ∈ Syl2(〈L, S〉), and O2(〈L, S〉) 6= 1.

Again to movitate this definition, consider the case where G is the shadow obtained
by extending G0 := L4(2

n) for n > 1 by an involutory graph automorphism of G0,
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with P the middle node maximal parabolic over T ∩ G0, and H := PT . Then
H ≥ 〈L, T 〉 for an L ∈ L(G, T ) with |LT | = 2.

We partially order L(G, T ) by inclusion and let L∗(G, T ) denote the maximal
members of this poset. In our earlier example where H is a parabolic of a group of
Lie type, notice that any L ∈ C(H) is contained in a maximal parabolic determined
by some end node. Thus the C-components of such parabolics are the members of
L∗(G, T ).

In an abstract QTKE-group G, the members of L∗(G, T ) can be used to pro-
duce uniqueness subgroups: For by 1.2.4, when S ∈ Syl2(H), any L ∈ L(H,S) is
contained in some K ∈ C(H). Then a short argument in 1.2.7 shows that whenever
L ∈ L∗(G, T ),

NG(〈L
T 〉) =!M(〈L, T 〉).

Thus 〈L, T 〉 is a uniqueness subgroup in our language, achieving the goal of this
subsection.

But it could also happen (for example in a group of Lie type over the field
F2) that the visible 2-locals are solvable, so that L(G, T ) is empty. To deal with
such situations, and with the case where L/O2(L) is not quasisimple for some
L ∈ L∗(G, T ), we also show that certain solvable minimal T -invariant subgroups
are uniqueness subgroups. The quasithin hypothesis allows us to focus on p-groups
of small rank: Define Ξ(G, T ) to consist of those T -invariant subgroups X = O2(X)
of G such that

XT ∈ H, X/O2(X) ∼= Ep2 or p1+2 for some odd prime p, and T is irreducible
on the Frattini quotient of X/O2(X).

For example, in the extension of L4(2
n) discussed above, if we take n = 1 instead

of n > 1, then H = PT ∈ Ξ(G, T ) for p = 3.
If X is not contained in certain nonsolvable subgroups, then XT will be a

uniqueness subgroup. Thus we are led to define Ξ∗(G, T ) to consist of those X ∈
Ξ(G, T ) such that XT is not contained in 〈L, T 〉 for any L ∈ L(G, T ) with L/O2(L)
quasisimple. We find in 1.3.7 that if X ∈ Ξ∗(G, T ), then

NG(X) =!M(XT ),

so that XT is a uniqueness subgroup.

0.3.3. Classifying the uniqueness groups and modules. We now return
to our pair M , H with M ∈M(T ) and H ∈ H∗(T,M) from subsection 0.3.1. The
structure of H is restricted since H is a minimal parabolic, but a priori M could
be a fairly arbitrary quasithin group, subject to the constraint F ∗(M) = O2(M);
in particular, the composition factors of M could include arbitrary simple SQTK-
groups acting on arbitrary “internal modules” (elementary abelian M -sections)
involved in O2(M)

To obtain a more tractable set of possibilities, we exploit a uniqueness subgroup
U produced by one of the two methods in the previous subsection 0.3.2; that is, we
take U of the form 〈L, T 〉 with L ∈ L∗(G, T ), or XT with X ∈ Ξ∗(G, T ), and take
M := NG(O

2(U)) = !M(U). Recall that Z := Ω1(Z(T )) cannot be central in both
U and H . The case where Z ≤ Z(U) for all choices of U is essentially a “small”
case, treated in Part 6, so most of the analysis deals with the case [Z,U ] 6= 1.

We introduce notation to cover both the situations discussed in subsection 0.3.2:
Define X to consist of those subgroupsX = O2(X) of G such that F ∗(X) = O2(X).
For example L(G, T ) and Ξ(G, T ) are contained in X . To describe the members with
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a “faithful action”, write Xf for those X ∈ X such that [Ω1(Z(O2(X))), X ] 6= 1,
with a similar use of the subscript to define subsets Lf (G, T ) and Ξf (G, T ). Our
analysis focuses on the faithful uniqueness groups U in L∗f (G, T ) and Ξ∗f (G, T ).

If Y ∈ H(T ), so that F ∗(Y ) = O2(Y ) by 1.1.4.6, then by a standard lemma
B.2.14, V := 〈ZY 〉 is elementary abelian and 2-reduced: that is, O2(Y/CY (V )) = 1.
Following Thompson, define R2(Y ) to be the set of 2-reduced elementary abelian
normal 2-subgroups of Y . By B.2.12 (26.2 in [GLS96]), the product of members
of R2(Y ) is again in R2(Y ), so R2(Y ) has a unique maximal member R2(Y ). We
regard R2(Y ) as an F2Y -module.

Observe that if L ∈ L∗f (G, T ) with L/O2(L) quasisimple, or X ∈ Ξ∗f (G, T ),

then CU (R2(U)) ≤ O2,Φ(U). 4 Then the representation of U/CU (R2(U)) on R2(U)
(or indeed on any V ∈ R2(U) with V 6≤ Z(U)) is particularly effective, since for
any weakly closed subgroup W of CT (V ), W is normal in the uniqueness subgroup
U , so that NG(W ) ≤M . That is M = !M(U) contains the normalizers of various
weakly closed subgroups W of T .

ForM := NG(O
2(U)) and U a uniqueness subgroup of the form 〈L, T 〉 with L ∈

L∗(G, T ), or XT with X ∈ Ξ∗(G, T ), we prove in Theorem 3.3.1 that NG(T ) ≤M .
It follows that T is not normal in H in those cases, so that H is a minimal parabolic
in the sense of Definition B.6.1, and hence we can use the explicit description of
H/O2(H) from section E.2 mentioned earlier.

We next turn to Theorem 3.1.1, which is used in a variety of ways; it says:

Theorem 3.1.1 If M0, H ∈ H(T ), such that T is in a unique maximal sub-
group of H , and R ≤ T with R ∈ Syl2(O2(H)R) and R E M0, then O2(〈M0, H〉) 6=
1.

For example in our standard setup we can takeM0 to be the uniqueness group U
and R := CT (V )—and conclude that R /∈ Syl2(O2(H)R), since H 6≤ M =!M(U);
hence O2(〈U,H〉) = 1. In particular we use Theorem 3.1.1 to rule out the first case
which occurs in Stellmacher’s qrc-lemma D.1.5 (see below), and in the remaining
cases the qrc-lemma gives us strong information on a module V for the action of
U . That information is given in terms of small values of certain parameters, which
we now introduce. For X a finite group, let A2(X) denote the set of nontrivial
elementary abelian 2-subgroups of X . Given a faithful F2X-module V , define

q(X,V ) := min{
m(V/CV (A))

m(A)
: 1 6= A ∈ A2(X) such that 0 = [V,A,A]}

and the analogous parameter correponding to cubic rather than quadratic action:

q̂(X,V ) := min{
m(V/CV (A))

m(A)
: 1 6= A ∈ A2(X) such that 0 = [V,A,A,A]}.

For example V is a failure of factorization module (FF-module—see section B.1)
for X precisely when q(X,V ) ≤ 1.

Using Theorem 3.1.1 and Stellmacher’s qrc-Lemma (see Theorem D.1.5), we
obtain:

Theorem 3.1.6 Let T ≤ M0 ≤ M ∈ M(T ) and H ∈ H∗(T,M) Assume
V ∈ R2(M0) with CT (V ) = O2(M0), and H ∩M normalizes O2(M0) or V . Then
one of the following holds:

4Here O2,Φ(U) denotes the preimage of the Frattini subgroup Φ(U/O2(U)); elsewhere we use

similar notation such as O2,F (U), O2,E(U), etc.
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(1)O2(〈M0, H〉) 6= 1, so M0 is not a uniqueness subgroup of G.
(2) V 6≤ O2(H) and q̂(M0/CM0(V ), V ) ≤ 2.
(3) q(M0/CM0(V ), V ) ≤ 2.

When we apply this result with M0 our uniqueness subgroup U from subsection
0.3.1, case (1) does not arise, so the module V satisfies q̂ ≤ 2.

In section D.3, we determine the groups and modules satisfying this strong
restriction (and a suitable minimality assumption) under the SQTK-hypothesis.
Since the most general SQTK-group H of characteristic 2 could have arbitrary
internal modules as sections of O2(H), Theorem 3.1.6 leads to a solution in section
3.2 of the First Main Problem for QTKE-groups:

First Main Problem. Show that a simple QTKE-group G does not have
the local structure of the general nonsimple strongly quasithin K-group Q with
F ∗(Q) = O2(Q), but instead has a more restrictive structure resembling that of the
examples in the conclusion of the Main Theorem, or the shadows of groups with
similar local structure.

A solution of the First Main Problem amounts to showing that there are
relatively few choices for L/O2(L) and its action on V , where L ∈ L∗f (G, T ),
V ∈ R2(〈L, T 〉), and [V, L] 6= 1. Indeed in most cases, L/O2(L) is a group of
Lie type in characteristic 2 and V is a “natural module” for L/O2(L). This leads
us in section 3.2 to define the Fundamental Setup FSU (3.2.1), and to the possibili-
ties for L/O2(L) and V listed in 3.2.5–3.2.9. The proof can be roughly summarized
as follows: Apply Theorem 3.1.6 to M0 := U = 〈L, T 〉. As M0 is a uniqueness sub-
group, conclusion (1) of 3.1.6 cannot hold. Then from section D.3, the restrictions
on q and q̂ in conclusions (2) and (3) of 3.1.6 allow us to determine a short list of
possibilities for M0/CM0(V ) and its action on V .

0.3.4. Handling the resulting list of cases. We continue to restrict atten-
tion to the most important case where L ∈ L∗(G, T ) with L/O2(L) quasisimple,
and let L0 := 〈LT 〉 and M := NG(L0). Then in the FSU, there is 1 6= V =
[V, L0] ∈ R2(L0T ) with V/CV (L0) an irreducible L0T -module. Set VM := 〈V M 〉
and M̄ :=M/CM (VM ). By 3.2.2, VM ∈ R2(M), and by Theorems 3.2.5 and 3.2.6,
we may choose V so that one of the following holds:

(1) V = VM E M .
(2) CV (L) = 1, V E T , and V is a TI-set under M . 5

(3) L̄ ∼= L3(2), L < L0, and subcase 3.c.iii of Theorem 3.2.6 holds.

Further the choices for L and V are highly restricted, and are listed in Theorems
3.2.5 and 3.2.6, with further information given in 3.2.8 and 3.2.9.

The bulk of the proof of our Main Theorem consists of a treatment of the
resulting list of possibilities for L and V . The analysis falls into several broad
categories: The cases with |LT | = 2 are handled comparatively easily in chapter
10; so from now on assume that L E M . The Generic Case where L̄ ∼= L2(2

n)
(leading to the generic conclusion in our Main Theorem of a group of Lie type and
characteristic 2 of Lie rank 2) is handled in Part 2. Most cases where V is not an
FF-module for LT/O2(LT ) are eliminated in Part 3. The remaining cases where
V is an FF-module are handled in Parts 4 and 5.

5Recall a TI-set is a set intersecting trivially with its distinct conjugates.
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In order to discuss these cases in more detail, we need more concepts and
notation.

First, another consequence of Theorem 3.1.1 (established as part (3) of Theorem
3.1.8) is that either

(i) L = [L, J(T )], or
(ii) H∗(T,M) ⊆ CG(Z), where Z = Ω1(Z(T )).

Here J(T ) is the Thompson subgroup of T (cf. section B.2). In case (i), V is an FF-
module; so when V is not an FF-module, we know [Z,H ] = 1 for all H ∈ H∗(T,M).
In particular CV (L) = 1 sinceH is not contained in the uniqueness groupM for LT ,
whereas if CV (L) were nontrivial then CZ(L) would be nontrivial and centralized
by H as well as LT .

Second, in section E.1, we introduce a parameter n(H) for H ∈ H. The pa-
rameter involves the generation of H by minimal parabolics, but the definition of
n(H) is somewhat more complicated; for expository purposes one can oversimplify
somewhat to say that roughly n(H) = 1 unless H has a composition factor which
is of Lie type over F2n—in which case n(H) is the maximum of such n. Thus for
example in a twisted group H of Lie type, n(H) is usually the exponent n of the
larger of the orders of the fields of definitions of the Levi factors of the parabolics
of Lie rank 1 of H . In particular if H ∈ H∗(T,M), then either n(H) = 1, or (using
section B.6) O2(H/O2(H)) is a group of Lie type over F2n of Lie rank at most 2,
O2(H) ∩M is a Borel subgroup of O2(H), and n(H) = n. In that event, we call
the Hall 2′-subgroups of H ∩ M Cartan subgroups of H . Our object is to show
that n(H) is roughly bounded above by n(L), and to play off Cartan subgroups
of H against those of L when L/O2(L) is of Lie type. It is easy to see that if
n(H) > 1 and B is a Cartan subgroup of H ∩M , then H = 〈H ∩M,NH(B)〉, so
that NG(B) 6≤ M . On the other hand, if n(H) is small relative to n(L) (e.g. if
n(H) = 1), then weak closure arguments can be effective.

Third, except in certain cases where V is a small FF-module, we obtain the
following important result, which produces still more uniqueness subgroups:

Theorem 4.2.13 With small exceptions, if I ≤ LT with L ≤ O2(LT )I and
I ∈ H, then I is also a uniqueness subgroup.

Theorem 4.2.13 has a variety of consequences, but perhaps its most important
application is in Theorem 4.4.3, to show that (except when V is a small FF-module)
if 1 6= B is of odd order in CM (V ), then NG(B) ≤ M . In particular from the
previous paragraph, if H ∈ H∗(T,M) with n(H) > 1 and B is a Cartan subgroup
of H ∩M , then [V,B] 6= 1. If [Z,H ] = 1, this forces B to be faithful on L, so that
it is possible to compare n(H) to n(L) and show that n(H) is not large relative to
n(L).

0.3.4.1. Weak Closure methods. Thompson introduced weak closure methods
in the N-group paper [Tho68]. When n(H) is small relative to n(L) and (roughly
speaking) q(LT/O2(LT ), V ) is not too small, weak closure arguments become ef-
fective. We will not discuss weak closure in any detail here, but instead direct
the reader to the discussion in section 0.9 of the Introduction to Volume I, and to
section E.3 of Volume I, particularly the exposition introducing that section and
the introductions to subsections E.3.1 and E.3.3. However we will at least say here
that weak closure, together with the constellation of concepts and techniques intro-
duced earlier in this subsection, plays the largest role in analyzing those cases in the
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FSU where V is not an FF-module. The only quasithin example which arises from
those cases is J4, but shadows of groups like the Fischer groups and Conway groups
complicate the analysis, and are only eliminated rather indirectly because they
are not quasithin. When V is not an FF-module, the pair L/O2(L), V is usually
sufficiently far from pairs in examples or shadows, that the pair can be eliminated
by comparing various paramters from the theory of weak closure.

0.3.4.2. The Generic Case. In the Generic Case, L̄ ∼= L2(2
n) and n(H) > 1

for some H ∈ H∗(T,M). We prove in Theorem 5.2.3 that the Generic Case leads
to the bulk of the groups of Lie type and characteristic 2 in the conclusion of our
Main Theorem; to be precise, one of the following holds:

(1) V is the A5-module for L/O2(L) ∼= L2(4).
(2) G ∼=M23.
(3) G is Lie type of Lie rank 2 and characteristic 2.

To prove Theorem 5.2.3, we proceed by showing that if neither (1) nor (2) holds,
and D is a Cartan subgroup of L, then the amalgam

α := (LTB,BDT,HD)

is a weak BN-pair of rank 2 in the sense of the “Green Book” [DGS85]; then by
TheoremA of the Green Book and results of Goldschmidt [Gol80] and Fan [Fan86],
the amalgam α is determined up to isomorphism. At this point there is still work
to be done, as this determines G only up to “local isomorphism”. Fortunately there
is a reasonably elegant argument to complete the final identification of G as a group
of Lie type and characteristic 2; this argument is discussed in the Introduction to
Volume I, in section 0.12 on recognition theorems. It also requires the extension
4.3.2 of Theorem 4.2.13 to show that G = 〈L,H〉.

After dealing with the Generic Case, we still have to consider the situation
where L/O2(L) ∼= L2(2

n) and n(H) = 1 for all H ∈ H∗(T,M); in Theorem 6.2.20,
we show that then either V is the A5-module for L/O2(L), or G ∼=M22. Thus from
now on, if L/O2(L) ∼= L2(2

n), we may assume n = 2 and V is the A5-module.
0.3.4.3. Other FF-modules. Next in Theorem 11.0.1, we eliminate the cases

where L̄ is SL3(2
n), Sp4(2

n), or G2(2
n) for n > 1. From the list in section 3.2,

this leaves the cases where L̄ is essentially a group of Lie type defined over F2;
that is, L̄ is Ln(2), n = 3, 4, 5; An, n = 5, 6; or U3(3) = G2(2)

′—and V is an FF-
module. Roughly speaking, these cases, together with certain cases where Lf (G, T )
is empty, are the cases left untreated in Mason’s unpublished preprint. They are
also the most difficult cases to eliminate.

We first show either that there is z ∈ Z ∩ V # with Gz := CG(z) 6≤ M , or
G is A8, A9, M22, M23, M24, or L5(2). In the latter case the groups appear as
conclusions in our Main Theorem, so we may now assume the former.

Let G̃z := Gz/〈z〉, Lz := O2(CL(z)), and Vz := 〈V
Lz
2 〉, where V2 is the preimage

of CṼ (T ), and U := 〈V Gzz 〉. Then Ũ ≤ Z(O2(G̃z)) by B.2.14, and our next task is to
reduce to the case where U is elementary abelian. If not, then U = Z(U)QU , where

QU is an extraspecial 2-group, and then to analyze G̃z , we can use some of the
ideas from the the theory of groups with a large extraspecial 2-group (cf. [Smi80])
in the original CFSG: We first show that if Z(U) 6= 〈z〉, then G ∼= Sp6(2) or HS.
Hence we may assume in the remainder of this case that U is extraspecial. Then we
repeat some of the elementary steps in Timmesfeld’s analysis in [Tim78], followed
by appeals to results on F2-modules in section G.11, to pin down the structure of
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Gz. At this point our recognition theorems show that G is G2(3), L
ε
4(3), or U4(2).

The shadow of the Harada-Norton group F5 also arises to cause complications.
We have reduced to the case where U is abelian. In this difficult case, we show

that only G ∼= Ru arises. Our approach is to use a modified version of the amalgam
method on a pair of groups (LT,H), where H ∈ H(LzT ) with H 6≤ M . Using
the fact that U is abelian, we can show that 〈V Gz 〉 is abelian, and hence conclude
that [V, V g] = 1 if V ∩ V g 6= 1. In the context of the amalgam method, this
shows that the graph parameter b is odd and greater than 1. Then we show that
q(H/CH(Ũ), Ũ) ≤ 2, which eventually leads to the elimination of all choices for

L/O2(L), V , H/CH(Ũ), and U other than the 4-tuple leading to the Ru example.

We have completed the outline of our treatment of quasithin groups in the
main case, when there is L ∈ L∗f (G, T ) with L/O2(L) quasisimple. The case where

L/O2(L) is not quasisimple is handled fairly easily in section 13.1. That leaves:

0.3.5. The case Lf (G, T ) empty. In Part 6 we handle the case Lf (G, T ) = ∅.
Part of the analysis here has some similarities to the F2-case just discussed, and
leads to the groups J2, J3,

3D4(2), the Tits group 2F4(2)
′, U3(3), M12, L3(2), and

A6.

To replace the uniqueness subgroup 〈L, T 〉, we introduce the partial order
<
∼

on M(T ) defined in section A.5, choose M ∈ M(T ) maximal with respect to
<
∼,

and set Z := Ω1(Z(T )) and V := 〈ZM 〉. Then by A.5.7, for each overgroup X of T
in M with M = CM (V )X , we obtain M = !M(X). The case where CG(Z) is not
a uniqueness subgroup is relatively easy, and handled in the last section of Part 6;
in this case G ∼= L3(2) or A6. The case where CG(Z) is a uniqueness subgroup is
harder; the subcase where m(V ) = 2 and AutM (V ) ∼= L2(2) presents the greatest
difficulties, and is handled in Part 5—in tandem with the cases where V is the
natural module for L/O2(L) ∼= Ln(2) for n = 4 and 5. The elimination of these
cases completes the proof of our Main Theorem.

0.4. An Outline of the Proof of the Even Type Theorem

Assume in this section that G is a simple QTK-group of even type, but G is
not of even characteristic. We outline our approach for showing G is isomorphic to
the smallest Janko group J1.

As G is of even type, there is an involution z ∈ Z(T ) and a component L of
CG(z). As G is quasithin of even type, the possibilities for L are few. Our object
is to show that L is a standard subgroup of G: That is, we must show that L
commutes with none of its conjugates, NG(L) = NG(CG(L)), and CG(L) is tightly
embedded in G. This last means that CG(L) is of even order, but if g ∈ G−NG(L)
then CG(L)∩CG(Lg) is of odd order. Once this is achieved, the facts that z ∈ Z(T )
and that L is highly restricted will eventually eliminate all configurations except
L ∼= L2(4) and CG(z) = 〈z〉 ×L, where G ∼= J1 via a suitable recognition theorem.

Here are some details of the proof. We first observe that if i is an involution
in CT (L) and |S : CT (i)| ≤ 2 for some S ∈ Syl2(CG(i)), then L is a component of
CG(i): For L is a component at least of CCG(i)(z), and hence contained in KKz

for some component K of CG(i) by “L-balance” (see I.3.1). Now the hypothesis
that |S : CT (i)| ≤ 2, together with the restricted choices for K, leads to L = K as
desired.
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This fundamental lemma can be used to show first that L E CG(z)—which
is very close to showing that L commutes with none of its conjugates. Then the
fundamental lemma also shows that L ECG(i) for each involution i ∈ CG(L), after
which it is a short step to showing that CG(L) is tightly embedded in G, and L is
standard in G.

At this point, we could quote some of the theory of standard subgroups and
tightly embedded subgroups (developed in [Asc75] and [Asc76]) to simplify the
remainder of the proof. But since GLS do not use this machinery, we content
ourselves with using only elementary lemmas from that theory which are easy to
prove; the lemmas and their proofs are reproduced in sections I.7 and I.8. In
particular, we use I.8.2 to see that our hypothesis that G is not of even characteristic
shows that for some Lg distinct from L, an involution of CG(L

g) normalizes L; this
provides the starting point for our analysis. Then, making heavy use of the fact
that z is 2-central, and that the component L is highly restricted by the even type
hypothesis, we eliminate all configurations except NG(L) ∼= Z2 × L2(4). Then
we identify G = J1 via the structure of CG(z) as noted above. Along the way,
we encounter various shadows coming from groups which are not perfect, like the
groups in the examples in subsection 0.2.1. In most such cases it is possible to
apply transfer to contradict G = O2(G), given the fact that the Sylow 2-group T
of G normalizes L.

This shows the advantages of introducing the notion of a group of “even char-
acteristic”, and hence of the the partition of the quasithin groups of even type into
those of even characteristic, and those of even type which are not of even char-
acteristic: The first subclass we studied via unipotent methods, and the latter by
semisimple methods at the prime 2. If instead we had used unipotent methods to
treat only the more restricted subclass of groups of characteristic 2-type, then our
semisimple analysis at the prime 2 would have had to deal with the shadows of the
nonsimple configurations in subsection 0.2.1, in which involution centralizers CG(z)
with components do not contain a Sylow 2-group T of G. When z is not 2-central
the road to obtaining T , so that one can show G is not simple via transfer, is much
longer and very bumpy.

As a final remark, we recall that for the generic groups of even type, GLS are
able switch to semisimple analysis of elements of odd prime order, and so are able
to avoid dealing with shadows of the nonsimple examples of subsection 0.2.1. Thus
they do not need the concept of groups of “even characteristic” in their generic
analysis.
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Structure of QTKE-Groups and
the Main Case Division



See the Introductions to Volumes I and II for terminology used in this overview.

In this first Part, we obtain a solution to the First Main Problem: that is, we
show that a simple QTKE-group G (with Sylow 2-subgroup T ) does not have the
local structure of the arbitrary nonsolvable SQTK-group Q with F ∗(Q) = O2(Q),
but instead has more restricted 2-locals resembling those in examples and shadows.
More precisely, we establish the existence of a “large” member of H(T ) (i.e., a
uniqueness subgroup of G) resembling a maximal 2-local in an example or shadow.
Then the cases corresponding to the possible uniqueness subgroups will be treated
in subsequent Parts of this Volume.

Here is an outline of Part 1:
In chapter 1 we use the results in sections A.2 and A.3 of Volume I to establish

tools for working in 2-local subgroups H of G, using the fact that our 2-locals are
strongly quasithin. In particular we obtain a good description of the last term
H∞ of the derived series for H , primarily in terms of the C-components of H ,
and some information about F (H/O2(H)). We then go on to show that certain
subgroups of G are “uniqueness subgroups” contained in a unique maximal 2-local
M . In particular, we show that members of the sets L∗(G, T ) and Ξ∗(G, T ) are
uniqueness subgroups.

The “disconnected” case where T itself is a uniqueness subgroup and so con-
tained in a unique maximal 2-local, is treated in chapter 2, which characterizes
certain small groups via this property. Consequently after Theorem 2.1.1 is proved,
we are able to assume during the remainder of the proof of the Main Theorem that
T is contained in at least two maximal 2-locals of G. Hence there exist 2-locals H
with T ≤ H 6≤M .

Next in chapter 3, we begin by proving two important preliminary results:
Theorem 3.3.1 which says that NG(T ) ≤M when M = !M(L) with L in L∗(G, T )
or Ξ∗(G, T ); and Theorem 3.1.1, which among other things is needed to apply
Stellmacher’s qrc-lemma D.1.5 to the amalgam defined by M and H . The qrc-
lemma gives strong restrictions on certain internal modules U for M via the bound
q̂(AutM (U), U) ≤ 2. Section 3.2 then uses those restrictions to determine the
list of possibilities for L/O2(L) with L ∈ L∗f (G, T ), and for the internal modules

V ∈ R2(〈L, T 〉). This provides the Main Case Division for the proof of the Main
Theorem. One consequence of Theorem 3.3.1 is that members of H∗(T,M) are
minimal parabolics, in the sense of the Introduction to Volume II.

The first Part concludes with chapter 4, which uses the methods of pushing
up from chapter C of Volume I to establish some important technical results: In
particular, we show in Theorem 4.2.13 that unless V is an FF-module and L is
“small”, then for each I ≤ L with O2(I) 6= 1 and L = O2(L)I , we haveM = !M(I).
This large family of uniqueness subgroups then allows us (in Theorems 4.4.3 and
4.4.14) to control the normalizers of nontrivial subgroups of odd order centralizing
V . This control is in turn important later, particularly in Part 2 and in chapter
11, when we deal with cases where L/O2(L) (or H/O2(H) for H ∈ H∗(T,M)) is of
Lie type over F2n for some n > 1, allowing us to exploit the existence of nontrivial
Cartan subgroups.



CHAPTER 1

Structure and intersection properties of 2-locals

In this chapter we show how the structure theory for SQTK-groups from sec-
tion A.3 of Volume I translates into a description of the 2-local subgroups of a
QTKE-group G. We then use this description to establish the existence of certain
uniqueness subgroups, which are crucial to our analysis. We will concentrate on
C-components of 2-locals, and the two families L(G, T ) and Ξ(G, T ) of subgroups
of G discussed in the Introduction to Volume II.

In this chapter, and indeed unless otherwise specified throughout the proof of
the Main Theorem, we adopt the following convention:

Notation 1.0.1 (Standard Notation). G is a simple QTKE-group, and T ∈
Syl2(G).

Recall from the Introduction to Volume I that a finite groupG is a QTKE-group
if

(QT) G is quasithin,
(K) every proper subgroup of G is a K-group, and
(E) F ∗(M) = O2(M) for each maximal 2-local subgroup M of G of odd index.

Also as in the Introductions to Volumes I and II, let M denote the set of maximal
2-local subgroups of G, for X ⊆ G define

M(X) := {N ∈M : X ⊆ N},

and recall that a subgroup U ≤ M ∈ M is a uniqueness subgroup if M = !M(U).
(Which meansM(U) = {M} in the notation more common in the earlier literature).
The members of M are of course uniqueness subgroups, but for our purposes it is
preferable to work with smaller uniqueness subgroups, which have better properties
in various arguments involving amalgams, pushing up, etc. We summarize some
useful properties of uniqueness subgroups in the final section of the chapter.

1.1. The collection He

Definition 1.1.1. Define He = HeG to be the set of subgroups H of G such
that F ∗(H) = O2(H); equivalently CH (O2(H)) ≤ O2(H) or O2(F ∗(H)) = 1.

Using this notation, Hypothesis (E)—namely that G is of even characteristic—
just says

M(T ) ⊆ He.

The property that H ∈ He has many important consequences which we can exploit
later—notably the existence of 2-reduced internal modules for H , such as in lemma
B.2.14. Thus we want He to be as large as possible, so in this section we establish
several sufficient conditions to ensure that a subgroup is in He.
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We begin by defining some notation.

Definition 1.1.2. Set

H = HG := {H ≤ G : O2(H) 6= 1};

and for X ⊆ G, set

H(X) = HG(X) := {H ∈ H : X ⊆ H}.

For X ⊆ Y ⊆ G, set

H(X,Y ) = HG(X,Y ) := {H ∈ H(X) : H 6⊆ Y }.

Define He(X) (resp. He(X,Y )) as the intersection of He with H(X) (resp.
H(X,Y )).

The subgroups in H are the primary focus of our proof, so we record here the
following elementary (but important) observations: Notice that by (QT), H is an
SQT-group. As G is simple and O2(H) 6= 1, certainly H is proper in G; hence
by (K), simple sections of subgroups of H are in K, so that H is an SQTK-group.
Then by (2) of Theorem A (A.2.1), all simple sections of H are also SQTK-groups.

We are interested in conditions on members H of H which will ensure that
H ∈ He. For example, in 1.1.4.6 below, we show that each member of the collection
H(T ) is in He. We begin with some well known results in that spirit, which we use
frequently:

Lemma 1.1.3. Let M ∈ He. Then

(1) If 1 6= N E E M , then N ∈ He.
(2) If X is a 2-subgroup of M , and XCM (X) ≤ H ≤ NM (X), then H ∈ He

and CM (X) ∈ He.
(3) If H ≤M and B1, . . . , Bn are 2-subgroups of H with Bj ≤ NH(Bi) for all

i ≤ j and H =
⋂n
i=1 NM (Bi), then H ∈ He.

Proof. As N E E M , O2(F ∗(N)) ≤ O2(F ∗(M)) = 1. Thus (1) holds. If X
is a 2-subgroup ofM , then NM (X) ∈ He by 31.16 in [Asc86a], so CM (X) ∈ He by
(1). If XCM (X) ≤ H ≤ NM (X), then X ≤ O2(H), so O2(F ∗(H)) centralizes X ,
and hence O2(F ∗(H)) ≤ O2(F ∗(CM (X))) = 1, so that H ∈ He. Thus (2) holds,
and (3) follows from (2) by induction on n. ¤

For X ≤ G let S2(X) be the set of nontrivial 2-subgroups of X , and let Se2 (G)
consist of those S ∈ S2(G) such that NG(S) ∈ He. Here is a collection of conditions
sufficient to ensure that various overgroups and subgroups are in He:

Lemma 1.1.4. (1) If U ∈ Se2 (G) and U ≤ V ∈ S2(G), then V ∈ Se2(G).
(2) If 1 6= U E T , then U ∈ Se2 (G). In particular 2-locals containing T are in

He.
(3) If U ∈ S2(G) and 1 6= Z(T ) ∩ U , then U ∈ Se2(G).
(4) If 1 6= N ≤M ≤ G with M ∈ He and CO2(M)(O2(N)) ≤ N , then N ∈ He.
(5) If 1 6= N ≤M ∈M(T ) with CO2(M)(O2(N)) ≤ N , then N ∈ He.
(6) H(T ) ⊆ He.
(7) If M ∈ He, S ∈ Syl2(M), and 1 6= M1 ≤ M with |S : S ∩M1| ≤ 2, then

M1 ∈ He.
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Proof. Assume the hypotheses of (1) and set N := NG(U). Then by hypoth-
esis N ∈ He. Now if U E V then V ≤ N , so NN (V ) ∈ He by 1.1.3.2. But

O2(F ∗(NG(V ))) ≤ CG(V ) ≤ CG(U) ≤ N,

so O2(F ∗(NG(V ))) ≤ O2(F ∗(NN (V ))) = 1 as NN (V ) ∈ He. Therefore NG(V ) ∈
He as desired. This shows that (1) holds when U E V . Then as U E E V , (1)
holds by induction on |V : U |.

Under the hypotheses of (2), NG(U) is contained in some X ∈ M(T ), and,
as we remarked earlier, X ∈ He by Hypothesis (E). Then as NG(U) = NX(U),
NG(U) ∈ He by 1.1.3.2, proving (2).

For (3), observe Z(T ) ∩ U ∈ Se2 (G) by (2), and then U ∈ Se2(G) by (1).
Now assume the hypotheses of (4) and set R := CO2(M)(O2(N)). As R ≤ N ≤

M by hypothesis, we conclude R ≤ O2(N); and then O2(N) and R are centralized
by O2(F ∗(N)) =: L. Then as L = O2(L), the Thompson A×B-lemma A.1.18 says
L centralizes O2(M). But O2(M) = F ∗(M) as M ∈ He, so that L ≤ Z(O2(M)),
and then L = O2(L) forces L = 1. Thus (4) is established.

As G is of even characteristic,M(T ) ⊆ He, so (4) implies (5).
If N ∈ H(T ), then O2(N) 6= 1, so there is M such that

T ≤ N ≤ NG(O2(N)) ≤M ∈ M(NG(O2(N))).

Then as T ∈ Syl2(M), M ∈ He by (E), and also O2(M) ≤ N by A.1.6. Therefore
N ∈ He by (5), proving (6).

Finally assume the hypotheses of (7) and set M2 := M1O2(M). By (4), M2 ∈
He. But as |S : S ∩M1| ≤ 2, |M2 :M1| ≤ 2, and so M1 E M2. Then M1 ∈ He by
1.1.3.1 establishing (7).

This completes the proof of 1.1.4. ¤

We also need to control members ofH which are not inHe. The following result
gives some control in an important special case. For example, the subsequent result
1.1.6 shows that the hypotheses are achieved in any sufficiently large subgroup of
a 2-local subgroup.

Recall our convention in Notation A.3.5 that Â6, Â7, and M̂22 denote the
nonsplit 3-fold covers of A6, A7, and M22.

Lemma 1.1.5. Let H ∈ H, S ∈ Syl2(H), and M ∈ He(S). Assume that

CO2(M)(O2(H ∩M)) ≤ H,

and M ∈ H(CG(z)) for some 1 6= z ∈ Ω1(Z(S)). Then:

(1) F ∗(H ∩M) = O2(H ∩M).
(2) z inverts O(H).
(3) If L is a component of H, then L = [L, z] 6≤ M and one of the following

holds:

(a) L is simple of Lie type and characteristic 2, described in conclusion
(3) or (4) of Theorem C (A.2.3), and z induces an inner automorphism on L.

(b) 1 6= Z(L) = O2(L) and L/O2(L) is L3(4) or G2(4), with z inducing
an inner automorphism on L.

(c) L ∼= A6 or Â6, and z induces a transposition on L.

(d) L ∼= A7 or Â7, and z acts on L with cycle structure 23.
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(e) L ∼= L3(3) or L2(p), p a Fermat or Mersenne prime, and z induces an
inner automorphism on L.

(f) L/O2(L) is a Mathieu group, J2, J4, HS, He, or Ru; and z induces a
2-central inner automorphism on L.

Proof. Part (1) follows from 1.1.4.4 applied with H ∩M in the role of “N”,
in view of our hypothesis.

Next CG(z) ≤M by hypothesis, so

CO(H)(z) ≤ O(H) ∩M ≤ O(H ∩M) = 1

by (1), giving (2).
Now assume L is a component of H . If L ≤M then L ≤ E(H ∩M), contrary

to (1). Thus L 6≤M so in particular L 6≤ CG(z).
As z ∈ Z(S) and S ∈ Syl2(H), z normalizes each component of H ; so as

L 6≤ CG(z), L = [L, z].
Set R := NS(L) and (RL)∗ := RL/O2(RL). Then R ∈ Syl2(RL) so R∗ ∈

Syl2(R
∗L∗) and z∗ is an involution in the center of R∗. By hypothesis, CG(z) ≤M ,

so CH (z) = CH∩M (z). Now H ∩M ∈ He by (1), so by 1.1.3.2, CH∩M (z) ∈ He.
Since L E E H we have

CL(z) E E CH (z) = CH∩M (z),

so CL(z) ∈ He by 1.1.3.1. Also O2(CL∗(z
∗)) = O2(CL(z))

∗ by Coprime Action,
while O2(RL) ∩ L ≤ O2(L) ≤ Z(L), so we conclude F ∗(CL∗(z

∗)) = O2(CL∗(z
∗))

from A.1.8.
If z induces an inner automorphism on L then z centralizes Z(L), so O(L) = 1

by (2), and hence Z(L) = O2(L). Put another way (recalling L is quasisimple), if
O(L) 6= 1 then z induces an outer automorphism on L.

As H is an SQTK-group, we may examine the possibilities for L/Z(L) appear-
ing on the list of Theorem C.

Suppose first that L/Z(L) is of Lie type and characteristic 2; then L∗ appears
in conclusion (3) or (4) of Theorem C. Now z∗ ∈ Z(R∗), so from the structure of

Aut(L∗), either z∗ ∈ L∗, or L∗ is A6 or Â6 with z∗ inducing a transposition on L∗.
However in the latter case as O2(L) = 1, or else L/O(L) ∼= SL2(9) by I.2.2.1, so
that the transposition z does not centralize a Sylow 2-subgroup of L, contrary to
z ∈ Z(R); hence (c) holds. Thus we may assume z∗ ∈ L∗, so by an earlier remark,
O(L) = 1. Thus either Z(L) = 1, so L is simple and (a) holds; or from the list of
Schur multipliers in I.1.3, L∗ is L2(4), A6, Sz(8), L3(4), G2(4), or L4(2). Then as
z centralizes a Sylow 2-group of L, when L∗ ∼= L2(4) ∼= A5, A6, or Sz(8), we obtain
a contradiction from the structure of the covering group L in (1) or (4) of I.2.2, or
in 33.15 of [Asc86a]. This leaves covers of L3(4) and G2(4), which are allowed in
(b).

We have shown that the lemma holds if L/Z(L) is of Lie type and characteristic
2. But A5

∼= Ω−4 (2), A6
∼= Sp4(2)

′, and A8
∼= L4(2), so if L∗ is an alternating

group, then from conclusion (1) of Theorem C and I.1.3, L∗ ∼= A7 or Â7. As
F ∗(CL∗(z

∗)) = O2(CL∗(z
∗)), z∗ /∈ L∗ and z∗ is not a transvection, so we conclude

z∗ has cycle structure 23. As z centralizes a Sylow 2-group of L, we conclude that
O2(L) = 1, from the structure of the double cover of A7 in 33.15 of [Asc86a]. So
(d) holds.
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Next assume L/Z(L) is of Lie type and odd characteristic; then L∗ appears
in conclusion (2) of Theorem C. If L∗ ∼= L2(p

2) then as L2(9) ∼= Sp4(2)
′, we may

assume p > 3. Therefore as z∗ ∈ Z(R∗), either z∗ ∈ L∗ and O(CL∗(z
∗)) 6= 1

or z∗ induces a field automorphism on L∗ so that CL∗(z
∗) has a component; in

either case, this is contrary to F ∗(CL∗(z
∗)) = O2(CL∗(z

∗)). The same argument
eliminates L2(p) unless p is a Fermat or Mersenne prime, which is allowed in (e);
as before, the fact that z ∈ Z(R) rules out the double covers SL2(p), the only
possibilities with Z(L) 6= 1 by I.1.3. Similarly if L∗ ∼= Lε3(p) then as z∗ ∈ Z(R∗),
z∗ ∈ L∗; then unless p = 3, CL∗(z

∗) has an SL2(p)-component, for our usual
contradiction. Finally U3(3) ∼= G2(2)

′ was covered earlier, while if L∗ ∼= L3(3) then
Z(L) = 1 by I.1.3, so conclusion (e) holds.

This leaves the case L∗ sporadic, so L∗ appears in conclusion (5) of Theorem
C. First J1 is ruled out by the existence of a component in CL∗(z

∗). Then as usual
z∗ ∈ L∗ since z ∈ Z(R), so that (f) holds.

This completes the proof of 1.1.5. ¤

Lemma 1.1.6. Let B be a nontrivial 2-subgroup of G, H ≤ G with BCG(B) ≤
H ≤ NG(B), S ∈ Syl2(H), T a Sylow 2-subgroup of G containing S, z an involution
in Z(T ), and M ∈M(CG(z)). Then the hypotheses of 1.1.5 are satisfied.

Proof. As z ∈ Z(T ),M ∈ M(T ), soM ∈ He since G is of even characteristic.
Thus as S ≤ T , M ∈ He(S). Next B ≤ O2(H) ≤ S ≤M so that B ≤ O2(H ∩M),
and hence

CO2(M)(O2(H ∩M)) ≤ CG(B) ≤ H.

Also z ∈ CT (B) ≤ T ∩H = S as S ∈ Syl2(H), so z ∈ Z(S); hence the hypotheses
of 1.1.5 are satisfied. The proof is complete. ¤

1.2. The set L∗(G, T ) of nonsolvable uniqueness subgroups

In this section we use our results on the structure of SQTK-groups in section A.3
to establish tools for working in 2-local subgroups of G; such appeals are possible
since our 2-locals are strongly quasithin. In particular we obtain a description
of H∞ for H ∈ H, and also properties of the poset of perfect members of H,
partially ordered by inclusion. Such results then lead to the existence of uniqueness
subgroups of G.

We begin by recalling Definition A.3.1 which defines C-components: ForH ≤ G,
let C(H) be the set of subgroups L ≤ H minimal subject to

1 6= L = L∞ E E H.

The members of C(H) are the C-components of H . As we will see, usually we can
expect there will be H ∈ H with C(H) nonempty.

We recall also that the elementary results in A.3.3 hold for arbitrary finite
groups. By contrast, the later results in section A.3 requiring Hypothesis A.3.4
apply only to an SQTK-group X with O2(X) = 1. We apply those results to
H/O2(H) for H ∈ H, and then pull them back to obtain results about H .

Recall that π(X) denotes the set of primes dividing the order of a group X .

Proposition 1.2.1. Let H ∈ H. Then

(1) 〈C(H)〉 = H∞.
(2) If L1, L2 are distinct members of C(H), then [L1, L2] ≤ O2(L1)∩O2(L2) ≤

O2(H).
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(3) If L ∈ C(H), then either L E H; or |LH | = 2 and L/O2(L) ∼= L2(2
n),

Sz(2n), L2(p), p an odd prime, or J1.
(4) Let L ∈ C(H) and H̄ = H/O2(H). Then one of the following holds:

(a) L̄ is a simple component of H̄ on the list of Theorem C (A.2.3).
(b) L̄ is a quasisimple component of H̄, Z(L̄) ∼= Z3, and L̄ is SLε3(q),

q = 2e or q an odd prime, Â6, Â7, or M̂22.
(c) F ∗(L̄) ∼= Ep2 for some prime p > 3, and F ∗(L̄) affords the natural

module for L̄/F ∗(L̄) ∼= SL2(p).
(d) F ∗(L̄) is nilpotent with Z(L̄) = Φ(F ∗(L̄)), L̄/F ∗(L̄) ∼= SL2(5), and

for each p ∈ π(F ∗(L̄)):

(i) either p2 ≡ 1 mod 5 or p = 5; and
(ii) either Op(L̄) ∼= p1+2, or Op(L̄) is homocyclic of rank 2.

(5) If L ∈ C(H) satisfies O2(L) ≤ Z(L) and m2(L) > 1, then L is quasisimple.

Proof. As we observed at the start of the section, since H ∈ H, H is an
SQTK-group, and hence so is H̄ := H/O2(H). Certainly O2(H̄) = 1—so we may
apply the results of section A.3. to H̄ . Further by A.3.3.4:

(*) The map L 7→ L̄ is an H-equivariant bijection of C(H) with C(H̄)—with
inverse K̄ 7→ K∞, where K is the full preimage of K̄ in H .

Thus for L ∈ C(H), we have L̄ ∈ C(H̄) and the possibilities in (4) are just those
from A.3.6. Similarly the existence of the equivariant bijection in (*), together with
A.3.7, A.3.9, and (1) and (3) of A.3.8, implies (2), (1), and (3), respectively.

Assume the hypotheses of (5). If L/O2(L) is quasisimple, then asO2(L) ≤ Z(L)
and L is perfect, L is quasisimple. Thus we may assume that case (4c) or (4d) holds.
Then as O2(L) ≤ Z(L), O2,F (L) = O2(L) × O(L). Thus L/O(L) is the central
extension of the 2-groupO2,F (L)/O(L) by L/O2,F (L) ∼= SL2(p). But the multiplier
of SL2(p) is trivial (I.1.3), so we conclude O2(L) = 1. Now m2(L) = m2(L/O(L))
and L/O(L) ∼= SL2(p) has 2-rank 1, contrary to the hypothesis that m2(L) > 1.
This establishes (5), and completes the proof of 1.2.1. ¤

As we mentioned in the Introduction to Volume II, in the bulk of the proof,
there will be H ∈ H with H nonsolvable; and in that case by 1.2.1.1, C(H) is
nonempty.

Lemma 1.2.2. Let H ∈ H, H̄ := H/O2(H), L ∈ C(H), and p an odd prime.

(a) If |LH | = 2 and p ∈ π(L̄), then Op
′

(H) = 〈LH〉.
(b) If mp(L) = 2 then L E H.

Proof. Part (b) follows asmp(L̄) = 1 for each of the groups L̄ listed in 1.2.1.3.
Assume the hypotheses of (a), and set L0 := 〈LH〉. Recall L0 is normal in

H by 1.2.1.3. Then mp(L̄0) = 2, so CH̄(L̄0) is a p′-group as mp(H) ≤ 2. As

|LH | = 2, Op
′

(H) normalizes L. Recall from the Introduction to Volume I that we
refer to [GLS98] for the structure of the outer automorphism groups of the groups
listed in Theorem C. For those L̄ listed in 1.2.1.3, O2(Out(L̄)) is a group of field
automorphisms (or trivial), and O2(Aut(L̄)) splits over Inn(L̄) ∼= L̄. Therefore if

Op
′

(H) 6≤ L0, there is x of order p in NH(L) − L0. Then x centralizes nontrivial
elements of order p in each factor of P ∈ Sylp(L0), contradicting mp(H) ≤ 2. This

contradiction gives Op
′

(H) ≤ L0, while L0 = Op
′

(L0) as L̄ is simple and p ∈ π(L̄).
This proves (a). ¤
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Next we extend the notation of L(X,Y ) in Definition A.3.10 to our QTKE-
group G. This will help us keep track of the possible embeddings of C-components
of a subgroupH1 ∈ H in some other H2 ∈ H, as long as H1 and H2 share a common
Sylow 2-subgroup.

Definition 1.2.3. For H a finite group, and S a 2-subgroup of H , let L(H,S)
be the set of subgroups L of H such that

(1) L ∈ C(〈L, S〉),
(2) S ∈ Syl2(〈L, S〉), and
(3) O2(〈L, S〉) 6= 1; that is, 〈L, S〉 ∈ HH .

Assume for the moment that H ∈ H, S ∈ Syl2(H), H̄ := H/O2(H), and
L ∈ L(H,S). Then by Hypotheses (QT) and (K), H̄ satisfies Hypothesis A.3.4,
with S̄ ∈ Syl2(H̄); so from condition (1) of the definition of L(H,S) and A.3.3,
L̄ ∈ L(H̄, S̄), defined only for H̄ in section A.3. Also applying 1.2.1.3 to 〈L, S〉,
either LS = L and 〈L, S〉 = LS, or LS = {L,Ls} and 〈L, S〉 = LLsS. Further as
in A.3.11, C(H) ⊆ L(H,S), so when C(H) is nonempty, L(H,S) is nonempty.

Now just as in section A.3, we wish to see how members of L(H,S) embed in
H .

Lemma 1.2.4. Let H ∈ H, with S ∈ Syl2(H); set H̄ := H/O2(H), and assume
B ∈ L(H,S). Then B ≤ L for a unique L ∈ C(H), and the pair (B̄, L̄) is on the
list of lemma A.3.12. In particular

(+) If S normalizes B, then L E H.

Proof. We apply A.3.12 to conclude B̄ is contained in a unique L̄ ∈ C(H̄),
with the pair (B̄, L̄) on the list of A.3.12. Then using the one-to-one correspondence
from A.3.3.4, L̄ is the image of a unique L ∈ C(H); and as B ≤ O2(H)L we see
B = B∞ ≤ (O2(H)L)∞ = L. This completes the proof, as (+) follows from the
uniqueness of L. ¤

Lemma 1.2.5. Let H ∈ H, S ∈ Syl2(H), R ≤ S with |S : R| = 2, and suppose
L ∈ L(H,R). Then there exists a unique K ∈ C(H) with L ≤ K.

Proof. The proof is much like that of A.3.12. Let H∗ := H/O∞(H). By
1.2.1.1, H∞ = K1 · · ·Kr where Ki ∈ C(H), and by 1.2.1.2, H∞∗ = K∗1 × · · · ×K

∗
r .

Now L = L∞ ≤ H∞, so for some i (which we now fix), the projection P ∗ of L∗ on
K∗ := K∗i is nontrivial. As P ∗ is a homomorphic image of L∗ ∈ C(L∗), P ∗ ∈ C(P ∗)
by A.3.3.4.

As S ∈ Syl2(H) and K is subnormal in H , S ∩ K ∈ Syl2(K), and similarly
R ∩ L ∈ Syl2(L) using our hypothesis that L ∈ L(H,R). Then as R ≤ S, S ∩
L = R ∩ L ∈ Syl2(L), so S ∩ P ∈ Syl2(P ), for P the preimage of P ∗. Then
|S∩P : R∩P | ≤ |S : R| ≤ 2; so (R∩P )∗ 6≤ O∞(P ∗), as otherwise P ∗/O∞(P ∗) has
Sylow 2-groups of order at most 2, and so is solvable using Cyclic Sylow 2-Subgroups
A.1.38, contrary to P ∗ ∈ C(P ∗) nonsolvable. Hence [L,R ∩ P ] 6≤ O∞(L). However
as (R ∩ P )∗ acts on P ∗ and permutes the C-components LR of 〈L,R〉, R ∩ P acts
on L; so by A.3.3.7, L = [L,R ∩ P ] ≤ [L,K] ≤ K. Finally K is unique since
Ki ∩Kj ≤ O∞(H) for any j 6= i. This completes the proof of 1.2.5. ¤

Lemma 1.2.4 gives information about L(H,S) considered as a set partially
ordered by inclusion. This leads us to define L∗(H,S) to be the maximal members
of this poset.
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We will focus primarily on the case where the role of S is played by T ∈ Syl2(G).
In this case when H ∈ H(T ), then T is also Sylow in H , so an earlier remark now
specializes to:

Lemma 1.2.6. C(H) ⊆ L(H,T ) ⊆ L(G, T ) for each H ∈ H(T ).

Theorem 1.2.7 (Nonsolvable Uniqueness Groups). If L ∈ L∗(G, T ) then

(1) L ∈ C(H) for each H ∈ H(〈L, T 〉).
(2) F ∗(L) = O2(L).
(3) NG(〈LT 〉) = !M(〈L, T 〉).
(4) Set L0 := 〈LT 〉 and Z := Ω1(Z(T )) Then CZ(L0) ∩ CZ(L0)

g = 1 for
g ∈ G−NG(〈LT 〉).

Proof. Let H ∈ H(〈L, T 〉). As T ∈ Syl2(G), T ∈ Syl2(H), so also L ∈
L(H,T ). Then by 1.2.4, L ≤ K ∈ C(H) for someK. But by 1.2.6, C(H) ⊆ L(G, T );
so L = K from the maximal choice of L. Hence (1) holds.

Next by 1.1.4.6, F ∗(H) = O2(H); so as L is subnormal in H , (2) holds by
1.1.3.1.

Set L0 := 〈LT 〉. As L ∈ C(H), L0 E H by 1.2.1.3. Hence H ≤M := NG(L0),
and as O2(L) 6= 1 by (2), O2(M) 6= 1. In particular if H ∈ M(T ), we conclude
H =M . Thus (3) holds.

To prove (4), assume Z0 := CZ(L0)∩CZ(L0)
g 6= 1. Then L0T, L

g
0T

g ≤ CG(Z0),
so using (3), M = !M(CG(Z0)) = Mg; but then g ∈ NG(M) = M as M ∈ M,
contrary to g 6∈M . ¤

Part (3) of 1.2.7 says that if L ∈ L∗(G, T ) then 〈L, T 〉 is a uniqueness subgroup
of G. This fact plays a crucial role through most of our work.

Next we obtain some further restrictions on chains in the poset L(G, T ). For
example we see in part (4) of 1.2.8 that for many choices of L/O2(L), L ∈ L(G, T )
is already maximal. In parts (2) and (3) of 1.2.8 we see that if L is not T -invariant,
then usually L is maximal.

Lemma 1.2.8. Let S be a 2-subgroup of G, and L,K ∈ L(G,S) with L ≤ K.
Then

(1) NS(L) = NS(K). So if L 6= Ls then LLs ≤ KKs for K 6= Ks.
(2) If L < 〈LS〉, then either

(a) L = K, or
(b) L/O2(L) ∼= A5, and K/O2(K) is either J1 or L2(p) for some prime p

with p2 ≡ 1 mod 5.

(3) If L < 〈LS〉, then either L ∈ L∗(G,S), or L/O2(L) ∼= A5.

(4) We have L ∈ L∗(G,S) if L/O2(L) is any of the following: Â7; L2(r
2),

r > 3 an odd prime; (S)Lε3(p), p an odd prime; M11, M12, M23, J1, J2, J4, HS,
He, Ru, L5(2), or (S)U3(2

n); a group of Lie type of characteristic 2 and Lie rank
2, other than L3(2) or L3(4).

Proof. Let H := 〈K,S〉, and recall C(H) = {K} or {K,Ks}. By 1.2.4, K
is the unique C-component of H containing L, so that NS(L) ≤ NS(K). The
opposite inclusion follows from A.3.12, as we check that in each of the embeddings
listed there, K does not contain a product of two copies of L, so that L is NS(K)-
invariant. Hence (1) holds.
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Assume as in (2) that L 6= Ls, and that L < K; then Ks 6= K by (1). Then
by 1.2.1.3, K/O2(K) is L2(2

n), Sz(2n), L2(p), or J1, and L/O2(L) is also in this
list. Consulting A.3.12, we see the only possible proper embeddings of L in K are
those given in (2). This establishes (2) and (3).

Finally (4) is established similarly: from the list of groups in Theorem C, we
extract the sublist not occurring as an initial possibility in A.3.12. ¤

We next wish to study the action of members of L(G, T ) on their internal
modules. To do so, we use some of the results from section A.4 of Volume I. Recall
from Definition A.4.5 that X consists of the nontrivial subgroups Y of G satisfying
Y = O2(Y ) and F ∗(Y ) = O2(Y ). Notice the second condition says that X ⊆ He.

Now for L ∈ L(G, T ), L = L∞ by the definition of C-component, while L ∈ He

by 1.2.7.2, so that L(G, T ) ⊆ X . Next recall that for Y ∈ X and R ∈ ING(Y )(Y, 2),
from Definition A.4.6

V (Y,R) := [Ω1(Z(R)), Y ] and V (Y ) := V (Y,O2(Y )).

There we also defined Xf to consist of those Y ∈ X with V (Y ) 6= 1. The subscript
“f” stands for “faithful”; for example, if X ∈ Xf with X/O2(X) simple, then
X/O2(X) is faithful on the module V (X). Define

Lf (G, T ) := L(G, T ) ∩ Xf ,

and also define

L∗f (G, T ) := L
∗(G, T ) ∩ Xf ,

which of course coincides with Lf (G, T ) ∩ L
∗(G, T ). Now by definition, elements

of L∗f (G, T ) are maximal in the subposet Lf (G, T ); in the next lemma we see that
the converse holds.

Lemma 1.2.9. Let L ∈ Lf (G, T ). Then

(1) If L ≤ K ∈ L(G, T ), then V (L,O2(NT (L)L)) ≤ V (K,O2(NT (K)K)), and
so K ∈ Lf (G, T ).

(2) If L is maximal in Lf (G, T ) with respect to inclusion, then L ∈ L∗(G, T ),
and hence L ∈ L∗f (G, T ).

Proof. Let L ≤ K ∈ L(G, T ) and R := NT (L). By 1.2.8.1, R = NT (K).
Thus R ∈ Syl2(NKR(L)), so O2(KR) ≤ R by A.1.6, and O2(RL) = CR(L/O2(L)).
Hence we may apply parts (2) and (3) of A.4.10 to obtain (1). Then (1) implies
(2). ¤

Lemma 1.2.10. Let T ∈ Syl2(G), H ∈ H(T ), and L ∈ C(H). Then the follow-
ing are equivalent:

(1) L ∈ Lf (G, T ).
(2) There is V ∈ R2(H) with [V, L] 6= 1.
(3) [R2(H), L] 6= 1.

In particular the result applies to L ∈ L∗(G, T ) and H ∈ H(〈L, T 〉).

Proof. We have F ∗(H) = O2(H) by 1.1.4.6, and from 1.2.1.4 we see that all
non-central 2-chief factors of L lie in O2(L). These are the hypotheses for A.4.11,
whose conclusions are exactly the assertions of 1.2.10. ¤
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Lemma 1.2.11. Let H ∈ H with T ∩ H =: TH ∈ Syl2(H), and K ∈ C(H).
Assume z ∈ Z := Ω1(Z(T )) lies in K ∩ TH and:

(a) z ∈ [U,O2(NH(U))] for some elementary abelian 2-subgroup U of H;
(b) CT (O2(H)) ≤ TH .

Then either K is quasisimple or H ∈ He.

Proof. Assume K is not quasisimple; we must show H ∈ He. By A.3.3.1,
E(K) = 1, so F ∗(K) = F (K), and hence CK(F (K)) ≤ F (K). We claim first that
z centralizes O(K): As H is an SQTK-group,mr(O(H)) ≤ 2 for all primes r. Then
hypothesis (a) allows us to apply A.1.26.2 to O2(NH(U)), [U,O2(NH(U))] in the
roles of “X , V ”, to conclude z ∈ [U,O2(NH(U))] ≤ CH (O(H)) ≤ CH(O(K)). Next
our assumption that z ∈ K∩TH gives z ∈ CK(O(K)O2(K)) ≤ CK(F (K)) ≤ F (K),
and hence z ∈ O2(K) ≤ O2(H).

Let Gz := CG(z) and Hz := CH(z). As z ∈ O2(H), O2(F ∗(H)) ≤ O2(F ∗(Hz)),
so it suffices to showHz ∈ He. As TH is Sylow inH and TH ≤ Hz, O2(H) ≤ O2(Hz)
by A.1.6. Therefore using (b),

CO2(Gz)(O2(Hz)) ≤ CT (O2(H)) ≤ TH ∩Gz ≤ Hz.

Then as Gz ∈ H
e by 1.1.4.3, we get Hz ∈ H

e by 1.1.4.4. ¤

1.3. The set Ξ∗(G, T ) of solvable uniqueness subgroups of G

As noted in the Introduction to Volume II, it might happen that there are no
nonsolvable locals H ∈ H(T ), so that L(G, T ) is empty; in this case we will need
to produce some solvable uniqueness groups. Notice also that any L occurring in
cases (c) or (d) of 1.2.1.4 involves interesting (and potentially tractable) solvable
subgroups in O2,F (L).

Motivated particularly by the latter example:

Definition 1.3.1. Define Ξ(G, T ) to consist of the subgroups X ≤ G such
that:

(1) X = O2(X) is T -invariant with XT ∈ H,
(2) X/O2(X) ∼= Ep2 or p1+2 for some odd prime p, and
(3) T is irreducible on the Frattini quotient of X/O2(X).

Notice that each X ∈ Ξ(G, T ) is in He by 1.1.4.6 and 1.1.3.1, so as X = O2(X)
we see Ξ(G, T ) ⊆ X .

Subsets Ξ−(G, T ) and Ξ+(G, T ) of Ξ(G, T ) appear in Definition 3.2.12.
We first collect some useful elementary properties of the members of Ξ(G, T ):

Lemma 1.3.2. Let X ∈ Ξ(G, T ). Then

(1) X is a {2, p}-group for some odd prime p and X = O2(X)P for some
P ∈ Sylp(X).

(2) X = 〈PX〉 = 〈PO2(X)〉 and O2(X) = [O2(X), P ].
(3) T = O2(X)NT (P ) and NT (P ) is irreducible on P/Φ(P ).
(4) P = [P,Φ(NT (P ))].
(5) If H ∈ H(XT ), then X = O2(O2(H)X).

Proof. Part (1) is immediate from condition (2) in the definition of Ξ(G, T )
and Sylow’s Theorem. As X = O2(X) in condition (1) of the definition of Ξ(G, T ),
conclusion (1) now implies

X = 〈Sylp(X)〉 = 〈PX〉 = 〈PO2(X)〉



1.3. THE SET Ξ∗(G,T ) OF SOLVABLE UNIQUENESS SUBGROUPS OF G 509

and O2(X) = [O2(X), P ], giving conclusion (2). Notice XT = PT , so the Dedekind
Modular Law givesNXT (P ) = PNT (P ); then a Frattini Argument onX = O2(X)P
gives T = O2(X)NT (P ). Now NT (P ) is irreducible on P/Φ(P ) by condition (3) of
the definition of Ξ(G, T ), so conclusion (3) is proved.

Let S := NT (P ) and S
∗ := S/CT (P ). Now S∗ is irreducible on P/Φ(P ) by (3),

so each involution i∗ ∈ Z(S∗) inverts P/Φ(P ). Thus for each I ≤ S with i∗ ∈ I∗,
P = [P, I ]. In particular if Φ(S∗) 6= 1, we can choose I = Φ(S), so that (4) holds
in this case. Otherwise Φ(S∗) = 1, and then S∗ is reducible on P/Φ(P ) by A.1.5.
This contradiction completes the proof of (4).

Under the hypotheses of (5), O2(H) ≤ T , while by condition (1) of the defini-
tion, T ≤ NG(X) and X = O2(X), so X = O2(O2(H)X), as required. ¤

Assume for the moment that L ∈ L(G, T ) with L/O2(L) not quasisimple, as in
cases (c) and (d) of 1.2.1.4. Then L is T -invariant by 1.2.1.3. Given an odd prime
p, define

Ξp(L) := O2(Xp), where Xp/O2(L) := Ω1(Op(L/O2(L)));

then define Ξrad(G, T ) to be the collection of subgroups Ξp(L), for L ∈ L(G, T )
with L/O2(L) not quasisimple, and p ∈ π(F (L/O2(L))).

We observe thatX ∈ Ξrad(G, T ) satisfies conditions (2) and (3) in the definition
of Ξ(G, T ), using the action of L/O2,F (L) ∼= SL2(r) (r = p or 5) in cases (c) and (d)
of 1.2.1.4. By construction,X = O2(X), whileX is T -invariant asX char L E LT .
Finally LT ∈ He by 1.1.4.6, so that 1 6= O2(LT ) ≤ O2(XT ) by A.1.6, the last
requirement of condition (1) of the definition. So we see:

Lemma 1.3.3. Ξrad(G, T ) ⊆ Ξ(G, T ).

Define Ξ∗(G, T ) to consist of those X ∈ Ξ(G, T ) such that XT is not contained
in 〈L, T 〉 for any L ∈ L(G, T ) with L/O2(L) quasisimple. So for Ξ (in contrast
to L), the superscript * will not denote maximality under inclusion in the poset
Ξ(G, T ). However the following result will be used in 1.3.7 (which is the analogue of
1.2.7.1) to prove that XT is a uniqueness subgroup for each member X of Ξ∗(G, T ).
Furthermore the list of possible embeddings of members of Ξ(G, T ) in nonsolvable
groups appearing in the lemma will also be very useful.

Proposition 1.3.4. Let X ∈ Ξ(G, T ), P ∈ Sylp(X) a complement to O2(X)
in X, and H ∈ H(XT ). Then either X E H, or X ≤ 〈LT 〉 for some L ∈ C(H)
with L/O2(L) quasisimple, and in the latter case one of the following holds:

(1) L is not T -invariant and P = (P ∩ L) × (P ∩ L)t ∼= Ep2 for t ∈ NT (P ) −
NT (L). Either L/O2(L) ∼= L2(2

n) with n even and 2n ≡ 1 mod p, or L/O2(L) ∼=
L2(q) for some odd prime q.

In the remaining cases, L is T -invariant and satisfies one of:

(2) P ∼= Ep2 and L/O2(L) ∼= (S)L3(p).
(3) P ∼= Ep2 , L/O2(L) ∼= Sp4(2

n) with n even and 2n ≡ 1 mod p, and
AutT (P ) is cyclic.

(4) p = 3, P ∼= E9, and L/O2(L) ∼=M11, L4(2), or L5(2).

Proof. Set H̄ := H/O2(H). We first consider F (H̄). So let r be an odd prime,
and R̄ a supercritical subgroup of Or(H̄). (Cf. A.1.21). As usual mr(R̄) ≤ 2 since
mr(H) ≤ 2. Therefore by A.1.32, [R̄, P̄ ] = 1 if p 6= r; while if p = r, then either
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R̄ = P̄—or R̄ ∼= Zp, P̄ ∼= p1+2, and R̄ = Z(P̄ ). In particular by A.1.21, P̄
centralizes Op(F (H̄)).

Suppose for the moment that Op(H̄) 6= 1, and choose r = p. If mp(R̄) = 2 then
P̄ = R̄ E H̄, so X = O2(R) E H by 1.3.2.5, and the lemma holds. Therefore
we may assume mp(R̄) = 1. Then as R̄ is supercritical, it contains all elements of
order r in COr(H̄)(R̄), so Op(H̄) is cyclic.

Thus in any case, we may assume that Op(H̄) is cyclic. In particular P̄ 6≤ F (H̄)
as P̄ is noncyclic. Hence as Aut(Op(H̄)) is cyclic and P = [P,NT (P )], P̄ centralizes
Op(H̄); therefore as P̄ centralizes Op(F (H̄)), P̄ centralizes F (H̄).

By 1.3.2.3,NT (P ) is irreducible on P̄ /Φ(P̄ ), so as Op(H̄) is cyclic, P̄∩Op(H̄) ≤
Φ(P̄ ); therefore as P̄ centralizes F (H̄), we conclude CP̄ (E(H̄)) ≤ Φ(P̄ ). Thus
there is a component L̄1 of H̄ with [L̄1, P̄ ] 6= 1. By A.3.3.4, there is L ∈ C(H) with
L̄ = L̄1. Set K := 〈LT 〉, so that K E H by 1.2.1.3. As 1 6= [L̄, P̄ ], [L, P ] 6≤ O2(L),
so L ≤ [L, P ] ≤ [K,P ] by A.3.3.7. Then as T acts on P , K = 〈LT 〉 = [K,P ].

We claim P ≤ K. Suppose first that L < K = LLt. Then Φ(NT (P )) ≤ NT (L)
as |LT | = 2. Notice that the groups listed in 1.2.1.3 have Out(L̄) abelian. But by
1.3.2.4,

P = [P,Φ(NT (P ))] = [P,NT (P ) ∩NT (L)],

so P induces inner automorphisms on L and then also on K. Then by 1.2.2.a,
P ≤ Op

′

(H) = K, establishing the claim in this case.
Next suppose that L = K. This time we examine Out(L̄) for the groups L̄

appearing in Theorem C, to see in each case there are no noncyclic p-subgroups U
whose normalizer is irreducible on U/Φ(U)—as would be the case for the image of
P in Out(L̄), if P did not induce inner automorphisms on L̄. Thus P̄ ≤ L̄CH̄(L̄).
Then as NT (P ) is irreducible on P/Φ(P ), either P ≤ L = K as claimed, or P ∩L ≤
Φ(P ). However as CP̄ (L̄) ≤ Φ(P̄ ), mp(L̄) = 2; so in the case where P ∩L ≤ Φ(P ),
there exists x of order p in CPL(L̄)−L, and hence mp(L〈x〉) > 2, contradicting H
an SQTK-group. This completes the proof of the claim.

Thus P ≤ K by the claim. Then by 1.3.2.2, X = 〈PO2(X)〉 ≤ K.
We next establish the lemma in the case L < K = LLt. Here mp(L) = 1 by

1.2.1.3, so

P = (P ∩ L)× (P ∩ L)t ∼= Ep2 ,

and by 1.2.1.3, L̄ is L2(2
n), Sz(2n), L2(q) for some odd prime q, or J1. If

L̄ is L2(q) for some odd prime q, then conclusion (1) of the lemma holds, so
we may assume we are in one of the other cases. Then as PT = TP , P̄ lies
in the Borel subgroup NK̄(T̄ ∩ K̄) of K̄ if L̄ is a Bender group, and similarly
P ≤ NK(T ∩ K) when L̄ is J1. In the first case P̄ lies in a Cartan subgroup,
so 2n ≡ 1 mod p, and in the second, p = 3 or 7. Further as P acts on T ∩ K,
[NT∩K(P ), P ] ≤ (T ∩K)∩ P = 1. Therefore AutT (P ) is isomorphic to a subgroup
of Out(K), so as NAutT (K)(AutP (K)) is irreducible on AutP (K)/Φ(AutP (K)) by

1.3.2.4, |Out(K)|2 > 2. Then as |Out(K̄)| = 2 |Out(L̄)|2, Out(L̄) is of even order,
which reduces us to L̄ ∼= L2(2

n), n even—so that conclusion (1) of the lemma holds.
It remains to treat the case K = L E H , where we must show that one of

conclusions (2)–(4) holds. Thus P ≤ L by the claim.
Suppose first that p > 3. Then the possibilities for L̄ and P̄ with PT = TP

are determined in A.3.15. Suppose case A.3.15.3 holds. Then p plays the role of
“r” in that result, and it follows that the signs δ and ε there conincide. Thus
L̄ ∼= (S)Lδ3(q) with q ≡ δ mod 4; further CL̄(Z(T̄ ))

∞ ∼= SL2(p) plays the role of
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“K” in that result, so that P̄ ∩CL̄(Z(T̄ ))
∞ is cyclic of order p dividing q− δ. This

contradicts the irreducible action of NT (P ) on P/Φ(P ). Suppose case A.3.15.2
holds. Then L̄ ∼= (S)L3(p) and P̄ ∼= Ep2 ; here the parabolic NL̄(P̄ ) induces SL2(p)
on P̄ , and in particular the action of T̄ on P̄ is irreducible. This case appears as our
conclusion (2)—using I.1.3 to see that the only cover of L3(p) is SL3(p). In cases
(1), (4), (6), and (7) of A.3.15 P̄ is cyclic, whereas P is noncyclic, so those cases do
not arise here. Thus it remains to consider the cases in A.3.15.5, with L̄ of Lie type
over F2n with n > 1, As P ≤ L, P̄ lies in a Cartan subgroup of L̄ by that result,
so L̄ is of Lie rank at least 2, and hence L̄ is of one of the following Lie types: A2,
B2, G2,

3D4, or
2F4. As in an earlier case, AutT (P ) is isomorphic to a subgroup

of Out(L̄). In the last three types, OutT (L̄) consists only of field automorphisms;
so as P is a p-group, NT (P ) normalizes each subgroup of P , contradicting the
irreducible action of NT (P ) on P/Φ(P ). If L̄ is Sp4(2

n) then Out(L̄) is cyclic as
n > 1; cf. 16.1.4 and its underlying reference. So as NT (P ) is irreducible, n is
even and hence conclusion (3) holds. Finally if L̄ is (S)L3(2

n) then OutT (L) is the
product of groups generated by a field automorphism and a graph automorphism
of order 2. However the field automorphism acts on each subgroup of P as above,
and any automorphism of P of order 2 is not irreducible on P , so NT (P ) is not
irreducible on P . This eliminates (S)L3(2

n), completing the proof for p > 3.
We have reduced to the case p = 3. Here a priori L̄/Z(L̄) can be any group

appearing in the conclusion of Theorem C. To eliminate the various possible cases,
ordinarily we first apply the restriction m3(L) = 2 (as P is noncyclic), and then
the restriction PT = TP ; a final sieve is provided by the irreducibility of NT (P )
on P/Φ(P ).

Thus from the cases in conclusion (2) of Theorem C: We do not have L̄ ∼= L2(q
e)

for q > 3, as m3(L) = 2, and L̄ is not L2(3
2) ∼= A6 as PT = TP . The latter

argument eliminates U3(3); while L̄ ∼= L3(3) appears in conclusion (2). The groups
Lδ3(q) for q > 3 are eliminated when q ≡ −δ mod 3 since m3(L) = 2; and when
q ≡ δ mod 3, since PT = TP and NT (P ) is irreducible on P/Φ(P ).

We next turn to conclusion (1) of Theorem C: A5 is eliminated as m3(L) = 2,
and A6 is impossible since PT = TP as just noted. In A7 there is indeed a subgroup
PT = TP ∼= Z2/(A4 × A3); but even in Aut(A7) = S7, we see that S4 × S3 fails
the requirement NT (P ) irreducible on P/Φ(P ). Finally A8

∼= L4(2) appears in
conclusion (4) of our proposition, as do the groups L4(2) and L5(2) arising in
conclusion (4) of Theorem C.

In conclusion (3) of Theorem C, L̄/Z(L̄) is of Lie type in characteristic 2. Then
as P ≤ L and PT = TP , P̄ is contained in a proper parabolic of L̄, and unless
possibly L̄ is defined over F2, we have P̄ in the Borel subgroup NL̄(T̄ ∩L̄). The case
where P̄ is contained in a Borel subgroup was treated above among the embeddings
in A.3.15. In the case where L̄ is defined over F2, proper parabolics have 3-rank at
most 1, contradicting P noncyclic.

This leaves only conclusion (5) of Theorem C, where L̄/Z(L̄) is sporadic. Notice
the case L̄ ∼= M11 appears in conclusion (4) of our lemma, while L̄ is not J1 as
m3(L) = 2. In the other cases, we use [Asc86b] to see that PT = TP rules out
all but M23, M24, J2, J4—which contain 2-groups extended by GL2(4), S3×L3(2),
Z2/(S3 × Z3), S5 × L3(2), respectively. In these cases (even in Aut(J2)) NT (P ) is
not irreducible on P/Φ(P ).

This completes the proof of 1.3.4. ¤
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We have the following corollaries to Proposition 1.3.4:

Proposition 1.3.5. If X ∈ Ξ∗(G, T ) and H ∈ H(XT ), then X E H.

Proof. Notice that the proposition follows from 1.3.4, since by 1.2.6, C(H) ⊆
L(G, T ) for H ∈ H(T ). ¤

Lemma 1.3.6. If X ∈ Ξ(G, T ) with X/O2(X) ∼= p1+2, then X ∈ Ξ∗(G, T ).

Proof. This is immediate from 1.3.4, which says that if X ≤ 〈LT 〉 with
L/O2(L) quasisimple, then P ∼= Ep2 . ¤

Now, as promised, we see that if X ∈ Ξ∗(G, T ), then XT is a uniqueness
subgroup of G:

Theorem 1.3.7 (Solvable Uniqueness Groups). If X ∈ Ξ∗(G, T ) then NG(X) =
!M(XT ).

Proof. Let M ∈ M(XT ). By 1.3.5, X E M , so maximality of M gives
M = NG(X). ¤

Recall that Ξrad(G, T ) consists of the subgroups Ξp(L), for L ∈ L(G, T ) such
that L/O2(L) is not quasisimple; and by 1.3.3, Ξrad(G, T ) ⊆ Ξ(G, T ). Define
Ξ∗rad(G, T ) to consist of those X ∈ Ξrad(G, T ) such that X E L ∈ L∗(G, T ). We
see next that XT is a uniqueness subgroup for each X ∈ Ξ∗rad(G, T ). This fact will
allow us to avoid most of the difficulties caused by those L ∈ L∗(G, T ) for which
L/O2(L) is not quasisimple, by replacing the uniqueness group LT with the smaller
uniqueness subgroup Ξp(L)T .

Proposition 1.3.8. Ξ∗rad(G, T ) ⊆ Ξ∗(G, T ).

Proof. Let X ∈ Ξ∗rad(G, T ). Then X E L ∈ L∗(G, T ) by definition. By 1.3.3,
X ∈ Ξ(G, T ), so there is an odd prime p such that X = O2(X)P for P ∈ Sylp(G).
Indeed by 1.2.1.4, p > 3 and either L/X ∼= SL2(p) or L/O2,F (L) ∼= SL2(5). Thus
in any case there is a prime r with L/O2,F (L) ∼= SL2(r); r has this meaning
throughout the remainder of the proof of the proposition.

By 1.2.1.3, T normalizes L. Then by 1.2.7.3,M := NG(L) = !M(LT ). We will
see shortly how this uniqueness property can be exploited. As X is characteristic
in L, X E M , so we also get M = NG(X) using the maximality of M ∈M.

We will next establish a condition used to apply the methods of pushing up.
Set R := O2(XT ). Recall the definition of C(G,R) from Definition C.1.5. We
claim that

C(G,R) ≤M. (∗)

The proof of the claim will require a number of reductions.
We begin by introducing a useful subgroup Y of NG(R): Recall X E LT , and

R is Sylow in CLT (X/O2(X)) by A.4.2.7; so by a Frattini Argument,

LT = CLT (X/O2(X))NLT (R). (∗∗)

Thus if we set Y := NL(R)
∞, then Y contains X , and also by the factorization

(**), NY (P ) has a section SL2(r), where r = p or 5. So our construction gives
1 6= Y ∈ C(NLT (R)), such that Y/O2(Y ) is not quasisimple. Further T normalizes
R, so in fact using 1.2.6, Y ∈ C(NLT (R)) ⊆ L(G, T ).
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Next we obtain some restrictions on L. If R E LT then any 1 6= C char R is
normal in LT , so asM = !M(LT ) by 1.2.7.3, we concludeNG(C) ≤M , establishing
our claim (*). Thus we may assume R is not normal in LT .

Suppose next that p is the only odd prime in π(O2,F (L)); in particular this
holds in case (c) of 1.2.1.4. Then X = O2(O2,F (L)), so as R centralizes X/O2(X),

[R,L] ≤ CL(X/O2(X)) ≤ O2,F (L) ≤ XR

and hence RX E RL. But then R = O2(RX) E LT , contrary to our assumption.
Thus we may assume L is in case (d) of 1.2.1.4, and hence r = 5 with either p = 5
or p ≡ ±1 mod 5. Further we have shown there is an odd prime q ∈ π(O2,F (L))
with p 6= q. Notice that q ≥ 5.

For 1 6= C char R, let LC := NL(C)
∞, and set Xq := Ξq(L). Notice Y ≤ LC

and O2(Xq) E XT , so O2(Xq) ≤ R. Therefore R ∈ Syl2(XqR). Then as q ≥ 5,
by Solvable Thompson Factorization B.2.16,

XqR = NXqR(J(R))CXqR(Ω1(Z(R))).

So for C0 := J(R) or Ω1(Z(R)), NXqR(C0) 6≤ O2,Φ(Xq). Therefore as Y is ir-
reducible on Xq/O2,Φ(Xq), we conclude Xq ≤ NG(C0), so Xq = [Xq, Y ] ≤ LC0 .
Hence π(O2,F (LC0)) contains at least two odd primes p and q.

We are now in a position to complete the proof of the claim. Assume (*)
fails. Then there is 1 6= C char R with N := NG(C) 6≤ M . As Y T ≤ NG(R),
N ∈ H(Y T ); in particular Y ∈ L(N,T ) as we saw Y ∈ L(G, T ). So we may apply
1.2.4 to embed Y ≤ YC ∈ C(N), with the inclusion described in A.3.12. Notice in
particular that YC E N , by 1.2.2.b, since Y contains X of p-rank 2. Also Y ≤ LC
by the previous paragraph, so LC = [LC , Y ] ≤ YC as LC ∈ L(G, T ).

Now if X E YC , then X char YC using 1.2.1.4, and hence N ≤ NG(X) = M ,
contrary to our choice of N 6≤M . Thus we may assume X is not normal in YC . As
X E Y , it follows that Y < YC . In addition the fact that X is not normal in YC
means X 6≤ O∞(YC), which rules out cases (21) and (22) of A.3.12, leaving only
case (10) of A.3.12 with YC/O2(YC) ∼= L3(p). In particular, p = r = 5, Y = LC ,
and π(O2,F (LC)) = {2, p}. But we saw earlier that π(O2,F (LC0)) contains at least
two odd primes, so we conclude that our counterexample C cannot be the subgroup
C0 constructed earlier. That is, NG(R) ≤ NG(C0) ≤M .

Let (YCR)
∗ := YCR/O2(YCR). Then P

∗ is the unipotent radical of a maximal
parabolic of Y ∗C

∼= L3(5), so IY ∗CR
∗(P ∗, 2) = 1, giving R∗ = 1 and hence R ≤

O2(YCR). On the other hand O2(YCR) ≤ O2(XT ) = R, so R = O2(YCR). But
then YC ≤ NG(R) ≤ M , impossible as X is normal in M , but not in YC . This
establishes (*); namely C(G,R) ≤M .

We now use (*) and results on pushing up from section C.2 to complete the proof
of 1.3.8: Assume X /∈ Ξ∗(G, T ). Then XT < 〈K,T 〉 =: H for some K ∈ L(G, T ),
with K/O2(K) quasisimple, and H is described in 1.3.4. As p > 3, H does not
satisfy 1.3.4.4. Now AutT∩L(P ) is quaternion in cases (c) and (d) of 1.2.1.4, so
AutT (P ) is not cyclic and hence 1.3.4.3 does not hold. Thus we have reduced to
cases (1) and (2) of 1.3.4. As X is not normal in H but X E M , K 6≤M . Further
from 1.3.4, R acts on K in each case.

We observe next that the property R ∈ B2(H) from Definition C.1.1 and Hy-
pothesis C.2.3 of Volume I hold for MH := H ∩M : Namely C(H,R) ≤MH using
(*); and then by A.4.2.7, R = O2(NH(R)) and R ∈ Syl2(〈R

MH 〉).
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Furthermore H ∈ He by 1.1.4.6. So as K 6≤M and R acts on K, we have the
hypotheses of C.2.7, and we conclude K appears on the list of C.2.7.3. In 1.3.4.2,
K/O2(K) ∼= (S)L3(p), whereas no such K appears in C.2.7.3. So we have reduced
to 1.3.4.1 where K/O2(K) ∼= L2(2

n) or L2(q) for q an odd prime. Then by C.2.7.3,
either K is an L2(2

n)-block or an A5-block, or else K/O2(K) ∼= L2(7) ∼= L3(2).
But the latter two cases are eliminated as PT = TP with p > 3. Therefore K is
an L2(2

n)-block and 1.3.4.1 holds, so H = KKtT , where t ∈ NT (P ) −NT (K). In
particular [K,Kt] = 1 as distinct blocks commute by C.1.9, so X = WW t with
W := O2(X ∩K) and [W,W t] = 1. Thus

X/Z(X) =WZ(X)/Z(X)×W tZ(X)/Z(X)

and then NG(X) permutes {WZ(X),W tZ(X)} by the Krull-Schmidt Theorem
A.1.15. In particular, L = O2(L) acts on WZ(X). This is impossible, as NL(P ) is
irreducible on P/Φ(P ) from the structure of L in cases (c) and (d) of 1.2.1.4.

The proof of 1.3.8 is complete. ¤

As in the previous section, we want to study the action of members of our new
class of solvable uniqueness subgroups on their internal modules. So let Ξf (G, T )
consist of thoseX ∈ Ξ(G, T ) withX ∈ Xf , and let Ξ∗f (G, T ) := Ξf (G, T )∩Ξ∗(G, T ).

Lemma 1.3.9. Let X ∈ Ξ(G, T ), L ∈ L(G, T ), and X ≤ K := 〈LT 〉. Then

(1) If L/O2(L) is quasisimple, then L ∈ L∗(G, T ).
(2) If X ∈ Ξf (G, T ), then V (X,CT∩K(X/O2(X))) ≤ V (K) and L ∈ Lf (G, T ).

Proof. Part (2) follows from A.4.10, just as in the proof of 1.2.9. Thus it
remains to establish (1).

Assume L/O2(L) is quasisimple. Then L is described in 1.3.4. In cases (2)–
(4) of 1.3.4, L ∈ L∗(G, T ) by 1.2.8.4—unless possibly L/O2(L) ∼= L4(2). But in
the latter case, if (1) fails, then L < Y ∈ L(G, T ), and from 1.2.4 and A.3.12,
Y/O2(Y ) ∼= L5(2), M24, or J4. Now X = O2(X)P with P ∼= E9 and NT (P ) is
irreducible on P , so T acts nontrivially on the Dynkin diagram of L/O2(L) ∼= L4(2).
This is impossible, as no such outer automorphism is induced in Aut(Y/O2(Y )).

Therefore 1.3.4.1 must hold. Then by 1.2.8.2, P ∼= E9, L/O2(L) ∼= A5, and
Y/O2(Y ) ∼= J1 or L2(p). But again as NT (P ) is irreducible on P , some element
of NT (L) induces an outer automorphism on L/O2(L) ∼= A5, whereas no such
automorphism is induced in NT (Y ).

Thus 1.3.9 is established. ¤

1.4. Properties of some uniqueness subgroups

In this section we summarize some basic properties of the families L∗(G, T )
and Ξ∗(G, T ) of uniqueness subgroups, which will be used heavily later.

So we consider some L contained either in L∗(G, T ) or in Ξ∗(G, T ). Note that
the assertion in 1.4.1.1 below is the starting point (as we just saw in the proof of
1.3.8) for arguments using pushing up (sections C.2 etc.).

Lemma 1.4.1. Let L ∈ L∗(G, T ) ∪ Ξ∗(G, T ) and set L0 := 〈LT 〉 and Q :=
O2(L0T ). Then M := NG(L0) =!M(L0T ), so L0T and NG(Q) are both uniqueness
subgroups, and

(1) C(G,Q) ≤M .
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(2) Q ∈ I∗G(L0, 2) = Syl2(CM (L0/O2(L0))).
(3) CG(Q) ≤ O2(M) ≤ Q.
(4) If L ∈ Xf , then there is V ∈ R2(L0T ) with [V, L0] 6= 1.
(5) If L ∈ L∗f (G, T ), assume that L/O2(L) is quasisimple. Let V ∈ R2(L0, T )

with [V, L0] 6= 1. Then CL0T (V ) ≤ O2,Φ(L0T ), CT (V ) = Q, and Ω1(Z(Q)) =
R2(L0T ).

Proof. FirstM := NG(L0) = !M(L0T ) by 1.2.7.3 or 1.3.7. Then since L0T ≤
NG(Q) by definition of Q, also M = !M(NG(Q)).

Next if 1 6= R char Q, then embedding NG(R) ≤ N ∈ M, we have NG(Q) ≤
NG(R) ≤ N , forcing N =M as M = !M(L0T ). So (1) holds.

Now (2) follows from A.4.2.7. By (1), CG(Q) ≤ M , and by (2), O2(M) ≤ Q.
Also M ∈ H(T ) ⊆ He by 1.1.4.6, so

CG(Q) ≤ CM (Q) ≤ CM (O2(M)) ≤ O2(M),

giving (3).
Next when L ∈ Lf (G, T ), there exists V ∈ R2(L0T ) with [V, L] 6= 1 by 1.2.10.3,

while this follows from A.4.11 when L ∈ Ξf (G, T ), since there all 2-chief factors lie
in O2(L). Thus (4) holds. Finally assume that either L ∈ Ξ∗f (G, T ) or L ∈ L

∗
f (G, T )

with L/O2(L) quasisimple. Therefore L0Q/O2,Φ(L0T ) = F ∗(L0T/O2,Φ(L0T )) is a
chief factor for L0T , so as [V, L0] 6= 1, CL0T (V ) ≤ O2,Φ(L0T ). But Q is Sylow in
O2,Φ(L0T ) so CT (V ) ≤ Q, while as V is 2-reduced, Q = O2(L0T ) ≤ CT (V ). This
completes the proof of (5). ¤





CHAPTER 2

Classifying the groups with |M(T )| = 1

Recall from the outline in the Introduction to Volume II that the bulk of the
proof of the Main Theorem proceeds under the Thompson amalgam strategy, which
is based on the interaction of a pair of distinct maximal 2-local subgroups containing
a Sylow 2-subgroup T of G. Clearly before we can implement that strategy, we must
treat the case where T is contained in a unique maximal 2-local subgroup.

In Theorem 2.1.1 of this chapter, we determine the simple QTKE-groups G in
which a Sylow 2-subgroup T is contained in a unique maximal 2-local subgroup.

This condition is similar to the hypothesis defining an abstract minimal par-
abolic B.6.1, where T lies in a unique maximal subgroup of G, so we can expect
many of the examples arising in E.2.2 to appear as conclusions in Theorem 2.1.1.

The generic examples of simple QTKE-groups with |M(T )| = 1 are the Bender
groups. Recall a Bender group is a simple group of Lie type and characteristic 2
of Lie rank 1; namely L2(2

n), Sz(2n), or U3(2
n). The Bender groups also appear

in case (a) of E.2.2.2. In addition, some groups from cases (c) and (d) of E.2.2.2
also satisfy the hypotheses of Theorem 2.1.1, as does M11 which is not a minimal
parabolic.

However, shadows of various groups which are not simple also intrude, and
eliminating them is fairly difficult. We mention in particular the shadows of certain
groups of Lie type and Lie rank 2 of characteristic 2, extended by an outer automor-
phism nontrivial on the Dynkin diagram: namely as in cases (1a) and (2b) of E.2.2,
extensions of the groups L2(2

n) × L2(2
n), Sz(2n) × Sz(2n), L3(2

n), and Sp4(2
n).

These groups are not simple, but they are QTKE-groups with the property that
the normalizer of a Borel subgroup is the unique maximal 2-local containing a Sy-
low 2-subgroup. We will eliminate the first two families of shadows in 2.2.5 by
first using the Alperin-Goldschmidt Fusion Theorem to produce a strongly closed
abelian subgroup, and then arguing that G is a Bender group to derive a contra-
diction. However it is difficult to see that the shadows of the latter two families
are not simple, until we have reconstructed in Theorem 2.4.7 most of their local
structure, and are then able to transfer off the graph automorphisms and so obtain
a contradiction.

Also certain groups of Lie type and odd characteristic are troublesome: The
groups L2(p) × L2(p), p a Fermat or Mersenne prime, extended by a 2-group
interchanging the components (a subcase of case (b) of E.2.2.1); and the group
L4(3) ∼= PΩ+

6 (3) extended by a group of automorphisms not contained in PO+
6 (2).

These groups are also minimal parabolics but not strongly quasithin. Shadows
related to the last group appear in many places in the proof.

517
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2.1. Statement of main result

Our main theorem in this chapter is:

Theorem 2.1.1. Assume G is a simple QTKE-group, T ∈ Syl2(G), and M =
!M(T ). Then G is a Bender group, L2(p) for p > 7 a Fermat or Mersenne prime,
L3(3), or M11.

Of course the groups appearing in the conclusion of Theorem 2.1.1 also appear
in the conclusion of our Main Theorem. Thus after Theorem 2.1.1 is proved, we
will be able to assume that |M(T )| ≥ 2 in the remainder of our work.

Throughout chapter 2, we assume that G, M , T satisfy the hypotheses of
Theorem 2.1.1. Thus M = !M(T ), and hence by Sylow’s Theorem, also M =
!M(T ′) for each Sylow 2-subgroup T ′ of M , so we are free to let T vary over
Syl2(M).

2.2. Bender groups

As we mentioned, the generic examples in Theorem 2.1.1 are Bender groups.
These groups were originally characterized by Bender as the simple groups G with
the property that the Sylow 2-normalizer M is strongly embedded in G; that is (cf.
I.8.1), NG(D) ≤M for all nontrivial 2-subgroups D of M .

If we assume that G is not a Bender group, then there is 1 < D ≤ T with
NG(D) 6≤ M , so that NG(D) ∈ H(D,M) in our notation. If we pick D so that
U := NT (D) is of maximal order subject to this constraint, then since M = !M(T )
by hypothesis, U is a proper subgroup of T Sylow in NG(D) with NG(U) ≤ M .
Our proof will focus on pairs (U,HU ) such that U ≤ T , U ∈ Syl2(HU ), and
HU ∈ He(U,M). While the pair (U,NG(D)) satisfies the first two conditions, and
NG(D) ∈ H(U,M), it may not be the case that NG(D) ∈ He. Thus to ensure that
such pairs exist, we use an approach due to GLS (cf. p. 97 in [GLS94]) to produce
a nontrivial strongly closed abelian 2-subgroup in the absence of such pairs. Then
we argue as in the GLS proof 1 of Goldschmidt’s Fusion Theorem, to show that G
is a Bender group. Our extra hypotheses makes the proof here much easier. We
identify G using a special case of Shult’s Fusion Theorem, which appears in Volume
I as Theorem I.8.3, and is deduced in Volume I from Theorem ZD in [GLS99].

We now begin to implement the GLS approach. Instead of considering arbitrary
subgroupsD of T , we focus on the members of the Alperin-Goldschmidt conjugation
family: Using the language of Theorem 16.1 in [GLS96] (a form of the Alperin-
Goldschmidt Fusion Theorem):

Definition 2.2.1. Given a finite group G and T ∈ Syl2(G), define D to be the
set of all nontrivial subgroups D of T such that

(a) NT (D) ∈ Syl2(NG(D)),
(b) CG(D) ≤ O2′,2(NG(D)), and
(c) O2′,2(NG(D)) = O(NG(D))×D.

The set D is called the Alperin-Goldschmidt conjugation family for T in G.
Next recall that a subgroup X of T is strongly closed in T with respect to G if

for each g ∈ G, Xg ∩ T ⊆ X .

1See the proof of Theorem SA in section 24 of [GLS99]—but recall that we will not make
use of their hypothesis of even type.
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Proposition 2.2.2. Assume for each D in the Alperin-Goldschmidt conjuga-
tion family that NG(D) ≤M for T in G. Then

(1) Each normal 2-subgroup of M is strongly closed in T with respect to G.
(2) G is a Bender group.

Proof. We first prove (1). Let U be a normal 2-subgroup of M , u ∈ U and
g ∈ G with ug ∈ T . We must show ug ∈ U , so assume otherwise. By the Alperin-
Goldschmidt Fusion Theorem (the elementary result 16.1 in [GLS96], proved as
X.4.8 and X.4.12 in [HB85]), there exist u =: u1, . . . , un := ug in T , Di ∈ D, and
xi ∈ NG(Di), 1 ≤ i < n, such that ug = ux1...xn−1 , 〈ui, ui+1〉 ≤ Di, and u

xi
i = ui+1.

As u = u1 ∈ U but un = ug /∈ U , there exists a least i such that ui+1 /∈ U .
Thus ui ∈ U , and by hypothesis xi ∈ NG(Di) ≤ M ; therefore as U E M , also
ui+1 = uxii ∈ U , contrary to the choice of i. Thus (1) holds.

We could now appeal to Goldschmidt’s Fusion Theorem [Gol74] to establish
(2). However the version of this theorem in our list of Background References
(cf. Theorem SA in [GLS99]) assumes that G is of even type, whereas in the
Main Theorem we assume G is of even characteristic. Fortunately the even type
hypothesis is unnecessary, and we now extract an easier version of the proof from
section 24 of [GLS99] under our own hypotheses:

Let U be a minimal normal 2-subgroup of M . Then U is elementary abelian,
M is irreducible on U , M = NG(U), and U is strongly closed in G by (1). Thus for
u ∈ U#, uG ∩M ⊆ U and M controls fusion in U by Burnside’s Fusion Lemma, so
uG ∩M = uM . Set Gu := CG(u).

As U E T , we may choose z ∈ Z(T ) ∩ U#. Hence Gz ≤ M as M = !M(T ),
so as zG ∩M = zM , M is the unique point fixed by z in the representation of G by
right multiplication on the coset space G/M (cf. 46.1 in [Asc86a]). We use this
fact to show:

(*) For each 2-subgroup S of G containing z, NG(S) ≤M .

For CS(z) fixes the unique fixed point M of z on G/M , and hence M is the unique
fixed point of CS(z) on G/M . Then as each subgroup of S is subnormal in S, we
conclude by induction on |S| that M is the unique fixed point of S of G/M . Hence
NG(S) ≤M .

First assume Gu ≤M for every u ∈ U#. Then as U is not normal in G, Remark
I.8.4 and Theorem I.8.3 tell us that G is a Bender group.

Thus we may assume that J := {u ∈ U# : Gu 6≤ M} is nonempty, and
it remains to derive a contradiction. In particular U > 〈z〉, so the elementary
abelian group U is noncyclic. Let u ∈ J , set H := Gu, MH := M ∩ H , and let
U ≤ S ∈ Syl2(H). By (*), S ≤M , so conjugating inM we may assume that S ≤ T .
By 1.1.6 applied to the 2-local Gu = H , the hypotheses of 1.1.5 are satisfied, so
MH ∈ He by 1.1.5.1.

Suppose H ∈ He. Then as S ≤ T and S ∈ Syl2(H), z ∈ Z(S) ≤ O2(H), so
H ≤ NG(O2(H)) ≤M by (*), contradicting H 6≤M . Thus H /∈ He.

Let W be any hyperplane of U . Then |zM ∩ U | > 1 as U is noncyclic, so
zM ∩W 6= ∅ by A.1.43. Now as Gz ≤ M , CG(W ) ≤ CG(z

M ∩W ) ≤ M . Hence
using Generation by Centralizers of Hyperplanes A.1.17, O(H) = 〈CO(H)(W ) :
m(U/W ) = 1〉 ≤M , so O(H) = 1 since MH ∈ He.

Thus as H /∈ He, there is a component L of H , and by 1.1.5, L = [L, z] 6≤ M
and L is described in 1.1.5.3. Set L0 := 〈LH〉. As U is strongly closed in S with
respect to H , AutU (L0) is strongly closed in AutH(L0), so by inspection of the
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groups in 1.1.5.3, L is a Bender group with AutU (L) = Ω1(S ∩ L). In particular,
U acts on each component of H .

Let UL and UC be the projections of U on L and CH(L), respectively. As
z ∈ U ≤ ULUC , NG(ULUC) ≤ M by (*). As L = [L, z], the projection of z on L
is nontrivial, while as L is a Bender group, NL(UL) is irreducible on Ω1(S ∩ L).
Therefore UL = [z,NL(UL)] ≤ U and hence U = UC × UL. In particular m(U) =
m(UL) +m(UC).

Now pick u ∈ J so that L is maximal among components of Gj for j ∈ J . Let

v ∈ U#
C . Since Gv contains L 6≤ M , v ∈ J , so by earlier remarks, U acts on each

component of Gv and O(Gv) = 1. Then as u ∈ U , u acts on each component of Gv,
so L is contained in a component Lv of Gv by I.3.2. Hence L = Lv by maximality
of L.

Suppose g ∈ M with UgC ∩ UC 6= 1; we claim that L = Lg, so that UC = UgC
as M = NG(U). Assume the claim fails and let 1 6= v ∈ UC ∩ U

g
C =: V . By the

previous paragraph, L and Lg are components of Gv, and we may assume L 6= Lg,
so that [L,Lg] = 1. It will suffice to show that M acts on {L,Lg}, since then M
permutes {UC , U

g
C}, and hence M acts on 1 6= V = UC ∩ U

g
C ≤ UC , contradicting

the irreducible action of M on U . Now

m(UL) +m(UC) = m(U) = 2m(UL) +m(V ),

so m(UC) = m(UL) + m(V ) > m(U)/2 since m(V ) > 0. Then for each x ∈ M ,
1 6= UC∩UxC . Hence if L

x /∈ {L,Lg}, by symmetry between x and g, also [L,Lx] = 1.
Then UL ≤ UgC ∩ U

x
C , so also [Lx, Lg] = 1. But now for p an odd prime divisor of

|NL(UL)|, m2,p(LL
gLx) > 2, contradicting G quasithin. This completes the proof

of the claim.
The claim shows that UC is a TI-set under M . Further AutL(U) is cyclic and

regular on U#
L , and is invariant under NAutM (U)(UC). Hence (AutM (U), U) is a

Goldschmidt-O’Nan pair in the sense of Definition 14.1 of [GLS96]. So by O’Nan’s
lemma, Proposition 14.2 in [GLS96], one of the four conclusions of that result holds.
Neither conclusion (i) nor (iii) holds, as M is irreducible on U . As Gz ≤ M but
J 6= ∅,M is not transitive on U#, so conclusion (iv) does not hold. Thus conclusion
(ii) holds, so thatNG(UC) is of index 2 inM . However asM is the unique point fixed
by z in G/M , by 7.4 in [Asc94],M controls G-fusion of 2-elements ofM . Therefore
by Generalized Thompson Transfer A.1.37.2, O2(G) ∩M ≤ NM (UC), contrary to
the simplicity of G. This contradiction completes the proof of Proposition 2.2.2. ¤

Recall that S2(G) is the set of nonidentity 2-subgroups of G, and (cf. chapter
1) that Se2(G) consists of those S ∈ S2(G) such that NG(S) ∈ He. We next verify:

Lemma 2.2.3. The Alperin-Goldschmidt conjugation family lies in Se2(G).

Proof. By (b) and (c) of the definition of the Alperin-Goldschmidt conjuga-

tion family D for T in G, O2′(CG(D)) ≤ D for each D ∈ D. Thus as D ≤ T ,
Z(T ) ≤ D. Therefore D ∈ Se2 (G) using 1.1.4.3. ¤

Notation 2.2.4. Define δ = δM to consist of those D ∈ Se2(G) such that
D ≤ M , but NG(D) 6≤ M . Let δ∗ = δ∗M denote the maximal members of δ under
inclusion.

Theorem 2.2.5. If δ = ∅, then G is a Bender group.
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Proof. Let D be the Alperin-Goldschmidt conjugation family for T in G. By
2.2.3, D ⊆ Se2(G). Therefore if δ = ∅, then NG(D) ≤M for each D ∈ D. Hence by
Proposition 2.2.2.2, G is a Bender group. ¤

Remark 2.2.6. The idea of using the Alperin-Goldschmidt Fusion Theorem
and Goldschmidt’s Fusion Theorem in this way is due to GLS. This approach allows
us to avoid considering the case where the centralizer of some involution i has a
component which is a Bender group: For if i is such an involution then U(CG(i)) = ∅
(in the language of Notation 2.3.4 established later), whereas Theorem 2.2.5 allows
us to assume δ 6= ∅, which supplies us with 2-locals H such that U(H) 6= ∅.
It is these 2-locals which we will exploit during the remainder of this chapter.
In particular, as mentioned in the introduction to the chapter, this allows us to
avoid difficulties with the shadows of Bender groups extended by involutory outer
automorphisms, and also with the shadows of the wreathed products L2(2

n) wr Z2

and Sz(2n) wr Z2.

2.3. Preliminary analysis of the set Γ0

Since the Bender groups appear in the conclusion of Theorem 2.1.1, by Theorem
2.2.5, we may assume for the remainder of this chapter that

δ 6= ∅, so that also δ∗ 6= ∅.

Recall from the second paragraph of the previous section that there exist pairs
(U,HU ) such that U ∈ Syl2(HU ), NG(U) ≤M , and HU ∈ H(U,M). Using the fact
that δ is nonempty, we will produce such pairs with HU in He(U,M). Moreover we
will see that we can choose U to have a number of useful properties which we list
in the next definition:

Notation 2.3.1. Let β = βM consist of those U ∈ S2(G) such that

(β0) U ≤M , so in fact U ∈ S2(M);
(β1) For all U ≤ V ∈ S2(M), NG(V ) ≤M ; and
(β2) CO2(M)(U) ≤ U .

Notice that (β0)–(β2) are inherited by any overgroup of U in S2(M), so all such
overgroups are also in β. Some other elementary consequences of this definition
include:

Lemma 2.3.2. Assume U ∈ β, and U ≤ H ≤ G. Then

(1) If U ≤ V ∈ S2(G), then V ∈ β. In particular all 2-overgroups of U in G
lie in M .

(2) |H |2 = |H ∩M |2.
(3) If H ∈ He, then O2(H) ∈ Se2(G). In particular β ⊆ Se2(G).

Proof. To prove (1), assume U ≤ V ∈ S2(G). Recall that each 2-overgroup
V of U in M is in β, so it only remains to show that V ≤ M . If U E V , then
V ≤ NG(U) ≤ M by (β1). So as U E E V , V ≤ M by induction on |V : U |,
completing the proof of (1).

Next let U ≤ S ∈ Syl2(H). Then S ∈ β by (1), so S ≤M by (β0), giving (2).
Finally set Q := O2(H), so that Q ≤ S since S ∈ Syl2(H). As S ≤M , we may

assume that S ≤ T . Then O2(M) ≤ T as T ∈ Syl2(M), so Z(T ) ≤ CO2(M)(S) ≤
Z(S) by (β2). Under the hypothesis of (3), Q = F ∗(H), so Z(T ) ≤ Z(S) ≤
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CH(Q) ≤ Q, so Q ∈ Se2(G) by 1.1.4.3. In particular applying this observation to U
in the role of “H”, U = O2(U) ∈ Se2(G), completing the proof of (3). ¤

We now use our assumption that δ∗ 6= ∅ to verify that β 6= ∅:

Lemma 2.3.3. Let D ∈ δ∗ and S ∈ Syl2(NM (D)). Then:

(1) U ∈ β for each U in S2(M) with D < U .
(2) D < S, |S| < |M |2, S ∈ β, and S ∈ Syl2(NG(D)).

Proof. To prove (1), assume D < U ∈ S2(M). Then U satisfies (β0) in
Notation 2.3.1. By definition of D ∈ δ in Notation 2.2.4, D ∈ Se2(G), so also
U ∈ Se2(G) by 1.1.4.1; hence by maximality of D, U 6∈ δ, so that NG(U) ≤ M .
Applying this observation to any W ∈ S2(M) containing U , we obtain (β1) for
U . Next set E := O2(NG(D)). If D < E, then NG(D) ≤ NG(E) ≤ M by the
observation, contradicting D ∈ δ. Thus D = O2(NG(D)). We saw D ∈ Se2(G), so
that NG(D) ∈ He, and hence CO2(M)(D) ≤ CNG(D)(D) ≤ D. Thus (β2) holds for
D, and hence also for the 2-overgroup U . This completes the proof that U ∈ β,
giving (1).

Next let S ∈ Syl2(NM (D)); we may assume S ≤ T , and hence S = NT (D).
As D ∈ δ, S ≤ NG(D) 6≤ M = !M(T ), so S < T . In particular D < T , so
D < NT (D) = S. Then S ∈ β by (1), and hence S ∈ Syl2(NG(D)) by 2.3.2.2,
completing the proof of (2). ¤

We now introduce further notation suggested by the GLS proof of the Global
C(G,T)-Theorem, in as yet unpublished notes slated to appear in the GLS series;
an outline of their proof appears in Sec 2.10 of [GLS94].

Notation 2.3.4. Let U(G) = UM (G) denote the set of pairs (U,HU ) such
that U ∈ β and HU ∈ H

e(U,M). Write U = UM for the set of U ∈ β such that
He(U,M) 6= ∅. For H ∈ H, let U(H) = UM (H) consist of those (U,HU ) ∈ U(G)
such that HU ≤ H .

Recall that there exists D ∈ δ∗. By 2.3.3.2, a Sylow 2-group S of NM (D)
is in β, so NG(D) ∈ He(S,M) by the definition of δ in Notation 2.2.4. Thus
(S,NG(D)) ∈ U(G) and S ∈ U , so that

U(G) and U are nonempty,

and by 2.3.3, S ∈ Syl2(NG(D)) and NG(S) ≤M . Observe that if H,H1 ∈ H with
H ≤ H1 then U(H) ⊆ U(H1).

Notation 2.3.5. Let Γ = ΓM be the set of all H ∈ H such that U(H) 6= ∅. Let
Γ∗ = Γ∗M consist of those H ∈ Γ such that U(H) contains some member (U,HU )
with U of maximal order among members of U , and subject to that constraint, with
|H |2 maximal. Let Γ∗ = Γ∗,M consist of those H ∈ Γ such that |H |2 is maximal
among members of Γ. Finally let Γ0 = Γ0,M := Γ∗ ∪ Γ∗.

If D ∈ δ∗ and S ∈ Syl2(NM (D), then we saw a moment ago that (S,NG(D)) ∈
U(NG(D)), so that NG(D) ∈ Γ and hence Γ 6= ∅. As Γ is nonempty, also Γ∗ and
Γ∗ are nonempty.

Observe that by that by 2.3.2.2, |H |2 = |H ∩ M |2 for each H ∈ Γ, so the
constraints on the maximality of |H |2 amount to constraints on |H ∩M |2.

Lemma 2.3.6. If H ∈ Γ0, then |H |2 ≥ |V | for any V ∈ U .
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Proof. Let U ∈ U be of maximal order and HU ∈ He(U,M). Then |V | ≤
|U | ≤ |H |2 for H ∈ Γ0. ¤

The remainder of the proof of Theorem 2.1.1 focuses on the members of Γ0. We
need to consider members of Γ maximal in the two different senses of Notation 2.3.5
because: On one hand, at a number of points in the proof we produce members of
Γ∗ (for example in 2.3.7.1), so we need results on the structure of such subgroups.
On the other hand, near the end of the proof, particularly in 2.5.10, we need to work
with those H ∈ Γ such that U(H) contains a member (U,HU ) with |U | maximal in
U . Thus at that point we choose H ∈ Γ∗.

We often use the following observations to produce members of Γ0:

Lemma 2.3.7. Assume H ∈ Γ, and let (U,HU ) ∈ U(H) and U ≤ S ∈ Syl2(H).

(1) Assume |T : S| = 2. Then H ∈ Γ∗. If H1 ∈ Γ with |H1|2 ≥ |S|, then
|H1|2 = |S|, and H1 ∈ Γ∗.

(2) Assume H ∈ Γ0 and H1 ∈ H(H). Then H1 ∈ Γ0, and S is Sylow in H1

and H1 ∩M .
(3) Assume H ∈ Γ0 and S ≤ H1 ∈ Γ; when H ∈ Γ∗, assume in addition that

|U | is maximal among members of U and that He(U,M)∩H1 6= ∅. Then H1 ∈ Γ0,
and S is Sylow in H1 and H1 ∩M .

(4) Under the hypotheses of (2) and (3), if H ∈ Γ∗, Γ∗, then H1 ∈ Γ∗, Γ∗,
respectively.

Proof. Since U ≤ S by hypothesis, S ≤M by 2.3.2.1.
Assume |T : S| = 2 and H1 ∈ Γ. As M = !M(T ), |H1|2 ≤ |T |/2 = |S| = |H |2,

so H ∈ Γ∗, and if |H1|2 ≥ |S|, then H1 ∈ Γ∗, establishing (1).
Now assume the hypotheses of (2); then H1 ∈ H(H) ⊆ Γ. When H ∈ Γ∗,

maximality of |S| forces H1 ∈ Γ∗, with S Sylow in H1, and hence in H1 ∩M . Thus
(2) and the corresponding part of (4) hold in this case. When H ∈ Γ∗ there is some
(U,HU ) ∈ U(H) ⊆ U(H1), with U of maximal order in U , so by the maximality of
|S| subject to this constraint, H1 ∈ Γ∗ and S is Sylow in H1 and in H1 ∩M . This
completes the proof of (2), along with the corresponding part of (4).

Assume the hypotheses of (3); the proof is very similar to that of (2): Again if
H ∈ Γ∗, then as S ≤ H1, H1 ∈ Γ∗ by maximality of |S|. Thus we may assume that
H ∈ Γ∗. Then by hypothesis |U | is maximal in U and there is H2 ∈ He(U,M) ∩
H1. Thus (U,H2) ∈ H(H1), and hence H1 ∈ Γ. Then by maximality of |U | and
maximality of |S| subject to that constraint, H1 ∈ Γ∗. ¤

The next result 2.3.8 lists various properties of members of Γ. In particular
part (4) of that lemma is the basis for our analysis of the case where Γ0 contains a
member of He in the next section.

Lemma 2.3.8. Let H ∈ Γ, (U,HU ) ∈ U(H), and U ≤ S ∈ Syl2(H). Then

(1) |S| < |T | and S ∈ β. In particular, S ≤M , so S ∈ Syl2(H ∩M).
(2) O2(HU ) ∈ Se2(G).
(3) (U,HU ) ∈ U(NG(O2(H))), and NG(O2(H)) ∈ Γ.
(4) If H ∈ Γ0 ∩ H

e, then C(H,S) ≤ H ∩ M , so H = (H ∩ M)L1 · · ·Ls
with s ≤ 2 and Li an L2(2

n)-block, A3-block, or A5-block such that Li 6≤ M and
Li = [Li, J(S)].

(5) Assume H ∈ Γ0. Then

(a) NG(J(S)) ≤M .
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(b) If J(S) ≤ R ≤ S with |S : R| = 2 and CO2(M)(R) ≤ R, then R ∈ β.
(c) If H ∈ He then CO2(M)(R0) ≤ R0 for each overgroup R0 of O2(H) in

S.

(6) If H ∈ Γ0, then the hypotheses of 1.1.5 are satisfied for each involution
z ∈ Z(S) which is 2-central in M .

Proof. As U ∈ β, S ∈ β by 2.3.2.1, so S ∈ Syl2(H ∩M). As S ≤ M , we
may assume S ≤ T . As M = !M(T ), |S| < |T | completing the proof of (1). Part
(2) follows from 2.3.2.3. Next NG(O2(H)) ∈ H(H) ⊆ Γ and (U,HU ) ∈ U(H) ⊆
U(NG(O2(H))), so (3) holds.

Assume H ∈ He ∩ Γ0. Then S ∈ β by (1), and H ∈ He(S,M) so that
(S,H) ∈ U(H) and S ∈ U . Assume that C(H,S) 6≤M . Then there is a nontrivial
characteristic subgroup R of S such that NH(R) 6≤ M . Now NH(R) ∈ He using
1.1.3.2, so (S,NH(R)) ∈ U(NG(R)) and thus NG(R) ∈ Γ. Then we may apply
2.3.7.3 with NG(R) in the role of “H1” to conclude that S ∈ Syl2(NG(R)). But
S < T by (1), so S < NT (S) ≤ NT (R), contradicting S ∈ Syl2(NG(R)). This
contradiction shows that C(H,S) ≤ H ∩M . Then as S ∈ Syl2(H), we may apply
the Local C(G, T )-Theorem C.1.29 to complete the proof of (4).

We next turn to (5), so we assume H ∈ Γ0, and set J := J(S). By (1),
S ∈ β, so Z(T ) ≤ CO2(M)(S) ≤ S using (β2) from the definition in 2.3.1. Then
Ω1(Z(T )) ≤ Ω1(Z(S)) ≤ J using B.2.3.7, so that J ∈ Se2 (G) by 1.1.4.3. Suppose
NG(J) 6≤ M . Then (S,NG(J)) ∈ U(NG(J)) so NG(J) ∈ Γ and S ∈ Syl2(NG(J))
by 2.3.7.3. This is impossible as S < NT (S) ≤ NT (J). Therefore NG(J) ≤ M ,
proving part (a) of (5).

Next assume that H ∈ He, and consider any R0 with Q := O2(H) ≤ R0 ≤ S.
By 2.3.7.2, NG(Q) ∈ H(H) ⊆ Γ0, with S Sylow in NG(Q) and NM (Q). Therefore

E := CO2(M)(Q) ≤ O2(NM (Q)) ≤ S ≤ H.

Also F ∗(H) = O2(H) = Q as H ∈ He, so E ≤ CH(Q) ≤ Q. Then as Q ≤ R0,

CO2(M)(R0) ≤ CO2(M)(Q) = E ≤ Q ≤ R0,

establishing part (c) of (5).
So to complete the proof of (5), it remains to establish part (b). Thus we

assume that J ≤ R ≤ S with |S : R| = 2, and CO2(M)(R) ≤ R. We must show
that R ∈ β; as R satisfies (β0) since S ≤M , and R satisfies (β2) by hypothesis, we
may assume that (β1) fails for R, and it remains to derive a contradiction. Then
for some R ≤ V ∈ S2(M), NG(V ) 6≤M , and we may choose V maximal subject to
this constraint. As usual, we may assume that V ≤ T . By hypothesis J(S) ≤ R,
so J(S) = J(R) by B.2.3.3, and hence NG(R) ≤ NG(J(S)) ≤ M by part (a) of
(5). Therefore R < V . Further NG(V ) 6≤ M = !M(T ), so that V < T and hence
V < NT (V ) := W . Then W satisfies (β0), and also (β2), since this condition is
inherited by overgroups of R. Further by maximality of V , NG(X) ≤M for each X
satisfyingW ≤ X ∈ S2(M), establishing (β1) forW . Hence W ∈ β. We saw earlier
that J(S) = J ∈ Se2 (G), and by hypothesis J ≤ R ≤ V , so V ∈ Se2(G) by 1.1.4.1,
and hence NG(V ) ∈ He. Then (W,NG(V )) ∈ U(NG(V )) so NG(V ) ∈ Γ. However
by hypothesis |S : R| = 2, while R < V < W , so that |W | > |S|. This contradicts
the maximality of |H |2 in Notation 2.3.5 when H ∈ Γ∗, and the maximality of |U |
when H ∈ Γ∗. This contradiction completes the proof of (5).
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It remains to prove (6). By (1), S ≤ M and S ∈ Syl2(H ∩ M). Assume
that H ∈ Γ0. Then by 2.3.7.2, NG(O2(H)) ∈ Γ, and S is Sylow in NG(O2(H))
and NM (O2(H)). Thus CO2(M)(O2(H)) ≤ O2(NM (O2(H))) ≤ S. Now O2(H) ≤
O2(H ∩M) by A.1.6, so

CO2(M)(O2(H ∩M)) ≤ CO2(M)(O2(H)) ≤ S ≤ H,

establishing one of the hypotheses of 1.1.5. Finally if z is an involution central in
T ′ ∈ Syl2(M), then CG(z) ≤ M = !M(T ′), establishing the remaining hypothesis
for that result. This establishes (6), and so completes the proof of 2.3.8. ¤

The final section of this chapter will focus on components of a member of Γ0.
Using part (6) of 2.3.8, the next result describes these components.

Lemma 2.3.9. Let H ∈ Γ0, Q := O2(H), (U,HU ) ∈ U(H), and U ≤ S ∈
Syl2(H). Then

(1) S is Sylow in NG(Q) and NM (Q), and NG(Q) ∈ Γ0. If H ∈ Γ∗, then
NG(Q) ∈ Γ∗.

(2) CO2(M)(Q) ≤ S.
(3) Z(T ) ≤ S < T for some T ∈ Syl2(M) depending on H. In particular,

Z(T ) ≤ Z(S).
(4) F ∗(H ∩M) = O2(H ∩M).
(5) Let z be an involution in Z(T ) for T as in (3). Then CG(z) ≤ M and z

inverts O(H).
(6) If L is a component of H, then L = [L, z] 6≤ M , and L is contained in a

component LQ of NG(Q).
(7) If L is a component of H then z induces an inner automorphism on L

unless possibly L/Z(L) ∼= A6 or A7. Moreover one of the following holds:

(a) L is a Bender group.

(b) L ∼= Sp4(2
n)′ or L3(2

n), or L/O2(L) ∼= L3(4) or L ∼= Â6.

(c) L ∼= A7 or Â7, and L ∩M is the stabilizer in L of a partition of type
23, 1.

(d) L ∼= L3(3) or M11, and L∩M = CL(zL) where zL is the projection of
z on L.

(e) L ∼= L2(p), p a Fermat or Mersenne prime, and L ∩M = S ∩ L.
(f) L ∼=M22 or M23, and L ∩M ∼= A6/E16 or A7/E16, respectively.
(g) L ∼= L4(2), S is nontrivial on the Dynkin diagram of L, and L ∩M =

CL(zL), where zL is the projection of z on L.

(8) Assume |S : R| = 2, with R containing J(S), O2(H), and CS(R). Then
R ∈ β.

Proof. By 2.3.8.3, NG(Q) ∈ Γ; then (1) follows from parts (2) and (4) of
2.3.7.

By (1), S is Sylow in NM (Q), so CO2(M)(Q) ≤ O2(NM (Q)) ≤ S, proving (2).
By 2.3.8.1, S ∈ β, so in particular S ≤ M and S < T for some T ∈ Syl2(M), As
F ∗(M) = O2(M), Z(T ) ≤ O2(M), so as Q ≤ S ≤ T , Z(T ) ≤ S by (2), completing
the proof of (3).

By (3), Z(T ) ≤ Z(S), so by 2.3.8.6 the hypotheses of 1.1.5 are satisfied for each
involution z ∈ Z(T ), and in particular CG(z) ≤ M . Therefore 1.1.5.1 implies (4),
while 1.1.5.2 says z inverts O(H), completing the proof of (5).
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Similarly if L is a component of H , then by 1.1.5.3, L = [L, z] 6≤ M , and the
possibilities for L are listed in 1.1.5.3. Notice that L is a component of 〈L, S〉 and S
is Sylow in N := NG(Q) by (1), so by 1.2.4, L ≤ LQ ∈ C(N). Since L = [L, z], also
LQ = [LQ, z]. As N ∈ Γ0 by (1), z inverts O(N) by (5); so as LQ = [LQ, z], LQ
centralizes O(N). Similarly z centralizes O2(N) as z ∈ Z(S) and S ∈ Syl2(N), so
LQ = [LQ, z] centralizes O2(N). Thus LQ centralizes F (LQ), so LQ is quasisimple
by A.3.3.1, and hence LQ is a component of N . This completes the proof of (6).

To prove (7), we must refine the possibilities listed in 1.1.5.3. If L/Z(L) is a
Bender group, then Z(L) = 1 by 1.1.5.3, so conclusion (a) of (7) holds in this case.
Hence we may assume L/Z(L) is not a Bender group.

In this paragraph, we make a slight digression, to construct some machinery to
deal with groups of Lie rank at least 2. Assume L ≤ 〈H1, H2〉 with Hi ∈ He(S).
Suppose Hi 6≤M for some i. Then from the definitions in Notation 2.3.4, (S,Hi) ∈
U(Hi), so Hi ∈ Γ0 by 2.3.7.3. Consequently Hi is described in 2.3.8.4.

Now suppose L/Z(L) appears in one of cases (a)–(c) of 1.1.5.3; then as L/Z(L)
is not a Bender group, L/Z(L) is a group of Lie type and characteristic 2 of rank
at least 2 in Theorem C (A.2.3). If there do not exist two distinct maximal NS(L)-
invariant parabolics K1 and K2, then (cf. E.2.2.2) L/Z(L) ∼= L3(2

n) or Sp4(2
n)′

with S nontrivial on the Dynkin diagram of L/Z(L), and then conclusion (b) of
(7) holds. Thus we may assume K1 and K2 exist, take Hi := 〈Ki, S〉, and apply
the observations in the previous paragraph. By (6), L 6≤ M , and hence Hi 6≤ M
for some i, so Ki is a block described in 2.3.8.4. Then we check that the only
groups in (a)–(c) of 1.1.5.3 with such a block are those in conclusions (b) and (g) of
(7), keeping in mind that Z(L) = O2(L) in case (b) of 1.1.5.3. Similar arguments,
using generation by a pair of members of He(S) in LS, eliminate those cases where
L/Z(L) is M12, M24, J2, J4, HS, He, or Ru; thus in case (f) of 1.1.5, L/Z(L) is
M11, M22 or M23.

If case (d) of 1.1.5.3 holds, then z has cycle structure 23 and as CG(z) ≤ M ,
L∩M contains the stabilizer K in L〈z〉 of a partition of type 23, 1 determined by z.
So as K is a maximal subgroup of L〈z〉 and L 6≤M , K =M ∩L〈z〉; thus conclusion
(c) of (7) holds.

In the cases L3(3), L2(p), M11, M22, M23 remaining from (e) and (f) of 1.1.5.3,
the description of z determines the maximal subgroup of L〈z〉 described in conclu-
sions (d), (e), (d), (f), and (f) of (7), respectively. Finally by 1.1.5.3, z induces an
inner automorphism on L, except possibly when L/Z(L) is A6 or A7, completing
the proof of (7).

Assume the hypotheses of (8). Because we are assuming that Q ≤ R ≥ CS(R),
CO2(M)(R) ≤ CS(R) ≤ R by (2). Then since |S : R| = 2 and J(S) ≤ R by
hypothesis, we have the hypotheses of 2.3.8.5b, and that lemma completes the
proof of (8), and hence of 2.3.9. ¤

Lemma 2.3.10. If S is of index 2 in T and H(S) 6⊆M , then S ∈ β.

Proof. As S ≤ T ≤ M , condition (β0) from the definition in Notation 2.3.1
holds. As |T : S| = 2, NG(S) ≤ M = !M(T ), and then the only proper 2-
overgroups of S are Sylow groups T ′ of M , so (β1) holds as M = !M(T ′). Finally
by hypothesis, there is H ∈ H(S) with H 6≤ M ; enlarging H if necessary, we may
assume H = NG(O2(H)). As M = !M(T ′) for T ′ ∈ Syl2(M), S ∈ Syl2(H ∩M).
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Thus O2(H ∩M) ≤ S and CG(O2(H)) ≤ H , so

CO2(M)(S) ≤ CO2(M)(O2(H)) ≤ O2(M) ∩H ≤ O2(H ∩M) ≤ S,

establishing (β2). ¤

Notation 2.3.11. Set Γe = ΓeM := Γ ∩He and Γe0 = Γe0,M := Γ0 ∩He

The proof of Theorem 2.1.1 now divides into two cases: Either Γe0 is nonempty
or Γe0 is empty. In the first case we focus on a member of Γe0; the structure of such
groups is described in 2.3.8.4. In the second case 2.3.9 gives us information about
the members of Γ0, particularly about their components. The two cases are treated
in the remaining two sections of this chapter.

2.4. The case where Γe0 is nonempty

In this section, we treat the case where Γe0 is nonempty. Here by 2.3.8.4, H has
a very restricted structure dominated by χ0-blocks. We will use this fact to identify
the groups in the conclusion of Theorem 2.1.1 which are not Bender groups, and
eliminate some difficult shadows. The main result of this section is:

Theorem 2.4.1. If there exists H ∈ Γ0 with F
∗(H) = O2(H), then G is L2(p),

p > 7 a Mersenne or Fermat prime, L3(3), or M11.

In the remainder of this section, we assume that

H ∈ Γe0, and the pair G, H afford a counterexample to Theorem 2.4.1.

The groups appearing in the conclusion of Theorem 2.4.1 will emerge during the
proof of 2.4.26.

Choose S ∈ Syl2(H) as in 2.3.8, and choose T ∈ Syl2(M) as in 2.3.9.3; then

S is Sylow in H and in H ∩M , T ∈ Syl2(M), and Z(T ) ≤ S < T .

Lemma 2.4.2. If S1 ∈ Syl2(H1 ∩ M) for H1 ∈ Γe, then S1 ∈ Syl2(H1),
(S1, H1) ∈ U(H1), and S1 ∈ U .

Proof. From the definition of Γ in Notation 2.3.5, U(H1) contains a member
(U,HU ) with U ≤ S1. Then S1 ∈ Syl2(H1) and S1 ∈ β by 2.3.8.1, so as H1 ∈ He

it follows that (S1, H1) ∈ U(H1) and S1 ∈ U . ¤

In particular
S ∈ U and (S,H) ∈ U(H)

by 2.4.2. For the remainder of this section, we set

Q := O2(H) and GQ := NG(Q).

Lemma 2.4.3. (1) S ∈ Syl2(GQ) and GQ ∈ Γe0. In particular, F ∗(GQ) =
O2(GQ) = Q.

(2) Assume H1 ∈ Γe and |H1|2 ≥ |H |2. Then |H1|2 = |H |2 and H1 ∈ Γe0.

Proof. First S ∈ Syl2(GQ) and GQ ∈ Γ0 by 2.3.9.1. Then using A.1.6, Q ≤
O2(GQ) ≤ O2(H) = Q, so Q = O2(GQ). As (S,H) ∈ U(H), Q = O2(H) ∈ Se2 (G)
by 2.3.8.2, so GQ ∈ Γe0, completing the proof of (1).

Next assume the hypotheses of (2). Recall Γ0 = Γ∗ ∪Γ∗ from the definitions in
Notation 2.3.5. If H ∈ Γ∗, then |H |2 ≥ |H1|2 by maximality of |H |2, so as |H1|2 ≥
|H |2 by hypothesis, H1 ∈ Γ∗, so that H1 ∈ Γe0 in this case. Thus we may assume
H ∈ Γ∗, so S is a member of U of maximal order. Choose S1 ∈ Syl2(H1 ∩M); by
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2.4.2, S1 ∈ Syl2(H1) and S1 ∈ U . Then as |H1|2 ≥ |H |2 = |S| by hypothesis, we
conclude from maximality of |S| over U that |S1| = |S|. Then by maximality of
|H |2 over members of Γ containing a pair with a member of U of maximal order, we
conclude H1 ∈ Γ∗, so that H1 ∈ Γe0 in this case as well, completing the proof. ¤

Since H ∈ Γe0, 2.3.8.4 says H = (H ∩M)L1 · · ·Ls, where Li is an L2(2
n)-block

with n > 1, an A3-block, or an A5-block; further Li 6≤ M , and s ≤ 2. Since S, H
play the roles of “U , HU” in the previous section, in the remainder of this section U
will instead denote the module U(L1) = [O2(L1), L1] in the notation of Definition
C.1.7. Furthermore we set:

L := L1, L0 := 〈L
S〉, and U0 := 〈U

S〉.

Then L0 E H by 1.2.1.3, so L0 ∈ H
e by 1.1.3.1, and hence L0S ∈ H

e. Further
L0S 6≤ M , so (S,L0S) ∈ U(L0S) and hence L0S ∈ Γe. Then L0S ∈ Γe0 by 2.4.3.2,
so replacing H by L0S, we may assume H = L0S. Then from section B.6:

H = L0S is a minimal parabolic and L is a χ0-block.

Lemma 2.4.4. If 1 6= S0 ≤ S with S0 E H, then NT (S0) = S.

Proof. By 2.3.7.2, NG(S0) ∈ Γ0 and S ∈ Syl2(NG(S0)). In particular S =
NT (S0). ¤

Lemma 2.4.5. (1) Hypotheses C.5.1 and C.5.2 are satisfied with S in the roles
of both “TH , R” for any subgroup M0 of T with S a proper normal subgroup of M0.

(2) Assume S ≤M0 ≤ T with |M0 : S| = 2 and set D := CS(L0). Then

(a) Q = U0D ∈ A(S).
(b) For each x ∈M0 − S, 1 = D ∩Dx and Ux0 6≤ Q.

(3) Assume either that L is an A3-block, or that L = L0 is an L2(2
n)-block or

an A5-block. Then the hypotheses of Theorem C.6.1 are satisfied with T , S in the
roles of “Λ, TH”.

(4) U0 = O2(L0).

Proof. We saw that H = L0S is a minimal parabolic, and the rest of Hy-
pothesis C.5.1 is straightforward. As S is proper in M0, Hypothesis C.5.2 follows
from 2.4.4. Thus (1) holds.

Choose M0 as in (2) and set D0 := CBaum(S)(L0). This is the additional
hypothesis for C.5.6.7; and that result implies (4); and also says that Q = U0D0,
Q ∈ A(S), and D0∩Dx

0 = 1 for each x ∈M0−S. As Q ∈ A(S), D0 = CS(L0) = D.
By C.5.5, there exists y ∈ M0 with Uy0 6≤ Q. Then as U0 E S and |M0 : S| = 2,
M0 − S = {x0 ∈M0 : U

x0
0 6≤ Q}, so the proof of (2) is complete.

Finally assume the hypotheses of (3). The first three conditions in the hy-
pothesis of Theorem C.6.1 are immediate, while condition (iv) follows from 2.4.4,
establishing (3). ¤

Lemma 2.4.6. L0 E GQ.

Proof. By 2.4.3.1, S ∈ Syl2(GQ) with GQ ∈ Γe0. Hence we may apply 2.3.8.4
to GQ, to conclude that GQ is the product of NM (Q) with a product of χ0-blocks.
But using 1.2.4 and A.3.12, no larger χ0-block contains an S-invariant product L0

of χ0-blocks, so we conclude L0 E GQ. ¤
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2.4.1. Shadows of groups of rank 2 with L2(2
n)-blocks. In this subsec-

tion we continue the proof of Theorem 2.4.1 by eliminating the shadows of L3(2
n)

and Sp4(2
n) extended by an outer automophism nontrivial on the Dynkin diagram.

To be more precise, we will show that if L is an L2(2
n)-block, then H essentially

has the structure of a maximal parabolic of L3(2
n) or Sp4(2

n). Then we will show
that O2(G) < G via transfer.

The main result of this subsection is:

Theorem 2.4.7. L is not an L2(2
n)-block for n > 1.

Throughout this subsection, G and H continue to be a counterexample to
Theorem 2.4.1, with H = L0S and L0 = 〈LS〉. Moreover we also assume that H is
a counterexample to Theorem 2.4.7, so that L is an L2(2

n)-block with n > 1. Set
q := 2n. Fix a Hall 2′-subgroup D of L0 ∩M normalizing L0 ∩ S; thus L0 ∩M =
(L0 ∩ S)D is a Borel subgroup of L0. Of course D 6= 1 as n > 1.

The proof divides into two cases: s = 1 and s = 2. Further the case where
s = 1 is by far the more difficult, as that is where the shadows of L3(q) and Sp4(q)
extended by outer automorphisms arise. Thus the treatment of that case involves
a long series of lemmas.

In the remainder of this subsection, set

R := J(S).

The Case s = 1.

Until this case is complete, we assume that s = 1, so that L0 = L1 = L, and
H = LS.

Lemma 2.4.8. (1) |T : S| = 2. Hence T normalizes S and R.
(2) O2(L) = U = Q = O2(H).
(3) R = Baum(S) = UUx ∈ Syl2(L), U ∩ Ux = Z(R), and A(S) = A(T ) =

{U,Ux} for each x ∈ T − S.
(4) Dx acts on L, and either

(a) Z(L) = 1 and L ∼= P∞ for P a maximal parabolic in L3(q), or
(b) Z(L) ∼= E2n , D

x is regular on Z(L)#, and L ∼= P∞ for P a maximal
parabolic in Sp4(q).

(5) 〈T,D〉 = TB, where B is an abelian Hall 2′-subgroup of 〈T,D〉 containing
D, S normalizes RD, R E RB E BT , CR(B) = 1, and T is the split extension
of R by NT (B). If x ∈ NT (B)− S, then B = DDx.

(6) If Z(L) 6= 1, then B = D × Dx; while if Z(L) = 1, then AutB(Z(R)) =
AutD(Z(R)) ∼= D is regular on Z(R)#.

(7) U and Ux are the maximal elementary abelian subgroups of R.

Proof. By 2.4.5.3, we have the hypotheses of Theorem C.6.1, with T , S in
the roles of “Λ, TH”, so we may appeal to Theorem C.6.1. In particular, conclusion
(a) of C.6.1.6 holds, since L is of type L2(2

n) for n > 1. Thus (1) holds and
R = J(S) = J(T ). By C.6.1.1, Baum(S) = R = QQx for each x ∈ T − S and by
C.6.1.3, {Q,Qx} = A(S). As R = QQx with Q ∈ A(S), Q ∩ Qx = Z(R) using
B.2.3.7. Since Qx 6≤ Q, Qx is an FF-offender on U by Thompson Factorization
B.2.15, so as H = LS with L an L2(2

n)-block, R/Q = QQx/Q is Sylow in LQ/Q
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by B.4.2.1, and hence R ∈ Syl2(LQ). Then (3) will follow once we prove (2).
However, we will first establish (5) and the assertion in (4) that Dx normalizes L.

As L = O2(H), CR(L) ≤ Q, so as Q is abelian and R ≤ LQ, CR(L) ≤ Z(R).
Further by (1), we may apply 2.4.5.2 with T in the role of “M0”, to conclude that
Q = UCS(L). Then as U ≤ L and R ≤ LQ, R = (R ∩ L)CR(L). As R is Sylow
in LQ, S ∩ L = R ∩ L; then M ∩ L = (R ∩ L)D is a Borel subgroup of L, and
R = (R ∩ L)CR(L) is D-invariant.

Now S normalizes the Borel subgroup (R∩L)D overR∩L, and hence normalizes
RD. Thus S also normalizes (RD)x = RDx. Also T permutes Q and Qx, and so
acts on GQ ∩GxQ =: Y . We saw D normalizes R, so as D = O2(D), D normalizes

the two members Q and Qx of A(R); that is, D ≤ Y , and hence also Dx ≤ Y .
By 2.4.6, GQ normalizes L0 = L; in particular Dx normalizes L, giving the first
assertion in (4). NowM∩GQ normalizesM∩L = (R∩L)D as well as Q = UCR(L),
and hence normalizes their product RD. Then as Dx ≤M ∩Y , Dx also normalizes
RD. As x2 ∈ S normalizes RD and (RD)x = RDx,

RDDx E 〈RDDx, S, x〉 = RDDxT = DDxT.

Hence by a Frattini Argument, we may take x to act on a Hall 2′-subgroup B of
RDDx containing D.

We can now obtain the conclusions of (5), except possibly for CR(B) = 1: First
Dx normalizes RD ∩ B = D, so DDx is a subgroup of B, and hence DDx = B.
Then T normalizes RDDx = RB, while R is normalized by D and hence also by
Dx, and further 〈T,D〉 = BT . We saw D E DDx = B, so also Dx E B, and then
Dx[D,Dx] ≤ Dx. As Dx is abelian this shows that no element of Dx induces an
outer automorphisms on L/U ∼= L2(2

n), so that B = DDx = D×CB(L/U). Then
since B = DDx and D is abelian, it follows that B is abelian. By a Frattini
Argument on RB E TB, T = RNT (B). This extension splits once we show
CR(B) = 1.

Thus to complete the proof of (5), it remains to show that CR(B) = 1. We
saw that R = (R ∩ L)CR(L), so [R,D] = [R ∩ L,D] = R ∩ L since L is an L2(2

n)-
block; thus also [R,Dx] = R ∩ Lx. Further we saw Q ∩ Qx = Z(R) ≥ CR(L), so
R/Z(R) = [R/Z(R), D]. Then also R/Z(R) = [R/Z(R), Dx], so

R ∩ L = [R ∩ L,Dx] ≤ [R,Dx] = R ∩ Lx;

so as (R ∩ L)x = R ∩ Lx, R ∩ L = R ∩ Lx. Therefore R ∩ L = [R,Dx], so
[R,B] = [R,DDx] = R ∩ L. As CR/CR(L)(D) = 1, CR(B) ≤ CR(L) ≤ Z(R), so
CR(B) E LRNS(B) = LS = H . Also x normalizes R and B, and hence also
CR(B), so that CR(B) = 1 by 2.4.4, completing the proof of (5).

Now by Coprime Action, R = [R,B] = R ∩ L, so that R ≤ L. As Q ≤ R,
Q = O2(L) = U by 2.4.5.1, so that (2) holds. This also completes the proof of (3)
as mentioned earlier.

So it remains to complete the proof of (4) and establish (6) and (7). As L
is an L2(q)-block, L is indecomposable on U with U/Z(L) the natural module
for L/U . From the cohomology of that module in I.1.6, m(Z(L)) ≤ n. Further
Z(L) = CR(D) with D semiregular on R/Z(L), soDx is semiregular on R/CR(D

x).
Thus as CR(B) = 1, Dx is semiregular on Z(L)#, so as m(Z(L)) ≤ n, either
Z(L) = 1 orm(Z(L)) = n. In each case (using I.1.6 in the latter) the representation
of L/U on U is determined up to equivalence, and as the Sylow group R = UUx of
L splits over U , L also splits over U by Gaschütz’s Theorem A.1.39. Therefore L is
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determined up to isomorphism in each case. The parabolics P in cases (a) and (b)
of (4) exhibit such extensions, so this completes the proof of (4). Part (4) implies
(7).

When Z(L) 6= 1 the fact that Dx is semiregular on Z(L) = CR(D) shows that
B = D × Dx. When Z(L) = 1, D is regular on Z(R)#, so D ∼= AutD(Z(R)) is
self-centralizing in GL(Z(R)); thus as B is abelian, AutB(Z(R)) = AutD(Z(R)).
This completes the proof of (6), and hence also of 2.4.8. ¤

Remark 2.4.9. The cases (a) and (b) of 2.4.8.4 were treated separately in
sections 3 and 4 of [Asc78a]. However many of the arguments for the two cases
are parallel, so we give a common treatment here where possible.

Notation 2.4.10. During the remainder of the treatment of the case s = 1, x
denotes an element of T − S. By 2.4.8.1, |T : S| = 2, so as S acts on L, H , U , the
conjugates Lx, Hx, Ux are independent of the choice of x.

Lemma 2.4.11. (1) GQ = NG(L).
(2) GQ = !M(L).
(3) If Z(L) 6= 1 then Z(L) is a TI-subgroup of G with GQ = NG(Z(L)).

Proof. Recall GQ ≤ NG(L) by 2.4.6; so as Q = U = O2(L) by 2.4.8.2,
NG(L) ≤ GQ, so (1) holds.

As Q = O2(LS) while S ∈ Syl2(GQ) by 2.4.3.1, I∗GQ(L, 2) = {Q}. Then as

L is irreducible on Q/Z(L) and indecomposable on Q, if 1 6= V ∈ IGQ(L, 2) then
either V = Q or V ≤ Z(L).

Let X ∈ H(L); to prove (2), we must show that L E X , so assume otherwise.
Let P := O2(X). Then 1 6= P0 := NP (Q) ≤ GQ, so P0 ∈ IGQ(L, 2). Thus by
the previous paragraph, either P0 = Q or P0 ≤ Z(L). In either case P0 ≤ Q, so
that NPQ(Q) = P0Q = Q, and then PQ = Q so that P = P0. If P = Q, then
X ≤ NG(Q) = GQ, contrary to assumption; hence P ≤ Z(L). This shows that (2)
holds when Z(L) = 1. Thus for the rest of the proof, we may assume Z(L) 6= 1,
since this is also the hypothesis of (3). In particular, case (b) of 2.4.8.4 holds.

Next we claim that CG(v) ≤ GQ for each v ∈ Z(L)#. Assume otherwise;
then we may choose CG(v) in the role of “X” in the previous paragraph. As B
is transitive on Z(L)# by 2.4.8.4, we may assume S ≤ X . Thus H = LS ≤ X ,
so by 2.3.7.2, X ∈ Γ0 and S ∈ Syl2(X). Then by 1.2.4, L ≤ K ∈ C(X). As
the Sylow 2-subgroup S of X normalizes L, but we are assuming L is not normal
in X , L < K. Now O2(K) ≤ O2(X) = P ≤ Z(L) by the previous paragraph,
so K = [K,L] centralizes O2(K). Also m2(K) ≥ m2(L) > 1, so we conclude
from 1.2.1.5 that K is quasisimple, and hence K is a component of X . Thus K is
described in 2.3.9.7. Since 1 6= v ∈ L ∩ Z(X) ≤ Z(K), Z(K) is of even order, so
K/O2(K) is L3(4) or A6 and Z(K) = O2(K). If K/Z(K) is A6, then K ∼= SL2(9)
by I.2.2.1, a contradiction as L ≤ K with m2(L) ≥ 4. Thus K/O2(K) ∼= L3(4),
L/Q ∼= L2(4), and Z(K) = Z(L) = P as L is irreducible on Q/Z(K) and we saw
Z(K) ≤ P ≤ Z(L). In particular, P E H . Further Z(L) ∼= E4 since n = 2 and
case (b) of 2.4.8.4 holds. Observe since K/Z(K) ∼= L3(4) that L = NK(Q), so
as R is Sylow in L by 2.4.8.3, R is Sylow in K. Now consider x ∈ T − S as in
Notation 2.4.10. By parts (2) and (3) of 2.4.8, A(R) = {Q,Qx}, so NK(Qx) is the
maximal parabolic of K over R distinct from L. Therefore NK(Qx)/Qx ∼= L2(4)
and P = Z(K) = Z(NK(Qx)). Hence Lx = 〈RNG(Q

x)〉 ≥ NK(Qx), so we conclude
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Lx = NK(Qx) since NK(Qx) ∼= NK(Q) = L. Thus Z(L) = P = Z(Lx), contrary
to 2.4.4. This contradiction completes the proof that CG(v) ≤ GQ.

In the remainder of the proof,X again denotes an arbitrary member ofH(L) not
normalizing L; thus 1 6= O2(X) = P ≤ Z(L) by earlier remarks. Now CG(Z(L)) ≤
CG(v) ≤ GQ = NG(L) by the previous paragraph, so L ∈ C(NG(Z(L))). As
H ≤ NG(Z(L)), S ∈ Syl2(NG(Z(L))) by 2.3.7.2, so L E NG(Z(L)) by 1.2.1.3.
Therefore NG(Z(L)) = NG(L) = GQ using (1). Also B is transitive on Z(L)# and
CG(v) ≤ GQ = NG(Z(L)), so Z(L) is a TI-subgroup of G by I.6.1.1, completing the
proof of (3). Then as 1 6= O2(X) ≤ Z(L), X ≤ NG(Z(L)) = GQ by (3), contrary
to assumption. This contradiction completes the proof of the lemma. ¤

We next repeat some arguments from sections 3 and 4 of [Asc78a], which force
the 2-local structure of G to be essentially that of an extension of L3(2

n) or Sp4(2
n);

this information is used later in transfer arguments to eliminate these shadows.
In fact, by 2.4.8 and 2.4.11, the hypotheses of section 3 or 4 in [Asc78a] are

satisfied, in cases (a) or (b) of 2.4.8.4, respectively. Thus we could now appeal
to Theorems 2 and 3 of [Asc78a]. However those results are not quite strong
enough for our present purposes, and in any event we wish to keep our treatment
as self-contained as possible, as discussed in the Introduction to Volume I under
Background References. Thus we reproduce those arguments from [Asc78a] nec-
essary to complete our proof.

Lemma 2.4.12. (1) H is the split extension of L by a cyclic subgroup F of S
inducing field automorphisms on L/Q. Thus S is the split extension of R by F .

(2) If f is an involution in F , then all involutions in fR are fused to f under
R, CL(f) is an L2(q

1/2)-block (or S4 or Z2 × S4 if q1/2 = 2), and either

(a) Z(L) = 1, and CR(f) is special of order q
3/2; in this case we say CR(f)

is of type L3(q
1/2).

(b) Z(L) ∼= Eq, with |CZ(L)(f)| = q1/2 and |CR(f)| = q2; in this case we

say CR(f) is of type Sp4(q
1/2).

Proof. Recall H = LS, while by parts (3) and (5) of 2.4.8, S is the split
extension of R ∈ Syl2(L) by NS(B) =: F . Thus F ∩ L = F ∩ R = 1, so that (1)
holds.

Suppose f is an involution in F . As f induces a field automorphism on L̄ :=
L/Q, q = r2, CL̄(f)

∼= L2(r), and CQ/Z(L)(f) is the natural module for CL̄(f).
Indeed if Z(L) 6= 1, then Z(L) ∼= Eq by 2.4.8.4, so from I.1.6, Q is the largest
indecomposable extension of a submodule centralized by L̄ by a natural L̄-module;
hence m(Z(L)) = 2m(CZ(L)(f)). Thus in any event m(Q) = 2m(CQ(f)), so Q is

transitive on the involutions in fQ. Then by a Frattini Argument, CL̄(f) = CL(f),
so CL(f) is as claimed in (2). Further by Exercise 2.8 in [Asc94], R is transitive
on involutions in fR, completing the proof of (2). ¤

Definition 2.4.13. Relaxing somewhat the usual definition in the literature,
we define a Suzuki 2-group to be a 2-group I admitting a cyclic group of automor-
phisms transitive on its involutions, with [I, I ] = Z(I).

Lemma 2.4.14. Assume t ∈ T − S with t2 ∈ R. Then 〈t〉R splits over R, R is
transitive on the involutions in tR, and choosing t to be an involution, one of the
following holds:
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(1) Z(L) = 1, Z(R) = CR(t), R is transitive on t[R, t], and [R, t] is transitive
on tZ(R); in this case we say CR(t) is of type L2(q).

(2) Z(L) = 1, n is even, and CR(t) is a Suzuki 2-group of order q3/2 with
|Ω1(CR(t))| = q1/2; in this case we say CR(t) is of type U3(q

1/2).
(3) Z(L) ∼= Eq, and CR(t) is a Suzuki 2-group of order q

2 with |Ω1(CR(t))| = q;
in this case we say CR(t) is of type Sz(q).

Proof. Since t ∈ T − S, t serves in the role of the element “x” in Notation
2.4.10; in particular, we may apply 2.4.8. As RB E TB by 2.4.8.5, by a Frattini
Argument we may choose t to normalize B. Also by 2.4.8.5, R E RB and CR(B) =
1, so as t2 ∈ R, [B, t2] ≤ B ∩R = 1 and hence t is an involution. In particular R〈t〉
splits over R.

We recall from Notation 2.4.10 that Qt = Qx is independent of the choice of x ∈
T − S, so by 2.4.8.3, m(R/Z(R)) = 2m(CR/Z(R)(t)) and CR/Z(R)(t) = [R/Z(R), t].
Let Rt denote the preimage of CR/Z(R)(t), so that Rt contains CR(t). By 2.4.8.7,

Q and Qt are the maximal elementary abelian subgroups of R, so Z(R) = Ω1(Rt),
and hence CZ(R)(t) = Ω1(CR(t)).

Assume that Z(L) 6= 1. Then Z(L) ∼= Eq is a TI-subgroup of G by 2.4.11.3,
while |Z(R)| = 22n = |Z(L)|2 by 2.4.8.4, so Z(R) = Z(L)× Z(L)t. Thus by Exer-
cise 2.8 in [Asc94], R is transitive on the involutions in tR, and Rt = Z(R)CR(t).
As B = D × Dt by 2.4.8.6, CB(t) is a full diagonal subgroup of B, and so
CB(t) is regular on CZ(R)(t)

# = Z(CR(t))
#. Further CR(t) is nonabelian, so

that [CR(t), CR(t)] = Z
(
CR(t)

)
; thus CR(t) is a Suzuki 2-group of order q2, so that

conclusion (3) holds.
Now assume instead that Z(L) = 1. Set (TB)∗ := TB/CTB(Z(R)). As t

normalizes B and B∗ = D∗ is regular on Z(R)# by 2.4.8.6, either t∗ = 1 or
m(Z(R)) = 2m(CZ(R)(t)), and in either case CB∗(t

∗) = CB(t)
∗ is regular on

CZ(R)(t)
#. Assume first that t∗ = 1. Then as Rt/Z(R) = [R/Z(R), t], with

Ω1(Rt) = Z(R), t inverts an element r of order 4 in each coset of Z(R) in Rt.
So as r is of order 4, CR(t) = CRt(t) = Z(R), and conclusion (1) holds. Fur-
ther |R : CR(t)| = |Rt|, so R is transitive on tRt and hence on the involutions
in tR. Now assume instead that t∗ 6= 1, so that m(Z(R)) = 2m(CZ(R)(t)). By

Exercise 2.8 in [Asc94], |CR(t)| = q3/2 and R is transitive on the involutions in
tR. As CB(t) is transitive on CZ(R)(t)

# = Z(CR(t))
#, and CR(t) is nonabelian

so that [CR(t), CR(t)] = Z
(
CR(t)

)
, CR(t) is a Suzuki 2-group of order q3/2. Thus

conclusion (2) holds. ¤

Notation 2.4.15. In the remainder of our treatment of the case s = 1, we
define Z as follows: If Z(L) = 1, set Z := Z(R), while if Z(L) 6= 1 set Z := Z(L).

Lemma 2.4.16. (1) Z ∼= E2n and Z E S.
(2) For x ∈ T − S, either

(a) Z(L) = 1 and Zx = Z = Z(R), or
(b) Z(L) 6= 1 and Z(R) = Z × Zx.

(3) U = 〈(Zx)L〉 = 〈ZG ∩ U〉.

Proof. Part (1) follows from 2.4.8.4. Next x normalizes J(S) = R, so conclu-
sion (a) of (2) holds when Z(L) = 1 as Z = Z(R) in that case. If Z(L) 6= 1 then
Z = Z(L) is a TI-subgroup of G by 2.4.11.3, and Z 6= Zx by 2.4.4, so conclusion
(b) of (2) holds as |Z(R)| = |Z|2.
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If Z(L) = 1 then Z = Zx by (2); hence (Zx)L = ZL gives the partition of the
natural module U by its 1-dimensional Fq-subspaces, so (3) holds in this case. If
Z(L) 6= 1 then Z(R) = ZZx and (Z(R)/Z)L is the corresponding partition of U/Z,
so again (3) holds as L is indecomposable on U . ¤

Lemma 2.4.17. (1) Either R = CT (Z); or case (1) of 2.4.14 holds, so that
Z(L) = 1 and CT (Z) = R〈t〉 for some involution t in T−S with Z = Z(R) = CR(t).

(2) If Z(L) = 1 then T/CT (Z) is cyclic.

Proof. By 2.4.12.1, CS(Z) = R, since the field automorphisms in F do not
centralize Z. Assume CT (Z) > R. Then CT (Z) = R〈u〉 for some u ∈ CT (Z)− S,
so u2 ∈ R and hence 2.4.14 completes the proof of (1).

Assume Z(L) = 1, so that Z = Z(R). By 2.4.8.6, AutB(Z) is cyclic and
regular on Z#, so AutGL(Z)(AutB(Z)) is the multiplicative group of Fq extended
byAut(Fq). SinceAutB(Z) is normal inAutBT (Z) by 2.4.8.5, we concludeAutT (Z)
is cyclic, so that (2) holds. ¤

Lemma 2.4.18. (1) Z is a TI-subgroup of G.
(2) If Z(L) = 1 then NG(Z) =M .
(3) if Z(L) 6= 1 then NG(Z) = GQ.

Proof. If Z(L) 6= 1 then (1) and (3) hold by 2.4.11.3. Thus we may assume
Z(L) = 1, so Z = Z(R) from Notation 2.4.15. Set P := O2(M). As T normalizes R
by 2.4.8.1, there is an involution z in Z∩Z(T ). As F ∗(M) = O2(M), z ∈ CM (P ) =
Z(P ). Then as D ≤ M and D is irreducible on Z, Z ≤ Z(P ). It suffices to show
that Z E M : For then M = NG(Z) since M ∈ M, so that (2) holds. Further as
M = !M(T ), CG(z) ≤M , and hence as as D is transitive on Z#, Z is a TI-set in
G by I.6.1.1, so that (1) also holds.

Thus it remains to show that Z E M . If R ≤ P , then as R = J(T ), also
R = J(P ) by B.2.3, so that Z = Z(J(P )) E M . Thus we assume that R 6≤ P .
Now for x ∈ T − S, R = UUx by 2.4.8.3, so U 6≤ P . Then as Z ≤ P and D
is irreducible on U/Z, Z = U ∩ P , and then also Z = Ux ∩ P . So since U and
Ux are the maximal elementary subgroups of R by 2.4.8.7, Z = Ω1(R ∩ P ). We
now assume Z is not normal in M , and it remains to derive a contradiction. We
saw Z ≤ Z(P ), so that Z < ZP := Ω1(Z(P )) and hence there is an involution
t ∈ ZP − Z. As Z = Ω1(R ∩ P ), t /∈ R, so as t centralizes Z, the second case of
2.4.17.1 holds. Therefore Z = CR(t) and t is described in case (1) of 2.4.14. But
[R, t] ≤ [R,ZP ] ≤ R ∩ ZP ≤ CR(t) = Z, impossible as [R, t] > Z in case (1) of
2.4.14. ¤

Lemma 2.4.19. R is the weak closure of Z in T .

Proof. By 2.4.16.3, Q = U = 〈(Zx)L〉, and R = QQx by 2.4.8.3. Hence R is
contained in the weak closure of Z in T . Thus we may assume that there is g ∈ G
with Zg ≤ T but Zg 6≤ R, and it remains to derive a contradiction. By 2.4.16.1,
|Z| = 2n > 2 = |T : S| ≥ |T : NT (Z)|, so that NZg (Z) 6= 1. Then as Z is a
TI-subgroup of G by 2.4.18.1, and 〈Z,Zg〉 is a 2-group, Zg ≤ CT (Z) by I.6.2.1. As
Zg 6≤ R, there is an involution t ∈ Zg − S with CT (Z) = R〈t〉 by 2.4.17.1. Then t
satisfies conclusion (1) of 2.4.14 with CR(t) = Z. Hence as |Zg | > 2 = |CT (Z) : R|,
R∩Zg 6= 1. But R∩Zg ≤ CR(t) = Z, so as Z is a TI-subgroup of G, Zg = Z ≤ R,
contrary to Zg 6≤ R. ¤
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Lemma 2.4.20. Assume Z(L) 6= 1. Then for x ∈ T − S:

(1) B = D ×Dx is regular on ∆ := Z(R)− (Z ∪ Zx).
(2) For u ∈ ∆, u is 2-central in M and hence 2-central in G, CG(u) ≤M , and

uG ∩ Z = ∅.
(3) All involutions in R are fused to u ∈ ∆ or z ∈ Z#.
(4) R E M , so R E CG(u) for u ∈ ∆.
(5) For z ∈ Z#, Sylow 2-subgroups of CG(z) are in S

G.
(6) If u ∈ ∆ and X = 〈ZG ∩X〉 is a 2-subgroup of CG(u), then X ≤ R.

Proof. As Z(L) 6= 1, E2n
∼= Z(L) = Z. By 2.4.11.3, Z is a TI-subgroup of G

with NG(Z) = GQ, so for z ∈ Z#, CG(z) ≤ GQ. Further S ∈ Syl2(GQ) by 2.4.3,
so (5) holds and z is not 2-central in G.

By 2.4.8.6, B = D × Dx, while Z(R) = Z × Zx by 2.4.16.2. By 2.4.8.4, Dx

is regular on Z#, so as x interchanges D and Dx and Z and Zx, D is regular on
(Zx)#. Thus Z = CZ(R)(D), completing the proof of (1). Next Q and Qx are
the maximal elementary abelian subgroups of R by 2.4.8.7, while all elements of Q
are fused into Z(R) under L, so (3) holds. Then as z is not 2-central in G, but
Z × Zx = Z(R) E T since T normalizes R by 2.4.8.1, u ∈ Z(T ) for some u ∈ ∆.
So as M = !M(T ), Gu := CG(u) ≤ M , and then (2) follows from the transitivity
of D on ∆ in (1).

Next we prove (4). Set P := O2(M). As R = J(T ) by 2.4.8.3, it suffices to show
that R ≤ P , since then R = J(P ) by B.2.3.3. As F ∗(M) = P , u ∈ CM (P ) = Z(P ),
so by (1), Z(R) = 〈uBT 〉 ≤ Z(P ). Let W := 〈ZG ∩ P 〉. By 2.4.19, W ≤ R, so
as B is irreducible on Q/Z(R), either W = Z(R) or W = R. Since W E M , (4)
holds if W = R. If W 6= R then Z(R) = W E M so that M = NG(Z(R)) since
M ∈ M. But then as Z is a TI-subgroup of G, it follows from (1) and (2) that
M = NM (Z)〈x〉. Now NG(Z) = GQ = NG(L) by 2.4.11, so NM (Z) normalizes
O2(NM∩L(Z)) = R. As x also normalizes R, we conclude (4) holds in this case
also.

Finally assume the hypotheses of (6). Then X ≤ CG(u) ≤M by (2), and as X
is a 2-group, X ≤ Tm for some m ∈M . Then X ≤ 〈ZG ∩ Tm〉 = Rm by 2.4.19, so
that X ≤ R by (4). ¤

In the remainder of the treatment of the case s = 1, we let z denote an involution
of Z#. If Z(L) 6= 1, let u denote an element of the set ∆ defined in 2.4.20.1.

Lemma 2.4.21. (1) R is the strong closure of Q in T .
(2) iG ∩ T ⊆ R for each involution i in R.

Proof. By parts (2) and (7) of 2.4.8, all involutions in R are fused into Q, so
(1) implies (2).

By 2.4.19, R is contained in the strong closure of Q in T . Hence we may
assume that a is an involution in T − R fused into Q, and it remains to derive a
contradiction. If Z(L) = 1 then L is transitive on Q#, so a = zg for some g ∈ G.
If Z(L) 6= 1 then by 2.4.20.3, either a = zg, or a = ug for u ∈ ∆. Set I := CR(a)
and let I ≤ T ∗ ∈ Syl2(CG(a)) and set R∗ := J(T ∗).

We claim that if Z(L) 6= 1 then a ∈ S. Thus we assume Z(L) 6= 1 and
a ∈ T − S, and it remains to derive a contradiction. By 2.4.14, I is of type Sz(q),
so the involutions of I lie in ∆ rather than in Z or Zx = Za, since a ∈ T − S.
Assume first that a = zg. By 2.4.20.5, T ∗ ∈ SG, and by 2.4.12.1, T ∗/R∗ is cyclic,
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so Z(I) = [I, I ] ≤ R∗. Now we saw that involutions of Z(I) lie in ∆, so we may
assume that u ∈ Z(I). Thus Z(R∗) ≤ CG(u) ≤M by 2.4.20.2. By 2.4.16.2, Z(R∗)
is generated by a pair of conjugates of Z, so Z(R∗) ≤ R ≤ S by 2.4.20.6. As
a ∈ Z(R∗), this contradicts our assumption that a 6∈ S. Therefore a = ug, and so
T ∗ ∈ TG. Let Q∗ ∈ A(T ∗) and S∗ = NT∗(Q

∗). Then |T ∗ : S∗| = 2, so arguing
much as before, a ∈ Z(T ∗) ≤ Z(R∗) and Z(I) = [I, I ] ≤ S∗. Then as S∗/R∗ is
cyclic by 2.4.12.1, either Z(I) is noncyclic so that Z(I)∩R∗ 6= 1, or Z(I) is of order
2 so that q = 4. In the former case we obtain a contradiction as before, and in the
latter T ∗/R∗ is of order at most 4 and hence abelian, so again [I, I ] ≤ R∗, for the
same contradiction. This completes the proof of the claim.

We now summarize the remaining possibilities: If Z(L) 6= 1 then a ∈ S =
NT (Z) by the claim, so that I is of type Sp4(q

1/2) by 2.4.12.2. So assume that
Z(L) = 1. Then a = zg and T = NT (Z), so again a normalizes Z. If a 6∈ S, then
by 2.4.14, either I = Z is of type L2(q), or I is of type U3(q

1/2). Finally if a ∈ S,
then I is of type L3(q

1/2) by 2.4.12.2.
Assume that a centralizes Z. Then by the previous paragraph, Z(L) = 1,

a = zg ∈ T−S, and I = Z is of type L2(q). Since Z is a TI-subgroup by 2.4.18.1 and
a = zg centralizes Z, [Z,Zg] = 1 by I.6.2.1. Thus aZ ⊆ V := ZZg ∼= E22n . However
[R, a] is transitive on aZ by 2.4.14. Thus for r ∈ [R, a], ar ∈ aZ ⊆ V ≤ CG(V ), so
again by I.6.2.1, Zgr ≤ CG(V ). Then as m(V ) = 2n = m2(T ), Z

gr ≤ V , so [R, a]
normalizes 〈Zg[R,a]〉 = V . Notice V ∈ A(G) = QG in view of 2.4.8.3, and of course
Z ∈ ZG ∩ V . Now |[R, a]V | = q3 = |R| and by 2.4.17.1, R is Sylow in GQ ∩CG(Z),
so that [R, a]V = Rh for some h ∈ G. By 2.4.14, R is transitive on a[R, a], so for
s ∈ R, as ∈ Rh. Thus as is contained in some conjugate of Z contained in Rh, so
as Z is a TI-subgroup of G, Zgs ≤ Rh. Then V = 〈Zg[R,a]〉 ≤ 〈ZgR〉 =: X is a
subgroup of Rh normalized by R. It follows that R normalizes Rh: for if X < Rh,
then V = J(X), so that R normalizes [R, a]V = Rh. So as Rh = J(T h) is weakly
closed in T h, R = Rh. But then a ∈ V ≤ Rh = R, contradicting our observation
that a 6∈ S.

Therefore [a, Z] 6= 1, so from our earlier summary, I is of type Sp4(q
1/2),

U3(q
1/2), or L3(q

1/2). In each case [I, I ] = Z(I). Furthermore setting Za := CZ(a),
either Za ≤ [I, I ], or q = 4 and I ∼= Z2 ×D8 is of type Sp4(2).

Suppose first that a = zg. Assume Z(L) = 1. Then by 2.4.17.2, T ∗/CT∗(Z
g)

is cyclic, and using the previous paragraph, Za ≤ [I, I ] ≤ CT∗(Z
g). Thus as

1 6= Za ≤ Z, [Zg, Z] = 1 by I.6.2.1, contradicting [a, Z] 6= 1. Thus Z(L) 6= 1 so
T ∗ ∈ SG by 2.4.20.5, and T ∗/R∗ is cyclic by 2.4.12.1. Hence [I, I ] ≤ R∗ = CT∗(Z

g).
Thus if Za ≤ [I, I ], we get the same contradiction as above, so from the previous
paragraph, q = 4 and [I, I ] =: 〈u〉 ≤ R∗ = CT∗(Z

g). Then a ∈ Zg ≤ 〈ZG ∩CG(u)〉,
as CG(u) ≤M by 2.4.20.2, so a ∈ R using 2.4.20.6. Again this contradicts [a, Z] 6=
1, so a /∈ zG.

Therefore a = ug, so that Z(L) 6= 1 by our previous summary; and it also now
follows from our remarks at the start of the proof that R is the weak closure of z
in T . From our summary, a ∈ S and I is of type Sp4(q

1/2). We may assume z ∈ I .
Then I = 〈zG ∩ I〉 ≤ 〈zG ∩ CG(a)〉 =: Y . Since CG(a) ≤ M g by 2.4.20.2, and R
is the weak closure of z in T , we conclude from 2.4.20.4 that z ∈ Y ≤ Rg. But
then z is contained in a conjugate of Z in Rg = R∗, so as Z is a TI-subgroup of G,
Z ≤ Rg ≤ CG(a), again contradicting [a, Z] 6= 1. This finally completes the proof
of (1), and hence of 2.4.21. ¤
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At this point, we have obtained strong control over the 2-local structure and
2-fusion of G, which we can use to obtain contradictions via transfer arguments.

Lemma 2.4.22. (1) T/R is not cyclic.
(2) R < S.

Proof. If R = S then |T : R| = 2 by 2.4.8.1, so T splits over R by 2.4.14, and
hence there is an involution t ∈ T − R. On the other hand if R < S, there is an
involution t in S−R by 2.4.12.1. Thus in any case there is an involution t ∈ T −R.

As T/R is cyclic if S = R, it remains to assume T/R is cyclic and derive a
contradiction. By 2.4.21, tG ∩ R = ∅. Then by Generalized Thompson Transfer
A.1.36.2, t /∈ O2(G), contrary to the simplicity of G. ¤

By 2.4.22.2, R < S; so since S splits over R by 2.4.12.1, there is an involution
S − R. It is convenient to use the notation s for this involution; there should
be no confusion with the earlier numerical parameter “s”, as in the branch of the
argument for several pages before and after this point, that parameter has the value
1. Let Gs := CG(s), Ls := CL(s), etc.

We use the standard notation that for x an integer, x2 denotes the 2-primary
part of x.

Lemma 2.4.23. (1) Either Ls is an L2(2
n/2)-block with Us = U(Ls), or q = 4

and Ls ∼= S4 or S4 × Z2.
(2) Rs is the strong closure of Q in Ts.
(3) Us = O2(Ls) and NG(Us) ≤ GQ.
(4) T = RTs, there exists x ∈ Ts − S, and Ts ∈ Syl2(Gs).
(5) Assume Z(L) 6= 1 and q = 2n > 4. Set Ks := 〈Ls, Lxs 〉. Then Ks

∼=
Sp4(2

n/2), CTs(Ks) = 〈s〉, and Ts/〈s〉Rs is cyclic of order n2 = |Out(Ks)|2.

Proof. Part (1) follows from 2.4.12.2. By (1), Us = O2(Ls). Part (2) follows
from 2.4.21.1.

From (1) and the proof of 2.4.16.3, Us = 〈(Z
x
s )
G ∩ Us〉. But NG(Us) permutes

(Zxs )
G∩Us and Z is a TI-subgroup of G, so NG(Us) permutes (Zx)G∩U and hence

NG(Us) ≤ NG(U) = GQ by 2.4.16.3, and as Q = U by 2.4.8.2. This completes the
proof of (3).

By 2.4.12.1, S/R is cyclic, so 〈s〉R E T . By 2.4.12.2, R is transitive on the
involutions in sR, so by a Frattini Argument T = RTs, and as S ∈ Syl2(GQ) by
2.4.3.1, Ss is Sylow in NGs(Us) by (3). As S < T , there is x ∈ Ts − S and by
2.4.8.7, U and Ux are the maximal elementary abelian subgroups of R, so A(Rs) =
{Us, U

x
s }. Therefore NG(Rs) = NG(Us)〈x〉. So using (2), NG(Ts) ≤ NG(Us)〈x〉.

Thus as Ss is Sylow in NGs(Us) and Ss〈x〉 = Ts, Ts ∈ Syl2(Gs), so that (4) holds.
Assume the hypotheses of (5), and set Ks := 〈Lx, Lsx〉. Let Θ be the set of

subgroups of Ss invariant under Ls. From the action of S and L, Us〈x〉 is the
unique maximal member of Θ, and if Y ∈ Θ with Us 6≤ Y , then Y ≤ 〈s〉CU (L).
Therefore as Rs = UsU

x
s and CU (L) ∩ CU (L)x = 1, 〈s〉 is the largest subgroup of

Ts invariant under Ls and L
x
s , and hence 〈s〉 = O2(KsTs). As q > 4 by hypothesis,

Ls ∈ L(Gs, Ss), so since |Ts : Ss| = 2 with Ts ∈ Syl2(Gs) by (4), Ls ≤ K ∈ C(Gs)
by 1.2.5. As x acts on Rs ≤ K, x acts on K, so Ks ≤ K. Then using (4) and
A.1.6, O2(K) ≤ O2(KTs) ≤ O2(KsTs) = 〈s〉 ≤ CG(K). As m2(K) ≥ m2(Ls) > 1,
K is quasisimple by 1.2.1.5. By (1), Ls is an L2(q

1/2)-block with Zs = Z(Ls) 6= 1,
so as Rs = UsU

x
s is a Sylow 2-subgroup of Ls, we conclude by examination of the
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possibilities in Theorem C (A.2.3) that Ks = K ∼= Sp4(q
1/2), and x induces an

outer automorphism on K nontrivial on the Dynkin diagram. Then CTs(Ks) =
O2(KsTs) = 〈s〉. Finally Out(Ks) is cyclic and Rs ∈ Syl2(Ks), so Ts/Rs〈s〉 is
cyclic. Further (cf. 16.1.4 and its underlying reference) a Sylow 2-subgroup of
Out(Ks) is generated by the image of any 2-element nontrivial on the Dynkin
diagram of K, so |Ts : Rs〈s〉| = n2 = |Out(K)|2, completing the proof of (5). ¤

Lemma 2.4.24. Let TB := NT (B). Then

(1) T is the split extension of R by TB.
(2) Z(L) = 1.
(3) TB = 〈x〉 × F , where x is an involution such that CR(x) = Z, R〈x〉 =

CT (Z), and F is cyclic and induces field automorphisms on L/Q.

Proof. Part (1) is one of the conclusions of 2.4.8.5. By 2.4.12.1, TB = F 〈x〉,
where F := NS(B) is cyclic and induces field automorphisms on L/Q, and x ∈
TB − S. By 2.4.22.1, TB is noncyclic. Choose s ∈ F .

Suppose first that Z(L) = 1. By 2.4.17.1, either CT (Z) = R, or there exists
some involution x ∈ TB − S with Z = CR(x) such that CT (Z) = R〈x〉. In the
former case, TB is cyclic by 2.4.17.2, contrary to the previous paragraph, so the
latter must hold. Then [x, F ] ≤ CF (Z) = 1, so TB = 〈x〉 × F , establishing (3).
Since (2) holds by assumption, the lemma holds in this case. Thus we may assume
that Z(L) 6= 1 and it remains to derive a contradiction.

Suppose first that n/2 is odd. Then |S : R| = 2 since R < S by 2.4.22,
so |T : R| = 4 using 2.4.8.1. Hence TB ∼= T/R ∼= E4, since TB is noncyclic,
so there is an involution x in T − S and by 2.4.14, CR(x) is of type Sz(q), so
V := Ω1(CR(x)) ∼= Eq and V # ⊆ ∆. It will suffice to show that V is the strong
closure of u in a Sylow 2-subgroup Tx of CG(x) containing CT (x): For by 2.4.23.2,
Rs is the strong closure of u in a Sylow 2-group of CG(s), and hence is nonabelian
by 2.4.12.2. So as V is the strong closure of u in Tx, it follows that s 6∈ xG. Further
xG ∩R = ∅ by 2.4.21.2, so as all involutions in S−R are fused to s by 2.4.12.2, we
conclude that xG ∩ S = ∅. Then x 6∈ O2(G) by Thompson Transfer, for the usual
contradiction to the simplicity of G.

So it remains to show that V is strongly closed in Tx. Now conjugates of u
generate R by 2.4.20; so by 2.4.21 and 2.4.20.4, R is the strong closure of u in
CG(u). Therefore as V = Ω1(CR(x)) and V

# ⊆ uG, V is strongly closed in Tx. As
we mentioned, this completes the elimination of the case n/2 odd.

Therefore n/2 is even, so q > 4. Thus by 2.4.23.5, Ts/Rs〈s〉 is cyclic of order
n2 ≥ 4, and n2 = |Out(Ks)|2. Let tRs〈s〉 denote the involution of Ts/Rs〈s〉; then
this involution lies in the cyclic subgroup of index 2 in Ts/Rs〈s〉 inducing field auto-
morphisms, so any preimage t of tRs〈s〉 induces an involutory field automorphism
on Ls/Us. Thus t induces a field automorphism of order 4 on L/Q, so t is not an
involution. Since s ∈ TB , TB/〈s〉 ∼= T/R〈s〉 ∼= Ts/Rs〈s〉 using 2.4.23, so s is the
unique involution in TB . Also TB is not quaternion since TB/〈s〉 is cyclic. Therefore
TB is cyclic, contrary to our earlier reduction. This contradiction completes the
proof. ¤

We can now finally eliminate the case where the numerical parameter we de-
noted earlier by “s” has the value 1: Let TC := CT (Z). By 2.4.24.2, Z(L) = 1.
Then Z = Z(R) E T , so TC E T . By 2.4.24.3, there is an involution x ∈ T − S
such that Z = CR(x), TC = R〈x〉, and T/TC ∼= TB/〈x〉 ∼= F is cyclic. It will suffice
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to show that sG ∩ T ⊆ S, for the involution we have been denoting by s: For then

sG ∩ TC ⊆ sG ∩ TC ∩ S = sG ∩ R = ∅

using 2.4.21.2. Then as T/TC is cyclic, s /∈ O2(G) by Generalized Thompson
Transfer A.1.37.2, as usual contrary to the simplicity of G.

Thus it remains to show that sG ∩ T ⊆ S. By 2.4.23, Rs is the strong closure
of Q in Ts ∈ Syl2(Gs). As Z(L) = 1, Rs is of type L3(2

n/2) by 2.4.12. Finally
by 2.4.14, for each involution i ∈ T − S, CR(i) is of type L2(2

n) or U3(2
n/2), and

in either case, Ω1(CR(i)) ≤ Z. To show that sG ∩ T ⊆ S, we must show that
i /∈ sG for each such i; so we assume that that i ∈ sG, and it remains to derive a
contradiction.

Assume first that CR(i) is of type L2(2
n). Then i centralizes Z of order 2n,

whereas for each g ∈ G with Zg ∩ Rs 6= 1, |CZg (s)| = 2n/2, contrary to i ∈ sG and
2.4.21.1.

Therefore Ri := CR(i) is of type U3(2
n/2). Set Zi := CZ(i) = Z(Ri). Then

ig = s for some g ∈ G, and for suitable c ∈ Gs, R
gc
i ≤ Ts as Ts ∈ Syl2(Gs) by

2.4.23.4. Then Zgci ≤ Rs by 2.4.23.2. Interchanging U and Ux if necessary, we
may assume that Zgci ≤ Us. Indeed we claim Zgci = Zs: For assume otherwise.

By 2.4.18.1, Zgci and Zs are TI-subgroups of Gs of order q1/2, so Us = Zs × Zgci ,
and hence Rgci ≤ CTs(Us/Zs) = Rs〈s〉. Then Zgci = Φ(Rgci ) ≤ Φ(Rs〈s〉) = Zs, a
contradiction establishing the claim that Zgci = Zs.

By the claim, Rgci ≤ CTs(Zs). But R〈x〉 = CT (Z) with T/R〈x〉 cyclic, so
R〈x, s〉 = CT (Zs) as Z is a TI-subgroup. Thus |CTs(Zs) : Rs〈s〉| ≤ 2, so as
|Ri| = q3/2 = |Rs|, also |CTs(Zs) : R

gc
i 〈s〉| ≤ 2, and hence |Us〈s〉 : Us〈s〉∩R

gc
i 〈s〉| ≤

2. Now Us〈s〉 is elementary abelian of order 2q, while Ω1(R
gc
i 〈s〉) = Zgci 〈s〉 is

elementary of order 2q1/2, so 2q ≤ 4q1/2, and hence we conclude q = 4. Therefore
Ts = 〈s〉 × Rs〈x〉, with x an involution by 2.4.24.3, and Rs = UsU

x
s
∼= D8, so

Rs〈x〉 ∼= D16. This is impossible, as the group Ri of type U3(2) is isomorphic to
Q8, and Z2 ×D16 contains no such subgroup.

This contradiction finally completes the treatment of the case s = 1 of Theorem
2.4.7.

The case s = 2.

So we turn to the case s = 2. Here we will produce members of Γ0 other than
H = L0S, which we use to obtain a contradiction.

As s = 2, L0 = L1L2 with L = L1, and we set Ui := U(Li), so that U0 =
〈US〉 = U1U2. By 2.4.5.1, Hypotheses C.5.1 and C.5.2 are satisfied with S in the
roles of both “TH” and “R”, for any subgroup M0 of T with |M0 : S| = 2. Observe
U0, Baum(S) play the roles that “U , S” play in section C.5. Further as |M0 : S| = 2,
the hypotheses of C.5.6.7 are satisfied by 2.4.5.2.

Recall from the beginning of this subsection 2.4.1 that R = J(S), and also
that D is defined there; and from the opening few pages of this section 2.4 that
Q = O2(H) = O2(L0S). By 2.4.5.2, Q = U0C ∈ A(S), where C := CS(L0), and
Ux0 6≤ Q. As s = 2, case (iii) of C.5.6.7 holds; hence there are two S-invariant
members {Q,Qx} of A(S), and QQx = R = Baum(S) since Baum(S) contains R,
and RQ is Sylow in L0Q by B.4.2.1.
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We can now argue much as in the proof of 2.4.8.5, but usingM0, L0 in the roles
of “T , L”, to show that B := DDx is abelian of odd order, omitting details except
to point out where the argument differs slightly: Notice this time that D normalizes
Q and the unique member Qx of A(S) with R = QQx. Further Dx = O2(Dx), so
Dx normalizes each of the two conjugates L1 and L2 of L in L0S.

Now GQ is an SQTK-group, so mp(GQ) ≤ 2 for p a prime divisor of |D|; then
as mp(D) = 2 it follows that B = D = Dx.

Next x ∈ T − S acts on B and hence on CR(B). As B = D and L is an
L2(2

n)-block, CR(B) = CR(L0), and as Q is abelian, CR(L0) ≤ Z(R) so that
CR(B) E L0NS(B) = L0S = H . Hence 1 = CR(B) = CR(D) by 2.4.4. Then
CU1(L) = 1 and Q = CU0 = U0 ≤ L0, so that GQ = NG(L0), just as in the proof of
2.4.11.1. Also as RQ is Sylow in L0Q, R = QQx is Sylow in L0. Then L0 = L1×L2

so R = R1 ×R2, where Ri := R ∩ Li ∈ Syl2(Li) is of order q
3, and D = D1 ×D2,

where Di := D ∩ Li, and D1 and D2 are the subgroups of D maximal subject to
CR(Di) 6= 1. Therefore as NS(D) interchanges D1 and D2, we may choose x in
M0 − S so that x normalizes D1 and D2, and hence x acts on CR(D3−i) = Ri.
As L2 = [L2, Q

x], x 6∈ NG(L2). Thus L2 < K := 〈L2, L
x
2〉 ≤ CG(R1D1), and

S1 := 〈x〉NS(R1) = NM0(R1) normalizes K. Observe that |S : NS(R1)| = 2 with
R = J(S) ≤ NS(R1), Q = O2(H) ≤ NS(R1), and H ∈ Γe0. Thus NS(R1) ∈ β by
2.3.8.5b. Then as L2NS(R1) ∈ He and L2 6≤ M , from the definitions in Notation
2.3.4 and Notation 2.3.5, (NS(R1), L2NS(R1)) ∈ U(KS1), so that KS1 ∈ Γ.

We claim next that R = J(M0): For suppose A ∈ A(M0) with A 6≤ R. By 2.4.3,
S = NT (Q), so as R = J(S), there is an involution a ∈ A − S; hence Qa = Qx,
since M0 = S〈x〉 = S〈a〉 and S acts on Q. If Ra1 = R2 then CR(a) ∼= R1 is of
rank 2n, while if Ra1 = R1, then as Qa = Qx, Ω1(CRi(a)) ≤ Z(Ri), and so again
m2

(
CR(a)

)
≤ 2n. Now S/R is contained in the wreath product of a cyclic group

of field automorphisms of L2(2
n) by Z2, so that m2(S/R) ≤ 2; hence

4n ≤ m(A) ≤ m(M0/S) +m(S/R) +m(A∩R) ≤ 1+ 2+m(CR(a)) ≤ 3+ 2n < 4n

since n ≥ 2. This contradiction establishes the claim that R = J(M0).
Next from the proof of C.5.6.7, |A(R)| = 4, and M0 − NT (R) induces a 4-

subgroup on A(R) generated by a pair of commuting transpositions. Thus either
M0 = NT (R) and Q

NT (R) = {Q,Qx} is of order 2, or M0 < NT (R) with Q
NT (R) =

A(R) and NT (R) inducing D8 on A(R).
Assume that the latter case holds. Now D acts on each member of A(R),

so for each y ∈ NT (R), D ≤ GyQ = NG(L
y
0), and by 1.2.2, D ≤ Ly0. It follows

that NT (R) normalizes the intersection RD of the groups L0 and Ly0 ; hence RD E

NT (R)D, soNT (R) = R(NT (R)∩NT (D)) by a Frattini Argument. Then arguing as
above, NT (R) permutes the subgroups Di maximal subject to CR(Di) 6= 1, and so
permutes their fixed spaces {R1, R2}. Therefore NS(R1) is of index 2 in a subgroup
S2 ≤ NT (R) such that S2 acts on R1 and U2. We have seen that NS(R1) ∈ β, so
S2 ∈ β by 2.3.2.1. Next R1U2 = QQs for s ∈ S2 − S with A(R1U2) = {Q,Qs}, so
N := NG(R1U2) = (NG(Q) ∩ NG(Qs))S2. By 2.4.3.1, Q ∈ Se2(G), so by 1.1.4.1,
N ∈ He. Then as L2 ≤ N with L2 6≤ M , (S2, N) ∈ U(N), so N ∈ Γ. But
|S2| = |S|, so by 2.4.3.2, N ∈ Γe0 and S2 ∈ Syl2(N). Now H1 := 〈S2, L2〉 ≤ N and
as S2 ∈ Syl2(N) and N ∈ He, H1 ∈ He by 1.1.4.4. Thus (S2, H1) ∈ U(H1), so
H1 ∈ Γ; then H1 ∈ Γe0 by 2.4.3.2. Therefore as H1 ≤ NG(R1), S2 ∈ Syl2(NG(R1))
by 2.3.7.2. This is impossible as |NT (R) : NT (R1)| = 2 since NT (R) permutes
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{R1, R2} transitively, so that |NT (R1)| ≥ 2|S| = 2|S2| > |S2|. This contradiction
eliminates the case M0 < NT (R).

Therefore M0 = NT (R). Then as NT (M0) ≤ NT (J(M0)) = NT (R) = M0, we
conclude M0 = T , and hence |T | = 2|S|. Recall S1 = 〈x〉NS(R1) = NM0(R1); thus
|S1| = |S| = |T |/2. Then by 2.3.7.1, H ∈ Γ∗, and as we saw KS1 ∈ Γ, similarly
KS1 ∈ Γ∗ with S1 ∈ Syl2(KS1).

As L2 ∈ L(KS1, NS(R1)) and |S1 : NS(R1)| = 2, L2 ≤ K2 ∈ C(KS1) by
1.2.5. By construction S1 normalizes R1, and K centralizes R1D1; indeed much
as in the proof of 2.4.23.5, R1 is the largest subgroup of S1 invariant under L2

and x, so that R1 = O2(KS1) ≥ O2(K2). As K centralizes R1, we conclude that
O2(K2) ≤ Z(K2). Then as m2(K2) ≥ m2(L2) > 1, we conclude from 1.2.1.5 that
K2 is quasisimple, and hence is a component of KS1. Thus K2 is described in
2.3.9.7; so as K2 ∩M contains the L2(q)-block L2 and CU2(L2) = 1, we conclude
that K = K2 and K/O2(K) ∼= L3(q). But now mp(KD1) > 2, for p a prime divisor
of q − 1, contradicting KD1 an SQTK-group.

This contradiction shows that the case s = 2 cannot occur in Theorem 2.4.7.
Hence the proof of Theorem 2.4.7 eliminating L2(2

n) blocks for n > 1 is at last
complete.

2.4.2. The small examples and shadows of extensions of L4(3). In this
subsection, we complete the proof of Theorem 2.4.1. Thus we continue the hy-
potheses and notation from the beginning of this section. By Theorem 2.4.7, the
block L is of type A3 or A5, and in the latter case L0 ∩M is a Borel subgroup of
L0 as L0S is a minimal parabolic. Therefore Z(L) = 1 by C.1.13.c.

Recall from the beginning of this section 2.4 that Q := O2(H). However in this
new subsection, J(S) is no longer denoted by R, but instead

R := Baum(S).

Recall also from 2.3.8.4 that Li = [Li, J(S)] for each i, so that R normalizes Li by
C.1.16.

Lemma 2.4.25. If L is an A5-block, then s = 1.

Proof. Assume otherwise, so that s = 2. Recall we defined R = Baum(S)
just above, and set Qi := O2(LiR), I := CR(L), SI := NS(L), and T0 := NT (S).
By 2.4.5.1, Hypotheses C.5.1 and C.5.2 are satisfied with S in the role of both “TH”
and “R”, for each subgroup M0 of T0 with S a proper normal subgroup of M0. As
R denotes Baum(S), U0, R play the roles played by “U , S” in section C.5, while I
plays the role of “D1”.

By C.5.4.3, Q2 = U2 × D2 where D2 := CR(L2) and U2 := O2(L2), and
R/Q2

∼= E4 is generated by two transpositions in L2R/Q2
∼= S5. Also from the

proof of C.5.4.3, RQ2 = J(S)Q2 and for A ∈ A(S) with A 6≤ Q2, |U2 : CU2(A)| =
|A : (A ∩ Q2)|. It follows that [A,U1] = 1 so [A,L] ≤ CL(U1) = U1, and hence
A = U1 × (A ∩ I). Thus I/QI is generated by two transpositions in L2I/QI ∼= S5,
where QI := O2(L2I) = U2 ×D0, and D0 := CR(L0). Thus [U2, I ] ≤ Φ(I) ≤ QI ,
and as U2 is the A5-module for L2, it follows that Φ := CΦ(I)(SI ) = Φ2 × DΦ

centralizes O3′(M ∩ L2), where Φ2 := CU2(SI)
∼= Z2 and DΦ := CΦ(I)∩D0

(SI).

Therefore O3′ (M ∩L0) = O3′(M ∩L)O3′(M ∩L2) centralizes Φ. Observe also that
SI = NS(Φ(I)) = NS(Φ).
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By C.5.5, we may choose x ∈ M0 with Ux 6≤ Q, and and so as Qt1 = Q2 with
Q = Q1 ∩ Q2, U

x 6≤ Q1. By C.5.6.4, Φ(I)x = Φ(I). Then as x also acts on S, x
acts on SI and hence also on Φ. Let GI := NG(Φ), and set S0 := 〈SI , x〉. Then
S0 ≤ NT (Φ). As J(S) ≤ R, O2(L0S)J(S) ≤ NS(L) = SI , while NS(L) is of index
2 in S, so SI ∈ β by 2.3.8.5b. As NH(Φ) ∈ H

e by 1.1.3.2, and NH(Φ) contains
L 6≤ M , from the definitions in Notations 2.3.4 and 2.3.5, (SI , NH(Φ)) ∈ U(GI ),
and hence GI ∈ Γ. By 1.1.6, the 2-local GI satisfies the hypotheses of 1.1.5 in the
role of “H”.

As Ux 6≤ Q1 = O2(LR), U
x 6≤ O2(LSI). Therefore as U

x ≤ R ≤ SI , while L
x is

irreducible on Ux, Ux∩O2(GI ) = 1. Notice LSI ∈ He, so that (SI , LSI) ∈ U(LSI),
and hence LSI ∈ Γ. Define H1 to consist of the subgroups H1 satisfying:

H1 ∈ He(LSI) ∩GI , and
H1 = 〈L, S1〉 for some S1 ∈ Syl2(H1) containing SI .

Then H1 is nonempty, since LSI ∈ H1.
We next claim

(*) L ∈ C(H1) for any H1 ∈ H1.

It is clear that (*) holds if S1 = SI , so assume instead that S1 > SI . Then
as |S : SI | = 2, |S1| ≥ |S|. Since H1 ∈ He, (SI , H1) ∈ U(H1) and H1 ∈ Γ.
Then by 2.4.3.2, |S1| = |S| and H1 ∈ Γe0. As |S1 : SI | = 2 and L ∈ L(H1, SI),
L ≤ K ∈ C(H1) by 1.2.5. Then as H1 ∈ Γe0, K is a χ0-block of H1 by 2.3.8.4. Since
no χ0-block has a proper A5-block, K = L, completing the verification of (*).

Now L ≤ G∞I , and by 1.2.1.1, G∞I is a product of C-components K1, . . . ,Kr,
with L inducing inner automorphisms on Ki/O2(Ki) for each i. However using
1.2.1.1, CG∞I (G∞I /O2(G

∞
I )) = O2(G

∞
I ), so as U ∩ O2(GI ) = 1, L ∩ O2(G

∞
I ) = 1.

Hence AutU (Ki/O2(Ki)) 6= 1 for some Ki ∈ C(GI). Choose notation so that the
projection LKi of L onKi/O2(Ki) is nontrivial iff 1 ≤ i ≤ t. Since L∩O2(G

∞
I ) = 1,

it follows that L ≤ LK1 · · ·LKt . Observe for i ≤ t that LKi has a quotient A5, so
that m3(LKi) ≥ 1.

We claim that t = 1: For t ≤ m3(GI ) ≤ 2 since GI is an SQTK-group, so that
t = 2 if t > 1, and then the proof of 1.2.2 (which does not depend on conjugacy of

the C-components in the lemma) shows that O3′(GI ) = K1K2. Since O
3′ (M ∩L0)

centralizes Φ, O3′ (M∩L0) ≤ O3′ (GI) ≤ K1K2. Therefore for i = 1 or 2, there exists
y of order 3 in L0 ∩Ki with L = [L, y]. Then L = [L, y] ≤ Ki, so that L ≤ LKi ,
and hence L = LKi with LKj = 1 for j 6= 1, contrary to our assumption that t = 2.
This contradiction establishes the claim that t = 1. Hence L = LK1 ≤ K1 =: K.
Since U ∩ O2(GI ) = 1, m2(K/O2(K)) ≥ m(U) = 4, ruling out cases (c) and (d) of
1.2.1.4, and hence showing that K/O2(K) is quasisimple.

Suppose first that F ∗(K) = O2(K). Now SI = NS(L) normalizes L and hence
normalizes K. Then KSI ∈ H1 so L ∈ C(KSI) by (*). Thus L ∈ C(K) and hence
L = K, contrary to U ∩ O2(GI) = 1.

Thus F ∗(K) > O2(K), so as K/O2(K) is quasisimple, we conclude that K is
quasisimple, and hence K is a component of GI . Thus K is on the list of 1.1.5.3.
Indeed as K contains the A5-block L, we conclude from that list that K is either
of Lie type and characteristic 2 of Lie rank at least 2, but not L3(2), or one of
M22, M23, M24, J4, HS, He, or Ru. Let S ≤ TI ∈ Syl2(GI); then TI normalizes
K by 1.2.1.3. Let X ∈ He ∩ KTI , SI ≤ S1 ∈ Syl2(X), and Y := 〈L, S1〉. Then
S1 ∈ Syl2(Y ), and Y ∈ He by 1.1.4.4, so Y ∈ H1. Then by (*), L is subnormal
in Y , so L ∈ L(X,S1). Thus we have shown that for each X ∈ He ∩ KTI and
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S1 ∈ Syl2(X) with TI ≤ S1, we have L ∈ L(X,S1). This is a contradiction,
since from the 2-local structure of the groups K on our list, none contains an A5-
block L, such that for each overgroup X of LS+ in K with F ∗(X) = O2(X) and
S+ ∈ Syl2(NK(L)), L ∈ L(X,S1) for S+ ≤ S1 ∈ Syl2(X). This completes the
proof of 2.4.25. ¤

By 2.4.7 and 2.4.25, either L is an A5-block with s = 1, or L is an A3-block
with s = 1 or 2. So by 2.4.5.3, the hypotheses of Theorem C.6.1 are satisfied with
T , S in the roles of “Λ, TH”. Similarly by 2.4.5.1, we can appeal to results from
section C.5, with S, S, L0, U0, Baum(S) in the roles of “TH , R, K, U , S”.

We will first show that when s = 1 and L is an A3-block, then G is a group in
the conclusion of Theorem 2.4.1. Since G is a counterexample to Theorem 2.4.1,
this will establish the following reduction:

Lemma 2.4.26. If L is an A3-block, then s = 2.

Proof. Assume L is an A3-block with s = 1. By Theorem C.6.1, H ∼= S4 or
Z2 × S4.

Suppose first that H ∼= S4, so that case (b) of Theorem C.6.1.6 holds, and in
particular T is dihedral or semidihedral. Then by I.4.3, G is L2(p), p a Fermat or
Mersenne prime, A6, L3(3), or M11. As M = !M(T ), G is not L2(7) or A6. As
δ 6= ∅, G is not L2(5). This leaves the groups in Theorem 2.4.1, contradicting the
choice of H , G as a counterexample.

Therefore H ∼= Z2×S4, so case (a) of Theorem C.6.1.6 holds. Then |T : S| = 2
and J(S) = S = J(T ). By C.6.1.1, S = QQx for x ∈ T − S. Define y and z
by 〈y〉 = Z(H) and 〈z〉 = Φ(S); by 2.4.4, S = CT (y). Since S = J(T ) is weakly
closed in T , by Burnside’s Fusion Lemma A.1.35, NG(S) controls fusion in Z(S),
so y /∈ zG. Thus yx = yz, and H is transitive on yU − {y}, so all involutions in
yUUx are in yG, and all involutions in UUx are in zG.

Suppose first that yG ∩ T ⊆ S. Then yG ∩ T ⊆ yUUx. Now T/UUx is of order
4 and hence abelian, so by Generalized Thompson Tranfer A.1.37.2, y /∈ O2(G),
contradicting the simplicity of G.

Thus we may take x ∈ yG; in particular, x is now an involution. Let u ∈
U − 〈z〉. Then 〈u, x〉 ∼= D16, and we saw [x, y] = z, so S1 := 〈xy, u〉 ∼= SD16,
with xy of order 4. Hence all involutions in S1 are in UUx and therefore lie in zG.
Therefore yG ∩ S1 = ∅, so Thompson Transfer produces our usual contradiction to
the simplicity of G, completing the proof. ¤

By 2.4.25 and 2.4.26, the structure of S is similar in the two remaining cases
where L0 is either an A5-block or the product of two A3-blocks; we summarize some
of these common features in the next lemma:

Lemma 2.4.27. (1) |T : S| = 2 and R = Baum(S) = J(S) = J(T ).
(2) A(T ) = {Q,Qx, A1, A

r
1} for x ∈ T − S, r ∈ S −R, and |A1 : A1 ∩Q| = 2.

(3) Let TC := CT (L0). Then Φ(TC) = 1, Q = TC × U0, and TC ∩ T xC = 1 for
each x ∈ T − S.

(4) R = TC × U0U
x
0 , with L0 = [L0, U

x
0 ].

Proof. Let M0 := NT (S); by Theorem C.6.1, |M0 : S| = 2. Thus by 2.4.5.2,
the hypotheses of C.5.6.7 are satisfied. Further by C.6.1.1, QQx = R = Baum(S) =
J(S). By 2.4.25 and 2.4.26, L0 is an A5-block or the product of two A3-blocks, so
by C.6.1.4, A(R) = A(S) is described in (2). Thus to complete the proof of (2),
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it remains to show that A(S) = A(T ), or equivalently to establish the assertion
J(S) = J(T ) in (1).

As TC = CT (L0) ≤ Q ∈ A(S), Φ(TC) = 1. Further if L0 is an A5-block,
then Q = TC × U by C.5.4.3, and this holds when L0 is a product of A3-blocks
as S4 = Aut(A4). Also C.5.6.7 says TC ∩ T

x
C = 1 for x ∈ M0 − S; hence (3) will

also follow, once we have established the equality |T : S| = 2 in (1). Thus to prove
(1)–(3), it remains to establish (1).

Suppose (1) fails. Since we saw that R = J(S), either |T : S| 6= 2 or J(S) 6=
J(T ); thus conclusion (a) of C.6.1.6 does not hold. By 2.4.26, L0 is not an A3-
block, so conclusion (b) of C.6.1.6 does not hold. Hence conclusion (c) of C.6.1.6
holds. Define A1 ∈ A(S) as in C.6.1.4 and set W := A1Q and SW := NT (W ).
By conclusion (c) of C.6.1.6, |SW | ≥ |S|, and Qy = A1 for some y ∈ SW , since
NT (NT (S)) induces D8 on A(S) = A(NT (S)). Then A(W ) = {Q,Qy}, so GW :=
NG(W ) = (GQ ∩ G

y
Q)SW . By 2.4.3.1, GQ ∈ He. As GQ ∩ G

y
Q = NGQ(W ),

GQ∩G
y
Q ∈ H

e by 1.1.3.2; therefore GW = (GQ∩G
y
Q)SW ∈ He. From the structure

of L0, Q ≤ J(S) = R = NS(W ), |S : R| = 2, and NH(W ) 6≤ M , so GW 6≤ M .
As H ∈ Γe0, 2.3.8.5c says CO2(M)(R) ≤ R. Then we conclude from 2.3.8.5b that
R ∈ β. Then as usual (R,GW ) ∈ U(GW ), so GW ∈ Γ. Hence as |SW | ≥ |S|,
GW ∈ Γ0 by 2.4.3.2, so that GW ∈ Γe0. Thus GW satisfies the hypotheses for H in
this section. In particular as we showed that Q = O2(H) is abelian, by symmetry
between H and GW , O2(GW ) is abelian. This is a contradiction, as W ≤ O2(GW )
and W = A1Q is nonabelian since Q ∈ A(S). This contradiction establishes (1),
and completes the proof of (1)–(3).

By C.5.6.2, for each x ∈ T − S, R = Ux0Q and [U0, U
x
0 ] = U0 ∩ Ux0 . Thus

L0 = [L0, U
x
0 ] and U

x
0 ∩Q ≤ U0, so as U0U

x
0 and TC are normal in R, R = TC×U0U

x
0 .

That is, (4) holds. ¤

Remark 2.4.28. In the next lemma, we deal with the shadows of extensions of
L4(3) ∼= PΩ+

6 (3) which are not contained in PO+
6 (3). In this case, L is an A5-block.

The subcase where CT (L) 6= 1 is quickly eliminated using 2.3.9.7: that subcase is
the shadow of Aut(L4(3)), which is not quasithin since an involution in CT (L) has
centralizer Z2×PO5(3). The remaining cases we must treat correspond to the two
extensions of L4(3) of degree 2 distinct from PO+

6 (3), which are in fact quasithin.
These subcases are eventually eliminated by using transfer to show G is not simple,
but only after building much of the 2-local structure of such a shadow.

Shadows of extensions of L4(3) will also appear several more times in later
reductions.

Lemma 2.4.29. L is an A3-block. Hence H = L0S where L0 is a product of
two S-conjugates of L.

Proof. The second statement follows from the first in view of 2.4.26. We
assume L is not an A3-block, and derive a contradiction. Then L is an A5-block, and
s = 1 by 2.4.25. Set TC := CT (L). By 2.4.27, Q ≤ J(T ) = J(S) = Baum(S) = R,
Φ(TC) = 1, Q = TC × U , and R = TC × UUx. By C.5.4.3, R/Q ∼= E4 and
LR/Q ∼= S5 = Aut(A5), so that LS = LR. Recall L∩M is a Borel subgroup of L.

LetK := O2(M∩L) and P := O2(K). Then P ∼= Q2
8, and S = PR = PUUxTC

centralizes TC , so Φ(S) = Φ(UUx)Φ(P )[UUx, P ] ≤ P . Therefore Z := Z(P ) =
〈z〉 = Φ(S) ∩ Z(S). Since S is of index 2 in T by 2.4.27.1, z ∈ Z(T ).
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Set GZ := CG(Z) and G̃Z := GZ/Z. Then P̃ T̃C = J(S̃) is x-invariant, so
PTC E 〈x,KS〉 =: M1. Observe T ≤ M1 ≤ GZ and TCZ = Z(PTC) E M1.
By 2.4.27.3, TC ∩ T xC = 1, so as x normalizes Z(PTC) = ZTC , and TC is of
index 2 in TCZ, |TC | ≤ 2 with [x, TC ] = Z in case of equality. As |ZTC | ≤ 4
and M1 ≤ NGZ (ZTC), O

2(M1) centralizes ZTC . As S centralizes TC , H = LS
centralizes TC .

Next PTC ∼= Q2
8 or Q2

8×Z2, so AutAut(PTC )(PTC/ZTC)
∼= O+

4 (2). Let M
+
1 :=

M1/CM1(PTC/ZTC). Then M+
1 ≤ O+

4 (2) and K+R+ ∼= S3 × Z2 with U+ =
O2(K

+R+). As Ux 6≤ O2(KR) and x ∈ M1, U 6≤ O2(M1); then as M+
1 ≤ O+

4 (2),
M+

1
∼= O+

4 (2). In particular, M1 is irreducible on PTC/ZTC .
Suppose first that TC 6= 1. As H = LS ≤ C := CG(TC), we conclude from

2.3.7.2 that C ∈ Γ0 and S ∈ Syl2(C). By 1.2.4, L ≤ LC ∈ C(C), and the embedding
of L in LC is described in A.3.14. From the previous paragraph, O2(M1) ≤ C but
U 6≤ O2(M1), so U 6≤ O2(C). Hence as L is irreducible on U , O2(C) = TC ≤ Z(C).
Therefore as m2(LC) ≥ m2(L) > 1, LC is quasisimple by 1.2.1.5, and so LC is a
component of C. But the list of A.3.14 contains no embedding LC > L with L an
A5-block.

Therefore TC = 1, so Q = TC × U = U , and hence U = O2(NG(U)) =
F ∗(NG(U)) by 2.4.3.1. In particular, CG(U) = U , so CG(L) = CU (L) = 1. By
2.4.6, L E NG(U), so as LS = Aut(L), H = LS = NG(U).

As T ≤ M1 ≤ GZ and M = !M(T ), M1 ≤ GZ ≤ M . As G is of even type,

M ∈ He, so Z ≤ CM (O2(M)) ≤ O2(M) =: PM . Also Q2
8
∼= P = CT (P̃ ), so as

M+
1
∼= O+

4 (2), P = O2(M1). Therefore as T ≤ M1 ≤ M , PM ≤ P by A.1.6.
Then as M1 is irreducible on P/Z, PM is either P or Z. As M ∈ He, the latter
is impossible, so P = PM . Then as Z = Z(P ), M ≤ GZ , so that M = GZ as
M ∈ M. Since M1/P ∼= O+

4 (2)
∼= Out(P ), M =M1 = GZ = CG(z). In particular,

M is solvable.
Let u ∈ Z(R)−Z. As U is the S5-module for H/U , we can adopt the notation

of section B.3 to describe U , and choose u = e1,2. Then z = e1,2e3,4 = uus for a
suitable s ∈ S−R. Set Gu := CG(u), Hu := CH(u), etc. Then as H/U ∼= S5, Hu

∼=

D8×S4, so R = Su is of index 2 in S. Further CU
(
O2(Hu)

)#
= {u, e1,3,4,5, e2,3,4,5}

with e1,3,4,5 and e2,3,4,5 in zL. As 〈u, z〉 = Z(R) E T and us = uz, there is
x ∈ Tu − S, and Tu = 〈x〉R is of index 2 in T with Tu = Mu. As Tu E T ,
NG(Tu) ≤ M = !M(T ). Then as Tu = Mu, Tu ∈ Syl2(Gu), and in particular
u /∈ zG. Also Hu 6≤M with |Tu| = |S| = |T |/2, so by 2.3.7.1, Gu ∈ Γ∗.

Suppose first that F ∗(Gu) = O2(Gu), so that Gu ∈ Γe0. Then we may apply the
results of this section to Gu in the role of “H”. By 2.3.8.4, Gu =MuK1 · · ·Kt is a
product of blocks Ki, where Ki is an A5-block or A3-block, since 2.4.7 eliminated
the case where someKi is an L2(2

n)-block. Indeed as we sawMu = Tu is a 2-group,
and Ki ∩M is a Borel subgroup of Ki in 2.3.8.4, each Ki is in fact an A3-block.
Then as Tu is of order 27 and 2-rank 4 with 1 6= u ∈ Z(Gu), t = 1. But now
K1 = O2(Gu) ∼= A4 contains O2(Hu) ∼= A4, so that O2(Gu) = O2(Hu). As Su
is of index 2 in Tu, Hu is of index 2 in Gu, and hence is normal in Gu. Then as
U ≤ O2(Hu) and x ∈ Tu, Ux ≤ O2(Hu), which is not the case.

Thus F ∗(Gu) 6= O2(Gu). As O2(Hu) ∼= A4, O2(O
2(Hu)) centralizes O(Gu)

by A.1.26, so z ∈ 〈u〉O2(O
2(Hu)) ≤ CGu(O(Gu)); hence O(Gu) = 1, as z inverts

O(Gu) by 2.3.9.5. Therefore Gu has a component K, which must appear in 2.3.9.7.
We further restrict the list of 2.3.9.7 using the facts that Mu = CGu(z) is a 2-group
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of order 27 and rank 4, and Hu = NGu(U) ∼= D8 × S4, to conclude that K ∼= A6,
L2(7), or L2(17). Next O2(NGu(U)) = O2(Hu) ∼= A4 and O2(NK(U)) ∼= A4 in
each of the possibilities for K, so O2(Hu) ≤ K. Now z ∈ 〈u〉O2(Hu) ≤ 〈u〉K, but
z 6= u, so Tu normalizes the component K, and hence K E Gu by 1.2.1.3. As
J(Tu) = R = UUx, K is not L2(17), and in the remaining two cases, x induces an
outer automorphism on K interchanging the two 4-groups in R ∩K ∈ Syl2(K), so
that K = 〈O2(Hu), O

2(Hu)
x〉. Also z = uus for s ∈ S −R, and us ∈ O2(Hu) ≤ K;

so as K has one class of involutions, by a Frattini Argument,

Gu = KCGu(u
s) = KCGu(z) = KMu = KTu.

Let D := CR(O
2(Hu)) and UD := D ∩ U . Then D ∼= D8, UD is a 4-group, and

UD − 〈u〉 ⊆ zL from an earlier remark. Hence as CG(z) is solvable, CUD (K) = 〈u〉.
But if K is L2(7), then CAut(K)(O

2(Hu)) = 1, so we conclude that K ∼= A6 and
v ∈ UD − 〈u〉 induces a transposition on K. As Gu = KTu and K is simple,
B := CGu(K) = CTu(K) ≤ CTu(O

2(Hu)) = D, so B = CD(K) is of order 4, with
Gu/B ∼= Aut(A6), since x interchanges the two 4-groups in R ∩K. As R = UUx,
x also interchanges the two 4-groups in R/(R∩K) = D(R∩K)/(R∩K) ∼= D, and
hence B ∼= Z4, since UD 6≤ B.

Let I := O2(M). Then I = I1I2 with Ii ∼= SL2(3) and [I1, I2] = 1. Further
there exists y ∈ T − S centralizing I1 with y2 ∈ Z: namely any y inducing an
orthogonal transvection on P̃ centralizing I1. Moreover each t ∈ T −S with t2 ∈ Z
is conjugate under M to y or ya, where a ∈ I1 ∩ P is of order 4, and exactly one
of y and ya is an involution. Thus M is transitive on the set I of involutions in
M − IS, and either y or ya is a representative i for I. Let j := ia; then j2 = z.
Observe jG ∩ S = ∅: For if jg ∈ S then zg = (jg)2 ∈ Φ(S) ≤ P . But as u ∈ P and
u /∈ zG while M is transitive on the involutions in P − Z, Z is weakly closed in P
with respect to G; so z = zg and hence g ∈ GZ =M , contradicting IS E M .

As jG ∩S is empty but G = O2(G) with |T : S| = 2, we can apply Generalized
Thompson Transfer A.1.37 to j in the role of “g”, to see that j2 = z must have
a G-conjugate in T − S; so i = zg for some g ∈ G. Now if y = i then SL2(3) ∼=
I1 ≤ CG(i) =Mg, so z ∈ O2(I1) ≤ O2(M

g) = P g . However we saw in the previous
paragraph that zG ∩ P = {z}, so z = zg = i, contradicting i 6∈ S. Therefore y is of
order 4 and i = ya centralizes bc, where b ∈ I2 is of order 4 and inverted by y, and
O2(I1) = 〈a, c〉. As bc ∈ uM , we may assume bc = u, so that u centralizes i. Then
i ∈ Tu − S acts on K ∼= A6. As S ≥ UD and v ∈ UD − 〈u〉 induces a transposition
on K, KS induces the S6-subgroup of Aut(K) on K, so as i /∈ S, i does not induce
an automorphism in S6. Then as i is an involution, i induces an automorphism in
PGL2(9) rather than M10, and hence CK(i) ∼= D10. This is impossible as i ∈ zG

and M = CG(z) is a {2, 3}-group. The proof of 2.4.29 is complete. ¤

By 2.4.29, we have reduced to the case where L0 is the product of two A3-
blocks. Henceforth we let s denote an element of S −NS(L). Thus H = L0S and
L0 = L× Ls. Let U1 := U and U2 := Us.

Lemma 2.4.30. (1) QQx = R = Baum(S) = J(S) for x ∈ T − S.
(2) H ∈ Γ∗.
(3) {Q,Qx} are the S-invariant members of A(R).
(4) RL0 = CS(L0)× L0U

x
0 with Φ(CS(L0)) = 1 and L0U

x
0
∼= S4 × S4.

(5) R is of index 2 in S = R〈s〉, so |T : R| = 4.
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Proof. By 2.4.27.1, |T : S| = 2, so (2) holds by 2.3.7.1. By 2.4.27, R =
J(S) = TC×U0U

x
0 , where TC := CS(L0), and Q = TC×U0, so R = QQx. Thus (1)

holds, and (3) follows from 2.4.27.2. By 2.4.27.4, R = TC×U0U
x
0 and L0 = [L0, U

x
0 ],

so (4) holds. Further as Ls1 = L2, H/Q ∼= S3 wr Z2, and as R = J(S) acts on L1

and Q ≤ R, R is Sylow in RL0 = NH(L1) of index 2 in S, so (5) holds. ¤

Remark 2.4.31. In the remainder of the proof of Theorem 2.4.1, we are again
faced with a shadow of an extension of L4(3), but now approached from the point
of view of a 2-local with two A3-blocks. We will construct the centralizer of the
involution z2 defined below, as a tool for eventually obtaining a contradiction to the
absence of an A5-block in any member of Γ0. In PΩ

+
6 (3), z2 is an involution whose

commutator space on the orthogonal module is of dimension 2 and Witt index 0,
and whose centralizer has a component Ω−4 (3)

∼= L2(9) ∼= A6.

Now let 〈zi〉 = CUi (R). Then by 2.4.30, 〈z1, z2〉 = Φ(R) E T and L3−i ≤
CG(zi) =: Gi, so Gi 6≤M . Since Q ≤ R, we conclude by 2.3.8.5c that CO2(M)(R) ≤
R. Then since |S : R| = 2 and R = J(S) by 2.4.30.1, the first sentence of 2.3.8.5b
says R ∈ β. So since Li 6≤M , we conclude as usual from the definitions in Notation
2.3.4 and Notation 2.3.5 that (R,L3−iR) ∈ U(Gi) and Gi ∈ Γ. Next zs1 = z2, so
z := z1z2 generates Z(T )∩Φ(R), and replacing x by xs if necessary, we may assume
x ∈ Gi, for i = 1 and 2. Let S1 := R〈x〉. Then |T : S1| = 2 = |T : S|, so by 2.3.7.1,
Gi ∈ Γ∗ and S1 ∈ Syl2(Gi).

Observe that F ∗(G2) 6= O2(G2): For otherwise by 2.3.8.4 and 2.4.29, G2 =
CM (z2)K0, where K0 is the product of two A3-blocks. But R = J(S1), so applying
2.4.30.4 to K0S1, CΦ(R)(K0) = 1, contradicting z2 ∈ CΦ(R)(K0).

Next O2(L) ∼= E4 centralizesO(G2) by A.1.26, so z ∈ 〈z2〉O2(L) ≤ CG2(O(G2)),
and hence O(G2) = 1 since z inverts O(G2) by 2.3.9.5. Thus as F ∗(G2) 6= O2(G2),
there exists a component K of G2, and K is described in 2.3.9.7. By 2.3.9.6,
K = [K, z], so L is faithful on K since z ∈ 〈z2〉L.

Recall S1 ∈ Syl2(G2) and |S1 : R| = 2 with R = NS1(L); therefore AutS1(K) ∈
Syl2(AutG2(K)) with |AutS1(K) : NAutS1 (K)(AutL(K))| ≤ 2. Further we saw L

is faithful on K, so AutL(K) ∼= A4. Inspecting the 2-locals of the automorphism
groups of the groups K listed in 2.3.9.7 for such a subgroup, and recalling O(G2) =
1, we conclude that K is one of A5, A6, A7, A8, L2(7), L2(17), L3(3), or M11.
Moreover if LK is the projection of L on K, then as |S1 ∩ K : NS1∩K(L)| ≤ 2
(since L is irreducible on O2(L) of rank 2), O2(LK) ≤ NK(L), and then O2(LK) =
[O2(LK), L] = O2(L) = U . As S1 centralizes z and z2, S1 centralizes z1 = zz2 ∈
U ≤ K, so S1 acts on K and hence K E G2 by 1.2.1.3. If K ∼= A5 or A7, then
U E S1, contradicting x 6∈ NT (U). If K is A8, then L is an A4-subgroup moving
4 of the 8 points permuted by K, so z1 is not 2-central in K, a contradiction. If
K is L3(3), M11, or L2(17), there is xK ∈ S1 ∩K with QxK 6= Q, so we may take
x = xK ; but now |Qx : CQx(Q)| = 2, contradicting 2.4.30.1 which shows this index
is 4. Therefore:

Lemma 2.4.32. G2 ∈ Γ∗ and L ≤ K ∼= A6 or L2(7).

Next zG2
1 = zK1 since A6 and L3(2) have one class of involutions; so by a Frattini

Argument, G2 = KCG2(z1) = KCG2(z) = KM2, where M2 := M ∩ G2. As G2 ∈
Γ∗, F

∗(M2) = O2(M2) by 2.3.9.4. Then as CG2(K) ≤M2, F
∗(G2) = KO2(G2). In

particular:
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Lemma 2.4.33. K = E(G2) and F
∗(G2) = KO2(G2).

Now suppose that U2 ≤ CG(K). For g ∈ L2, z
g
2 ∈ U2 ≤ CG(z2) = G2, so K is

a component of CG2(z
g
2) by 2.4.33. By I.3.2 and 2.4.33, K ≤ O2′,E(CG(z

g
2)) = Kg.

We conclude K = Kg, and hence K = E(CG(u)) for each u ∈ U#
2 . Therefore

Ks = E(CG(u)) for each u ∈ U
#
1 = U#. Also x centralizes z1 and hence normalizes

Ks = E(CG(z1)), so K
s = E(CG(u

x)) for each ux ∈ (Ux)#. Further L = [L,Ux0 ]
by 2.4.30.4, so as Ux2 ≤ CG(K), L = [L,Ux]. Thus using the structure of K in
2.4.32,

K = 〈CK(u), CK(ux) : u ∈ U#〉 ≤ NG(K
s).

As z2 centralizes K, z1 centralizes Ks, so K = [K, z1] ≤ CG(K
s), and hence

T = S1〈s〉 normalizes KKs = K × Ks. Let I := KKsT . Since I contains L 6≤
M = !M(T ), O2(I) = 1. As G is quasithin, m2,3(KK

s) ≤ 2, so K ∼= L3(2) rather
than A6. As O2(I) = 1,m2(T ) ≤ m2(Aut(KK

s)) = 4, soQ = U0 and R ∼= D8×D8.
It follows that R ∈ Syl2(KKs) and T = R〈x, s〉, with x an involution inducing an
outer automorphism on K and Ks, and s an involution centralizing x. Then I has
5 classes of involutions, with representatives z, z2, x, s, and sx. Now O2(G2) ≤
CS1(K) ∼= D8, so O

2(G2) centralizes O2(G2)/〈z2〉 and z2, and hence by Coprime
Action also centralizes O2(G2). Therefore as F ∗(CG2(K)) = O2(G2) using 2.4.33,
we conclude that CG2(K) is a 2-group, and hence CG2(K) = CS1(K) = O2(G2).
Thus G2/KO2(G2) ≤ Out(K) which is a 2-group, so G2/K is a 2-group, and hence
K = O2(G2), so m3(G2) = 1.

Now CI(s) = 〈s〉×Ks〈x〉 with Ks
∼= L3(2), and the involutions in the subgroup

Ks diagonally embedded in K ×Kx are in zG as z = z1z2; thus s /∈ zG2 , since the
involutions in K = G∞2 are in zG2 . Similarly sx /∈ zG2 . Next CI (x) = 〈x, s〉(I1 × I2)
with I1 := CK(x) ∼= S3 and Is1 = I2. In particular as m3(G2) = 1, x /∈ zG2 . As
O(CG2(x)) 6= 1, F ∗(CG(x)) 6= O2(CG(x)) by 1.1.3.2, so x /∈ zG.

But as G = O2(G), by Thompson Transfer, xG ∩ S 6= ∅. Therefore as we
saw x is not conjugate to z or z2, it must be conjugate to s. Arguing similarly
with S replaced by 〈sx〉UUx, we conclude sx ∈ sG. So xG = sG = (sx)G, and
hence by the previous two paragraphs, s, z, and z2 are representatives for the
conjugacy classes of involutions of G. Thus s is in fact extremal in T : that is,
Ts := CT (s) ∈ Syl2(CG(s)). But each involution in CI (s) is fused in I to s, x, sx,
or z, so zG2 ∩ Ts = ∅. This is impossible as z2 ∈ CG(x) with x conjugate to s. This
contradiction shows U2 6≤ CG(K), and hence:

Lemma 2.4.34. K = [K,U2].

Now U2 ≤ CG2(L). But if K ∼= L3(2), then CG2(L) = CG2(K) from the
structure of Aut(K), so U2 centralizes K, contrary to 2.4.34. Therefore part (1) of
the following lemma holds:

Lemma 2.4.35. (1) K ∼= A6, and some u ∈ U2 − 〈z2〉 induces a transposition
on K centralizing L.

(2) The automorphism induced by x on K is not in S6.

For if part (2) of 2.4.35 fails, then setting (KS1)
+ := KS1/CKS1(K), x+ ∈ K+R+,

so Ux+0 ∈ U+K
0 . Then as U+

0 = O2(L
+R+) is weakly closed in R+ with respect to

K+ from the structure of A6, U
+
0 = Ux+0 , contrary to 2.4.30.4.

Lemma 2.4.36. (1) R = RK ×R
s
K with RK := R ∩K ∈ Syl2(K) ∼= D8.
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(2) CR(K) = CG2(K) is cyclic of order 4, and G2/CR(K) ∼= Aut(A6).
(3) CT (L0) = 1 and |T | = 28.

Proof. We claim that z2 is the unique involution in CR(K). Assume the claim
fails, and let z2 6= r ∈ CR(K) be an involution. Recall R ≤ G2.

Under this assumption, we establish a second claim: namely that K E Gr :=
CG(r). First K is a component of CGr(z2) using 2.4.33, so by I.3.2, there is a
2-component Kr of Gr such that either K ≤ Kr, or K ≤ KrK

z2
r with Kr 6= Kz2

r —
and in the latter case, Kr/O∞(Kr) ∼= K. As K ∼= A6 by 2.4.35, the former case
holds by 1.2.1.3. As Kr is a 2-component of Gr, Kr ∈ C(Gr) and O2(Kr) ≤ Z(Kr).
As m2(Kr) ≥ m2(K) > 1 and O2(Kr) ≤ Z(Kr), Kr is quasisimple by 1.2.1.5.

Now as m3(Kr) ≥ m3(K) = 2, Kr E Gr using 1.2.1.3, so our second claim
holds if K = Kr. Thus we may assume that K < Kr, and it remains to derive
a contradiction. We verify the hypotheses of 1.1.5 for Gr in the role of “H”: Let
CR(r) ≤ Tr ∈ Syl2(Gr), and Tr ≤ T g, so that zg ∈ Z(T g) ≤ Tr, and hence zg ∈
Z(Tr); thus z

g, Tr, M
g play the roles of “z, S,M”. As r ∈ O2(Gr ∩Mg), trivially

CO2(Mg)(O2(Gr ∩Mg)) ≤ Gr. This completes the verification of the hypotheses of
1.1.5. As K ∼= A6 is a component of CKr (z2), we conclude from inspection of the
list of 1.1.5.3 that one of the following holds:

(i) z2 induces a field automorphism on Kr
∼= Sp4(4).

(ii) z2 induces an outer automorphism on Kr
∼= L4(2) or L5(2).

(iii) z2 induces an inner automorphism on Kr
∼= HS.

Recall that |T : R| = 4, while |R : CR(r)| ≤ 2 by 2.4.30, and z2 ∈ Z(R). Thus

|Tr : CTr (z2)| ≤ |Tr : CR(r)| < |T : CR(r)| ≤ 8,

where the strict inequality holds since r is not 2-central in G, as Gr 6∈ He. Since z2
centralizes K but not Kr, we conclude (ii) holds, with Kr

∼= L4(2) ∼= A8. Now L is
an A4-subgroup of Kr fixing 4 of the 8 points permuted by Kr, so it centralizes an
A4-subgroup Lr of Kr. Then using A.3.18 and the fact that z1 = zs2 ∈ O2(L),

K0 := 〈Lr, L2〉 ≤ O3′(CG(L)) ≤ O3′(G1) = Ks.

Now Ks ∼= A6 with z2 ∈ L2 ≤ Ks and z2 induces an outer automorphism on Lr.
Thus 〈z2〉Lr ∼= S4, so 〈z2〉Lr is a maximal subgroup of Ks. It follows that Ks =
K0 ≤ CG(L), so m2,3(LK0) = 3, contradicting G quasithin. This contradiction
establishes the second claim, namely that K = Kr is a normal component of Gr
for each involution r ∈ CR(K).

Set Er := 〈z2, r〉. Using 2.4.35.2, CKsS1(z2) is a maximal subgroup of KsS1,
which does not contain CKsS1(a) for any involution a /∈ z2CG(K

s). Thus in the
notation of Definition F.4.41, KsS1 = Γ1,Er(K

sS1), so K
s ≤ NG(K) using the

second claim. Then as m2,3(NG(K)) ≤ 2 since G is quasithin, K = Ks. This is
impossible as z1 ∈ K but z2 = zs1 centralizes K. This contradiction completes the
proof of the first claim that z2 is the unique involution in CR(K).

By 2.4.35, CR(K) is of index 2 in CR(L) ∼= CQ(L0)×D8, so by the uniqueness
of z2, CR(K) is cyclic of order 4 and CQ(L0) = 1. Then CT (L0) = CQ(L0) = 1.
Therefore R ∼= D8 ×D8 by 2.4.30.4, so |T | = 4|R| = 28 by 2.4.30.5, completing the
proof of (3).

As RK ∼= D8 and RK ∩ RsK E S but Z(RK) = 〈z1〉 6≤ Z(S), we conclude
RK ∩ RsK = 1. Thus R ≥ RKR

s
K = RK × RsK ; so as |R| = |RK |2, R = RK × RsK ,

and (1) holds.



550 2. CLASSIFYING THE GROUPS WITH |M(T )| = 1

Let Ḡ2 := G2/CG2(K). By 2.4.35, S̄1K̄ ∼= Aut(A6) and hence Ḡ2
∼= Aut(A6).

In particular |S̄1| = 25, so as CR(K) ∼= Z4 and |S1| = |T |/2 = 27, it follows that
CR(K) ∈ Syl2(CG2(K)). Then by Cyclic Sylow 2-Subgroups A.1.38, CG2(K) =
O(G2)CR(K). Recall that z = z1z2 with z1 ∈ K, so that CG2(K) ≤ CG(z).
However by 2.3.9.5, z inverts O(G2), so O(G2) = 1, completing the proof of (2). ¤

Lemma 2.4.37. zG2 ∩ R = (zG2 ∩ RK) ∪ (zG2 ∩ R
s
K) with |zG2 ∩ RK | = 5.

Proof. Recall A1 ∈ A(T ) is defined in 2.4.27.2. Further by 2.4.27.2, T induces
the 4-group

〈(Q,Qx), (A1, A
r
1)〉

of permutations on A(T ). Thus y := x or xr acts on A1, so SA := R〈y〉 is of index
2 in T and SA normalizes A1. As z ∈ A1, H1 := NG(A1) ∈ H

e by 1.1.4.3. Now
NH(A1) contains L2 6≤ M . Also Q ≤ R = J(S), so by 2.3.8.5c, CO2(M)(R) ≤ R.
Then R ∈ β by 2.3.8.5b, so as usual H1 ∈ Γ. Then as |SA| = |S|, H1 ∈ Γ∗ by
2.3.7.1, so we may apply the results of this section to H1 in the role of “H”. In
particular we conclude from 2.4.29 2 that H1 induces O+

4 (2) on A1. Therefore for
each A ∈ A(T ), A = A1 ×A2 with Ai ∼= E4 and A1# ∪A2# = zG2 ∩A. By 2.4.36.1,
R = RK ×RsK , so A = (A ∩ RK)× (A ∩ RsK) with A ∩ RK ∼= A ∩ RsK

∼= E4. Thus
as all involutions in RK are in zG2 , A

1 = A ∩ RK and A2 = A ∩ RsK . Therefore as
each involution in R is in a member of A(T ), the lemma holds. ¤

We are now in a position to obtain a contradiction, and hence complete the
proof of Theorem 2.4.1. By 2.4.36,B := CG2(K) = CR(K) ∼= Z4 and R = RK×RsK .
Let Ḡ2 := G2/B; then R̄ = R̄K〈ū〉, where u ∈ U − 〈z2〉. By 2.4.35, ū induces a
transposition on K̄, so R̄ = 〈ū〉 × R̄K ∼= Z2 ×D8 is Sylow in R̄K̄ ∼= S6.

Next each involution in R̄ − K̄ is either a transposition or of cycle type 23,
and there are a total of 6 involutions in R̄ − K̄. Further u ∈ zG2 and ū is a
transposition, so as x induces an outer automorphism on R̄K̄, ūx is of type 23.
Thus ∆ := zG2 ∩ (R−K) is of order 6m, where m := |zG2 ∩uB|. However by 2.4.37,
∆ is s-conjugate to zG2 ∩ RK of order 5.

This contradiction finally completes the proof of Theorem 2.4.1.

2.5. Eliminating the shadows with Γe0 empty

The groups occurring in the conclusion of Theorem 2.1.1 have already appeared
in Theorems 2.2.5 and 2.4.1, so from now on we are working toward a contradiction.
We have also dealt with the most troublesome shadows, although a number of other
shadows are still to appear.

By Theorem 2.4.1, we may assume Γe0 is empty: that is no member of Γ0 is
contained in He. In 2.5.3, we will produce a component K of H , consider the
various possibilities for K listed in 2.3.9.7, and analyze the structure of CS(〈KS〉),
where S ∈ Syl2(H). Eventually we eliminate all configurations, completing the
proof of Theorem 2.1.1.

We continue to assume that G is a counterexample to Theorem 2.1.1. Therefore
as the groups in Theorem 2.4.1 are conclusions of Theorem 2.1.1, in the remainder
of the section we assume that

Γe0 = ∅.

2As mentioned earlier, our use of 2.4.29 here to exclude A5-blocks is essentially eliminating
the shadow configuration.
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In addition we define T to consist of the 4-tuples (H,S, T, z) such that H ∈ Γ0,
S ∈ Syl2(H ∩M), T ∈ Syl2(M) with Z(T ) ≤ S < T , and z is an involution in
Z(T ). For each H ∈ Γ0, there exists a tuple in T whose first entry is H , using
2.3.9.3. Throughout this section (H,S, T, z) denotes a member of T .

Lemma 2.5.1. (1) He(S) ⊆M .
(2) H ∩M is the unique maximal member of He(S) ∩H.
(3) S ∈ Syl2(H).

Proof. By 2.3.8.1, S ∈ β and S ∈ Syl2(H), so that (3) holds. Suppose there
is X ∈ He(S) with X 6≤ M . Then from the definitions in Notation 2.3.4 and
Notation 2.3.5, (S,X) ∈ U(X), so X ∈ Γ. Then by 2.3.7.4, X ∈ Γ0, contrary to our
assumption in this section that Γe0 = ∅. Thus (1) holds. By 2.3.9.4, H ∩M ∈ He,
so that (1) implies (2). ¤

From now on we use without comment the fact from 2.5.1.3, that S is Sylow
in H .

Lemma 2.5.2. Suppose L is a component of H and set ML := M ∩ L. Then
z induces an inner automorphism on L, L = [L, z] 6≤ M , and one of the following
holds:

(1) L is a Bender group and ML is a Borel subgroup of L.
(2) L ∼= Sp4(2

n)′ or L3(2
n) or L/O2(L) ∼= L3(4). Further NS(L) is nontrivial

on the Dynkin diagram of L/Z(L), and ML is a Borel subgroup of L.
(3) L ∼= L3(3) or M11 and ML = CL(zL), where zL is the projection on L of z.
(4) L ∼= L2(p), p > 7 a Mersenne or Fermat prime, and ML = S ∩ L.

Proof. Observe L is described in 2.3.9.7, and L = [L, z] 6≤ M by 2.3.9.6. If

L ∼= L4(2),M22,M23, A7, or Â7, then from the description ofML in 2.3.9.7, there is
H1 ∈ He(S)∩H with H1∩L 6≤ML, contradicting 2.5.1.2. Similarly if conclusion (b)
of 2.3.9.7 holds, then by 2.5.1.2, S is nontrivial on the Dynkin diagram of L/Z(L),
and ML is as described in (2)—in particular, observe we cannot have L ∼= A6 or

Â6 with z inducing a transposition, since S is nontrivial on the Dynkin diagram,
while z ∈ Z(S) as (H,S, T, z) ∈ T . So when L is A6 or Â6, z induces an inner
automorphism of L. Indeed as z ∈ LCS(L), and z inverts O(H) by 2.3.9.5, L is

not Â6 for any action of z on L. If conclusion (a) of 2.3.9.7 holds, then by 2.5.1.2,
ML is a Borel subgroup of L, so that (1) holds. The remaining cases (d) and (e) of
2.3.9.7 appear as (3) and (4). Since we have eliminated the case where z induces
an outer automorphism on L/Z(L) ∼= A6 or A7, in each case z induces an inner
automorphism on L by 2.3.9.7. ¤

Part (4) of the next result produces the component ofH on which the remainder
of the analysis in this section is based. Furthermore it eliminates case (1) of 2.5.2
where the component is a Bender group.

Lemma 2.5.3. Assume

H =

k⋂

i=1

NG(Bi) for some 2-subgroups B1, . . . , Bk of H,

and let (U,HU ) ∈ U(H). Set QU := O2(HU ). Then

(1) If O2(H) ≤ QU , then NH(QU ) ∈ H
e.
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(2) If Q1 ∈ IH (HU , 2), then (U,HUQ1) ∈ U(H).
(3) If L is a component of H which is a Bender group and IH(HU , 2) ⊆ QU ,

then QU ∩ L ∈ Syl2(L).
(4) There exists a component K of H such that K is not a Bender group, and

if H ∈ Γ∗, Γ∗, then 〈K,S〉 ∈ Γ∗, Γ∗, respectively.

Proof. By 2.3.8.2, QU ∈ Se2(G), so H0 := NG(QU ) ∈ He. Assume O2(H) ≤

QU . By hypothesis, Bi ≤ H =
⋂k
j=1 NG(Bj), so Bi ≤ O2(H) ≤ QU . Thus

NH(QU ) =

k⋂

i=1

NH0(Bi) ∈ H
e

by 1.1.3.3. Hence (1) holds.
Assume the hypotheses of (2), and let Q2 := QUQ1 and H2 := HUQ1. As

F ∗(HU ) = O2(HU ) = QU since HU ∈ He, also F ∗(H2) = Q2 = O2(H2); so as
U ≤ HU ≤ H2 with U ∈ β, (U,H2) ∈ U(H), and hence (2) holds.

Assume the hypotheses of (3), and let L0 := 〈LH〉. First, O2(H) ∈ IH(HU , 2) ⊆
QU by hypothesis; so by (1), NH(QU ) ∈ He, and then by 1.1.3.1,

F ∗(NL0(QU )) = O2(NL0(QU )). (∗)

Set PU := L0CH(L0) ∩QU , and let PL, P1 denote the projections of PU on L, L0,
respectively. If L < L0 = LLs, let PLs be the projection of PU on Ls. If P1 = 1 then
AutQU (L0)∩Inn(L0) = 1, so as L is a Bender group, from the structure of Aut(L0),
O2(F ∗(CL0(QU ))) 6= 1, contrary to (*). Thus P1 6= 1 and P1 ∈ IH(HU , 2) ⊆ QU .
Similarly if L < L0, P1 ≤ PLPLs ∈ IH(HU , 2) ⊆ QU , and as P1 6= 1, either PL 6= 1
or PLs 6= 1. Further if PL = 1, then QU acts on P1 = PLs and hence on L, and
AutQU (L) ∩ Inn(L) = 1 so again O2(F ∗(CL(QU )) 6= 1, contrary to (*). Thus
PL 6= 1, and if L < L0 also PLs 6= 1. Therefore as L is a Bender group, there is a
unique Sylow 2-group P0 of L0 containing P1, so P0 ∈ IH(HU , 2) ⊆ QU and hence
P0 = QU ∩ L0, establishing (3).

It remains to prove (4). Let L+ be the product of all Bender-group components
ofH , with L+ := 1 if no such components exist. Partially order U(H) by (U1, H1) ≤
(U2, H2) if U1 ≤ U2 and H1 ≤ H2, and choose (U,HU ) maximal with respect to
this order. Then by (2) and maximality of (U,HU ), IH(HU , 2) ⊆ HU , and hence

IH(HU , 2) ⊆ QU and in particular O2(H) ≤ QU . (!)

Observe by (!) that we may apply (1) and (3).
Replacing (U,HU ) by a suitable conjugate under H ∩M , we may assume S ∩

HU ∈ Syl2(HU ∩M). Set Q+ := S ∩ L+ ∈ Syl2(L+). Then Q+ = QU ∩ L+ by
(3), and so HU ≤ X := NH(Q+). When L+ 6= 1, M+ := M ∩ L+ = NL+(Q+) by
2.5.2.1. In any case by a Frattini Argument, H = L+X . Further S ∈ Syl2(X) since
S ∈ Syl2(H) by 2.5.1.3. Also (U,HU ) ∈ U(X), so X ∈ Γ. As (U,HU ) ∈ U(X) is
maximal with respect to our ordering and S ≤ X , it follows from parts (3) and (4)
of 2.3.7 that X ∈ Γ∗, Γ∗, when H ∈ Γ∗, Γ∗, respectively. Moreover the components
of X are the components of H not in L+, so by definition of L+, X has no Bender
components. Thus replacing (H,S, T, z) by (X,S, T, z) ∈ T , and adjoining Q+ to
B1, . . . , Bk, we may assume L+ = 1; that is, that H has no Bender components.

Let H ∈ Γ∗, Γ
∗; it remains to show that there is a component K of H with

〈K,S〉 ∈ Γ∗, Γ
∗, respectively.
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We first consider the case where E(H) 6= 1; thus there is a component K of
H . As L+ = 1, K is not a Bender group, and so K is described in one of cases
(2)–(4) of 2.5.2. Set K0 := 〈KS〉 and RU := K0CH (K0) ∩ QU , and let R0 denote
the projection of RU on K0.

We now argue as in the proof of (3) using (!) to conclude that NK0(QU ) ∈ H
e

and R0 ≤ QU . Further z ∈ QU , so by the initial statement in 2.5.2, we conclude
that RU 6≤ CH (K0). Therefore R0 6= 1. Indeed since O2(NK0(R0)) ∈IH (HU , 2),
O2(NK0(R0)) ≤ QU ∩K0 ≤ R0, so that R0 = O2(NK0(R0)). From the description
of K in cases (2)–(4) of 2.5.2, NK0(R0) ∈ He. Thus if NK0(R0) 6≤M , we can argue
as in case (ii) that (4) holds.

Therefore we may assume that NK0(R0) ≤ M . It follows that O2(M ∩K0) ≤
O2(NK0(R0)) = R0. Now from the description of K and M ∩K in cases (2)–(4)
of 2.5.2, either O2(M ∩ K0) ∈ Syl2(K0), or case (3) holds with K = K0

∼= M11

or L3(3) and O2(M ∩K0) = CK(z) is of index 2 in a Sylow 2-group of K. Hence
R0 = O2(M ∩ K0), and either R0 = S ∩ K0 ∈ Syl2(K0), or case (3) holds and
R0 = O2(M ∩ K0) = O2(CK0(z)). In any case R0 E S and HU ≤ NH(QU ) ≤
NH(R0). Further RH0 = RK0

0 , either by Sylow’s Theorem or as M11 and L3(3)
have one class of involutions. Therefore by a Frattini Argument, H = K0X0,
where X0 := NH(R0). Now (U,HU ) ∈ U(X0), so that X0 ∈ Γ, and as usual
X0 ∈ Γ∗, Γ∗, when H ∈ Γ∗, Γ∗, respectively. Now (X0, S, T, z) ∈ T and adjoining
R0 to B1, . . . , Bk, X0 satisfies the hypotheses for H , so we conclude (4) holds by
induction on the number of components of H .

We have reduced to the case where E(H) = 1, where to complete the proof we
derive a contradiction.

As F ∗(H) 6= O2(H) and E(H) = 1, Y := O(H) 6= 1. By 2.3.9.5, z inverts Y ,
so Y is abelian. By (!) and (1), O2(NH(QU )) = QU and NH(QU ) ∈ He. Then
by our maximal choice of (U,HU ), NH(QU ) = HU and U ∈ Syl2(HU ) so QU ≤ U .
Then as U ≤ S, z ∈ Z(S) ≤ CH (QU ) ≤ CNH (QU )(QU ) = Z(QU ).

As E(H) = 1, F ∗(H) = F (H) = O2(H)Y . Further O2(H) ≤ S ≤ CH (z), so
[z,H ] ≤ CH (O2(H)), while as z inverts Y , [z,H ] ≤ CH(Y ), and Y is abelian, so

[z,H ] ≤ CH(F
∗(H)) = Z(F ∗(H)) = Z(O2(H))Y.

Hence setting O2(H)〈z〉 =: D, DY E H , so by a Frattini Argument, H = Y NH(D).
As z ∈ D, D ∈ Se2(G) by 1.1.4.3, so NG(D) ≤ M by 2.5.1.1. Now O2(H) ≤ QU
by (!), and z ∈ Z(QU ) by the previous paragraph, so D ≤ QU . Hence D =
QU ∩ DY EHU , so that HU ≤ NG(D) ≤ M , contradicting HU 6≤ M . Therefore
(4) is finally established, completing the proof of 2.5.3. ¤

In view of 2.5.3.4, we are led to define Γ+ to consist of those H ∈ Γ0 such that
H = 〈K,S〉, for some component K of H and S ∈ Syl2(H ∩M), such that K is
not a Bender group.

We verify that Γ+ is nonempty: For given any (H0, S, T, z) ∈ T , we conclude
from 2.3.9.1 that H1 := NG(O2(H0)) ∈ Γ0, S ∈ Syl2(H1), and if H0 ∈ Γ∗, then
also H1 ∈ Γ∗. Now applying 2.5.3.4 to the 2-local H1, we obtain a component K
of H1 such that K is not a Bender group, H2 := 〈K,S〉 ∈ Γ0, and H2 ∈ Γ∗ if
H0 ∈ Γ∗. Thus H2 ∈ Γ+, so Γ+ is nonempty, and since we saw in section 1 that Γ∗

is nonempty, also Γ+ ∩ Γ∗ is nonempty.

Notation 2.5.4. Let T + consist of the tuples (H,S, T, z) in T such that H ∈
Γ+. In the remainder of the section we pick (H,S, T, z) ∈ T + and letK ∈ C(H) and
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K0 := 〈KS〉. Set SK := S ∩K, SK0 := S ∩K0, SC := CS(K0), and H̄ := H/SC .
Let x ∈ NT (S)− S with x2 ∈ S.

As H ∈ Γ+, K0 is the product of at most two conjugates of the component K
of H , and H = K0S. Further K is not a Bender group, and S ∈ Syl2(H), so SK ∈
Syl2(K), SK0 ∈ Syl2(K0), and SC = O2(H) ∈ Syl2(CH (K0)). As H ∈ Γ ⊆ H,
1 6= SC . By 2.5.2, z induces an inner automorphism on K with K = [K, z]. Thus
z ∈ K0SC − SC , so z has nontrivial projection in Z(SK) and in Z(SK0).

We begin to generate information about SC :

Lemma 2.5.5. (1) SC ∩SxC = 1, so SxC
∼= SC is isomorphic to a subgroup of S̄.

(2) SCS
x
C = SC × SxC , so in particular SxC ≤ CS(SC).

Proof. Recall SC = O2(H) E S. Then as x normalizes S, SxC is also normal
in S. As x2 ∈ S, S0 := SC ∩ SxC E S1 := S〈x〉, and S0 ≤ SC , so S0 E K0S = H .
Thus if S0 6= 1, then by 2.3.7.2, NG(S0) ∈ Γ0 and S ∈ Syl2(NG(S0)). This is a
contradiction since S < S1 ≤ NG(S0). So S0 = 1, and hence (1) holds. Then as
both SC and SxC are normal in S, (1) implies (2). ¤

Lemma 2.5.6. If 1 6= E ≤ SC with E E S, then GE := NG(E) ∈ Γ0,
S ∈ Syl2(GE), and GE ∈ Γ∗ if H ∈ Γ∗. Further either

(1) K is a component of GE, or
(2) K = K0

∼= A6, H/SC ∼=M10, and KE := 〈KGE 〉 ∼=M11.

Proof. As E ≤ SC and E E S, H = K0S ≤ GE . Thus by parts (2) and
(4) of 2.3.7, GE ∈ H(H) ⊆ Γ0, S ∈ Syl2(GE), and GE ∈ Γ∗ if H ∈ Γ∗. Next by
1.2.4, K ≤ KE ∈ C(GE). Then by 2.3.7.2, 〈KE , S〉 ∈ Γ0, and 〈KE , S〉 /∈ He by
our assumption in this section that Γe0 = ∅. As m2(KE/O2(KE)) ≥ m2(K) > 1,
KE/O2(KE) is quasisimple by 1.2.1.4. So as 〈KE , S〉 /∈ He, KE is a component
of GE . Then KE is described in 2.5.2, K is described in one of cases (2)–(4) of
2.5.2, and if K < KE , then the embedding of K in KE is described in A.3.12. We
conclude that the lemma holds. ¤

We next show that K is essentially defined over F2:

Lemma 2.5.7. If K/O2(K) ∼= L3(2
n) or Sp4(2

n), then n = 1.

Proof. Assume that n > 1 and set B := K ∩M . By 1.2.1.3, K0 = K, so that
H = KS. By 2.5.2, some element s in S is nontrivial on the Dynkin diagram of
K/O2(K) and B is a Borel subgroup of K. Let K1 be a maximal parabolic of K
over B, set L1 := K∞1 and V := O2(L1).

We first observe that as case (2) of 2.5.2 holds, either Z(K) = 1, or Z(K) =
O2(K) with K/Z(K) ∼= L3(4). In the latter case, Φ

(
Z(K)

)
= 1: for otherwise

from the structure of the covering group in I.2.2.3a, Z(S) ≤ CS(K) = SC ; and as
x ∈ NT (S), this is contrary to 2.5.5.1. By this observation and the structure of the
covering group in I.2.2.3b when Z(K) 6= 1, in each case Φ(V ) = 1 and V/CV (L1)
is the natural module for L1/V ∼= L2(2

n).
Recall from Notation 2.5.4 that SK = S∩K and SK ∈ Syl2(K). Set R := J(S)

and RC := SC ∩ R = CR(K). Observe since s is nontrivial on the Dynkin diagram
of K/O2(K) that SK = V V s and A(SK) = {V, V s} are the maximal elementary
abelian subgroups of SK .

We claim that R = SKRC : For let A ∈ A(S). Suppose first that A ≤ NS(L1).
As V/CV (L1) is the natural module for L1/V ∼= L2(2

n), either A centralizes V ,
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or by B.2.7 and B.4.2.1, AutA(V ) is Sylow in AutAL1(V ). In the former case
V ≤ A since A ∈ A(S), so as V is self-centralizing in Aut(K), A = V CA(K),
where CA(K) ≤ RC . In the latter case A induces an elementary abelian group of
inner automorphisms on K not centralizing V , and hence A centralizes V s, so by
symmetry between V and V s, A = V sCA(K). Thus the claim holds if R ≤ NS(L1),
so we may assume there is a ∈ A − NS(L1). Then m2(CK/Z(K)(a)) = n, so
m(CA(K)) ≥ m(A) − (n + 1). Hence as A ∈ A(S), and n > 1 by hypothesis, we
conclude that

m(A) ≥ m
(
V CA(K)

)
≥ 2n+m

(
CA(K)

)
≥ m(A) + n− 1 > m(A),

since we are assuming that n > 1. This contradiction completes the proof of the
claim.

Next suppose that Φ(RC) = 1. Set Q := O2(L1SC) = V SC . By the claim,
QR := Q ∩ R = V (SC ∩ R) = V RC . Then QRSC = Q and NS(QR) = NS(Q).
Since A(SK) = {V, V s}, and we are assuming that RC is elementary abelian, QR =
V RC ∈ A(S), and A(S) = {QR, QsR} is of order 2. Hence |S : NS(QR)| = 2, and for
TQ := NT (S)∩NT (QR), NT (S) = TQ〈s〉. Also |TQ| ≥ |S|, since S < NT (S) because
S < T . As RSC = SKSC ≤ L1SC normalizes O2(L1SC) = Q, RSC ≤ NS(Q) =
NS(QR). Thus we have shown that |S : NS(QR)| = 2 and both J(S) = R and
SC = O2(H) lie in NS(QR). Also CS

(
NS(QR)

)
≤ CS(QR) ≤ NS(QR). Therefore

applying 2.3.9.8 to NS(QR) in the role of “R”, we conclude that NS(QR) ∈ β. So as
NS(QR) ≤ TQ, TQ ∈ β by 2.3.2.1. We saw earlier that NS(QR) = NS(Q). Further
NH(Q) = L1NS(Q), so Q = O2

(
NH(Q)

)
and NH(Q) ∈ He. Also NH(Q) 6≤ M

since K0 ∩M is a Borel subgroup of K0. Therefore
(
NS(Q), NH(Q)

)
∈ U

(
NG(Q)

)
,

and henceNG(Q) ∈ Γ. Then by 2.3.8.2,Q = O2

(
NH(Q)

)
∈ Se2(G), soNG(Q) ∈ He.

Since we saw above that TQ ∈ β,
(
TQ, NG(Q)

)
∈ U

(
NG(Q)

)
. However |TQ| ≥ |S| ≥

|U1| for each U1 ∈ U by 2.3.6. Hence by the maximality of |U | and/or |S| in the
definitions of H ∈ Γ∗ or Γ∗ in Notation 2.3.5, NG(Q) ∈ Γ0, and therefore NG(Q) ∈
Γe0, contrary to our assumption in this section that Γe0 = ∅. This contradiction
shows that Φ(RC) 6= 1.

By 2.5.5.1, RxC ∩ SC = 1, while RxC ≤ Rx = R; so as R = SKRC , R
x
C is

isomorphic to a subgroup of SK/Z(K). Indeed we further claim that the members of
A(S) are of the form AC×AK with AX ∈ A(RX ) for eachX ∈ {C,K}: If Z(K) = 1,
then R = RC×SK , so the second claim is clear in this case. Otherwise K/O2(K) ∼=
L3(4), and as Φ

(
Z(K)

)
= 1, from the structure of the covering group K in I.2.2.3b,

each elementary subgroup of SK/Z(K) lifts to an elementary subgroup of SK ,
completing the proof of the second claim.

Hence as Φ(RC) 6= 1 and RC is isomorphic to a subgroup of SK/Z(K), which
has exactly two maximal elementary subgroups V/Z(K) and V s/Z(K), we conclude
that A(SC) = {A1, A2}, where A1 and A2 are the two maximal elementary abelian
subgroups of RC .

Now suppose that [V, V x] 6= 1. Then as V ≤ A ∈ A(S), m
(
V x/CV x(V )

)
= n =

m
(
R/CR(V )

)
. Similarly m

(
V/CV (V

x)) = m
(
R/CR(V

x)
)
, so R = V V xCR(V V

x)

with Φ
(
CR(V V

x)
)
≤ RC , and as V and V x are normal in R, [V, V x] = V ∩ V x =

CV x(V ) = V x ∩ Z(R). By symmetry, Φ(CR(V V
x)) ≤ RxC , so Φ

(
CR(V V

x)
)
= 1

by 2.5.5.1. Further for v ∈ V − Z(R), m([v,R]) = n and [v,R] ∩ RC = 1; so for
u ∈ V s − Z(R), m([u,R]) = n and [u,R] ∩ RC = 1. Now for w ∈ V x − Z(R),
since R = SKRC , w = uc for some u ∈ V s − Z(R) and c ∈ RC , so [V,w] = [V, u]
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is of rank n, and hence [R,w] = [V, u] and [R,w] ∩ RC = [V, u] ∩ RC = 1. Thus
[RC , w] = 1, so [RC , V

x] = 1, and hence Φ(RC) ≤ Φ(CR(V V
x)) = 1, contrary to an

earlier reduction. This contradiction shows that V x ≤ CR(V ) = V RC , and hence
V x ≤ V Ai for i = 1 or 2 using the second claim.

Next suppose that x normalizes NS(V ). Set I := Ω1

(
Z(T )

)
V V x. Then

I E NS(V ) = NS(V )x using our assumption. Further as J(S) = R = SKRC ,
Ω1

(
Z(T )

)
≤ V RC . Therefore as V x ≤ V RC , I ≤ V RC with [V RC , L1] = V ≤ I ,

and hence

I E L1NS(V ).

Also arguing as above using 2.3.9.8, NS(V ) ∈ β. As Ω1

(
Z(T )

)
≤ I , I ∈ Se2(G) by

1.1.4.3. Hence as NG(I) contains L1 6≤M ,
(
NS(V ), NG(I)

)
∈ U

(
NG(I)

)
and thus

NG(I) ∈ Γe. However S1 := 〈NS(V ), x〉 ≤ NT (I) with |S1| = |S|, so again by 2.3.6,
|S1| ≥ |U1| for each U1 ∈ U . Hence again from the maximality of |U | and/or |S| in
the definitions of H ∈ Γ∗ or Γ∗ in Notation 2.3.5, NG(I) ∈ Γ0. Then NG(I) ∈ Γe0,
contrary to our assumption in this section that Γe0 = ∅.

Therefore x does not normalize NS(V ). Set W := NS(V )∩NS(V )x and TW :=
S〈x〉. As |S : NS(V )| = 2 and NS(V ) 6= NS(V

x), S/W ∼= E4, TW /W ∼= D8, and

we can choose x with s := x2 ∈ S −NS(V ). Thus (V x, V x
−1

) = (V, V s)x. Hence

setting D := [V, V s], Dx = [V x, V x
−1

]. We showed [V, V x] = 1, and by symmetry

between x and x−1, V x
−1

also centralizes V , so 〈V x, V x
−1

〉 centralizes V . Thus
conjugating by s,

〈V x, V x
−1

〉 ≤ CS(V V
s) = RCD.

Therefore Dx ≤ Φ(RCD) ≤ RC . Also Dx E S, so as K is not A6 since n > 1,
K ENG(D

x) by 2.5.6.

Let p be a prime divisor of 2n − 1, and for J ≤ G, let θ(J) := Op
′

(J) if p > 3,
and θ(J) := 〈j ∈ J : |j| = 3〉 if p = 3. By A.3.18, either K = θ(NG(D

x)), or
p = 3 and θ

(
NG(D

x)
)
/ O3′

(
θ( NG(D

x) )
)
∼= PGL3(2

n). Thus, except possibly

in the exceptional case, as x2 ∈ NS(D) and Dx ≤ RC , we have θ(NK(D)) ≤
Kx ≤ CG(D), impossible as [D, θ

(
NK(D)

)
] 6= 1. Thus K/Z(K) ∼= L3(2

n); 3
is the only prime divisor of 2n − 1, so that n = 2; and K/Z(K) ∼= L3(4) and
a subgroup X of order 3 in NK(D) induces outer automorphisms on Kx. Now
X ≤ Y ∈ Syl3

(
NG(D) ∩ NG(D

x) ∩ NG(R)
)
with Y = X(Y ∩ Kx) ∼= E9.

By a Frattini Argument, we may assume x acts on Y . Now RC = CR(X) from
the structure of K, so as RC ∩ RxC = 1 by 2.5.5.1, RxC = [RxC , X ] ≤ K. Now Y
normalizes R and Kx, so Y normalizes RxC ; then as RxC is not elementary abelian,
RxC = SK . This is impossible, as Xx centralizes RxC , but is faithful on SK . This
contradiction completes the proof of 2.5.7. ¤

As a consequence of 2.5.7, the groups remaining in cases (2)–(4) of 2.5.2 have
the following common features:

Lemma 2.5.8. (1) Out(K) is a 2-group.
(2) K is simple so K0SC = K0 × SC.
(3) Either SK is dihedral of order at least 8 or SK semidihedral of order 16.
(4) Z(S) = (Z(S) ∩ SK0)× (Z(S) ∩ SC) and Z(S) ∩ SK0 = 〈zK〉 is of order 2,

where zK is the projection on K0 of z.
(5) For each 4-subgroup F of K, NK(F ) ∼= S4; and furthermore if F ≤ SK ,

then CAutH (K)(F ) ≤ AutS(K).
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Proof. First either K appears in case (3) or (4) of 2.5.2, or by 2.5.7, K
appears in case (2) with n = 1. Now (1)–(3) and (5) follow by examination of those
groups. Then Z(SK) is of order 2 by (3), so Z(S) ∩ K0 is of order 2. By 2.5.2,
z induces a nontrivial inner automorphism on K0, so Z(S) ∩K0 = 〈zK〉. Further
Z(S̄) = Z(S̄K0), since S is nontrivial on the Dynkin diagram when K = K0

∼= A6

by 2.5.7. Then (2) completes the proof of (4). ¤

Just before establishing Notation 2.5.4, we verified that Γ∗∩Γ+ 6= ∅, and hence
there is a member of T + with first entry in this set. We now take advantage of this
flexibility:

Notation 2.5.9. In the remainder of the section, we choose (H,S, T, z) ∈ T +

with H ∈ Γ∗. Let U∗(H) denote the pairs (U,HU ) ∈ U(H) with U of maximal
order in U . By definition of Γ∗, U∗(H) 6= ∅.

Lemma 2.5.10. (1) If (U,HU ) ∈ U(H), then NG(O2(HU )) ∈ H
e.

(2) If (U,HU ) ∈ U∗(H), then U ∈ Syl2(NG(O2(HU ))), so U ∈ Syl2(HU ). If
also U ≤ S then z ∈ Z(S) ≤ Z(U).

Proof. By 2.3.8.2, N := NG(O2(HU )) ∈ H
e, establishing (1) and showing

(U,N) ∈ U(N). Then if (U,HU ) ∈ U∗(H), U is Sylow in HU and N by 2.3.2.2 and
maximality of |U |, so the first statement in (2) holds. Finally if U ≤ S, then as
U ∈ Syl2(N), O2(N) ≤ U = S ∩N , and so using (1) we conclude

z ∈ Z(S) ≤ CH(U) ≤ CH (O2(N)) ≤ O2(N) ≤ U,

completing the proof of (2). ¤

Lemma 2.5.11. (1) Z(T ) = 〈z〉 is of order 2 and Z(S) = 〈t, z〉 = 〈t, tx〉 =
〈t, zK〉 ∼= E4, where t is an involution in SC and zK is the projection of z on K0.

(2) H = K0S ≤ CG(t) ∈ Γ∗, with S ∈ Syl2(CG(t)). In particular, t 6∈ zG.

Proof. By 2.5.8.4, Z(S) = 〈zK〉 × ZS,C, where ZS,C := Z(S) ∩ SC , and
zK is the projection on SK0 of z. In the discussion following Notation 2.5.4 we
observed 1 6= O2(H) = SC , so ZS,C 6= 1. Then as ZS,C is of index 2 in Z(S)
while ZS,C ∩ ZxS,C = 1, we conclude from 2.5.5.1 that 〈t〉 := ZS,C is of order 2 and

Z(S) = 〈t, tx〉. Now (2) follows from 2.5.6.1. Finally as 1 6= z ∈ Z(T ) ≤ Z(S) from
the definition of T , Z(T ) = 〈z〉 is of order 2, completing the proof of (1). ¤

For the remainder of the section, let t be defined as in 2.5.11, and set Gt :=
CG(t).

Lemma 2.5.12. Assume K E H, and let (U,HU ) ∈ U∗(H) with U ≤ S. Then

(1) HU = NH(E) and U = NS(E) for some 4-subgroup E of SK .
(2) O2(HU ) ∼= A4 and E = O2(O

2(HU )) = CK(E).
(3) The map E 7→ (NS(E), NH(E)) is a bijection of the set of 4-subgroups of

SK with

{(U ′, HU ′) ∈ U
∗(H) : U ′ ≤ S}.

In particular, NS(E) ∈ Syl2(NH(E)).
(4) If QE is a 2-group with z ∈ QE E HU , then NG(QE) ∈ Γ and U ∈

Syl2(NG(QE)).
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Proof. By Notation 2.5.4, H ∈ Γ+ so that H = K0S with K a component
of H , K0 = 〈KH〉, and K/O2(K) is not a Bender group. Thus as K E H by
hypothesis, H = KS and K = O2(H). Further by 2.5.8.5, for each 4-subgroup F
of K, NK(F ) ∼= S4, and if F ≤ SK then CAutH (K)(F ) ≤ AutS(K). It follows as
H = KS with S ∈ Syl2(H) that if F ≤ SK then NH(F ) = NK(F )CS(F ), and in
particular NS(F ) ∈ Syl2(NH(F )).

Next as (U,HU ) ∈ U∗(H) by hypothesis, U ∈ Syl2(HU ) by 2.5.10.2. Hence

HU = O2(HU )U ∈ He with O2(HU ) ≤ O2(H) = K. Set E := 〈zHU

K 〉. Now
zK ∈ Z(S) ≤ Z(U) by 2.5.10.3, so by B.2.14, E ≤ O2(HU ) and E is elementary
abelian. In particular, E ≤ U as U ∈ Syl2(HU ). As HU ≤ Gt by 2.5.11.2 and
HU 6≤M but CG(z) ≤M = !M(T ), we conclude m(E) > 1. Then as O2(H) ≤ K
andm2(K) = 2, E ∼= E4. NowHU ≤ NH(E), and we saw in the previous paragraph
that NH(E) = NK(E)CS(E), with NK(E) ∼= S4 and NS(E) ∈ Syl2(NH(E)).
Since HU 6≤ M , A4

∼= O2(NK(E)) = O2(HU ) and E = O2(O
2(HU )), so that

(2) holds. Further NH(E) ∈ He and U ≤ NS(E) so that NS(E) ∈ β by 2.3.2.1.
Therefore (NS(E), NH(E)) ∈ U(H) and NS(E) ∈ U , so as (U,HU ) ∈ U∗(H), we
conclude NS(E) = U ∈ Syl2(HU ), and hence NH(E) = O2(HU )NS(E) = HU .
This completes the proof of (1). Further (3) follows from (1) since we saw that
NS(E) ∈ Syl2(NH(E)).

Now assume that z ∈ QE E HU with QE a 2-group. Then as z ∈ QE,
NG(QE) ∈ He by 1.1.4.3. So as U ∈ U , and HU ≤ NG(QE) with HU 6≤ M ,
(U,NG(QE)) ∈ U(NG(QE)) and NG(QE) ∈ Γ. Then since (U,HU ) ∈ U∗(H) by
hypothesis, we conclude U ∈ Syl2(NG(QE)) using 2.3.2.1. This completes the proof
of (4), and hence of 2.5.12. ¤

Lemma 2.5.13. (1) |NT (S) : S| = 2, and tx = tz for each x ∈ NT (S)− S.
(2) If 〈zK〉 char S, or more generally if [x, zK ] = 1, then z = zK and tx = tzK .
(3) If tzK ∈ tG, then z = zK and tx = tzK.

Proof. By 2.5.11.1, Z(S) = 〈z, t〉 ∼= E4 with 〈z〉 = Z(T ). By 2.5.11.2, S ∈
Syl2(Gt) and hence S = CT (t), so (1) follows. Then (1) implies (2). Further z /∈ tG

by 2.5.11.2, so (1) also implies (3). ¤

Remark 2.5.14. There are extensions of L4(3) ∼= PΩ+
6 (3) by a 2-group, with

involution centralizer Z2×L3(3) or Z2×Aut(L3(3)), which are of even characteristic,
and in which a Sylow 2-group is contained in a unique maximal subgroup. The
first extension is even quasithin. The next lemma eliminates the shadows of such
extensions.

Lemma 2.5.15. K is not M11 or L3(3).

Proof. Assume otherwise. Then case (3) of 2.5.2 holds, and K = K0 E H
by 1.2.1.3. As z induces inner automorphisms on K, Kz := O2(CK(z)) ∼= SL2(3)
from the structure of K.

By 2.5.11.2,H = KS ≤ Gt, so by 2.5.6,K E Gt. ThenK = O3′ (Gt) by A.3.18.

By 2.5.11.1, ZS := Z(S) = 〈z, t〉 ∼= E4. Then as K = O3′(Gt), Kz = O3′(CG(ZS)),
so x acts on Z(Kz) = 〈zK〉. Hence by 2.5.13.2, z = zK ∈ K and tx = tz.

Next as Aut(Kz) is induced in KzS, we may choose x ∈ CT (Kz). Further-
more as 〈z〉 = CK(Kz), M11 = Aut(M11), and |Aut(L3(3) : L3(3)| = 2 with
CAut(K)(Kz) ∼= Z4 if K ∼= L3(3), either:

(i) S induces inner automorphisms on K, and CS(Kz) = SC × 〈z〉, or
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(ii) H̄ ∼= Aut(L3(3)) and CS(Kz) = SC〈y〉, where y induces an outer automor-
phism on K with ȳ2 = z̄.

Recall from Notation 2.5.9 that we may choose (U,HU ) ∈ U∗(H) with U ≤ S.
By 2.5.12.3, HU = NH(E) for some 4-subgroup E of SK and U = NS(E) ∈
Syl2(HU ). Then as O2(HU ) ∼= A4 by 2.5.12.2, QE := O2(HU ) = CS(E). In case (i)
S induces inner automorphisms onK, so S = SC×SK , and hence as E = CK(E) by
2.5.12.2, QE = SC×E. On the other hand in case (ii), we compute that e ∈ E−〈z〉
inverts y, so QE = (SC ×E)〈f〉, where f = yk and k is one of the two elements of
O2(Kz) of order 4 inverted by e.

Recall x ∈ NT (S) ∩ CT (Kz), so x normalizes CS(Kz), and hence

[e, x] ∈ S ∩ CT (Kz) = CS(Kz). (∗)

But if case (i) holds then CS(Kz) = SC〈z〉 ≤ QE , and by the previous para-
graph SCE = QE , so x ∈ NG(QE). Then U < NS(QE)〈x〉 ≤ NG(QE), contradict-
ing 2.5.12.4.

Therefore case (ii) holds. Here x normalizes CS(Kz) = SC〈y〉, while SC ∩SxC =
1 by 2.5.5.1, so as t ∈ SC , SC is cyclic of order 2 or 4.

Assume SC ∼= Z4. Then by 2.5.5.2, SCS
x
C = SC × SxC , so as ȳ and SC are

of order 4, CS(Kz) = SC × SxC is abelian. In particular y centralizes SC , so since
S = SCSK〈y〉, Z(S) contains SC ∼= Z4, contrary to 2.5.11.1.

Therefore SC = 〈t〉, so CS(Kz) = 〈t, y〉, and as ȳ2 = z̄, y2 = z or tz. Hence
as we saw tx = tz, while x normalizes Φ(SC〈y〉) = 〈y2〉, y2 = z. Therefore as
H = KS,

H = 〈t〉 ×A,

where A := K〈y〉 ∼= Aut(L3(3)). Observe that SC〈z〉 = 〈t, z〉 = Z(S) using 2.5.11.1.
Assume that [e, x] ∈ 〈t, z〉. Then as x acts on Z(S) = 〈z〉, x acts on SCE E HU ,

so that NS(E) < NS(E)〈x〉 ≤ NG(SCE), again contrary to 2.5.12.4. Therefore
[e, x] 6∈ 〈t, z〉.

Next A is transitive on involutions in A−K, and on E8-subgroups of A, with
representatives f and F := 〈f, E〉, respectively. Further we may choose notation so
that CA(f) = 〈f〉 × CK(f) with CK(f) = NK(E) ∼= S4. Now x acts on CS(Kz) =
〈t, y〉, and we’ve seen that [e, x] ∈ CS(Kz) − 〈t, z〉, so replacing y by a suitable
element of y〈t, z〉, we may take ex = ey. Thus ey ∈ A − K is an involution in
eG = zG, so all involutions in F# are in zG. On the other hand, we saw that
tz = tx ∈ tG, so all involutions in tK are in tG, and in particular te ∈ tG. Further

(te)x = txex = tzey = tey−1,

with ey−1 an involution in A−K; so all involutions in H − A are in tG.
As FA is the set of E8-subgroups of A, and QE = O2(NH(E)) = 〈t〉 × F ,

QHE is the set of E16-subgroups of H . By 2.5.11.2, Gt ∈ Γ∗ and S ∈ Syl2(Gt).
So 〈t〉 is Sylow in CGt(K), and hence using Cyclic Sylow-2 Subgroups A.1.38 we
conclude that CGt(K) = O(Gt)〈t〉. We saw that K E Gt so z ∈ K ≤ C(O(Gt)).
Thus O(Gt) = 1 since z inverts O(Gt) by 2.3.9.5. Hence Gt = KS = H . Therefore
CG(t) = H is transitive on its E16-subgroups with representative QE , so by A.1.7.1,
NG(QE) is transitive on t

G∩QE = QE−F of order 8. Then |NG(QE) : NGt(QE)| =
8, whereas NS(E) ∈ Syl2(NG(QE)) by 2.5.12.4, and NS(E) ≤ Gt. Hence the proof
of 2.5.15 is at last complete. ¤
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Observe that by 2.5.7 and 2.5.15, we have reduced the list of possibilities for
K in 2.5.2 to:

Lemma 2.5.16. One of the following holds:

(1) K ∼= L2(p), p > 7 a Mersenne or Fermat prime.
(2) K ∼= L3(2) and NH(K)/CS(K) ∼= Aut(L3(2)).
(3) K ∼= A6 and NH(K)/CS(K) ∼=M10, PGL2(9), or Aut(A6).

Remark 2.5.17. All of these configurations appear in some shadow which is of
even characteristic, and in which a Sylow 2-group is in a unique maximal 2-local.
Usually the shadow is even quasithin. The group is not simple, but it takes some
effort to demonstrate this and hence produce a contradiction.

The groups L2(p)×L2(p) extended by a 2-group interchanging the components
are shadows realizing the configurations in (1) and (2), while L4(3) ∼= PΩ+

6 (2)
extended by a suitable group of outer automorphisms realize the configurations in
(3). The last case causes the most difficulties, and consequently is not eliminated
until the final reduction.

Lemma 2.5.18. (1) K is a component of Gt.
(2) Gt = K0SCGt(K0) with CGt(K0)S ≤M .
(3) CGt(K0) ∈ He, so O(Gt) = 1.

Proof. By 2.5.11.3, H ≤ Gt ∈ Γ∗ and S ∈ Syl2(Gt). Thus if K is not a
component of Gt, we may apply 2.5.6 with 〈t〉 in the role of “E”, to conclude that
K = K0

∼= A6 and Kt := 〈KGt〉 ∼= M11. Since H ∈ Γ+ ∩ Γ∗, we conclude from
parts (2) and (4) of 2.3.7 that KtS ∈ Γ+ ∩ Γ∗, contrary to 2.5.15.

Thus (1) holds, so as S ∈ Syl2(Gt),K0 EGt, and by 2.5.8.1,Gt = K0SCGt(K0).
Then CGt(K0) ≤ CGt(zK) ≤ CGt(z) ≤ M , proving (2). By 2.3.9.4, Gt ∩M ∈ He,
so (2) implies (3). ¤

Lemma 2.5.19. Assume i is an involution in CS(K) such that K is not a
component of CG(i). Then

(1) K = K0.
(2) CS(i) ∩ CS(K) = 〈t, i〉.
(3) There exists a component Ki of CG(i) such that either:

(I) Ki 6= Kt
i , K = CKiKt

i
(t)∞, and Ki

∼= K ∼= L2(p), p ≥ 7, or

(II) K = CKi(t)
∞, and one of the following holds:

(a) K ∼= L3(2), and t induces a field automorphism on Ki
∼= L3(4) or

L3(4)/Z2.
(b) K ∼= L3(2), and t induces an outer automorphism on Ki

∼= J2.
(c) K ∼= A6 and Ki

∼= Sp4(4), L5(2), HS, or A8.

(4) Either z = zK ∈ K and tz ∈ tG, or Ki
∼= A8 and t induces a transposition

on Ki.

Proof. Let Gi := CG(i) and R := Gi ∩ CS(K). As t ∈ Z(S) ∩ SC , 〈t, i〉 ≤ R
by our hypothesis on i. As K is not a component of Gi, i 6= t by 2.5.18. Therefore
i /∈ Z(S), or otherwise i centralizes 〈KS〉 = K0, whereas Z(S) ∩ SC = 〈t〉 by
2.5.11.1. By 2.5.18, CGt(K0) ≤ M and S ∈ Syl2(Gt), so conjugating in CGt(K0)
we may assume CS(〈i,K0〉) ∈ Syl2(CG(〈t, i,K0〉).

Next K is a component of CGi(t) in view of 2.5.18, so by I.3.2 there is Ki ∈
C(Gi) with Ki/O(Ki) quasisimple, such that for K+ := 〈KO2′,E(Gi)〉, either
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(i) K+ = KiK
t
i , Ki 6= Kt

i , Ki/O2′,2(Ki) ∼= K, and K = CK+(t)
∞, or

(ii) K+ = Ki = [Ki, t] and K is a component of CKi(t).

Set R0 := CR(K+). In case (ii) as Ki/O(Ki) is quasisimple, O2(Ki) ≤ Z(Ki),
so as m2(Ki) ≥ m2(K) > 1, Ki is quasisimple by 1.2.1.5. Similarly if (i) holds,
then O(Ki) = 1 by 1.2.1.3, so that Ki is quasisimple. Thus in any case Ki is a
component of Gi.

Let g ∈ G with Ti := CT g (i) ∈ Syl2(Gi); then applying 1.1.6 to the 2-local Gi,
the hypotheses of 1.1.5 are satisfied with Gi, M

g , zg in the roles of “H , M , z”.
Therefore Ki is described in 1.1.5.3.

Suppose for the moment that case (i) holds. Then by 1.2.1.3 applied to Ki, K
is not A6, so by 2.5.16, K is L2(p) for p ≥ 7 a Fermat or Mersenne prime. Then
as Ki/Z(Ki) ∼= K in (i), Ki

∼= K by 1.1.5.3. Therefore all involutions in tK+ are
conjugate, and hence tzK ∈ t

G, so z = zK by 2.5.13.3 and hence tz ∈ tG. Therefore
conclusion (I) of (3) and the first alternative in (4) hold in case (i). Thus in case
(i), it remains only to verify (1) and (2). Observe also in this case that NR(Ki)
centralizes the full diagonal subgroup K of K+, so R0 = NR(Ki) and R = 〈t〉×R0.

Next suppose for the moment that case (ii) holds. Comparing the groups in
2.5.16 to the components of centralizers of involutions in Aut(Ki/Z(Ki)) for groups
Ki on the list of 1.1.5.3, we conclude that one of the following holds:

(α) K ∼= L3(2), and t induces a field automorphism on Ki/Z(Ki) ∼= L3(4).
(β) K ∼= L3(2), and t induces an outer automorphism on Ki/Z(Ki) ∼= J2.
(γ) K ∼= A6, and t induces one of: an inner automorphism on Ki/Z(Ki) ∼= HS,

an outer automorphism on Ki
∼= L4(2) or L5(2), or a field automorphism on Ki

∼=
Sp4(4).

Thus to prove that conclusion (II) of (3) holds in case (ii), it remains to show that
|Z(Ki)| ≤ 2 if (α) holds, and to show that Z(Ki) = 1 when (β) holds, or when
Ki/Z(Ki) ∼= HS and (γ) holds.

Notice also when (ii) holds that from the structure of CAut(Ki/Z(Ki))(t) for the
groups in (α)–(γ), either R0 = CR(Ki) is of index 2 in R, or elseKi/Z(Ki) ∼= HS—
and in the latter case some r ∈ R induces an outer automorphism on Ki, with
|R : R0| = 4, and CKi(R1)

∞ ∼= A8 for some subgroup R1 of index 2 in R.
In the next few paragraphs, we will reduce the proof of 2.5.19 to the proof

of (2). So until that reduction is complete, suppose that (2) holds; that is that
R = 〈i, t〉 ∼= E4.

We first deduce (1) from (2), so suppose that (1) fails. Thus K0 = KKu for
some u ∈ S −NS(K). Therefore i also acts on Ku, and hence also on S ∩Ku, so
that |C〈i〉(S∩Ku)(i)| > 2. Since S ∩ Ku ≤ CS(K) and t /∈ 〈i〉(S ∩ Ku) because t
centralizes K0, |R| > 4, contrary to assumption. This contradiction shows that (2)
implies (1).

As remarked earlier, (1) and (2) suffice to prove the entire result when case (i)
holds. Thus to complete the proof of the sufficiency of (2), we may now assume
that case (ii) holds, and it remains to establish (3) and (4). Recall that at the start
of the proof we chose CS(〈i,K0〉) ∈ Syl2

(
CG(〈i, t,K0〉)

)
, so as K = K0 by (1),

R ∈ Syl2
(
CG(〈t, i,K〉)

)
.

As K E H , NS(CS(i)) acts on CS(i) ∩ CS(K) = R. We saw i 6∈ Z(S), so
CS(i) < NS(CS(i)). Then as NS(CS(i)) acts on R = 〈i, t〉, it ∈ iNS(CS(i)). But

by A.3.18, Ki = O3′(E(Gi)), so i /∈ tG by 2.5.18, and hence as it ∈ iG, also
it /∈ tG. As K ≤ Ki = [Ki, t] and R ∈ Syl2(CG(〈t, i,K〉)), 〈i〉 = CO2(KiCS(i))(t).
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Therefore if 〈i〉 < O2(KiCS(i)), then it ∈ tO2(KiCS(i)), contradicting it /∈ tG. Thus
〈i〉 = O2(KiCS(i)).

Suppose case (α) or (β) holds. If O2(Ki) = 1 then (3) holds, and from the
structure of Aut(Ki), Ki is transitive on involutions in tKi, so tzK ∈ tG, and hence
z = zK by 2.5.13.3, establishing (4). Thus we may assume that O2(Ki) 6= 1, so
〈i〉 = O2(Ki) from the previous paragraph. If (β) holds, then from the embedding
of Ki/〈i〉 in G2(4), t acts faithfully on some root subgroup Q/〈i〉, with Q ∼= Q8,
so that ti ∈ tQ, contrary to a remark in the previous paragraph. Thus (α) holds,
with Ki/〈i〉 ∼= L3(4), so (3) holds in this case. Further the field automorphism t
normalizes each maximal parabolic P of Ki over CS(i) ∩Ki. From the structure
of the covering group in I.2.2.3b, V := O2(P ) is an indecomposable P -module such
that V/〈i〉 is the natural module for P/V ∼= L2(4). Now t centralizes X of order 3
in P , and V = [V,X ]× 〈i〉 with

C[V,X](t) = [V,X, t] ≤ O2(CKi(t)) = K.

It follows that tzK ∈ tG, so z = zK by 2.5.13.3, and hence (4) holds.
Thus it remains to consider the case where (γ) holds. If Ki

∼= A8, then the
lemma holds, since there we do not assert that tzK ∈ tG. If Ki

∼= L5(2) or Sp4(4),
then Ki is transitive on involutions in tKi, so that tzK ∈ tG, and hence z = zK by
2.5.13.3, so the lemma holds. Thus we have reduced to the case Ki/O2(Ki) ∼= HS.
Assume first that Z(Ki) 6= 1. Then as before, 〈i〉 = Z(Ki) = O2(KiCS(i)), so as
we are assuming 〈t, i〉 = R and t is inner on Ki in (γ), t ∈ KiCKiCS(i)(Ki) = Ki.
Thus t ∈ CKi(K) so t is not 2-central in Ki. However, an element of the covering
group Ki projecting on a non-2-central involution of HS is of order 4 by I.2.2.5b.
This contradiction shows that Ki is HS, so that (3) holds. Furthermore if u is the
projection on Ki of t, then uzK ∈ uKi and iuzK ∈ (iu)Ki . Therefore as t = u or
iu, tzK ∈ tKi , and again (4) follows from 2.5.13.3. This completes the proof of the
reduction of the proof of the lemma to the proof of (2).

We have shown that it suffices to prove that R = 〈i, t〉. Thus we assume that
〈i, t〉 < R, and derive a contradiction. Choose i so that R = CS(i) ∩ CS(K) is
maximal subject to K not being a component of Gi. Further if i ∈ Z(CS(K)) then
R = CS(K), and we choose i so that CS(i) is maximal subject to the constraint
that R = CS(K).

Recall we showed soon after stating (i) that that assumption implies |R : R0| =
2. Inspecting the groups in cases (α)–(γ) of (ii), we check that either |R : R0| = 2, or
Ki/Z(Ki) ∼= HS and |R : R0| = 4. When |R : R0| = 2 we set R2 := R0, and when
|R : R0| = 4 we let R2 be the subgroup R1 of index 2 in R with CKi(R1)

∞ ∼= A8

discussed earlier. Thus in either case, i ∈ R0 ≤ R2 and |R : R2| = 2.
We next claim that K < K0 and i ∈ Z(NS(K)). Thus we assume that at least

one of the two assertions of the claim fails, and derive a contradiction. As i /∈ Z(S)
there is s ∈ NS(CS(i))−CS(i) with s2 ∈ CS(i). Furthermore we observe when K <
K0 that CS(i) normalizes K: For otherwise i centralizes some u ∈ CS(i)−NS(K)
and K+ 6= Ku

+. But in all cases appearing in (i) and (ii), m3(K+) = 2; therefore
as K+ and Ku

+ are products of components of Gi, m3(K+K
u
+) > 2, impossible as

Gi is an SQTK-group. Thus in any case, CS(i) normalizes K, and hence CS(i)
normalizes CS(K) and NS(K).

During the remainder of the proof of the claim, we choose the element s ∈
NS(CS(i))− CS(i) with s

2 ∈ CS(i) as follows:
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(A) If R < CS(K) choose s ∈ CS(K).
(B) If R = CS(K), choose s ∈ NS(K); we check this choice is possible: When

K = K0 this is trivial, while when K < K0, by assumption i /∈ Z(NS(K)), so again
the choice is possible.

In either (A) or (B), s ∈ NS(K). Hence as s ∈ NS(CS(i)), s normalizes
CS(i) ∩ CS(K) = R.

In case (A) set W := R〈s〉, and in case (B) set W := CS(i)〈s〉. In either case,
W = CW (i)〈s〉. Furthermore s2 ∈ CW (i): As s2 ∈ CS(i), this is immediate from
the definition of W in case (B), while in case (A) we chose s ∈ CS(K), so that
s2 ∈ CS(i) ∩ CS(K) = R = CW (i).

We now show that R2 E CW (i): In case (A), this holds as R2 is of index
2 in R = CW (i), so assume case (B) holds. Then CW (i) = CS(i) normalizes
CS(i) ∩ CS(K+) = R0, so the claim holds when |R : R0| = 2, since in that case
R2 = R0. Thus we may assume |R : R0| = 4 and Ki/Z(Ki) ∼= HS, so that R2 is
the subgroup R1 of R0 with a component A8 in its centralizer. But CS(i) acts on
the 4-group R/R0, and hence also on the unique subgroup R1/R0 of order 2 with
K < E(CKi(R1)). So indeed R2 E CW (i).

As R2 E CW (i) and s2 ∈ CW (i), W = CW (i)〈s〉 normalizes R2 ∩Rs2. Assume
R2 ∩ Rs2 6= 1; then CR2∩Rs2

(W ) 6= 1. Let r be an involution in CR2∩Rs2
(W ); from

the definition of R2, K is not a component of CG(r). In case (A), R < W ≤
CS(r) ∩ CS(K), contrary to the maximality of R. In (B), R = CS(K) ≤ CS(i) <
W ≤ CS(r), contrary to the maximality of CS(i) in our choice of i, R under the
constraint that R = CS(K). Therefore R2 ∩ Rs2 = 1, so as |R : R2| = 2, |R| = 4,
contrary to our assumption that R 6= 〈i, t〉. This finally completes the proof of the
claim.

By the claim, K0 = KKu for u ∈ S −NS(K) and i ∈ Z(NS(K)). Therefore
by 1.2.1.3, K is described in case (1) or (2) of 2.5.16, so K ∼= L2(p) for p ≥ 7 a
Fermat or Mersenne prime. In case (i) we showed that Ki

∼= K, so K+ is the direct
product of two t-conjugates of a copy of K. In case (ii), K ∼= L3(2), so (α) or (β)
holds.

Let j be an involution in R0 = CR(K+), Gj := CG(j), L0 := 〈K
O2′,E(Gj)

i 〉, and

L+ := 〈K
O2′,E(Gj)

+ 〉. Then K < K+ ≤ Gj , so as K is not subnormal in K+, K is
not a component of Gj . Indeed we claim that K+ E Gj . As Ki is a component
of CGj (i), we may apply the initial arguments of the proof of 2.5.19 to j, i, Ki in
the roles of “i, t, K”. We conclude that there is a component L of Gj such that
either L = L0 is i-invariant, or L < L0 = LLi with CL0(i)

∞ a component of CGj (i)
isomorphic to Ki

∼= L2(p) for suitable p. It follows that L+ = L0L
t
0. Similarly in

case (i) where K ∼= Ki, if L = L0 we may apply 1.1.5 to conclude that L is L3(4)
or J2 of 3-rank 2.

If K+ = L+, then we conclude from A.3.18 in case (ii) or from 1.2.2 in case (i)

that L+ = O3′(E(Gj)) E Gj . Thus to establish the claim that K+ E Gj , it will
suffice to show that K+ = L+.

Suppose that case (ii) holds. Then Ki is described in (α) or (β), so that 1.2.1.3.
rules out the case L < L0. Thus L0 = L, and L = [L, t] as t acts on Ki. Then our
earlier argument applied to t, j, K in the roles of “t, i, K” shows that L is L3(4)
or J2. But then as Ki is a component of CL(i), L = Ki. Then as L = L0 = Ki,
L+ = LLt = KiK

t
i = K+, as desired.
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So assume that case (i) holds. Suppose first that L < L0. We saw that
L ∼= Ki

∼= L2(p) for a suitable prime p, so L0 = L × Li with Ki = CL0(i) a full

diagonal subgroup of L0. By 1.2.2, L0 = O3′ (Gj), so t acts on L0 and then on
CL0(i) = Ki, contrary to our assumption that case (i) holds. Thus L = L0, and
by an earlier remark, L = [L, i] is L3(4) or J2. But then t acts on L by 1.2.1.3, so
K+ = KiK

t
i ≤ L, a contradiction as L3(4) and J2 contain no such subgroup. This

completes our proof that K+ E Gj .
We showed that in case (ii), that Ki/Z(Ki) is not HS; hence in either case (i)

or (ii), |R : R0| = 2, so R = R0 × 〈t〉. As i ∈ Z(NS(K)) and Ku〈t〉 centralizes K,
S∩Ku〈t〉 ≤ CS(〈i,K〉) = R. Therefore S∩Ku〈t〉 = S0×〈t〉, where S0 := R0∩(S∩
Ku)〈t〉. Thus S0〈t〉 is Sylow in Ku〈t〉, so from the structure of Aut(K) ∼= PGL2(p)
for p ≥ 7 a Fermat or Mersenne prime, and using the second claim,

Ku = 〈CKu(j) : j an involution of S0〉 ≤ NG(K+).

ThereforeKu ≤ (NG(K+)∩CG(K))∞ ≤ CG(K+) from the structure of CAut(K+)(K).
But now as m3(K+) = 2 in cases (i) and (ii), m2,3(K+K

u) > 2, contradicting G
quasithin. This contradiction completes the proof of (2), which we saw suffices to
establish 2.5.19. ¤

Lemma 2.5.20. K = K0.

Proof. Assume K < K0. By 2.5.16 and 1.2.1.3, K ∼= L2(p) with p ≥ 7 a
Fermat or Mersenne prime, and K0 = KKu for u ∈ S −NS(K). By 2.5.19.1, K is
a component of CG(i) for each i ∈ CS(K).

We claim that K0 = O3′ (NG(K
u)). For let i be an involution in Ku ∩ S =

SuK . Then as Ku ∼= L2(p) has one class of involutions, by a Frattini Argument,
NG(K

u) = KuIi where Ii := CG(i) ∩ NG(Ku). Further we just saw that K is a
component of CG(i), and hence K is a component of Ii. As K ∼= L2(p) has no outer

automorphism of order 3, O3′(NIi(K)) = KO3′(CIi (K)) = KO3′(CIi(K0)). As G

is quasithin and m2,3(K0) = 2, O3′(CIi(K0)) = 1, so O3′(NIi(K)) = K and hence

K = O3′ (Ii) as K is subnormal in Ii. Thus O3′(NG(K
u)) = KuO3′(Ii) = KuK,

establishing the claim.
Then as u interchanges K and Ku, also K0 = O3′(NG(K)), so that Ku =

O3′(CG(K)) and hence NG(K) = NG(K
u). Thus CG(i) ∩ NG(K) = CG(i) ∩

NG(K
u) = Ii, so that O

3′(CG(i))∩NG(K)) = O3′ (Ii) = K. We sawK is subnormal
in CG(i), so

O3′(CG(i)) = K,

and hence CG(i) ≤ NG(K) = NG(K
u). Thus if there is an involution i ∈ Ku∩Kug,

then K = O3′ (CG(i)) = Kg, so g ∈ NG(K) = NG(K
u); that is, Ku is tightly

embedded in G. Then as SK is nonabelian, I.7.5 says that distinct conjugates
of SK in T commute. Suppose SgK ≤ T with SK 6= SgK 6= SuK . Then SgK ≤
CG(SKS

u
K) ≤ NG(K

u) = NG(K0) since Ku is tightly embedded. Then since
the center of a Sylow 2-subgroup of AutS(K) is elementary abelian, Φ(SgK) ≤

Φ( CT (SKS
u
K) ∩NG(K0) ) ≤ CT (K0), and then KKu = K0 ≤ O3′(CG(Φ(S

g
K))) =

Kug, a contradiction. Therefore {SK , SuK} = SGK ∩ T , so T permutes the set ∆ of

groups O3′ (CG(j)) for j an involution in SK ∪ SuK . We showed ∆ = {K,Ku}, so
T acts on K0. Therefore H = K0S ≤ K0T ≤M = !M(T ), contradicting H 6≤M .
This completes the proof of 2.5.20. ¤
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We now eliminate all possibilities for K remaining in 2.5.16 except for the one
corresponding to the most stubborn remaining shadow discussed earlier:

Lemma 2.5.21. H̄ ∼= Aut(A6).

Proof. First K0 = K by 2.5.20, so H = KS. Assume H̄ is not Aut(A6).
Then by 2.5.16, either K ∼= L2(p) for p ≥ 7 a Fermat or Mersenne prime, or
H̄ ∼= PGL2(9) or M10. Therefore either S̄ is dihedral, or H̄ ∼=M10 and S̄ ∼= SD16.
Hence by 2.5.5.1, SC is cyclic or dihedral, unless possibly SC ∼= Q8 or SD16 when
H̄ ∼=M10. In each case |H̄ : K̄| ≤ 2.

Assume that SC is of order 2, so that SC = 〈t〉. As |H̄ : K̄| ≤ 2, |S : SK | ≤ 4, so
S/SK is abelian and hence [S, S] ≤ SK . Also S̄ is dihedral or semidihedral of order
at least 8, so Ω1([S̄, S̄]) = 〈z̄K〉. Therefore Ω1([S, S]) = 〈zK〉. Then x centralizes
zK , so by 2.5.13.2, z = zK and tx = tz. Thus all involutions in K are in zG, and all
involutions in tK are in tG. Choose (U,HU ) ∈ U∗(H). Then by 2.5.12, there is a
4-subgroup E of SK such that U = NS(E) and HU = NH(E). Since SC = 〈t〉 is of
order 2, NH(E) = NH(F ) ∼= Z2×S4, where F := ESC = O2(NH(E)) = O2(HU ) ∼=
E8. In particular NS(F ) = U ∈ Syl2(NG(F )) by 2.5.10.2. If F x ∈ FS , then by a
Frattini Argument, we may take x ∈ NT (F ), contradicting NS(F ) ∈ Syl2(NG(F )).
Thus F x /∈ FS .

Assume first that S 6≤ KSC . H = KS is transitive on E8-subgroups of KSC ,
so F x 6≤ KSC . But all involutions in M10 are in E(M10), so if K ∼= A6 then
H̄ ∼= PGL2(9). Thus H̄ ∼= PGL2(q) for q a Fermat or Mersenne prime or 9. But
x acts on Z(S) = 〈z, t〉 ≤ KSC , so as F x 6≤ KSC by the previous paragraph,
ex /∈ KSC for e ∈ E − 〈z〉. As ex /∈ KSC and H̄ ∼= PGL2(q), O(CK (ex)) 6= 1, so
since K is a component of Gt by 2.5.18, 1 6= O(CK (ex)) ≤ O(CG(〈ex, t〉)). Hence
CG(e

x) /∈ He by 1.1.3.2, contradicting ex ∈ zG.
Therefore S ≤ KSC , so H = K × SC , and hence S = SK × SC . This rules

out cases (2) and (3) of 2.5.16 in which S is nontrivial on the Dynkin diagram of
K, so K ∼= L2(p) for p > 7 a Fermat or Mersenne prime. We saw earlier that
tE ⊆ tG, so there is g ∈ G with tg ∈ F −〈t, z〉. As SC = 〈t〉 is of order 2, CGt(K) =
O(CGt(K))SC by Cyclic Sylow 2-Subgroups A.1.38. By 2.5.18, Gt = KSCGt(K)
and O(CGt (K)) = O(Gt) = 1, so Gt = KSC = H . Thus F ≤ Ggt = Hg = KgSgC ,
so AutKg (F ) ∼= S3, and hence 〈AutK(F ), AutKg (F )〉 is the parabolic in GL(F )
stabilizing 〈zG ∩ F 〉 = K ∩ F = E. As this group is transitive on F −E of order 4
and S ≤ Gt, we conclude |NG(F ) : NS(F )|2 ≥ 4, contradicting our earlier remark
that NS(F ) ∈ Syl2(NG(F )). Therefore |SC | > 2.

Suppose next that SC is abelian. From remarks at the start of the proof, either
SC is cyclic, or possibly SC ∼= E4 when H̄ ∼= M10. By 2.5.11.1, Z(S) ∩ SC = 〈t〉,
so SC 6≤ Z(S), and hence S 6≤ KSC . Indeed as |S̄ : S̄K | ≤ 2, |S : SKSC | = 2 and
CS(SC) = SKSC . Thus conjugating by x, also |S : CS(S

x
C)| = 2, so |S̄ : CS̄(S̄

x
C)| ≤

2. Hence as S̄ is dihedral or semidihedral of order at least 16, while SxC
∼= S̄xC is

abelian of order at least 4 by 2.5.5.1, we conclude S̄C is cyclic and S̄xC ≤ K̄. Since
SCS

x
C = SC×SxC by 2.5.5.1.2 we conclude SC×SxC ≤ SC×Y , where Y is the cyclic

subgroup of index 2 in SK , and CS(S
x
C) = SC × Y . This is impossible, as

CS(S
x
C) = CS(SC)

x ∼= CS(SC) = SC × SK ,

and SK is nonabelian.
This contradiction shows that SC is nonabelian. So again by our initial remarks,

either SC is dihedral of order at least 8, or H/SC ∼= M10 and SC ∼= Q8 or SD16.
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Set S0 = CS(SC). In any case, 〈t〉 = Z(SC) and SK ≤ S0, so as |S̄ : S̄K | ≤ 2,
|S0 : SK | ≤ 4 and hence zK ∈ [SK , SK ] ≤ [S0, S0] ≤ SK . Let Y be the cyclic
subgroup of index 2 in SK . Then Ω1(Y ) = 〈zK〉 and [S̄, S̄] ≤ Ȳ , so [S0, S0] ≤ Y
and hence Ω1([S0, S0]) = 〈zK〉. However SxC ≤ CS(SC) by 2.5.5.2, and hence
[SxC , S

x
C ] ≤ [S0, S0], so t

x = zK and z = tzK 6= zK . Therefore tzK /∈ tG in view of
2.5.11.2.

We next show that K is a component of CG(i) for each involution i ∈ SC . We
assume i is a counterexample and derive a contradiction: As z 6= zK , 2.5.19.4 says
K ∼= A6 and K < Ki E CG(i) with Ki

∼= A8 and t induces a transposition on
Ki. But then CKi(t)

∼= S6, whereas S ∈ Syl2(Gt) by 2.5.11.2, and no element of
S induces an outer automorphism in S6 on K since H̄ ∼= PGL2(9) or M10. This
contradiction shows K is a component of CG(i).

Next we claim that K E CG(i) for each involution i of CGt(K): For assume
u ∈ CG(i) with K 6= Ku. Then 〈K,Ku〉 = K × Ku as K is a component of
CG(i), and i 6= t by 2.5.20. Now 〈i, t〉 is not Sylow in Ku〈i, t〉 ∩ Gt, so 〈i, t〉
is not Sylow in CG(〈i, t〉K). On the other hand as S is Sylow in Gt, we may
assume CSC (i) ∈ Syl2(CGt(K〈t〉), a contradiction as SC is dihedral, semidihedral
or quaternion. This contradiction establishes the claim that K is normal in CG(i)
for each involution i of SC .

Now assume SC is not Q8; in this part of the proof we eliminate the shadows of
subgroups of PSL2(p) wr Z2. By our earlier remarks, either SC is dihedral of order
at least 8, or H/SC ∼=M10 and SC ∼= SD16. Recall from 2.5.5.1 that SC ∩ SxC = 1,
so K 6= Kx and SxC

∼= S̄xC . Since K ∼= L2(q) for q a Fermat or Mersenne prime or
9, we compute from the possibilities for H̄ ≤ Aut(K) that

K = 〈CK(j) : j an involution of SxC〉,

so that K ≤ NG(K
x) by the claim in the previous paragraph. By symmetry Kx

acts on K, so [K,Kx] = 1, so K is not A6 since G is quasithin. Thus K ∼= L2(p)
for p ≥ 7 a Fermat or Mersenne prime. Let K+ := KKx, M+ := NG(K+), and
S+ := S〈x〉.

Next S+ ≤ MK+, and as we saw that tx = zK ∈ K, t ∈ Kx. Then as K ∼=
L2(p) has one class of involutions, by a Frattini Argument, M+ = K+NM+(〈t, t

x〉).
Then as S ∈ Syl2(Gt), S+ ∈ Syl2(M+). Also CS(K+) = SC ∩ SxC = 1, and hence
CS+(K+) = 1 so CG(K+)) = O(CG(K+)). As K = K0, Gt = KSCGt(K) and
O(Gt) = 1 by 2.5.18. Then as Kx ≤ CG(K) ≤ Gtx since tx ∈ K, Kx is normal
in CG(K). Thus CG(K) = KxCG(K+) = KxO(CG(K+)) = KxO(NG(K)). Then
CGt(K) = CKx(K)O(NG(K)) = SxKO(NG(K)), so

Gt = KSO(NG(K)) = KSO(Gt) = KS = H ≤M+.

In particular K = O2(Gt).
We claim that tG ∩M+ is the set I of involutions in K ∪Kx. We saw earlier

that zK = tx and K has one class of involutions, so I ⊆ tG ∩M+. Furthermore
we saw that z = tzK = ttx, so that the diagonal involutions in K+ are in zG, and
hence these involutions are not in tG by 2.5.11.3. Thus if the claim fails, there is
i := tg ∈ S+−I, such that either i induces an outer automorphism on K or Kx, or
Kx = Ki. In the latter case, CK+(i) =: Ki

∼= K, so Ki = Kg since K = O2(Gt);

this is impossible as the involutions in Ki are in zG, while those in K are in tG.
Thus we may assume that i induces an outer automorphism on K.
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Suppose first that i either centralizes Kx or induces an outer automorphism on
Kx. If i induces an outer automorphism onKx, thenKx〈i〉 ∼= PGL2(p), so in either
situation, i centralizes an Eq2 -subgroup of K+, where q is an odd prime divisor of
p + ε, p ≡ ε mod 4, and ε = ±1. This is impossible, as K = O2(Gt) ∼= L2(p) is
of q-rank 1. Therefore i induces a nontrivial inner automorphism on Kx. Then
t ∈ CKx(i) ∼= Dp−ε centralizes CK(i) ∼= Dp+ε, so

t ∈ Φ( CKx(i)) ∩ CG(CK(i)) ) ≤ CGi(K
g),

since the centralizer in Aut(Kg) of a Dp+ε-subgroup of Kg is of order 2. Then
as K = O2(Gt), K

g = K, a contradiction as i centralizes Kg but not K. This
establishes the claim that I = tG ∩M+.

We’ve shown that tG ∩M+ = I, so tG ∩M+ = tM+ . We also showed that
Gt ≤ M+, so by 7.3 in [Asc94], t fixes a unique point in the representation of G
by right multiplication on G/M+. Therefore as T is nilpotent (cf. the proof of

2.2.2), T ≤ M+. Further M+ is the unique fixed point of each member of S#
K , so

SK ∪ SxK is strongly closed in T with respect to G. Thus the hypotheses of 3.4 in
[Asc75] are satisfied with SK , SxK , M+ in the roles of “A1, A2, H”, so that result
says G =M+, contradicting G simple.

We have reduced to the case where SC ∼= Q8. In particular H̄ ∼= M10. Now
SCS

x
C = SC × SxC by 2.5.5.2. Since SK ∼= D8, S̄

x
C 6≤ K̄, so H̄ = K̄S̄xC . Thus

[S̄xC , S̄K ] is the image of the cyclic subgroup Y of index 2 in SK . Then as SxC E S,
Y = [SxC , SK ] ≤ SxC , so S

x
C = Y 〈v〉 for v ∈ SxC − K. Then as [SC , S

x
C ] = 1 and

v induces an outer automorphism on K with v2 = zK ∈ Y ≤ K, it follows that
H = SC ×SxCK, so S = SC ×SxCSK with SxCSK a Sylow 2-subgroup of M10. Since
zK = tx, CS(S

x
C) = SC × Z(SxC) = SC〈tx〉, and hence

|CS(S
x
C)| = 16 < 32 = |CS(SC)|,

a contradiction as x acts on S. This finally completes the proof of 2.5.21. ¤

In view of 2.5.21, it only remains to eliminate the case H̄ ∼= Aut(A6). In
particular K ∼= A6 and SK ∼= D8.

Lemma 2.5.22. (1) If zg ∈ S for some g ∈ G, then K = [K, zg], and zg induces
an automorphism in S6 on K.

(2) H = Gt and CH(z) = S.

Proof. Assume zg ∈ S for some g ∈ G. Then as CGt(z
g) ∈ He by 1.1.3.2,

CK(zg) ∈ He using 1.1.3.1. Further K = K0 E Gt by 2.5.20, so since H̄ ∼= Aut(A6)
by 2.5.21, (1) follows.

Let C := CGt(K). By 2.5.18,Gt = KSC and C ∈ He. Thus R := O2(Gt) ≤ SC
andR E S. By 2.5.5.1, SC∩S

x
C = 1, so R ∼= R̄x E S̄. As S̄ is Sylow in H̄ ∼= Aut(A6),

it follows that either
(i) R̄ is abelian and m(R̄) ≤ 2, or
(ii) [R̄, R̄] =: Ȳ is the cyclic subgroup of index 2 in S̄K , and either m(R̄/Ȳ ) ≤ 2

or R̄ = S̄.
We conclude that Aut(R) is a {2, 3}-group, and hence C is a {2, 3}-group. However
as H is an SQTK-group, C is a 3′-group, so as F ∗(C) = O2(C), C is a 2-group.
Thus Gt = KSC = KS = H , so CH(z) = S as K ∼= A6. ¤

Lemma 2.5.23. U∗(H) = {(NS(Ei), NH(Ei)) : i = 1, 2}, where E1 and E2 are
the 4-subgroups of SK , and NS(Ei) ∈ Syl2(NH(Ei)).
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Proof. This follows from 2.5.12.3. ¤

Lemma 2.5.24. Φ(SC) 6= 1.

Proof. Assume Φ(SC) = 1, define E1 and E2 as in 2.5.23, and set Qi :=
O2

(
NH(Ei)

)
. Now S̄/S̄K ∼= E4 since H̄ ∼= Aut(A6) by 2.5.21, so that Φ(S) ≤

SKSC . Let Y denote the cyclic subgroup of SK of index 2. Then Y ≤ [SK , S] ≤

[S, S] ≤ Φ(S). Since Ȳ = Φ(S̄) ≥ Φ(S), Φ(S) ≤ Y ×SC . Then using the Dedekind
Modular Law, Φ(S) = Y ×ΦC , where ΦC := Φ(S)∩SC . In particular as Φ(SC) = 1,
Φ(Φ(S)) = Φ(Y ) = 〈zK〉, so by 2.5.13.2, z = zK ∈ K and tx = tzK = tz.

Next CS(Y ) = S1, where S̄1 is the modular subgroup M16 (see p. 107 in
[Asc86a]) of S̄. Thus

S+ := Ω1(CS(Φ(S))) = Ω1(CS1(ΦC)) is either SC〈z〉 or S0〈z〉

where S0 is the preimage in S of the subgroup generated by the transposition in
H̄ ∼= Aut(A6) centralizing Ȳ . Thus as SC ∩ SxC = 1 by 2.5.5.1 while x acts on
S+, we conclude as usual that m(SC) ≤ 2, with S+ = S0〈z〉 = SC × SxC in case of
equality.

Suppose the latter case holds. Then m(SC) = 2, and SxC contains an element
inducing a transposition on K. Thus A(S) = {Q1, Q2}, and Qi = SCS

x
CEi

∼=
E32. Further S is transitive on A(S), so by a Frattini Argument, we may take
x ∈ NT (S) ∩ NT (Qi) for each i, and hence NS(Ei) < NS(Ei)〈x〉, so NS(Ei) /∈
Syl2(NG(Qi)). But by 2.5.23, (NS(Ei), NH(Ei)) ∈ U∗(H), whereas 2.5.10.2 says
NS(Ei) is Sylow in NG(Qi). This contradiction eliminates the case m(SC) = 2.

Therefore m(SC) = 1, so as we are assuming SC is elementary abelian, in
fact SC = 〈t〉 is of order 2. Suppose first that Ex1 ≤ KSC . Then x acts on
S− := E1SC(E1SC)

x. If x does not normalize E1SC then A(S−) = {E1SC , E2SC},
so S is transitive on A(S−), and again by a Frattini Argument we may replace x by
x′ ∈ NT (S) ∩NT (SCE1), and assume x acts on E1SC . Thus x acts on E1SC and
hence on CS(E1SC) = Q1, allowing us to obtain a contradiction as in the previous
paragraph.

Thus Ex1 6≤ SCSK . We showed z = zK , so E
#
1 ⊆ zG. Therefore by 2.5.22.1,

ex induces a transposition on K ∼= A6 for some e ∈ E1 − 〈z〉. Now some conjugate
v of ex in SKe

x centralizes SK , so Qi = SC × Ei〈v〉 ∼= E16, and S is transitive on
A(S) = {Q1, Q2}, so by a Frattini Argument we may choose x ∈ NT (S)∩NT (Qi),
leading to the same contradiction as in the two previous paragraphs. ¤

Lemma 2.5.25. tx = zK and z = tzK.

Proof. Assume otherwise. Then by 2.5.11.1, z = zK , tx = tzK , and 〈t〉 =
Z(S) ∩ SC , so 〈tx〉 = Z(S) ∩ SxC . But SK ∩ SxC is normal in S, so if 1 6= SK ∩ SxC
then 1 6= Z(S) ∩ SK ∩ SxC , contradicting t

x = tzK . Hence SK ∩ SxC = 1. Thus
[SK , S

x
C ] ≤ SK ∩ S

x
C = 1, so SxC ≤ CS(SK) =: S0, and hence SxC is isomorphic

by 2.5.5.1 to a subgroup of S̄0 ∼= E4, whereas SC is not elementary abelian by
2.5.24. ¤

Lemma 2.5.26. m2(SC) = 1.

Proof. Assume m2(SC) > 1. In the first few paragraphs of the proof, we will
establish the claim that K is a component of CG(i) for each involution i ∈ SC .
Assume otherwise; by 2.5.18, i 6= t, and by 2.5.19.2, CSC (i) = 〈i, t〉. Further
z 6= zK by 2.5.25, so by 2.5.19.4, K ≤ Ki E CG(i) where Ki

∼= A8, and t induces a
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transposition on Ki. As CSC (i) = 〈i, t〉, SC is dihedral or semidihedral by a lemma
of Suzuki (cf. Exercise 8.6 in [Asc86a]), so as SC is not elementary abelian by
2.5.24, |SC | ≥ 8. Using 2.5.5.2, SxC ≤ CS(SC) ≤ CS(i). However, as CSC (i) = 〈i, t〉,
KiCS(i) ∼= 〈i〉×S8. Therefore a Sylow 2-subgroup of KiCS(i)∩CG(t) is isomorphic
to E8×D8, which contains no D16 or SD16-subgroup, so SC ∼= D8. Hence |S| = 28

since H̄ ∼= Aut(A6) by 2.5.21.
Let V denote the cyclic subgroup order 4 in SC . By 2.5.22.2 Gt = KS, so

V E Gt, and thus V is a TI-set in G. Hence as V is not elementary abelian,
〈V G ∩ T 〉 is abelian by I.7.5.

Assume V g ≤ T for some g ∈ G. Then by the previous paragraph, V g ≤
CT (V ) = CS(V ) and hence Φ(V g) ≤ Φ(S) ≤ SKSC since S̄/S̄K ∼= E4. Now no
involution in S̄K−〈z̄〉 is a square in S̄, so no involution in SKSC−〈z〉SC is a square
in S. Hence

〈tg〉 = Φ(V g) ≤ Ω1(C〈z〉SC (V )) = Ω1(V 〈z〉) = 〈t, z〉.

Therefore tg ∈ tG ∩ 〈t, z〉, so that tg is t or tx by 2.5.11. Hence V g is either V or
V x.

Since V G ∩ T = {V, V x}, V V x E T , so Ω1(V V
x) = 〈t, tx〉 E T . Then as

S ∈ Syl2(Gt) by 2.5.11.2, |T | = 2|S| = 29.
Let H0 := Ki〈i, t〉, Ti ∈ Syl2(H0), and Ti ≤ T g for suitable g ∈ G. As Ki is

a component of CG(i), H0 6≤ Mg by 1.1.3.2. As H0
∼= Z2 × S8, H0 = 〈H1, H2〉,

where H1 and H2 are the maximal 2-locals of H0 over Ti; thus we may assume

H1 6≤ Mg. As |Ti| = 28 = |T |/2, T g
−1

i ∈ β by 2.3.10, so (T g
−1

i , Hg−1

1 ) ∈ U(Hg−1

1 )

and Hg−1

1 ∈ Γ from the definitions in Notation 2.3.4 and Notation 2.3.5. Then by

2.3.7.1, Hg−1

1 ∈ Γe0, contrary to the hypothesis of this section. This contradiction
finally completes the proof of the claim.

By the claim, K is a component of CG(i) for each involution i ∈ SC . Further
K E CG(i) by 1.2.1.3. Recall tx = zK and SCS

x
C = SC × SxC , so for any i ∈ SC

distinct from t, ix /∈ txSC = zKSC . Therefore from the 2-local structure of Aut(A6),
CK(ix) 6≤ SK . Hence as S = CKS(t

x) is a maximal subgroup of KS,

KS = 〈CKS(t
x), CKS(i

x)〉 ≤ NG(K
x)

using the claim. By symmetry, Kx acts on K, and K 6= Kx as tx centralizes Kx

but not K. Therefore [K,Kx] = 1, a contradiction as m2,3(KK
x) ≤ 2 since G is

quasithin. This contradiction completes the proof of 2.5.26. ¤

Lemma 2.5.27. SC ∼= Z4, Z8, or Q8.

Proof. By 2.5.26, m2(SC) = 1; by 2.5.24, SC is not elementary abelian; and
by 2.5.5.1, SC ∼= SxC is isomorphic to a subgroup of S̄. Thus the lemma holds as the
three groups listed in the lemma are the only subgroups X of S̄ ∈ Syl2(Aut(A6))
of 2-rank 1 with Φ(X) 6= 1. ¤

We are now ready to complete the proof of Theorem 2.1.1.
By 2.5.27 there is a cyclic subgroup V of SC of order 4 normal in S. Let Y

be cyclic of order 4 in SK , and S0 the preimage in S of the subgroup generated
by the transposition in CS̄(S̄K). As V E S, V x E S, so V̄ x E S̄ and hence
V̄ x/〈z̄〉 ≤ Z(S̄/〈z̄〉) = Ȳ S̄0/〈z̄〉. Therefore V̄ xS̄0 = Ȳ S̄0. Let E be a 4-subgroup
of SK and e ∈ E − 〈zK〉. As V̄ xS̄0 = Ȳ S̄0 and ē inverts Ȳ , ē inverts V̄ x, and
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hence e inverts V x and centralizes SC . Therefore e
x inverts V and centralizes SxC ,

so ex /∈ SK as SK centralizes V .
As SK E S and x acts on S, SK ∩ SxK E S. However tx = zK by 2.5.25, so

Z(S) ∩ SK ∩ S
x
K ≤ Z(SK) ∩ Z(SxK) = 〈t

x〉 ∩ 〈t〉 = 1,

and hence SK ∩ SxK = 1. Thus [SK , e
x] ≤ [SK , S

x
K ] ≤ SK ∩ SxK = 1, so ēx ∈

Ω1(CS̄(S̄K)) = S̄0〈z̄〉. Hence as e ∈ K centralizes SC ,

S̄xC ≤ CS̄(ē
x) = CS̄(S̄0) = S̄0 × S̄K ∼= Z2 ×D8.

Thus as SxC
∼= S̄xC by 2.5.5.1, and Z2 × D8 contains no Q8 or Z8 subgroups, we

conclude from 2.5.27 that SC = V ∼= Z4, and hence |S| = 27.
Next A := E ×Ex = 〈t, tx, e, ex〉 ∼= E16, and

NH(A) = 〈e
x, V 〉 ×NK(E) ∼= D8 × S4,

as ex inverts V and centralizes NK(E). It follows that NHx(A) ∼= D8 × S4
and I := 〈NH(A), x〉 acts on A. Now NS(A) = NS(E) ∈ U∗(H) by 2.5.23, so
(NS(A), NH(A)) ∈ U(I) ⊆ U(NG(A)) from the definitions in Notation 2.3.4. As
T ∩ I contains 〈NS(A), x〉 of order 27 = |S| where S ∈ Syl2(H) for H ∈ Γ∗, and U
has maximal order in U , from the maximality of these groups in the definition of
Γ∗ in Notation 2.3.5, also NG(A) ∈ Γ∗ ⊆ Γ0. This is impossible: for z ∈ A, so that
A ∈ Se2(G) by 1.1.4.2; hence NG(A) ∈ He, so that NG(A) ∈ Γe0, contradicting our
hypothesis in this section that Γe0 = ∅.

This contradiction completes the proof of Theorem 2.1.1.



CHAPTER 3

Determining the cases for L ∈ L∗f(G, T )

By Theorem 2.1.1, we may assume in the remainder of the proof of our Main
Theorem that the Sylow 2-subgroup T of our QTKE-groupG is contained in at least
two distinct maximal 2-local subgroups. Thus we may implement the Thompson
amalgam strategy described in the outline in the Introduction to Volume II: We
chooseM ∈M(T ) to contain a uniqueness subgroup of the sort considered in 1.4.1,
and choose a 2-local subgroup H not contained in M . Indeed we may choose H
minimal subject to this constraint:

Definition 3.0.1. H∗(T,M) denotes the members of H(T ) which are minimal
subject to not being contained in M .

In this chapter, we establish two important technical results, and define and
begin to analyze the Fundamental Setup, which will occupy us for most of the proof
of the Main Theorem.

We begin in section 3.1 by proving Theorem 3.1.1 and various corollaries of that
result. Theorem 3.1.1 ensures that suitable pairs of subgroups are contained in a
common 2-local subgroup of G. We appeal to this theorem and its corollaries many
times during the proof of the Main Theorem, but most particularly in applying
Stellmacher’s qrc-lemma D.1.5, and in proving the main result of section 3.3.

In section 3.2 we define the Fundamental Setup and use the qrc-lemma to
determine the cases that can arise there. A discussion of this important part of the
proof can be found in the introduction to section 3.2.

Finally in section 3.3, we prove that if L is in L∗(G, T ) or Ξ∗(G, T ) with M :=
!M(〈L, T 〉) as in 1.4.1, then NG(T ) ≤M . We use this result often, most frequently
via its important consequence that each H ∈ H∗(T,M) is a minimal parabolic in
the sense of Definition B.6.1.

3.1. Common normal subgroups, and the qrc-lemma for QTKE-groups

In this section we assume G is a simple QTKE-group, T ∈ Syl2(G), Z :=
Ω1(Z(T )), and M ∈ M(T ). We derive various consequences for QTKE-groups
from Theorem C.5.8 of Volume I, in one case by applying the result in conjunction
with the qrc-lemma D.1.5. We begin with a restatement of Theorem C.5.8.

Theorem 3.1.1. Assume that M0, H ∈ H(T ), T is in a unique maximal sub-
group of H, and 1 6= R ≤ T with R ∈ Syl2(O2(H)R) and R E M0. Then there is
1 6= R0 ≤ R with R0 E 〈M0, H〉.

Proof. We verify the hypotheses of Theorem C.5.8, most particularly Hypoth-
esis C.5.1: As H ∈ H(T ), F ∗(H) = O2(H) by 1.1.4.6, and as G is a QTKE-group,
m3(H) ≤ 2. By the hypotheses of Theorem 3.1.1, T is in a unique maximal sub-
group of H—completing the verification of C.5.1.1. Again by those hypotheses,

571
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R E M0 and R ∈ Syl2(O
2(H)R), so C.5.1.2 holds. Thus Hypothesis C.5.1 is

indeed satisfied, while by the hypotheses of this section, T ∈ Syl2(G) and G is a
simple QTKE-group, supplying the remaining hypotheses of Theorem C.5.8. Of
course the conclusion of C.5.8 is the existence of a nontrivial normal subgroup of
〈M0, H〉 contained in R, so Theorem 3.1.1 is established. ¤

We sometimes use the following easy observation:

Lemma 3.1.2. If T ≤ Y ≤ H ∈ H(T ), then also Y ∈ H(T ) ⊆ He.

Proof. As H ∈ H, O2(H) 6= 1. Further T ∈ Syl2(Y ), so 1 6= O2(H) ≤ O2(Y )
by A.1.6, and hence also Y ∈ H. Finally Y ∈ He by 1.1.4.6. ¤

In view of Theorem 2.1.1, we may assume that our fixed M ∈M(T ) is not the
unique maximal 2-local subgroup of G containing T , so that H∗(T,M) is nonempty.
During the remainder of our proof of our Main Theorem, we typically implement
the Thompson amalgam strategy exploiting the interaction ofM with some member
of H∗(T,M).

Recall also from Definition B.6.2 that a subgroup X of G is in UG(T ) if T is

contained in a unique maximal subgroup of X ; and X is in ÛG(T ) if X ∈ UG(T )
and T is not normal in X . In the terminology of Definition B.6.1, the members of
ÛG(T ) are called minimal parabolics.

As mentioned in the Introduction to Volume II and at the start of this chapter,
once we have established Theorem 3.3.1 in the final section of this chapter, part (2)
of the next lemma will ensure that members of H∗(T,M) are minimal parabolics
for suitable choices of M .

Lemma 3.1.3. Assume H ∈ H∗(T,M). Then

(1) H ∩ M is the unique maximal subgroup of H containing T . That is,
H∗(T,M) ⊆ UG(T ).

(2) If NG(T ) ≤M or H is not 2-closed, then H ∈ ÛG(T ). Thus H is a minimal
parabolic, and so is described in B.6.8, and in E.2.2 if H is nonsolvable.

Proof. Since H 6≤ M , T ≤ H ∩ M < H . If T ≤ Y < H , then by 3.1.2,
Y ∈ H(T ); thus Y ≤ H ∩M by the minimality of H in the definition of H∗(T,M),
so that (1) holds. If NG(T ) ≤M or H is not 2-closed, then T is not normal in H ,
so (2) holds. ¤

Lemma 3.1.4. Assume that H ≤ G and V is an elementary abelian 2-subgroup
of H ∩M such that V is a TI-set under M with NG(V ) ≤M and H ≤ NG(U) for
some 1 < U ≤ V . Then

(1) H ∩M = NH(V ).
(2) H 6≤M iff H 6≤ NG(V ), in which case H ∩M = NH(V ) < H.

Proof. As we assume NG(V ) ≤ M , NH(V ) ≤ H ∩M . Conversely as V is a
TI-set in M , NM (U) ≤ NM (V ). Then as H ≤ NG(U) by hypothesis, H ∩M =
H ∩NM (U) ≤ NH(V ), so that (1) holds. Then (2) follows. ¤

Usually we will apply Theorem 3.1.1 under one of the hypotheses in Hypothesis
3.1.5—which will hold in the Fundamental Setup (3.2.1).

Recall from Definition B.2.11 the set R2(M0) of 2-reduced modules forM0 from
the Introduction to Volume II, and see the discussion in chapter B of Volume I.
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Hypothesis 3.1.5. T ≤M0 ≤M , H ∈ H∗(T,M), and V ∈ R2(M0) such that
R := O2(M0) = CT (V ). Further either

(I) H ∩M ≤ NG(O
2(M0)), or

(II) H ∩M ≤ NG(V ).

Observe that Hypothesis 3.1.5 includes the hypotheses of Theorem 3.1.1, other
than the condition that R ∈ Syl2(O

2(H)R): For example, T is in a unique maximal
subgroup of H by 3.1.3.1.

The next result is a corollary to Stellmacher’s qrc-lemma D.1.5 using Theorem
3.1.1.

Theorem 3.1.6. Assume Hypothesis 3.1.5. Then one of the following holds:

(1) There exists 1 6= R0 ≤ R such that R0 E 〈M0, H〉.
(2) V 6≤ O2(H) and q̂(M0/CM0(V ), V ) ≤ 2. If in addition V is a TI-set under

M , then in fact q̂(M0/CM0(V ), V ) < 2.
(3) q(M0/CM0(V ), V ) ≤ 2.

Proof. Assume that conclusion (1) does not hold. We verify Hypothesis D.1.1,
with M0, H in the roles of “G1, G2”: By Hypothesis 3.1.5, T lies in both M0 and
H—so it is Sylow in both, since it is Sylow in G. By 3.1.5, V ∈ R2(M0) and
H ∈ H∗(T,M), so that H ∩ M is the unique maximal overgroup of T in H by
3.1.3.1, giving (1) of D.1.1. By 3.1.5, R = O2(M0) = CT (V ), which is (2) of D.1.1.
Finally, our assumption that (1) fails is (3) of D.1.1. Thus we may apply the qrc-
Lemma D.1.5, to see (on combining its conclusions (2) and (4) in conclusion (ii)
below) that one of the following holds:

(i) V 6≤ O2(H).
(ii) q(M0/CM0(V ), V ) ≤ 2.
(iii) V is a dual FF-module.
(iv) R ∩ O2(H) E H , and U := 〈V H〉 is elementary abelian.

Observe in case (ii) that conclusion (3) of Theorem 3.1.6 holds, so we may assume
that (ii) fails, and it remains to treat cases (i), (iii), and (iv).

Suppose case (iii) holds and let V ∗ be the dual of V as an M0-module. Then
V ∗ is a faithful F2-module for AutM0(V

∗) ∼= AutM0(V ), so O2(AutM0(V
∗)) = 1

since V ∈ R2(M0). As (iii) holds, J∗ := J(AutM0(V
∗), V ∗) 6= 1. Also M0 is an

SQTK-group using our QTKE-hypothesis, and hence so is the preimage in M0 of
J∗. Therefore Hypothesis B.5.3 is satisfied with J∗, V ∗ in the role of “G, V ”, so we
may apply B.5.13 to see that conclusion (3) again holds, completing the treatment
of case (iii).

As we are assuming that (ii) fails, q(M0/CM0(V ), V ) > 1, so we may apply
D.1.2. By (2) and (3) of D.1.2,

J(T ) = J(R) 6≤ O2(H).

By (4) of D.1.2, H is a minimal parabolic in the sense of Definition B.6.1, and is
described in B.6.8.

In case (i), we argue that conclusion (2) holds: We will apply E.2.13, so we
need to verify that Hypothesis E.2.8 is satisfied with H ∩M in the role of “M”,
and that F ∗(H) = O2(H). We just saw that H is a minimal parabolic in the
sense of Definition B.6.1, and is described in B.6.8. As H ∈ H(T ), using our
QTKE-hypothesis and 1.1.4.6, H is an SQTK-group with F ∗(H) = O2(H). By



574 3. DETERMINING THE CASES FOR L ∈ L∗f (G,T )

Hypothesis 3.1.5, V ∈ R2(M0), so V is elementary abelian, normal in T , and
contained in Ω1

(
Z(O2(M0))

)
. Further T ≤ M0 ≤ M so that O2(M) ≤ O2(M0)

by A.1.6; and M ∈ M(T ) ⊆ He since G is of even characteristic. Therefore
V ≤ CM (O2(M)) ≤ O2(M), and hence V ≤ O2(H ∩M). Finally V 6≤ O2(H) in
case (i), and O2(H) = kerH∩M (H) by B.6.8.5. This completes the verification of the
hypothesis of E.2.13. Hence we conclude from E.2.13.3, that q̂(AutH(V ), V ) ≤ 2.
Therefore since T is Sylow in both H and M0, q̂(M0/CM0(V ), V ) ≤ 2. Further
if V is a TI-set under M , then we have the hypotheses for E.2.15, so that result
shows that q̂(AutH(V ), V ) < 2, and hence q̂(M0/CM0(V ), V ) < 2. Thus (2) holds,
as claimed.

Thus we may assume that cases (i)–(iii) do not hold. In particular, case (iv)
holds; and as (i) fails, now V ≤ O2(H). By our observation following Hypothesis
3.1.5, it suffices to prove that R ∈ Syl2(O

2(H)R), since then Theorem 3.1.1 shows
that conclusion (1) of Theorem 3.1.6 holds.

Set QH := O2(H), K := O2(H), and H∗ := H/QH . As case (iv) holds,
Q := R ∩ QH E H , so as CT (V ) = R and V ≤ QH by the previous paragraph,
V ≤ Z(Q). Therefore U ≤ Z(Q).

We saw earlier that J(T ) = J(R) 6≤ QH , and H is a minimal parabolic
described in B.6.8. Now by Hypothesis 3.1.5, QH ≤ T ≤ M0 ≤ NG(R), so
[QH , J(R)] ≤ QH ∩ R = Q, and hence [K, J(R)]J(R) centralizes QH/Q. Next
[K, J(R)]J(R) is normal in KT = H , but J(R) 6≤ QH , so K ≤ [K, J(R)]J(R) by
B.6.8.4, and then K centralizes QH/Q. Therefore [O2(K),K] ≤ Q.

If K centralizes U then K centralizes V , so CT (V ) = R is Sylow in CG(V ) and
hence R is Sylow in KR, which as we observed earlier suffices to complete the proof.
Thus we may assume that K does not centralize U . Then CH (U) ≤ kerH∩M (H)
and CT (U) = CQH (U) by B.6.8.6.

As J(R) 6≤ QH , there is someA ∈ A(R) with A∗ 6= 1. As A ≤ R and U ≤ Z(Q),
A∩QH = A∩Q ≤ CA(U), so A∩QH = CA(U) by the previous paragraph. Then as
A ∈ A(R), rA∗,U ≤ 1 by B.2.4.1. Now U might not be inR2(H), but each nontrivial
H-chief section W on U is an irreducible for H/CH(W ), so that O2(H/CH(W )) =
1. Furthermore CH(W ) ≤ kerH∩M (H) and CT (W ) = CQH (W ) by B.6.8.6, so
m(A∗) = m(AutA(W )) and hence rAutA(W ),W ≤ rA∗,U ≤ 1. Therefore W is an
FF-module for AutH(W ). Hence by B.6.9 and E.2.3, m(W/CW (A∗)) = m(A∗),
K = K1 or K1K2, and [W,Ki] is the natural module for K∗i

∼= L2(2
n), A3, or

A5. Furthermore as m(U/CU (A)) ≤ m(A∗) = m(W/CW (A∗)), we conclude Ki has

a unique noncentral chief factor Ũi on U , where Ũi = Ui/CUi(Ki) is the natural
module for K∗i , and [U,Ki] = Ui.

Set B := H ∩M and observe that B is solvable: This is clear if H is solvable,
while if H is not solvable then by E.2.2 and the previous paragraph, B∗ ∩K∗ is a
Borel subgroup of K∗, and in particular B is solvable. By Hypothesis 3.1.5, either
(I) holds and B normalizes L := O2(M0), or (II) holds and B normalizes V . In case
(I), let D := CB(L/O2(L)), and in case (II), let D := CB(V ). Then B normalizes
D in either case.

We claim that R is Sylow in D, and D E B: In case (II), R = CT (V ) is Sylow
in CG(V ), and hence also in CB(V ) = D. As B normalizes V in (II), D E B.
In case (I), we apply parts (4) and (5) of A.4.2 with L, M0 in the roles of “X ,
M”, to see that R = O2(M0) is Sylow in CM0(L/O2(L)). Hence R is also Sylow in
CB(L/O2(L)) = D. As B normalizes L in (I), D E B.



3.1. COMMON NORMAL SUBGROUPS, AND THE qrc-LEMMA FOR QTKE-GROUPS 575

Let Y denote a Hall 2′-subgroup of B. As D E B by the previous paragraph,
YD := Y ∩D is also Hall in D, so D = YDR = RYD. Further Y ≤ B ≤ NG(D), so

Y R = Y YDR = Y D = DY = RYDY = RY.

Then R is Sylow in the group Y R, and Y normalizes O2(Y R) ≤ R.
We claim that T ∩K ≤ R; this is the crucial step in showing that R is Sylow

in RK, and hence in completing the proof. Since T is transitive on the groups
Ki, it suffices to show that Ti := T ∩ Ki ≤ R for some i. Let Qi := O2(Ki),
T0 := NT (Ki), Yi := Y ∩ Ki, and KiT0 := KiT0/O2(KiT0). Then A ≤ T0 by
B.1.5.4, and as A 6≤ QH , while K

∗
i is quasisimple or of order 3, we may choose i so

that Ki = [Ki, A]. Next

Pi := [Qi,Ki] ≤ Qi ≤ Q ≤ R. (∗)

But if K∗i
∼= A3 then Pi = Qi ∈ Syl2(Ki) since Ki = O2(Ki), so that Ti = Pi ≤ R

by (*), as claimed.

Suppose next that Ũi is the natural module for K∗i
∼= L2(2

n) with n > 1.
Then by B.4.2.1, the FF ∗-offender Ā is Sylow in K̄i, so that Ti ≤ J(R)Qi with
J(R) ≤ O2(YiT0). Thus J(R) ≤ O2(Y T0), so

J(R) ≤ O2(Y T0) ∩ Y R ≤ O2(Y R) ≤ R,

so Y acts on J(O2(Y R)) = J(R) using B.2.3.3, and hence again using (*),

Ti = [J(R), Yi]Pi ≤ RPi ≤ R.

Finally if Ui is the natural module for Ki
∼= A5, then by B.3.2.4, the FF ∗-

offender Ā is generated by one or two transpositions. Thus [A, Ti] ≤ R∩Ki =: Ri,
so as [A, Ti] 6≤ Qi, (*) says

Ti = 〈R
Yi
i 〉Pi = RiPi ≤ R.

We have established the claim that T ∩ K ≤ R. Since T is Sylow in H and
KEH , T ∩K is Sylow in K, so R is Sylow in RK, completing the proof of Theorem
3.1.6. ¤

The next result is another corollary of Theorem 3.1.1, in the same spirit as
Theorem 3.1.6. Recall that Z is Ω1(Z(T )), and the Baumann subgroup of T from
Definition B.2.2 is Baum(T ) = CT

(
Ω1(Z(J(T )))

)
.

Lemma 3.1.7. Assume Hypothesis 3.1.5, with J(T ) ≤ R. Then either

(1) Z ≤ Z(H) and Z(M0) = 1, or
(2) There is 1 6= R0 ≤ R with R0 E 〈M0, H〉.

Proof. By hypothesis J(T ) ≤ R = CT (V ). Then J(T ) = J(R) and S :=
Baum(T ) = Baum(R) by B.2.3.5 with V in the role of “U”. Therefore if J(T ) E H ,
then (2) holds with J(T ) in the role of “R0”. Thus we may assume J(T ) is not

normal in H , so H is not 2-closed. Hence H ∈ ÛG(T ) and H is described in B.6.8
by 3.1.3.

Suppose Z ≤ Z(H). If Z(M0) = 1 then conclusion (1) holds, so we may
assume Z(M0) 6= 1. By Hypothesis 3.1.5, M0 ∈ H(T ), and hence M0 ∈ He by
1.1.4.6. Therefore Z(M0) is a 2-group, so Ω1(Z(M0)) ≤ Z ≤ Z(H), and hence
conclusion (2) holds with Ω1(Z(M0)) in the role of “R0”.

Thus we may assume that Z 6≤ Z(H). Let UH := 〈ZH〉 and K := O2(H). As
H = KT , K 6≤ CH(Z), so K 6≤ CH(UH). We saw in the previous paragraph that
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H ∈ He, so UH ∈ R2(H) by B.2.14. As K 6≤ CH(UH), CH(UH) ≤ kerM∩H(H)
by B.6.8.6, and CH(UH) is 2-closed by B.6.8.5. So as J(T ) is not normal in H ,
J(T ) 6≤ CH(UH). Hence by E.2.3, K = K1 · · ·Ks, with s = 1 or 2, T permutes the
Ki transitively, K1/CK1(UH)

∼= L2(2
n), A3, or A5, S = Baum(T ) = Baum(R) acts

on Ki, and either S is Sylow in KiS, or [UH ,Ki] is the A5-module for Ki/O2(Ki).
In the latter case, by E.2.3.3, S is of index 2 in a Sylow 2-group Si of SKi and
Si ≤ 〈SKi∩M 〉. Then by an argument near the end of the proof of 3.1.6, Si ≤ R. So
in either case, R ∩K ∈ Syl2(K), and hence R ∈ Syl2(KR). As we observed after
Hypotheses 3.1.5, this is sufficient to establish the hypotheses of Theorem 3.1.1.
Hence conclusion (2) holds by that result, completing the proof. ¤

Finally we extend Theorems 3.1.6 and 3.1.7, by bringing uniqueness subgroups
into the picture:

Theorem 3.1.8. Assume L0 = O2(L0) E M with M = !M(L0T ), and V ∈
R2(L0T ) such that O2(L0T ) = CT (V ). Then

(1) q̂(L0T/CL0T (V ), V ) ≤ 2.
(2) Either

(i) q(L0T/CL0T (V ), V ) ≤ 2, or
(ii) For each H ∈ H∗(T,M), V 6≤ O2(H). If in addition V is a TI-set

under M , then q̂(L0T/CL0T (V ), V ) < 2.

(3) Either:

(i) J(T ) 6≤ CT (V ), so V is an FF-module for L0T/CL0T (V ), or
(ii) J(T ) ≤ CT (V ), Z ≤ Z(H) for each H ∈ H∗(T,M), and Z(L0T ) = 1.

Proof. Set M0 := L0T , and consider any H ∈ H∗(T,M). Observe that case
(I) of Hypothesis 3.1.5 holds. Further asM = !M(M0) andH 6≤M , O2(〈M0, H〉) =
1. In particular, neither conclusion (1) of Theorem 3.1.6, nor conclusion (2) of 3.1.7
holds. Therefore since q̂(AutL0T (V ), V ) ≤ q(AutL0T (V ), V ) from the definitions
B.1.1 and B.4.1, we conclude from Theorem 3.1.6 that conclusions (1) and (2) of
Theorem 3.1.8 hold.

If J(T ) 6≤ CT (V ), then conclusion (i) of (3) holds by B.2.7. On the other hand,
if J(T ) ≤ CT (V ), then by the previous paragraph, conclusion (1) of 3.1.7 holds, so
conclusion (ii) of (3) is satisfied. ¤

In certain situations we will require a refinement of the qrc-Lemma making use
of information in D.1.3 and definition D.2.1.

Lemma 3.1.9. Assume case (II) of Hypothesis 3.1.5 holds, with H ∈ H∗(T,M).
Further assume:

(a) q
(
M0/CM0(V ), V

)
= 2.

(b) M = !M(M0).
(c) V ≤ O2(H).
(d) V is not a dual FF-module for M0.

Set UH := 〈V H〉 and Z := Ω1(Z(T )). Then UH is elementary abelian, and

(1) H has exactly two noncentral chief factors U1 and U2 on UH .
(2) There exists A ∈ A(T ) = A(CT (V )) with A 6≤ O2(H), and for each such A

chosen with AO2(H)/O2(H) minimal, A is quadratic on UH .
(3) For A as in (2), set B := A ∩ O2(H). Then B = CA(Ui),

2m(A/B) = m(UH/CUH (A)) = 2m(B/CB(UH)),
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2m(B/CB(V
h)) = m(V h/CV h(B))

for each h ∈ H with [V h, B] 6= 1, m(A/B) = m(Ui/CUi(A)), and CUH (A) =
CUH (B).

(4) Define

m := min{m(D) : D ∈ Q(AutM (V ), V )}.

Then m(A/B) ≥ m.
(5) Assume O2(CM (Z)) ≤ CM (V ). Then H/CH(Ui) ∼= S3, S3 wr Z2, S5, or

S5 wr Z2, with Ui the direct sum of the natural modules [Ui, F ], as F varies over
the S3-factors or S5-factors of H/CH(Ui). Further J(H)CH (Ui)/CH(Ui) ∼= S3,
S3 × S3, S5, or S5 × S5, respectively.

(6) Assume that each {2, 3}′-subgroup of CM (Z) permuting with T centralizes
V , m ≥ 2, and each subgroup of order 3 in CM (Z) has at least three noncentral
chief factors on V . Then H/CH(Ui) ∼= S3 wr Z2.

Proof. Observe that hypothesis (a) implies:

(a’) V is not an FF-module for M0.

We will first show that (a’) and (b)–(d) lead to the hypotheses of the qrc-lemma
D.1.5.

Set R := CT (V ). By (a’), J(T ) ≤ CT (V ) = R. Thus the hypothesis of Theorem
3.1.7 holds, and by B.2.3.3, J(T ) = J(R).

Next by (b), there is no 1 6= R0 ≤ R with R0 E 〈M0, H〉. Thus conclusion
(1) of Theorem 3.1.7 holds, so that Z ≤ Z(H), and in particular H ∩M ≤ CG(Z).
Further J(T ) is not normal in H , so we conclude from 3.1.3.2 that H is a minimal
parabolic in the sense of Definition B.6.1. Also (as at the start of the proof of
Theorem 3.1.6) Hypothesis D.1.1 holds with M0, H in the roles of “G1, G2”. Thus
we can appeal to results in section D.1, and in particular to the qrc-lemma D.1.5.

Observe that (c) rules out conclusion (1) of D.1.5, and (a’) and (d) rule out
conclusions (2) and (3), respectively. We rule out conclusion (5) of D.1.5 just as in
the proof of 3.1.6, using (c) to eliminate case (i) in that proof. Thus conclusion (4)
of D.1.5 holds, so UH is abelian, and H has more than one noncentral chief factor
on UH . This last condition together with (c) and (a’) are the hypotheses of D.1.3.
Furthermore (a’) gives the hypothesis of D.1.2, so by part (4) of that result, H is a
minimal parabolic in the sense of Definition B.6.1, and is described in B.6.8.

Next (a) supplies the hypothesis of part (3) of D.1.3. Then (1) follows from
D.1.3.3. We saw earlier that J(T ) = J(R), so by D.1.3.2 there is A ∈ A(T ) with
A 6≤ O2(H) and A quadratic on UH . Indeed from the proof of D.1.3.2, our choice of
A ∈ A(T )−A(O2(H)) with AO2(H)/O2(H) minimal guarantees that A is quadratic
on UH , and that B := A∩O2(H) = CA(Ui) for i = 1, 2. Thus (2) holds, and D.1.3
establishes the remaining assertions of (3).

By (3), m(V h/CV h(B)) = 2m(B/CB(V
h)), and B is quadratic on V h by (2),

so AutB(V
h) ∈ Q(AutMh(V h), V h) by (a). Thus

m ≤ m(B/CB(V
h)) ≤ m(B/CB(UH)) = m(A/B),

establishing (4).
Set H∗ := H/CH(Ui). As H is irreducible on Ui, O2(H

∗) = 1, so Ui ∈ R2(H).
AsB = CA(Ui) andm(A/B) = m(Ui/CUi(A)) by (3), A

∗ ∼= A/B is an FF∗-offender
on Ui. Therefore by B.6.9, H = Y T where Y := J(H,V ), Y ∗ = Y ∗1 × · · ·×Y

∗
s , and

Ui = Ui,1 ⊕ · · · ⊕ Ui,s with Ui,j the natural module for Y ∗j
∼= L2(2

n) or S2k+1. By
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A.1.31.1, s ≤ 2; by E.2.3.2, if Y ∗j is a symmetric group, then Y ∗j is S3 or S5; and
in any case H ∩M is the product of T with the preimages of the Borel subgroups
over T ∗∩Y ∗j in Y ∗j . Further if s = 2, then as Ui is irreducible under H , {Ui,1, Ui,2}
is permuted transitively by T .

Assume for the moment that Y ∗j
∼= L2(2

n) with n > 1 and some Ui,j the natural
module. Then by B.4.2.1, A∗ is Sylow either in Y ∗ or in some Y ∗j . Now A∗ is also
an FF∗-offender on U3−i, and B.4.2 says that the only other possible FF∗-module
for Y ∗j is the A5-module when n = 2, whereas the FF∗-offenders on that module
are not Sylow in Y ∗j . Thus in any case U1 is Y -isomorphic to U2.

Let K := O2(H), and W an H-submodule of UH maximal subject to U0 :=
[UH ,K] 6≤ W . Set U+

H := UH/W . Thus U+
0 6= 0, H is irreducible on U+

0 , and

CU+
H
(K) = 0. As UH = 〈V H〉, U+

H = 〈V +H〉, so V +
0 := CV +(T ) 6= 0. As CU+

H
(K) =

0, V +
0 ≤ U+

0 using Gaschütz’s Theorem A.1.39. As H is irreducible on U+
0 , we may

take U1 = U+
0 . Further

0 6= V +
0 ≤ CU1(J(R)

∗), (∗)

and as case (II) of Hypothesis 3.1.5 holds,

H ∩M acts on V +. (∗∗)

Let X denote a Cartan subgroup of Yj ∩M .
Suppose that Y ∗j

∼= L2(2
n) with n > 1 and U1,j the natural module. Then as

J(R)∗ ∈ Syl2(Y ∗), we conclude from (*) and (**) that

V +
j := V + ∩ U1,j = CU1,j (J(R)

∗) (!)

is the J(R)∗-invariant 1-dimensional F2n-subspace of U1,j . In particular X acts
faithfully on V . This is a contradiction to the hypotheses of (5), and under the
hypotheses of (6), O3(X) = 1 so n = 2. But now V +

j is the only noncentral chief

factor forX on V +, and the image of [V ∩W,X ] in U2,j is contained in CU2,j (J(R)
∗),

so X has a single noncentral chief factor on V ∩W . Thus X has just two noncentral
chief factors on V , contrary to the hypotheses of (6).

We have completed the proof of (5), so we may assume the hypotheses of (6)
with Ui,j the natural module for Y ∗j

∼= S3 or S5. By (4) and the hypothesis of (6),

m(A∗) ≥ m ≥ 2, so H∗ is not S3. Thus we may assume Y ∗j
∼= S5. Then from

the description of FF ∗-offenders in B.3.2.4, O2((H ∩M)∗) = [O2(H ∩M)∗, J(R)∗],
so as H ∩M acts on V and J(R) centralizes V , X centralizes V , contrary to the
hypotheses of (6). This completes the proof of (6). ¤

3.2. The Fundamental Setup, and the case division for L∗f (G, T )

The bulk of the proof of the Main Theorem involves the analysis of various
possibilities for L ∈ L∗f (G, T ). In this section we establish a formal setting for
treating these subgroups, and provide the list of groups L and internal modules V
which can arise in that setting. In the language of the Introduction to Volume II,
this gives a solution to the First Main Problem—reducing from an arbitrary choice
for L, V to the much shorter list arising in what we call below our Fundamental
Setup (FSU).

In this section we assume G is a simple QTKE-group, T ∈ Syl2(G), Z :=
Ω1(Z(T )), and M ∈ M(T ). The notation Irr+(X,V ) and Irr+(X,V, Y ) appears
in Definition A.1.40. We will be primarily interested in
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Hypothesis 3.2.1 (Fundamental Setup (FSU)). G is a simple QTKE-group,
T ∈ Syl2(G), L ∈ L∗f (G, T ) with L/O2(L) quasisimple, L0 := 〈LT 〉, M := NG(L0),

and V◦ ∈ Irr+(L0, R2(L0T ), T ). Set V := 〈V T◦ 〉, VM := 〈V M 〉, MV := NM (V ),

M̄V :=MV /CMV (V ), and ṼM := VM/CVM (L0).

In our first lemma we apply results from section D.3 to subgroups M ∈M(T )
such that M is the normalizer of one of the uniqueness subgroups constructed in
chapter 1. We will also see in 3.2.3 that case (i) of 3.2.2 includes the Fundamental
Setup, as the similar notation in the lemmas suggests.

Lemma 3.2.2. Assume there is M+ = O2(M+) E M such that either

(i) M+ = 〈LT 〉 for some L ∈ Lf (G, T ) with L/O2(L) quasisimple, or
(ii)M+ = O2,p(M+) for some odd prime p, with T irreducible onM+/O2,Φ(M+).

Let V◦ ∈ Irr+
(
M+, R2(M+T ), T

)
and set VM := 〈V M◦ 〉, V := 〈V T◦ 〉, and ṼM :=

VM/CVM (M+). Then

(1) CM+(VM ) ≤ O2,Φ(M+).
(2) VM ∈ R2(M).

(3) VM = [VM ,M+], ṼM is a semisimple M+-module, and M is transitive on

the M+-homogeneous components of ṼM .
(4) CVM (M+) = 〈CV◦(M+)

M 〉 = 〈CV (M+)
M 〉.

(5) If CV◦(M+) = 0, then V◦ is a TI-set under M .
(6) If CVM (M+) 6= 0 and M = !M(M+T ), then M+ = [M+, J(T )] and V is

an FF-module for M+T .
(7) Hypothesis D.3.1 is satisfied with AutM (VM ), AutM+(VM ), V◦ in the roles

of “M , M+, V ”.
(8) V ∈ R2(M+T ) and O2(M+T ) = CT (V ).
(9) Assume M = !M(M+T ). Then the hypothesis of Theorem 3.1.8 is satisfied

with M+ in the role of “L0”, and D.3.10 applies.

Proof. By A.1.11, R2(M+T ) ≤ R2(M). Now it is straightforward to verify

that Hypothesis D.3.2 is satisfied with M , T ,M+, R2(M), 1, V◦ in the roles of “Ṁ ,

Ṫ , Ṁ+, Q+, Q−, V ”. Notice that V , VM play the roles of “VT , VM” in Hypothesis
D.3.2 and lemma D.3.4. Now (1) and (7) follow from parts (2) and (1) of D.3.3.

By (7), we may apply D.3.4 to AutM (VM ); then conclusions (1)–(4) and (6) of
D.3.4 imply conclusions (2)–(5) of 3.2.2.

Set M0 := M+T and R := O2(M0). By D.3.4.1, O2(M0/CM0(V )) = 1, so
V ∈ R2(M0) and hence R ≤ CT (V ). By D.3.4.2, CM+(V ) ≤ O2,Φ(M+), so as
M+ = O2(M0), CM0 (V ) ≤ RO2,Φ(M+) and hence R = CT (V ), completing the
proof of (8).

Now assume that M = !M(M+T ). Then (9) follows from (8), so it remains to
prove (6); thus we assume that CVM (M+) 6= 0. Then Z0 := CZ(M+T ) 6= 0 and Z0 ≤
Z(M0). By (9) we may apply Theorem 3.1.8.3 to conclude that J(T ) 6≤ CT (V ).
From the structure of M+ in cases (i) and (ii) of the lemma, Φ(M+/O2(M+)) is
the largest M0-invariant proper subgroup of M+/O2(M+), so we conclude that
M+ = [M+, J(T )]O2(M+). Then as M+ = O2(M+), also M+ = [M+, J(T )],
completing the proof of (6), and hence of 3.2.2. ¤

Lemma 3.2.3. Assume L ∈ L∗f (G, T ) with L/O2(L) quasisimple, and let L0 :=

〈LT 〉. Then M := NG(L0) ∈ M(T ), M = !M(L0T ), and for each member I of
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Irr+(L0, R2(L0T )) there exists V◦ ∈ Irr+(L0, R2(L0T ), T ) with V◦/CV◦(L0) L0-
isomorphic to I/CI(L0). In particular L and V := 〈V T◦ 〉 satisfy the Fundamental
Setup (3.2.1).

Proof. By 1.2.7.3, M = !M(L0T ). By A.1.42.2, there exists a member V◦
of Irr+(L0, R2(L0T ), T ) with V◦/CV◦(L0) isomorphic as L0-module to I/CI(L0).
Hence the lemma holds. ¤

Remark 3.2.4. Given L ∈ L∗f (G, T ) with L/O2(L) quasisimple, lemma 3.2.3
shows that we can choose V so that L and V satisfy the Fundamental Setup.
Then by 3.2.2.7, we may apply the results of section D.3 to analyze V , VM , and
AutL0(VM ). By 3.2.2, we may also appeal to Theorem 3.1.8, and in view of 3.2.2.4,
3.2.2.6 supplies extra information when CV (L) 6= 0.

In the next few lemmas, we determine the list of modules V and VM that can
arise in the Fundamental Setup for the various possible L ∈ L∗f (G, T ). The first
result 3.2.5 below gives us a qualitative description of what goes on in the case
L = L0, including a fairly complete description of the case where V◦ < V . Then
3.2.8 gives more detailed information when L = L0 but V◦ = V .

Recall that VM := 〈V M◦ 〉 and that V plays the role of “VT ” played in lemma
D.3.4. Also recall that in the FSU, M̄V denotes NM (V )/CM (V ).

Theorem 3.2.5. Assume the Fundamental Setup (3.2.1), with L = L0. Then
q̂(L̄T̄ , V ) ≤ 2 ≥ q̂(AutM (VM ), VM ), and one of the following holds:

(1) V◦ = V = VM ; that is, V◦ E M .
(2) V◦ = V E T , CV◦(L) = 0, and V is a TI-set under M .
(3) L̄ ∼= SL3(2

n) or Sp4(2
n) for some n, A6, L4(2), or L5(2); CV◦(L) = 0 and

either V◦ is a natural module for L̄ or V◦ is a 4-dimensional module for L̄ ∼= A7;
and VM = V = V◦ ⊕ V t◦ with t ∈ T −NT (V◦), and V t◦ not F2L-isomorphic to V◦.

Proof. As discussed in Remark 3.2.4, we may apply 3.2.2, Theorem 3.1.8, and
results in section D.3. Recall that in our setup, V◦ and V play the roles of “V ” and
“VT ” in Hypothesis D.3.2 and lemma D.3.4.

Set q̂ := q̂(L̄T̄ , V ) and q := q̂(AutM (VM ), VM ). As L = L0 by hypothesis,
conclusion (1) of Theorem 3.1.8 gives q̂ ≤ 2.

Next we will show that q ≤ 2 by an appeal to Theorem 3.1.6. Set R := CT (VM ),
so that R ∈ Syl2(CM (VM )). We first verify that for any H ∈ H∗(T,M), Hypothesis
3.1.5 is satisfied with M0 := NM (R) and VM in the role of “V ”: First as VM E M ,
hypothesis (II) of 3.1.5 is satisfied. By a Frattini Argument, M = CM (VM )M0,
so AutM (VM ) ∼= AutM0(VM ), and hence as VM ∈ R2(M) by 3.2.2.2, also VM ∈
R2(M0). As R E M0, R ≤ O2(M0). As VM ∈ R2(M0), O2(M0) ≤ CM (VM ), so as
R is Sylow in CM (VM ), R = O2(M0). This completes the verification of Hypothesis
3.1.5.

Next V ≤ VM , so R ≤ CT (V ), while CT (V ) E LT by 3.2.2.8. Thus R =
CT (V )∩CM (VM ) E LT , so asM = !M(LT ),M = !M(M0). Therefore conclusion
(1) of Theorem 3.1.6 is not satisfied, so one of conclusions (2) or (3) holds, and in
either case, q ≤ 2 as desired.

We have shown that q̂ ≤ 2 ≥ q, so it remains to show that one of conclusions
(1)–(3) holds. Suppose first that CV◦(L) 6= 0. Then by 3.2.2.6, L = [L, J(T )], so
that (in the language of Definition B.1.3) AutL(VM ) ≤ J(AutM (VM ), VM ) by B.2.7.
Thus we have the hypotheses for D.3.20, which gives conclusion (1). Therefore we
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may assume that CV◦(L) = 0. Then by 3.2.2.5, V◦ is a TI-set under M . If V◦ = V
then conclusion (2) holds, so we may assume that V◦ < V . As q̂ ≤ 2 ≥ q, the
hypotheses of Theorem D.3.10 are satisfied; therefore as we have reduced to the
case where V◦ < V , conclusion (2) of Theorem D.3.10 holds. But this is precisely
conclusion (3) of Theorem 3.2.5, so the proof is complete. ¤

The notation Q̂(X,W ) appears in Definition D.2.1.

Theorem 3.2.6. Assume the Fundamental Setup (3.2.1) with L < L0. Set
M∗ :=M/CM (VM ), U := [VM , L], and let t ∈ T −NT (L). Then q̂(L̄0T̄ , V ) ≤ 2 ≥
q̂(M∗, VM ), and one of the following holds:

(1) L∗ ∼= L2(2
n) and V◦ = V = VM is the Ω+

4 (2
n)-module for L∗0.

(2) L∗ ∼= L3(2) and V◦ = V = VM is the tensor product of natural modules for
L∗ and L∗t.

(3) Each of the following holds:

(a) ṼM = Ũ ⊕ Ũ t, where U = [VM , L] ≤ CVM (Lt).

(b) Each A ∈ Q̂∗(M∗, VM ) acts on U , so q̂(AutL0T (U), U) ≤ 2.
(c) One of the following holds:

(i) U = V◦ and V = VM .
(ii) AutM (L∗) ∼= Aut(L3(2)), V = VM , U = V◦⊕V

s
◦ for s ∈ NT (L)−

LO2(LNT (L)), and m(V◦) = 3.
(iii) L∗ ∼= L3(2), U is the sum of four isomorphic natural modules for

L∗, and O2(CM∗(L∗0))
∼= Z5 or E25.

Proof. Proceeding as in the proof of Theorem 3.2.5, and recalling the dis-
cussion in Remark 3.2.4, we verify Hypothesis 3.1.5 for M0 := NM (R) where
R := CT (VM ), and apply Theorems 3.1.6 and 3.1.8 as before to conclude

q̂(L̄0T̄ , V ) ≤ 2 ≥ q̂(M ∗, VM ).

Recall from the remark before that result that we may reduce case (3) to case (1)
by a new choice of V . If V < VM , then conclusion (2) of D.3.21 holds, so that
conclusion (3) of 3.2.6 holds, with case (iii) of part (c) of (3) satisfied.

So we may suppose instead that V = VM , as in conclusion (1) of D.3.21. Assume
first that V◦ < V . In particular we have the hypotheses of D.3.6, and conclusions
(1) and (2) of that result give parts (a) and (b) of conclusion (3) of 3.2.6, while the
two alternatives in part (3) of D.3.6 are cases (i) and (ii) of part (c) of conclusion
(3) of 3.2.6.

Thus the Theorem holds when V◦ < V , so assume instead that V◦ = V . Then
we have the hypotheses of D.3.7, and its conclusions (1) and (2) give the corre-
sponding conclusions of 3.2.6. The proof is complete. ¤

We often need to know that V is a TI-set under M . The previous two results
say that this is almost always the case:

Lemma 3.2.7. Assume the Fundamental Setup (3.2.1). Then either

(1) V is a TI-set under M , or
(2) L̄ ∼= L3(2), L < L0, and subcase (3.c.iii) of Theorem 3.2.6 holds.

Proof. Suppose V is not a TI-set under M . Then in particular V is not
normal in M , so that V < VM . Therefore L < L0, since if L = L0 then either
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V = VM or V is a TI-set under M , by 3.2.5. Thus L0 and V are described in 3.2.6,
where V < VM occurs only in subcase (3.c.iii). ¤

With 3.2.6 in hand, we return to the case in the Fundamental Setup where
L = L0, and we obtain more information in the subcase where V = V◦. As in the
proof of the Main Theorem, we divide our analysis into the case where V is an
FF-module and the case where V is not an FF-module.

Lemma 3.2.8. Assume the Fundamental Setup (3.2.1) with L = L0 and V◦ = V .
Assume further that V is an FF-module for AutGL(V )(L̄). Then one of the following
holds:

(1) L̄ ∼= L2(2
n) and Ṽ is the natural module.

(2) L̄ ∼= SL3(2
n), and either V is a natural module or V is a 4-dimensional

module for L3(2).

(3) L̄ ∼= Sp4(2
n) and Ṽ is a natural module.

(4) L̄ ∼= G2(2
n)′ and Ṽ is the natural module.

(5) L̄ ∼= A5 or A7, and V is the natural module.

(6) L̄ ∼= A6 and Ṽ is a natural module.
(7) L̄T̄ ∼= A7 and m(V ) = 4.

(8) L̄ ∼= Â6 and m(V ) = 6.
(9) L̄T̄ ∼= Ln(2), n = 4 or 5, and V is a natural module.

(10) L̄ ∼= L4(2) and Ṽ is the 6-dimensional orthogonal module.
(11) L̄T̄ ∼= L5(2) and m(V ) = 10.

Proof. This is a consequence of Theorem B.4.2, using the 1-cohomology of
those modules listed in I.1.6. ¤

Proposition 3.2.9. Assume the Fundamental Setup FSU (3.2.1), with L = L0

and V◦ = V . Further assume V is not an FF-module for AutGL(V )(L̄). Set q :=

q(L̄T̄ , V ) and q̂ := q̂(L̄T̄ , V ). Then one of the following holds:

(1) L̄ ∼= L2(2
2n), n > 1, V is the Ω−4 (2

n)-module, and q = q̂ ≥ 3/2, or q ≥ 4/3
if n = 2.

(2) L̄ ∼= U3(2
n), V is a natural module, and q = q̂ = 2.

(3) L̄ ∼= Sz(2n), V is a natural module, and q = q̂ = 2.
(4) L̄ ∼= (S)L3(2

2n), m(V ) = 9n, q > 2, and q̂ = 5/4. Further T̄ is trivial on
the Dynkin diagram of L̄.

(5) L̄T̄ ∼= Aut(M12), m(V ) = 10, q > 2, and q̂ > 1.

(6) L̄ ∼= M̂22, m(V ) = 12, and q̂ > 1.
(7) L̄ ∼=M22, m(V ) = 10, q ≥ 2, q̂ > 1, and q > 2 if V is the cocode module.
(8) L̄ ∼=M23, m(V ) = 11, q > 2, and q̂ > 1.
(9) L̄ ∼=M24, m(V ) = 11, q > 2, and q̂ > 1.

Proof. By hypothesis, V is not an FF-module for L̄T̄ , so J(T ) ≤ CT (V ) by
B.2.7; hence we conclude CV (L) = 0 from 3.2.2.6. Then as V ∈ Irr+(L,R2(LT )),
L is irreducible on V . By 3.2.5, q̂ ≤ 2. Then the result follows from the list in B.4.5,
plus the following remarks: The cases in B.4.5 where L̄ is A7 or G2(2)

′ do not arise
here because of our hypothesis that V is not an FF-module for AutGL(V )(L̄). If

L̄ ∼= (S)L3(2
2n) and m(V ) = 9n, then V may be regarded as an F2n-module, and

F22n ⊗F2n
V = N ⊗ Nσ, where N is the natural F22n -module for SL3(2

2n) and
σ is the involutory field automorphism of F22n . Hence V is not invariant under an
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automophism nontrivial on the Dynkin diagram. Finally we eliminate the cases in
part (iii) of B.4.5, via an appeal to Theorem 3.1.8.2: For in these cases, q > 2 = q̂
in the notation of B.4.5. As q > 2, case (i) of 3.1.8.2 does not hold. But V is a
TI-set under M by 3.2.7, so as q̂ = 2, case (ii) of 3.1.8.2 does not hold either, a
contradiction. ¤

In our final result on the Fundamental Setup, we collect some useful properties
that hold when J(T ) ≤ CT (V )—and hence in particular under the hypotheses of
3.2.9 where V is not an FF-module.

Recall that J1(T ) appears in Definition B.2.2, Further n(X) appears in E.1.6,
r(G, V+) in E.3.3, and W0(T, V+) in E.3.13.

Proposition 3.2.10. Assume the Fundamental Setup (3.2.1). Set V+ := V ,
except in case (3.c.iii) of 3.2.6, where we take V+ := VM . Assume J(T ) ≤ CT (V+).
Then

(1) NG(J(T )) ≤M .
(2) NM (V+) controls fusion in V+.
(3) For each U ≤ V+, NG(U) is transitive on {V g+ : U ≤ V g+}.
(4) For each U ≤ V+, |NG(U) : NM (U)| is odd.

(5) If U ≤ V+ with 〈V
NG(U)
+ 〉 abelian, then [V+, V

g
+] = 1 for all g ∈ G with

U ≤ V g+.
(6) Suppose U ≤ V+ with V+ ≤ O2(NG(U)), and either

(a) [V+,W0(T, V+)] = 1, or
(b) V+ is not an FF-module for AutL0T (V+).

Then [V+, V
g
+] = 1 for each g ∈ G with U ≤ V g+.

(7) If J1(T ) ≤ CT (V+) and r(G, V+) > 1, then n(H) > 1 for each H ∈
H∗(T,M).

(8) If J(T ) ≤ S ∈ S2(G), then J(T ) = J(S) and so NG(S) ≤M .
(9) CZ(L0) = 1 = CV+(L0).

Proof. By 3.2.3, M = !M(L0T ). We have CT (V+) ≤ CT (V ) = O2(L0T ) by
3.2.2.8. Hence as J(T ) ≤ CT (V+) by hypothesis, using B.2.3.3,

J(T ) = J(CT (V+)) = J(O2(L0T )) E L0T,

so that (1) holds. Notice the same argument establishes (8). Further Z(L0T ) = 1
by Theorem 3.1.8.3, so (9) follows.

Observe that V+ is a TI-set under M : This holds in case (3.c.iii) of 3.2.6 as
V+ = VM is normal inM in that case, and in the remaining case V+ = V is a TI-set
under M by 3.2.7.

Also V+ ≤ E := Ω1(Z(J(T ))). As J(T ) is weakly closed in T , by Burnside’s
Fusion Lemma A.1.35, NG(J(T )) controls fusion in E and hence in V+. Thus as
V+ is a TI-subgroup under M , (1) implies (2). Then (2) implies (3) using A.1.7.1.

Let U ≤ V+ and S ∈ Syl2(NM (U)). As J(T ) ≤ CG(V+) by hypothesis, we may
assume J(T ) ≤ S. Then NG(S) ≤M by (8), so S ∈ Syl2(NG(U)), establishing (4).
Assume the hypotheses of (5), and let U ≤ V g

+. By (3), we may take g ∈ NG(U);

then as 〈V
NG(U)
+ 〉 is abelian by hypothesis, [V+, V

g
+ ] = 1—so that (5) is established.

Assume the hypotheses of (6). Then V+ ≤ O2(NG(U)), so 〈V
NG(U)
+ 〉 ≤W0(T, V+).

Hence if [V+,W0(T, V+)] = 1 as in (6a), then 〈V
NG(U)
+ 〉 ≤ CT (V+), so 〈V

NG(U)
+ 〉 is
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abelian, and thus (5) implies (6) in this case. Now assume the hypothesis of (6b).
We may take g ∈ NG(U) by (3), so

〈V+, V
g
+〉 ≤ O2(NG(U)) ≤ S ∩ Sg ≤ NM (U) ∩NM (Ug) ≤ NM (V+) ∩NM (V g+),

where the last inclusion holds since V+ is a TI-set under M . Reversing the roles of
V+ and V g+ if necessary, we may assume that m(V g+/CV g+ (V+)) ≥ m(V+/CV+(V

g
+)).

Thus as AutL0T (V+) is not an FF-module by hypothesis, [V+, V
g
+] = 1. This com-

pletes the proof of (6).
As L0T normalizesO2(L0T )∩CM (V+) = CT (V+),M = !M(NNM (V+)(CT (V+))).

Thus Hypothesis E.6.1 is satisfied with V+ in the role of “V ”, so part (7) follows
from E.6.26 with 1 in the role of “j”. ¤

Sometimes in arguments where we can pin down the structure of a pair in
the FSU (especially when we can show L is a block), we encounter the following
situation:

Lemma 3.2.11. Assume the Fundamental Setup (3.2.1). Assume further that
V = O2(L0T ). Then O2(M) = V = CG(V ) and M = MV . If further M̄V = L̄0T̄ ,
then MV =M = L0T .

Proof. By A.1.6, O2(M) ≤ O2(L0T ) = V ≤ O2(L0) ≤ O2(M), so that
O2(M) = V , and in particular M = MV as M ∈ M. Now as F ∗(M) = O2(M),
CG(V ) ≤ Z(O2(M)) ≤ V , so that CG(V ) = V . The result follows. ¤

Our last two results of the section involve the collection Ξ(G, T ) of Definition
1.3.1, and appearing in case (ii) of the hypothesis of 3.2.2.

Definition 3.2.12. Define Ξ−(G, T ) to consist of those X ∈ Ξ(G, T ) such that
either

(a) X is a {2, 3}-group, or
(b) X/O2(X) is a 5-group and AutG(X/O2(X)) a {2, 5}-group.

Set Ξ+(G, T ) := Ξ(G, T )− Ξ−(G, T ).

Lemma 3.2.13. Ξ∗f (G, T ) ⊆ Ξ−(G, T ).

Proof. Assume X ∈ Ξ∗f (G, T ). Then X/O2(X) ∼= Ep2 or p1+2 for some odd

prime p, and T is irreducible on X/O2,Φ(X). By 1.3.7, M = !M(XT ), whereM :=
NG(X). Let (XT )∗ := XT/CXT (R2(XT )). By A.4.11, V := [R2(XT ), X ] 6= 1,
so as T is irreducible on X/O2,Φ(X), CX(V ) ≤ O2,Φ(X). Thus as R := O2(XT )
centralizes R2(XT ), X

∗ = F ∗(X∗T ∗), so as X∗ is faithful on V , also X∗T ∗ is
faithful on V . Hence CT (V ) = R and V ∈ R2(XT ). Therefore the hypotheses
of Theorem 3.1.8 are satisfied with X in the role of “L0”, so q̂ := q̂(X∗T ∗, V ) ≤
2 by 3.1.8.1. As q̂ ≤ 2, D.2.13 says p = 3 or 5. We may assume by way of
contradiction that X /∈ Ξ−(G, T ), so p = 5 and AutG(X/O2(X)) is not a {2, 5}-
group. By D.2.17 and D.2.12, X∗ = X∗1 × · · · × X∗s and V = V1 ⊕ · · · ⊕ Vs,
where X∗i

∼= Z5, Vi := [V,Xi] is of rank 4, and s ≤ 2. As m5(X/O2,Φ(X)) = 2,
s = 2. As T ∈ Syl2(NG(X)), R ∈ Syl2(CG(X/O2(X))) by A.4.2.5; so by a Frattini
Argument, AutG(X/O2(X)) = AutH(X/O2(X)), where H := NG(X) ∩ NG(R).
Thus AutH(X/O2(X)) is not a {2, 5}-group, so AutH(X∗) is not a {2, 5}-group.
As R centralizes R2(XT ), R2(XT ) ≤ Ω1(Z(R)). Then as V ≤ R2(XT ),

CXT (Ω1(Z(R))) ≤ CXT (V ) ≤ RO2,Φ(X),
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so Ω1(Z(R)) is 2-reduced. Therefore R2(XT ) = Ω1(Z(R)), so H acts on

[Ω1(Z(R)), X ] = [R2(XT ), X ] = V,

and hence O2(H) acts on Vi and X
∗
i . This is a contradiction as AutH(X

∗) is not
a {2, 5}-group, but Aut(Z5) is a 2-group. ¤

Lemma 3.2.13 allows us to establish a result about those L ∈ L(G, T ) such that
L/O2(L) is not quasisimple. Recall from chapter 1 that Ξp(L) is O

2(Xp) where Xp

is the preimage of Ω1

(
Op(L/O2(L))

)
.

Lemma 3.2.14. If L ∈ L(G, T ) and L/O2(L) is not quasisimple, then O∞(L)
centralizes R2(LT ).

Proof. We assume L is a counterexample, and it remains to derive a contra-
diction.

By 1.2.1.4, L/O2,F (L) ∼= SL2(q) for some prime q > 3, and T normalizes L by
1.2.1.3. Set V := R2(LT ); by hypothesis [V, L] 6= 1 so L ∈ Lf (G, T ).

Let L ≤ K ∈ L∗(G, T ); then K ∈ L∗f (G, T ) by 1.2.9. In the cases in A.3.12

where “B/O2(B)” is not quasisimple, either O∞(L) ≤ O∞(K) in case (21) or (22),
or K/O2(K) ∼= (S)L3(r) for some prime r > 3 in case (9). In the latter case by
3.2.3, K is listed in one of 3.2.5, 3.2.8, or 3.2.9, but of course (S)L3(r) for a prime
r > 3 does not appear on any of those lists. Thus O∞(L) ≤ O∞(K), so replacing
L by K, we may assume L ∈ L∗f (G, T ).

Let π := π(O2,F (L)/O2(L)), p ∈ π, and X := Ξp(L). Since L ∈ L∗f (G, T ),
X ∈ Ξ∗rad(G, T ) by the definition in chapter 1, so X ∈ Ξ∗(G, T ) by 1.3.8. As
AutL(X/O2(X)) contains SL2(q) for q > 3, X /∈ Ξ−(G, T ), so X centralizes V by
3.2.13. Hence

Y :=
∏

p∈π

Ξp(L) ≤ CL(V ).

Let Ip := Op
′

(O∞(L)). If Ip centralizes V for each p ∈ π, then O2,F (L) ≤
O2(L)Y ≤ CL(V ), so O∞(L) centralizes V as L/O2,F (L) ∼= SL2(q) and V is 2-
reduced. Thus as L is a counterexample, there is p ∈ π such that I := Ip does not
centralize V , so I 6= Xp and hence case (d) of 1.2.1.4 holds and I/O2(I) ∼= Z2

pe for
some e > 1. As case (d) of 1.2.1.4 holds, L/O2,F (L) ∼= SL2(5). Since e > 1, we
conclude from A.1.30 that p > 5.

Set R := CT (V ). As V = R2(LT ), O2(LT ) ≤ R. As L/O2,F (L) ∼= SL2(5),
O2(LT ) = O2(IT ), and then as [I, V ] 6= 1, R = O2(IT ) and V ∈ R2(IT ). As
X ∈ Ξ∗(G, T ), M := NG(X) = !M(XT ) by 1.3.7. As L ∈ L∗(G, T ), L E M , so
as I char L, I E M . Thus for each H ∈ H∗(T,M), H ∩M normalizes I , so case
(I) of Hypothesis 3.1.5 is satisfied with IT in the role of “M0”. As M = !M(XT ),
O2(〈IT,H〉) = 1, so conclusion (2) or (3) of Theorem 3.1.6 holds. In either case
q̂(IT/CIT , V ) ≤ 2. As p > 5 and [V, I ] 6= 1, this contradicts D.2.13. ¤

3.3. Normalizers of uniqueness groups contain NG(T )

The bulk of the proof of the Main Theorem analyzes the situation where
Lf (G, T ) is nonempty, leading (as we saw in 3.2.3) to the Fundamental Setup
(3.2.1) and the extended analysis of the cases arising there. The very restricted
situation where Lf (G, T ) is empty will be treated only at the end of the proof after
that analysis.
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In this section, in Theorem 3.3.1 we establish an important property of maximal
2-locals containing T and suitable uniqueness subgroups. Theorem 3.3.1 will be
used repeatedly in our analysis of the cases arising from the Fundamental Setup.

It turns out that case (2) of Theorem 3.3.1 is not actually required to prove the
Main Theorem, contary to what we expected when we proved the result. However
as the proof for this case is short, we have retained its statement and proof here.

Theorem 3.3.1. Assume G is a simple QTKE-group, T ∈ Syl2(G), M ∈
M(T ), and either

(1) L ∈ L∗(G, T ) with L/O2(L) quasisimple and L ≤M , or
(2) X ∈ Ξ∗(G, T ) with X ≤M .

Then NG(T ) ≤M .

We first record an elementary but important consequence of Theorems 2.1.1 and
3.3.1, that we will use repeatedly in the remainder of the paper: In the Fundamental
Setup, the members of H∗(T,M) are minimal parabolics.

Corollary 3.3.2. Assume G is a simple QTKE-group, T ∈ Syl2(G), and
L ∈ L∗(G, T ) with L/O2(L) quasisimple. Set M := NG(〈LT 〉). Then

(1) M = !M(〈L, T 〉).
(2) |M(T )| > 1, so H∗(T,M) 6= ∅.
(3) NG(T ) ≤M .
(4) For each H ∈ H∗(T,M), H ∩ M is the unique maximal subgroup of H

containing T , and H ∈ ÛG(T ) so that H is a minimal parabolic described in B.6.8,
and in E.2.2 when H is nonsolvable.

Proof. Part (1) follows from 1.2.7. Part (2) holds since 2-locals of odd index
in the groups G in the conclusion of Theorem 2.1.1 are solvable, so that L(G, T )
is empty. Part (3) follows from Theorem 3.3.1. Finally (4) follows from (3) and
3.1.3. ¤

Remark 3.3.3. In the simple QTKE-groups G, NG(T ) ≤ M under the hy-
potheses of Theorem 3.3.1. However there is an almost simple shadow where this
assertion fails: In the extension G of Ω+

8 (2) by a graph automorphism of order 3,
there is a maximal parabolic L of E(G) which is an A8-block and is a member of
L∗(G, T ), but which is not invariant under an element of order 3 in NG(T ) inducing
the triality outer automorphism on E(G). This extension is of even characteris-
tic, but it is neither simple nor quasithin. However it is difficult to verify these
global properties just from the point of view of the 2-local L, so that the shadow
of this group causes difficulties in the proof of 3.3.21.f. Also the proof of 3.3.24 is
complicated by the shadow of the non-maximal parabolic L3(2)/2

3+6 in this same
extension G.

Case (2) of the hypothesis of Theorem 3.3.1 will be eliminated fairly early in
the argument in 3.3.10.3. Thus the bulk of the proof is devoted to case (1) of the
hypothesis.

Notation 3.3.4. In case (1) of the hypothesis of Theorem 3.3.1, where L ∈
L∗(G, T ) with L/O2(L) quasisimple, set M+ := L0 := 〈LT 〉. In case (2) of that
hypothesis, where X ∈ Ξ∗(G, T ), set M+ := X . As NG(T ) is 2-closed and hence
solvable, NG(T ) = TD, where D is a Hall 2′-subgroup of NG(T ).
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We recall that M+T is a uniqueness subgroup in the language of chapter 1:

Lemma 3.3.5. (1) M = NG(M+).
(2) M = !M(M+T ).
(3) F ∗(M+T ) = O2(M+T ).

Proof. Parts (1) and (2) are a consequence of 1.2.7.3 and 1.3.7. By definition
M+T ∈ H(T ), so (3) follows from 1.1.4.6. ¤

Throughout this section, we assume we are working in a counterexample to
Theorem 3.3.1, so thatNG(T ) 6≤M . Our arguments typically derive a contradiction
by violating one of the consequences of 3.3.5.2 in the following lemma:

Lemma 3.3.6. (a) D 6≤M .
(b) O2(〈M+T,D〉) = 1. Thus if 1 6= X EM+T , then D 6≤ NG(X).
(c) No nontrivial characteristic subgroup of T is normal in M+T .
(d) Assume case (1) of Theorem 3.3.1 holds with L/O2,Z(L) of Lie type and

Lie rank 2 in characteristic 2. Then T acts on L unless possibly L/O2(L) ∼= L3(2);
and if T acts on L, then (LT, T ) is an MS-pair in the sense of Definition C.1.31.

Proof. Part (a) holds as T ≤ M , but TD = NG(T ) 6≤ M . Then (b) follows
from (a) and 3.3.5.2, and (c) follows from (b).

Assume the hypothesis of (d). Then unless L/O2(L) ∼= L3(2), T acts on L by
1.2.1.3. Assume T acts on L. Then (LT, T ) satisfies hypothesis (MS1) in Definition
C.1.31 by 3.3.5.3, hypothesis (MS2) is satisfied as T is Sylow in LT , and hypothesis
(MS3) holds by (c). ¤

Set Z := Ω1(Z(T )), V := 〈ZM+〉 = 〈ZM+T 〉, M+T := M+T/CM+T (V ), and

Ṽ := V/CV (M+).

Lemma 3.3.7. (1) CM+T (V ) ≤ O2,Φ(M+T ) and CT (V ) = O2(M+T ).

(2) J(T ) 6≤ CT (V ), so V is a failure of factorization module for M̄+T̄ .
(3) V ∈ R2(M+T ), so O2(M̄+T̄ ) = 1.
(4) [V,M+] = [Z,M+] and V = [V,M+]CZ(M+).

Proof. Since F ∗(M+T ) = O2(M+T ) by 3.3.5.3, part (3) is a consequence
of B.2.14. As V = 〈ZM+〉, V = [V,M+]Z, so that V = [V,M+]CZ(M+) using
Gaschütz’s Theorem A.1.39. If M̄+ = 1, then V = Z and M+T ≤ CG(Z), contrary
to 3.3.6.c. Thus M̄+ 6= 1, so (1) follows from (3) and 1.4.1.5 with M+ in the role
of “L0”. If J(T ) ≤ CT (V ), then by B.2.3.3, J(T ) = J(CT (V )) = J(O2(M+T )) E
M+T , contrary to 3.3.6.c. Thus J(T ) 6≤ CT (V ), so V is an FF-module for M̄+T̄
by B.2.7. ¤

We now use 3.3.7 to determine a list of possibilities for M̄+ and V , which we
will eliminate during the remainder of the proof. Notice if case (2) of the hypothesis
of Theorem 3.3.1 holds, then conclusion (1) of the next lemma holds with L̄i ∼= Z3.

Lemma 3.3.8. One of the following holds:

(1) M̄+ = L̄1 × L̄2 with L̄i ∼= L2(2
n), L3(2), or Z3, and L̄

t
1 = L̄2 for some

t ∈ T−NT (L1). Further [Ṽ ,M+] = Ṽ1⊕Ṽ2, where Ṽi := [Ṽ , Li], and either Ṽi is the
natural module for L̄i, the A5-module for L̄i ∼= A5, or the sum of two isomorphic
natural modules for L̄i ∼= L3(2).

(2) M̄+
∼= L2(2

n) with n > 1, and [Ṽ ,M+] is the natural module for M̄+.
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(3) M̄+
∼= A5 or A7, and [V,M+] is the natural module for M̄+.

(4) M̄+
∼= SL3(2

n), Sp4(2
n)′, or G2(2

n)′, and [Ṽ ,M+] is either the natural
module for M̄+ or the sum of two isomorphic natural modules for M̄+

∼= SL3(2
n).

(5) M̄+
∼= A7, and [V,M+] is of rank 4.

(6) M̄+
∼= Â6, and [V,M+] is of rank 6.

(7) M̄+
∼= L4(2) or L5(2), and the possiblities for [V,M+] are listed in Theorem

B.5.1.1.

Proof. By 3.3.7.2, V is an FF-module for M̄+T̄ , and by 3.3.7.3, O2(M̄+T̄ ) =
1. Hence the action of J̄ := J(M̄+T̄ , V ) on [V, J̄ ] is described in Theorem B.5.6.

In case (2) of Theorem 3.3.1, M+T is a minimal parabolic, and using 3.3.7.1,
M̄+ is noncyclic, so conclusion (1) of the lemma holds by B.6.9. Thus we may
assume case (1) holds. Therefore F ∗(M̄+T̄ ) = M̄+ = L̄ or L̄L̄t for t ∈ T −NT (L).
Therefore as 1 6= J̄ E M̄+T̄ , M̄+ = F ∗(J̄). Further if L < M+, then L̄ ∼= L2(2

n),
Sz(2n), L2(p) or J1 by 1.2.1.3. Therefore conclusion (1) of the lemma holds by
B.5.6.

Thus we may assume that L = M+, so that L̄ = F ∗(J̄) = F ∗(M̄+T̄ ) is qua-
sisimple. Hence the action of L on V is described in Theorem B.5.1. The conclusions
of the lemma include cases (ii), (iii), and (iv) of B.5.1.1 in which [Ṽ , L] is reducible,

so we may assume [Ṽ , L] is irreducible. Hence by B.5.1 the possibilities for the ac-

tion of L̄T̄ on [Ṽ , L] are listed in Theorem B.4.2, and again our conclusions contain
all those cases. ¤

Lemma 3.3.9. CM+(Z) = CM+(Z ∩ [V,M+]).

Proof. Since Z = (Z ∩ [V,M+])CZ(M+) by 3.3.7.4, the lemma follows. ¤

We now begin to eliminate cases from 3.3.8:

Lemma 3.3.10. (1) If H ∈ H(T ) and T is contained in a unique maximal
subgroup of H, then O2(〈H,D〉) 6= 1.

(2) M̄+ is not L2(2
n), eliminating case (2) of 3.3.8 and the A5-subcase of case

(3) of 3.3.8.
(3) If case (1) of 3.3.8 holds, then L̄i ∼= L3(2).
(4) Case (1) of the hypothesis of Theorem 3.3.1 holds.

Proof. Part (1) follows from Theorem 3.1.1, with TD, T in the roles of “M0,
R”. In particular if T lies in a unique maximal subgroup of M+T , then (1) contra-
dicts 3.3.6.b. Parts (2) and (3) follow from this observation. Finally, as we observed
earlier, if case (2) of the hypothesis of Theorem 3.3.1 holds, then conclusion (1) of
3.3.8 holds with L̄i ∼= Z3. Thus (3) implies (4). ¤

Remark 3.3.11. By 3.3.10.4, case (1) of Notation 3.3.4 holds. ThereforeM+ =
〈LT 〉, where L ∈ L∗(G, T ) with L/O2(L) quasisimple. Thus L has this meaning
from now on.

Lemma 3.3.12. Suppose Y ∈ L(L, T ) and O2(H) 6= 1 where H := 〈Y, TD〉.
Then

(1) Y ≤ K ∈ C(H).
(2) K E H.
(3) One of the following holds:

(a) D ≤ NG(Y ), or
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(b) Y/O2(Y ) ∼= L2(4), K/O2(K) ∼= J1, D = (K ∩ D)ND(Y ), and |D :
ND(Y )| = 7. Further T induces inner automorphisms on Y/O2(Y ).

(c) Y/O2(Y ) ∼= A6, K/O2(K) ∼= U3(5), and D of order 3 induces an
outer automorphism on K/O2(K) centralizing a subgroup isomorphic to the double
covering of S5 which is not GL2(5).

Proof. Part (1) follows from 1.2.4 applied with Y , H in the roles of “B, H”.
By 3.3.6.b, Y < L. Applying 1.2.4 with Y , L in the roles of “B, H”, and

comparing the embeddings described in A.3.12 to the list of possibilities for L in
3.3.8, we conclude that Y/O2(Y ) is L2(2

n), L3(2), A6, or L4(2). Furthermore L̄ is
not L3(2), so we conclude from 3.3.10.3 and 3.3.8 that M+ = L. Now by 1.2.8.1, T
normalizes Y , and then T also normalizes K. Thus (2) follows from 1.2.1.3.

Assume that conclusion (a) of (3) fails; we must show that conclusion (b) or
(c) of (3) holds. By (2), Y < K. Then Y/O2(Y ) is described in the previous
paragraph, and the possible proper overgroups K of Y are described in A.3.12.

Set H∗ := H/CH(K/O2(K)), and let YH be the preimage of Y ∗ in H . We
claim that Y E NH(Y

∗): By hypothesis, Y ∈ L(L, T ), so Y is the unique member
of C(O2(K)Y ). Then as Y O2(K) E YH , Y ∈ C(YH) by A.3.3.2. Therefore as T
acts on Y , Y E YH by 1.2.1.3, establishing the claim.

By assumption, D 6≤ NH(Y ), so by the claim:

ND∗(Y
∗) = ND(Y )∗, so D∗ 6≤ NH∗(Y

∗). (∗)

In particular, D∗ 6= 1. Similarly CD(K
∗) ≤ CD(Y

∗) < D. Next TK := T ∩ K ∈
Syl2(K) and 1 6= D∗ ≤ NH∗(T

∗
K), so

NH∗(T
∗
K) ≥ T ∗KD

∗ > T ∗K . (∗∗)

Assume that K∗ is sporadic; that is, K appears in one of cases (11)–(20) of
A.3.12. Then Out(K∗) is a 2-group, so D∗ ≤ K∗, and we conclude from (**)
that K∗ ∼= J1 or J2. In the latter case, Y ∗ ∼= A5/2

1+4 is uniquely determined by
A.3.12, and D∗ ≤ Y ∗, contrary to (*). In the former case, NH∗(T

∗
K) = NH(T )

∗ is
a Frobenius group of order 21, and T ∗ induces inner automorphisms on Y ∗ ∼= A5,
so that |D∗ : ND∗(Y

∗)| = 7. Thus D = (D ∩K)ND(Y ) and |D : ND(Y )| = 7 by
(*). Then since the multiplier of J1 is trivial by I.1.3, K/O2(K) ∼= J1, so case (b)
of conclusion (3) holds.

Thus we may assume K∗ satisfies one of cases (2), (4)–(9), (21), or (22) of
A.3.12. In cases (4)–(7), Out(K∗) is a 2-group, so that D∗ ≤ K∗, and (**) supplies
a contradiction. In case (2), K∗ is of Lie type and Lie rank 2 in characteristic 2,
with Y ∗ = P ∗∞ for some T -invariant maximal parabolic P ∗ of K∗. Thus as there
are exactly two such parabolics,

D∗ ≤ O2(NH∗(T
∗
K)) ≤ NH∗(P

∗) ≤ NH∗(Y
∗),

again contrary to (*).
In cases (21) and (22), T ∗K is contained in a unique complement K∗1 to O(K∗) in

K∗, with K∗1
∼= SL2(p) for an odd prime p > 3. By the uniqueness of K∗1 , Y

∗ ≤ K∗1
and D∗ acts on K∗1 , so that Y ∗ < K∗1 by (*). So replacing K by the C-component
K1 of the preimage of K∗1 , we reduce the treatment of these cases to the elimination
of the subcase of case (8) where H∗ ∼= L2(p) for some prime p ≡ ±3 mod 8 and
Y ∗ ∼= L2(5). Then as D∗ 6= 1 normalizes T ∗, A4

∼= NH∗(T
∗) = T ∗D∗ ≤ Y ∗T ∗ ≤

NH∗(Y
∗), again contrary to (*). In the remaining subcase of (8), K∗ ∼= L2(p

2) for
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an odd prime p. Here T ∗K is dihedral of order greater than 4 and self-centralizing
in Aut(K∗), so that NH∗(T

∗
K) is a 2-group, and then D∗ = 1, contrary to (*).

Thus case (9) of A.3.12 holds, with K∗ ∼= Lε3(p). If Y ∗ ∼= SL2(p), Y
∗ =

CK∗(Z(T
∗
K))

∞ is D∗-invariant, again contrary to (*).
In the remaining subcase of (9), K∗ ∼= U3(5), with Y ∗ ∼= A6. Here X∗ =

O2(CAut(K∗)(T
∗
K)) is of order 3 and induces outer automorphisms on K∗ with

CK∗(X
∗) the double covering of S5 which is not GL2(5). We conclude D∗ = X∗.

Finally K/O2(K) is not SU3(5) by A.3.18. Therefore K/O2(K) ∼= U3(5), so case
(c) of conclusion (3) holds.

This completes the treatment of the cases appearing in A.3.12, and hence com-
pletes the proof of the lemma. ¤

Lemma 3.3.13. If H ∈ H(T ) with H/O2(H) ∼= S3 wr Z2, then D ≤ NG(H).

Proof. Let H0 := 〈H,D〉; by 3.3.10.1, O2(H0) 6= 1. Set Y := O2(H) and
notice Y ∈ Ξ(G, T ). If D normalizes Y , then D normalizes Y T = H and the
lemma holds, so we assume that D does not act on Y . Therefore Y is not normal
in H0, so by 1.3.4, Y < K0 := 〈KT 〉 for some K ∈ C(H0), and K0 is a normal
subgroup of H0 described in cases (1)–(4) of 1.3.4 with 3 in the role of “p”. Let
(K0TD)∗ := K0TD/CK0TD(K0/O2(K0)). Notice that O2(K0) ≤ O2(H0) ≤ O2(H)
using A.1.6, so that ND∗(Y

∗) = ND(Y
∗). Hence D∗ does not act on Y ∗ and in

particular D∗ 6= 1, so that
(*) T ∗ is not self-normalizing in K∗T ∗D∗.

Further H∗/O2(H
∗) ∼= H/O2(H) ∼= O+

4 (2), so
(**) T ∗/O2(Y

∗T ∗) ∼= D8.
Inspecting the list in 1.3.4 for cases in which (*) and (**) are satisfied, we

conclude that case (1) of 1.3.4 holds, with K∗ ∼= L2(2
n) for 2n ≡ 1 mod 3, and H∗

is contained in the T -invariant Borel subgroup B∗ of K∗0 . As D∗ acts on T ∗, D∗

acts on B∗ and hence also on the characteristic subgroup Y ∗ of B∗, contrary to an
earlier remark. This completes the proof. ¤

Lemma 3.3.14. L =M+ E M , eliminating case (1) of 3.3.8.

Proof. Assume otherwise. Then by 3.3.10.3, L̄i ∼= L3(2). Therefore M+T =
〈H1, H2〉, where Hi := 〈Hi,1, T 〉 and H̄i,1, i = 1, 2, are the maximal parabolics of
L̄1 over T̄ ∩ L̄1. Notice that Hi/O2(Hi) ∼= S3 wr Z2, so by 3.3.13, D normalizes
Hi. But then D normalizes M+T = 〈H1, H2〉, contrary to 3.3.6.b. ¤

Our next lemma puts us in a position to exploit an argument much like that
in the proof of 3.3.14, to eliminate many cases where L is generated by a pair of
members of L(L, T ).

Lemma 3.3.15. Suppose LT = 〈Y1, Y2, T 〉 with Yj ∈ L(L, T ). Set Hj :=
〈Yj , TD〉, and assume O2(Hj) 6= 1 for j = 1 and 2. Then for i = 1 or 2: D does not
normalize Yi, Yi/O2(Yi) ∼= L2(4) or A6, Yi < K ∈ C(Hi) such that K/O2(K) ∼= J1
or U3(5), respectively, K E Hi, and D 6≤ M . When K/O2(K) ∼= J1, T induces
inner automorphisms on Yi/O2(Yi) and K ∩D 6≤M .

Proof. Notice Yj , Hj satisfy the hypotheses of 3.3.12 in the roles of “Y , H”,
so we can appeal to that lemma. Suppose D normalizes both Y1 and Y2. Then
D normalizes 〈Y1, Y2, T 〉 = LT , contradicting 3.3.6.b. Thus D does not normalize
some Yi, so the pair Yi, Hi is described in case (b) or (c) of 3.3.12.3. Further D 6≤M
by 3.3.6.a, and when K/O2(K) ∼= J1, K ∩D 6≤M by 3.3.12. ¤
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Lemma 3.3.16. L̄ is not SL3(2
n), Sp4(2

n), or G2(2
n) with n > 1.

Proof. Assume otherwise. Let TL := T ∩L and M̄i, i = 1, 2, be the maximal
parabolics of L̄ containing T̄L. Set Yi :=M∞

i ; then Yi ∈ L(L, T ) with Yi/O2(Yi) ∼=
L2(2

n) and LT = 〈Y1, Y2, T 〉. By 3.3.10.1, Hi := 〈Yi, TD〉 ∈ H(T ). Thus by 3.3.15,
we may assume that D does not normalize Y1 =: Y , n = 2, and Y < K ∈ C(H1)
with K E H1, K/O2(K) ∼= J1, K ∩D 6≤M , and T induces inner automorphisms
on Y/O2(Y ). Set H∗1 := H1/CH1(K/O2(K)). Then Y ∗ ∼= L2(4), so O2(Y

∗) = 1.
By 3.3.6.d, (LT, T ) is an MS-pair, and so we may apply the Meierfrankenfeld-

Stellmacher result Theorem C.1.32. Since n = 2, L/O2(L) is SL3(4) or Sp4(4) or
G2(4). By Theorem C.1.32, L/O2(L) is not G2(4), and if L/O2(L) ∼= Sp4(4), then
L is an Sp4(4)-block.

As T induces inner automorphisms on Y/O2(Y ), T induces inner automor-
phisms on L/O2(L) from the structure of Aut(L/O2(L)). From the structure of
L/O2(L), X := CD∩L(Y/O2(Y )) is of order 3, and asX normalizes T , Q := [X,T ] is
a 2-group. NowX ≤ D ≤ H1, and we saw thatK E H1. As [X

∗, Y ∗] ≤ O2(Y
∗) = 1

and CAut(K∗)(Y
∗) is of order 2 since K∗ ∼= J1, we conclude X∗ = 1. Therefore

Q∗ = [X∗, T ∗] = 1, so Q = [X,O2(KT )] = O2(O
2(XO2(KT ))) E KT . But if

L/O2(L) ∼= SL3(4), then O2(L)X = O2,Z(L) E LT , so that Q = [O2(L), X ] is also
normal in LT , and hence K ≤ NG(Q) ≤M = !M(LT ), contradicting K ∩D 6≤M .

Therefore L is an Sp4(4)-block. Now O2(L) is of order at most 210 using the
value for 1-cohomology of the natural module in I.1.6; thus Q is of order at most

|O2(Y ) : O2(L)||O2(L)| ≤ 26 · 210 = 216.

Therefore as 19 divides the order of J1 but not of L16(2), K centralizes Q. This
is impossible as Y ≤ K and Y is nontrivial QO2(L)/O2(L). This contradiction
completes the proof. ¤

Lemma 3.3.17. If L̄ ∼= A7, then m([V, L]) = 6, eliminating case (5) of 3.3.8.

Proof. Assume the lemma fails. Then by 3.3.8, m([V, L]) = 4. We work with
two of the three proper subgroups in L(L, T ). First, let M1 := CL(Z)

∞. By 3.3.9,
CL(Z) = CL(Z ∩ [V, L]), so M̄1 = CL̄(Z)

∼= L3(2). Then 1 6= Z ≤ O2(〈TD,M1〉).
Second, there is M2 ∈ L(L, T ) with M̄2T̄ ∼= S5, so by 3.3.10.1, O2(〈M2, TD〉) 6= 1.
As LT = 〈M1,M2, T 〉 and MiT/O2(MiT ) is not isomorphic to L2(4) or A6, 3.3.15
supplies a contradiction. ¤

Lemma 3.3.18. If L̄ ∼= Ln(2) with n = 4 or 5, then [V, L] is not the direct sum
of isomorphic natural modules.

Proof. Assume otherwise; then [V, L] = V1⊕· · ·⊕Vr, where the Vi are isomor-
phic natural modules for L̄. Therefore T induces inner automorphisms on L/O2(L),
and in particular normalizes each parabolic of L containing T ∩ L.

Let Y1 := CL(Z)
∞, and recall CL(Z) = CL(Z ∩ [V, L]) by 3.3.9. As the natural

submodules Vi are isomorphic, CL(Z ∩ [V, L]) is the parabolic stabilizing a vector
in each Vi, so that Ȳ1 ∼= Ln−1(2)/E2n−1 , and hence Y1 ∈ L(L, T ).

Let W1 be the T -invariant 3-subspace of V1, and set Y2 := NL(W1)
∞. Then

Ȳ2 ∼= L3(2)/E8 or L3(2)/E64 for n = 4 or 5, respectively, so Y2 ∈ L(L, T ). If some
nontrivial characteristic subgroup of T were normal in Y2T , then O2(〈Y2T,D〉) 6= 1;
so as L = 〈Y1, Y2, T 〉, and Y2/O2(Y2) ∼= L3(2) rather than L2(4) or A6, we have
a contradiction to 3.3.15. It follows that (Y2T, T ) is an MS-pair in the sense of
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Definition C.1.31. As Y2/O2(Y2) ∼= L3(2), case (5) of Theorem C.1.32 holds, so
that Y2T is described in C.1.34. Since T is Sylow in Y2T , case (5) of C.1.34 does
not hold, so that one of cases (1)–(4) of C.1.34 holds.

Let Q := [O2(Y2T ), Y2] and U := Z(Q). By B.2.14, Z ≤ Ω := Ω1(Z(O2(Y2T ))),
so [Y2, Z] ≤ Q ∩ Ω = U and hence W1 ≤ [Z, Y2] ≤ U and Y2 acts on UZ. Then
by 12.8 in [Asc86a], UZ = UZ0, where Z0 := CZ(Y2), so Z = Z0(Z ∩ U). On
the other hand CVi(Y2) = 1 for each i, so CV (Y2) = 1 and hence Z0 = CZ(L) by

3.3.7.4. Then as M = !M(LT ), M = !M(CG(z0)) for each z0 ∈ Z
#
0 .

Assume that case (4) of C.1.34 holds. Then U = U0⊕U1, where U0 := CU (Y2T )
is of rank 2 and U1 is a natural module for Y2T/O2(Y2T ) ∼= L3(2). Thus U ∩ Z =
U0 ⊕ Z1, where Z1 := U1 ∩ Z is of order 2, so as Z = Z0(U ∩ Z), |Z : Z0| = 2.
Further m(Z) ≥ m(U ∩ Z) = 3, so for each d ∈ D, Z0 ∩ Zd0 6= 1. Finally by an
earlier remark,

Md = !M(CG(z
d)) =M for some z ∈ Z#

0 with zd ∈ Z0.

Thus D ≤ NG(M) =M asM ∈M, contradicting 3.3.6.a. Hence case (4) of C.1.34
is eliminated.

Next Ȳ2 has m := 1 or 2 noncentral 2-chief factors in O2(Ȳ2), for n = 4 or
5, respectively, and Y2 has r ≥ 1 noncentral 2-chief factors in [V, L] ≤ O2(L).
Therefore Y2 is not an L3(2)-block, eliminating case (1) of C.1.34. Next the chief
factor(s) for Y2 in O2(Ȳ2) are isomorphic to W1 ≤ U , so case (3) of C.1.34 is also
eliminated, since there the noncentral 2-chief factors of Y2 other than U lie in Q/U
and are dual to U . Thus case (2) of C.1.34 holds, so Q = U = U1 ⊕ U2 is the
sum of two isomorphic natural modules Ui, and in particular Y2 has exactly two
noncentral 2-chief factors. Thus m + r ≤ 2, so as m ≥ 1 ≤ r, it follows that
m = r = 1, and therefore n = 4 and V = V1 = [O2(L), L]. We may choose notation
so that W1 ≤ U1. As V = [O2(L), L], L is an L4(2)-block, so P := O2(Y1) ∼= D3

8,
P/Z(P ) = P1/Z(P ) ⊕ P2/Z(P ) is the sum of two nonisomorphic natural modules
Pi/Z(P ) for Y1/P , and we may choose notation so that V1 = P1. Thus as we
saw that D normalizes Y1, D normalizes O2(Y1) = P , and hence D = O2(D)
also normalizes P1. Then as P1 = V1 E LT , D ≤ NG(P1) ≤ M = !M(LT ),
contradicting 3.3.6.b. This completes the proof. ¤

Lemma 3.3.19. L̄ is not L5(2).

Proof. Assume otherwise, and let Y := CL(Z)
∞. As V = 〈ZL〉, part (4) of

Theorem B.5.1 shows that V = [V, L] ⊕ CZ(L). Since 3.3.18 eliminates case (iv)
of B.5.1.1, either case (iii) of that result holds with [V, L] the sum of the natural
module and its dual, or case (i) there holds, with [V, L] irreducible. In the latter
case by Theorem B.4.2 and 3.3.18, [V, L] is a 10-dimensional irreducible.

Assume first that [V, L] is the sum of the natural module and its dual. Then by
B.5.1.6, Ȳ ∼= L3(2)/2

1+6, so Y ∈ L(L, T ). By 3.3.12.3, D acts on Y , and then also
on J(O2(Y T )). But again by B.5.1.6 (notice we can apply B.2.10 with O2(Y T ) in
the role of “R”), we see that J(O2(Y T )) ≤ CT (V ) = O2(LT ), so J(O2(Y T )) =
J(O2(LT )) by B.2.3.3. Hence D ≤ NG(J(O2(LT ))) ≤M = !M(LT ), contradicting
3.3.6.b.

Therefore [V, L] is irreducible of dimension 10, and in particular is the exterior
square of a natural module. So this time (see e.g. K.3.2.3) Y is the parabolic
determined by the stabilizer of a 2-space in that natural module; again Y/O2(Y ) ∼=
L3(2) so Y ∈ L(L, T ) and as before D normalizes Y by 3.3.12.3. Now O2(Ȳ T̄ ) does
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not contain the unipotent radical of the maximal parabolic determined by the end
node stabilizing a 4-space in the natural module. Thus by B.4.2.11 (again for more
detail see K.3.2.3), J(O2(Y T )) ≤ CT (V ), so again J(O2(Y T )) = J(O2(LT )), for
the same contradiction. The proof is complete. ¤

The next technical result has the same flavor as 3.3.12, and will be used in a
similar way. In particular it will help to eliminate the shadows discussed earlier.

Lemma 3.3.20. Assume X = O2(X) is T -invariant with XT/O2(XT ) ∼= S3,
and D does not normalize R := O2(XT ). Let Y := 〈XD〉, and let γ denote the
number of noncentral 2-chief factors for X. Then

(1) 〈XT,D〉 ∈ H(T ) and Y E 〈XT,D〉 = Y TD.
(2) Y T/O2(Y T ) ∼= L2(p) for a prime p ≡ ±11 mod 24.
(3) O2(X) ≤ O2(Y ), XT/O2(Y T ) ∼= D12, and |D : ND(X)| = 3.
(4) γ ≥ 3.
(5) If γ ≤ 4, then:

(a) Y has a unique noncentral 2-chief factor W , m(W ) ≥ 10, and |T | ≥
212.

(b) Φ(O2(X)) ≤ Z(Y ).
(c) If Z(Y T ) 6= 1, then |T | > 212.

Proof. Let B := 〈XT,D〉. As D does not act on R, R 6= 1. Thus XT ∈ H(T )
and T is maximal in XT as XT/R ∼= S3. Therefore B ∈ H(T ) by 3.3.10.1. Also
XTD = XD so Y E B, establishing (1).

Notice using A.1.6 that O2(B) ≤ O2(XT ) = R. Let B0 be maximal subject to
B0 E B and XT ∩ B0 ≤ R. Then XT ∩ B0 = R ∩ B0 = T ∩ B0 =: T0 contains
O2(B) and is invariant under XT and D, so T0 E B. Thus T0 = O2(B). As D
does not act on R by hypothesis, T0 < R.

Set B∗ := B/B0. As T0 = XT ∩B0 < R, R∗ 6= 1 6= X∗. Then as XT/R ∼= S3,
|T ∗| = 2|R∗| > 2.

Let B∗1 be a minimal normal subgroup of B∗. By maximality of B0, XT ∩B1 6≤
R = O2(XT ), so X

∗∩B∗1 is not a 2-group. So as |X : O2(X)| = 3 and X = O2(X),
X∗ ≤ B∗1 . Then by minimality of B∗1 , B

∗
1 = 〈X∗D〉 = Y ∗. In particular Y ∗ is the

unique minimal normal subgroup of B∗, so Y ∗ = F ∗(B∗); hence T ∗ is faithful on
Y ∗.

Suppose Y ∗ is solvable. Then Y ∗ ∼= E3n as Y ∗ is a minimal normal subgroup
of B∗. As Y ∗ = 〈X∗D〉, and D acts on T with X∗ a simple T -submodule of
Y ∗, Y ∗ is a semisimple T -module. Therefore as T ∗ is faithful on Y ∗, Φ(T ∗) = 1,
and as |T ∗| > 2, m(T ∗) > 1. Then by (1) and (2) of A.1.31, m(T ∗) = 2 and
m(CY ∗(t

∗)) ≤ 1 for each t∗ ∈ T ∗#, so that n = 2 or 3. Further if n = 3, then as
B = Y TD by (1), T ∗D∗ ∼= A4 is irreducible on Y ∗, contrary to A.1.31.3. Thus
n = 2, so T ∗D∗ ≤ GL2(3). Then as Φ(T ∗) = 1 and D∗ is a subgroup of GL2(3)
of odd order normalizing T ∗, D∗ = 1. Hence Y ∗ = 〈X∗D

∗

〉 = X∗, contradicting
n = 2.

So Y ∗ is not solvable, and hence Y ∗ = F ∗(B∗) = Y ∗1 × · · · × Y ∗s is the direct
product of isomorphic simple groups Y ∗i permuted transitively by TD. Then (1.a)
of Theorem A (A.2.1) holds, so mq(Y

∗) ≤ mq(B) ≤ 2 for each odd prime q, so that
s ≤ 2 and Y ∗ is an SQTK-group. Thus as D = O2(D), D normalizes each Y ∗i , so
T is transitive on the Y ∗i . Therefore if T acts on Y ∗1 , then s = 1 and Y ∗ is simple.

As Y ∗ = 〈X∗D
∗

〉 and Y ∗ is not solvable, D∗ 6= 1.
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As D does not act on X , there is g ∈ D − NG(X). Set G1 := XT , G2 :=
XgT , and G0 := 〈G1, G2〉. As XT/R ∼= S3 and D acts on T , (G0, G1, G2) is a
Goldschmidt triple as in Definition F.6.1. Thus if g does not act on R = O2(XT ),
O2(XT ) 6= O2(X

gT ), so G+
0 := G0/O3′(G0) is described in Theorem F.6.18 by

F.6.11.2.
Suppose for each g ∈ D−NG(X) that the group G+

0 defined by g satisfies case
(1) or (2) of F.6.18. Then O2(G0) = R ∩Rg is normalized by XT for all g ∈ D, so

RD :=
⋂

d∈D

Rd =
⋂

d∈D

(R ∩ Rd)

is invariant under XT and D, and hence RD ≤ O2(B) = T0. Therefore as T0 ≤ R,
RD = T0. Also Φ(T ) ≤ R ∩ Rd since T/(R ∩ Rd) ∼= Z2 or E4 in cases (1) and
(2) of F.6.18, so Φ(T ) ≤ T0 and hence Φ(T ∗) = 1. Thus T ∗ acts on each Y ∗i as
T ∗∩Y ∗i 6= 1, so s = 1 and Y ∗ = F ∗(B∗) is a simple SQTK-group by earlier remarks.
As Φ(T ∗) = 1, we conclude from Theorem C (A.2.3) that Y ∗ ∼= L2(2

n), J1, or L2(p)
for a prime p ≡ ±3 mod 8. As X∗T ∗/R∗ ∼= S3, the first two cases are eliminated.
In the third case B∗ = Y ∗ as Y ∗ = F ∗(B∗) and Φ(T ∗) = 1. Thus X∗T ∗ ∼= D12,
and NB∗(T

∗) ∼= A4. Then from the list of maximal subgroups of B∗ in Dickson’s
Theorem A.1.3, B∗ = Y ∗T ∗ = 〈X∗T ∗, X∗gT ∗〉, contrary to our assumption that
each g ∈ D −NG(X) defines a group G+

0 satisfying case (1) of (2) of F.6.18.
Therefore we may choose g ∈ D − NG(X) so that G+

0 satisfies one of the
remaining cases (3)–(13) of F.6.18. In particular inspecting those cases, 1 6= G+∞

0 =
E(G+

0 ) is quasisimple. Then as O3′(G0) is solvable by F.6.11.1, we conclude from
1.2.1.1 that K0 := G∞0 is the unique member of C(G0), and K

+
0 = E(G+

0 ). Hence
K0 ∈ L(G, T ). By 1.2.4, K0 ≤ K ∈ C(B), and K E B as T acts on K0. As
T ∩B0 = O2(B0), K

∗ 6= 1, so as Y ∗ is the unique minimal normal subgroup of B∗,
K∗ = Y ∗ = F ∗(B∗) is simple.

Assume for the moment that K∗0 < K∗. Set TK := T ∩ K ∈ Syl2(K). We
compare the possiblities for K+

0 described in F.6.18 to the embeddings described in
A.3.12, to obtain a list of possiblities for K∗. Cases (2), (3), (15), (16), and (22) of
A.3.12 do not arise, since there the candidate “B/O3′(B)” for K+

0 does not appear
in F.6.18; this also eliminates the subcase of (8) with K∗ ∼= L2(p) for p ≡ ±3
mod 8 and K∗0

∼= A5. In cases (4)–(7), (11)–(14), and (17)–(21), and also in the
remaining subcase of (8) where K∗ ∼= L2(p

2), Aut(K∗) is a 2-group, so B∗ = K∗T ∗

since K∗ = Y ∗ = F ∗(B∗). Furthermore in each case T ∗K is self-normalizing in
Aut(K∗), so NB∗(T

∗) = T ∗ in these cases.
Next assume we are in the subcase of (9) where K∗ ∼= U3(5) and K

∗
0
∼= A6. As

in the proof of 3.3.12, D∗ induces a group of outer automorphisms of order 3 on
K∗ centralizing T ∗K , and as D∗ normalizes T ∗, T ∗ induces inner automorphisms on
K∗ so that B∗ = K∗D∗ and T ∗K = T ∗. Now as D centralizes T ∗K = T ∗ ∈ Syl2(B

∗),
D centralizes O2(X

∗T ∗), so D normalizes the preimage S in B of O2(X
∗T ∗), and

hence as O2,Z(K) is 2-closed, D normalizes O2′ (S) = O2(XT ) = R, contrary to
the hypothesis of the lemma.

Finally in the remaining subcase of (9) and in (10), K∗ ∼= Lε3(p) with K∗0
∼=

SL2(p) or SL2(p)/Ep2 for an odd prime p, since K∗ = Y ∗ is simple.
Thus we have shown that one of the following holds:

(a) K∗0 = K∗.
(b) NB∗(T

∗) = T ∗.
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(c) K∗0 < K∗ ∼= Lε3(p) for some odd prime p.

In case (b), D∗ = 1, contrary to an earlier remark. Suppose case (c) holds.
Then from the structure of NAut(K∗)(T

∗), D∗ ≤ D∗0 , where D
∗
0 is a cyclic sub-

group of K∗ of order dividing p − ε centralizing T ∗. Further we saw that K∗0
∼=

SL2(p) or SL2(p)/Ep2 . But now [K∗0 , D
∗] ≤ [K∗0 , D

∗
0 ] ≤ O(K∗0 ), contradicting

G∗0 = 〈X∗T ∗, X∗gT ∗〉.
Therefore case (a) holds, with K∗0 = K∗ = Y ∗ = F ∗(B∗), and D∗ acts on

Y ∗T ∗ = G∗0, so G
∗
0 E B∗ = Y ∗T ∗D∗ ≤ Aut(K∗). Recall G+

0 satisfies one of cases
(3)–(13) of F.6.18, but does not satisfy (b). As F ∗(G∗) = K∗ is simple and K+

0 is
quasisimple, K∗ ∼= K+

0 /Z(K
+
0 ). Examining F.6.18 for groups with T ∗ < NG∗(T

∗),
we conclude case (4) or (10) of F.6.18 holds. However G2 = Gg1, so G

∗
2
∼= G∗1, ruling

out case (10) of F.6.18, since G+
1 Z(K

+
0 )/Z(K+

0 )
∼= G∗1

∼= G∗2
∼= G+

2 Z(K
+
0 )/Z(K

+
0 ).

This leaves case (4) of F.6.18, so we conclude that G+
0 = K+

0
∼= L2(p), p ≡ ±11

mod 24, and X+T+ ∼= D12. As G
+
0 is simple, G+

0
∼= G∗0 = K∗. Further Aut(K∗) is

a 2-group, so B∗ = G∗0D
∗ = K∗ ∼= G+

0 .
Next there is t ∈ T ∩ K with X∗ = [X∗, t∗], so X = [X, t] ≤ K, and hence

Y = 〈XD〉 ≤ K as K E B. By (1), Y E B = Y TD, so since K ∈ C(B)
with K∗ = B∗ ∼= G+

0
∼= L2(p), we conclude from 1.2.1.4 that either (2) holds,

or Y/O2(Y ) ∼= SL2(p)/Ep2 . However in the latter case, by a Frattini Argument,
Y = Op(Y )Y0, where Y0 := NY (T1) and T1 := T ∩ O∞(Y ). But then XT and D
act on T1, so T1 ≤ O2(B), whereas T1 6≤ O2(Y ). Thus (2) is established.

We saw that X∗T ∗ ∼= D12, and from (2), NB∗(T
∗) ∼= A4, so (3) follows. Further

we observed earlier that B∗ ∼= G+
0 , so B

∗ = 〈X∗T ∗, X∗gT ∗〉 for g ∈ D with g∗ 6= 1.
Let W be a noncentral 2-chief factor of Y , n := m(W ) and α := m([W,X∗])/2.

Then α is the number of noncentral chief factors for X∗ on W , so α ≤ γ. As
B∗ = 〈X∗T ∗, X∗gT ∗〉, CW (X) ∩ CW (Xg) = 0, so n ≤ 2m([W,X∗]) = 4α. On the
other hand, a Borel subgroup of B∗ is a Frobenius group of order p(p − 1)/2, so
n ≥ (p− 1)/2 and hence p ≤ 2n+ 1 ≤ 8α+1. Thus either α > 4 or p ≤ 33, and in
the latter case as p ≡ ±11 mod 24, p = 11 or 13. As neither 11 nor 13 divides the
order of GL9(2), we conclude that n ≥ 10 and hence α ≥ n/4 > 2. Thus as γ ≥ α,
(4) holds.

It remains to prove (5), so assume that γ ≤ 4. Then α ≤ 4, so by the previous
paragraph,W is the unique noncentral 2-chief factor for Y , and m(W ) ≥ 10. Then
as |T ∗| = 4, |T | ≥ 212, with equality only if p = 11 and W = O2(Y T ), so that
Z(Y T ) = 1. Therefore parts (a) and (c) of (5) hold. Finally W = U/U0 where
U := [O2(Y ), Y ] and U0 := CU (Y ), and as O2(X) ≤ O2(Y ) by (3), O2(X) =
[O2(X), X ] ≤ U . Then as U/U0 is elementary abelian and X ≤ Y , Φ(O2(X)) ≤
U0 ≤ Z(Y ), establishing part (b) of (5). This completes the proof. ¤

In the next lemma, we eliminate the first occurrence of the shadow of Ω+
8 (2)

extended by triality.

Proposition 3.3.21. L̄ is not L4(2), eliminating case (7) of 3.3.8.

Proof. Assume otherwise. Arguing as in the proof of 3.3.19 via appeals to
Theorems B.5.1, B.4.2, and 3.3.18, we conclude:

(a) Either
(1) [V, L] = U1 ⊕U2, where U1 is a natural submodule of V and U2 is the dual

of U1, or
(2) [Ṽ , L] is the 6-dimensional orthogonal module for L̄.
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Next by 3.3.9, and appealing to B.5.1.6 in case (a1):

(b) In case (a1), CL̄(Z)
∼= S3/2

1+4.

(c) In case (a2), CL̄(Z)
∼= (S3 × S3)/E16.

Let R := O2(CL(Z)T ). Then R̄ is the unipotent radical of the parabolic CL̄(Z)
of L̄, so NM (R) ≤ NM (O2(CL(Z))). By B.5.1.6 and B.4.2.10, J(R) ≤ CT (V ) =
O2(LT ), so that J(R) = J(O2(LT )) by B.2.3.3, and hence NG(R) ≤ NG(J(R)) ≤
M as M = !M(LT ). Therefore as we just showed that O2(CL(Z)) is normal in
NM (R):

(d) J(R) = J(O2(LT )), and O
2(CL(Z)) E NG(R) ≤M . Thus D does not act on

R, and hence does not act on O2(CL(Z)).

Next we show:

(e) CZ(L) = 1, so Z ≤ [V, L] = V . Further when (a2) holds, L is irreducible on V .

For if CZ(L) 6= 1, then CG(Z) ≤ CG(CZ(L)) ≤ M = !M(LT ), so O3′ (CG(Z)) =

O3′(CM (Z)) = O2(CL(Z)) is D-invariant, contrary to (d). Then since V =
[V, L]CZ(L) by 3.3.7.4, V = [V, L].

Our final technical result requires a lengthier proof:

(f) T is nontrivial on the Dynkin diagram of L̄.

Assume that T is trivial on the Dynkin diagram of L̄. Then T̄ ≤ P̄i ≤ L̄,
for i = 1, 2, with P̄i ∼= L3(2)/E8. Let Yi := P∞i , so that Yi ∈ L(L, T ). Then
LT = 〈Y1, Y2, T 〉.

We now repeat some of the proof of 3.3.18: By 3.3.15 we may assume there
is no nontrivial characteristic subgroup of T normal in Y T for Y := Y1, so the
MS-pair (Y T, T ) is described in C.1.34. As T is Sylow in G, case (5) of C.1.34
does not hold. By (a) and (e), m(CZ(Y )) ≤ 1, so case (4) does not hold. Next
Y has a nontrivial 2-chief factor on O2(Ȳ ) and two on [V, L] from (a1) and (a2),
eliminating cases (1) and (2) of C.1.34 where there are at most two such factors.
Therefore case (3) of C.1.34 holds. Set Q := [O2(Y T ), Y ] and U := Z(Q); then U
is a natural module for Y/O2(Y ) and Q/U the sum of two copies of the dual of
U . In particular, Y has exactly three noncentral 2-chief factors. Then CQ(Y ) = 1,
eliminating case (a1) where C[V,Y ](Y ) 6= 1 and [V, Y ] ≤ Q. Thus case (a2) holds
and L is an A8-block.

As T̄ ≤ L̄, LT = O2(LT )L. By (e), CT (L) = 1, so by C.1.13.b and B.3.3,
either V = O2(LT ) or O2(LT ) is the 7-dimensional quotient of the permutation
module for L̄. But in the latter case, as T = O2(LT )(L ∩ T ), J(T ) ≤ CT (V ) by
B.3.2.4, contradicting 3.3.7.2.

Thus O2(LT ) = V , so T ≤ L and |T | = 212. Let Li, i = 1, 2, be the rank-1
parabolics of CL(Z) over T , and set Xi := O2(Li), and Ri := O2(Li). By (d), D
does not act on R, so as R = R1 ∩ R2, D does not act on Ri for some i, say i = 1.
We now apply 3.3.20 to X1 in the role of “X”: Let Y := 〈XD

1 〉, and observe that
the number γ of noncentral 2-chief factors of X1 is four, and Z ≤ Z(Y T ). Thus as
|T | = 212, part (c) of 3.3.20.5 supplies a contradiction, which establishes (f).

We now complete the proof of lemma 3.3.21.
Let P be the parabolic of L with P/O2(P ) ∼= S3×S3, and set H := PT . Then

by (f), H/O2(H) ∼= S3 wr Z2, so by 3.3.13, D ≤ NG(H). However in case (a2),
J(O2(H)) ≤ CT (V ) by B.3.2, so that J(O2(H)) = J(O2(LT )) by B.2.3.3; hence
D normalizes J(O2(LT )), contradicting 3.3.6.b. Therefore case (a1) must hold.
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We have Z ≤ [V, L] = V by (e), and T 6≤ LO2(LT ) by (f), so V = W ⊕W t for
t ∈ T − LO2(LT ) with W := U1 the natural module for L̄ and W t dual to W . In
particular Z ∼= Z2 is D-invariant, and we saw D ≤ NG(H), so D normalizes

U := 〈ZH〉 = (U ∩W )⊕ (U ∩W )t,

with U ∩W ∼= E4. Now H acts as O+
4 (2) on U , so AutH(U) is self normalizing in

GL(U) and AutT (U) is self normalizing in AutH(U); thus we conclude [U,D] = 1.
Hence [H,D] ≤ CH(U) = O2(H); in particular D centralizes T/O2(H), so D acts
on S := T∩LO2(LT ), and hence on ZW := CW (S), since ZW ≤ U andD centralizes
U .

Let LW := CL(ZW )∞. Then LW /O2(LW ) ∼= L3(2), and LW has noncentral
chief factors on each of W/ZW , W t, and O2(L̄W ). We will now apply earlier
arguments to see that (LWS, S) cannot be an MS-pair; then since (MS1) and
(MS2) hold, we can conclude (MS3) does not hold. So suppose (MS3) does hold:
then we may apply C.1.32, and as before one of cases (1)–(4) of C.1.34 holds. Since
we saw there are at least three noncentral 2-chief factors, cases (1) and (2) of C.1.34
are eliminated. As ZW ≤W = [W,LW ] is a nonsplit extension of a natural quotient
over a trivial submodule, case (3) of C.1.34 does not hold. We’ve seen m(Z) = 1,
so as |T : S| = 2, m(Z(S)) ≤ 2, and hence case (4) of C.1.34 does not hold. This
contradiction shows that (MS3) fails, so there is 1 6= C char S with C E LWS. But
then C E 〈LW , T 〉 = LT , while D normalizes S and hence also C, contradicting
3.3.6.b. ¤

Lemma 3.3.22. L̄ is not A7, eliminating case (3) of 3.3.8.

Proof. If L̄ ∼= A7 then by 3.3.8 and 3.3.17, [V, L] is the natural module for L̄.
We adopt the notational conventions of section B.3; that is we regard L̄T̄ ∼= S7 as
the group of permutations on Ω := {1, . . . , 7}, [V, L] as the set of even subsets of
Ω, and take T̄ to have orbits {1, 2, 3, 4}, {5, 6}, {7} on Ω. Set θ := Ω− {7}; then

ZV := Z ∩ [V, L] = 〈e5,6, eθ〉.

Let Lθ := CL(eθ)
∞. Observe L̄θ ∼= A6 and R := O2(LT ) = O2(LθT ), with

C(G,R) ≤M by 1.4.1.1.
Consider any z ∈ CZ(L)eθ, and set Gz := CG(z) and Mz := CM (z). Then

z ∈ Z, so that Gz ∈ He by 1.1.4.6. As Lθ E Mz, R ∈ B2(Gz) and R ∈ Syl2(〈RMz 〉)
by A.4.2.7, so as C(G,R) ≤ M , it follows that Hypothesis C.2.3 is satisfied with
Gz, Mz in the roles of “H , MH”. Further by 1.2.4, Lθ ≤ K ∈ C(Gz). Now
F ∗(K) = O2(K) by 1.1.3.1, and m3(Lθ) = 2, so K/O2(K) is quasisimple by 1.2.1.4
and T acts on K by 1.2.1.3. Assume Lθ < K, so that K 6≤ NG(L) = M . Then
C.2.7 supplies a contradiction, as in none of the cases listed there does there exist
a T -invariant Lθ ∈ C(M ∩K) with Lθ/O2(Lθ) ∼= A6. Hence Lθ = K E Gz. Thus
by A.3.18

Lθ = O3′(CG(z)) for each z ∈ CZ(L)eθ. (∗)

Similarly for z ∈ CZ(L), CG(z) ≤M as M = !M(LT ), so by A.3.18:

L = O3′(CG(z)) for each z ∈ CZ(L). (∗∗)

Now as C[V,L](L) = 0, 3.3.7.4 says that V = [V, L]⊕CZ(L) and Z = ZV⊕CZ(L).
We claim that CZ(L) = 1, so that V = [V, L] and Z = ZV . Assume otherwise.
Then m(Z) > 2, and Zθ := 〈CZ(L), eθ〉 is a hyperplane of Z, so for each d ∈ D,

1 6= Zθ ∩ Z
d
θ . Hence we may choose z ∈ Z#

θ with zd ∈ Zθ. First suppose z ∈
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CZ(L). By (**), O3′ (CG(z
d)) = Ld and Ld 6= Lθ since |L| > |Lθ|. Therefore by

(*), zd /∈ CZ(L)eθ = Zθ − CZ(L), and hence zd ∈ CZ(L), so again using (**),

L = O3′(CG(z
d)) = Ld. Thus d ∈ NG(L) = M by 1.4.1 in this case. In the

remaining case, z ∈ Zθ − CZ(L) = CZ(L)eθ, where by (*), O3′(CG(z)) = Lθ, and

hence O3′(CG(z
d)) = Ldθ 6= L. Therefore by (**), zd ∈ Zθ − CZ(L) = CZ(L)eθ,

and then Lθ = O3′(CG(z
d)) by (*), and hence Lθ = Ldθ. Thus d normalizes LθT

and hence also O2(LθT ) = O2(LT ), so again d ∈ M . Therefore D ≤ M , contrary
to 3.3.6.a, establishing the claim.

Next CD(Z) ≤ CD(eθ), and CD(eθ) normalizes O3′(CG(eθ)) = Lθ using (*),
and hence also normalizes O2(LθT ) = R. Therefore CD(Z) ≤ NG(R) ≤ M as
C(G,R) ≤ M , so CD(Z) < D as D 6≤ M . As Z is of rank 2, we conclude |D :
D ∩M | = 3, with D transitive on Z#. In particular there is d ∈ D with ed5,6 = eθ.

Let L5,6 := CL(e5,6)
∞. Thus L̄5,6T̄ ∼= Z2 × S5, and Ld5,6 ≤ O3′(CG(eθ)) = Lθ.

This is impossible, as T = T d acts on Ld5,6 and Lθ, whereas there is no T -invariant
subgroup of Lθ/O2,Z(Lθ) ∼= A6 isomorphic to A5.

We have shown that L̄ is not A7. Thus case (3) of 3.3.8 does not hold by
3.3.10.2. This completes the proof of 3.3.22. ¤

Notice that at this point, cases (1), (2), (3), (5), and (7) of 3.3.8 have been
eliminated by 3.3.14, 3.3.10.2, 3.3.22, 3.3.17, and 3.3.21. Thus leaves case (6) of

3.3.8, where L̄ ∼= Â6, and case (4) of 3.3.8, where L̄ ∼= L3(2), A6, or U3(3) by 3.3.16.
In each of these cases, L/O2,Z(L) is of Lie type and Lie rank 2 in characteristic 2,
and T normalizes L. Threfore by 3.3.6.d, (LT, T ) is an MS-pair in the sense of
Definition C.1.31. Thus we may apply C.1.32 to LT to conclude that either L is a
block, or L̄ ∼= L3(2) is described in C.1.34. We first investigate the latter possibility
in more detail:

Lemma 3.3.23. If L̄ is L3(2), then either

(1) L is an L3(2)-block, and D acts on the preimage T0 in T of Z(T̄ ), or
(2) L has two or three noncentral 2-chief factors, and D does not act on

O2(CL(Z)T ).

Proof. As in earlier arguments we conclude that one of cases (1)–(4) of C.1.34
holds. In particular [V, L] is a sum of r ≤ 2 isomorphic natural modules, so by
3.3.7.4, V = [V, L]⊕ ZL and Z = (Z ∩ [V, L])⊕ ZL, where Z ∩ [V, L] has rank r.

Suppose case (4) of C.1.34 holds; we argue as in the proof of 3.3.18, although

many details are now easier: As M = !M(LT ), M = !M(CG(z)) for each z ∈ Z
#
L ,

and in case (4) of C.1.34, m(ZL) ≥ 2 and r = 1 so ZL is a hyperplane of Z, leading
to the same contradiction as in the proof of 3.3.18.

Thus we are in case (m) of C.1.34 for some 1 ≤ m ≤ 3, where L has m
noncentral 2-chief factors. This gives the first statements of (1) and (2). Next in
each case of C.1.34, T ≤ LO2(LT ). Set X := O2(CL(Z)) and R := O2(XT ). Now
LR, R also satisfy (MS1) and (MS2), but if m = 2 or 3, then (LR,R) is not an
MS-pair as the corresponding cases of C.1.34 exclude this choice of R. Therefore
(MS3) must fail for R, so there is a nontrivial characteristic subgroup C of R normal
in LR, and hence normal in LT as RET . Thus NG(R) ≤ NG(C) ≤M = !M(LT ),
so D does not act on R as D 6≤M by 3.3.6.a, proving the second statement in (2).
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Finally if m = 1, let Pi, i = 1, 2, denote the maximal parabolics of LT over T .
Then Pi has just two noncentral 2-chief factors, so D acts on O2(Pi) by 3.3.20.4.
Thus D acts on T0 := O2(P1) ∩ O2(P2), completing the proof of the lemma. ¤

In the proof of the next lemma, we encounter the shadow of the non-maximal
parabolic in Z3/Ω

+
8 (2), and we eliminate this shadow using 3.3.20.

Lemma 3.3.24. L is a block of type A6, Â6, G2(2), or L3(2).

Proof. We observed earlier that either L is a block of type A6, Â6, or G2(2),
or L̄ ∼= L3(2). Thus appealing to 3.3.23, we only need to eliminate the cases arising
in 3.3.23.2, where L has k := 2 or 3 noncentral 2-chief factors.

Let Q := [O2(LT ), L]. When k = 2, C.1.34.2 says that Q is the direct sum
of two isomorphic natural modules for L/O2(L); then LT acts on at least one of
the three natural submodules V0 of Q, and we set Z0 := Z ∩ V0. When k = 3,
V0 := Z(Q) is a natural L/O2(L) module, and Q/V0 is the direct sum of two copies
of the dual of V0. In this case we again set Z0 := Z ∩ V0. Thus in either case Z0 is
of rank 1 and V0 = 〈ZL0 〉 = [Z0, L] is an LT -invariant natural L/O2(L)-module.

Set R := O2(CL(Z)T ), X := O2(CL(Z)), and Y := 〈XD〉. Then X has
k + 1 ≤ 4 noncentral 2-chief factors. By 3.3.23.2, D does not act on R, so we can
apply 3.3.20.5 to conclude that Y has a unique noncentral 2-chief factorW , and that

Z0 ≤ Φ(O2(X)) ≤ Z(Y ). Set Ỹ T := Y T/Z0, RY := O2(Y T ) and U := 〈V Y0 〉. As

X is irreducible on Ṽ0, we may apply G.2.2.1 with V0, Z0, Y T in the roles of “V , V1,
H”, to conclude that Ũ ≤ Ω1(Z(R̃Y )), so Φ(U) ≤ Z0. As V0 = [V0, X ], U = [U, Y ],
so by uniqueness of W , W = U/U0 where U0 := CU (Y ). By 3.3.20.3, O2(X) ≤ RY ,
so as X = O2(X), O2(X) = [O2(X), X ] ≤ [RY , Y ] = U . Then Φ(O2(X)) ≤ Z0,
eliminating the case k = 2, for there Φ(O2(X)) = CQ(L) is of rank 2. Thus k = 3,
and here we compute that Q/(O2(X) ∩ Q) ∼= E4 and [O2(X), a] 6≤ Z0 for each
a ∈ Q−O2(X). Therefore setting (Y T )∗ := Y T/RY , Q

∗ ∼= E4. This is impossible,
since by 3.3.20.3, X∗T ∗ ∼= D12, whereas Q

∗ E X∗T ∗. ¤

Lemma 3.3.25. (1) L is a block of type A6, G2(2), or L3(2).
(2) Assume CT (L) 6= 1 and L̄ is not L3(2), and let X := O2(CL(Z)) and

R := O2(XT ). Then D acts on X and R, but does not act on any nontrivial
D-invariant subgroup of R normal in LT .

(3) If CT (L) = 1, then either V = O2(LT ), or L is an A6-block.

Proof. Let X := O2(CL(Z)) and R := O2(XT ). Inspecting the cases listed
in 3.3.24, XT/R ∼= S3.

We first prove (2), so suppose CT (L) 6= 1 and L̄ is not L3(2). Then CZ(L) 6= 1,
so as usual CG(Z) ≤ CG(CZ(L)) ≤M = !M(LT ), and then CG(Z) = CM (Z). As
L̄ is not L3(2), m3(L) = 2 and so by A.3.18, L is the subgroup θ(M) generated by
all elements of M of order 3. Therefore X = θ(CG(Z)), so D acts on X and hence
also on R. Then the final statement of (2) follows from 3.3.6.b.

In view of 3.3.24, to prove (1) we may assume L̄ ∼= Â6, and it remains to derive
a contradiction. By B.4.2, J(R) ≤ CT (V ) = O2(LT ), so that J(R) = J(O2(LT ))

by B.2.3.3. Therefore CT (L) = 1 by (2). Then as the Â6-module has trivial 1-
cohomology by I.1.6, V = O2(LT ) by C.1.13.b. But again using B.4.2, there is a
unique member Ā of P(T̄ , V ), m(Ā) = 2, and CV (Ā) = CV (ā) for each ā ∈ Ā#.
Therefore by B.2.21, there is a unique member A ∈ A(T ) with [A, V ] 6= 1, and
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hence A(T ) = {A, V } is of order 2. Therefore as D is of odd order, D acts on V ,
contrary to 3.3.6.b. So (1) is estabished.

Finally we prove (3), so we assume that CT (L) = 1, and V < O2(LT ). By (1),
we may assume L̄ is L3(2) or U3(3), and it remains to derive a contradiction. As
CT (L) = 1, Q := O2(LT ) is elementary abelian by C.1.13.a. Further by C.1.13.b,
B.4.8, and B.4.6, Q is the indecomposable module with natural irreducible sub-
module V and trivial quotient, of rank 4 or 7, respectively. By 3.3.7.2, V is an
FF-module, so by B.4.6.13, L̄ is not U3(3). Thus L̄ ∼= L3(2), and by B.4.8.3, there
is a unique member Ā of P(T̄ , Q). As CQ(Ā) = CQ(ā) for each ā ∈ Ā# and
Q = CLT (Q), we may apply B.2.21 to obtain the same contradiction as earlier.
This completes the proof of (3). ¤

Observe now that as L is a block by 3.3.25.1, Hypothesis C.6.2 is satisfied with
L, T , T , TD in the roles of “L, R, TH , Λ”, For example, if 1 6= R0 ≤ T with
R0 E LT , then D 6≤ NG(R0) by 3.3.6.b, which verifies part (3) of Hypothesis
C.6.2. As Hypothesis C.6.2 is satisfied, we can apply C.6.3 to conclude:

Lemma 3.3.26. There exists d ∈ D −M with V d 6≤ O2(LT ).

In the remainder of the section, let d be defined as in 3.3.26. Set QL := O2(LT )
and TC := CT (L).

Lemma 3.3.27. Assume TC = CT (L) 6= 1. Then

(1) TC ∩ T dC = 1.
(2) Φ(TC) = 1.
(3) Either T dC ≤ QL or TC ≤ QdL.

Proof. As L centralizes TC E T and D acts on T , also T dC E T , and then
TC ∩ T dC is normal in LT and in LdT . Thus if TC ∩ T dC 6= 1, then

Md = !M(LdT ) = !M(NG(TC ∩ T
d
C)) = !M(LT ) =M,

contradicting our choice of d ∈ D −M in 3.3.26, and so establishing (1). Then

applying (1) to d2 in the role of “d”, TC ∩ T d
2

C = 1, so also T d
−1

C ∩ T dC = 1.
Now as L is a block, Φ(QL) ≤ TC by C.1.13.a. Suppose (2) fails, so that

Φ(TC) 6= 1. If T dC ≤ QL, then 1 6= Φ(T dC) ≤ Φ(QL) ≤ TC , contradicting (1);
therefore T dC 6≤ QL, so by symmetry TC 6≤ QdL, and thus (3) fails. Hence (3) implies
(2), so it remains to assume that (3) fails, and to derive a contradiction. Thus

T dC 6≤ QL and TC 6≤ QdL, so also T d
−1

C 6≤ QL.
Suppose for the moment that L̄ is L3(2). Then by 3.3.23.1, D acts on the

preimage T0 in T of Z(T̄ ). Therefore as T̄0 is of order 2 and T dC 6≤ QL, T̄
d
C = T̄0.

Now suppose that L̄ is not L3(2). Then by 3.3.25.2, D acts on X := O2(CL(Z))
and on R := O2(XT ). Therefore as TC E XT , T dC E XT , and as TC centralizes
X , 1 6= T̄ dC centralizes X̄. Now L̄ ∼= A6 or G2(2)

′ by 3.3.25.1, and T̄ is trivial on
the Dynkin diagram of L̄ if L̄ ∼= A6 since L̄ is an A6-block. Inspecting Aut(L̄), we
find that CAut(L̄)(X̄) = 1 unless L̄T̄ ∼= S6, whereas we saw T̄ dC 6= 1 centralizes X̄.

Therefore L̄T̄ ∼= S6 and T̄ dC = Z(X̄T̄ ) = T̄0 is of order 2.
Thus L̄T̄ ∼= S6 or L3(2) and T̄

d
C = T̄0 is of order 2. As T dC E T , 1 6= [V, T0] =

[V, T dC ] ≤ T dC . Similarly [V, T0] = [V, T d
−1

C ] ≤ T d
−1

C , so 1 6= [V, T0] ≤ T dC ∩ T
d−1

C ,
contrary to the final remark in paragraph one. ¤
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Lemma 3.3.28. If L̄ is L3(2) or U3(3), then QL = V × TC and Φ(QL) = 1.
Indeed if L̄ is U3(3), then TC = 1 and QL = V .

Proof. Assume that L̄ is L3(2) or U3(3) and set TC := CT (L). By 3.3.26,
there is d ∈ D −M with V d 6≤ QL.

Suppose first that L̄ ∼= L3(2). As case (1) of 3.3.23 holds, D acts on the
preimage T0 in T of Z(T̄ ). Then as |T̄0| = 2, T0 = V dQL and m(T0/CT0(V )) = 1,
so m(QL/CQL(V

d)) = 1 = m(V/CV (V
d)), and hence QL = V CQL(V

d). Now if
QL/CT (L) is the unique nonsplit extension of V with a 1-dimensional submodule
described in B.4.8, then the fixed points of T̄0 are contained in V CT (L), contrary
to QL = V CQL(V

d) with T̄0 = V̄ d. Therefore QL = V × TC , so as Φ(TC) = 1 by
3.3.27.2, the lemma holds in this case.

Thus we may assume L̄ ∼= U3(3). Notice that if TC = 1, then V = O2(LT ) by
3.3.25.3, so that the lemma holds. Therefore we may assume that TC 6= 1, and it
remains to derive a contradiction.

Set X := O2(CL(Z)) and R := O2(XT ). By 3.3.25.2, D acts on R and X .
Then V d is elementary abelian and normal in the parabolic subgroup XT , so using
B.4.6, m(V̄ d) = 2 or 3, and hence m(V/CV (V

d)) = 3. Then by symmetry between
V and V d, m(V d/CV d(V )) = 3. Thus m(V̄ d) = 3 so as V̄ d E X̄, V̄ d = CR̄(V̄

d)
is the unique FF-offender on V in R̄ by B.4.6.13. Therefore CR(V

d) ≤ V dQL, so
CR(V

d) = V dCQL(V
d). Also |CR(V d)| = |CR(V )| = |QL|, so |QL : CQL(V

d)| =
|V̄ d|. Then as |V̄ d| = |V : CV (V

d)|, QL = CQL(V
d)V . However in the unique

nonsplit extension of V/CV (L) over a 1-dimensional submodule described in B.4.6,
the fixed points of V̄ d are contained in V/CV (L). Thus as QL = V CQL(V

d),
QL = V TC . Then since Φ(TC) = 1 by 3.3.27.2, Φ(QL) = 1.

Again by B.4.6.13, V̄ d is the unique member of P(R̄, V ), and CV (V̄
d) = CV (ā)

for each ā ∈ V̄ d − L̄. Therefore as QL = V CT (V
d) and m(V̄ d) = m(V/CV (V

d)),
B.2.21 applied with QL in the role of “V ” says QdL is the unique member of A(R)
with [QL, Q

d
L] 6= 1, so A(R) is of order 2. Then as D of odd order acts on R, D

normalizes QL, contrary to 3.3.6.b. This completes the proof. ¤

Lemma 3.3.29. L̄ is not L3(2).

Proof. Assume L̄ is L3(2). By 3.3.23.1, D acts on the preimage T0 in T of
Z(T̄ ). Thus as D 6≤ M by 3.3.6.a and M = !M(LT ), no D-invariant subgroup of
T0 is normal in LT . Hence J(T0) 6≤ QL by B.2.3.3, so there is A ∈ A(T0) with
A 6≤ QL. Then as |T̄0| = 2, T0 = 〈a〉QL for a ∈ A − QL. Now Φ(QL) = 1 by
3.3.28, so CQL(A) = CQL(a). Therefore by B.2.21, A(T0) = {A,QL} is of order 2.
Thus as D is of odd order, D acts on QL, so that D ≤M = !M(LT ), contrary to
D 6≤M . ¤

Lemma 3.3.30. L is an A6-block.

Proof. Assume otherwise. Then by 3.3.25.1 and 3.3.29, L is a G2(2)-block,
and it remains to derive a contradiction. By 3.3.28, TC = 1 and V = QL, while
by 3.3.7.2, V is an FF-module for L̄T̄ , so V ∼= E64 is the natural module for
LT/V ∼= G2(2).

Define Ā1 as in B.4.6. Then by B.4.6, m(Ā1) = 3, P(L̄T̄ , V ) = ĀL̄1 , and
CV (Ā1) = CV (ā) is of rank 3 for each ā ∈ Ā1 − L̄. Let A0 be the preimage in
M of A1; by B.2.21 there is a unique member A of A(A0) with image Ā1. Hence
A(A0) = {V,A}. By Burnside’s Fusion Lemma A.1.35, NL̄T̄ (T̄ ) = T̄ is transitive
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on the members of ĀL̄1 normal in T̄ , so that Ā1 is the only such member. Thus
{A, V } = {B ∈ A(T ) : B E T} is D-invariant, so as usual D acts on V . Then
D ≤ NG(V ) ≤M , contrary to 3.3.6.a. ¤

By 3.3.30, L̄T̄ ∼= A6 or S6, so we can represent L̄T̄ on Ω := {1, . . . , 6} so that
T̄ has orbits {1, 2, 3, 4} and {5, 6}, and permutes the set of pairs {{1, 2}, {3, 4}}.
Further we adopt the notation of section B.3.

Lemma 3.3.31. TC = 1.

Proof. Assume otherwise; then in particular, CZ(L) 6= 1. By 3.3.25.2, D
acts on Y := O2(CL(Z)) and on R := O2(Y T ). Then by 3.3.26, there is d ∈
D − M with V d 6≤ QL. As V d E Y T , either V̄ d = 〈(5, 6)〉, or V̄ d contains
〈(1, 2)(3, 4), (1, 3)(2, 4)〉. The latter is impossible, since as V d E T , V d acts
quadratically on V . Thus V̄ d = 〈(5, 6)〉, and in particular LT/QL ∼= S6 rather
than A6.

By Sylow’s Theorem, D acts on some B of order 3 in Y , and so D acts on
CR(B). Now for v ∈ CV (B) − Z, V = 〈vT 〉, so v /∈ QdL since V 6≤ QdL. Therefore
by symmetry, vd /∈ QL, and thus v̄d = (5, 6).

Next |CR(B) : CQL(B)| = 2 and CR(B) = 〈vd〉CQL(B) since Y T/QL ∼= S4×Z2.
As QL = CR(V ), CQL(B) = CQL(V B) = CR(V B). Conjugating by d, |CR(B) :
CR(V

dB)| = 2, so as CR(B) = 〈vd〉CQL(V
d), |CQL(B) : CQL(V

d)| = 2. Then as
[CV (B)/CV (L), v

d] 6= 1, CQL(B) = CV (B)CQL (BV
d), so as TC ≤ CQL(B) TC ≤

CQL(BV
d) and hence V d centralizes TC . Thus CR(B) = 〈vd〉CV (B)CQL(BV

d).
Finally by Coprime Action, QL = V CQL(B), so QL = V CQL(BV

d).
Set S := QLV

d. As CT̄ (B̄) = V̄ d = S̄, CT (B) = CS(B) = CR(B) and
[V d, B] ≤ [QL, B] = [V,B]. So by symmetry, [V,B] ≤ [V d, B] = [V,B]d, and hence
[V,B] = [V d, B] = [V,B]d as these groups have the same order. Thus d acts on
CT (B)[V,B] = 〈vd〉CV (B)CQL (BV

d)[V,B] = 〈vd〉V CQL(BV
d) = V dQL = S.

By 3.3.7.4, V = [V, L]CZ(L), so that Z = ([V, L] ∩ Z)CZ(L). Therefore |Z :
CZ(L)| = |(Z ∩ [V, L]) : C[V,L](L)| = 2. We saw CZ(L) 6= 1, so as TC ∩ T dC = 1 by
3.3.27.1, Z ∼= E4 and CZ(L) ∼= Z2.

Suppose Φ(QL) = 1. Then as d normalizes S and S̄ = V̄ d is of order 2,
A(S) = {QL, QdL}, so as d is of odd order, d ∈ NG(QL) ≤M = !M(LT ), contrary
to our choice of d ∈ D −M . Thus Φ(QL) 6= 1. So as Φ(TC) = 1 by 3.3.27.2,
TCV < QL. As we saw QL = V CQL(V

dB), we may choose u ∈ CQL(V
dB)−TCV .

Now |QL : TCV | ≤ 2 by C.1.13.b and B.3.1, so QL = 〈u〉TCV and T =
〈u〉(T∩L)TCV d. Also Φ(TC) = 1, TC commutes with L by definition, and we saw V d

centralizes TC . Therefore as T = 〈u〉(T ∩L)TCV
d, 1 6= CTC (u) = Z ∩TC ≤ CZ(L),

so as CZ(L) is of order 2, CTC (u) is of order 2. As u
2 ∈ V TC ≤ CG(TC) and TC is

elementary abelian, it follows that m(TC) ≤ 2.
Assume first that TC ∼= Z2. Then as Φ(QL) 6= 1 while Φ(QL) ≤ TC by

C.1.13.a, u2 generates TC . Recall we chose u to centralize V d and V d centralizes TC .
Therefore Z(S) = CV (V

d)TC〈u〉, with CV (V d)TC elementary, so that Φ(Z(S)) =
TC is d-invariant, contradicting 3.3.27.1.

Thus TC ∼= E4, so 〈u〉TC ∼= D8. Hence S = S1 × S2 × E, where Si ∼= D8 and
E ∼= E4. But then as d is of odd order, the Krull-Schmidt Theorem A.1.15, says d
acts on Z(S)Si for i = 1 and 2, so d centralizes Φ(Z(S)Si) of order 2, and hence
also centralizes Φ(S). This contradicts 3.3.27.1, since TC ∩ Φ(S) 6= 1. ¤
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Lemma 3.3.32. (1) Either QL = V is irreducible, or QL ∼= E32 is the quotient

of the permutation module on Ω modulo 〈eΩ〉, denoted by “Ũ” in section B.3.
(2) L̄T̄ ∼= S6.
(3) D acts on the preimage T0 in T of Ā2 := 〈(1, 2)(3, 4), (5, 6)〉.

Proof. As TC = 1 by 3.3.31, (1) follows from C.1.13 and B.3.1. Let P1 be the
stabilizer in LT of {5, 6}, and P2 the stabilizer of the partition {{1, 2}, {3, 4}, {5, 6}};
set Ri := O2(Pi), and Xi := O2(Pi). Then P1 and P2 are the maximal parabolics
of LT over T , P1 has two noncentral 2-chief factors, P2 has three noncentral 2-
chief factors, and O2(X2) is nonabelian with Z(X2) = 1. Then P1 does not satisfy
conclusion (4) of 3.3.20 and P2 does not satisfy conclusion (5c) of 3.3.20, so D acts
on R1 and R2. Thus D acts on T1 := R1 ∩ R2.

If L̄T̄ ∼= S6, then T0 = T1 and the lemma holds, so we may assume L̄T̄ ∼= A6.
Thus T̄1 = 〈(3, 4)(5, 6)〉. But then P(T̄1, QL) is empty by B.3.4.1, so J(T1) ≤
CLT (QL) = QL. Then as QL is elementary abelian by (1), J(T1) = QL E LT , and
hence D ≤ NG(QL) ≤M , contrary to 3.3.6.a. Thus the lemma is established. ¤

We can now obtain a contradiction, and complete the proof of Theorem 3.3.1.
In view of 3.3.32.1, QL is either the natural module for L̄ denoted by “Ũ0”

in B.3.2, or the quotient denoted “Ũ” of the permutation module. Define Ā1 :=
〈(5, 6)〉, and Ā2 as in 3.3.32.2. By 3.3.32.3, D acts on the preimage T0 of Ā2 in
T , and as D 6≤ M by 3.3.6.a, D acts on no nontrivial subgroup of T0 normal in
LT . In particular J(T0) 6≤ QL by B.2.3.3, so there is A ∈ A(T0) with A 6≤ QL. By
B.3.2, Ā = Āi for i = 1 or 2. By inspection, CQL(Ā) = CQL(ā) for some ā ∈ Ā,
so by B.2.21 there is at most one member of A(T0) projecting on Āi; if such a
member exists, we denote it by Ai. Thus A(T0) ⊆ {QL, A1, A2}. Therefore as D
acts on A(T0) but not on QL, and D is of odd order, DL is transitive on A(T0) of
order 3. Further D is transitive on the 2-subsets of A(T0). This is impossible as
|A1QL| < |A2QL|.

This contradiction completes the proof of Theorem 3.3.1.





CHAPTER 4

Pushing up in QTKE-groups

Recall that in chapter C of Volume I, we proved “local” pushing up theorems
in SQTK-groups. In this Chapter we use those local theorems to prove “global”
pushing up theorems in QTKE-groups. Let L, V be a pair in the Fundamental
Setup (3.2.1), L0 := 〈LT 〉, and M := NG(L0). We use L0T and our pushing up
theorems to show that large classes of subgroups must be contained in M .

For example, in Theorem 4.2.13 we use the fact that L0T is a uniqueness
subgroup to prove roughly that if the pair L, V in the FSU is not too “small”, then
each subgroup I of L0 which covers L0 modulo O2(L0T ) with O2(I) 6= 1 is also a
uniqueness subgroup. Then we use Theorem 4.2.13 to prove Theorem 4.4.3, which
shows that for suitable subgroups B of odd order centralizing V , NG(B) ≤ M .
As a corollary, we see in Theorem 4.4.14 that for H ∈ H∗(T,M) with n(H) > 1,
a Hall 2′-subgroup of H ∩M must act faithfully on V . This gives the inequality
n(H) ≤ n′(NM (V )/CM (V )), (cf. E.3.38) which is used crucially in many places in
this work.

4.1. Some general machinery for pushing up

Our eventual goal is to show roughly in most cases of the FSU that if I is the
set of subgroups I of L0T covering L0 modulo O2(L0T ) with O2(I) 6= 1, then each
member of I is also a uniqueness subgroup. If some member of I fails to be a
uniqueness subgroup, then we study a maximal counterexample I using the theory
of pushing up from chapter C of Volume I. Our starting point is 1.2.7.3, which says
that L0T is a uniqueness subgroup. We develop some fairly general machinery to
implement this approach. So in this section we assume the following hypothesis
(which we will see in 4.2.2 holds in the FSU):

Hypothesis 4.1.1. Assume G is a simple QTKE-group, T ∈ Syl2(G), M ∈
M(T ), and M+ = O2(M+) E M . Further assume that M = !M(I) for each
subgroup I of M such that

M+CT (M+/O2(M+)) ≤ I and M = CM (M+/O2(M+))I.

Let Σ(M+) consist of those subgroups M− of M containing M+CM (M+/O2(M+)).

Lemma 4.1.2. Let R+ ∈ Syl2(CM (M+/O2(M+))). Then M = !M(NM (R+)).

Proof. By hypothesis T is Sylow in M , so as M+ E M , we may assume
R+ = CT (M+/O2(M+)). Also M+ = O2(M+), so by A.4.2, M+R+ ≤ NG(R+).
Now M = CM (M+/O2(M+))NM (R+) by a Frattini Argument. So by Hypothesis
4.1.1 with NM (R+) in the role of “I”, M = !M(NM (R+)). ¤

Next we define some more technical notation. We will study overgroups of M+

which (in contrast to the subgroups I in 4.1.1) need not cover all of M modulo

605
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CM (M+/O2(M+)), but just cover M− modulo CM (M+/O2(M+)) for some M− ∈
Σ(M+). For example in the FSU, takeM+ := L0, andM− := L0CM (L0/O2(L0))T ,
or more generally M− ∈ Σ(M) with M− ≤ L0CM (L0/O2(L0))T and LT = LM− .

In the remainder of the section pick M− ∈ Σ(M+) and define η = η(M+,M−)
to be the set of all subgroups I of M− such that ICM (M+/O2(M+)) = M− and
M+ ≤ IO2(M+) with O2(I) 6= 1. We wish to show that each I ∈ η is a uniqueness
subgroup; thus we consider the set of counterexamples to this conclusion, and define
µ = µ(M+,M−) to consist of those I ∈ η such that H(I,M) 6= ∅, where

H(I,M) := {H ∈ H(I) : H 6≤M}.

Finally define a relation
<
∼ on η by I1

<
∼ I2 if O2(I1) ≤ O2(I2) and I1∩M+ ≤ I2∩M+.

Let µ∗ = µ∗(M+,M−) consist of those I ∈ µ such that O2(I) is not properly

contained in O2(I1) for any I1 ∈ µ such that I
<
∼ I1.

We begin to study this set µ∗ of “maximal” members of µ.

Lemma 4.1.3. Let I ∈ η, I ≤ I0 ≤M−, and I1 ≤ I0 with 1 6= O2(I1). Assume
I0 = I1CI0(M+/O2(M+)) and M+ ∩ I0 ≤ I1O2(M+). Then

(1) I1 ∈ η.

(2) If I ∈ µ∗, I
<
∼ I1, and O2(I) < O2(I1), then M = !M(I1).

Proof. By hypothesis I ∈ η and I ≤ I0 ≤M−, so from the definition of η,

M− = ICM (M+/O2(M+)) ≤ I0CM (M+/O2(M+)) ≤M−, (∗)

and hence all inequalities in (*) are equalities. Again from the definition of η,
M+ ≤ IO2(M+) ≤ I0O2(M+).

Next as I0 = I1CI0(M+/O2(M+)) by hypothesis, and (*) is an equality,

M− = I0CM (M+/O2(M+)) = I1CM (M+/O2(M+)) ≤M−,

and again this inequality is an equality. As M+ ≤ I0O2(M+) and M+ ∩ I0 ≤
I1O2(M+), M+ = (I0 ∩M+)O2(M+) ≤ I1O2(M+). Then as O2(I1) 6= 1 by hypoth-
esis, I1 ∈ η, and hence (1) holds.

Assume the hypothesis of (2). If M 6= !M(I1), then H(I1,M) 6= ∅, so that

I1 ∈ µ. As I
<
∼ I1 and O2(I) < O2(I1), this contradicts I ∈ µ∗, establishing

(2). ¤

The next two results are used to establish Hypothesis C.2.8 in various situa-
tions; see 4.2.4 for one such application. Hypothesis C.2.8 allows us to apply the
pushing up results in chapter C of Volume I.

Lemma 4.1.4. Suppose I ∈ µ∗, and let R := O2(I) and H ∈ H(I,M). Set
H+ := O2(M+ ∩H). Then

(1) R ≤ CM (M+/O2(M+)).
(2) C(G,R) ≤M .
(3) M+ = H+O2(M+) and H+ E H ∩M .
(4) R ∈ Syl2(CH(H+/O2(H+))) ∩ Syl2(CH∩M (H+/O2(H+))).
(5) R = O2(NH(R)) so that R ∈ B2(H), and O2(H) ≤ O2(H ∩M) ≤ R.
(6) F ∗(H ∩M) = O2(H ∩M).

Proof. Let I+ := O2(M+ ∩ I). As M+ ≤ IO2(M+) by definition of η, while
M+ = O2(M+) by Hypothesis 4.1.1, M+ = I+O2(M+). Therefore (1) follows from
A.4.3.1, with M+, I+ in the roles of “X , Y ”. Also (3) follows as I+ ≤ H+.
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Set M1 := NM−(R), and pick R+ ∈ Syl2(CM (M+/O2(M+)) so that R1 :=
NR+(R) ∈ Syl2(CM1(M+/O2(M+))). If R = R+, then (2) holds by 4.1.2, so we
may assume that R < R+, and hence R < R1. We will verify the hypotheses of
4.1.3, with M1, NM1(R1) in the roles of “I0, I1”. First I ≤ M1, and O2(M1) 6=
1 6= O2(NM1(R1)), since 1 6= O2(I) = R ≤ O2(M1) ∩ O2(NM1(R1)). By a Frattini
Argument,

M1 = NM1(R1)CM1 (M+/O2(M+)).

Finally M+ acts on R+ by A.4.2.4, and hence M+ ∩M1 = NM+(R) ≤ NM1(R1),
completing the verification of the hypotheses of 4.1.3. Thus NM1(R1) ∈ η by 4.1.3.
Also [NM+(R), R1] ≤ O2(M+) ∩M1 ≤ R1 as R1 ∈ Syl2(CM1(M+/O2(M+))), so
I∩M+ ≤ NM+(R) ≤ NM+(R1). By construction O2(I) = R < R1 ≤ O2(NM1(R1)),

so I
<
∼ NM1(R1). Therefore as I ∈ µ∗ by hypothesis,M = !M(NM1(R1)) by 4.1.3.2.

Then as M1 ≤ NG(R), (2) follows.
A similar argument shows R ∈ Syl2(CH∩M (H+/O2(H+))): Assume that

R < RH ∈ Syl2(CH∩M (H+/O2(H+))).

As CM (M+/O2(M+)) ≤ M−, RH is also Sylow in CH∩M−(M+/O2(M+)). Set
H1 := NH∩M−(R) and chooseRH so thatR1 := NRH (R) ∈ Syl2(CH1(M+/O2(M+)).
By a Frattini Argument, H1 = NH1(R1)CH1 (M+/O2(M+)). By (3),

M+ ∩H = H+O2(M+ ∩H) ≤ H+RH ,

and by A.4.2.4, H+ acts on RH , so

M+ ∩H1 = NM+∩H1(R) ≤ NH1(R1).

Hence applying 4.1.3.1 to H1, NH1(R1) in the roles of “I0, I1”, we conclude
NH1(R1) ∈ η. By construction, H1 ≤ H 6≤ M , so H(NH1(R1),M) 6= ∅, and
hence NH1(R1) ∈ µ. Also by construction, O2(I) = R < R1 ≤ O2(NH1(R1)) and

arguing as above, I
<
∼ NH1(R1). This contradicts our hypothesis that I ∈ µ∗,

completing the proof that R ∈ Syl2(CH∩M (H+/O2(H+))). Then (4) follows using
(2).

As H+ EH ∩M , R ∈ B2(H ∩M) by C.1.2.4. By (2), NH(R) ≤ H ∩M , so
R ∈ B2(H) by C.1.2.3. By C.2.1.2, both O2(H) and O2(H ∩M) lie in R ≤ H ∩M ,
so in fact O2(H) ≤ O2(H ∩M) ≤ R, completing the proof of (5).

Let H ≤ H1 ∈M. Then H1 ∈ H(I,M), so all results proved for H also apply
to H1. In particular by (5), O2(H1 ∩M) ≤ R ≤ H ∩M , and hence O2(H1 ∩M) ≤
O2(H ∩M). Now if F ∗(H1 ∩M) = O2(H1 ∩M), then

CH∩M (O2(H ∩M)) ≤ CH1∩M (O2(H1 ∩M)) ≤ O2(H1 ∩M) ≤ O2(H ∩M),

so (6) holds. That is, if (6) holds for H1, then it also holds for H , so we may assume
H = H1 ∈ M. Now CG(O2(H)) ≤ NG(O2(H)) = H , while O2(H) ≤ O2(H ∩M)
by (5). Thus CO2(M)(O2(H ∩M)) ≤ CM (O2(H)) ≤ H ∩M , so H ∩M ∈ He by
1.1.4.5, proving (6). This completes the proof of 4.1.4. ¤

Lemma 4.1.5. Let R+ ∈ Syl2(CM (M+/O2(M+)), and assume

1 6= V = [V,M+] ≤ Ω1(Z(R+)).

Suppose I ∈ µ∗ and R := O2(I) ≤ R+. Then

(1) V ≤ Z(R).
(2) If V = [Ω1(Z(R+)),M+], then NG(V ) ≤M .
(3) Let H ∈ H(I,M), and set H+ := O2(M+ ∩H). Then V = [V,H+].
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Proof. Notice that the pair I ,R satisfies the hypotheses of 4.1.4 for any H ∈
H(I,M). Since I ∈ µ, there is H1 ∈M(I)− {M}. By 4.1.4.5, O2(H1) ≤ O2(H1 ∩
M) ≤ R, while R ≤ R+ ≤ CG(V ). Then V ≤ CG(O2(H1)) ≤ H1 as H1 ∈ M, so as
F ∗(H1∩M) = O2(H1∩M) by 4.1.4.6, V ≤ CH1∩M (O2(H1∩M)) ≤ O2(H1∩M) ≤
R. Hence V ≤ Z(R), proving (1).

Next NM (R+) acts on R+ and M+, and hence also on [Ω1(Z(R+)),M+], so
(2) follows from 4.1.2. Let H ∈ H(I,M). By 4.1.4.3, M+ = H+O2(M+), so as
O2(M+) ≤ R+ ≤ CM (V ), V = [V,M+] = [V,H+O2(M+)] = [V,H+], establishing
(3). ¤

4.2. Pushing up in the Fundamental Setup

In this section, we apply the machinery of the previous section in the context
of our Fundamental Setup (3.2.1). Recall from the discussion in Remark 3.2.4 that
under the following assumption, the FSU holds for some V ∈ R2(〈L, T 〉):

Hypothesis 4.2.1. G is a simple QTKE-group, T ∈ Syl2(G), M ∈ M(T );
and L ∈ L∗f (G, T ) ∩M with L/O2(L) quasisimple.

Lemma 4.2.2. Hypothesis 4.1.1 holds with M+ := 〈LT 〉.

Proof. By 1.2.1.3, M+ E M , and by 1.2.7.3, M = !M(M+T ). Further
by 1.4.1.2 O2(M+T ) = CT (M+/O2(M+)) is Sylow in CM (M+/O2(M+)), so any
subgroup satisfying the hypotheses on “I” in Hypothesis 4.1.1 contains a Sylow
2-group of M , and hence conjugating in M we may assume T ≤ I . But then
M+T ≤ I , so that M = !M(I), and so Hypothesis 4.1.1 is satisfied. ¤

Hypothesis 4.2.3. Assume Hypothesis 4.2.1, and set

M+ := 〈LT 〉 and R+ := CT (M+/O2(M+)).

Further assume M− ≤ M with M+CM (M+/O2(M+)) ≤ M− and LT = LM− ,
I ∈ µ∗(M+,M−), and R := O2(I) ≤ R+.

Lemma 4.2.4. Assume Hypothesis 4.2.3 and H ∈ H(I,M). SetMH := H∩M ,

LH := (L ∩H)∞, M0 := 〈L
MH

H 〉, and V := [Ω1(Z(R+)),M+]. Then
(1) The hypotheses of 4.1.4 and 4.1.5 are satisfied, with M0 = O2(M+ ∩H) in

the role of “H+”.
(2) Hypothesis C.2.8 is satisfied.
(3) R+ = O2(M+T ) = CT (V ).

Proof. By construction V ≤ Z(R+), so that R+ ≤ CT (V ). As L/O2(L) is
quasisimple and [L, V ] 6= 1, CM+(V ) ≤ O2,Z(M+), so CT (V ) ≤ R+, establishing
(3).

By hypothesis, H ∈ H, so O2(H) 6= 1 and H is an SQTK-group. Of course
R ≤ H ∩M = MH . By 4.2.2 and Hypothesis 4.2.3, the hypotheses of 4.1.4 are
satisfied, so F ∗(MH) = O2(MH) by 4.1.4.6. Thus part (1) of Hypothesis C.2.8 is
established.

By 4.1.4.3, L = LHO2(L), so LH ∈ C(MH). Using Hypothesis 4.2.3, LM =

LM− = LI ⊆ LMH ⊆ LM , so that O2(M+ ∩ H) = 〈LMH

H 〉 = M0. Hence M0 plays
the role of “H+” in 4.1.4. Now part (2) of Hypothesis C.2.8 holds by 4.1.4.

Since R2(M+T ) ≤ Ω1(Z(O2(M+T ))) = Ω1(Z(R+)), V 6= 1 by 1.2.10. Since
R ≤ R+ by Hypothesis 4.2.3, the hypotheses of 4.1.5 are satisfied. In particular,
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(1) holds, and NH(V ) ≤ MH and V = [V,M0] by 4.1.5. As V ≤ Z(R+) and
O2(M0R) ≤ R+, V ≤ Z(O2(M0R)). Thus part (3) of Hypothesis C.2.8 holds,
completing the verification of that Hypothesis, and establishing (2). ¤

Theorem 4.2.5. Assume Hypothesis 4.2.3 and H ∈ M(I)− {M}. Then

O2,F∗(H) 6≤M.

The proof of Theorem 4.2.5 involves a short series of reductions, culminating in
4.2.10. Until it is complete, assume I , H afford a counterexample; that is, assume
O2,F∗(H) ≤M .

By 4.2.4, the quintuple H , MH := H ∩ M , LH := (L ∩ H)∞, R, V :=
[Ω1(Z(R+)),M+] satisfies Hypothesis C.2.8, so we can apply results in the latter
part of section C.2 to this quintuple.

Lemma 4.2.6. (1) M+ = L.
(2) H+ := LH ∈ C(H), and MH = H ∩M = NH(LH) is of index 2 in H.

Proof. As we are assuming O2,F∗(H) ≤ M , we may apply C.2.13. Since
M 6= H ∈ M we have MH < H , so case (1) of C.2.13 does not hold. Thus
case (2) of C.2.13 holds, so that (2) holds. By Hypothesis 4.2.3, LI = LM , while
LI ⊆ LMH = {L} by (2), so (1) holds. ¤

We now reverse the roles of H,M—applying suitable results on pushing up to
M instead of H .

Set Q := O2(MH). By assumption O2,F∗(H) ≤M , so Q = O2(H) by A.4.4.1.
Now as H ∈ M, H = NG(O2(H)), and C(M,Q) = MH by A.4.4.2. Thus Q ∈
B2(M) and Q is Sylow in 〈QMH 〉 = Q, so the triple Q, MH , M satisfies Hypothesis
C.2.3 in the roles of “R, MH , H”. Therefore we can apply the results from Section
C.2 based on Hypothesis C.2.3 to this triple. Further as Q ∈ B2(M),

O2(M) ≤ Q

by C.2.1.2.

Lemma 4.2.7. (1) L = LH ∈ C(H).
(2) LH = {L,Lh} for each h ∈ H −M .

Proof. By 4.2.6.1, M+ = L ∈ C(M). By 4.2.4, we may apply 4.1.4. Then by
4.1.4.3, L = LHO2(L), so as O2(L) ≤ O2(M) ≤ Q ≤ H , L = LH . Thus (1) holds,
and then (2) follows from 4.2.6.2. ¤

In the remainder of the proof of Theorem 4.2.5, let h denote an element of
H−M . Set H0 := 〈L

H〉. Then H0 ≤ NH(L) =MH ≤M using 4.2.6.2 and 4.2.7.1.
As H0 / H and H ∈M, we have:

Lemma 4.2.8. H = NG(H0).

Lemma 4.2.9. O2,F (M) ≤ H.

Proof. Recall that Q, M satisfy Hypothesis C.2.3 in the roles of “R, H”. We
may assume that O2,F (M) 6≤ H , so by C.2.6, there is a subnormal A4-block Y of
M with Y 6≤ H . As m3(M) ≤ 2, H0 ≤ O2(M) ≤ NM (Y ), so as Aut(Y/O2(Y )) is
a 2-group, [Y,H0] ≤ O2(Y ) ≤ O2(M) ≤ Q. But then Y acts on O2(H0Q) = H0, so
Y ≤ H by 4.2.8. This contradicts Y 6≤ H , completing the proof. ¤
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By A.4.4.3, O2,F∗(M) 6≤ H , so in view of 4.2.9, there is K ∈ C(M) with
K/O2(K) quasisimple and K 6≤ H .

Lemma 4.2.10. (1) Lh ≤ K ∩H < K.
(2) mp(K) = 1 for each odd prime p ∈ π(L), and K E M .

Proof. First by 4.2.6.1,M = NG(L) sinceM ∈M. Then Lh ≤ CH(L/O2(L))
by 4.2.7 and 1.2.1.2, and hence Lh ≤ CM (L/O2(L)). Similarly L 6= K as K 6≤ H ,
soK ≤ CM (L/O2(L)) by 1.2.1.2. Hence by 1.2.1.1,KLh ≤ 〈 C(CM (L/O2(L))) 〉 =:
K0 E M .

Let p ∈ π(L) be an odd prime. As M is an SQTK-group, mp(M) ≤ 2, so as

K0 ≤ CM (L/O2(L)), mp(K0) ≤ 1. Thus Lh ≤ Op
′

(K0) =: K1, and K1 ∈ C(K0).
If K 6= K1 then K acts on LLh = H0, so that K ≤ NG(H0) = H by 4.2.8,
contradicting K 6≤ H . Therefore Lh ≤ K1 = K, and then (1) holds as K 6≤ H .

Further as K = K1, mp(K) = 1 and K = Op
′

(K0) by earlier observations, so (2)
holds as K0 EM . ¤

We are now in a position to complete the proof of Theorem 4.2.5. First KEM
by 4.2.10.2, so Q acts on K. Set (KQ)∗ := KQ/CKQ(K/O2(K)) and J := Lh.
Then K∗ and the action of Q∗ on K∗ are described in C.2.7. Now J ≤ K ∩MH

by 4.2.10.1, while by 4.2.6.2 and 4.2.7, MH = NH(L) = NH(J). Hence J∗ E

(K ∩MH)
∗. As J∗ is not solvable, inspecting the list of possibilities in C.2.7.3,

cases (a)–(d) and (f) are eliminated, as are the cases in (h) where the parabolic is
solvable. The condition in 4.2.10.2 that mp(K) = 1 for each odd prime p ∈ π(J∗)
then eliminates the remaining cases. This contradiction completes the proof of
Theorem 4.2.5.

Notation 4.2.11. Assume Hypothesis 4.2.1, set M+ := 〈LT 〉, and let I be the
set of subgroups I of M such that

L ≤ IO2(〈L, T 〉), L
T = LI , and O2(I) 6= 1.

Lemma 4.2.12. Assume Hypothesis 4.2.1, I ∈ I, and H ∈ M(I) − {M}. Let
O2(I) ≤ R+ ∈ Syl2(CM (M+/O2(M+))). Then

(1) M− :=M+CM (M+/O2(M+))I ∈ Σ(M+) and I ∈ µ(M+,M−).
(2) Assume I ∈ µ∗ and set LH := (L ∩ I)∞. Then M+ = L, LH ∈ C(H ∩M)

is normal in H ∩M , [Ω1(Z(R+)), LH ] = [Ω1(Z(R+)), L] = [R2(LT ), L], and LH ≤
K ∈ C(H) with K 6≤M , K/O2(K) quasisimple, and K is described in one of cases
(1)–(9) of Theorem C.4.8.

Proof. Set R := O2(I). Since T ∈ Syl2(G), we may assume that R ≤ T ∩ I ∈
Syl2(I). By 4.2.2, Hypothesis 4.1.1 is satisfied. By construction, M− ∈ Σ(M+).
By definition of I ∈ I in Notation 4.2.11, LI = LT , 1 6= R, and L ≤ IR+,
where R+ := O2(〈L, T 〉). By A.4.2.4, R+ = CT (M+/O2(M+)). As LT = LI ,
M+ ≤ IR+, and hence M+ ≤ IO2(M+), so R = O2(I) ≤ CT (M+/O2(M+)) ≤ R+

and M− = CM (M+/O2(M+))I . Thus I ∈ η, and as H ∈ M(I) − {M}, I ∈ µ.
That is, (1) is established.

Assume I ∈ µ∗ and set V+ = [Ω1(Z(R+)),M+], MH := M ∩ H , LH := (L ∩
H)∞, and M0 := O2(M+ ∩H). As Hypothesis 4.2.3 holds, by 4.2.4 we may apply

4.1.4 and 4.1.5. By 4.1.5.3, V+ = [V+,M0]. Also by 4.2.4, M0 = 〈LMH

H 〉 and the
quintuple H , LH , MH , R, V+ satisfies Hypothesis C.2.8.
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We now appeal to Theorem C.4.8. By Theorem C.4.8, LH E MH , so L =
L0 E M since LT = LI . As O2,F∗(H) 6≤ M by 4.2.5, one of cases (1)–(9)
of Theorem C.4.8 holds. By Theorem C.4.8, LH ≤ K ∈ C(H) with K 6≤ M
and K/O2(K) quasisimple. As L/O2(L) is quasisimple, Ω1(Z(R+)) = R2(LT ), so
V+ = [R2(LT ), L]. This completes the proof of (2). ¤

Now we come to a fundamental result, showing that many subgroups of LT
covering L/O2(L) are uniqueness subgroups, whenever V is not on a short list of
FF-modules.

Theorem 4.2.13. Assume Hypothesis 4.2.1 and let I ∈ I. Then either M =
!M(I); or L E M , V := [R2(LT ), L] is an FF-module for LT/O2(LT ), and one
of the following holds:

(1) L/O2(L) ∼= L2(2
n).

(2) L/O2(L) ∼= L3(2) or L4(2), and V/CV (L) is either the sum of isomorphic
natural modules, or the 6-dimensional orthogonal module for L4(2).

(3) O2(I ∩ L) is an A6-block or an exceptional A7-block.

(4) O2(I ∩L) is a block of type Â6, and for each z ∈ CV (T )#, V 6≤ O2(CG(z)).
(5) O2(I ∩ L) is a block of type G2(2), and if m(V ) = 6 and V3 is the (T ∩ I)-

invariant subspace of V of rank 3, then CG(V3) 6≤M .

Proof. Assume I ∈ I, H ∈ M(I) − {M}, and set R := O2(I). Since T ∈
Syl2(G), we may assume that R ≤ T ∩ I ∈ Syl2(I). Define M− as in 4.2.12; by
4.2.12.1, I ∈ µ.

Let I
<
∼ I1 ∈ µ. Then I1 ∈ I, and if I1 satisfies one of the conclusions (1)–(5)

of the Theorem, then so does I since I ∩M+ ≤ I1 ∩M+. Thus we may assume
I ∈ µ∗. Hence Hypothesis 4.2.3 is satisfied. Similarly let I2 := (T ∩ I)(M+ ∩ I).
Then I = I2CI (M+/O2(M+), so the hypotheses of 4.1.3 are satisfied with I , I2
in the roles of “I0, I1”, and hence I2 ∈ η by that lemma. Then by construction,
I2 ∈ µ

∗, so replacing I by I2, we may assume I ≤M+T .
SetMH :=M∩H and LH := (L∩H)∞. As I ∈ µ∗, 4.2.12.2 saysM+ = L EM ,

V = [Ω1(Z(R+)), LH ] ≤ LH , LH ≤ K ∈ C(H) with K 6≤ M and K/O2(K)
quasisimple, and one of cases (1)–(9) of Theorem C.4.8 holds. We first eliminate
case (9): for in that case, K is the double cover of A8 with Z(K) = Z(LH); but
then 1 6= Z(LH) = CV (LH) = CV (L) is LT -invariant, so that K ≤M = !M(LT ),
contrary to K 6≤ M . Among the remaining cases, only case (6) is not included
among the conclusions of Theorem 4.2.13—although in cases (5) and (7) of C.4.8,
we still need to show that the extra constraints in conclusions (4) and (5) of Theorem
4.2.13 hold. We will eliminate case (6) of C.4.8 later.

In case (5) of C.4.8, LH is a block of type Â6 with m(V ) = 6 and K ∼= M24

or He. Therefore for each z ∈ CV (T ∩ L)
#, V 6≤ CK(z), so that conclusion (4) of

Theorem 4.2.13 holds.
Assume that case (7) of C.4.8 holds, so that LH is a G2(2)-block and K ∼= Ru.

We may assume that m(V ) = 6, and it remains to show that CK(V3) 6≤ M ∩ K.
To see this, we will use facts about the 2-locals of K ∼= Ru found in chapter J of
Volume I. Observe that M ∩K = NK(LH) with (M ∩K)/V ∼= G2(2). Let V1 be
the (T ∩ LH)-invariant subspace of V of rank 1; then M1 := CM∩K(V1) is of order
3 · 212, so 3 ∈ π(CK(V1)) and hence V1 is 2-central in K by J.2.7.4 and J.2.9.1. Let
K1 := CK(V1), Q1 := O2(K1), and X1 ∈ Syl3(M1). From (Ru2) in the definition
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of groups of type Ru in chapter J of Volume I, K∗1 := K1/Q1
∼= S5, and from J.2.3,

CQ1(X1) ∼= Q8. Let v ∈ CV (X1)− V1; it follows that v∗ is of order 2 in CM∗
1
(X∗1 ),

so M∗
1
∼= D12. Hence P1 := Q1 ∩M1 is of order 210 with [O2(M1), X1] ≤ P1 and

|CP1(X1)| = 4. Then V3 ≤ Φ([O2(M1), X1]) ≤ Ω1(Q1), and Ω1(Q1) is the group
denoted by “U” in (Ru2). Thus by J.2.2.3, CQ1(X1) ≤ CQ1 (U) ≤ CQ1(V3). Hence
as |CQ1(X1)| = 8 > |CP1 (X1)|, CK(V3) 6≤M , as claimed.

Thus to complete the proof of Theorem 4.2.13, we may assume that case (6) of
Theorem C.4.8 holds, and it remains to derive a contradiction. Then LH is a block
of type M24 or L5(2), and K ∼= J4. In particular, K is a component of the maximal
2-local H , and so centralizes O2(H) 6= 1. As Out(J4) = 1, H = K × CH(K), with
O2(H) ≤ CH(K). Hence I = LHNT∩K(LH) × CI(K), and setting RC := CR(K),
R = O2(I) = V ×RC . As V is self-centralizing in K, RC = CR(K) = CR(LH). By
4.1.4.5, O2(H) ≤ R, so O2(H) ≤ RC .

Recall we reduced in the first two paragraphs of the proof to the case where
I ≤ LT . Thus as I = LHNT∩K(LH)×CI(K), I = LH(NT∩K(LH))×RC . Let S :=
NT∩K(LH) × RC and r an involution in Z(RC); thus S ∈ Syl2(I) and r ∈ Z(S).
Next O2(I) = LH ≤ K ≤ CH(r) as r ∈ RC , and hence r centralizes O2(I)S = I ,
so without loss H ∈ M(CG(r)). Then in particular K is a component of CG(r).

From the structure of LH in case (6) of Theorem C.4.8, there is X of order
3 in LH with CV (X) 6= 1. Let KX := CK(X)∞ and GX := CG(X). Then
KX is quasisimple with Z(KX) ∼= Z6 and KX/Z(KX) ∼= M22. Thus KX is also
a component of CGX (r), and hence by I.3.2, KX ≤ LX ∈ C(GX) with L̄X :=
LX/O(LX) quasisimple. We claim KX = LX , so assume that KX < LX . Then as
KX ∈ C(CGX (r)), r is faithful on LX , and in particular on the quasisimple quotient
L̄X . Now case (1.a) of Theorem A (A.2.1) holds since L̄X is quasisimple, so L̄X is
quasithin. Then inspecting the list of groups in Theorem B (A.2.2), we find that
none possesses an involutory automorphism r whose centralizer has a component
K̄X which is a covering of M22. This contradiction establishes the claim that
KX = LX ∈ C(GX).

Recall from Hypothesis 4.2.3 that R ≤ R+ = CT (M+/O2(M+)) = O2(〈L, T 〉),
and set R1 := NR+(R) and R

∗
1 := R1/R. Recall also from our application of 4.2.12.2

early in the proof that LEM , V ≤ LH , and V = [R2(LT ), L], so V is T -invariant.
If LH is an L5(2)-block, then by Theorem C.4.8, V is one of the 10-dimensional
modules for LH/V , so as V is T -invariant, T induces inner automorphisms on
L/O2(L). Of course T induces inner automorphisms on L/O2(L) if LH is an M24-
block as Out(M24) = 1. Thus LT = LR+, so as I < LT (since M = !M(LT )),
R = O2(I) < R+ and hence R < R1. By 4.1.4.4, R = R+ ∩H , so as CG(r) ≤ H we
have R = CR1(r). As R = V ×RC , we can choose r ∈ RC so that rV ∈ CR/V (R1).
Hence the map χ : x∗ 7→ [r, x] is an LH-isomorphism of R∗1 with V : Since V ≤
Ω1(Z(R+)), the map is a homomorphism by a standard commutator formula 8.5.4
in [Asc86a]; then injectivity follows from R = CR1(r), and surjectivity as LH is
irreducible on V . Now there is v ∈ CV (X) − CV (KX), and for s ∈ χ−1(v) ∩ GX ,
rs = rv. As M22 is not involved in the groups in A.3.8.2, KX E GX , so as
[r,KX ] = 1, also [rs,KX ] = 1 and hence [v,KX ] = 1, contrary to the choice of v.
This contradiction completes the proof of Theorem 4.2.13. ¤
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4.3. Pushing up L2(2
n)

In the first exceptional case of Theorem 4.2.13 where L E M and L/O2(L) ∼=
L2(2

n) for n > 1, it is possible to obtain a result weaker than Theorem 4.2.13, but
still stronger than M = !M(LT ): Namely in Theorem 4.3.2, we show in this case
that at least L is also a uniqueness subgroup. Theorem 4.3.2 will be used in the
Generic Case of the proof of the Main Theorem. Therefore:

Throughout this section we assume Hypothesis 4.2.1, with L/O2(L) ∼= L2(2
n),

and L E M .

Lemma 4.3.1. Let S be a 2-subgroup of M , TH ∈ Syl2(NM (S)), and assume
that S ∩ L ∈ Syl2(L) and M = !M(LTH). Then NG(S) ≤M .

Proof. Assume otherwise, and pick S to be a counterexample to 4.3.1 such
that TH is of maximal order subject to this constraint. We may assume TH ≤ T .
We claim that TH ∈ Syl2(NG(S)). If TH = T this is clear, so we may assume that
TH < T , and hence TH < NT (TH). As S ≤ TH , TH ∩ L = S ∩ L ∈ Syl2(L) and
by hypothesis M = !M(LTH), so by maximality of |TH |, NG(TH) ≤ M . Hence
if TH ≤ TS ∈ Syl2(NG(S)), then NTS (TH) ≤ TS ∩M ≤ NM (S), so TH = TS as
claimed.

Observe next that Hypothesis C.5.1 of chapter C of Volume I is satisfied with
LTH , NG(S), S in the roles of “H ,M0, R”. Further we may assume that Hypothesis
C.5.2 is satisfied, or otherwise O2(〈LTH , NG(S)〉) 6= 1, so that NG(S) ≤ M =
!M(LTH), as desired. Thus we may apply C.5.6.6, and obtain a contradiction to
L E M . This completes the proof. ¤

Theorem 4.3.2. M = !M(L).

The proof of Theorem 4.3.2 involves a series of reductions, culminating in 4.3.16.
Assume the Theorem fails, and pick I so that L ≤ I ≤ LO2(LT ) and I is

maximal subject to M(I) 6= {M}. Set R := O2(I) and R+ := O2(LT ), so that

I = LR and R = I ∩ R+.

Set V := [Ω1(Z(R+)), L]. Choose H ∈ M(I)− {M}, and set MH := H ∩M .
Define I as in Notation 4.2.11 and observe I ∈ I. Set M− := LCM (L/O2(L));

by 4.2.12.1,M− ∈ Σ(L) and I ∈ µ. Then by maximality of I , I ∈ µ∗, so Hypothesis
4.2.3 is satisfied and hence by 4.2.4, the quintuple H , L, MH , R, V satisfies Hy-
pothesis C.2.8. By 4.2.12.2, L ≤ K ∈ C(H), with K 6≤ M , K/O2(K) quasisimple,
and K appears in one of cases (1)–(9) of Theorem C.4.8. As L/O2(L) ∼= L2(2

n),
case (1) of Theorem C.4.8 holds, so that either V/CV (L) is the natural module
for L/O2(L), or n = 2 and V is the A5-module. Furthermore MH acts on K by
Theorem C.4.8. By 1.2.1.5, either F ∗(K) = O2(K), or K is quasisimple and hence
a component of H . Therefore K is described in either Theorem C.4.1 or Theorem
C.3.1, respectively. Set MK :=M ∩K.

Recall from 4.2.4.3 that R+ = O2(LT ), and R+ = CT (L/O2(L)) by 1.4.1.2.
Without loss S := T ∩ H ∈ Syl2(MH), and we choose H ∈ M(I) − {M} so that
S is maximal. As L ≤ H and M = !M(LT ), T 6≤ H , so S < T , and hence also
S < NT (S).

Lemma 4.3.3. (a) If S < X ≤ T , then M = !M(LX).
(b) NG(S) ≤M , so S ∈ Syl2(H) and H = NG(K).
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Proof. As I = LR ≤ LS, maximality of S implies (a). Then as S < NT (S),
(a) and 4.3.1 imply NG(S) ≤ M . Therefore as S ∈ Syl2(MH), S ∈ Syl2(H). As
we saw earlier that K is MH -invariant, K E H by 1.2.1.3, so H = NG(K) as
H ∈ M. ¤

Lemma 4.3.4. R = S ∩R+. In particular, S normalizes R and R = O2(IS).

Proof. As I ≤ L(S ∩ R+), this follows from maximality of I . ¤

We next choose an element t ∈ NT (S)−S with t2 ∈ S. If R < R+, then R+ 6≤ S
by 4.3.4, so in this case we may choose t so that also t ∈ R+ and t2 ∈ S ∩R+ = R.
By convention, t will denote such an element throughout the proof.

As t ∈ NT (S), t normalizes S ∩ R+ = R. Further t 6∈ S, so by 4.3.3.a:

Lemma 4.3.5. M = !M(LS〈t〉).

Lemma 4.3.6. F ∗(K) = O2(K).

Proof. Assume otherwise. Then from our remarks following the statement of
Theorem 4.3.2, K is a component of H described in Theorem C.3.1. As L/O2(L) ∼=
L2(2

n), we conclude that either

(i) K/Z(K) is of Lie type and Lie rank 2 over F2n , and MK is a maximal
parabolic of K, or

(ii) K/Z(K) ∼=M22 or M23, and L is an L2(4)-block.

Let KS := KS/CKS(K) and SK := S ∩ K. Now L ≤ K ≤ CH (O2(H)) as K is
a component of H , and 1 6= O2(H) ≤ R by 4.1.4.5, so 1 6= R0 := CR(L). Recall
from 4.3.4 and our choice of t that S〈t〉 acts on R and L and hence also on R0, so
NG(R0) ≤ M = !M(LS〈t〉) by 4.3.5. Then [K,R0] 6= 1 as K 6≤ M , so 1 6= R̄0 ≤
CR̄(L̄). Inspecting the automorphism groups of the groups in (i) and (ii) (e.g.,
16.1.4 and 16.1.5) for such a 2-local subgroup, we conclude K/Z(K) ∼= Sp4(2

n).
Indeed Z(K) = 1 since the multiplier of Sp4(2

n) for n > 1 is trivial by I.1.3.
Furthermore V = O2(L) is the maximal nonsplit extension of the natural module
for L/O2(L) over a trivial module by I.1.6, and CV (L) is a root subgroup of K.
Since Aut(K) fuses the two K-classes of root subgroups, we may regard CV (L) as
a short root subgroup of K, and take Z ≤ CV (SK) to be a long root subgroup of
K.

Set GZ := NG(Z). As Z = [CV (T ∩ L), NL(T ∩ L)] and T acts on L and V ,
T acts on Z; hence F ∗(GZ) = O2(GZ) =: QZ by 1.1.4. Let K2 := NK(Z)∞ where
NK(Z) is the maximal parabolic ofK containing SK and distinct fromNK(CV (L)).
As L ≤M but K = 〈L,K2〉 6≤M , K2 6≤M . Further T 6≤ NG(K2), or otherwise T
normalizes 〈L,K2〉 = K, and hence T ≤ H by 4.3.3.b, contrary to our observation
just before 4.3.3. We will now analyze GZ , and eventually obtain a contradiction
by showing that T ≤ NG(K2).

First, a Cartan subgroup Y of the Borel group MK ∩NK(Z) of K decomposes
as Y = Y1×Y2, where Y1 := CY (K2/O2(K2)) and Y2 := Y ∩K∞2 are cyclic of order
2n − 1, Y1 is regular on Z#, and NK(Z) = Y1K

∞
2 .

Next by 1.2.1.1, K2 is contained in the product L1 · · ·Lr of those members Li
of C(CG(Z)) with Li = [Li,K2]. If r > 1, then for a prime divisor p of 2n − 1,
mp(L1 · · ·LrY1) > 2, contradicting GZ an SQTK-group. Therefore K2 ≤ L1 =:
KZ ∈ C(CG(Z)). Recall from the remarks after (i) and (ii) above that K ∼= Sp4(2

n)
is simple, so that K2 contains a Levi complement isomorphic to L2(2

n), and in
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particular KZ/O2,F (KZ) is not SL2(p) for any odd prime p. This rules out cases
(c) and (d) in 1.2.1.4, so that KZ/O2(KZ) is quasisimple. Furthermore as Y1 ≤ GZ
is faithful on Z, KZ E GZ by 1.2.2. Similarly as mp(KZY1) ≤ 2, we conclude
from A.3.18 that mp(KZ) = 1 for each prime divisor p of 2n − 1—unless possibly
p = 3 (so that n is even), and a subgroup of Y1 of order 3 induces a diagonal
automorphism on KZ/O2(KZ) ∼= Lε3(q), with q ≡ ε mod 3. (If case (3b) of A.3.18
were to hold, then m3(Y1K2O2,3(KZ)) = 3.)

Set U := 〈CV (L)GZ 〉. Now T acts on V and L, and hence on CV (L), so as
CV (L) 6= 1, CV (LT ) 6= 1. Then as GZ ∈ He, CV (LT ) ≤ Ω1(Z(QZ)), so as Y is
irreducible on CV (L) and O2(K2) = 〈CV (L)K2〉,

O2(K2) ≤ 〈CV (L)
GZ 〉 = U ≤ Ω1(Z(QZ)). (∗)

In particular U is generated by GZ-conjugates of elements of Z(T ), so U ∈ R2(GZ)
by B.2.14.

Let G∗Z := GZ/CGZ (U). AsKZ/O2(KZ) is quasisimple, so isK∗Z . As V/CV (L)
is the natural module for L/O2(L) ∼= L2(2

n), CT (CV (L)Z) = CT (V )(T ∩ L) with
CT (V )(T ∩L)/CT (V ) ∼= E2n , and in fact CT (V )(T ∩L) = CT (V )O2(K2). Further
O2(K2) ≤ QZ by (*); and also [QZ , V ] ≤ QZ ∩ V = O2(K2) ∩ V ≤ CV (T ∩ L), so
that QZ ≤ CT (V )(T ∩ L). Hence

m(O2(K2)/CO2(K2)(V )) = n = m(QZ/CQZ (V )) and QZ = O2(K2)CQZ (V ).
(∗∗)

By (*), O2(K2) ≤ U , so as m(V/V ∩ O2(K2)) = n with CV (U) ≤ CV (O2(K2)) =
V ∩ O2(K2), m(V ∗) = n. By (*) and (**), m(U/CU (V )) ≤ m(QZ/CQZ (V )) = n.
Therefore U is a failure of factorization module for K∗

Z with FF∗-offender V ∗. In
particular KZ/O2(KZ) is not Lε3(q) with q ≡ ε mod 3, since in that event as
U is an FF-module, Theorem B.5.6.1 says K∗Z

∼= SL3(q), whereas SL3(q) is not
isomorphic to L3(q) when q ≡ 1 mod 3. This eliminates the exceptional case
in our discussion above, so we conclude that mp(KZ) = 1 for each p dividing
2n−1. Therefore by inspection of the lists in Theorems B.5.1 and B.4.2, K∗

Z = K∗2 ,
and U/Z is the natural module for K∗2

∼= L2(2
n) or the orthogonal module for

L2(4). Thus as O2(K2)/Z is the natural module for K∗2 , U = O2(K2) by (*), and
as QZ = O2(K2)CQZ (V ) by (**), we conclude [V,QZ ] = [V, U ] ≤ U . Then as
K2 = 〈V K2〉, [K2, QZ ] = U ≤ K2,

KZ = 〈KKZ
2 〉 ≤ 〈KK2QZ

2 〉 = K2,

and hence K2 = KZ is normalized by T , contrary to our earlier observation that
T 6≤ NG(K2). This contradiction completes the proof of 4.3.6. ¤

By 4.3.6, F ∗(K) = O2(K); so as we observed following the statement of The-
orem 4.3.2, K is described in Theorem C.4.1, and as L/O2(L) ∼= L2(2

n), one of
cases (1)–(3) of Theorem C.4.1 holds.

Lemma 4.3.7. K is not a block.

Proof. Assume otherwise. Inspecting cases (1)–(3) of Theorem C.4.1, we
conclude that either K is an SL3(2

n)-block, or n = 2 and K is an A7-block or an
Sp4(4)-block. Set U := U(K) in the notation of Definition C.1.7. Now S normalizes
K by 4.3.3.b, so as t normalizes S, S also normalizes U t. Therefore if U t ≤ O2(KS),
then as [O2(KS),K] ≤ U ≤ UU t, UU t E KS〈t〉, forcing K ≤M by 4.3.5, contrary
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toK 6≤M . HenceK = [K,U t]. Recall also that V = [Ω1(Z(R+)), L] is T -invariant,
so V = V t. As R = O2(LS) by 4.3.4, while S ∈ Syl2(H) by 4.3.3.b, O2(KR) ≤ R.

Suppose first that K is an Sp4(4)-block. Then ZK := CU (K) ≤ V using I.2.3.3,
and U/V is the natural L2(4)-module for L/O2(L). So as V = V t, U t/V is also the
natural module, with CU (K) ≤ V ≤ U∩U t < U , impossible asO2(L)O2(K)/O2(K)
is a non-split extension of a trivial submodule by a natural module, so that there
is no natural L-submodule.

Suppose next thatK is an A7-block. Then by C.4.1.1, S induces a transposition
on L/O2(L), so that LS/O2(LS) ∼= S5 = Aut(L/O2(L)), and hence T = SR+.
Hence as R ≤ S < T , R < R+ and so R < NR+(R). We claim that K, R, S,
R+, KS satisfy Hypothesis C.6.2, and the hypotheses of C.6.4, in the roles of “L,
R, TH , Λ, H”. Most requirements are either immediate or have been established
earlier—except possibly for C.6.2 and C.6.4.II (recall the latter result uses C.6.3
and in particular verifies its hypotheses), which we now verify: If 1 6= R0 ≤ R
satisfies R0EKS, then by 4.3.3.a, NT (R0) = S as K 6≤M ; so by 4.3.4 NR+(R0) =
R < NR+(R), completing the verification of those hypotheses. As T = SR+, we
conclude from C.6.4.10 that e1,2 ∈ Z(T ). Then as e1,2 centralizes L, CG(e1,2) ≤
M = !M(LT ). Now v := e3,4 is in V , and there is k ∈ K with ek1,2 = v. Then

R+ ≤ CG(V ) ≤ CG(v) ≤Mk, so R+ acts on Lk. But then R+ acts on K = 〈L,Lk〉,
so T = SR+ ≤ NG(K) = H , which we saw earlier is not the case.

Therefore K is an SL3(2
n)-block. Thus case (3) of C.4.1 holds, so L is the

stabilizer of the line V of U , so that [U,L] = V . Therefore as t acts on V and
L, also [U t, L] = V ≤ U . This is impossible as we saw K = [K,U t], whereas
K/O2(K) admits no involutory automorphism centralizing LO2(K)/O2(K). This
contradiction completes the proof of 4.3.7. ¤

Lemma 4.3.8. K/O2(K) ∼= SL3(2
n), (KR,R) is an MS-pair described in one

of cases (2)–(4) of Theorem C.1.34, and S ∈ Syl2(H).

Proof. Recall that K is described in one of cases (1)–(3) of Theorem C.4.1.
As L/O2(L) ∼= L2(2

n) and K is not a block by 4.3.7, conclusion (3) of C.4.1 holds,
so that K/O2(K) ∼= SL3(2

n), and one of cases (1)–(4) of C.1.34 holds. Further
4.3.7 rules out case (1) where K is an SL3(2

n)-block. By 4.3.3, S ∈ Syl2(H). ¤

Lemma 4.3.9. CS(K) = 1.

Proof. Let U := Ω1(Z(O2(KS))); as K EH , [U,K] ≤ O2(K). By 4.3.8, K is
described in one of cases (2)–(4) of C.1.34, so that [U,K] is the sum of one or two
isomorphic natural modules for K/O2(K). So as the natural module has trivial 1-
cohomology by I.1.6 since n > 1, we conclude that U = CU (K)⊕ [U,K]. Further L
stabilizes an F2n-line in the natural summands of [U,L] by C.4.1, so C[U,K](L) = 0.
Thus CU (K) = CU (L), so CZ(L) = CZ(K), where Z := Ω1(Z(S)). But NT (S)
normalizes CZ(L), so if CZ(L) 6= 1 then NG(CZ(L)) ≤ M by 4.3.5. Therefore as
CZ(K) = CZ(L) and K 6≤M , CZ(K) = 1, establishing the lemma. ¤

Lemma 4.3.10. K satisfies conclusion (3) of Theorem C.1.34.

Proof. By 4.3.8, one of conclusions (2)–(4) of Theorem C.1.34 holds, and as
CS(K) = 1 by 4.3.9, conclusion (4) does not hold. Thus we may assume conclusion
(2) holds, and it remains to derive a contradiction. Then U = O2(K) is the sum of
two isomorphic natural modules. As CS(K) = 1, we may apply C.1.36, to conclude
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that A(S) = {U,A} is of order 2 with V = U ∩ A of rank 4n. We now obtain a
contradiction similar to that in the L3(2

n)-case of 4.3.7: Again U t 6≤ O2(KS) using
4.3.5 and V = [U,L] by C.4.1. As U t 6≤ O2(KS) and A(S) = {U,A}, U t = A,
while as [U,L] = V is t-invariant, also V = [L,U t]. This is a contradiction as
[A/U,L] = A/U 6= 1. ¤

Set Q := [O2(K),K] and U := Z(Q). By 4.3.10, conclusion (3) of C.1.34
holds; that is, U is the natural module for K/O2(K) and Q/U is the direct sum of
two copies of the dual of U . In particular, S is trivial on the Dynkin diagram of
K/O2(K), and hence normalizes both maximal parabolics over S ∩K.

Set SL := S ∩ L and ZS := CV (SL). Set GZ := NG(ZS). By C.1.34, V is an
F2n-line in U , so ZS an F2n-point. As SL = T ∩ L and V are T -invariant, ZS is
T -invariant.

Set K2 := CK(ZS)
∞, R2 := O2(K2S), and let Y be a Hall 2′-subgroup of

O2,2′(NK(ZS)). Thus Y is cyclic of order 2n − 1, with [K2, Y ] ≤ O2(K2), and Y
faithful on ZS. Further Y is fixed point free on the natural module U forK/O2(K),
so as we saw above just after 4.3.10 that the composition factors of Q are natural
and dual, Q = [Q, Y ]. Appealing to 4.3.9, we conclude from C.1.35.3 that:

Lemma 4.3.11. Q = O2(KS) so O2(KS) = [O2(KS), Y ].

Next by 1.2.1.1,K2 is contained in the product L1 · · ·Ls of those members Li of
C(GZ) such that K2 projects nontrivially on Li/O2(Li). Therefore for each prime
divisor p of 2n − 1, p divides the order of Li. But if s > 1, then as Y is faithful
on ZS , and Y = O2(Y ) acts on each Li by 1.2.1.3, mp(Y L1L2) > 2, contradicting
GZY an SQTK-group. Thus s = 1. Set KZ := L1. A similar argument shows KZ

is the unique member of C(GZ) of order divisible by p, so that KZ E GZ . If p = 3
and KZ appears in case (3b) of A.3.18, then m3(Y K2O2,Z(KZ)) = 3, contradicting
GZ an SQTK-group. Therefore we may appeal to A.3.18 to obtain:

Lemma 4.3.12. (1) K2 ≤ KZ ∈ C(GZ) and KZ E GZ .
(2) For p a prime divisor of 2n−1, either mp(KZ) = 1, or p = 3 and a subgroup

of order 3 in Y induces a diagonal automorphism on KZ/O2(KZ) ∼= Lε3(q) for q ≡ ε
mod 3.

If T normalizes K2, then T acts on 〈L,K2〉 = K, contradicting M = !M(LT ).
This shows:

Lemma 4.3.13. K2 < KZ .

Lemma 4.3.14. (1) NG(R2) ≤ NH(K2).
(2) R2 = O2(NL1T (R2)).
(3) O2(KZT ) ≤ R2 and K2 < O2(KZ)K2.

Proof. Suppose H1 ∈ M(KS). Then as I ≤ KS and K 6≤M , H1 ∈ M(I)−
{M}, so the reductions of this section also apply to H1. In particular by 4.3.3,
H1 = NG(K) = H ; that is, H = !M(KS).

Next K2 is the maximal parabolic over S ∩ K stabilizing the point ZS of
the natural module U . Now (KR2,R2) satisfies (MS1) and (MS2) of Definition
C.1.31. If (KR2, R2) satisfies (MS3), C.1.34 would apply to R2, whereas here
R2 = O2(CKS(ZS)) which is explicitly excluded in case (3) of C.1.34, which holds
by 4.3.10. Thus (MS3) fails, so there is a nontrivial characteristic subgroup C
of R2 normal in KS, and hence NG(R2) ≤ NG(C) ≤ H = !M(KS). Then
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NG(R2) = NH(R2) acts on the parabolic K2 of K, since we saw after 4.3.6 that
K E H , so (1) holds.

Next using A.4.2.4, R2 is Sylow in Syl2(CH (K2/O2(K2)), Now K2 E GZ ∩H ,
so by C.1.2.4, R2 ∈ B2(NKZT∩H(R2)). Therefore (2) follows from C.1.2.3. By
(2) and C.2.1, O2(KZT ) ≤ R2, so by (1) K2 = O2(K2O2(KZT )). Then 4.3.13
completes the proof of (3). ¤

Set G0 := L1R2Y and G∗0 := G0/CG0(L1/O2(L1)). By 4.3.14.3, O2(KZR2) ≤
R2. As Y acts on R2, O2(KZR2) ∈ Syl2(CG0(KZ/O2(KZ))), so NG0(R2)

∗ =
NG∗0 (R

∗
2) by a Frattini Argument. Thus K∗2 E NG∗0 (R

∗
2); so in view of 4.3.13 and

4.3.14:

Lemma 4.3.15. R∗2 6= 1.

Now K∗Z/Z(K
∗
Z) is a group appearing in Theorem C (A.2.3), satisfying the

restrictions on prime divisors of 2n − 1 in 4.3.12.2.
Inspecting the automorphism groups of those groups for a proper 2-local sub-

group NK∗Z (R
∗
2) with a normal subgroup K∗2 such that K∗2/O2(K

∗
2 )
∼= L2(2

n), we
conclude:

Lemma 4.3.16. One of the following holds:

(1) KZ/O2(KZ) ∼= L2(2
2in) for some i ≥ 1.

(2) KZ/O2(KZ) ∼= (S)U3(2
n).

(3) n = 2 and KZ/O2(KZ) ∼= L3(5) or J1.
(4) n = 2, KZ/O2(KZ) ∼= L3(4) or U3(5), and Y induces outer automorphisms

on KZ/O2(KZ).

We are now in a position to complete the proof of Theorem 4.3.2.
Assume that one of cases (1)–(3) of 4.3.16 holds and let p be a prime divisor

of 2n − 1. As Y ∗ centralizes K∗2/O2(K
∗
2 ) and hence K∗2 , but the groups in those

cases do not admit an automorphism of order p centralizing K∗
2 , we conclude that

Y ∗ = 1. By 4.3.11, O2(KS) = [O2(KS), Y ], so as R2/O2(KS) = [R2/O2(KS), Y ],
also R2 = [R2, Y ]. Then since Y ∗ = 1, R∗2 = 1, contrary to 4.3.15.

Thus case (4) of 4.3.16 holds. Choose X of order 5 in K2. Recall that K has
three noncentral 2-chief factors, U and two copies of the dual of U on Q/U . Thus
K2 has four noncentral 2-chief factors, and each is a natural module for K2R2/R2.
Therefore X has four nontrivial chief factors on R2. As GZ ∈ H(T ) and KZ E GZ ,
F ∗(KZ) = O2(KZ), so at least one of those chief factors is in O2(KZ).

Suppose that KZ/O2(KZ) ∼= U3(5). Then X = Z(P ) for some P ∈ Syl5(KZ),
and P ∼= 51+2. Thus from the representation theory of extraspecial groups, X
has five nontrivial chief factors on any faithful P -chief factor in O2(KZ). But
O2(KZ) ≤ R2 by 4.3.14.3, and we saw that X has just four nontrivial chief factors
on R2, with at least one in O2(KZ).

Therefore KZ/O2(KZ) ∼= L3(4). Therefore KZ/O2(KZ) ∼= L3(4). Let X be
a subgroup of order 3 in O2,Z(K). Then X is faithful on ZS , so X ≤ GZ but
X 6≤ KZ , and hence XKZ/O2(KZ) ∼= PGL3(4) by A.3.18. Further X centralizes
K2/O2(K2), and from the structure of [O2(K),K] in C.1.34.3, there are four non-
trivial K2-chief factors in O2(K), all natural modules for K2/O2(K2) ∼= L2(4), and
CR2(X)/CR2(K2X) is a natural module for K2/O2(K2). It follows from B.4.14
that each nontrivial KZX-chief factor W in O2(KZ) is the adjoint module for
KZ/O2(KZ), and CW (X)/CW (XK2) is an indecomposable of F4-dimension 4 for
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K2/O2(K2), contrary to CR2(X)/CR2(K2X) the natural module for K2/O2(K2).
This contradiction completes the proof of Theorem 4.3.2.

Theorem 4.3.17. If S ≤ T with S ∩ L ∈ Syl2(L), then NG(S) ≤M .

Proof. By Theorem 4.3.2, M = !M(L), so the assertion follows from 4.3.1.
¤

4.4. Controlling suitable odd locals

In this section, we apply Theorem 4.2.13 to force the normalizers of suitable
subgroups of odd order to lie in M . The main results are Theorem 4.4.3 and its
corollary Theorem 4.4.14.

During most of this section, we assume:

Hypothesis 4.4.1. (1) Hypothesis 4.2.1 holds. Set M+ := 〈LT 〉 and R+ :=
O2(M+T ) = CT (M+/O2(M+)).

(2) 1 6= B ≤ CM (M+/O2(M+)), with B abelian of odd order and BT+ = T+B
for some T+ ≤ T with LT = LT+ .

(3) 1 6= VB = [VB ,M+] ≤ CM (B) with VB an M+T -submodule of Ω1(Z(R+)).

Remark 4.4.2. Observe that if L E M , then it is unnecessary to assume the
existence of T+. For example, we could then take T+ = 1. Thus if Hypothesis 4.2.1
holds with L E M and V ∈ R2(LT ) with [V, L] 6= 1, then appealing to 1.4.1.4,
Hypothesis 4.4.1 is satisfied for each nontrivial abelian subgroup B of CM (V ) of
odd order with V in the role of “VB”.

In this section we prove:

Theorem 4.4.3. Assume Hypothesis 4.4.1. Then either

(1) NG(B) ≤M ; or

(2) L E M , L/O2(L) is isomorphic to L2(2
n), L3(2), L4(2), A6, A7, Â6, or

U3(3), and one of the following holds:

(i) VB is an FF-module for LT/CLT (VB). Further:

(a) If L/O2(L) ∼= Ln(2), then either VB is the sum of one or more
isomorphic natural modules for L/O2(L), or VB is the 6-dimensional orthogonal
module for L/O2(L) ∼= L4(2).

(b) If L/O2(L) ∼= Â6, then for each z ∈ CVB (T∩L)
#, VB 6≤ O2(CG(z)).

(c) If L/O2(L) ∼= U3(3) and m(VB) = 6, then CG(V3) 6≤ M , for V3
the (T ∩ L)-invariant subspace of VB of rank 3.

(ii) L/O2(L) ∼= L2(2
2n), and VB is the Ω−4 (2

n)-module.
(iii) L/O2(L) ∼= L3(2), and VB is the core of a 7-dimensional permutation

module for L/O2(L).

Set GB := NG(B), MB := NM (B), LB := CM+(B)∞, and TB := NT+(B).
Making a new choice of T+ if necessary, we may assume TB ∈ Syl2(MB). As G is
simple, GB < G, so GB is a quasithin K-group.

Before working with a counterexample to Theorem 4.4.3, we first prove two
preliminary lemmas which assume only parts (1) and (2) of Hypothesis 4.4.1.

Lemma 4.4.4. Assume parts (1) and (2) of Hypothesis 4.4.1. Then T+ =
[O2(T+B), B]TB.
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Proof. Let X := T+B, Q := O2(X) and X∗ := X/Q. Then F (X∗) is of odd
order, so as B∗ is an abelian Hall 2′-subgroup of X , B∗ ≤ CX∗(F (X

∗)) ≤ F (X∗),
so B∗ = F (X∗). Thus BQ / X , so by a Frattini Argument (using the transitivity
of a solvable group on its Hall subgroups in P. Hall’s Theorem, 18.5 in [Asc86a]),
X = QNX(B) = QTBB, so that T+ = QTB . Also Q = CQ(B)[Q,B] by Coprime
Action, with CQ(B) ≤ TB, so T+ = [Q,B]TB . ¤

Lemma 4.4.5. Assume parts (1) and (2) of Hypothesis 4.4.1. Then M+ =
LBO2(M+).

Proof. By 4.4.1.2, [M+, B] ≤ O2(M+), so M+ acts on BO2(M+); hence by
a Frattini Argument, M+ = O2(M+)CM+(B). Now M+ is perfect by Hypothesis
4.2.1 in 4.4.1.1, so M+ = O2(M+)CM+(B)∞ = O2(M+)LB . ¤

In the remainder of this section, we assume we are in a counterexample to
Theorem 4.4.3; in particular, GB 6≤M .

Lemma 4.4.6. (1) M = !M(LBTB).
(2) If L E M then M = !M(LB).
(3) NG(VB) ≤M .

Proof. Set I := LBTB and VL := [R2(LT ), L]. Observe that (cf. Notation
4.2.11) I ∈ I: By 4.4.5, L ≤ IR+; L

T = LT+ = LTB by 4.4.1.2 and 4.4.4 (since
[O2(T+B), B] ≤ R+); and 1 6= VB ≤ O2(I) by 4.4.1.3. Thus if (1) fails, then
by Theorem 4.2.13, L E M , and LB/O2(LB) ∼= L/O2(L) appears on the list of
Theorem 4.2.13. Further 4.2.13 says that VL is an FF-module for AutLT (VL), so the
LT -submodule VB is an FF-module for AutLT (VB) by B.1.5. Suppose L/O2(L) ∼=
Ln(2) for n = 3 or 4. Then case (2) of 4.2.13 holds, so either VL is the sum of one
or more isomorphic natural modules, or VL is the 6-dimensional orthogonal module
for L4(2). Therefore the submodule VB satisfies the same constraints, so conclusion
(i.a) of case (2) of Theorem 4.4.3 holds. Similarly if conclusion (4) or (5) of 4.2.13
holds, then VB = VL and conclusion (i.b) or (i.c) of part (2) of Theorem 4.4.3 holds.
In the remaining cases in Theorem 4.2.13, subcase (i) of case (2) of Theorem 4.4.3
imposes no further restriction on VB ; hence subcase (i) of case (2) in 4.4.3 holds.
This contradicts our assumption that we are in a counterexample to Theorem 4.4.3,
so we conclude that (1) holds. Under the hypothesis of (2), LT = L, so by Remark
4.4.2, we may take T+ = 1 and I := LB; thus (2) follows from (1). Finally (1)
implies (3), completing the proof of 4.4.6. ¤

Lemma 4.4.7. (1) O2(GB) = 1.
(2) MB is a maximal 2-local subgroup of GB .

Proof. By 4.4.6.1, M = !M(MB). Hence (2) holds, and as GB 6≤ M , (2)
implies (1). ¤

Lemma 4.4.8. O(GB) ≤MB.

Proof. By Hypothesis 4.4.1 and 4.4.5, 1 6= VB = [VB , LB]. As LB is perfect,
m(VB) ≥ 3, and in case of equality, LB acts irreducibly as L3(2) on VB , so VB ∩
Z∗(GB) = 1. Therefore applying A.1.28 with GB in the role of “H”, we conclude
that mp(Op(GB)) ≤ 2 for each odd prime p. Thus by A.1.26, VB = [VB , LB ] ≤
CG(Op(GB)). Hence VB ≤ CVBO(GB)(F (VBO(GB))) ≤ F (VBO(GB)), so VB =
O2(VBO(GB)) and thus O(GB) ≤ NG(VB) ≤M by 4.4.6.3. ¤
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Lemma 4.4.9. If K is a component of GB, then |KGB | ≤ 2, and in case of
equality, K ∼= L2(2

n), Sz(2n), L2(p
e), for some prime p > 3 and e ≤ 2, J1, or

SU3(8).

Proof. Since we saw that GB is a QTK-group, this follows from (1) and (2)
of A.3.8; notice we use 4.4.7.1 to guarantee O2(K) = 1, and I.1.3 to see that the
Schur multiplier of SU3(8) is trivial, and in the remaining cases the multiplier of
K/Z(K) is a 2-group, so that K is simple. ¤

By 4.4.8, VB centralizes O(GB), and by 4.4.7.1, O2(GB) = 1, so VB is faithful
on E(GB). Thus there is a componentK of GB with [K,VB ] 6= 1. SetK0 := 〈KMB 〉
and MK := M ∩K. Recall that GB is a quasithin K-group, and hence so is K by
(a) or (b) of (1) in Theorem A (A.2.1), so that K/Z(K) is described in Theorem
B (A.2.2).

Lemma 4.4.10. (1) K 6≤MB.
(2) VB ≤ K0.
(3) CGB (K0) = O(GB).

Proof. As [K,VB ] 6= 1 and VB ≤ O2(MB), (1) holds. As LB = O2(LB),
LB acts on K by 4.4.9, so 1 6= VB = [VB , LB ] acts on K. Indeed as Out(K) is
2-nilpotent for each K in Theorem B, VB induces inner automorphisms on K0, so
that VB ≤ K0H where H := CGB (K0). Then the projection of VB on H is an
MB-invariant 2-group Q. If Q 6= 1, then by 4.4.7.2, MB = NGB (Q); but then K ≤
CGB (Q) ≤MB contrary to (1). Thus Q = 1, giving (2). Now H ≤ CGB (VB) ≤MB

by 4.4.6.3. Set S := TB ∩H . As tb IS Sylow in MB, and H E MB , S is Sylow in
H , S E TB, and

[S,LB ] ≤ CLB (VB) ∩H ≤ O2(LB) ∩H ≤ O2(H) ≤ O2(GB) = 1,

in view of 4.4.7.1. Thus LBTB ≤ NG(S), so if S 6= 1 then NG(S) ≤ M by 4.4.6.1;
as S centralizes K, this contradicts (1). Thus the Sylow 2-group S of H is trivial,
so (3) holds. ¤

Lemma 4.4.11. (1) K = K0 E GB .
(2) LB ≤MK .

Proof. ObserveOut(K0) is solvable, since |KGB | ≤ 2 by 4.4.9 and the Schreier
property is satisfied for the groups in Theorem B. Also CGB (K0) is solvable by
4.4.10.3. Hence LB = L∞B ≤ K0. Thus (2) will follow from (1).

Assume K is not normal in GB . By 4.4.9, K0 = K1K2 where K1 := K and
K2 := Ks for s ∈ GB −NGB (K), and K is a simple Bender group, L2(p

e), J1, or
SU3(8). But then K has no nonsolvable 2-localMK with O2(MK) not in the center
of MK , contradicting LB ≤M ∩K0. This establishes (1). ¤

Lemma 4.4.12. K/Z(K) is not of Lie type and characteristic 2.

Proof. Assume otherwise. By 4.4.11.1 and 4.4.10.3, O(GB) = CG(K), so TB
is faithful onK. By 4.4.10.2, VB ≤ K, soQB := O2(MB)∩K 6≤ Z(K). Therefore as
K/Z(K) is of Lie type and characteristic 2 by hypothesis, MB acts on some proper
parabolic of K (e.g. using the Borel-Tits Theorem 3.1.3 in [GLS98]). Hence by
4.4.7.2,MK is a maximalMB-invariant parabolic ofK. Furthermore from Theorem
B, K/Z(K) either has Lie rank at most 2, or is L4(2) or L5(2) or Sp6(2), so as
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we chose TB ∈ Syl2(MB), TB is transitive on each orbit of MB on parabolics of K
containing TB ∩K, and hence MK is a maximal TB-invariant parabolic.

As LB is a nonsolvable subgroup of MK , K is of Lie rank at least 2, and MK

is of Lie rank at least 1. Assume that K is of Lie rank exactly 2. Then as MK is
a proper parabolic of rank at least 1, it must be of rank exactly 1, and hence is a
maximal parabolic. Also LB = M∞

K as M∞
K /O2(MK)

∞ is quasisimple. Then as
VB ≤ Z(O2(LB)) and VB = [VB , LB ] we conclude by inspection of the parabolics
of the rank 2 groups that M+/O2(M+) ∼= LB/O2(LB) ∼= L2(2

n), and either VB is
an FF-module, or (when K is unitary) VB is the Ω−4 (2

n/2)-module for LB/O2(LB).
These are cases (i) and (ii) of conclusion (2) in Theorem 4.4.3, and in case (i) there
are no further restrictions on VB since L/O2(L) ∼= L2(2

n). This contradicts the
choice of B as a counterexample to Theorem 4.4.3.

ThereforeK is of Lie rank at least 3, so as we saw from Theorem B,K ∼= L4(2),
L5(2), or Sp6(2). Thus M+/O2(M+) ∼= LB/O2(LB) ∼= L3(2), L4(2), or A6, and
either VB is an FF-module, which is a natural module in the first two cases, or
K ∼= Sp6(2), LB/O2(LB) ∼= L3(2), and VB = O2(LB) is the core of a 7-dimensional
permutation module for LB/O2(LB). But then case (i) or (iii) of Theorem 4.4.3.2
holds, contrary to the choice of B as a counterexample, and completing the proof
of 4.4.12. ¤

We are now in a position to complete the proof of Theorem 4.4.3.
By 4.4.12,K/Z(K) is not of Lie type and characteristic 2. By 4.4.10.2, VB ≤ K.
Assume first thatm(VB) ≤ 4. Then inspecting the list of quasisimple subgroups

of GL4(2), LB/O2(LB) is one of L2(4), L3(2), L4(2), A6, or A7, with VB an FF-
module, or an A5-module for L2(4). Further if LB/O2(LB) ∼= L3(2) or L4(2), then
either VB is a natural module for LB/O2(LB), so condition in (a) of subcase (i)
of case (2) of Theorem 4.4.3 is satisfied, or m(VB) = 4 and LB/O2(LB) ∼= L3(2).
The former case contradicts our assumption that B is a counterexample, so we
may assume the latter holds. Then as VB = [VB , LB ], ZB := CVB (LB) is of
rank 1 and VB/ZB is a natural module. By 4.4.6.1, MKTB = CKTB (ZB), so
LB E CK(ZB). Examining involution centralizers in the groups appearing in
Theorem B for such a normal subgroup, we conclude K ∼= M23; but there LB is
not normal in NK(VB) ∼= A7/E16.

Thus we may assume that m(VB) > 4, and hence m2(K) > 4. Then from the
list of Theorem B, K/Z(K) is not L2(p

e), Lε3(p), PSp4(p), L
ε
4(p), G2(p), A7, A9, a

Mathieu group other than M24, a Janko group other than J4, HS, or Mc.
Since K/Z(K) is not of Lie type and characteristic 2 by 4.4.12, we conclude

from Theorem B that K/Z(K) is M24, J4, He, and Ru. Since the multipliers of
these groups are 2-groups by I.1.3, while O2(K) = 1 by 4.4.7.1, it follows that K is
simple. Again by 4.4.6.1, MKTB is the unique maximal 2-local subgroup of KTB
containing LBTB. Inspecting the maximal 2-locals of Aut(K) for a nonsolvable
2-local MKTB such that LB E MKTB and 1 6= VB = [VB , LB] ≤ Z(O2(LB)), we
conclude one of the following holds:

(a) K ∼= J4 and LB is a block of type M24 or L5(2).

(b) K is M24 or He, and LB is a block of type Â6.
(c) K is Ru and LB is a block of type G2(2).
(d) K ∼= Ru and LB/O2(LB) ∼= L3(2).
(e) K ∼=M24, and LB/O2(LB) ∼= L4(2) or L3(2).
(f) K ∼= J4 and LB/O2(LB) ∼= L3(2).
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In cases (d)–(f), VB is a natural module for LB/O2(LB), so that subcase (i) of case
(2) of Theorem 4.4.3 holds, contrary to our assumption that B affords a counterex-
ample to Theorem 4.4.3. Hence it only remains to dispose of cases (a)–(c).

Assume first that case (b) holds. Then from the structure of K ∼=M24 or He,
VB 6≤ O2(CK(z)) for each z ∈ CVB (T ∩ L)

#. Hence VB 6≤ O2(CG(z)), so condition
in (b) of subcase (i) of case (2) in Theorem 4.4.3 holds, again contrary to our choice
of a counterexample. Similarly if case (c) holds then from the structure of Ru
(cf. the case corresponding to Ru in the proof of Theorem 4.2.13, using facts from
chapter J) of Volume I, CK(V3) 6≤ MK . Thus condition (c) of subcase (i) of case
(2) in Theorem 4.4.3.2 holds, for the same contradiction.

Therefore we may assume case (a) holds. Set ZB := CVB (TB) and GZ :=

CG(ZB). Observe that ZB is of order 2 and KZ := CK(ZB)
∞ ∼= M̂22/2

1+12.
Arguing as in the last paragraph of the proof of Theorem 4.2.13, T induces inner
automorphisms on L/O2(L), and hence LT = LR+; therefore as VB ≤ Z(R+),
ZB ≤ Z(T ), so T ≤ GZ . By 1.2.1.1, KZ is contained in the product of the
members of C(GZ) on which it has nontrivial projection. Since m3(KZ) = 2 and
GZ is an SQTK-group, there is just one such member, so that KZ ≤ LZ ∈ C(GZ),
and from 1.2.1.4, LZ/O2(LZ) is a quasisimple group described in Theorem C. Set

(LZB)∗ := LZB/CLZB(LZ/O2(LZ)).

Then K∗Z ∈ C(CL∗Z (B
∗)) with K∗Z/O2(K

∗
Z)
∼= M̂22 or M22. Inspecting the p-locals

(for odd primes p) of the groups in Theorem C, we conclude that either K∗
Z = L∗Z

or L∗Z
∼= J4 and B∗ = Z(K∗Z) is of order 3. In the latter case, KZ ≤ IZ ≤ LZ

with IZ ∈ L(G, T ) and I∗Z
∼= M̂22/2

1+12. Thus replacing LZ by IZ in this case,
and replacing the condition that LZ ∈ C(GZ) by LZ ∈ L(G, T ), we may assume
LZ = KZO2(LZ).

Thus in either case, LZ ∈ L(G, T ) with LZ = KZO2(LZ) and [LZ , B] ≤
O2(LZ). Let X := 〈BT 〉; then X = O2(X) = O2(XT ). As [L,B] ≤ O2(L),
[L,X ] ≤ O2(L) ≤ T ≤ NG(X), so that X = O2(XO2(L)) E LTX , and hence
NG(X) ≤M = !M(LT ). Similarly as [LZ , B] ≤ O2(LZ), LZ ≤ NG(X), and hence
KZ ≤ LZT ≤ NG(X). Now K = 〈LB ,KZ〉 ≤ NG(X) ≤M , contradicting 4.4.10.1.

This final contradiction completes the proof of Theorem 4.4.3.

We interject a lemma which is often used in applying Theorem 4.4.3. Recall
the notation n(H) in Definition E.1.6.

Lemma 4.4.13. Assume that G is a simple QTKE-group, H ∈ H with n(H) >
1, S ∈ Syl2(H), and S is contained in a unique maximal subgroup MH of H. Then
MH ∩O2(H) is 2-closed, and if we let B denote a Hall 2′-subgroup of MH , then:

(1) If A is an elementary abelian p-subgroup of B with AS = SA, then H =
〈MH , NH(A)〉. In particular NH(A) 6≤MH .

(2) Assume that M ∈M(S), MH =M ∩H, and M+ = O2(M+) E M . Then
CB(M+/O2(M+))S = SCB(M+/O2(M+)).

Proof. As n(H) > 0, S is not normal in H , so as MH is the unique maximal
subgroup of H over S, H is a minimal parabolic in the sense of Definition B.6.1.
As n := n(H) > 1, E.2.2 then says that K0 := O2(H) = 〈KS〉 for some K ∈ C(H)
with K/O2(K) a Bender group over F2n , (S)L3(2

n), or Sp4(2
n), and in the latter

two cases S is nontrivial on the Dynkin diagram of K/O2(K). Set H∗ := H/O2(H)
and M0 := MH ∩K0. By E.2.2, M0 is the Borel subgroup of K0 over S ∩K0. In
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particular, M0 is 2-closed, and a Hall 2′-subgroup B of M0 is abelian of p-rank at
most 2 for each odd prime p.

In proving (1), we may take A 6= 1. Then 1 ≤ mp(A) ≤ mp(B) ≤ 2 for each
p ∈ π(A). It will suffice to show NH∗(A

∗) 6≤ M∗
H , since then as MH is a maximal

subgroup of H , H = 〈MH , NH(A)〉, so that (1) holds.
Suppose first that mp(A) = mp(B) for some p. Then A = Ω1(Op(B)) and so

NH(B) ≤ NH(A). But as B∗ is a Cartan subgroup of K∗0 , NK∗0 (B
∗) 6≤ M∗

0 , and
this suffices as we just observed.

So assume mp(B) = 2 and mp(A) = 1. Then by E.2.2, one of the following
holds:

(i) K < K0 and K∗ ∼= L2(2
n) or Sz(2n).

(ii) K∗ ∼= Sp4(2
n).

(iii) K∗ ∼= (S)L3(2
n).

In cases (i) and (ii), there is an element inK∗0−M
∗
0 invertingB∗, soNK∗0 (A

∗) 6≤M∗
0 ,

which suffices to establish (1) in this case as we indicated. Thus we may assume case
(iii) holds, so some t ∈ S acts nontrivially on the Dynkin diagram of K∗, and by a
Frattini Argument we may take t ∈ NS(B). Then as AS = SA, A is t-invariant. Let

U∗ := NH∗(B
∗), Ũ := U∗/B∗, and W̃ the image of NK∗(B

∗) in Ũ . Then W̃ ∼= S3 is

the Weyl group of K∗ and t̃ = s̃w̃, where w̃ is an involution in W̃ , and s̃ ∈ CŨ (W̃ ).

Pick preimages w∗ and s∗ of w̃ and s̃. As W̃ acts indecomposably on Ω1(Op(B)),
s̃ inverts or centralizes B∗, so s∗ and t∗ act on A∗, and hence w ∈ NH(A) −MH

completing the proof of (1).
So we may assume the hypotheses of (2). Let D := CB(M+/O2(M+)) and Q :=

O2(BS). Then, as in the proof of 4.4.4, a Frattini Argument gives S = QNS(B).
Now as M+ E M , NS(B) acts on M+ and hence also on D = CB(M+/O2(M+).
Therefore DNS(B) is a subgroup of G acting on Q, and hence DNS(B)Q = DS is
a subgroup of G, completing the proof of (2). ¤

Usually we use Theorem 4.4.3 via an appeal to the following corollary:

Theorem 4.4.14. Assume Hypothesis 4.2.1, and letM+ := 〈LT 〉, V0 ∈ R2(M+T ),
and H ∈ H∗(T,M). Assume

(a) V := [V0,M+] 6= 1, V0 = 〈CV0(T )
M+〉, and V is not an FF-module for

M+T/CM+T (V ).
(b) n(H) > 1.

Then one of the following holds:

(1) O2(H) ∩ M is 2-closed, and a Hall 2′-subgroup of H ∩ M is faithful on
M+/O2(M+).

(2) M+/O2(M+) ∼= L2(2
2n), and V is the Ω−4 (2

n)-module.
(3) M+/O2(M+) ∼= L3(2), and V is the core of a 7-dimensional permutation

module for M+/O2(M+).

Proof. Let Z := Ω1(Z(T )) and K := O2(H). We observed in Remark 3.2.4
that Hypothesis 4.2.1 allows us to apply Theorem 3.1.8. As V is not an FF-module,
J(T ) ≤ CT (V ) by B.2.7, so H ≤ CG(Z), by 3.1.8.3. Similarly by 3.3.2.4, H is a
minimal parabolic described in E.2.2. Since n(H) > 1 by hypothesis, E.2.2 shows
that K/O2(K) is of Lie type in characteristic 2 and of Lie rank at most 2, and
K ∩M is a Borel subgroup of K, so in particular K ∩M is 2-closed. Let BH be a
Hall 2′-subgroup of H ∩M ; thus BH is abelian of odd order.
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Assume (1) fails. Then B := CBH (M+/O2(M+)) 6= 1. Observe that we have
the hypotheses of 4.4.13 with T , BH , B in the roles of “S, B, A”, so BT = TB by
4.4.13.2. Hence parts (1) and (2) of Hypothesis 4.4.1 are satisfied, with T in the
role of “T+”. Thus by 4.4.5, M+ = LBO2(M+), where LB := CM+(B)∞.

Next since H ≤ CG(Z), CV0(T ) = Z ∩ V0 ≤ CG(B), so V0 = 〈(Z ∩ V0)M+〉 =
〈(Z∩V0)LB 〉 ≤ CG(B) by (a). Therefore part (3) of Hypothesis 4.4.1 is also satisfied,
with V in the role of “VB”, so that we may apply Theorem 4.4.3. By (a), V is not
an FF-module for LB/O2(LB), which rules out subcase (i) of case (2) of Theorem
4.4.3. By 4.4.13.1,NH(B) 6≤M , ruling out case (1) of Theorem 4.4.3. Thus subcase
(ii) or (iii) of case (2) of Theorem 4.4.3 must hold, and these are conclusions (2)
and (3) of Theorem 4.4.14. ¤





Part 2

The treatment of the Generic Case



Part 1 has set the stage for the proof of the Main Theorem by supplying infor-
mation about the structure of 2-locals, establishing the Fundamental Setup (3.2.1),
and proving that in the FSU, the members of H∗(T,M) are minimal parabol-
ics. We now begin the analysis of the various possibilites for L ∈ L∗f (G, T ) and

V ∈ R2(L0T ) arising in the FSU. Recall the FSU includes the hypotheses that G is
a simple QTKE-group, T ∈ Syl2(G), and L ∈ L∗f (G, T ) with L/O2(L) quasisimple

and V a suitable member of R2(LT ).
In Part 2, we consider the Generic Case of our Main Theorem. This is the

case where L/O2(L) ∼= L2(2
n) with LEM and n(H) > 1 for some H ∈ H∗(T,M).

We show in Theorem 5.2.3 of chapter 5 that in the Generic Case, (modulo the
sporadic exception M23 and the “F2-case”) G is one of the generic conclusions in
our Main Theorem: namely G is of Lie type of Lie rank 2 and characteristic 2. In
chapter 6 we consider the remaining case where n(H) = 1 for each H ∈ H∗(T,M),
and show in that case that n = 2 and V is the A5-module. The case where V is
the A5-module is treated in Part 5 on groups over F2, since the A5-module is the
module for Ω−4 (2).

Thus once we have dealt with the groups L2(p) and the Bender groups in
Theorem 2.1.1, and the groups of Lie type in characteristic 2 of Lie rank 2 in
Theorem 5.2.3, we will have handled all the infinite families of groups appearing as
conclusions in the Main Theorem.



CHAPTER 5

The Generic Case: L2(2
n) in Lf and n(H) > 1

In this chapter we assume the following hypothesis:

Hypothesis 5.0.1. G is a simple QTKE-group, T ∈ Syl2(G), L ∈ L∗f (G, T )
with L/O2(L) ∼= L2(2

n) and L EM ∈M(T ).

As L is nonsolvable, n ≥ 2. Further M = !M(LT ) by 1.2.7.3 and M = NG(L).
Set

Z := Ω1(Z(T )).

From the results of section 1.2, there exists V ∈ R2(LT ) with [V, L] 6= 1; choose
such a V and set LT := LT/CLT (V ). By 3.2.3 it is possible to choose V so that
the pair L, V satisfies the hypotheses of the Fundamental Setup (3.2.1). However
occasionally we need information about other members of R2(LT ), so usually in
this chapter we do not assume V satisfies the hypotheses of the FSU. Later, when
appropriate, we sometimes specialize to that case.

By Theorem 2.1.1, H∗(T,M) is nonempty.
In the initial section 5.1, we determine the possibilities for V and provide

restrictions on members of H∗(T,M). The following section begins the proof of
Theorem 5.2.3, which supplies very strong information when n(H) > 1 for some
H ∈ H∗(T,M). Indeed in the FSU, if V is not the A5-module, then either G is of
Lie type and Lie rank 2 over a field of characteristic 2, or G is M23; hence we refer
to this situation as the Generic Case . The final section 5.3 completes the proof of
Theorem 5.2.3.

Our primary tool for proving Theorem 5.2.3 is the main theorem of the “Green
Book” of Delgado-Goldschmidt-Stellmacher [DGS85], which gives a local descrip-
tion of weak BN-pairs of rank 2. To apply the Green Book, we must achieve the
setup of Hypothesis F.1.1. There are two major obstacles to verifying this hypoth-
esis: Let D be a Hall 2′-subgroup of NL(T ∩ L), and K := O2(H). We must first
show that D acts on K, unless the exceptional case in part (1) of Theorem 5.2.3
holds. Second, we must construct a normal subgroup S of T such that S is Sylow
in SL and SK, and so that there exists an S-invariant subgroup K1 of K such that
K1/O2(K1) a Bender group. Now K/O2(K) is of Lie type in characteristic 2 of Lie
rank 1 or 2. If K is of Lie rank 1, we take K1 := K; if K is of Lie rank 2, we choose
K1 to be a rank one parabolic of K. In either case, we take S to be O2(H ∩M),
unless K/O2(K) ∼= L3(4), which provides a final obstruction that we deal with in
Theorem 5.1.14.

After producing our weak BN-pair and identifying it up to isomorphism of
amalgams using the Green Book, we still need to identify G. To do so we appeal
to Theorem F.4.31 as a recognition theorem; ultimately Theorem F.4.31 depends
upon the Tits-Weiss classification of Moufang generalized polygons, although the
Fong-Seitz classification of split BN-pairs of rank 2 would also suffice. There is also
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an obstacle to applying this recognition theorem: the case where K /∈ L∗(G, T ),
leading to M23. This case is dealt with in Theorem 5.2.10.

5.1. Preliminary analysis of the L2(2
n) case

5.1.1. General analysis of V and H. Since this is the first case in the FSU
which we analyze, we begin with a lemma summarizing some of the basic tools
(developed in Volume I and earlier chapters of Volume II) to deal with the FSU.
We thank Ulrich Meierfrankenfeld for several improvements to the proofs in this
section.

Lemma 5.1.1. (1) CT (V ) = O2(LT ).
(2) Each H ∈ H∗(T,M) is a minimal parabolic described in B.6.8, and in E.2.2

if n(H) > 1.
(3) For each H ∈ H∗(T,M), case (I) of Hypothesis 3.1.5 is satisfied with LT

in the role of “M0”.
(4) LT is a minimal parabolic.

Proof. Part (1) follows from 1.4.1.4, (2) follows from 3.3.2.4, (3) follows from
(1) and the fact that L E M , and (4) is well known and easy. ¤

We begin by discussing the possibilities for V :

Lemma 5.1.2. One of the following holds:

(1) J(T ) ≤ CM (V ), so J(T ) and Baum(T ) are normal in LT and M =
!M(NG(J(T ))) = !M

(
NG(Baum(T ))

)
.

(2) [V, J(T )] 6= 1 and V/CV (L) is the natural module for L̄.
(3) [V, J(T )] 6= 1, n = 2, and V = CV (LT )⊕ [V, L] with [V, L] the S5-module

for L̄T̄ ∼= S5.

Proof. By 5.1.1.1, CT (V ) = O2(LT ). Thus if J(T ) ≤ CM (V ), then J(T ) =
J(O2(LT )) and Baum(T )) = Baum(O2(LT )) by B.2.3, so LT acts on J(T ) and
Baum(T ). However by 1.2.7.3, M = !M(LT ), so (1) holds in this case. So assume
[V, J(T )] 6= 1. Then V is an FF-module for L̄T̄ by B.2.7, so by B.5.1.1, I := [V, L] ∈
Irr+(L, V ), and by B.5.1.5, V = I+CV (L). By B.4.2, either I/CI(L) is the natural
module, or n = 2 and I/CI(L) is the A5-module. In the former case (2) holds as
V = I + CV (L), and in the latter (3) holds by B.5.1.4. ¤

Lemma 5.1.3. One of the following holds:

(1) V is the direct sum of two natural modules for L̄.
(2) n = 2 and V is the direct sum of two S5-modules for L̄T̄ ∼= S5.
(3) [V, L]/C[V,L](L) is the natural module for L̄.

(4) n is even and V is the O−4 (2
n/2)-module for L̄.

(5) V = [V, L]⊕ CV (LT ), and [V, L] is the S5-module for L̄T̄ ∼= S5.

Remark 5.1.4. Recall that the A5-module and the O−4 (2)-module are the same.
Notice however that in case (4) we may have L̄T̄ ∼= A5, which is not allowed in (5).
On the other hand in case (5) we may have CV (L) 6= 1, which is not allowed in (4).

Proof. If [V, J(T )] 6= 1 then (3) or (5) holds by 5.1.2. Thus we may assume
[V, J(T )] = 1, so that CV (L) = 1 by 3.1.8.3.

Next q̂(L̄T̄ , V ) ≤ 2 by 3.1.8.1. Hence in the language of Definition D.2.1, there

is Ā ∈ Q̂(T̄ , V ). Recall that we are not yet assuming the FSU, so we will work with
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the results of section D.3 rather than those of section 3.2 based on the FSU. By
A.1.42.2, there is I ∈ Irr+(L, V, T ). Now Hypothesis D.3.1 is satisfied with L̄T̄ , L̄,
I , VM := 〈IT 〉 in the roles of “M , M+, V , VM”. Hence we may apply D.3.10 to
conclude that I E LT .

Suppose first that I < [V, L], and choose an LT -submodule V1 of V with
[V, L] 6≤ V1 ≥ I . As L̄ = F ∗(L̄T̄ ) is simple, L̄—and hence also Ā—is faithful on V1
and on Ṽ := V/V1. Thus

2 ≥ rĀ,V ≥ rĀ,V1 + rĀ,Ṽ

in the language of Definition B.1.1. On the other hand, by B.6.9.1, rĀ,W ≥ 1 for

each faithful L̄Ā-module W , so rĀ,V1 = rĀ,Ṽ = 1. Then by another application of

B.6.9, V1 and Ṽ have unique noncentral chief factors, and either both factors are
natural, or n = 2 and at least one is an A5-module. Now if a factor is natural,
then Ā ∈ Syl2(L̄), while if a factor is an A5-module, then Ā 6≤ L̄. So if one factor
is an A5-module, then both are A5-modules; then as A5-modules have trivial 1-
cohomology by I.1.6, and we saw CV (L) = 1, (2) holds. This leaves the case where

both factors are natural modules. Here we choose V1 maximal subject to [Ṽ , L] 6= 1,

so as Ṽ is an FF-module, Ṽ is natural by B.5.1.5. Also V1 is an FF-module, so
V1/CV1(L) is natural by B.5.1.5; hence as CV (L) = 1, both V1 = I and V/I are
natural. Further as rĀ,V = 2 with m(V/CV (̄i)) = 2n = 2m(L̄) for each involution

ī ∈ L̄, Ā ∈ Syl2(L̄) with CV (Ā)) = CV (ā) = [V, ā] for each ā ∈ Ā#. Therefore V is
semisimple by Theorem G.1.3, and hence (1) holds.

Thus we may assume that I = [V, L], and therefore that LT is irreducible on
W := [V, L]/C[V,L](L). Then as q̂(L̄T̄ , V ) ≤ 2, it follows from B.4.2 and B.4.5 that
either W is the natural module, or n is even and W is the orthogonal module. In
the first case (3) holds, so assume the second holds. Then H1(L̄,W ) = 0 by I.1.6, so
as CV (L) = 1, V is irreducible and hence (4) holds. This completes the proof. ¤

Recall that by Theorem 2.1.1, there is H ∈ H∗(T,M).

Lemma 5.1.5. Let H ∈ H∗(T,M) and DL a Hall 2′-subgroup of NL(T ∩ L).
Then

(1) H ∩M acts on T ∩ L and on O2(DLT ), and
(2) if n(H) > 1, then H ∩M is solvable, and some Hall 2′-subgroup of H ∩M

acts on DL.

Proof. Let TL := T ∩L and B := NL(TL). Since L/O2(L) ∼= L2(2
n), B is the

unique maximal subgroup of L containing TL. But as M = !M(LT ) and H 6≤M ,
L 6≤ H , so H ∩L ≤ B; hence H ∩M acts on O2(H ∩L) = TL and on NL(TL) = B.
Thus (1) holds.

Assume n(H) > 1. Then H ∩M is solvable by E.2.2, so as H ∩M acts on
B and B is solvable, (H ∩M)B is solvable. Therefore by Hall’s Theorem, a Hall
2′-subgroup DH of H ∩ M is contained in a Hall 2′-subgroup D of (H ∩ M)B,
and D ∩ B is a Hall 2′-subgroup of B. By Hall’s Theorem there is t ∈ TL with
(D ∩ B)t = DL, so as TL ≤ H , the Hall 2′-subgroup Dt

H of H ∩M acts on DL,
completing the proof of (2). ¤

Lemma 5.1.6. Let H ∈ H∗(T,M), DL a Hall 2′-subgroup of NL(T ∩ L), and
assume O2(〈DL, H〉) = 1. Then n is even and one of the following holds:

(1) n = 2, V is the direct sum of two natural modules for L̄, and [Z,H ] = 1.
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(2) n = 2 or 4, [V, L] is the natural module for L̄, and [Z,H ] = 1.
(3) n = 2, [V, L] is the S5-module for L̄T̄ ∼= S5, and Z(H) = 1.
(4) n ≡ 0 mod 4, V is the Ω−4 (2

n/2)-module for L̄, and [Z,H ] = 1. Fur-

thermore if we take Dε to be the subgroup of DL of order 2n/2 − ε, ε = ±1, and
Xε := 〈Dε, H〉, then Z ≤ Z(X−) and either O2(X+) 6= 1, or n = 4 or 8.

Proof. Let X := 〈DL, H〉. Then by hypothesis, O2(X) = 1. Recall from the
start of the chapter that Z = Ω1(Z(T )), and set VD := 〈ZDL〉 and VZ := 〈ZL〉.
Observe that VZ ∈ R2(LT ) and VD ∈ R2(TDL) by B.2.14. In each case of 5.1.3,

V = 〈(Z ∩ V )L〉 ≤ VZ .

Suppose first that T E TDL. Then applying Theorem 3.1.1 with TDL, T in
the roles of “M0, R”, we contradict O2(X) = 1. Therefore T 6 E TDL.

Since L̄ ∼= L2(2
n), it follows that n is even, and also that L̄T̄ = L̄S̄ where

S ≤ T , S̄ 6= 1, L̄ ∩ S̄ = 1, and S̄ acts faithfully as field automorphisms of L̄.
As VZ ∈ R2(LT ), we can apply 5.1.2 and 5.1.3 to VZ in the role of “V ”. For

example by 5.1.2 and 3.1.8.3, either

(i) [Z,H ] = 1 = CVZ (L), or
(ii) [VZ , J(T )] 6= 1, and either VZ/CVZ (L) is the natural module for L̄, or [VZ , L]

is the S5-module for L̄T̄ ∼= S5.

To complete the proof, we consider each of the possibilities for V arising in 5.1.3.
Suppose first that V is described in case (1) of 5.1.3. As the overgroup VZ of

V is also described in one of the cases in 5.1.3, we conclude that V = VZ . By the
previous paragraph, [Z,H ] = 1. From the structure of V , VD ≤ CV (T ∩ L) which
is of rank 2n in V of rank 4n, DL is faithful on VD so that m(VD) ≥ n, with

(T ∩ L)CT (V ) = O2(TDL) = CT (VD) = CTDL(VD),

and T/CT (VD) is cyclic. Thus as H ∩M normalizes TDL by 5.1.5.1, Hypothesis
3.1.5 is satisfied by TDL, VD in the roles of “M0, V ”. As O2(X) = 1, we conclude
from 3.1.6 that q̂(TDL/O2(TDL), VD) ≤ 2. Hence as T/CT (VD) is cyclic and
m(VD) ≥ n, we conclude that n = 2, so that conclusion (1) holds.

Similarly if V appears in case (3) of 5.1.3, we conclude as in the previous
paragraph that VZ appears in case (1) or (3) of 5.1.3, that Hypothesis 3.1.5 is
satisfied with TDL, VD in the roles of “M0, V ”, and that q̂(TDL/O2(TDL), VD) ≤
2. Hence either n = 2, or possibly n = 4 in case VZ satisfies conclusion (3) of 5.1.3—
since m(VD/CVD (t)) = n/2 for t ∈ T −CT (VD) with t2 ∈ CT (VD) when VZ satisfies
that conclusion. Further J(T ) ≤ CT (VD) by B.4.2.1, so [H,Z] = 1 = CZ(L) by
Theorem 3.1.7, which completes the proof that conclusion (2) holds in this case.

Suppose next that V appears in case (2) or (5) of 5.1.3, or in case (4) with
n = 2. These are the cases where n = 2 and L has an A5-submodule on V ,
and hence also on VZ , so that VZ must also satisfy one of these three conclusions.
Therefore DL ≤ CG(Z). Recall H ∈ H(T ) ⊆ He by 1.1.4.6, so if Z(H) 6= 1 then
Z ∩Z(H) 6= 1. Thus as O2(X) = 1, Z(H) = 1, so that case (ii) holds; therefore VZ
satisfies conclusion (3), and hence so does V .

This leaves the case where V satisfies case (4) of 5.1.3 with n > 2. Thus V = VZ
as before, and hence (ii) does not hold, leaving case (i) where [Z,H ] = 1 = CZ(L).
Now V is a 4-dimensional FL-module, where F := F2n/2 , and Z = CU (T ) where U
is the 1-dimensional F -subspace of V stabilized by S̄ := T̄ ∩L̄. Further setting A :=
NGL(V )(L̄), A is the split extension of L̄ by 〈σ〉 where σ is a field automorphism.
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Also if s is the involution in 〈σ〉, then CA(U) = S̄〈s〉D− and U = 〈ZD+〉, so U = VD.
In particular [D−, Z] = 1, so Z ≤ Z(X−). If n ≡ 2 mod 4, then T̄ ≤ S̄〈s〉,
so Z = U is D+-invariant; hence X = 〈H,DL〉 ≤ NG(Z), contrary to O2(X) = 1.
Thus n ≡ 0 mod 4. FinallyD+ is faithful on VD , so applying 3.1.6 with TD+, VD in
the roles of “M0, V ” as before, either O2(X+) 6= 1 or q̂(D+T/O2(D+T ), VD) ≤ 2. In
the latter case, as T/CT (VD) is cyclic andm(VD/CVD (t)) ≥ n/4 for t ∈ T−CT (VD),
n = 4 or 8. Thus (4) holds. ¤

Lemma 5.1.7. (1) NG(Baum(T )) ≤M .
(2) Let H ∈ H∗(T,M) and set K := O2(H). Assume [Z,H ] 6= 1. Then

(i) L = [L, J(T )].
(ii) K = [K, J(T )].
(iii) Either O2(〈NL(T ∩ L), H〉) 6= 1, or [V, L] is the S5-module for L̄T̄ ∼=

S5, and Z(H) = 1.

Proof. We first prove (1). Let S := Baum(T ). If J(T ) ≤ CT (V ), then
(1) follows from 5.1.2. Thus we may assume J(T ) 6≤ CT (V ), so by 5.1.2, either
V/CV (L) is the natural module for L̄ or [V, L] is the A5-module. In the former
case, S ∩ L ∈ Syl2(L) by E.2.3.2, so (1) follows from 4.3.17.

Therefore we may assume that [V, L] is the A5-module. As [V, J(T )] 6= 1,

we conclude from E.2.3 that L̄T̄ ∼= S5, S̄ = J(T ) ∼= E4 is generated by the two
transvections in T̄ , and 〈ZL〉 = [V, L]⊕ CZ(L). We may assume V = [V, L].

Assume that NG(S) 6≤ M ; then no nontrivial characteristic subgroup of S is
normal in LT as M = !M(LT ). Hence by E.2.3.3, L is an A5-block, so V =
O2(L) E M . Let Q := O2(LS). It follows using C.1.13.b that Q = V ×QC , where
QC := CS(L).

For any 1 6= S0 ≤ S normalized by LT , we have NG(S0) ≤ M = !M(LT ), so
NG(S) 6≤ NG(S0) by our assumption. Thus Hypothesis C.6.2 is satisfied with L, S,
T , NG(S) in the roles of “L, R, TH , Λ”. Therefore by C.6.3.1 there is g ∈ NG(S)
with V g 6≤ Q. As V E M , g /∈M .

Suppose that QC 6≤ Qg . Since [QC , V
g ] ∩ [V, V g ] ≤ QC ∩ V = 1, from the

action of S on V and hence on V g , we conclude that QC and V induce distinct
transvections on V g. Thus as |S : Qg | = 4, S = QCV Q

g. Let x ∈ [QC , V
g ]#;

then x ∈ QC ≤ CG(L), so as M = !M(L) by Theorem 4.3.2, CG(x) ≤ M , so
V ≤ O2(CG(x)). Since QC induces a transvection on the A5-module V g for Lg,
CLgS(x)QCQ

g/QCQ
g ∼= S3, so V ≤ O2(CLgS(x)QCQ

g) = QCQ
g, contrary to V

and QC inducing distinct transvections on V g .
Therefore QC ≤ Qg. Hence

Φ(QC) ≤ Φ(Qg) = Φ(QgCV
g) = Φ(QgC),

so Φ(QC) = Φ(QgC). Thus as Φ(QC) E LT and g /∈M = !M(LT ), Φ(QC) = 1 =
Φ(Q).

Next we claim we can choose g so that S = QQg. If not then Q ∩ Qg is a
hyperplane of Q and Qg centralized by Qg , so Qg induces a transvection on Q

and hence S = QgQgt for t ∈ T − SO2(LT ). Thus as g ∈ NG(S), S = QQgtg
−1

,
establishing the claim.

As S = QQg with Φ(Q) = 1 and QC ≤ Qg, S = QC × D1 × D2, where
D1

∼= D2 is dihedral of order 8. By the Krull-Schmidt Theorem A.1.15, NG(S)
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permutes {D1Z(S), D2Z(S)}. Then O2(NG(S)) acts on DiZ(S), and indeed cen-
tralizes DiZ(S)/Z(S) as DiZ(S)/Z(S) is of order 4 and contains a unique coset
of Z(S) containing elements of order 4. Thus O2(NG(S)) acts on Q, and hence
O2(NG(S)) ≤ M = !M(NG(Q)). But then NG(S) = O2(NG(S))T ≤ M , contrary
to assumption. This contradiction completes the proof of (1).

As (1) is established, we may assume the hypotheses of (2). Thus [Z,H ] 6= 1,
so J(T ) 6≤ CT (V ) by 3.1.8.3, and then part (i) of (2) holds by B.6.8.6.d. Therefore
by 5.1.2, either [V, L] is the S5-module for L̄T̄ ∼= S5, or V/CV (L) is the natural
module for L̄. Set U := 〈ZH〉, so that U ∈ R2(H) by B.2.14. By (1), S 6=
Baum(O2(H)). Then as [Z,H ] 6= 1, J(T ) 6≤ CT (U) by B.6.8.3.d, and (ii) follows.
Finally if O2(〈NL(T ∩ L), H〉) = 1, we may apply 5.1.6; as [Z,H ] 6= 1, conclusion
(3) of 5.1.6 holds, completing the proof of (iii). ¤

5.1.2. Further analysis when n(H) > 1. Recall that in this Part we focus
on the “generic” situation, where n(H) > 1 for some H ∈ H∗(T,M). Later in
Theorem 6.2.20, we will reduce the case where n(H) = 1 for each H ∈ H∗(T,M) to
n = 2 with L̄ = L2(4) ∼= A5 acting on [Z,L] as the sum of at most two A5-modules.
That situation is treated later in those Parts dedicated to groups defined over F2.

So in the remainder of this section we assume the following hypothesis:

Hypothesis 5.1.8. Hypothesis 5.0.1 holds, and there is H ∈ H∗(T,M) with
n(H) > 1. Set K := O2(H), MH :=M ∩H, and MK :=M ∩K.

Notation 5.1.9. By 5.1.5.2, we may choose a Hall 2′-subgroup B of MH , and
a B-invariant Hall 2′-subgroup DL of NL(T ∩L). This notation is fixed throughout
the remainder of the section.

Observe MH = BT = TB since T ∈ Syl2(MH). Further B and T normalize
NL(T ∩ L) = DL(T ∩ L) by 5.1.5.1, so DLBT is a subgroup of G.

Our goal (oversimplifying somewhat) is to show in the following section that
(LTB,DLTB,DLH) forms a weak BN -pair of rank 2 in the sense of [DGS85], as
in our Definition F.1.7. Indeed we already encounter such rank 2 amalgams in this
section.

The next few results study the structure of K and the embedding of K in mem-
bers X of H(H), and show that usually DL ∩X acts on K. This last type of result
is important, since to achieve Hypothesis F.1.1 and show (LTB, TDLB,HDL) is a
weak BN-pair of rank 2, we need to show DL acts on K.

Lemma 5.1.10. Let k := n(H) and H∗ := H/O2(H). Then K∗ is a group of
Lie type over F2k of Lie rank 1 or 2, M∗

K is a Borel subgroup of K∗, and B∗ is a
Cartan subgroup of K∗. More specifically, K = 〈KT

1 〉 for some K1 ∈ C(H), and
one of the following holds:

(1) K1 < K and K∗1
∼= L2(2

k) or Sz(2k).
(2) K1 = K and K∗ is a Bender group over F2k .
(3) K1 = K, K∗ ∼= (S)L3(2

k) or Sp4(2
k), and T is nontrivial on the Dynkin

diagram of K∗.

Proof. As n(H) > 1, this follows from E.2.2. ¤

From now on, whenever we assume Hypothesis 5.1.8, we also take K1 ∈ C(H).

Lemma 5.1.11. Let S := O2(MH) and H
∗ := H/O2(H). Then
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(1) S ∩K ∈ Syl2(K).
(2) S ∩ L ∈ Syl2(L).
(3) If K∗ is of Lie rank 2, then either

(i) S acts on both rank one parabolics of K∗, or
(ii) K∗S∗ is L3(4) extended by a graph automorphism.

Proof. Note that O2(H) ≤ S by A.1.6. By 5.1.10, M ∗
K is 2-closed and

O2(M
∗
K) ∈ Syl2(K

∗), so (1) follows. By 5.1.5, B acts on T ∩ L, and hence
T ∩ L ≤ O2(BT ) = O2(MH) = S, so S ∩ L ∈ Syl2(L), proving (2).

Note by 5.1.10 that B∗ is a Cartan subgroup of K∗. Thus by inspection of the
groups L2(2

k)×L2(2
k), Sz(2k)×Sz(2k), (S)L3(2

k), and Sp4(2
k) of Lie rank 2 listed

in 5.1.10, either CT∗(B
∗) = 1—so that (i) holds; or K∗ ∼= L3(4), and CT∗(B

∗) is of
order 2 and induces a graph automorphism on K∗, giving (ii). Hence (3) holds. ¤

Lemma 5.1.12. For each X ∈ H(H), K1 lies in a unique K̂1(X) ∈ C(X),

K ≤ K̂(X) := 〈K̂1(X)T 〉, and one of the following holds:

(1) K = K̂(X).

(2) K1 < K, K1/O2(K1) ∼= L2(4), and K̂1(X)/O2(K̂1(X)) ∼= J1 or L2(p), p
prime with p2 ≡ 1 mod 5 and p ≡ ±3 mod 8.

(3) K/O2(K) ∼= Sz(2k) and K̂(X)/O2(K̂(X)) ∼= 2F 4(2
k).

(4) K/O2(K) ∼= L2(2
k) and K̂(X)/O2(K̂(X)) is of Lie type and characteristic

2 and Lie rank 2.
(5) K/O2(K) ∼= L2(4) and K < K̂(X) with K̂(X)/O2(K̂(X)) not of Lie type

and characteristic 2. The possible embeddings are listed in A.3.14.

Proof. By 1.2.4, K1 lies in a unique K̂1(X) ∈ C(X), and the embedding is
described in A.3.12. If K1 < K, then (1) or (2) holds by 1.2.8.2, so we may assume

K1 = K, and hence K̂1(X) = K̂(X) by 1.2.8.1. We may assume (1) does not hold,

so that K < K̂(X).
As K1 = K, K/O2(K) satisfies conclusion (2) or (3) of 5.1.10. In conclusion (3)

of 5.1.10 as k ≥ 2, K/O2(K) ∼= L3(4) by 1.2.8.4, and then K̂(X)/O2(K̂(X)) ∼=M23

by A.3.12. However this case is impossible as T is nontrivial on the Dynkin diagram
of K/O2(K), whereas this is not the case for the embedding in M23.

Thus we may assume conclusion (2) of 5.1.10 holds. By 1.2.8.4, K/O2(K) is
not unitary, while if K/O2(K) is a Suzuki group, then (3) holds by A.3.12. Thus we
may assume K/O2(K) ∼= L2(2

k). Then by A.3.12 and A.3.14, (4) or (5) holds. ¤

Lemma 5.1.13. Let X ∈ H(H), define K̂ := K̂(X) as in 5.1.12, and set
D := DL ∩X. Then either D ≤ NG(K), or the following hold:

(1) K/O2(K) ∼= L2(4).
(2) L/O2(L) ∼= L2(4).
(3) V is the sum of at most two copies of the A5-module.

(4) K̂ ≤ CG(Z).

(5) K̂/O2(K̂) ∼= A7, J2, or M23.

(6) K̂(CG(Z)) = O3′(CG(Z)), and either K̂ = K̂(CG(Z)) or

K̂/O2(K̂) ∼= A7 with K̂(CG(Z))/O2(K̂(CG(Z))) ∼=M23.
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Proof. We may assume D does not act on K, so in particular, D 6= 1. As
K̂ EX by 1.2.1, D acts on K̂ but not on K, so K < K̂ and the possibilities for
the embedding of K in K̂ are described in 5.1.12.

If K̂/O2(K̂) is of Lie type of characteristic 2 and Lie rank 2, then K = P∞,

where P/O2(P ) is one of the two maximal parabolics of K̂/O2(K̂) containing (T ∩

K̂)/O2(K̂). Then as D permutes with T , and T acts on P , also D acts on P , and
hence also on K, contrary to assumption.

Therefore we may assume that case (2) or (5) of 5.1.12 holds. Let Dc :=

CD(K̂/O2(K̂)). Then [Dc,K] ≤ [Dc, K̂] ≤ O2(K̂) ≤ O2(KT ), so Dc acts on
O2(KO2(KT )) = K. Thus Dc < D.

Set (K̂TD)∗ := K̂TD/CK̂TD(K̂/O2(K̂)); then 1 6= D∗ ≤ (K̂TD)∗ ≤ Aut(K̂∗).
If D∗ acts on K∗ with preimage K+, then D acts on K = K∞+ , contrary to our
assumption; thus we may also assume that D∗ does not act onK∗, and in particular
that D∗ 6≤ B∗ and so D∗ 6= 1.

Suppose that case (2) of 5.1.12 holds. The case K̂∗1
∼= L2(p) can be handled as

in the case K̂∗ ∼= L2(p) below, so take K̂∗1
∼= J1. As K1 < K, B ∼= E9 is a Sylow

3-subgroup of NK̂(T ∩ K̂). Recall B normalizes D, so we may embed B∗D∗ in a

Hall 2′-subgroup E∗ ∼= (Frob21)
2 of NK̂∗(T

∗ ∩ K̂∗). Now D∗ is cyclic as D ≤ DL.
Also D permutes with T , so D∗ is invariant under NT∗(E

∗). But NT∗(E
∗) = 〈t∗〉

is of order 2, where t∗ interchanges the two components of K̂∗, so D∗ is diagonally
embedded in K̂∗. Then as D∗ is cyclic and B∗-invariant, O7(D

∗) = 1. So D∗ ≤ B∗,
contradicting an earlier reduction. Therefore case (5) of 5.1.12 holds, establishing
(1).

By (1), B ∼= B∗ is of order 3. It remains to consider the corresponding possi-

bilities for K̂∗ in A.3.14. Furthermore the possibilities of Lie type in characteristic
2 in case (1) of A.3.14 were eliminated earlier.

Suppose first that K̂∗ is not quasisimple. Then by 1.2.1.4, K̂∗/O(K̂∗) ∼= SL2(p)

for some odd prime p. Let R be the preimage in T of O2′,2(K̂
∗). As DT = TD, D∗

centralizes R∗, and so acts on CK̂(R∗)∞ =: KR; notice KR < K̂ as KR/O2(K̂)) ∼=
SL2(p). Similarly K ≤ KR and T acts on KR; so as KR/O2(KR) is quasisimple, D

acts on K by induction on the order of K̂, contrary to assumption. Thus we may
assume K̂∗ is quasisimple.

Suppose K̂∗ ∼= L2(p) for some odd prime p. Recall in this case that p ≡ ±3

mod 8, so that B∗T ∗ ∼= A4; so as B
∗ acts on 1 6= D∗ ≤ Aut(K̂)∗ andD∗T ∗ = T ∗D∗,

we conclude D∗ = B∗, contrary to an earlier reduction. As mentioned earlier, this
argument suffices also when K1 < K, where B∗T ∗ ∼= A4 wr Z2.

Suppose K̂∗ ∼= (S)Lε3(5). Then K∗ = E(CK̂∗(Z(T
∗)), and as D∗ is cyclic

and permutes with T ∗, we conclude from the structure of Aut(K̂∗) that either

D∗ ≤ CK̂∗(Z(T
∗)) ≤ NK̂∗(K

∗), or K̂∗ ∼= L3(5) and D∗T ∗ is the normalizer in

K̂∗T ∗ of the normal 4-subgroup E∗ of T ∗ ∩ K̂∗. In the former case we contradict
our assumption that D∗ does not act on K∗; in the latter, B∗ ≤ NK∗(D

∗T ∗) = T ∗,

contradicting B∗ of order 3. Similarly if K̂∗ ∼= L2(25) then as D∗ permutes with

T ∗B∗, from the structure of Aut(K̂∗), D∗T ∗ = B∗T ∗ ≤ K∗T ∗, a contradiction.
Next suppose that |D∗| = |D : Dc| is not a power of 3. Then as DT = TD, and

K̂∗ is not of Lie type and characteristic 2, A.3.15 says that K̂∗ ∼= J1, L2(q
e), Lδ3(q),

for q a suitable odd prime and e ≤ 2. Then comparing these groups to our list of
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embeddings of A5 in A.3.14, we conclude K̂∗ ∼= J1. As D 6≤ NG(K) is cyclic, we
conclude that D∗ = [D∗, B∗] is of order 7; hence as D ≤ DL = NL(T ∩L), n = 3m
for some m. In particular as B does not centralize D, B induces a group of field
automorphisms of order 3 on L/O2(L). Further D∩K̂ =: D7 is the subgroup of DL

of order 7. If all noncentral 2-chief factors of L on V are natural, then CD(Z) = 1.
If not, then by 5.1.3,m is even so thatm = 2s for some s, and the unique noncentral
chief factor is orthogonal; so as 7 divides 23s − 1 = 2n/2 − 1, [Z,D7] 6= 1. Hence in

any case [Z,D7] 6= 1, so as D7 ≤ K̂, [Z, K̂] 6= 1. Thus 〈ZK̂〉 ∈ R2(K̂) by B.2.14,

so that K̂ ∈ Lf (G, T ). Then K̂ ∈ L∗f (G, T ) by 1.2.8.4. Now by 3.2.3, a suitable

module for K̂ satisfies the FSU. As J1 does not appear among the possibilities for
“L̄” given in 3.2.6–3.2.9, this is a contradiction.

Thus D∗ is a 3-group, and we have seen D∗ 6≤ B∗, so B∗D∗ is a 3-group
of order at least 9 permuting with T ∗. Inspecting the possibilities for K̂ in the
remaining cases of A.3.14, we conclude that K̂/O2(K̂) ∼= A7, Â7, J2, or M23, and

D∗ is of order 3 and inverted by some t ∈ K̂ ∩ T . (There are groups of order 9 in
J4 containing B∗ and permuting with T ∗, but each such group acts on K∗). Since

D∗ 6≤ B∗ and B acts on the cyclic group D, K̂/O2(K̂) is not Â7, establishing (5).

Next K̂ = O3′ (X) by A.3.18, so BO3(D) ≤ K̂. Hence as D∗ is a 3-group,
D = O3(D)×Dc, with O3(D) =: D3 of order 3 and Dc = O3(D).

Now K̂ ≤ K̃ ∈ L∗(G, T ) and D3 ≤ K̂ ≤ K̃ with D3 6≤ NK̂(K). Therefore K̃

satisfies the hypotheses of K̂, and hence replacing K̂ by K̃ if necessary, we may
assume K̃ = K̂ ∈ L∗(G, T ).

We next prove (4) by contradiction, so we assume that K̂ 6≤ CG(Z) and choose
V so that Z ≤ V ; this argument will require several paragraphs. By 5.1.7.1,
Baum(T ) is not normal in K̂T , so K̂ = [K̂, J(T )] using B.6.8.6.d. Set U :=

[〈ZK̂〉, K̂], so that U ∈ R2(K̂T ) by B.2.14 and U is an FF-module for K̂T by B.2.7.

Then as M23 and J2 do not have FF-modules by B.4.2, K̂/O2(K̂) ∼= A7. Hence as
B∗D∗ is of order 9, B∗D∗T ∗ is the stabilizer of a partition of type 3, 4 in the 7-set
permuted by K̂∗T ∗, and K∗T ∗ is the stabilizer of a partition of type 2, 5. By B.5.1

and B.4.2, U is irreducible of dimension 4 or 6, with 〈ZK̂〉 = UZ = U × CZ(K̂).

Then from the action of K̂ on U , [Z ∩ U,K] 6= 1, so by 3.1.8.3, L = [L, J(T )].
Therefore by 5.1.2, V/CV (L) is the natural module or the A5-module for L̄.

Suppose first that V/CV (L) is the A5-module. Then DL = D = D3 ≤ CG(Z).
But if m(U) = 6, then B = CBD(Z), contradicting B

∗ 6≤ D∗. Hence m(U) =
4. However from the description of FF ∗-offenders in B.4.2.7, NK̂∗(J(T )) is the

stabilizer in K̂∗ of a partition of type 3, 4, so J(T ) E BDT ; while as [V, L] is the
S5-module, J(T ) is not normal in DT .

Therefore V/CV (L) is the natural module. Then J(T ) ≤ (T ∩ L)O2(LT ) by
B.4.2.1, so that J(T ) E DT . If m(U) = 6, then J(T ) is not normal in D3T using
the discussion of FF ∗-offenders in B.3.2.4; hence m(U) = 4.

As V/CV (L) is the natural module, [Z,D3] 6= 1 and CZ(D3) = CZ(L). Then

as m(U) = 4 and [Z,D3] 6= 1, with UZ = U×CZ(K̂), CZ(D3) = CU (K̂) = CZ(K̂).

Therefore CZ(L) = CZ(K̂), so CZ(L) = CZ(K̂) = 1 as H = KT 6≤M = !M(LT ).
Then Z ≤ U , so CZ(K) ≤ CU (K) = 1. Next by C.1.28, either there is a nontrivial
characteristic subgroup C of Baum(T ) normal in both LT and KT , or one of L or
K is a block. As M = !M(LT ) but K 6≤M , L or K is a block.



638 5. THE GENERIC CASE: L2(2
n) IN Lf AND n(H) > 1

Suppose first thatK is a block. Then so is K̂, and of the four subgroups of BD3

of order 3, B has three noncentral chief factors on O2(BD3T ) and all others have
two such factors. Thus D3 has at most three noncentral chief factors on O2(BD3T ),
so L is a L2(4)-block. But then DL = D3 has exactly three noncentral chief factors,
so D = B, contrary to D∗ 6≤ B∗.

Consequently L is a block. But if n = 2, then as CZ(L) = 1, T is of order at
most 27, so K is also a block, the case we just eliminated. Hence n > 2. Further
as K is not a block, we saw that there is a C E KT ; then as C E DLT ,

K̂T = 〈KT,D3〉 ≤ NG(C)—so that DL ≤ NG(C) ≤ NG(K̂) = !M(K̂T ) by 1.2.7.3,

since we chose K̂ ∈ L∗(G, T ). Now D3 is inverted by t ∈ T ∩ K̂, so t induces a
nontrivial field automorphism on L/O2(L), and hence n is even. Then the subgroup

D− of DL of order 2n/2 + 1 satisfies D− = [D−, t] ≤ DL ∩ K̂ as t ∈ K̂. As

K̂/O2(K̂) ∼= A7, this forces D− = D3. But then n = 2, a case we eliminated at

the start of the paragraph. This contradiction shows that K̂ ≤ CG(Z), establishing
(4).

We have established (1), (4), and (5) and also showed K̂ = O3′(X). As we
could take X = CG(Z), it follows that (6) holds: for A7/E24 < M23 is the only
proper inclusion in A.3.12 among the groups in (5).

As K ≤ K̂ ≤ CG(Z) by (4), as usual CZ(L) = 1 using 1.2.7.3. Hence 5.1.3
says either V is the O−4 (2

n/2)-module and indeed n/2 must be odd, or V is the sum
of two S5-modules. In the latter case, (2) and (3) hold. In the former case, the
subgroup D− of DL of order 2n/2+1 centralizes Z. Now in each of the possibilities

for K̂ in (5), D3 is inverted by t ∈ T ∩ K̂. Then the final few sentences in the proof
of (4) show that n = 2. This completes the proof of (2) and (3) and hence of the
lemma. ¤

5.1.3. More detailed analysis of the case K/O2(K) = L3(4). The re-
mainder of the section is devoted to an analysis of the subcase of 5.1.10.3 where
K/O2(K) ∼= L3(4). This case is the remaining major obstruction to applying the
Green Book [DGS85] and beginning the identification of G as a rank 2 group of
Lie type and characteristic 2 in Theorem 5.2.3 of the next section.

Theorem 5.1.14. Let H∗ := H/O2(H) and assume K∗ ∼= L3(4). Then

(1) K ∈ L∗(G, T ), so NG(K) = !M(H) but K /∈ L∗f (G, T ).

(2) [Z,H ] = 1 and CG(z) ≤ NG(K) for each z ∈ Z#.
(3) CZ(L) = 1.
(4) n = 2, V is the sum of one or two copies of the S5-module for L̄T̄ ∼= S5,

and DL = B.
(5) CG(K/O2(K)) is a solvable 3′-group.

In the remainder of this section assume the hypotheses of Theorem 5.1.14, and
set H∗ := H/O2(H). We will prove Theorem 5.1.14 by a series of reductions.

Note that B has order 3, since K∗ ∼= L3(4), and B∗ is a Cartan subgroup
of K∗. By 5.1.12, K ∈ L∗(G, T ). In particular NG(K) = !M(H) by 1.2.7.3.
On the other hand, K /∈ L∗f (G, T ): For if K ∈ L∗f (G, T ) then by 3.2.3, there exist

VK ∈ R2(KT ) such that the pairK, V satisfies the FSU. By 5.1.10.3, T is nontrivial
on the Dynkin diagram of K∗, so case (4) of 3.2.9 in the FSU is excluded, while
L3(4) (as opposed to SL3(4)) does not arise anywhere else in 3.2.8 or 3.2.9. This
contradiction establishes conclusion (1) of Theorem 5.1.14.
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Now as K /∈ L∗f (G, T ), K centralizes R2(KT ) by 1.2.10, so that H = KT

centralizes Z. Then the remaining statement in conclusion (2) follows as NG(K) =
!M(H); and conclusion (2) implies conclusion (3) as H 6≤M =M(LT ).

Thus it only remains to prove parts (4) and (5) of Theorem 5.1.14. Moreover
throughout the remainder of the proof we can and will appeal to the first three
parts of Theorem 5.1.14.

SetM+ := NG(K); by 5.1.14.1,M+ ∈M(T ). If n is even, define Dε for ε = ±1
as in Lemma 5.1.6.

Lemma 5.1.15. One of the following holds:

(1) DL ≤M+.
(2) n = 2 and V is the direct sum of two natural modules for L̄.
(3) n = 2 or 4 and [V, L] is the natural module for L̄.
(4) n = 4 or 8, V is the Ω−4 (2

n/2)-module for L̄, and D− ≤M+.

Proof. First if D ≤ DL and O2(〈D,H〉) 6= 1, then by 5.1.14.1, D ≤ M+.
However we may assume conclusion (1) does not hold, so DL 6≤ M+ and hence
O2(〈DL, H〉) = 1. Cases (1) and (2) of 5.1.6 appear as cases (2) and (3) of 5.1.15.
Case (3) of 5.1.6 cannot occur since there Z(H) = 1, contrary to 5.1.14.2. Finally
in case (4) of 5.1.6, O2(〈D−, H〉) 6= 1, so D− ≤M+. Thus as D+D− = DL 6≤M+,
O2(〈D+, H〉) = 1, so n = 4 or 8 by 5.1.6.4. Hence 5.1.15.4 holds. ¤

We now begin to make use of the local classification of weak BN-pairs of rank
2 in the Green Book [DGS85]. We recognize weak BN-pairs of rank 2 by verifying
Hypothesis F.1.1.

Lemma 5.1.16. Let CK := CG(K/O2(K)). Then

(1) CK is a 3′-group.
(2) If CK is not solvable, then C∞K /O2(C

∞
K ) ∼= Sz(2k) for some odd k ≥ 3,

C∞K 6≤M , and DL 6≤M+.

Proof. Part (1) follows as H is an SQTK-group. Thus it remains to prove (2),
so we assume C∞K 6= 1. Hence by 1.2.1, there existsK+ ∈ C(CK). Then any suchK+

satisfiesK+/O2(K+) ∼= Sz(2k) for some odd k ≥ 3. Furtherm5(K+) = 1 = m5(K),
while m5(M+) ≤ 2 as M+ is an SQTK-group, so K+ = C∞K by 1.2.1.1, establishing
the first assertion of (2). Further M+ = NG(K+) since we saw M+ ∈ M. Let B+

be a Borel subgroup of K+; then B+ ≤ NG(T ) ≤M = NG(L) using Theorem 3.3.1.
Now if K+ ≤ M , then [K+, L] ≤ O2(L), so that L normalizes O2(K+O2(L)) = K
and hence L ≤ NG(K+) = M+ contradicting M = !M(LT ). Thus K+ 6≤ M ,
proving the second statement of (2).

To complete the proof of (2), we suppose by way of contradiction that DL ≤
M+ = NG(K+). We claim that under this assumption, Hypothesis F.1.1 is satisfied
with L, K+, T in the roles of “L1, L2, S”. Let G+ := 〈LT,H〉. As K+ 6≤ M =
!M(LT ), O2(G+) = 1, establishing hypothesis (e) of F.1.1. We have seen that
B+ ≤ M = NG(L), and we are assuming DL ≤ NG(K+), so hypothesis (d) of
F.1.1 holds. The remaining conditions in F.1.1 are easy to verify, in particular
since we take S to be the Sylow 2-subgroup T of G; therefore Hypothesis F.1.1 is
satisfied as claimed. We conclude from F.1.9 that α := (LTB+, DLTB+, DLTK+)
is a weak BN-pair of rank 2. Indeed T E B+T , so by F.1.12.I, α is of type
2F4(2

k), with n = k—as this is the only type where a parabolic possesses an Sz(2k)
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composition factor. By F.1.12.II, T ≤ K+. But then T ≤ K+ ≤ CK , contradicting
T ∩K 6≤ CK . ¤

Notice now that to complete the proof of Theorem 5.1.14, it suffices to prove
part (4) of 5.1.14: Namely we have already established the first three parts of
Theorem 5.1.14. Further if part (4) holds then DL = B ≤ M+, which by 5.1.16
forces CK to be a solvable 3′-group, establishing part (5) of 5.1.14.

Lemma 5.1.17. n is even.

Proof. Assume n is odd, so in fact n ≥ 3 as n > 1. Let F := F2n . Then
T induces inner automorphisms on L̄, so T̄ ≤ L̄. By 5.1.15, DL ≤ M+; then
as DL is a {2, 3}′-group acting on T and K/O2(K) ∼= L3(4), we conclude that
DL ≤ CK := CG(K/O2(K)).

We now specialize our choice of V to be the module “V ” in the Fundamental
Setup (3.2.1) for L, as we may by 3.2.3. As L/O2(L) ∼= L2(2

n), case (1) or (2)
of Theorem 3.2.5 holds, so L is irreducible on V/CV (L) and V is a TI-set under
M . Since n is odd, V/CV (L) is the the natural module for L̄ by 5.1.3; then as
CZ(L) = 1 by 5.1.14.3, V is a natural module. Let Z1 := Z ∩ V . Notice as T̄ ≤ L̄,
Z1 is the 1-dimensional F -subspace of V stabilized by T . In particular Z1 is a
TI-set under NM (V ), so as V is a TI-set under M , Z1 is a TI-set under M .

Observe also that L is not a block: For if it were, then as CZ(L) = 1, CT (DL) =
1, contradicting DL ≤ CK . Also CK is a solvable 3′-group by 5.1.16, since we saw
DL ≤M+.

Let S := Baum(T ), and recall from 5.1.7.1 that NG(S) ≤M .
We claim Z1 is a TI-set in G. For let Z0 := 〈ZCK 〉; then Z0 ∈ R2(CKT )

by B.2.14. As CK is a solvable 3′-group, by Solvable Thompson Factorization
B.2.16, [Z0, J(T )] = 1, so that S = Baum(CT (Z0)) using B.2.3. Now by a Frattini
Argument, CK = CCK (Z0)NCK (S). Then as Z1 ≤ Z0 while NCK (S) ≤ M and
Z1 is a TI-set under M , Z1 is a TI-set under CK . Now n 6= 6 since n is odd, so
by Zsigmondy’s Theorem [Zsi92], there is a Zsigmondy prime divisor p of 2n − 1,
namely such that a suitable element of order p is irreducible on Z1. Let P ∈
Sylp(CK). As DL ≤ CK = CCK (Z0)NCK (S) with NCK (S) ≤M , we may choose P
so that P = CP (Z0)(P ∩M) and PL := P ∩ DL ∈ Sylp(DL). By the choice of p,
P ∩M = PL×CP∩M (Z1), so P = PLCP (Z1), and P is irreducible on Z1. Therefore
Z1 is a TI-set under NM+(P ). Further by a Frattini Argument,M+ = CKNM+(P ),
so as Z1 is a TI-set under CK , Z1 is a TI-set under M+. Finally by 5.1.14.2,

CG(z) ≤ M+ for each z ∈ Z#
1 , so as DL ≤ M+ is transitive on Z#

1 , Z1 is a TI-set
under G by I.6.1.1, and hence the claim holds.

Let G1 := NG(Z1) and G̃1 := G1/Z1. Recall by 5.1.14.2 that H ≤ CG(Z1), so
G1 ≤M+ by 5.1.14.1.

Consider any H1 with HDL ≤ H1 ≤ G1, and set Q1 := O2(H1) and U :=
〈V H1〉. Observe that Hypothesis G.2.1 is satisfied with Z1 and H1 in the roles of

“V1” and “H”. Therefore Ũ ≤ Z(Q̃1) and Φ(U) ≤ Z1 by G.2.2.
Suppose by way of contradiction that Φ(U) 6= 1. Then U = 〈V H1〉 is not

elementary abelian, so U 6≤ CT (V ). Thus Ū 6= 1, and hence the hypotheses of G.2.3
are satisfied. Therefore Ū ∈ Syl2(L̄) by G.2.3.1. Set I := 〈UL〉 and W := O2(I).
By G.2.3.4, there exists an I-series

1 =W0 ≤W1 ≤W2 ≤W3 =W,
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where W1 = V , W2 = U ∩ U l, for some l ∈ L − G1, and W/W2 is the sum of r
natural modules for L/O2(L) and some 0 ≤ r, with (U ∩ W )/W2 = CW/W2

(Ū).
In particular W = [W,DL]W2. But DL ≤ CK and CK is a solvable 3′-group, so
by A.1.26.2, [W,DL] ≤ O2(CK) ≤ O2(M+) ≤ O2(H1) = Q1 using A.1.6. Thus as
W2 ≤ U ≤ Q1,

W ≤ Q1 ≤ CG(Ũ).

Therefore as Z1 ≤ W2 ≤ U ∩W and (U ∩W )/W2 = CW/W2
(Ū ), it follows that

W ≤ U . But in G.2.3.6, (U ∩ W )/W2 is a proper direct summand of W/W2 if
r > 0, so we conclude W = W2 and thus [O2(I), I ] ≤ W2. Then as L ≤ I and
[W2, L] = V , we conclude V = [O2(L), L], so that L is an L2(2

n)-block, contrary
to an earlier observation.

This contradiction shows that U is elementary abelian. Applying this result to
G1 in the role of “H1”, we conclude that 〈V G1〉 is abelian. But L is transitive on
V # and Z1 is a TI-set in G, so (cf. A.1.7.1) G1 is transitive on {V g : Z1∩V g 6= 1},
and hence as 〈V G1〉 is abelian, [V, V g ] = 1 whenever Z1∩V g 6= 1. This verifies part
(a) of Hypothesis F.8.1 with Z1, HDL in the roles of “V1, H”.

During the remainder of the proof take H1 := HDL. Then part (b) of Hy-
pothesis F.8.1 is part of Hypothesis G.2.1 verified earlier. Next using 3.1.4.1,
CH1(Ṽ ) ≤ NH1(V ) = H1 ∩ M = TBDL. As V is the natural module for L̄,

CNGL(V )(L̄)
(Ṽ ) ∼= Z2n−1, so asDL is a Hall subgroup of TBDL and DL is faithful on

Ṽ , we conclude CH1(Ṽ ) = CTB(V ). Therefore kerCH1 (Ṽ )(H1) ≤ kerTB(H1) = Q1,

so part (c) of F.8.1 holds. Finally part (d) holds as H 6≤ M = !M(LT ). Thus we
have verified Hypothesis F.8.1, so we can apply the results of section F.8.

Define b, γ, etc. as in section F.8. By F.8.5.1, b ≥ 3 is odd, so Gγ is a conjugate
of H1 and hence as DL ≤ CK ,

Ĝγ := Gγ/O2(Gγ) ∼= H+
1 := H1/Q1 = KT/Q1 ×DLQ1/Q1

with KT/Q1 an extension of L3(4) and DLQ1/Q1
∼= DL

∼= Z2n−1.

AsD+
L E H+

1 and Ṽ = [Ṽ , DL], Ũ = [Ũ ,DL]. Thus eachKDL-irreducible is the

sum of n K-irreducibles Ĩ , as F4 is a splitting field for K∗ and n is odd. We claim
m(H+

1 , Ũ) ≥ 9: For if y is an involution inH+ withm([Ũ , y]) < 9, then asm(Ĩ) ≥ 9,

y+ acts on Ĩ . Then by H.4.7, either m([Ĩ , y]) ≥ 4, or m(Ĩ) = 9 and m([Ĩ , y]) = 3.

So ĨD := 〈ĨDL〉 is the sum of n ≥ 3 conjugates of Ĩ , so m([ĨD, y]) = m([Ĩ , y])n ≥ 9,

proving the claim. In particular Ũ is not an FF-module for H+
1 by B.4.2.

Recall from section F.8 that Q1 = CH1 (Ũ), there is gb ∈ G with γ = γ1gb,

A1 := Zgb , Dγ := CUγ (Ũ), and DH1 := CU (Uγ/A1).

Suppose Uγ centralizes Ũ , so that Uγ = Dγ . By F.8.7.7, [DH1 , Uγ ] = 1. By
F.8.7.5, [V, Uγ ] 6= 1, so [Z l1, Uγ ] 6= 1 for some l ∈ L. If 1 6= Z l1 ∩DH1 , then

Uγ ≤ O2′(CG(Z
l
1 ∩DH1)) ≤ CG(Z

l
1)

as Z1 is a TI-set in G in the center of T ∈ Syl2(G). Of course this contradicts the
choice of Z l1, so we conclude that 1 = Z l1 ∩DH1 , and hence Z l1 is isomorphic to a

subgroup of Ĝγ . Therefore

4 = m2(Ĝγ) ≥ m(Z1) = n,

so as n is odd, n = 3. As we are assuming Dγ = Uγ , [Uγ , V ] ≤ Z1 by F.8.7.6; so

for 1 6= y ∈ Z l1, m([Uγ , y]) ≤ m(Z1) = 3, contradicting m(H+
1 , Ũ) ≥ 9.
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This contradiction shows that Dγ < Uγ . Therefore there is β ∈ Γ(γ) with
Vβ 6≤ Q1, and d(β, γ1) = b by minimality of b. Thus we have symmetry between
γ0, γ1, γ and β, γ, γ1; so reversing the roles of these triples if necessary, we may
assume that m(U+

γ ) = m(Uγ/Dγ) ≥ m(U/DH1). Thus if D̃H1 ≤ CŨ (Uγ), then Ũ is

an FF-module for H+
1 , contrary to an earlier observation. Therefore [DH1 , Uγ ] 6= 1,

so there is g ∈ G with Zg1 = Zγ (so that V g ≤ Uγ) and [DH1 , V
g] 6= 1. By F.8.7.6,

[DH1 , Uγ ] ≤ A1, so DH1 acts on V g ; then since V is the natural module for L̄ and
n is odd,

m(DH1/CDH1
(V g)) ≤ m2(L̄T̄ ) = n = m(V g/CV g (DH1)).

Also V g ∩Q1 ≤ Dγ ≤ CG(DH1) by F.8.7.7. Thus

4 = m2(H
+
1 ) ≥ m(V g+) ≥ m(V g/CV g(DH1)) = n,

so n = 3 and

m(Ũ/CŨ (V
g)) ≤ m(U/DH1) +m(DH1/CDH1

(V g)) ≤ m(U+
γ ) + 3 ≤ 7,

contradicting m(H+
1 , Ũ) ≥ 9. This contradiction completes the proof of 5.1.17. ¤

As n is even by 5.1.17, there is a unique subgroup D3 of order 3 in DL.

Lemma 5.1.18. If D3 ≤M+, then D3 = B, so that [Z,D3] = 1.

Proof. Notice the final statement follows from the first, as B ≤ H ≤ CG(Z)
by 5.1.14.2.

Assume D3 ≤M+. It suffices to assume D3 6= B and establish a contradiction.
If D3 induces inner automorphisms on K∗ then D3 ≤ K by 5.1.16.1. Then as BT
is the largest solvable subgroup of KT containing T , D3 ≤ BT and hence D3 = B,
contrary to assumption. Therefore D3 induces outer automorphisms on K∗, and
K∗D∗3

∼= PGL3(4). Set D := DL ∩M+ and S := O2(DBT ). Arguing as in 5.1.11,
T∩L ≤ S and hence S∩L ∈ Syl2(L); similarly S∩K ∈ Syl2(K). From the structure
of Aut(L3(4)), CT∗(B

∗D∗3) = 1, so S = (T ∩K)CS(K
∗) = (S ∩K)O2(KS). Let P2

be a rank-1 parabolic of K over S∩K, and set K2 := O2(P2). Then SD acts on K2,
and as K 6≤ M with T nontrivial on the Dynkin diagram of K/O2(K), K2 6≤ M .
Thus O2(G0) = 1, where G0 := 〈LS,K2〉, since M = !M(L) by Theorem 4.3.2.

Suppose that DL ≤ M+ = NG(K). Then DL = D acts on K2, so that
NL(S ∩ L) = D(S ∩ L) acts on K2. Now it is easy to verify the remainder of
Hypothesis F.1.1 with K2, L in the roles of “L1, L2”: For example as O2(M) ≤
S ≥ O2(M+), LiSBD ∈ He by 1.1.4.5. So by F.1.9, α := (K2SD,BSD,BSL) is a
weak BN-pair of rank 2. Further by construction S E SBD, so α is described in
F.1.12. Since K2/O2(K2) ∼= L2(4) and L/O2(L) ∼= L2(2

n) with n even, it follows
from F.1.12 that α is the amalgam of a (possibly twisted) group of Lie type over
F4. Then as K2 centralizes Z, α is the amalgam of G2(4) or U4(4). But now K2

has only two noncentral chief factors, which is incompatible with the embedding of
K2 in K with F ∗(K) = O2(K).

ThereforeDL 6≤M+, so one of the last three cases of 5.1.15 must hold. However
by hypothesis, D3 ≤ M+, so DL > D3 and hence n > 2. Thus either case (3) of
5.1.15 holds with n = 4, or case (4) holds with n = 8—since in that case D− ≤M+,
so that DL = D3D− ≤M+ if n = 4. Similarly in either case, D5 6≤M+, where D5

is the subgroup of DL of order 5, since in case (3) , DL = D3D5, while in case (4),
DL = D3D5D− with D− ≤M+.
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Recall S ∩ L ∈ Syl2(L), so SD5 E TD5, and hence S0D5 is a subgroup of G
for each subgroup S0 of T containing S. As B acts on D5 and S, it acts on SD5.
As S ∩K ∈ Syl2(K) and S E T , 1 6= O2(〈NG(S), H〉) by Theorem 3.1.1. Then
NG(S) ≤M+ by 5.1.14.1, and hence D5 6≤ NG(S).

Let X := 〈SBD5,K2〉. Suppose first that O2(X) = 1. We just saw D5 does
not act on S, so SD5/O2(SD5) ∼= D10 or Sz(2). Therefore Hypothesis F.1.1 is
satisfied with K2, SD5 in the roles of “L1, L2”. Thus β := (K2S,BS,BSD5) is a
weak BN-pair of rank 2 by F.1.9, and as S is self-normalizing in SD5, β is on the
list of F.1.12. But D10 or Sz(2) occur as factors of Li/O2(Li) only in the amalgams
of 2F4(2)

′ and 2F4(2), where the rank-1 parabolic over S other than K2 in those
amalgams is solvable, a contradiction as K2 is not solvable.

This contradiction shows that O2(X) 6= 1. Set T0 := NT (K2). We saw earlier
that T acts on SD5 and similarly T acts on SB. Thus T acts on SBD5, so T0
acts on X , and hence on O2(X). Embed T0 ≤ T1 ∈ Syl2(XT0); as |T : T0| = 2,
|T1 : T0| ≤ 2. As O2(KT0) ≤ T0 and K /∈ Lf (G, T ) by 5.1.14.1, [Z(T0),K] = 1
using B.2.14; hence NG(T0) ≤ M+ by 5.1.14.1. Also by 4.3.17, NG(T0) ≤ M , so
T1 ≤ M ∩M+. Thus if T0 < T1 we may take T1 = T . However if T1 = T , then
KT = 〈K2, T 〉 ≤ XT0 ∈ H, so that D5 ≤ X ≤ M+ using 5.1.14.1, contrary to an
earlier reduction. Hence T0 ∈ Syl2(X).

We claim D5 acts on K2; assume otherwise. As K2 ∈ L(X,T0) and T0 ∈
Syl2(X), K2 < KX ∈ C(X) by 1.2.4, with the embedding described in A.3.14.
Let Y := KXT0D5 and Y ∗ := Y/CY (KX/O2(KX)). Arguing as in the beginning
of the proof of 5.1.13, CD5(KX/O2(KX)) normalizes K2; so as we are assuming
D5 6≤ NG(K2), D

∗
5 6= 1. As S ≤ T0, D5 permutes with T0 and so D5T0 is a

subgroup of G by an earlier remark; therefore K∗
X appears on the list of A.3.15.

Comparing that list to the list of A.3.14, we conclude that case (3) of A.3.14 holds
with K∗X

∼= L2(p), p
2 ≡ 1 mod 5 and p ≡ ±3 mod 8. But B acts on DL, so that

[B,D5] = 1. Then D∗5 permutes with the subgroup (T0 ∩ KX)
∗B∗ ∼= A4 of K∗X ,

which is not the case in Aut(L2(p)).
This contradiction establishes our claim that D5 acts on K2. By symmetry,

D5 also acts on K3 := O2(P3), where P3 is the second rank one parabolic of K
over T ∩ K. Therefore D5 acts on K = 〈K2,K3〉, a contradiction as we showed
D5 6≤M+. This completes the proof of 5.1.18. ¤

From this point on, we assume H is a counterexample to Theorem 5.1.14.
Under this assumption we show:

Lemma 5.1.19. One of the following holds:

(1) D3 6≤M+, and either

(i) n = 2, and V is the direct sum of two natural modules for L̄, or
(ii) n = 2 or 4, and [V, L] is a natural module for L̄.

(2) n = 4 or 8, V is the Ω−4 (2
n/2)-module for L̄, and D3 6≤M+.

(3) n ≡ 2 mod 4, n > 2, 3 does not divide n, D3 = B ≤ M+, and V is the
Ω−4 (2

n/2)-module for L̄.

Proof. First suppose D3 ≤ M+. Then by 5.1.18, [Z,D3] = 1 and D3 = B.
This forces one of cases (2), (4), or (5) of 5.1.3 to hold, with n ≡ 2 mod 4 in (4).

Assume first that n = 2, so that DL = D3 = B. As CZ(L) = 1 by part (3) of
Theorem 5.1.14, V is the sum of at most two copies of the S5-module, so part (4)
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of Theorem 5.1.14 holds. Hence by our remark after 5.1.16, Theorem 5.1.14 holds,
contrary to our assumption that H is a counterexample to that Theorem.

So n > 2, and then case (4) of 5.1.3 holds, with n ≡ 2 mod 4. Thus DL ≤M+

by 5.1.15. Further 3 does not divide n, or otherwise DL contains a cyclic subgroup
of order 9, which must be faithful on K∗ as D3 = B is faithful. However this is
impossible as Aut(K∗) has no cyclic subgroup of order 9 permuting with T ∗. So
conclusion (3) holds when D3 ≤M+.

Therefore we may assume D3 6≤M+. Then one of the last three cases of 5.1.15
must hold. Cases (2) and (3) give conclusion (1), and case (4) gives conclusion
(2). ¤

Lemma 5.1.20. D3 6≤M+, so O2(〈H,D3〉) = 1.

Proof. If D3 6≤ M+, then O2(〈H,D3〉) = 1 by 5.1.13.1. Thus it suffices to
assume D3 ≤ M+, and derive a contradiction. As D3 ≤ M+, case (3) of 5.1.19
holds; thus n ≡ 2 mod 4, n > 2, and 3 does not divide n, so n ≥ 10. Set
S := (T ∩ L)O2(LT ); then S ∈ Syl2(LS). Also S = O2(D3T ), so as D3 ≤ M+,
S ∈ Syl2(KS).

Next as case (3) of 5.1.19 holds, J(T ) E LT by 5.1.2, so J(T ) ≤ O2(LT ) ≤ S
and hence J(T ) = J(S) by B.2.3.3. As K 6≤M = !M(LT ), J(S) is not normal in
KS. By B.5.1 and B.4.2, K∗S∗ has no FF-modules, so as m2(K

∗S∗) = 4, E.5.4
says E := Ω1(Z(J4(S))) E KS. Therefore as K 6≤ M and M = !M(L), J4(S) 6≤
O2(LS) = CS(V ). By E.5.5, there is Ā ∈ A2(S̄) with m(V/CV (Ā)) −m(Ā) ≤ 4.
But by construction S̄ ≤ L̄, so by H.1.1.3 applied with n/2 in the role of “n”,

n/2 ≤ m(V/CV (Ā))−m(Ā) ≤ 4.

Thus n ≤ 8, whereas we saw earlier that n ≥ 10. This contradiction completes the
proof. ¤

By 5.1.20, D3 6≤M+. So by 5.1.19, case (1) or (2) of 5.1.19 holds. In particular,
n = 2, 4, or 8. However by 5.1.14.1 we may apply Theorem 3.3.1 to K, to conclude
NG(T ) ≤M+; hence D3 6≤ NG(T ). Therefore L̄T̄ ∼= Aut(L2(2

n)).
By B.2.14, VZ := 〈ZL〉 ∈ R2(LT ), so we can apply the results of this section

to VZ in the role of “V ”. In particular as L̄T̄ = Aut(L̄), from the structure of
the modules in case (1) or (2) of 5.1.19, either Z is of order 2, in which case we
set Z1 := Z; or VZ is the sum of two natural modules for L̄ ∼= L2(4), where we
take Z1 := Z ∩ V1 for some V1 ∈ Irr+(L, VZ). Thus in any case Z1 is of order

2, and V2 := 〈ZD3
1 〉 ∼= E4. Set G1 := CG(Z1), G2 := NG(V2), and consider any

H1 with H ≤ H1 ≤ G1. Set U := 〈V H1
2 〉, Q1 := O2(H1), G̃1 := G1/Z1, and

L2 := 〈DT
3 〉 = D3[O2(D3T ), D3]. Observe Hypothesis G.2.1 is satisfied with L2,

V2, Z1, H1 in the roles of “L, V , V1, H”, so by G.2.2 we have:

Lemma 5.1.21. Ũ ≤ Z(Q̃1) and Φ(U) ≤ Z1.

Lemma 5.1.22. (1) CG(V2) = CT (V2)B ≤M .
(2) n = 2 or 4, and [V, L] is the sum of at most two natural modules for L̄.
(3) [V2, O2(K)] = Z1 and D3O2(CG(V2)) E G2.

Proof. Notice (1) implies (2), since if case (2) of 5.1.19 holds, then 1 6=
CDL(V2) is a 3′-group.

If K normalizes V2, then by 5.1.14.1, D3 ≤ G2 ≤ M+, contradicting 5.1.20.
Thus [K,V2] 6= 1. Set QK := O2(K). Then V2 6≤ Z(QK), for otherwise K ∈
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Lf (G, T ) using 1.2.10, contrary to 5.1.14.1. Thus 5.1.21 says [V2, QK ] = Z1, proving
the first assertion of (3). Hence as V2 = [V2, L2], L2 = [L2, QK ]. Now K E G1

by 5.1.14.2, so CG(V2) ≤ G1 ≤ NG(QK), and hence CQK (V2) ≤ O2(G2). Therefore
P := 〈CQK (V2)

G2〉 ≤ O2(G2), and [CG(V2), QK ] ≤ CQK (V2) ≤ P . Then L2 =
[L2, QK ] ≤ CG(CG(V2)/P ), so as G2 = L2TCG(V2), L2P E G2. Then as P ≤
O2(G2) ≤ T ≤ NG(L2), L2 = O2(L2P ) E G2. Now since L2 = D3O2(L2) with
O2(L2) = CL2(V2), D3O2(CG(V2)) E G2. Therefore (3) holds, and it remains to
establish (1).

Now B acts on D3 and B ≤ K ≤ CG(Z1), so B centralizes 〈ZD3
1 〉 = V2. On

the other hand as G2 is an SQTK-group, m3(G2) ≤ 2, so by (3), m3(CG(V2)) = 1.
Further CG(V2) = CG1(V2), with G1 ≤M+. As CK is a 3′-group by 5.1.16.1, either

O3′(M+) = K, or O3′(M+)/O3′(O
3′(M+)) ∼= PGL3(4). In particular as Sylow

3-groups of PGL3(4) are of exponent 3 and m3(CG(V2)) = 1, B ∈ Syl3(CG(V2)).

Therefore as B ≤ K and CG(V2) ≤ G1 ≤ NG(K), Y := O3′(CG(V2)) ≤ K. Then
as BT is the unique maximal subgroup of KT containing BT , and [K,V2] 6= 1,

we conclude Y = O3′(TB). Thus to complete the proof of (1) and hence of the
lemma, it remains to show X := O{2,3}(CG(V2)) = 1. As X is BT -invariant
and AutBT (K/O2(K)) is maximal in AutKT (K/O2(K)), X ≤ CK . Therefore
〈H,D3〉 ≤ NG(X), so if X 6= 1, then by 5.1.14.1, D3 ≤ NG(X) ≤ M+, contra-
dicting 5.1.20. This establishes (1), and completes the proof of 5.1.22. ¤

Lemma 5.1.23. 〈V G1
2 〉 is abelian.

Proof. We specialize to the case H1 = G1, and recall Hypothesis G.2.1 is
satisfied with L2, V2, Z1, G1 in the roles of “L, V , V1, H”. Our proof is by
contradiction, so we assume that U is nonabelian. Then [V2, U ] = Z1 using 5.1.21,
so L2 = [L2, U ], and hence the hypotheses of G.2.3 are also satisfied. So setting
I := 〈UG2〉, G.2.3 gives us an I-series

1 = S0 ≤ S1 ≤ S2 ≤ S3 = S := O2(I)

such that S1 = V2, S2 = U ∩ Ug for g ∈ D3 − G1, [S2, I ] ≤ S1 = V2, and S/S2
is the sum of natural modules for I/S ∼= L2(2) with (U ∩ S)/S2 = CS/S2(U). As
L2 has at least two noncentral chief factors on V and one on (S ∩ L)/CS∩L(V ),
m := m((U ∩ S)/S2) > 1.

Let G∗1 := G1/CG1(Ũ), W := U ∩ S, and A := U g ∩ S. Observe

S̃2 = Ã ∩ U ≤ CŨ (A)

and [U, a] 6≤ S2 for each a ∈ A − S2. Thus as Z1 ≤ S2, S2 = CA(Ũ). Therefore as
m(U/(U ∩ S)) = 1 since I/S ∼= L2(2),

m(A∗) = m(A/S2) = m((U ∩ S)/S2) = m = m(Ũ/S̃2)− 1 ≥ m(Ũ/CŨ (A
∗))− 1,

soA∗ ∈ Q̂r(G∗1, Ũ), where r := (m+1)/m < 2 asm > 1. Let C1 := CG1(K/O2(K));
we apply D.2.13 to G∗1 in the role of “G”. By 5.1.16.1, C1 is a 3′-group, so as
rA∗,Ũ ≤ r < 2, D.2.13 says that [F (C∗1 ), A

∗] = 1. But as G1 ≤ NG(K), F ∗(G∗1) =

K∗F ∗(C∗1 ), so either A∗ is faithful on K∗, or by 5.1.16.2, A∗ acts nontrivially on
a component X∗ ∼= Sz(2k) of C∗1 . Let Y := K in the first case, and Y := X

in the second. By A.1.42.2 there is W̃ ∈ Irr+(Ũ , Y
∗, T ∗); set ŨT := 〈W̃ T 〉. As

Y ∗ = [Y ∗, A∗], CA(UT ) < A. Then by D.2.7,

q̂ := q̂(AutY T (ŨT ), ŨT ) ≤ r < 2.
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Observe that Hypothesis D.3.1 is satisfied, with Y ∗T ∗, Y ∗, ŨT , W̃ in the roles of
“M , M+, VM , V ”. So as q̂ < 2, we conclude from D.3.8 that Y ∗ 6∼= Sz(2k); hence

Y = K. By construction ŨT plays the role of both “VT ” and “VM” in Hypothesis
D.3.2 and lemma D.3.4, so the hypotheses of D.3.10 are satisfied. Thus we conclude
from D.3.10 that W̃ = ŨT . Then B.4.2 and B.4.5 show that q̂ > 2, keeping in mind
that K∗ is L3(4) rather than SL3(4), and dim(W̃ ) 6= 9 as T is nontrivial on the
Dynkin diagram of K∗. This contradiction completes the proof of 5.1.23. ¤

We are now in a position to obtain a contradiction which will establish Theorem

5.1.14. We specialize to the case H1 = H . As L2 is transitive on V #
2 and Z1 is of

order 2, G1 is transitive on {V g2 : Z1 ≤ V g2 } by A.1.7.1. So by 5.1.23, [V2, V
g
2 ] = 1

whenever Z1 ≤ V g2 . Also CH (Ũ) = O2(H), since otherwise by Coprime Action, K
centralizes V2, contrary to 5.1.22.1 asK 6≤M . Further asD3 ≤ L2, O2(〈L2T,H〉) =
1 by 5.1.20. Hence Hypothesis F.8.1 is satisfied with Z1 , V2, L2 in the roles of
“V1, V , L”. As Z1 is of order 2, Hypothesis F.9.8 is satisfied with V2 in the role of
“V+” by Remark F.9.9). Therefore by F.9.16.3 q(H∗, Ũ) ≤ 2. However we observe

that the argument at the end of the proof of 5.1.23, with H∗, Ũ in the roles of “G∗1,

ŨT ”, shows that q(H
∗, Ũ) > 2.

The proof of Theorem 5.1.14 is complete.

5.2. Using weak BN-pairs and the Green Book

In this section, we continue to assume Hypothesis 5.1.8—in particular, n(H) >
1.

We work toward the goal of constructing a weak BN-pair of rank 2. This will
be accomplished by establishing Hypothesis F.1.1. In our construction, L plays the
role of “L1” in Hypothesis F.1.1, and we choose L2 to be a suitable subgroup of K.
To be precise, ifK1/O2(K1) is a Bender group in 5.1.10, we let L2 := K1. Otherwise
K/O2(K) ∼= (S)L3(2

n) or Sp4(2
n), in which case we let P+ be a maximal parabolic

ofK over T∩K, and take L2 ∈ C(P+). Notice in either case that T ∩L2 ∈ Syl2(L2).
Further K = 〈LT2 〉 and H 6≤M , so that L2 6≤M .

In any case, L2/O2(L2) is a group of Lie type of Lie rank 1, and of course
L/O2(L) ∼= L2(2

n) in this chapter. Next set S := O2(MH) = O2(BT ). By 5.1.11,
S∩K ∈ Syl2(K), and S∩L ∈ Syl2(L). Then as S∩K = T ∩K, S∩L2 ∈ Syl2(L2)
by a remark in the previous paragraph. Further by 5.1.11.3:

Lemma 5.2.1. If K/O2(K) is not L3(4) then S acts on L2.

Next the Cartan group B of K lies in M , and so normalizes L; therefore to
achieve condition (d) of F.1.1, we need to show that DL acts on L2. To show DL

acts on L2, we first show that—modulo an exceptional case where we view L as
defined over F2—DL acts on K. Then we deduce that DL acts on L2. Eventually
it turns out that L2 = K.

Lemma 5.2.2. Either

(1) DL ≤ NG(K), or
(2) K/O2(K) ∼= L/O2(L) ∼= L2(4), V is the sum of at most two copies of the

A5-module, and K ≤ KZ := O3′(CG(Z)), with KZ/O2(KZ) ∼= A7, J2, or M23.
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Proof. Assume that neither (1) nor (2) holds. In particular DL 6≤ B as (1)
fails. For D ≤ DL let XD := 〈D,H〉. Let D consist of those D ≤ DL such
that O2(XD) = 1. If D ∈ D then D 6≤ NG(K) as O2(K) 6= 1 and K E H . If
O2(XD) 6= 1, then by 5.1.13, either D ≤ NG(K) or the various conclusions of 5.1.13
hold, and the latter contradicts our assumption that (2) fails. Thus O2(XD) 6= 1
iff D ≤ NG(K) iff D /∈ D. Finally if ∆ is a collection of subgroups generating DL,
then as (1) fails, D 6≤ NG(K) for some D ∈ ∆, so that ∆ ∩ D 6= ∅.

In particular DL ∈ D. We conclude from 5.1.6 that one of the four cases of
5.1.6 holds. Now in the first three cases of 5.1.6, n = 2 or 4. If case (4) holds, then
we may take ∆ to consist of D− and D+. However 1 6= Z ≤ O2(XD−) in that case
by 5.1.6, so that D+ ∈ D. Therefore n = 4 or 8 by 5.1.6.4.

So in any case, we have n = 2, 4, or 8. Next let Dp denote the subgroup of DL

of order p. When n = 2, D3 = DL so D3 ∈ D. When n = 4, DL = 〈D3, D5〉, so
Dp ∈ D for p = 3 or 5. Finally when n = 8, D+ = 〈D3, D5〉, and we saw D− acts
on K, so again Dp ∈ D for p = 3 or 5. Thus in each case, Dp ∈ D for p = 3 or 5;
choose p with this property during the remainder of the proof.

As DL 6≤ B, K/O2(K) is not L3(4) by part (4) of Theorem 5.1.14. Hence S
acts on L2 by 5.2.1, and, as we observed at the beginning of this section, S ∩K ∈
Syl2(K) and S ∩ L ∈ Syl2(L). Recall B normalizes O2(BT ) = S and L2. Set
G0 := 〈Dp, L2S〉.

We first suppose that O2(G0) = 1. This gives part (e) of Hypothesis F.1.1,
with DpS and L2 in the roles of “L1” and “L2”. Part (f) follows from 1.1.4.5, as
M and H are in He and S contains O2(H) and O2(M). To check part (c), we only
need to prove that S is not normal in DpS, since then DpS/O2(DpS) ∼= L2(2), D10,
or Sz(2). But if S E SDp, then as S E T and S ∩K ∈ Syl2(K), Theorem 3.1.1
says 1 6= O2(〈DpT,H〉) ≤ O2(H) ≤ O2(BT ) = S ≤ G0 using A.1.6, contrary to our
assumption that O2(G0) = 1. The remaining parts of Hypothesis F.1.1 are easily
verified.

Now by F.1.9, α := (DpSB2, SB2, SL2) is a weak BN-pair of rank 2, where
B2 := B ∩ L2. Indeed since S is self-normalizing in SDp, α is described in F.1.12.
As we saw in 5.1.18, when p = 5 the amalgams in F.1.12 have solvable parabolics,
and so are ruled out as L2 is not solvable. So p = 3 and D3S/O2(D3S) ∼= L2(2);
then as L2 is not solvable, we conclude that α is of type J2, Aut(J2),

3D4(2), or
U4(2). In each case, Z(S) is of order 2, and is centralized by one of the parabolics
in the amalgam.

Suppose first that α has type U4(2). Then D3S is the solvable parabolic cen-
tralizing Z(S), with [O2(SD3), D3] ∼= Q2

8, and L2 is an A5-block with O2(L2) =
F ∗(L2S). Thus O2(L2) is the unique 2-chief factor for L2S, so K = L2. Also
CS(L2) = 1, so Z(H) = 1. As Z(H) = 1, from the discussion above we are
in case (3) of 5.1.6, so that [V, L] is the A5-module for L/O2(L); in particular
n = 2 and DL = D3 6≤ B. As [D3, O2(D3S)] ∼= Q2

8, L also is an A5-block. But
then as D3 < D3B and S = O2(BT ), 1 6= CBD3(L) ≤ O(LTB), contradicting
F ∗(LTB) = O2(LTB)).

Thus we may suppose α is of type J2, Aut(J2), or
3D4(2). In each case L2S is

the parabolic centralizing Z(S), so as Z = Ω1(Z(T )) ≤ Z(S) and Z(S) is of order 2,
we conclude Z(S) = Z centralizes 〈L2, T 〉 = H . Again in each case Q := O2(L2S)
is extraspecial and L2 is irreducible on Q/Z; so as H ∈ He, Q = O2(H) using A.1.6.
Arguing as above, as Q/Z is the unique noncentral factor for L2 and Z ≤ Φ(Q),
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again K = L2. Then B ≤ K = L2, so as S = O2(BT ), α is not the Aut(J2)-

amalgam. Now either α is of type 3D4(2) and O
2′(Aut(K)) = Inn(K), or α is of

type J2 and O2′(Aut(K)) = Aut(K) ∼= S5/E16. So either T = S ≤ K; or α is
the J2-amalgam, |T : S| = 2, and (D3TB, TB, TK) is a weak BN-pair extending
α, and hence is the Aut(J2)-amalgam. Therefore if α is of type J2, then T is a
Sylow 2-subgroup of either J2 or Aut(J2), so m2(T ) = 4 and T has no normal E16-
subgroup. This is impossible as m(V ) ≥ 4 from 5.1.6. Thus α is of type 3D4(2)
with S = T , so K/O2(K) ∼= L2(8), B is of order 7, and T is a Sylow 2-subgroup
of 3D4(2). We are free to choose V to be 〈ZL〉; thus Z ≤ V , so V2 := 〈ZD3〉 ≤ V .
From the structure of α, V2 ≤ CT (B) ∼= D8. As B acts on L and Z, B acts on
〈ZL〉 = V . Therefore V2 = CV (B) and in particular [B, V ] 6= 1, so B is faithful on
L/O2(L). This is impossible as n = 2, 4, or 8 and B acts on S ∩ L = T ∩ L with
|B| = 7.

This contradiction shows that O2(G0) 6= 1. Let T0 := NT (L2). As TB acts
on DpS and S, and T0B acts on L2, T0B acts on G0; hence O2(G0T0B) 6= 1.
Thus as O2(XDp) = 1 and Dp ≤ G0, H 6≤ G0T0; hence T0 < T and L2 < K.
Therefore either case (1) of 5.1.10 holds with L2 = K1 < K, or case (3) holds with
L2 < K1 = K. In either case L2 < K, T0 < T , and K = 〈L2, L

t
2〉 for t ∈ T − T0.

Furthermore as T acts on DpT0, (L
t
2)
DpT0 = (L

DpT0
2 )t, so as Dp 6≤ NG(K) it follows

that Dp 6≤ NG(L2).
Embed T0 in T1 ∈ Syl2(G0T0B). As |T : T0| = 2, |T1 : T0| ≤ 2. As S ≤ T0,

NG(T0) ≤M by 4.3.17; hence T1 acts on T0∩L, and then as Dp(T0∩L) E NM (T0∩
L), T1 acts on DpT0.

By Theorem 3.1.1, applied with T0, NG(T0), H in the roles of “R, M0, H”,
we conclude O2(X) 6= 1, where X := 〈NG(T0), H〉. Now K1 ∈ L(X,T ) and T ∈
Syl2(X), so by 1.2.4, K1 ≤ KX ∈ C(X), and we set K+ := 〈KT

X〉. Recalling
that L2 < K, we conclude from A.3.12 and 1.2.8 that either K = K+ E X ,
or K1/O2(K1) ∼= L2(4) and K1 < KX , with KX 6= Kt

X for t ∈ T − T0 and
KX/O2(KX) ∼= J1 or L2(p). In any case, T ∩K+ = S ∩K+ = T1 ∩K+.

Suppose that T0 < T1. Set H0 := 〈L2, T1〉 and K0 := 〈LT12 〉. As T, T1 ∈

Syl2(X), and T ∩K+ = T1 ∩K+, K = 〈LT2 〉 = 〈L
T1
2 〉 from the structure of K+T .

Thus K ∈ L(H0, T1), K = 〈LT12 〉 ≤ G0T0B, and applying 5.1.13 with G0T0B, T1,
H0 in the roles of “X , T , H”, we conclude that eitherK/O2(K) ∼= L2(4), orDp acts
on K. The first case is impossible as we saw L2 < K, and the second is impossible
as we chose p so that Dp does not act on K.

This contradiction shows that T1 = T0 ∈ Syl2(G0T0). Now we can repeat
parts of the proof of 5.1.13 with G0T0B, L2T0, Dp in the roles of “X , H , D” to
obtain a contradiction: We know G0T0B ∈ H(L2T0) and Dp 6≤ NG(L2) from earlier

reductions. Then L2 < L̂2 ∈ C(G0T0) using 1.2.4, and arguing as in 5.1.12 with L2

in the role of “K1”, one of conclusions (2)–(5) of that result must hold. Indeed as
L2 is normalized by the Sylow group T0, conclusion (2) of that result cannot arise.

Then the argument in the second paragraph of the proof of 5.1.13 shows L̂2/O2(L̂)
is not of Lie type in characteristic 2 of Lie rank 2, so that conclusions (3) and (4) of
5.1.12 are ruled out. Hence we are reduced to case (5) of 5.1.12, and in particular,

L2/O2(L2) ∼= L2(4), with the embedding L2 < L̂2 described in A.3.14. We saw
K/O2(K) 6∼= L3(4), so by 5.1.10, K/O2(K) is Sp4(4) or L2(4)×L2(4), and in either
case B ∼= E9. Next proceeding as in the proof of 5.1.13 with Dp in the role of “D”,
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we obtain p = 3; notice that here L̂2/O2(L̂2) is not J1, since here p = 3 or 5 rather
than 7. Since B acts on D3 by 5.1.5.2, B centralizes D3. But also B ≤ NG(L2) so
D3 6≤ B; hence M ≥ D3B ∼= E27, a contradiction as M is an SQTK-group. This
completes the proof of 5.2.2. ¤

We now state the main result of this chapter:

Theorem 5.2.3. Assume G is a simple QTKE-group, T ∈ Syl2(G), and L ∈
L∗f (G, T ) with L/O2(L) ∼= L2(2

n) and L E M ∈ M(T ). In addition assume

H ∈ H∗(T,M) with n(H) > 1, let K := O2(H), Z := Ω1(Z(T ), and V ∈ R2(LT )
with [V, L] 6= 1. Then one of the following holds:

(1) n = 2, V is the sum of at most two copies of the A5-module for L/O2(L) ∼=
A5, and K ≤ KZ ∈ C(CG(Z)). Further either K/O2(K) ∼= L2(4) with KZ/O2(KZ)
∼= A7, J2, or M23, or K = KZ and K/O2(K) ∼= L3(4).

(2) G ∼=M23.
(3) G is a group of Lie type of characteristic 2 and Lie rank 2, and if G is

U5(q) then q = 4.

Note that conclusions (2) and (3) of Theorem 5.2.3 are also conclusions in our
Main Theorem. Thus once Theorem 5.2.3 is proved, whenever L ∈ L∗f (G, T ) is T -
invariant with L/O2(L) ∼= L2(2

n), we will be able to assume that either conclusion
(1) of Theorem 5.2.3 holds, or n(H) = 1 for eachH ∈ H∗(T,NG(L)). The treatment
of these two remaining cases is begun in the following chapter 6, and eventually
completed in Part 5, devoted to those L ∈ L∗f (G, T ) with L/O2(L) defined over F2.

5.2.1. Determining the possible amalgams. The proof of Theorem 5.2.3
will not be completed until the final section 5.3 of this chapter. In this subsection,
we will produce a weak BN-pair α, and use the Green Book [DGS85] to identify
α up to isomorphism of amalgams. This leaves two problems: First, show that the
subgroup G0 generated by the parabolics of α is indeed a group of Lie type. Second,
show that G0 = G. In one exceptional case, G0 is proper inG; the second subsection
will give a complete treatment of that branch of the argument, culminating in the
identification of G as M23.

Assume the hypotheses of Theorem 5.2.3. Notice that Hypothesis 5.1.8 holds,
since in Theorem 5.2.3 we assume n(H) > 1. During the proof of Theorem 5.2.3,
write D for DL.

Notice that if K/O2(K) ∼= L3(4), then conclusion (1) of Theorem 5.2.3 holds
by Theorem 5.1.14. Thus we may assume during the remainder of the proof of
Theorem 5.2.3 that K/O2(K) is not L3(4). Therefore by 5.1.11.3, S acts on the
rank one parabolics of K, and hence on the group L2 defined at the start of the
section.

Next if D 6≤ NG(K), then conclusion (2) of 5.2.2 is satisfied, so again conclusion
(1) of Theorem 5.2.3 holds. Thus we may also assume during the remainder of the
proof that D acts on K; we will show under this assumption that conclusion (2) or
(3) of Theorem 5.2.3 holds. The following consequences of these observations are
important in producing our weak BN-pair:

Lemma 5.2.4. (1) D ≤ NG(K).
(2) D ≤ NG(B) and B ≤ NG(D).
(3) B ≤ NG(S), D ≤ NG(S ∩ L2), and DS = SD.
(4) DSB acts on L2.
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Proof. By construction in Notation 5.1.9, B ≤ NG(D). Part (1) holds by
assumption, and says D acts on MK := M ∩ K = (S ∩ K)B. Thus D acts on
DB ∩ (S ∩K)B = B, completing the proof of (2). Further as the Borel subgroup
MK is 2-closed by 5.1.10, D acts on S ∩K. As D acts on S ∩K and there are at
most two rank one parabolics of K over S ∩K, D acts on each such parabolic. So
as L2 = P∞ for one of these parabolics, D acts on L2 and hence also on S ∩ L2.

By definition of S, S = O2(BT ), so B acts on S. As NL(S ∩ L) = (S ∩ L)D,
DS = SD, completing the proof of (3). As B acts on SD, DSB is a group. By
5.2.1, S acts on L2, while by definition B is a Cartan subgroup acting on L2. This
completes the proof of (4). ¤

We now verify that Hypothesis F.1.1 is satisfied with L, L2, S in the roles of
“L1”, “L2”, “S”. Set B2 := B∩L2, G1 := LSB2, G2 := DSL2, andG1,2 := G1∩G2.
As L E M and B2 normalizes S by 5.2.4.3, G1 is a subgroup of G with L E G1.
Again using 5.2.4, G2 is a subgroup of G with L2 E G2. Thus Li = G∞i as DSB
is solvable. Notice conditions (a), (b), and (c) of F.1.1 follow from remarks at the
beginning of the section, together with the fact that S acts on L2. Further condition
(d) of F.1.1 holds as NLj (S ∩ Lj) ≤ DSB ≤ Gi, and we saw Li E Gi. Condition
(f) follows from 1.1.4.5, since G1 ≤ M , G2 ≤ NG(K), and S contains O2(M) and
O2(H), and hence contains O2(NG(K)) using A.1.6. Finally we establish (e) of
F.1.1 in the following lemma:

Lemma 5.2.5. O2(〈G1, G2〉) = 1.

Proof. Let G0 := 〈G1, G2〉. By 4.3.2, M = !M(L), so as L2 6≤M , O2(G0) =
1. ¤

We now use the Green Book [DGS85] (via an appeal to F.1.12) to deter-
mine the possible amalgams that can arise; these will subsequently lead us to the
“generic” quasithin groups in conclusion (3) of Theorem 5.2.3, and to M23 in con-
clusion (2) of 5.2.3.

Proposition 5.2.6. α := (G1, G1,2, G2) is a weak BN-pair of rank 2. Further
L2 = K = G∞2 , with O2(Gi) = O2(Li) for i = 1 and 2, and one of the following
holds:

(1) α is the L3(2
n)-amalgam and L and K are L2(2

n)-blocks.
(2) α is the Sp4(2

n)-amalgam and L and K are L2(2
n)-blocks.

(3) α is the G2(q)-amalgam for q = 2n, L/O2(L) ∼= K/O2(K) ∼= L2(q),
O2(K) ∼= q1+4, and |O2(L)| = q5.

(4) α is the 3D4(q)-amalgam for q = 2n, L/O2(L) ∼= L2(q), |O2(L)| = q11,
K/O2(K) ∼= L2(q

3), and O2(K) ∼= q1+8.
(5) α is the 2F4(q)-amalgam for q = 2n, L/O2(L) ∼= L2(q), |O2(L)| = q11,

K/O2(K) ∼= Sz(q), and |O2(K)| = q10.
(6) n > 2 is even, α is the U4(q)-amalgam for q = 2n/2 or its extension of

degree 2, L is an O−4 (q)-block, K/O2(K) ∼= L2(q), and O2(K) ∼= q1+4.
(7) n = 4, α is the U5(4)-amalgam, L/O2(L) ∼= L2(16), |O2(L)| = 216,

K/O2(K) ∼= SU3(4), and O2(K) ∼= 41+6.

Moreover O2(KT ) = O2(KS), and either
(a) S ≤ Li and O2(LiS) = O2(Li) for i = 1 and 2, or
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(b) α is an extension of the U4(q) amalgam of degree 2 and O2(KS) is the
extension of O2(K) by an involution t such that CK(t) ∼= P∞ for P a maximal
parabolic of Sp4(q).

Proof. We have already verified Hypothesis F.1.1, so by F.1.9, α is a weak BN-
pair of rank 2. By 5.2.4.2, B2 ≤ NG(S), so that we may apply F.1.12 to determine
α. As L1 and L2 are not solvable, cases (8)–(13) of F.1.12.I are ruled out. Together
with F.1.12.II, this shows that S ≤ Li and hence also O2(Li) = O2(Gi) for i = 1
and 2, unless possibly α is the extension of the U4(q) amalgam of degree 2. In the
latter case by F.4.29.5, (II.i) fails only weakly, in the sense that O2(L) = O2(LS)
and |S : S ∩ L| = |S : S ∩ L2| = |O2(L2S) : O2(L2)| = 2. Further by F.4.29.4,
O2(Gi) = O2(Li). Now the remaining amalgams in cases (1)–(7) of F.1.12.I are
those given in 5.2.6; notice that the numbering convention for L1 and L2 in F.1.12
differs in some cases from that used here in 5.2.6. We are using the facts that
L/O2(L) ∼= L2(2

n) and 1 6= [Z,L].
We next show that L2 = K; that is, we eliminate cases (1) and (3) of 5.1.10.

First suppose L2 = K1 < K. Then for t ∈ T −NT (K1), O2(L2S) contains S ∩ L
t
2

with O2(L2) ∩ Lt2 ≤ O2(L
t
2) and |S ∩ Lt2 : O2(L

t
2)| > 2; therefore |O2(L2S) :

O2(L2)| > 2, contrary to an earlier observation. So we may suppose instead that
K/O2(K) is (S)L3(2

k) or Sp4(2
k). We recall in this case that L2 = P∞+ for a

maximal parabolic P+ of K. Thus L2/O2(L2) ∼= L2(2
k), O2(L2)O2(K)/O2(K)

has a natural chief factor, and there is at least one more noncentral 2-chief factor
for L2 in O2(K). Thus L2 has at least two noncentral 2-chief factors, so that α
is not the L3(q) or Sp4(q)-amalgam. As L2/O2(L2) ∼= L2(2

k), rather than Sz(q)
or SU3(q), α is not the 2F4(q) or U5(4)-amalgam. If α is the amalgam for G2(q)
or 3D4(q), then L2D has just one noncentral 2-chief factor, and that factor is not
natural. This leaves the U4(q)-amalgam, where L2 has two natural 2-chief factors
on the Frattini quotient of O2(L2), but L2D is irreducible on the Frattini quotient.
However D acts on O2(K) and hence on the 2-chief factor for O2(L2) in O2(K).
This contradiction shows that L2 = K, completing the proof of the claim.

Recall S = O2(MH), so that O2(KT ) ≤ S by A.1.6, and hence O2(KT ) =
O2(KS). By F.1.12.II, O2(L) = O2(LS), and either O2(K) = O2(KS) or α is
the extension of the U4(q)-amalgam of degree 2. In the latter case by F.4.29.5,
O2(KS) = O2(K)〈t〉, where t induces a graph-field automorphism on U4(q), and
hence CU4(q)(t)

∼= Sp4(q), so that CK(t) is as claimed. This completes the proof of
5.2.6. ¤

In the remainder of this section, if α is the extension of degree 2 of the U4(q)-
amalgam, we replace α by its subamalgam of index 2. Thus in effect, we are
replacing S = O2(BT ) by S ∩ L of index 2 in S. Subject to this convention:

Lemma 5.2.7. (1) α := (G1, G1,2, G2) is the amalgam of L3(q), Sp4(q), G2(q),
3D4(q),

2F4(q), U4(q), with q > 2, or U5(4).
(2) Gi = LiBD and G1,2 = SBD, where L1 = L, L2 = K; and S = T ∩ L1 =

T ∩ L2 = O2(G1,2).
(3) O2(Li) = O2(GiT ).

Proof. Parts (1) and (2) are immediate from 5.2.6 and the convention for
U4(q). Let S0 := O2(BT ). By 5.2.6, O2(GiS0) = O2(Li) for i = 1, 2. Further as
B ≤ Gi, O2(GiT ) ≤ O2(BT ) = S0 using A.1.6, so O2(GiT ) ≤ O2(GiS0) = O2(Li)
and hence O2(GiT ) = O2(Li), establishing (3). ¤
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Recall the notion of a completion of an amalgam from Definition F.1.6. Let
G(α) denote the simple group of Lie type for which there is a completion ξ : α →
G(α); that is, α is an amalgam of type G(α). To establish conclusion (3) of Theorem
5.2.3, we must show that G ∼= G(α). Let 2m(α) be the order of the Weyl group of
G(α).

Lemma 5.2.8. Either

(1) K ∈ L∗(G, T ), or

(2) α is the L3(4)-amalgam, and K < K̂ ∈ L∗(G, T ) with K̂ an exceptional
A7-block.

Proof. AssumeK < K̂ ∈ L∗(G, T ) and letQ := O2(K) and K̂∗ := K̂/O2(K̂).
Then K/Q is not SU3(4), since in that event K ∈ L∗(G, T ) by 1.2.8.4. Thus we
may assume α is not of type U5(4).

Recall K̂ ∈ He by 1.1.3.1, so 1 6= [O2(K̂),K] ≤ K ∩ O2(K̂). If K/Q ∼= Sz(q),

then α appears in case (5) of 5.2.6, and K̂∗ ∼= 2F 4(q) by 1.2.4 and A.3.12. But then

K is isomorphic to its image K∗ in K̂∗, so K ∩O2(K̂) = 1, contrary to our earlier
observation. Thus we have eliminated the case where α is the 2F4(q)-amalgam.

If α is the L3(q) or Sp4(q) amalgam, then K is an L2(q)-block, so it has a

unique noncentral 2-chief factor, and hence the same holds for K̂, with Q ≤ O2(K̂).

By 5.2.6, Q = O2(KT ), so Q = O2(K̂). Therefore K∗ ∼= L2(q) is a T -invariant

quasisimple subgroup of K̂∗, so by A.3.12, q = 4; and then by A.3.14, K̂∗ is A7,

Â7, J1, L2(25), or L2(p), p ≡ ±3 mod 8 and p2 ≡ 1 mod 5. As α is of type
L3(4) or Sp4(4), Q is an extension of a natural module for K/Q ∼= L2(4) and

m(Q) = 4 or 6. As K̂ ∈ He and K̂∗ is quasisimple, K̂∗ is faithful on Q, so that

K̂∗ ≤ GL(Q). Comparing the possiblities for K∗ listed above to those in G.7.3,

we conclude from G.7.3 that K̂∗ ∼= A7, and then as m(Q) = 4 or 6, K̂ is an A7-
block or an exceptional A7-block. In the former case, the noncentral chief factor
for K on Q is not the L2(4)-module, so the latter case holds, forcing α to be the
L3(4)-amalgam. Thus (2) holds in this case.

Suppose α is the U4(q)-amalgam. From 5.2.6, K/Q ∼= L2(q) for q = 2n/2 > 2
and Q is special of order q1+4 with K trivial on Z(Q). Further by 5.2.6, either
Q = O2(KT ), or O2(KT ) = Q〈t〉 where t is an involution with CQ(t) ∼= Eq3 .

We claim Q E K̂, so assume otherwise. Suppose first that Q ≤ R := O2(K̂).
Then as R ≤ O2(KT ), and Q < R by assumption, R = O2(KT ) = Q〈t〉. But

now Z(Q) = Z(R) E K̂, and Q/Z(Q) = J(R/Z(Q)), so Q E K̂, contrary to
assumption. Thus Q 6≤ R, so as K has two natural chief factors on Q/Z(Q) and
[R,K] 6= 1, we conclude (Q ∩ R)Z(Q)/Z(Q) is one of these chief factors. Thus
Z(Q) = [Q∩R,Q] ≤ R and Q∩R ∼= Eq3 . Again as R ≤ O2(KT ), either R = Q∩R
or |R : Q ∩ R| = 2. In the latter case Q ∩ R = [Q, t] = CQ(t), so R = (Q ∩ R)〈t〉.

In any case K∗ is an L2(q)-block with |O2(K
∗)| = q2. The only possibilities

for such an embedding in A.3.12 are that K̂∗ ∼= (S)L3(q), or q = 4 and K̂∗ ∼=M22,

M̂22, or M23. The last three cases are impossible, as those groups are of order
divisible by 11, a prime not dividing the order of GL7(2). Thus K̂

∗ ∼= SL3(q) and

[R, K̂] is the natural module for K̂∗, so [R, K̂] = [R,K] = Q ∩K. However as α is
the U4(q)-amalgam, J(T ) = O2(L) is normal in LT , so NG(J(T )) ≤M = !M(LT ).

From the action of K̂ on R, K1 := NK̂(J(T )) is the scond maximal parabolic of K̂

over K̂ ∩ T . Thus as T ∩L = T ∩K by 5.2.7.2, K∞1 = [K∞1 ,K ∩ T ] ≤ L, and then
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as |L| = |K∞1 |, L ≤ K̂, contradicting M = !M(LT ). This contradiction completes
the proof of the claim.

Finally we treat the case where α is the U4(q)-amalgam and Q E K̂, along with
the remaining two cases where α is the amalgam of G2(q) or

3D4(q). In these last
two cases Q is special and K is irreducible on Q/Z(Q), so as in the earlier cases of
the L3(q) and Sp4(q) amalgams, there is a unique noncentral 2-chief factor under

the extension of K by a Cartan subgroup, and again we get O2(K̂) = Q. Thus

in each of our three cases, Q E K̂, so K̂ ∈ C(NG(Q)) by 1.2.7 as K̂ ∈ L∗(G, T ).
Further K∗ ∼= L2(q) when α is the amalgam for U4(q) or G2(q), and K

∗ ∼= L2(q
3)

when α is the 3D4(q)-amalgam. As above, A.3.12 gives a proper extension with
“O2(B) = 1” only when “B” is L2(4). This eliminates the 3D4(q) amalgam, and
forces α to be the amalgam of U4(4) or G2(4). ThereforeQ ∼= 41+4 and there is X of

order 3 in CDLB(K/Q) with Q/Φ(Q) = [Q/Φ(Q), X ], so X acts on K̂ ∈ C(NG(Q))

by 1.2.1.3. But as in our application of A.3.12 above, K̂∗ ∼= A7, Â7, J1, L2(25), or

L2(p) for p ≡ ±1 mod 5 and p ≡ ±3 mod 8, and X centralizes A5
∼= K∗ ≤ K̂∗, so

we conclude from the structure of Aut(K̂∗) that X centralizes K̂∗. Thus K̂∗ is not

A7, for otherwise m3(K̂X) = 3, contradicting NG(K̂) an SQTK-group. Further

as Q/Φ(Q) = [Q/Φ(Q), X ] is of rank 8, and 8 is not divisible by 3, K̂∗ is not Â7.

Finally G.7.2 eliminates the remaining possiblities for K̂∗. This completes the proof
of 5.2.8. ¤

Conclusions (1) and (2) of 5.2.8 will lead to conclusions (3) and (2) of Theo-
rem 5.2.3, respectively, so we adopt notation reflecting the groups arising in those
conclusions. Namely we define G to be of type Xr(q) if α is the Xr(q)-amalgam
and K ∈ L∗(G, T ). Define G to be of type M23 if α is the L3(4)-amalgam and
K /∈ L∗(G, T ). Thus in this language, we can summarize what we have accom-
plished in 5.2.6 and 5.2.8:

Theorem 5.2.9. One of the following holds:
(1) G is of type L3(q), Sp4(q), G2(q),

3D4(q), or
2F4(q), for some even q > 2.

(2) n > 2 is even and G is of type U4(2
n/2).

(3) G is of type U5(4).
(4) G is of type M23.

5.2.2. Characterizing M23. The remainder of this section is devoted to a
proof that:

Theorem 5.2.10. If G is of type M23 then G is isomorphic to M23.

The proof of Theorem 5.2.10 involves a short series of reductions. Assume G is
of type M23. Then by 5.2.8, α is the L3(4)-amalgam and K < K̂ ∈ L∗(G, T ) with

K̂ an exceptional A7-block. Let M2 := K̂, M1 := M , and M1,2 := M1 ∩M2. Set
Vi := O2(Mi), V := V1, and U := V2. Then V ∼= U ∼= E16 with M2/U ∼= A7. Hence
we can represent M2/U on Ω = {1, . . . , 7} so that T has orbits {1, 2, 3, 4}, {6, 7},
and {5} on Ω. Indeed:

Lemma 5.2.11. (1) H is the global stabilizer in M2 of {6, 7}.
(2) M1,2 is the global stabilizer in M2 of {5, 6, 7}.
(3) M/V ∼= ΓL2(4).
(4) M2 ∈M(T ).
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(5) |T : S| = 2.

Proof. Let M∗
2 :=M2/U . There is a unique T ∗-invariant subgroup K∗T

∼= A5

ofM∗
2 , and K

∗
TT

∗ is the global stabilizer in M∗
2 of {6, 7}, so (1) holds. Then V U/U

is the 4-group with fixed-point set {5, 6, 7} and NM2(V U) = NM2(V ) = M1,2 as
M ∈ M(T ), so (2) holds.

Let M2 ≤ M0 ∈ M(T ). By 5.2.8, M2 ∈ L∗(G, T ), so M2 E M0 by 1.2.7.3.
Then U = O2(M2) ≤ O2(M0), so as T ≤M2, U = O2(M0) by A.1.6. As M0 ∈ He,
M0/U ≤ GL(U), so as M2/U is self-normalizing in GL(U), M0 =M2, proving (4).

As V = O2(LT ), O2(M) = V = CG(V ) by 3.2.11, so M/V ≤ GL(V ). Next
UV ∈ Syl2(L), so by a Frattini Argument, M = LNM (UV ) ≥ LNM (U) = LM1,2

using (4). From the structure of M2, M1,2/V is isomorphic to a Borel group of
ΓL2(4), so LM1,2/V = NGL(V )(L/V ) as NGL(V )(L/V ) ∼= ΓL2(4). Then as LEM ,
(3) holds, and (3) implies (5). ¤

Lemma 5.2.12. (1) Z(T ) = 〈z〉 is of order 2.
(2) CG(z) = CM2(z) is an L3(2)-block.
(3) M2 is transitive on U

#.
(4) U is a TI-set in G.

Proof. Parts (1) and (3) are easy consequences of the fact that M2 is an
exceptional A7-block containing T . As another consequence, Y := CM2(z) is an
L3(2)-block. Let Gz := CG(z) and G

∗
z := Gz/〈z〉. As T ≤ Gz , F

∗(Gz) = O2(Gz)
by 1.1.4.6, so F ∗(G∗z) = O2(Gz)

∗ by A.1.8. Thus as U = O2(Y ) ≥ O2(Gz) by
A.1.6, and Y is irreducible on U∗, U = O2(Gz). Thus Gz ≤ NG(U) = M2 using
5.2.11.4. Therefore (2) holds. Then (2), (3), and I.6.1.1 imply (4). ¤

Lemma 5.2.13. G has one conjugacy class of involutions.

Proof. All involutions of V are conjugate under M and hence fused into
U ∩ V . Similarly all involutions in U are conjugate under M2, so as U and V are
the maximal elementary abelian subgroups of UV , all involutions in UV are fused
in G. From the structure of M2, each involution in M2 is fused into UV in M2. So
the lemma holds, as M2 contains a Sylow 2-group T of G. ¤

Lemma 5.2.14. (1) G is transitive on its elements of order 3 which centralize
involutions.

(2) All elements of order 3 in M1 ∪M2 are conjugate in G.

Proof. By 5.2.12.2, CG(z) has one class of elements of order 3, so 5.2.13
implies (1). Next M2 has two classes of elements of order 3, those with either 1 or
2 cycles of length 3 on Ω. The first class centralizes an involution in M2/U and
hence has centralizer of even order. The second class centralizes an involution in U .
Thus (1) implies all elements of order 3 in M2 are conjugate in G. Then as M1,2

contains a Sylow 3-group of M1 and M2, (2) holds. ¤

Lemma 5.2.15. Let X ∈ Syl3(CM (L/O2(L)). Then NG(X) = NM (X) ∼=
ΓL2(4).

Proof. First NM (X) ∼= ΓL2(4). On the other hand by 5.2.14, X is conjugate
to Y ≤ CG(z) and CG(Y 〈z〉) = Y × CU (Y ) ∼= Z3 × E4. Let GY := CG(Y ) and
G∗Y := GY /Y . Then CG∗Y (z

∗) ∼= E4, and as CM (X) is not 2-closed, neither is
G∗Y . Thus by Exercise 16.6.8 in [Asc86a], G∗Y

∼= A5. Therefore |CM (X)| = |GY |,
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so CM (X) = CG(X). Then as |NM (X) : CM (X)| = 2 = |Aut(X)|, the lemma
follows. ¤

Recall the definition of the subgroups G1 and G2 in our amalgam α from the
previous subsection, and let G0 := 〈G1, G2〉.

Lemma 5.2.16. (1) G0
∼= L3(4).

(2) G0T is G0 extended by a field automorphism.

Proof. Notice in the L3(4)-amalgam that we have B = D = BD. Thus to
prove (1), it suffices by F.4.26 to show that there exist involutions si ∈ NLi(B), such
that |s1s2| ≤ 3. Then (2) follows from (1), since T acts on Gi, with |T : S| = 2 by
5.2.11.5, and O2(LiT ) = O2(Li) by 5.2.7.3. Thus it remains to exhibit involutions
si ∈ NLi(B), with |s1s2| ≤ 3.

Notice that each involution si ∈ NLi(B) inverts B. Now B ≤ M1, so by
5.2.14.2, B is conjugate to the subgroup X defined in 5.2.15. Therefore as s1
inverts B, NG(B) = (B ×LB)〈s1〉, where LB ∼= A5, s1 inverts B, and s1 induces a
transposition on LB . But s2 also inverts B, so replacing s1 by a suitable member
of Bs1, we may assume s1s2 ∈ LB. Thus s1 and s2 are distinct transpositions in
LB〈s1〉 ∼= S5, so |s1s2| = 2 or 3, completing the proof. ¤

We now define some notation to use in our identification of G with M23. Let
Ḡ := M23 act on Θ := {1, . . . , 23}. Then (cf. chapter 6 in [Asc94]) we may take
our 7-set Ω to be a block in the Steiner system (Θ, C) on Θ preserved by Ḡ, so
that NḠ(Ω) = M̄2 is the split extension of Ū = ḠΩ

∼= E16 by A7, and M̄2 is an
exceptional A7-block.

Lemma 5.2.17. There is a permutation equivalence ζ : M2 → M̄2 of M2 and
M̄2 on Ω.

Proof. As B is of order 3 in K ∩ M1,2, it follows from parts (1) and (2)
of 5.2.11 that we may choose B to act on Ω as 〈(1, 2, 3)〉. Then as CU (B) = 1,
NM2(B) ∼= Z2/(Z3 × A4) has Sylow 2-groups of order 8. Thus T splits over U , so
M2 splits over U by Gaschütz’s Theorem A.1.39. Thus there is an isomorphism
ζ : M2 → M̄2, and adjusting by a suitable inner automorphism, this map is a
permutation equivalence. ¤

For the remainder of this section, define ζ as in 5.2.17.
Let Γ := Θ2 be the set of unordered pairs of elements from Θ and fix x̄ := {6, 7}

and ȳ := {5, 6} in Γ. From chapter 6 of [Asc94]:

Lemma 5.2.18. (1) Ḡx̄ is the extension of L3(4) by a field automorphism.
(2) Θ − {6, 7} is a projective plane over F4 with lines {C − {6, 7} : {6, 7} ⊆

C ∈ C}, and Ḡx̄ preserves this structure.
(3) The global stabilizer Ī of {4, 5, 6, 7} in Ḡ is the global stabilizer in M̄2 of

{4, 5, 6, 7}.

Proof. In [Asc94], the Steiner system (Θ, C) is constructed so that (1) and
(2) hold. As each 4-point subset of Θ is contained in a unique block of the Steiner
system, (3) holds. ¤

Regard Γ as a a graph by decreeing that a, b ∈ Γ are adjacent if |a ∩ b| = 1.
We wish to show G ∼= Ḡ. To do so, we write Gx for G0T and essentially show
there is a graph structure on ΓG := G/Gx isomorphic to the graph Γ, such that the
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representations of Ḡ on Γ (which is in turn Ḡ-isomorphic to the analogous graph
on ΓḠ := Ḡ/Ḡx) and G on ΓG are equivalent. This leads us to write x for Gx
regarded as a point of ΓG—namely the coset of Gx containing the identity. Thus
Gx is indeed the stabilizer of the point x ∈ ΓG.

Let I denote the global stabilizer in M2 of {4, 5, 6, 7}. Notice that the repre-
sentation of M2 on Ω ⊆ Θ induces a representation of M2 on Ω2 ⊆ Γ; this is the
representation implicit in the next lemma.

Lemma 5.2.19. (1) Gx∩M2 = H is the stabilizer in M2 of x̄ = {6, 7} ∈ Γ, and
the stabilizer in M2 of x = Gx ∈ ΓG.

(2) The representation of M2 on xM2 ⊆ ΓG is equivalent to its representation
on Ω2 ⊆ Γ.

(3) ζ :M2 → M̄2 restricts to an isomorphism ζ : I → Ī.
(4) ζ(Ix̄) = Īx̄ and ζ(Ix̄,ȳ) = Īx̄,ȳ.

Proof. By 5.2.11.1, H is the stabilizer of x̄ = {6, 7} ∈ Γ, and hence is a
maximal subgroup ofM2. Therefore H = Gx∩M2, and thus H is also the stabilizer
inM2 of the coset Gx ∈ ΓG, which we are denoting by x. Therefore (1) holds. Then
(1) implies (2), while 5.2.17 and the definition of I and Ī imply (3) and (4). ¤

Using the equivalence of 5.2.19.2, the point ȳ = {5, 6} ∈ Γ corresponds to a
point y ∈ ΓG; namely the coset y = Gxt, where t ∈ I has cycle (x̄, ȳ) on Γ. Such a
t exists, as I is the global stabilizer of {4, 5, 6, 7} in M2, and hence induces the full
symmetric group on that subset. The coset y is independent of t by 5.2.19.1.

Recall as in [Asc94] that I({x, y}) denotes the global stabilizer in I of {x, y}.

Lemma 5.2.20. (1) Gx,y = L.
(2) Ix is the stabilizer in M2 of the partition {1, 2, 3}, {4, 5}, {6, 7} of Ω, and

Ix/U ∼= S3 × Z2.
(3) Ix,y = UB and ζ(I({x, y})) = Ī({x̄, ȳ}).
(4) Gx = 〈Gx,y, Ix〉.
(5) There is an isomorphism β : Gx → Ḡx̄ agreeing with ζ on Ix, such that

β(Gx,y) = Ḡx̄,ȳ.

Proof. By 5.2.11.2, M1,2 is the global stabilizer in M2 of {5, 6, 7}, so there is
t ∈ (M1,2)4 ≤ I ∩M with cycle (x̄, ȳ). Then by a remark preceding this lemma, t
has cycle (x, y). As L ≤ G0T = Gx, L fixes x, so that L = Lt fixes xt = y, and
then L ≤ Gx,y. But LT and G0 are the only maximal subgroups of Gx containing
L, and by 5.2.19.2, T 6≤ Gx,y 6≥ K. So (1) holds.

Parts (2) and (3) are easy calculations given 5.2.19. As observed earlier, LT
and G0 are the only maximal subgroups of Gx containing L and Gx,y = L by (1).
So as Ix 6≤ G0 ∩M2 = K and Ix 6≤M1,2, (4) holds.

By 5.2.16 and 5.2.18.1, there is an isomorphism β : Gx → Ḡx̄, which we may
take to map T to T̄ := ζ(T ), B to B̄ := ζ(B), and K and L to the parabolics
K̄ := ζ(K) and L̄ := Ḡx̄,ȳ of O2(Ḡx̄). Now by (2) and (3), Ix = UB〈t, r〉, where
t := (1, 2)(6, 7) and r := (4, 5)(6, 7) on Ω. In particular Ix = UNKT (B), so

β(Ix) = β(U)Nβ(K)β(T )(β(B)) = ŪNK̄T̄ (B̄) = Īx.

Finally let γ := ζ−1 ◦ β, regarded as an automorphism of Ix, so that γ ∈
Aut(Ix). Notice |NGL(U)(AutIx(U)) : AutIx(U)| = 2 and U = CAut(Ix)(U), so
|AutI(Ix) : Inn(Ix)| = 2. Then as |NI(Ix) : Ix| = 2, Aut(Ix) = AutI(Ix). Indeed
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as β(T ) = T̄ = ζ(T ), γ(t) ∈ O2(Ix)t, so γ ∈ Inn(Ix). Thus adjusting β by the
inner automorphism of Gx which acts on Ix as γ−1, we may choose β = ζ on Ix,
proving (5). ¤

Lemma 5.2.21. G = 〈M,M2〉 = 〈Gx, I〉.

Proof. Let Y := 〈M,M2〉. If Y < G, then by induction on the order of
G, Y ∼= M23. In particular, Y has one class of involutions; while by (1) and (2)
of 5.2.12, NG(T ) ≤ CG(z) ≤ Y . Thus Y is a strongly embedded subgroup of G
(see I.8.1), so by 7.6 in [Asc94], Y has a subgroup of odd order transitive on the
involutions in Y . Now Y has

i := 3 · 5 · 11 · 23

involutions, but no subgroup of odd order divisible by i. This contradiction shows
G = 〈M,M2〉. But M = LM1,2 and M2 = 〈K, I〉, so

G = 〈M,M2〉 = 〈LT,K, I〉 = 〈Gx, I〉,

completing the proof. ¤

Lemma 5.2.22. I = 〈I({x, y}), Ix〉.

Proof. Notice Ix contains the kernel UB of the action of I on Λ := {4, 5, 6, 7}.
Further Ix contains elements inducing (4, 5) and (6, 7) on Λ, while I({x, y}) contains
an element inducing (5, 6). So as the symmetric group on Λ is generated by these
three transpositions, the lemma holds. ¤

We are now in a position to complete the proof of Theorem 5.2.10, by appealing
to the theory of uniqueness systems in section 37 of [Asc94]. Namely write ΓG for
the graph on ΓG = G/Gx with edge set (x, y)G = (Gx, Gxt)G, and let ΓI be the
subgraph with vertex set xI and edge set (x, y)I . By 5.2.19.2, ΓI is isomorphic to
the subgraph ΓĪ := {4, 5, 6, 7}

2 of Γ.
Observe that U := (G, I,ΓG,ΓI) is a uniqueness system in the sense of [Asc94].

Namely by 5.2.21, G = 〈Gx, I〉; by 5.2.20.4, Gx = 〈Gx,y, Ix〉; and by 5.2.22, I =
〈I({x, y}), Ix〉. This verifies the defining conditions for uniqueness systems (see (U)
on page 198 of [Asc94]). Similarly Ū := (Ḡ, Ī ,Γ,ΓĪ) is a uniqueness system.

Now by 5.2.19 and 5.2.20, β : Gx → Ḡx̄ and ζ : I → Ī define a similarity of
uniqueness systems, as defined on page 199 of [Asc94]. Next we will apply Theorem
37.10 in [Asc94], to prove this similarity is an equivalence.

In applying Theorem 37.10, we take L in the role of the group “K” in the
Theorem, and take t, h ∈ I to be elements acting on Ω as

t := (1, 2)(5, 7), h := (1, 2)(5, 6).

Then t, h ∈M1,2 ≤ NG(L), and by construction t has cycle (x, y), th = (1, 2)(6, 7) ∈
K ≤ Gx, and ζ(h) ∈ M̄1,2 ≤ NḠ(L̄), so that hypothesis (2) of Theorem 37.10 holds.
Next L = Gx,y by 5.2.20.1, so trivially Gx,y = 〈Ly, Ix,y〉, which is hypothesis (3) of
37.10. Finally L ∩ I = BU , and from the structure of the L2(4)-block L, we check
that CAut(L)(BU) = 1; this verifies hypothesis (1) of 37.10.

Therefore U is equivalent to Ū . It remains to check that ΓĪ is a base for Ū
in the sense of p.200 of [Asc94]: for then as Ḡ = M23 is simple, Exercise 13.1 in
[Asc94] says G ∼= Ḡ, completing the proof of Theorem 5.2.10.



658 5. THE GENERIC CASE: L2(2
n) IN Lf AND n(H) > 1

Recall from page 200 of [Asc94] that ΓĪ is a base for Ū if each cycle in the
graph Γ is in the closure of the conjugates of cycles of ΓĪ . But each triangle in Γ
is conjugate to one of:

{6, 7}, {5, 6}, {5, 7} or {6, 7}, {5, 7}, {4, 7},

which are triangles of ΓĪ . So it remains to show Γ is triangulable in the sense of
section 34 of [Asc94]; that is, that each cycle of Γ is in the closure of the triangles,
or equivalently the graph Γ is simply connected. This is the crucial advantage of
working with Γ as opposed to ΓG; one can calculate in Γ to check it is triangulable.

As Γ is of diameter 2, by Lemma 34.5 in [Asc94], it suffices to show each r-gon
is in the closure of the triangles, for r ≤ 5. For r = 2, 3 this holds trivially, and we
now check the cases with r = 4 and 5, using the 4-transitivity of M23 on Θ.

It follows from 34.6 in [Asc94] that 4-gons are in the closure of triangles:
Namely a pair of points at distance 2 are conjugate to {1, 2} and {3, 4}, whose
common neighbors are {1, 3}, {1, 4}, {2, 4}, {2, 3}—forming a square in Γ, which
is in particular connected. Finally it follows from Lemma 34.8 in [Asc94] that
5-gons are in the closure of the triangles: for if x0, x1, x2, x3 is a path in Γ with
d(x0, x2) = d(x0, x3) = d(x1, x3) = 2, then up to conjugation under Ḡ, x0 = {1, 2},
x1 = {2, 3}, x2 = {3, 4}, and x3 = {4, a} for some a ∈ Θ − {1, 2, 3, 4}. Then as
x0, x2, and x3 are all connected to {2, 4}, it follows that x⊥0 ∩ x

⊥
2 ∩ x

⊥
3 6= ∅, in the

language of [Asc94].
Thus the proof of Theorem 5.2.10 is complete.

5.3. Identifying rank 2 Lie-type groups

In this section, we complete the proof of Theorem 5.2.3. Recall the definition
of groups of type Xr(q) and type M23 appearing before the statement of Theorem
5.2.9. If G is of type M23, then conclusion (2) of Theorem 5.2.3 holds by Theorem
5.2.10. Therefore by Theorem 5.2.9, we may assume that one of conclusions (1)–(3)
of Theorem 5.2.9 holds. Thus G is of type Xr(q) for some even q > 2 and some
Xr of Lie rank 2. Recall from 5.2.7 that α = (G1, G1,2, G2) is an Xr(q)-amalgam,
where Gi = LiBD, G1,2 = SBD, and S = T ∩ L1 = T ∩ L2 = O2(G1,2). We
write G(α) for the corresponding group Xr(q) of Lie type defining the amalgam.
To establish Theorem 5.2.3, we must show G ∼= G(α).

Set Mi := NG(Li) and M1,2 := M1 ∩M2, and let γ := (M1,M1,2,M2) be the
corresponding amalgam.

Lemma 5.3.1. (1) Li ∈ L(G, T ) and Mi = !M(LiT ) with M1 6=M2.
(2) F ∗(Mi) = O2(Mi) = O2(Li).
(3) NG(S) =M1,2 = NMi(S).
(4) Mi = LiM1,2.

Proof. By the hypothesis of Theorem 5.2.3, L1 = L ∈ L∗(G, T ), and by
5.2.7.2, L2 = O2(H) so that L2 6≤ M1. By 5.2.8 and our assumption that G is
not of type M23, L2 = K ∈ L∗(G, T ). Thus (1) holds by 1.2.7. Hence F ∗(Mi) =
O2(Mi) by 1.1.4.6. By 5.2.7.3, O2(GiT ) = O2(Li), so O2(Mi) = O2(Li) using
A.1.6, completing the proof of (2).

To prove (3), it will suffice to show NG(S) ≤ Mi for i = 1 and 2. For then
NG(S) ≤M1,2. On the other hand NMi(S) is maximal in Mi, and M1 and M2 are
distinct maximal 2-locals by (1), so M1,2 = NMi(S) and hence (3) holds.
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Thus it remains to showNG(S) ≤Mi. But as S ∈ Syl2(Li) and T is in a unique
maximal subgroup of LiT , we conclude from Theorem 3.1.1 that O2(〈NG(S), Li〉) 6=
1. Therefore NG(S) ≤ Mi = !M(LiT ) by (1). Thus (3) is established. Then (4)
follows from (3) via a Frattini Argument. ¤

Lemma 5.3.2. γ is an M(α)-extension of α (in the sense of Definition F.4.3),
for some extension M(α) of G(α).

Proof. Let M0 := 〈M1,M2〉. We first verify that γ satisfies Hypothesis A of
the Green Book [DGS85], with Li in the role of “P ∗i ”.

By 5.3.1.1, O2(M0) = 1. By 5.3.1.2, F ∗(Mi) = O2(Mi) = O2(Li), so condition
(ii) of Hypothesis A holds. Then as O2(Mi) = O2(Li), condition (i) holds by 5.3.1.4.
Condition (iii) follows from 5.3.1.3, and the list of possibilities for Li in 5.2.6. This
completes the verification of Hypothesis A.

As Hypothesis A holds, and q > 2 by 5.2.7.1, case (a) of Theorem A in the
Green Book [DGS85] holds, so that γ is an extension of the Lie amalgam α of G(α).
That is, γ determines subgroups Mi(α) ∼= Mi of Aut(G(α)), with corresponding
completion M(α) := 〈M1(α),M2(α)〉 ≤ Aut(G(α)). So the lemma holds. ¤

Let ZS := Z(S) and Zi := Z(Li).

Lemma 5.3.3. Either

(1) The hypotheses of Theorem F.4.31 are satisfied, with G in the role of “M”,
or

(2) G(α) ∼= L3(q), and CG(z) 6≤M1,2 for each involution z ∈ ZS.

Proof. By 5.3.2, γ is an extension of the Lie amalgam α, so that M(α) plays
the role of “M̄” in Theorem F.4.31. Hypothesis (d) of F.4.31 holds for G in the
role of “M”, as T ≤ M1,2 and T ∈ Syl2(G). Hypothesis (e) holds as G is simple.
Hypothesis (a) follows from the fact that LiT is a uniqueness subgroup by 5.3.1.1.

Further BD is transitive on Z#
i . Thus if Zi 6= 1, each involution in Zi is conjugate

underMi to some z ∈ Z(LiT ), and therefore CG(z) ≤Mi using 5.3.1.1. Similarly if

G(α) ∼= L3(q), then BD is transitive on Z#
S , so if CG(z0) ≤M1 for some z0 ∈ Z

#
S ,

then CG(z) ≤M1 for all z ∈ Z
#
S . Hence the first statement in Hypothesis (c) holds,

and either Hypothesis (b) holds, or conclusion (2) of 5.3.3 holds. If G(α) is Sp4(q),
then each involution z in ZS is fused into Z(T ) under BD, and hence CG(z) ∈ He

by 1.1.4.6. This completes the verification of Hypothesis (c). Therefore either the
hypotheses of F.4.31 are satisfied, so that conclusion (1) of 5.3.3 holds, or conclusion
(2) of 5.3.3 holds. ¤

Theorem 5.3.4. Either

(1) G ∼= G(α), or
(2) G(α) ∼= L3(q), and CG(z) 6≤M1,2 for each involution z ∈ ZS.

Proof. If 5.3.3.1 holds, we may apply Theorem F.4.31 to conclude G ∼=M(α).
Since G is simple, we must in fact have M(α) ∼= G(α). ¤

By Theorems 5.2.9, 5.2.10, and 5.3.4, Theorem 5.2.3 holds unless possibly G is
of type L3(q) and conclusion (2) of 5.3.4 holds. We will finish by showing (in 5.3.7
below) that the latter case leads to a contradiction.

Thus in the remainder of this section, we assume G is of type L3(q) and con-
clusion (2) of 5.3.4 holds.
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Pick z ∈ Z# and set Gz := CG(z). Set Vi := O2(Li) and observe S = V1V2 =
J(T ) using 5.3.2 and F.4.29.6. Similarly by F.4.29.2, if t ∈ T − S, then t induces a
field automorphism on Li, so [ZS , t] 6= 1; that is, S = CT (ZS).

Lemma 5.3.5. NG(ZS) =M1,2.

Proof. Set GZ := CG(ZS). Then S = V1V2 ∈ Syl2(GZ), as we just observed.
As T ≤ NG(ZS), F

∗(GZ ) = O2(GZ) by 1.1.4.6, and therefore also F ∗(GZ/ZS) =
O2(GZ/ZS) by A.1.8. Hence as S/ZS is abelian, S/ZS = O2(GZ/ZS), so S =
O2(GZ). Then as A(S) = {V1, V2} with Vi E T , NG(ZS) ≤ NG(Vi) = Mi as
Mi ∈M by 5.3.1.1. On the other hand by 5.3.1.3, M1,2 = NG(S) ≤ NG(ZS). ¤

Lemma 5.3.6. (1) Vi is weakly closed in T with respect to G.

(2) ZGS ∩ Vi = ZLiS is of order q + 1.

Proof. We saw A(T ) = {V1, V2} and Vi E T ; in particular, V G1 ∩ T ⊆ A(T ),
so to establish (1) we only need to show V2 6∈ V

G
1 . But if V2 ∈ V

G
1 then as Vi E T

and NG(T ) controls fusion of normal subgroups of T by Burnside’s Fusion Lemma,
V2 is in fact conjugate to V1 in NG(T ), and hence in O2(NG(T )) as T normalizes V1
and V2. This is impossible as |A(S)| = 2, establishing (1). By (1) and Burnside’s
Fusion Lemma, Mi controls fusion in Vi, so (2) follows. ¤

Lemma 5.3.7. Gz ≤M1,2.

Proof. As ZS E T and M1,2 is transitive on Z#
S , we may take z ∈ Z(T ).

Therefore F ∗(Gz) = O2(Gz) =: R by 1.1.4.6. Next unless q = 4 and Mi/Vi ∼= S5
for i = 1 and 2, S = V1V2 = O2(CMi(z)) for each i. Assume for the moment
that the exceptional case does not hold. Then as S ∈ Syl2(CG(ZS)) by 5.3.5,
R ≤ S by A.1.6, so ZS = Z(S) ≤ Ω1(CGz (R)) = Ω1(Z(R)) =: ZR. If ZS = ZR
then R ≤ NG(ZS) ≤ M1,2 by 5.3.5, and the lemma holds; so assume instead that
ZS < ZR.

Let Ĝ denote our target group G(α) ∼= L3(q) and M̂i the subgroups Mi(α)
in 5.3.2. Recall we have a corresponding isomorphism of amalgams β : γ̂ :=
(M̂1, M̂1,2M̂2) → γ. Thus S ∼= Ŝ is isomorphic to a Sylow 2-group of L3(q), so V1
and V2 are the maximal elementary abelian subgroups of S. Therefore Vi∩ZR > ZS
for i = 1 or 2, so that R ≤ CS(Vi ∩ ZR) = Vi. Then Vi ≤ CGz (R) ≤ R, so Vi = R.
But then by 5.3.6.1, Gz ≤ NG(Vi) = Mi, so that Gz = Gz ∩Mi ≤ M1,2 using β,
and the lemma holds.

It remains to treat the exceptional case where q = 4 and Mi/Vi ∼= S5 for
i = 1 and 2. Let Ḡz := Gz/〈z〉, so that F ∗(Ḡz) = O2(Ḡz) by A.1.8. Now Mi

is determined up to isomorphism, so in particular T is isomorphic to a Sylow 2-
subgroup of M22. Therefore J(T̄ ) = Q̄ ∼= E16 with Q ∼= Q2

8 and CT (Q) ≤ Q. Let

Vz := 〈Z
Gz
S 〉. As Z̄S ≤ Z(T̄ ), V̄z is elementary abelian by B.2.14, so Φ(Vz) ≤ 〈z〉.

Suppose first that Vz is abelian, and therefore elementary abelian. Then Vz ≤
CT (ZS) = S using an earlier observation. As V1 and V2 are the maximal elementary
abelian subgroups of S, Vz ≤ Vi for i = 1 or 2. If Vz = ZS , then the lemma holds
by 5.3.5, so we may assume ZS < Vz ≤ Vi. But Vi = CG(A) for each hyperplane
A of Vi through ZS , so Vz = A or Vi, and in any case Vi EGz . Hence the lemma
holds, again since Gz ∩Mi ≤M1,2.

Thus we may suppose instead that Vz is not abelian. Now if Vz ≤ S, then
ZS = Z(Vz)EGz, and the lemma holds by 5.3.5. Hence there is v ∈ Vz−S; we will
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see this leads to a contradiction. Now from the structure of M1, E4
∼= [v, S/ZS ] ≤

(Vz ∩ S)/ZS , so m(V̄z) ≥ 4. Therefore as E16
∼= Q̄ = J(T̄ ), we must have Vz = Q.

Next as CT (Q) ≤ Q, Gz/Q ≤ Out(Q) ∼= O+
4 (2), so |Gz : T | = 3 or 9. As

|Gz : T | ≥ |Z̄
Gz
S | ≥ m(V̄z) = 4,

|Gz : T | = 9. As m2(Q) = 3 and m(Vi) = 4, Vi 6≤ Q; indeed [Vi, v]ZS ≤ Q and
[Vi, Q] ≤ Vi, so that ViQ/Q has order 2 and induces an involution of type a2 on Q̄, so
it centralizes a nontrivial element in O2(Gz/Q) ∼= E9. Therefore O

2(NGz(ViQ)) 6=
1. However by 5.3.6.1, Vi is weakly closed in ViQ; so O2(NGz(ViQ)) ≤ O2(Gz ∩
Mi) = 1, contradicting the previous remark. This contradiction completes the proof
of 5.3.7. ¤

Observe that 5.3.7 contradicts our assumption that 5.3.4.2 holds. So the proof
of Theorem 5.2.3 is complete.





CHAPTER 6

Reducing L2(2
n) to n = 2 and V orthogonal

In this chapter, we continue our analysis of simple QTKE-groups G for which
there exists a T -invariant L ∈ L∗f (G, T ) with L/O2(L) ∼= L2(2

n). Recall that we
began this analysis in chapter 5. In particular in Theorem 5.2.3 we showed under
these hypotheses, and the hypothesis that n(H) > 1 for some H ∈ H∗(T,M), that
either

(I) G is M23 or a group of Lie type of characteristic 2 and Lie rank 2, or
(II) the conclusion of 5.2.3.1 holds; in particular n = 2 and [R2(LT ), L] is the

sum of at most two A5-modules.

In Theorem 6.2.20 of this chapter, we complete the reduction to the situation
where n = 2 and [R2(LT ), L] is the sum of A5-modules by considering the remaining
case where n(H) = 1 for each H ∈ H∗(T,M), and [R2(LT ), L] is not the sum of
A5-modules when n = 2. Section 6.1 carries out the reduction to the subcase n = 2.
Then section 6.2 shows that the only quasithin example to arise in this subcase is
M22.

This reduction allows us thereafter to regard L/O2(L) ∼= L2(4) as Ω
−
4 (2). We

treat that case in Part 5, which deals with the situation where there exists L ∈
L∗f (G, T ) with L/O2(L) a group of Lie type group defined over F2.

6.1. Reducing L2(2
n) to L2(4)

As mentioned above, we wish to complete the reduction to the situation where
n = 2 and [R2(LT ), L] is the sum of A5-modules, under the hypothesis of chapter
5. By Theorem 5.2.3, we may assume Hypothesis 5.1.8 fails. Thus in this section,
we assume the following hypothesis:

Hypothesis 6.1.1. G is a simple QTKE-group, T ∈ Syl2(G), and L ∈ L∗f (G, T )
with L/O2(L) ∼= L2(2

n), L E M ∈ M(T ), and V ∈ R2(LT ) with [V, L] 6= 1. In
addition, assume

(1) [V, L] is not the sum of one or two copies of the A5-module for L/O2(L) ∼=
A5.

(2) n(H) = 1 for each H ∈ H∗(T,M).

Remark 6.1.2. Notice Hypothesis 6.1.1.1 has the effect of excluding cases (2)
and (5) of 5.1.3 plus case (4) of 5.1.3 when n = 2. Thus either case (1) or (3) of 5.1.3
holds, or n > 2 and case (4) of 5.1.3 holds. Similarly 6.1.1.1 excludes case (3) of
5.1.2; therefore by 5.1.2, either case (3) of 5.1.3 holds, or J(T ) ≤ CT (V ) = O2(LT ),
so that J(T ) E LT and hence M = !M(NG(J(T ))).

Throughout this section, define Z := Ω1(Z(T )), VL := [V, L], and TL := T ∩L.
Set MV := NM (V ), and M̄V :=MV /CM (V ).
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In contrast to the previous chapter, we find now when n(H) = 1 for each
H ∈ H∗(T,M) that weak-closure methods are frequently effective.

Lemma 6.1.3. (1) If V is a TI-set under M , then Hypothesis E.6.1 holds.
(2) Either

(I) r(G, V ) = 1, or
(II) J1(T ) 6≤ CT (V ).

Proof. Part (1) of Hypothesis E.6.1 follows from Hypothesis 6.1.1. We saw
CT (V ) = O2(LT ), so that M = !M(LT ) = !M(NMV (CT (V )), giving part (3) of
Hypothesis E.6.1. This establishes (1). Further n(H) = 1 for all H ∈ H∗(T,M)
by Hypothesis 6.1.1.2, so the hypotheses of E.6.26 are satisfied with “j” equal to
1. Therefore (2) follows from E.6.26. ¤

6.1.1. Initial reductions. In this subsection, we establish various reductions
culminating in the two cases of Proposition 6.1.15; eliminating the first of those
cases is then the goal of the second subsection.

Lemma 6.1.4. VL/CVL(L) is the natural module for L̄.

Proof. Assume that the lemma fails. This assumption excludes case (3) of
5.1.3, so by Remark 6.1.2 and 5.1.3, either

(A) n > 2 is even and V is the O−4 (2
n/2)-module, or

(B) V is the sum of two copies of the natural module.

Similarly by Remark 6.1.2 and 5.1.2, J(T ) E LT and M = !M(NLT (J(T ))).
Thus [Z,H ] = 1 for each H ∈ H∗(T,M) by 5.1.7. Further by Hypothesis 6.1.1.2,
n(H) = 1. Enlarging V if necessary, we may take V = R2(LT ).

Assume that there is A ∈ A1(T ) with Ā 6= 1. Then by B.2.4.1,

m(V/CV (A)) ≤ m(Ā) + 1 ≤ m2(L̄T̄ ) + 1 = n+ 1. (∗)

But in case (B), m(V/CV (A)) ≥ 2n > n+1 since n > 1, contrary to (*), so case (A)
holds. Hence by H.1.1.2 with n/2 in the role of “n”, n = 4, and Ā is of rank 1 and
generated by an orthogonal transvection. Further for t ∈ T−CT (V ), m(V/CV (t)) ≥
2n in case (A), and m(V/CV (t)) ≥ n in case (B) by H.1.1.1. Therefore we have
shown that either:

(i) n = 4, V is the O−4 (4)-module, and if J1(T ) 6= 1 then J1(T ) is generated by
an orthogonal transvection, or

(ii) m(L̄T̄ , V ) > 2 and J1(T ) ≤ CT (V ) = O2(LT ), so that J1(T ) E LT .

Suppose first that case (ii) holds. Then r(G, V ) = 1 by 6.1.3.2. Now if Hy-
pothesis E.6.1 is satisfied, then since m(L̄T̄ , V ) > 2 in case (ii), r(G, V ) > 1 by
Theorem E.6.3, a contradiction. Thus V is not a TI-set in M by 6.1.3.1. Therefore
as L E M , L is not irreducible on V , so case (B) holds where V = V1 ⊕ V2 is
the sum of two natural modules V1 and V2. Further we may choose V1 to be T -
invariant (cf. the proof of A.1.42.1). As L is irreducible on Vi, Vi is a TI-set under
M . As r(G, V ) = 1, there is a hyperplane W of V with CG(W ) 6≤ NG(V ). Set
Ui := W ∩ Vi. Then CG(W ) ≤ CG(Ui) and m(Vi/Ui) ≤ m(V/W ) = 1, so Ui 6= 1
as m(Vi) ≥ 4. Thus if CG(W ) ≤ M , then as V1 and V2 are TI-sets in M , CG(W )
normalizes V1 ⊕ V2 = V , contrary to our choice of W . Therefore CG(W ) 6≤ M , so
CG(U1) 6≤M . But as V1 E LT , NG(V1) ≤M , so r(G, V1) = 1. As V1 is a TI-set in
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M , Hypothesis E.6.1 holds by 6.1.3.1 applied to V1 in the role of “V ”. However as
L is transitive on the hyperplanes of V1, and the stabilizer in LT of a hyperplane
contains a Sylow 2-subgroup of LT , we may take T ≤ NG(U1). Thus CG(U1) ≤M
by E.6.13, contrary to an earlier observation.

This contradiction shows that case (i) holds. The elimination of case (i) will
be lengthier. As L is irreducible on V , V is a TI-set in M , so that by 6.1.3.1,
Hypothesis E.6.1 is satisfied, and we may appeal to results in section E.6.

We first claim r(G, V ) > 1. If not, there is a hyperplane U of V with CG(U) 6≤
M , and by E.6.13, U is not T -invariant. Thus U contains the subspace U0 orthog-
onal to a nonsingular F4-point of the orthogonal space V . Therefore U contains a
2-central involution. As V = R2(LT ), V = Ω1(Z(Q)), where Q := O2(LT ). Finally
CV (NT (U)) ≤ U , so as CL̄T̄ (U) = 1,

Ω1(Z(NT (U))) = CΩ1(Z(Q))(NT (U)) = CV (NT (U)) ≤ U,

contrary to E.6.10.4, establishing the claim that r(G, V ) > 1.
Let M1 ∈ M(CG(Z)), and set Q1 := O2(M1), so that M1 = NG(Q1). As

H ≤ CG(Z) for H ∈ H∗(T,M), M 6=M1. Suppose that O2,F∗(M1) ≤M . Then

Q1 = O2(M ∩M1) = O2(NM (Q1))

by A.4.4.1, so that Q1 ∈ B2(M). By A.4.4.2, C(M,Q1) = M ∩M1, so Hypothesis
C.2.3 is satisfied, with M , M ∩M1, Q1 in the roles of “H , MH , R”. Now since
V is the orthogonal module and n > 2, L is not a χ-block; so for L in the role
of “K”, the conclusions of C.2.7 do not hold, and hence L ≤ M ∩M1. But then
M1 = !M(LT ) = M , contradicting M1 6= M . This contradiction shows that
O2,F∗(M1) 6≤M .

Next Z ≤ R2(LT ) = V by B.2.14, so Z = CV (T ). Let X := O5′ (NL(TL)).
Then X/O2(X) ∼= Z5 and XT ≤ CG(Z) ≤ M1, from the structure of O−4 (4)

∼=
L2(16) and its action on V . Let S := O2(XT ), so that S = TLQ. Then J1(S) ≤
CS(V ) since case (i) holds. Define

HS := {MS ≤M1 : S ∈ Syl2(MS) and T ≤ NG(MS)}.

As r(G, V ) > 1, E.6.26 says MS ≤M for each MS ∈ HS with n(MS) = 1.
Now O2(M1) = Q1 ≤ O2(XT ) = S by A.1.6. Then S is Sylow in SO2,F (M1),

so that SO2,F (M1) ∈ HS—and since n(O2,F (M1)) = 1 by E.1.13, O2,F (M1) ≤ M
by the previous paragraph. We saw O2,F∗(M1) 6≤ M , so there is K1 ∈ C(M1)
with K1 6≤ M , and K1/O2(K1) quasisimple. Let K0 := 〈KT

1 〉 and observe that
X = O2(X), so X normalizes K1 by 1.2.1.3.

Next as K1 6≤ M , there is HS ∈ H∗(T,M) ∩ K0T . Now n(HS) = 1 by
Hypothesis 6.1.1.2. Thus if S ∈ Syl2(O2(HS)S), then O

2(HS)S ∈ HS , and hence
HS ≤ M by an earlier remark. Therefore S is not Sylow in O2(HS)S, and hence
S is not Sylow in K0S. But if X normalizes T ∩K0 ∈ Syl2(K0), then T ∩K0 ≤
O2(XT ) = S; thus we conclude X 6≤ NG(T ∩K0). In particular, [X,K1] 6≤ O2(K1),
so a Sylow 5-subgroupX5 ofX acts faithfully onK1/O2(K1). Then asX5T = TX5,
this quotient is described in A.3.15. In cases (5)–(7) of A.3.15, X normalizes T∩K0,
contrary to an earlier observation. As X/O2(X) is of order 5, cases (2) and (4) are
ruled out. So it follows from A.3.15 that either

(a) K1/O2(K1) ∼= L2(p
e) and (M ∩K1)/O2(K1) ∼= Dpe−ε, or
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(b) K1/O2(K1) ∼= Lδ3(p), and there is an X-invariant K2 ∈ L(G, T ) ∩K1 with
K2O2(K1)/O2(K1) ∼= SL2(p).

In case (b), if the projection of X5 on K1 centralizes K2/O2(K2), then from
the structure of Lδ3(p), X5 centralizes a Sylow 2-group of K1/O2(K1), which is not
the case as X does not normalize T ∩K0. Thus the projection is inverted in T ∩K2,
so as X E XT , X ≤ K2. Similarly in case (a) the projection is inverted in T ∩K1,
so X ≤ K1. Now L ∩M1 contains TL and so is contained in a Borel subgroup of
L, and hence X E M1 ∩M . Thus in case (b), K2 6≤ M as X < K2. In this
case, we replace K1 by K2, reducing to the case where K1 ∈ L(G, T ), K1 6≤ M ,
and K1/O2(K1) ∼= L2(p

e) as in case (a). (We no longer require K1 ∈ C(M1)). As
X ≤ K1 is normalized by T , K0 = 〈KT

1 〉 = K1.
Let K∗1T

∗ := K1T/O2(K1T ). Recall by Remark 6.1.2 thatM = !M(NG(J(T ))
and J(T ) = J(O2(LT )) E XT . Thus J(T ) is not normal in K1T as K1 6≤M , so
there is A ∈ A(T ) with A∗ 6= 1. As J(T ) E XT , A∗ ≤ J(T )∗ ≤ O2(X

∗T ∗). But
from the structure of Aut(L2(p

e)), each nontrivial elementary abelian 2-subgroup
of O2(X

∗T ∗) is fused under K∗1 to a subgroup of T ∗ not in O2(X
∗T ∗), contrary to

J(T )∗ ≤ O2(X
∗T ∗). This contradiction finally completes the proof of 6.1.4. ¤

Lemma 6.1.5. H∗(T,M) ⊆ CG(Z).

Proof. Assume that H ∈ H∗(T,M) with [H,Z] 6= 1, and let K := O2(H).
Let DL be a Hall 2′-subgroup of NL(TL). Enlarging V if necessary, we may take
V = R2(LT ), so Z ≤ V . By 5.1.7.2, K = [K, J(T )] and L = [L, J(T )].

Let ṼL := VL/CVL(L) and ZL := Z ∩ VL. As ṼL is the natural module for L̄

by 6.1.4, J(T ) = T̄L by B.4.2.1. Hence J(T ) ≤ TLQ where Q := O2(LT ), so DL

normalizes J(TLQ) = J(T ). Also VL = [ZL, L] and CLT (ṼL) = CLT (VL) = Q.

Let S := Baum(T ). As L = [L, J(T )], and ṼL is the natural module, E.2.3.2 says

S ∈ Syl2(LS) and hence S∩L ∈ Syl2(L). As J(T ) = T̄L and TLQ = CT (CV (TLQ)),
also S = Baum(TLQ), so that DL normalizes S.

As ṼL is the natural module for L̄, the normalizerN of L̄ ∼= SL2(2
n) in GL(ṼL)

is ΓL2(2
n), with CN (L̄) ∼= Z2n−1, and O2(CN (Z̃L)) is the product of T̄ with a

diagonal subgroup of CN (L̄) × L̄ isomorphic to Z2n−1. Therefore CZ := CM (ZL)
acts on TL and on [ZL, L] = VL, and O

2(C̄Z/T̄L) is a subgroup of Z2n−1.

Let UH := 〈ZH〉 and set Ĥ := H/CH(UH). Observe UH ∈ R2(H) by B.2.14.
By Hypothesis 6.1.1, n(H) = 1. Recall by 3.3.2.4 that we may apply results of
section B.6 to H . So as K = [K, J(T )] and [H,Z] 6= 1, H appears in case (2)

of E.2.3, with Ĥ ∼= S3 or S3 wr Z2 and S ∈ Syl2(KS). By parts (a) and (b) of
B.6.8.6, CT (UH) E H .

We claim CH(UH) = O2(H), so assume otherwise. By B.6.8.6.a, CH (UH) ≤
O2,Φ(H), so by B.6.8.2,H/O2(H) ∼= D8/3

1+2. Thus there is a T -invariant subgroup
Y = O2(Y ) of O2,Φ(K) with Y = [J(T ), Y ] and |Y : O2(Y )| = 3, and Y centralizes
UH by assumption. Then by B.6.8.2, Y ≤ O2,Φ(K) ≤ M , so as Y centralizes UH
and Z ≤ UH , Y centralizes Z and normalizes [Z,L] = VL. If Y centralizes VL then
[Y, L] ≤ CL(VL) = O2(L), so that LT normalizes O2(Y O2(L)) = Y , and hence
NG(Y ) ≤M = !M(LT ). As K ≤ NG(Y ), this contradicts K 6≤M . Hence Ȳ 6= 1,

and as Y ≤ CZ , we conclude from paragraph three that J(T ) = T̄L E T̄ Ȳ . This
contradicts Y = [Y, J(T )], and so completes the proof that CH(UH) = O2(H). It
follows that H = J(H)T with H/O2(H) ∼= S3 or S3 wr Z2, and in particular that
H ∩M = T .
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Let X := 〈DL, H〉. Then X ∈ H(T ) by 5.1.7.2.iii, as VL is not the S5-module.

Set U := 〈ZX〉, QX := O2(X) and X∗ := X/CX(U). As ṼL is the natural module

and Z ≤ V , for d ∈ D#
L we have CZ(d) = CZ(L) < Z, so that DL is faithful on

U . Thus CDLT (U) = CT (U). Also CH (U) ≤ CH(UH) = O2(H) from an earlier
reduction. Thus CT (U) = CH(U), so CT (U) is normal in X = 〈DL, H〉. Finally
QX ≤ CT (U) as U ∈ R2(X), so QX = CT (U) is Sylow in CX (U).

We next show that D∗L does not act on K∗, so we assume that D∗L ≤ NX∗(K
∗),

and derive a contradiction during the next few paragraphs. First DL acts on
the preimage KCX(U) of K∗. Recall DL acts on S, so that DL normalizes
[CU (S),K

∗] = [CU (S),K] =: UK . We saw that S ∈ Syl2(SK), so that UK ∈
R2(SK) by B.2.14. As K = [K, J(T )], we may apply E.2.3.2 to UK to conclude
K∗S∗ = H∗1 × · · · × H∗s and UK = U1 ⊕ · · · ⊕ Us with s ≤ 2, H∗i

∼= S3, and
Ui := [UK , Hi] ∼= E4. As s ≤ 2, DL normalizes H∗i and Ui. Therefore DL acts
on CUi(S)

∼= Z2, so DL centralizes K∗S∗ and UK . Then as T normalizes K and
CZ(DL) = CZ(L),

1 < Z ∩ UK ≤ CZ(DL) = CZ(L),

so that CX (U) ≤ CX(Z ∩ UK) ≤ M = !M(LT ). Thus CX(U) ≤ CZ ≤ NG(TL) ∩
NG(VL) using paragraph three. Set X0 := O2(CX (U)) and C := CX0(ṼL).

Suppose for the moment that there exists an odd prime divisor p of |X0| co-
prime to 2n − 1. Then as O2(C̄Z/T̄L) is a subgroup of Z2n−1 by paragraph three,

Op
′

(X0) ≤ C. In this case set X1 := Op
′

(X0); then X1 char X0 E X , so that
X1 E X . Now suppose instead that q is any prime divisor of 2n − 1. Then
mq(M) ≤ 2 as M is an SQTK-group, so as DL is faithful on U , mq(X0) ≤ 1. Thus
if all odd prime divisors of |X0| divide 2

n−1, and C is not a 2-group, then for some

odd prime p, X1 := Op
′

(O2,p(C)) 6= 1, and X0 has cyclic Sylow p-groups, so again
X1 char X0, and X1 E X .

We have shown that if C is not a 2-group, then there is 1 6= X1 = O2(X1) ≤ C

with X1 E X . Thus [L,X1] ≤ CL([Ṽ , L]) = O2(L), so that LT normalizes
O2(O2(L)X1) = X1. But then X ≤ NG(X1) ≤ M = !M(LT ), contradicting

H 6≤M . We conclude that C is a 2-group, and so CX0T (ṼL) = CT (ṼL)C = Q from
paragraph two. Then as we saw that CX (U) normalizes VL and TL, X0 normalizes
Baum(TLQ) = S. Therefore asDL acts on S andKX0, DL acts on 〈SKX0〉 = 〈SK〉,
and hence on O2(〈SK〉) = K.

Let K1 := O2(K ∩H1). We saw that H appears in case (2) of E.2.3, so S acts
on K1 with S Sylow in SK1 and SK1/O2(SK1) ∼= S3. As DL normalizes H1, DL

normalizes K1S. Thus parts (a)–(d) of Hypothesis F.1.1 hold with LS, K1S in the
roles of “L1”, “L2”. By Theorem 4.3.2, M = !M(LS), so O2(〈LS,K1〉) = 1, giving
part (e). Finally as LS E LT , LS ∈ He by 1.1.3.1, and similarly K1S ∈ He,
giving part (f). Thus α := (LS, SDL,K1DLS) is a weak BN-pair of rank 2 by
F.1.9. Indeed as NL2(S) ≤ S, α is described in F.1.12. Then α is not of type L3(q)
since n(K1) = 1 < n(L). In all other cases of F.1.12, one of LS or K1S centralizes
Z(S) ≥ Z, which is not the case. This contradiction shows that D∗L does not act
on K∗.

Recall that H = J(H)T , and UH is an FF-module for H/O2(H) ∼= S3 or
S3 wr Z2. Thus U is also an FF-module for X∗. By Theorem B.5.6, J(X)∗ =
L∗1 × · · · × L∗s is a direct product of s ≤ 2 subgroups L∗i permuted by H , with
either L∗i

∼= L2(2) or F
∗(L∗i ) quasisimple. In particular as s ≤ 2, O2(X) normalizes
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each L∗i . Choose numbering so that L∗0 := L∗1 · · ·L
∗
r is the product of those factors

L∗i upon which some X-conjugate of K projects nontrivially; in particular K∗ =
[K∗, J(T )∗] ≤ L∗0, 1 ≤ r ≤ 2, and by construction L∗0 E X∗. Thus X∗ =
〈K∗, D∗LT

∗〉 = L∗0D
∗
LT

∗ and DL acts on each L∗i .
Now for 1 ≤ i ≤ r, [U,L∗i ] is an FF-module for L∗i , and we claim L∗i is on

the following list: Lk(2), k = 2, 3, 4, 5; Sk, k = 5, 6, 7, 8; Ak, k = 6, 7, 8; Â6, or
G2(2). For no L∗i can be isomorphic to L2(2

m), SL3(2
m), Sp4(2

m), or G2(2
m)

with m > 1, acting on the natural module, since in those cases J(T )∗ induces inner
automorphisms on L∗i , whereas T acts on the solvable group K and K = [K, J(T )].
Thus the claim follows from B.5.6 and B.4.2. Furthermore L∗i is not isomorphic to
L2(2) for all i ≤ r, since DL does not normalize K∗ by a previous reduction.

As DLT = TDL and the groups L∗i do not appear in A.3.15, we conclude
O3(D∗L) centralizes L

∗
i . So as D∗L does not normalize K∗ ≤ L∗0, O

3(D∗L) < D∗L. As
L/O2(L) ∼= L2(2

n), it follows that 3 divides 2n − 1, so that n is even. As Out(L∗i )
is a 2-group for each L∗i , DL induces inner automorphisms on L∗0. Then as DL is
cyclic and L∗i has no element of order 9, D∗L/CD∗L(L

∗
1 · · ·L

∗
r) is of order 3.

Set D0 := O2(DLT ) and let A∗i be the projection of D∗0 on L∗i . By the previous
paragraph, 1 6= A∗i for some i, and A∗i = O2(A

∗
i )B

∗ for B∗ of order 3. As D0 is
invariant under the Sylow group T , we conclude by inspection of the possibilities
for L∗i listed above that A∗i = O2(P ∗), where P ∗ is either a rank one parabolic
over T ∗ ∩ L∗i , or a subgroup isomorphic to S3 or S4 containing T ∗ ∩ L∗i in case
O2(L

∗
i )
∼= A7. Let Li denote the preimage of L∗i . In each case A∗i = [T ∩ Li, A

∗
i ],

so O3′(D0) = [O3′(D0), T ∩ Li] ≤ Li. It follows as DL is cyclic that A∗i 6= 1 for a
unique i, and T ∩Li centralizes a subgroup of index 3 in D0/O2(D0). We conclude
from the structure of Aut(L/O2(L)) that n = 2; hence DL = O3(DL) ≤ Li and
D0T/O2(D0T ) ∼= S3. We may choose notation so that i = 1.

As T acts on D0, T acts on L1, so as O2(X) normalizes each Li, L1 E X .
Recall by definition that the projection A∗ of K∗ on L∗1 is nontrivial. As A∗ is
T -invariant with A∗/O2(A

∗) ∼= Z3 or E9, arguing as in the previous paragraph, we
conclude that A∗ = [A∗, T ∩ L1]. Then as T acts on K, A∗ ∩K∗ 6= 1, so as T is
irreducible on K/O2(K), K∗ = A∗ ≤ L∗1. Now as X acts on L1, and DL and K
are contained in L1, X = 〈DL,KT 〉 = L1T .

Assume L∗1 is L2(2) or S5. Then there is a unique T ∗-invariant nontrivial
solvable subgroup Y ∗ = O2(Y ∗) of L∗1. Hence K∗ = Y ∗ = D∗0 , impossible as D∗L
does not act on K∗. Therefore L∗1 is Lk(2), 3 ≤ k ≤ 5, Sk or Ak , 6 ≤ k ≤ 8, Â6, or
G2(2).

Suppose that H/O2(H) ∼= S3 wr Z2. Then as K∗ ≤ L∗1 and X = L1T ,
X∗ ∼= Aut(Lk(2)), k = 4 or 5, and K∗ a rank-2 parabolic determined by a pair of
non-adjacent nodes. As T normalizes D∗0 , with D

∗
0/O2(D

∗
0) of order 3, k = 4. Then

as [Kj , Z] 6= 1 for j = 1 and 2, Theorems B.5.1 and B.4.2 show that [U,L1] is the
sum of the natural module and its dual. But then J(T )∗ = O2(K

∗), contrary to
K = [K, J(T )].

This contradiction shows that H/O2(H) ∼= S3. Recall also D0T/O2(D0T ) ∼=
S3. Now X = 〈H,D0T 〉, so that O2(X∗) is generated by K∗ and D∗0 . We conclude

O2(L∗1) is L3(2), U3(3), A6, A7, or Â6. Further neither D0 nor K centralizes Z, so
we concludeX∗ ∼= S7 and [U,L∗1] is the natural module forX∗. From the description
of offenders in B.3.2.4, J(T )∗ is generated by the three transpositions in T ∗, so as
J(T ) E D0T , it follows that D∗0 permutes these transpositions transitively, and
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hence CZ(D0T )∩ [U,L1] is a vector of weight 6, so that CX∗(CZ(D0T )) ∼= S6. Now
CZ(D0T ) = CZ(DL) = CZ(L), so CX(CZ(D0T )) ≤ M = !M(LT ). But this is
impossible as D0 E X ∩M , completing the proof of 6.1.5. ¤

Lemma 6.1.6. (1) CZ(L) = 1, and hence CT (L) = 1.
(2) VL is the natural module for L̄, and V = VL if L = [L, J(T )].
(3) VL = [R2(LT ), L].

Proof. If CZ(L) 6= 1, then CG(Z) ≤ CG(CZ(L)) ≤ M = !M(LT ). But then
for H ∈ H∗(T,M), H ≤ M by 6.1.5, contrary to H 6≤ M . This contradiction
establishes (1). Then 6.1.4 and (1) imply VL is the natural module for L̄. The final
statement of (2) follows as V = CV (L)[V, L] by E.2.3.2. Finally V ≤ R2(LT ), so
VL ≤ [R2(LT ), L]. On the other hand, applying (2) to R2(LT ) in the role of “V ”,
L is irreducible on [R2(LT ), L], so (3) holds. ¤

Now replacing V by VL if necessary, we assume throughout the rest of this
section that

V = VL.

Thus by 6.1.6.2, V is the natural module for L̄ ∼= L2(2
n). Since L E M , and L is

irreducible on V , using 6.1.3.1 we have:

Lemma 6.1.7. (1) V is a TI-set under M . Thus if 1 6= U ≤ V , then NM (U) ≤
NM (V ) =MV .

(2) Hypothesis E.6.1 holds, so we may apply results from section E.6.

Using 3.1.4.1, 6.1.7, and 6.1.5 we have:

Lemma 6.1.8. If H ≤ NG(U) for 1 6= U ≤ V , then H ∩M = NH(V ). In
particular H ∩M = NH(V ) for each H ∈ H∗(T,M).

Let ZS := CV (TL), so that ZS is a 1-dimensional F2n-subspace of the natural
module V . Let S := CT (ZS).

Lemma 6.1.9. (1) S = TLO2(LT ) and S ∈ Syl2(CG(ZS)).
(2) NG(S) ≤M .
(3) F ∗(NG(ZS)) = O2(NG(ZS)).
(4) V ≤ O2(CG(ZS)) and V/ZS ≤ Z(S/ZS).
(5) NG(ZS) = CG(ZS)NM (ZS) = CG(ZS)NMV (ZS).
(6) J(T ) = J(S) and Baum(T ) = Baum(S).

Proof. As T ≤ NG(ZS), (3) holds by 1.1.4.6, and also CT (ZS) = S ∈
Syl2(CG(ZS)). As V is the natural module for L̄, the remaining assertion of (1)
holds, and also V/ZS ≤ Z(S/ZS). Then an application of G.2.2.1, with NG(ZS) in
the role of “H”, establishes the remaining assertion of (4).

Now using (1), we may apply a Frattini Argument to conclude that NG(ZS) =
CG(ZS)(NG(ZS) ∩NG(S)). Thus (5) will follow from (2) since V is a TI-set in M
by 6.1.7; so it remains to prove (2) and (6).

If J(T ) ≤ CT (V ), then in particular J(T ) ≤ S. On the other hand, if J(T )
does not centralize V , then as V is the natural module for L̄, J(T ) ≤ S by B.4.2.1.
Therefore as S = CT (ZS), (6) follows from B.2.3.5. Finally Theorem 4.3.17 implies
(2). ¤
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Lemma 6.1.10. (1) r(G, V ) ≥ n.
(2) s(G, V ) = m(AutM (V ), V ) = n.
(3) Suppose that V g normalizes but does not centralize V for some g ∈ G. Then

m(V g/CV g (V )) = n.

Proof. As V is the natural module for L̄, m(AutM (V ), V ) = n. By 6.1.7.2,
V satisfies Hypothesis E.6.1. Thus if n > 2, (1) and (2) hold by Theorem E.6.3. So
assume n = 2, and let U ≤ V with m(V/U) = 1. As V is the natural module, L
is transitive on F2-hyperplanes of V , so we may choose U E T . Then E.6.13 says
CG(U) ≤ M . Thus in any case, r(G, V ) ≥ n = m(AutM (V ), V ), so that (1) and
(2) are established.

Assume the hypotheses of (3), and set U := CV g (V ). As V g ≤ NG(V ),

m(V g/U) ≤ m2(LT/CLT (V )) = n.

On the other hand as V 6≤ CG(V
g), m(V g/U) ≥ s(G, V ) = n by E.3.7 and (2),

establishing (3). ¤

Lemma 6.1.11. Suppose V g ≤ T with 1 6= [V, V g ] ≤ V ∩ V g. Then ZS =
[V, V g ] = V ∩ V g and V g ∈ V CG(ZS).

Proof. Let A := V g. By 6.1.10.3, m(A/CA(V )) = m(V/CV (A)) = n, so that
Ā is an FF ∗-offender on V . Therefore by B.4.2.1, Ā ∈ Syl2(L̄) and ZS = [A, V ] =
CV (A). As V normalizes A by hypothesis, we have symmetry between A and V ,

so ZS = CA(V ). Therefore Zg
−1

S = CV (V
g−1) is a 1-dimensional F2n subspace of

V , and hence Zg
−1

S = ZhS for some h ∈ L by transitivity of L on such subspaces.

Thus V g = V hg with hg ∈ NG(ZS), so V
g ∈ V CG(ZS) by 6.1.9.5. ¤

Lemma 6.1.12. (1) Either NG(W0(T, V )) 6≤M or CG(C1(T, V )) 6≤M .
(2) If n > 2, then ZS ≤ C1(T, V ).
(3) W0(T, V ) ≤ S.

Proof. By Hypotheses 6.1.1, n(H) = 1 for each H ∈ H∗(T,M). Hence as
H 6≤ M , part (1) follows from 6.1.10.2 and E.3.19. Assume A ≤ V g ∩ T , with
w := m(V g/A) satisfying n − w ≥ 2. By 6.1.10, n = s(G, V ), so by E.3.10, either
Ā = 1 or Ā ∈ A2(T̄ , V ). In either case, Ā ≤ T̄L, so that A ≤ S by 6.1.9.1. Since
n ≥ 2, (3) follows from this observation in the case w = 0. If n > 2, (2) follows
from the observation in the case w = 1. ¤

Lemma 6.1.13. Let U ≤ V with m(V/U) = n. Then one of the following holds:

(1) CG(U) ≤ NG(V ).
(2) U ∈ ZLS .
(3) n is even, and U = CV (t) for some t ∈ M inducing an involutory field

automorphism on L̄.

Proof. If U does not satisfy either (2) or (3), then CM (U) = CM (V ). Then
as r(G, V ) ≥ n > 1 by 6.1.10.1, (1) holds by E.6.12. ¤

Lemma 6.1.14. Assume n is even and U = CV (t) for some t ∈ T inducing
an involutory field automorphism on L̄. Choose notation so that TU := NT (U) ∈
Syl2(NM (U)). Then

(1) R := Q〈t〉 ∈ Syl2(CG(U)), NG(J(R)) ≤M , and TU ∈ Syl2(NG(U)).
(2) NG(U) and CG(U) are in He.
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(3) W0(R, V ) ≤ CT (V ), and if n > 2 then W1(R, V ) ≤ CT (V ).
(4) VU := 〈V NG(U)〉 is elementary abelian, and VU/U ∈ R2(NG(U)/U); further

[O2(NG(U)), VU ] ≤ U .
(5) Assume further that n > 2, and V g ≤ CG(U) is V -invariant with [V, V g ] 6=

1. Then CG(ZS) 6≤M .

Proof. Observe that R := CT (U) = Q〈t〉, whereQ := CT (V ), and U and V/U
are the natural module for NL(U)/O2(NL(U)) ∼= L2(2

n/2). Now A(R) = A(Q),
so J(R) = J(Q) E LT , and hence NG(R) ≤ NG(J(R)) ≤ M = !M(LT ), so
R ∈ Syl2(CG(U)). Similarly TU := NT (U) ∈ Syl2(NG(U)) since J(TU ) = J(Q).
Thus (1) holds. As U ∩ Z 6= 1, F ∗(NG(U)) = O2(NG(U)) by 1.1.4.3. Then
CG(U) ∈ He by 1.1.3.1, so (2) holds.

Next by 6.1.12, Wi := Wi(R, V ) ≤ CR(ZS) ≤ Q for i = 0 when n ≥ 2, and for
i = 1 when n > 2. Thus (3) holds.

Let VU := 〈V NG(U)〉 and NG(U)∗ := NG(U)/CG(VU ). We may apply G.2.2
with U , V , O2(CL(U)), TU , NG(U) in the roles of “V1, V , L, T , H”. ByG.2.2.4,
VU/U ∈ R2(NG(U)/U). By G.2.2.1, VU ≤ O2(CG(U)) and [O2(NG(U)), VU ] ≤ U .
Then VU ≤ O2(CG(U)) ≤ R using (1), so that VU ≤W0(R, V ) =W0. Therefore as
W0 ≤ CT (V ) by (3), VU = 〈V NG(U)〉 is elementary abelian. This establishes (4).

Now assume the hypotheses of (5). First m(V/CV (V
g)) = n, by applying

6.1.10.3 with the roles of V , V g reversed. Then as U ≤ CV (V
g) with m(U) =

m(V/U) = n, we conclude U = CV (V
g). As n > 2, LU := O2(NL(U)) ∈

L(NG(U), TU ). As TU ∈ Syl2(NG(U)) by (1), LU ≤ K ∈ C(NG(U)) by 1.2.4.
As [U,LU ] = U , CK(U) ≤ O∞(K). By (1) and a Frattini Argument, KR =
CKR(U)NKR(J(R)) = CK(U)(K∩M)R. Now LU = L∞U E K∩M , andK/O∞(K)
is simple by A.3.3.1, so K = LUCK(U). Thus if CK(U) ≤ M , then K ≤ M , so
that K = K∞ = LU . On the other hand, if CK(U) 6≤M , then also O∞(K) 6≤M .

By (3) and E.3.16, NG(W0) ≤ M ≥ CG(C1(R, V )). Each solvable subgroup
X of CG(U) containing R satisfies n(X) = 1 by E.1.13, and so is contained in
M by E.3.19. This eliminates the exceptional case O∞(K) 6≤ M of the previous
paragraph, so that LU = K. Since TU normalizes LU ∈ C(NG(U)), and is Sylow in
NG(U) by (1), NG(U) normalizes LU by 1.2.1.3. Then as O2(LU ) ≤ Q ≤ CG(V ),
O2(LU ) ≤ CG(VU ).

Recall VU is elementary abelian by (4). As V is the direct sum of two copies
of the natural module U for LU/O2(LU ), and LU E NG(U), VU is the sum and
hence the direct sum of copies of the natural module for LU/O2(LU ). Next as
V g ≤ CG(U), V g ≤ Rh for some h ∈ CG(U), so by (3)

V g ≤W0(R
h, V ) ≤ Qh ≤ O2(T

h
ULU ).

Thus [V g, LU ] ≤ [O2(T
h
ULU ), LU ] ≤ O2(LU ) ≤ CG(VU ). Thus LU normalizes Z1 :=

[V gCG(VU ), V ] = [V g, V ]. We saw earlier that U = CV (V
g) with m(V/U) = n.

Then as n > 2, V ≤ Sg , so that in fact Sg = V O2(L
gSg). Hence Z1 = [V, V g ] =

[Sg, V g] = ZgS .
We finally assume that CG(ZS) ≤M . Then NG(ZS) ≤M by 6.1.9.5, so

LU ≤ NG(Z1) = NG(Z
g
S) = NMg (ZgS) ≤ NMg (V g),

since V is a TI-set inM by 6.1.7. This is impossible, as the L∗U -submodule V ∩V g =
Z1 = ZgS of rank n in VU is natural by an earlier remark, whereas AutM (ZS) is
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solvable. This contradiction establishes (5), and so completes the proof of the
lemma. ¤

Proposition 6.1.15. Either

(1) CG(ZS) 6≤M , or
(2) n = 2, and either NG(W0(T, V )) 6≤M or W1(T, V ) 6≤ S.

Proof. Set W0 := W0(T, V ). Suppose first that NG(W0) 6≤ M . Then as
M = !M(LT ), W0 6≤ O2(LT ) = CT (V ) by E.3.16.1, so there is V g ≤ T ≤ NG(V )
which does not centralize V . Set U := CV g (V ); then m(V g/U) = n by 6.1.10.3,
so that 6.1.13 applies to U with V g is in the role of “V ”. If V acts on V g, then
by 6.1.11, V g ∈ V CG(ZS), while V M ≤ O2(L) ≤ CG(V ), so (1) holds. Therefore
we may assume V 6≤ NG(V

g). In particular CG(U) 6≤ NG(V
g), so that case (1) of

6.1.13 does not hold. If case (2) of 6.1.13 holds, then again (1) holds. If case (3) of
6.1.13 holds with n > 2, then v ∈ V −CV (V

g) induces a field automorphism on V g

with U = CV g (v) and V is V g-invariant with 1 6= [V, V g ], so by 6.1.14.5, (1) holds
yet again. Finally if n = 2, then (2) holds as we are assuming that NG(W0) 6≤M .

Thus we may instead assume that NG(W0) ≤ M . Therefore by 6.1.12.1,
CG(C1(T, V )) 6≤M . Thus if ZS ≤ C1(T, V ), then (1) holds. On the other hand if
ZS 6≤ C1(T, V ) then n = 2 by 6.1.12.2, and also W1(T, V ) 6≤ S, so (2) holds. ¤

6.1.2. Reducing to CG(ZS) ≤M and n = 2. In this subsection, we consider
the first case of 6.1.15, where CG(ZS) 6≤ M . Our object is to establish a contra-
diction and so eliminate that case; this is accomplished in Theorem 6.1.27. In the
following chapter, we show that in the second case, G is isomorphic to M22.

Hence in this subsection, we assume:

Hypothesis 6.1.16. CG(ZS) 6≤M , where ZS := CV (TL).

Let I := CG(ZS) and

HS := {H ∈ H(T ) : H 6≤M and O2(H) ≤ I}.

In particular IT ∈ HS , so that HS is nonempty.
Let H denote some arbitrary member of HS . As O2(H) ≤ I , H = O2(H)T ≤

IT ≤ NG(ZS). Set UH := 〈V H〉, HS := CH (ZS), QH := O2(HS), and H̃ := H/ZS.
Notice that UIT = 〈V I〉, (IT )S = I , and QIT = O2(I). Also a Hall 2′-subgroup

DL of NL(TL) normalizes ZS and hence I , but DL ∩ I = 1. Then as NG(ZS) is an
SQTK-group,

mp(DLI) ≤ 2 for each odd prime p.

Lemma 6.1.17. (1) V ≤ QH , S ∈ Syl2(HS), F
∗(HS) = O2(HS) = QH , and

HS E H = HST .
(2) ŨH ∈ R2(H̃S), so ŨH ≤ Z(Q̃H).

(3) QH = CHS (ŨH).
(4) For s ∈ S−CS(V ) and ZS ≤ Y ≤ V , [V, s] = ZS and m([Y, s]) = m(Y/ZS).
(5) If ZS ≤ Y ≤ V with |V : Y | = 2, and S̄0 is a noncyclic subgroup of S̄, then

ZS = [Y, S0].

Proof. As H ∈ H(T ), F ∗(H) = O2(H) by 1.1.4.6. We saw H ≤ NG(ZS),
so that HS = CH(ZS) E H ; then F ∗(HS) = O2(HS) = QH by 1.1.3.1, and S =
CT (ZS) ∈ Syl2(HS). Recall also T ≤ H ≤ IT , so that H = T (H ∩ I) = THS. As
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V is the natural module for L̄, [S, V ] = ZS ; therefore Ṽ is central in S̃ ∈ Syl2(H̃S),

and hence ŨH = 〈Ṽ H〉 ∈ R2(H̃S) by B.2.14. This establishes (2).

Next CH (ŨH) ≤ NH(V ) ≤ M , and further X := O2(CHS (ŨH)) ≤ CM (V ) ≤
CM (L/O2(L)), so that LT normalizes O2(XO2(L)) = X . Hence if X 6= 1, then
H ≤ NG(X) ≤ M = !M(LT ), contradicting H 6≤ M . Therefore X = 1, so

CHS (ŨH) ≤ O2(HS) = QH ; then (3) follows from (2). Parts (4) and (5) follow
from the fact that V is the natural module for L̄. ¤

Let G1 := LT , G2 := H , and G0 := 〈G1, G2〉. Notice Hypothesis F.7.6 is
satisfied: in particular O2(G0) = 1 as G2 6≤M = !M(G1). Form the coset geometry
Γ := Γ(G0;G1, G2) as in Definition F.7.2, and adopt the notation in section F.7. In
particular for i = 1, 2 write γi−1 for Gi regarded as a vertex of Γ, let b := b(Γ, V ),

and pick γ ∈ Γ with d(γ0, γ) = b and V 6≤ G
(1)
γ . Without loss, γ1 is on the geodesic

γ0, γ1, · · · , γb := γ.

Observe in particular that UH plays the role played by “Vγ1” in section F.7. For
α := γ0x ∈ Γ0 let Vα := V x. For β := γ1y ∈ Γ1 let Zβ := ZyS and Uβ = UyH .

Notice that by 6.1.17.1 and F.7.7.2, V ≤ QH ≤ G
(1)
γ1 , so that by F.7.9.3:

Lemma 6.1.18. b > 1.

Lemma 6.1.19. Suppose there exists H ∈ HS ∩ H∗(T,M) with b odd. Then
n = 2 and 〈V I〉 is nonabelian.

Proof. Assume b is odd. By 6.1.18, b > 1, so b ≥ 3. Then UH is elementary
abelian by F.7.11.4.

Further by F.7.11.5, UH ≤ Gγ and Uγ ≤ H , so applying 6.1.12.3 to suitable
Sylow 2-subgroups of Gγ and H , we obtain:

UH ≤ CGγ (Zγ), and Uγ ≤ CGγ1 (ZS) = HS . (!)

Observe that the hypotheses of F.7.13 are satisfied: We just verified hypothesis
(a) of F.7.13, and hypothesis (c) holds by 6.1.1.2 as H ∈ H∗(T,M). Also as
H ∈ H∗(T,M), H ∩ M is the unique maximal subgroup of H containing T by
3.3.2.4. Finally H ∩ M = NH(V ) by 6.1.8, so hypothesis (b) of F.7.13 holds.
Applying F.7.13 to A := UH , we conclude there is α ∈ Γ(γ) with B := NA(Vα) of
index 2 in A. Write E := Vα. If [E,B] = 1, then as s(G, V ) > 1 by 6.1.10.2, for
each h ∈ H

E ≤ CG(B) ≤ CG(B ∩ V
h) ≤ CG(V

h).

But then [E,A] = 1, contrary to B < A. Therefore [E,B] 6= 1. So as A ≤ CGγ (Zγ)
by (!), [E,B] = Zγ by 6.1.17.4.

Suppose that E ≤ QH . Then [A,E] ≤ ZS by 6.1.17.2, so that Zγ = [B,E] ≤
[A,E] ≤ ZS . Hence ZS = Zγ , as these groups are conjugate and so have the same
order. This is impossible, as V ≤ O2(CG(ZS)) by 6.1.17.2, while V 6≤ O2(Gγ) by
choice of γ, and Gγ ≤ NG(Zγ).

Therefore E 6≤ QH , so since Uγ ≤ HS by (!), also E 6≤ O2(H). But as H ∈

H∗(T,M), by 3.3.2.4 we may apply B.6.8.5 to conclude that O2(H) = O2′(G
(1)
1 ), so

that E 6≤ G
(1)
γ1 . Thus d(α, γ1) = b with α, γ, · · · , γ1 a geodesic, so we have symmetry

between γ and γ1. Using this symmetry, and applying F.7.13 to E in the role of
“A”, we conclude there is δ ∈ Γ(γ1) such that F := NE(Vδ) is a hyperplane of E.
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Then applying the subsequent arguments with F in the role of “B”, [F, Vδ ] = ZS
and Vδ 6≤ Qγ , so replacing γ0 by δ, we may assume that δ = γ0 and Vδ = V .

Let VB := V ∩ B = NV (E). Notice VB is of index at most 2 in V , as B
is of index 2 in UH . Then [VB , F ] ≤ ZS ∩ Zγ , with VB , F of index 2 in V , E.
Therefore [VB , F ] is of index at most 2 in ZS and Zγ by (!) and 6.1.17.4. Further
if [VB , F ] = ZS , then ZS = [VB , F ] = Zγ , which we saw earlier is not the case.
Hence [VB , F ] is of index 2 in both ZS and Zγ , so |V : VB | = 2 by 6.1.17. Therefore
by 6.1.17.5, n = 2, and 〈z〉 := [VB , F ] = ZS ∩ Zγ is of order 2. Thus we have
established the first assertion of 6.1.19.

As DL is transitive on Z#
S , z is 2-central in LT , so we may assume T ≤ Gz.

Thus H ≤ Gz. As DL is transitive on Z#
S , and L is transitive on V #, we conclude

from A.1.7.1 that Gz := CG(z) is transitive on the G-conjugates of ZS and V
containing z. Then Zγ = ZgS for g ∈ Gz . Similarly if V ≤ O2(Gz), then E ≤ O2(Gz)
as E ∈ V Gz ; but then E ≤ O2(Gz) ≤ O2(H), contrary to an earlier reduction. We
conclude V 6≤ O2(Gz).

LetW0 := 〈V I〉; to complete the proof, we assumeW0 is abelian and it remains

to derive a contradiction. Let Qz := 〈ZGzS 〉. By 1.1.4.6, F ∗(Gz) = O2(Gz). As

n = 2, [ZS , T ] ≤ 〈z〉, so Qz ≤ O2(Gz) by B.2.14 applied in Ĝz := Gz/〈z〉, and

hence Qz ≤ T . Let W := W0 ∩ Qz; as I ≤ Gz, I ≤ NG(W ). Set I∗ := I/CI(Ŵ ).
Now Qz ≤ T ≤ NG(V ), so Qz ≤ kerGz(NGz(V )). Then as E ∈ V Gz , Qz acts on
E, and in particular W acts on E. We have seen that E ≤ I ≤ NG(W ), so that

[W,E] ≤ W ∩ E. Next as VB ≤ W0, [VB , E] ≤ W0. But Zγ ≤ Qz as Zγ ∈ ZGzS ,
and Zγ = [VB , E] by (!) and 6.1.17.4, so Zγ ≤ W ∩ E. Finally if Zγ < E ∩W ,
then m(E/(E ∩ W )) ≤ 1 since n = 2. Then as V ≤ W0 and W0 is abelian by
assumption, V ≤ CG(E ∩ W ) ≤ CG(E) by 6.1.10.2, contrary to [VB , F ] = 〈z〉.

Thus [E,W ] ≤ E ∩W = Zγ , so [E∗, Ŵ ] ≤ Ẑγ of order 2, and hence E∗ is trivial or

induces a group of transvections on Ŵ with center Ẑγ = ẐgS .

Note that CI(Ŵ ) ≤ NG(Z
g
S) ≤ NG(O2(I

g)), so that

O2(I
g) ∩ CI(Ŵ ) ≤ O2(CI (Ŵ )) ≤ O2(I). (∗)

Then as E ≤ Uγ ≤ O2(I
g), but we saw E 6≤ O2(H), we conclude from (*) that

E does not centralize Ŵ , so that E∗ 6= 1. As W0 is abelian, Zγ ≤ CI(W̃ ), so we
conclude 1 ≤ m(E∗) ≤ m(E/Zγ) = n = 2.

Let P := 〈EI 〉. As E centralizes ZS but NE(V ) = F < E, P 6≤ M by 6.1.7.1.

As E ≤ O2(I
g) and we saw CI(Ŵ ) acts on O2(I

g), it follows from (*) that

[E,CI(Ŵ )] ≤ O2(I
g) ∩ CI (Ŵ ) ≤ O2(I),

so we conclude that CP (Ŵ ) ≤ O2,Z(P ). Let P0 denote the preimage in P of

O2(P
∗). Then P0 ≤ O2,Z,2(P ) = O2,Z(P ), so that P0 = O2(P )CP (Ŵ ), and hence

O2(P
∗) = O2(P )

∗. On the other hand, by 6.1.17.2, O2(P ) ≤ O2(I) ≤ CI (Ŵ0) ≤

CI(Ŵ ), so O2(P
∗) = O2(P )

∗ = 1, and then Ŵ ∈ R2(P
∗). Thus as E∗ induces a

group of transvections on Ŵ with center Ẑγ of order 2, we see from G.6.4 that P ∗ is
the direct product of subgroups X∗i isomorphic to Sm or Lk(2) for suitable m and
k. So either X∗i

∼= L2(2) ∼= S3, or X
∗
i is nonsolvable, in which case as the preimage

Xi is normal in P and P is subnormal in NG(ZS), X
∞
i ∈ C(NG(ZS)). In that case,

as DL
∼= Z3 and DL ∩ I = 1, we conclude from A.3.18 that m3(X

∗
i ) = 1. Therefore
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X∗i
∼= S3, S5 or L3(2). In particular now O2,Z(P ) = O2(P ) as the multiplier of

these groups is a 2-group. Thus P ∗ = P/O2(P ).
Note that O2(I) ≤ NI(X

∗
i ) by G.6.4.3. Next if X∗i is not S3, then DL

normalizes O2(Xi) = X∞i by 1.2.1.3. On the other hand, if X∗i
∼= S3, then

for d ∈ DL, O
2(Xi)

d ≤ O2(I) ≤ NI(X
∗
i ). Then recalling that m3(I) ≤ 2,

either O2(Xi) = O2(Xi)
d, or else XiO

2(Xd
i )/O2(XiO

2(Xi)
d) ∼= S3 × Z3 and

O2(Xi)O
2(Xi)

d = O3′(I) =: J . In the latter case, I/CI(J/O2(J)) ∼= S3 × S3
or S3 wr Z2, whose outer automorphism groups are 2-groups, so the former must
hold. Thus in any case, DL and O2(I) act on each Xi. So as m3(IDL) ≤ 2,

P = X1 and O2(P ) = O3′(I). If P ∗ ∼= S5, then the T -invariant Borel subgroup of
P is not contained in M—for otherwise, TP ∈ H∗(T,M) with n(PT ) > 1, contrary
to 6.1.1.2. If P ∗ is L3(2) then T induces inner automorphisms on P ∗ by G.6.4.2a.
Thus in each case there exists a TDL-invariant parabolic subgroup P1 of P , with
P1 6≤M and TP1/O2(P1) ∼= S3. Then θ := (LT,DLT, P1DLT ) satisfies Hypothesis
F.1.1, and so by F.1.9 defines a weak BN-pair. Moreover the hypotheses of F.1.12
are satisfied by P1DLT , so that θ is described in one of the cases of F.1.12.I. Since
L/O2(L) ∼= L2(4) and P1/O2(P1) ∼= L2(2), the only possibility there is the U4(2)-
amalgam, which cannot occur here, since in that amalgam V is the A5-module for
L/O2(L). This contradiction completes the proof of 6.1.19. ¤

Let U := 〈V I 〉 and recall H̃ = H/ZS .

Lemma 6.1.20. (1) U ≤ O2(I) and Ũ ≤ Z(O2(Ĩ)).
(2) U is nonabelian.
(3) For x ∈ U − Z(U), [U, x] = ZS.
(4) U/CU (V ) ∼= E2n . Further for g ∈ I with [V, V g] 6= 1, U = V V gCU (V V

g),
and {V, V g} is the set of maximal elementary abelian subgroups of V V g.

Proof. PickH ∈ H∗(T,M). If b is odd, then (2) holds by 6.1.19. On the other
hand, if b is even, then 1 6= [V, Vγ ] ≤ V ∩Vγ by F.7.11.2, so that Vγ ≤ NG(V ) ≤M ,
and we may take Vγ ≤ T . Then by 6.1.11, ZS = [V, Vγ ] and Vγ ∈ V I . So (2) is
established in this case also.

Part (1) folows from 6.1.17.2 applied to IT in the role of “H”. For x ∈ U−Z(U),
x does not centralize all I-conjugates of V ; so replacing x by a suitable I-conjugate,
we may assume [x, V ] 6= 1. Then as x ∈ O2(I) ≤ S, [x, V ] = ZS by 6.1.17.4, so (3)
holds. By (2) we may choose g ∈ I with [V, V g ] 6= 1; by (1), V g ≤ NS(V ). Then
by 6.1.10, m(V g/CV g (V )) = n = m(S/CS(V )), so S = V gCS(V ), and hence also
U = V gCU (V ). Then we conclude that (4) holds from the symmetry between V
and V g . ¤

For the remainder of the section, we choose H := NG(ZS); in contrast to our
earlier convention, this “H” is not in HS . We also pick g ∈ I with [V, V g] 6= 1;
such a g exists by 6.1.20.2. As NL(ZS) is irreducible on V/ZS , Hypothesis G.2.1
is satisfied with ZS in the role of “V1”. Recall from section G.2 that the condition
U nonabelian in 6.1.20.2 is equivalent to Ū 6= 1. Thus we have the hypotheses of
G.2.3, so we can appeal to that lemma.

Lemma 6.1.21. Let l ∈ L − H, and set L1 := 〈U,U l〉, R := O2(L1), and
E := U ∩ U l. Then

(1) L1 = 〈UMV 〉 E MV and L1 = LU .
(2) R = CU (V )CU l(V ) and UR ∈ Syl2(L1).



676 6. REDUCING L2(2
n) TO n = 2 AND V ORTHOGONAL

(3) Φ(E) = 1, E/V ≤ Z(L1/V ), and E = kerU (MV ) E MV .
(4) Φ(R) ≤ E, and R/E = CU (V )/E×CU l(V )/E is the sum of natural modules

for L1/R with CU (V )/E = CR/E(U).
(5) MV ≤ NG(R); in particular, R ≤ O2(MV ).

Proof. As we just observed, we may apply G.2.3 with ZS in the role of “V1”;
in that application, L1, R, E play the roles of “I , S, S2”.

Now L1 = LU by G.2.3.2 and LU = LO2(LU) by G.2.3.1, so O2(L1) = L1 ∩
O2(LT ). Hence U ∩O2(L1) = CU (V ), so that CU (V ) plays the role of “W”. Then
(2) follows from parts (3) and (1) of G.2.3, while (4) follows from G.2.3.6. By
G.2.3.5, E/V ≤ Z(L1/V ) and Φ(E) = 1. Thus it remains to establish the first
statement of (1), the last statement of (3), and (5).

Now U = 〈V CG(ZS)〉, so as NG(ZS) = NMV (ZS)CG(ZS) by 6.1.9.4, NG(ZS)

acts on U . Next ZMV

S = ZLS , so that MV = NMV (ZS)L ≤ NMV (U)L. Then
as L1 = LU , L1 E MV , completing the proof of (1). Similarly kerU (MV ) =
kerU (L1) ≤ U ∩ U l = E and E E L1 by G.2.3.4, so E = kerU (L1), completing the
proof of (3). Finally (5) holds as R = O2(L1) and L1 E MV by (1). ¤

During the remainder of the section, R and E are as defined in 6.1.21.

Lemma 6.1.22. E < R.

Proof. Assume that R = E. In particular R ≤ U , and hence R = CU (V )
by 6.1.21.2. By 6.1.20.2, we may choose g ∈ I with [V, V g] 6= 1; then U =
V V gCU (V V

g) by 6.1.20.4. Also CU (V V
g) = CR(V

g) = CE(V
g). By 6.1.21.3,

Φ(E) = 1, while by 6.1.20.4, the maximal elementary abelian subgroups of V V g

are V and V g , so the maximal elementary abelian subgroups of U are R = CU (V )
and Rg = CU (V

g). By 6.1.21.5, LT acts on R, so T normalizes both members
of A(U), and hence both R and Rg are normal in O2(I)CT (ZS) = I . But then
I ≤ NG(R) ≤ M = !M(LT ), contradicting Hypothesis 6.1.16. This completes the
proof. ¤

Lemma 6.1.23. If S0 ≤ S with RU ≤ S0, then NG(S0) ≤M .

Proof. By 6.1.21, RU is Sylow in L1 = LU , so that S0 ∩ L is Sylow in L.
Thus the assertion follows from Theorem 4.3.17. ¤

Recall H = NG(ZS). Let H∗ := H/CH(Ũ) and set q := 2n. By 6.1.21.4 and
6.1.22, R/E is the sum of s ≥ 1 natural modules for L1/R ∼= L2(q).

Lemma 6.1.24. (1) CU (V ) = CR(Ũ).
(2) R∗ ∼= Eqs , and R

∗ = [R∗, D] for each 1 6= D ≤ DL.
(3) [R∗, F (I∗)] = 1.
(4) O2(I

∗) = 1.

Proof. By 6.1.20.4, U = V gCU (V ). Also by 6.1.21.4, CR/E(U) = CU (V )/E,

so that [U, r] 6≤ E for r ∈ R− CU (V ); as Ũ is abelian by 6.1.17.2, we conclude (1)
holds. By 6.1.21.4, R/E ∼= Eq2s is the sum of s natural modules for L1/R with
CU (V )/E the centralizer in R/E of U , so

R∗ = CU l(V )∗ ∼= CU l(V )/E = [R∗, D] ∼= Eqs

for each 1 6= D ≤ DL. That is, (2) holds.

By 6.1.17.2, Ũ ∈ R2(I). Hence O2(I
∗) = 1, which proves (4), and also shows

that F (I∗) ≤ O(I∗). Then as R∗ = [R∗, DL] by (2), (3) follows from A.1.26. ¤
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By 6.1.24.2, R∗ 6= 1 as s ≥ 1. By 6.1.24.4, R∗ is faithful on F ∗(I∗). Thus by
6.1.24.3, R∗ is faithful on E(I∗), so there is K ∈ C(I) with K/O2(K) quasisimple
and [K∗, R∗] 6= 1. As |KH | ≤ 2 by 1.2.1.3, DL acts on K; further DL ∩ I = 1.
So as R∗ = [R∗, DL] by 6.1.24.2, R also acts on each member of KH , and hence
[K∗, R∗] = K∗. Let MK := M ∩ K, and SK := S ∩ K; then SK ∈ Syl2(K) as
S ∈ Syl2(I).

We claim that K 6≤ M , so that M ∗
K < K∗ as CH(Ũ) ≤ NG(V ) ≤ M : For

otherwise K ≤ CM (ZS) ≤ MV ≤ NG(R) using 6.1.7.1 and 6.1.21.5, contradicting
[K∗, R∗] = K∗.

Lemma 6.1.25. (1) n = 2.
(2) K∗ ∼= L2(p), p ≡ ±3 mod 8, p ≥ 11.
(3) s = 1, so that R/E is the natural module for L1/R.

Proof. First DL normalizes S ∈ Syl2(I), and hence also normalizes S∗K ∈
Syl2(K

∗). IfDK := CDL(K
∗) 6= 1, then as we saw R∗ acts onK∗, R∗ = [R∗, DK ] ≤

CI∗(K
∗) by 6.1.24.2, contrary to the choice of K. Thus DL is faithful on K∗.

Therefore either
(A) DL is a 3-group, and hence of order 3 with n = 2, or
(B) K∗/Z(K∗) is described in A.3.15 with Z(K∗) of odd order by 6.1.24.4.
Assume for the moment that (B) holds. As DL acts on S∗K , it follows from

A.3.15 that one of the following holds:

(a) K∗ is of Lie type and characteristic 2.
(b) K∗ is J1 and n = 3 as DL has order 7.
(c) K∗ is (S)Lε3(p) and D

∗
L ∩K

∗ = 1.

However in case (c), using the description in A.3.15.3, DL centralizes S∗K . As
R∗ = [R∗, DL] and Out(K

∗) ∼= S3, R
∗ induces inner automorphisms on K∗, impos-

sible as 1 6= R∗ = [R∗, DL] and DL centralizes S∗K . This eliminates case (c).
Now assume for the moment that (A) holds. We check the list of Theorem C

(A.2.3) for groups K∗/Z(K∗) in which the normalizer of S∗K in Aut(K∗/Z(K∗))
contains a subgroup of order 3, and conclude that either K∗ is of Lie type and
characteristic 2, orK∗ is L2(p) with p ≡ ±3 mod 8 or J2. The case where K

∗ ∼= J2
is ruled out by A.3.18 as DL ∩ I = 1.

Next suppose (A) or (B) holds and K∗ is of Lie type over F2k . Then as DL

acts on S∗K , either k > 1, or K∗ is 3D4(2) and DL is of order 7—so that n = 3.
In any case, DL acts on a Borel subgroup B∗ of K∗ containing S∗K . Further either
K∗ is of Lie rank 1, in which case we set K1 := K, or K∗ is of Lie rank 2. In the
latter case, as K 6≤M , either

(i) DLT acts on a maximal parabolic P ∗ of K with preimage P satisfying

K1 := O2′(P ) 6≤M , or
(ii) K∗ is Sp4(2

k) or (S)L3(2
k) and T is nontrivial on the Dynkin diagram of

K∗, and we set K1 := K.

In any case, K1 6≤M .
Suppose first that B ≤M . Then H2 := 〈K1, T 〉 ∈ H∗(T,M) with n(H2) > 1—

unless possibly K∗ ∼= 3D4(2) with n = 3, and K1 is solvable. In the former case,
Hypothesis 6.1.1 is contradicted. In the latter case, our usual argument with the
Green Book [DGS85] supplies a contradiction: That is, just as in the proofs of
6.1.5 and 6.1.19, α := (LT,DLT,DLH2) satisfies Hypothesis F.1.1, so that α is a
weak BN-pair by F.1.9. Also DLH2 satisfies the hypothesis of F.1.12, so α must
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be in the list of F.1.12. As n = 3 and k = 1, the only possibility is the 3D4(2)
amalgam of F.1.12.I.4. However, in that case Z is central in the parabolic L1 with
L1/O2(L1) ∼= L2(8), contradicting V the natural module for L/O2(L) ∼= L2(8).

This contradiction shows that B 6≤ M . In particular K∗ is not 3D4(2), so
K1 ∈ L(G, T ). Next as R∗ = [R∗, DL], and Out(K∗) is 2-nilpotent for each K∗,
R∗ induces inner automorphisms on K∗, so that R∗ ≤ O2(B

∗R∗) := C∗. Then
RU ≤ S0 := S ∩ C ∈ Syl2(C), and as K1/O2(K1) is quasisimple, S0 = O2(C).
However NG(S0) ≤M by 6.1.23, contradicting B 6≤M .

This contradiction shows K∗ is not of Lie type and characteristic 2. Thus by
our earlier discussion, either n = 2 and K∗ ∼= L2(p) for p ≡ ±3 mod 8 or J1, or
n = 3 and K∗ ∼= J1. In each case as R∗ = [R∗, DL], R

∗ ≤ O2(NK∗(S
∗
K)R∗) := C∗;

then the argument of the previous paragraph shows NK∗(S
∗
K) ≤M∗

K .
Suppose K∗ ∼= J1. Then NK∗(S

∗
K) ∼= Frob21/E8 is maximal in K∗, so M∗

K =
NK∗(S

∗
K). Now DLTL E MK , so we conclude DL is of order 7 rather than 3, and

DL ≤ [DL,MK ] ≤ K ≤ CG(ZS)—impossible, as [ZS, DL] = ZS.
Therefore K∗ ∼= L2(p) with p ≡ ±3 mod 8 and n = 2. As K∗ is not L2(4) by

an earlier reduction, p ≥ 11. Therefore (1) and (2) are established.
As n = 2, DL is of order 3, so as m3(DLI) ≤ 2, m3(I) = 1 and hence

K = O3′(I). As DL is not inverted in DLS and DL is faithful on K∗, S in-

duces inner automorphisms on K∗. As K = O3′(I), if K0 ∈ C(I) with K0 6= K,
then K0/O2(K0) ∼= Sz(2k). As DL = O2(DL), DL acts on each member of KI

0 by
1.2.1.3, and hence so does R∗ = [R∗, DL]. The case [R∗,K∗0 ] 6= 1 was eliminated in
our earlier treatment of groups of Lie type in characteristic 2. Therefore R∗ cen-
tralizes K∗I0 , so R∗ centralizes CF∗(I∗)(K

∗) in view of 6.1.24.3. Recall S∗ induces
inner automorphisms on K∗, so as O2(I

∗) = 1 by 6.1.24.4, we conclude R∗ ≤ K∗.
Thus R∗ ≤ S∗K , so as R∗ = [R∗, DL], we conclude R∗ = S∗K . In particular R∗ is of
order 4, so by 6.1.24.2, s = 1 and hence (3) holds. ¤

Lemma 6.1.26. If there exists e ∈ E − V , then:

(1) R is transitive on eV .
(2) |E : V | ≤ 4.

Proof. Set L0 := 〈V g , V gl〉, where l ∈ L is as in 6.1.21. Then V̄ g = Ū by
6.1.20.4, and so V̄ gl = Ū l. Therefore by 6.1.21.1, L̄ = L̄1 = L̄0 and L ≤ L1 =
L0R. By 6.1.20.4, m(U/CU (V

g))) = 2, so m(E/CE(V
g)) ≤ 2 = m(ZS). Then as

CZS (V
gl) = 1 = CZlS (V

g) and L acts on E by 6.1.21.3,

E = ZSCE(V
gl) = ZlSCE(V

g),

so that E = V CE(L0).
If E = V then the lemma is trivial, so assume e ∈ E − V . As E = V CE(L0)

there is f ∈ eV ∩ CE(L0). If [R, f ] = 1, then f is centralized by R and L0, so
L ≤ L0R ≤ CG(f), a contradiction as CT (L) = 1 by 6.1.6.1. This contradiction
shows [R, f ] 6= 1. But by 6.1.21.3, [R, f ] ≤ V , so as L0 is irreducible on V ,
[R, f ] = V . Therefore (1) holds, and we may take e = f ∈ CE(L0) =: F . Now
V gE ≤ CU (F ) and V̄

g = Ū , so |U : CU (F )| ≤ |U : V gE| ≤ |U ∩ R : E|. But n = 2
by 6.1.25.1, and R/E is the natural module for L1/R by 6.1.25.3, so we conclude
|U : CU (F )| ≤ 4. We saw R does not centralize f , so as L0 centralizes F and acts
irreducibly on R/E, [U ∩ R,F ] 6= 1. Thus there is u ∈ (U ∩ R) − CU (F ), and for
each such u, [F, u] ≤ ZS by 6.1.17.2. Then |F/CF (u)| ≤ |ZS | = 4 by Exercise 4.2.2
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in [Asc86a]. Therefore to prove (2), it remains to show Fu := CF (u) = 1—since
this shows |F | ≤ 4, and we saw earlier that E = V F .

As L̄ = L̄0, we may take DL ≤ L0 ≤ CG(F ), so DL ≤ CL(Fu). Thus as DL

is irreducible on (U ∩ R)/E and u ∈ (U ∩ R) − E, U ∩ R centralizes Fu. Then
R ≤ 〈UL0〉 ≤ CG(Fu), so L ≤ L0R ≤ CG(Fu), and hence Fu = 1 by 6.1.6.1, as
desired. ¤

We now complete this section by eliminating case (1) of 6.1.15—hence reducing
Hypothesis 6.1.1 to the case leading to M22 in the following chapter:

Theorem 6.1.27. Assume Hypothesis 6.1.1 and set VL := [V, L]. Then

(1) n = 2.
(2) VL is the natural module for L/O2(L) ∼= L2(4) and CT (L) = 1.
(3) Let ZS := CVL(TL). Then CG(ZS) ≤M .
(4) Either NG(W0(T, VL)) 6≤M or W1(T, VL) 6≤ CT (ZS).

Proof. By 6.1.6.2, VL is the natural module for L/O2(L) ∼= L2(2
n), and

CT (L) = 1 by 6.1.6.1. Thus to complete the proof of (2), it suffices to prove (1).
As the statements in Theorem 6.1.27 concerning V are about VL, we may as

well assume V = VL, so that we may apply the results following 6.1.6, which depend
upon that assumption.

Suppose first that CG(ZS) ≤ M . Then (3) holds and we are in case (2) of
6.1.15, so (1) and (4) also hold. Therefore as (1) implies (2), Theorem 6.1.27 holds
in this case.

Therefore we may assume that CG(ZS) 6≤M , so that Hypothesis 6.1.16 is sat-
isfied. Thus we can apply the lemmas in this subsection, which assume Hypothesis
6.1.16. We will derive a contradiction to complete the proof of the Theorem.

First n = 2 by 6.1.25.1, so |U : CU (V )| = 4 by 6.1.20.4. Then by 6.1.21.4 and
6.1.25.3, |CU (V )/E| = 4. Finally V is of order 16, and |E : V | ≤ 4 by 6.1.26.2, so

we conclude |U | ≤ 45. Hence m(Ũ) ≤ 8.

LetW be an noncentral chief factor forK on Ũ . By 6.1.25.2, for each extension
field F of F2, the minimal dimension of a faithful FK∗-module is (p− 1)/2. Hence

as m(Ũ) ≤ 8, p ≤ 17, so p = 11 or 13 by 6.1.25.2. But then p − 1 is the minimal

dimension of a nontrivial F2Zp-module, so we have a contradiction to m(Ũ) ≤ 8.
This contradiction completes the proof of Theorem 6.1.27. ¤

6.2. Identifying M22 via L2(4) on the natural module

In this section, we complete the treatment of groups satisfying Hypothesis 6.1.1,
by showing in Theorem 6.2.19 that M22 is the only group satisfying the conditions
established in Theorem 6.1.27. Then applying results in chapter 5, the treatment
of those groups containing a T -invariant L ∈ L∗f (G, T ) with L/O2(L) ∼= L2(2

n) is
reduced in Theorem 6.2.20 to the case where n = 2 and V is the sum of at most
two orthogonal modules for L/O2(L) regarded as Ω−4 (2). We treat that final case
in Part F2, which is devoted to the groups containing L ∈ L∗f (G, T ) with L/O2(L)
a group over F2.

So in this section, we continue to assume Hypothesis 6.1.1, and as in section
6.1, we let ZS := CV (T ∩ L), VL := [V, L], and S := CT (ZS). As usual, Z denotes
Ω1(Z(T )). By Theorem 6.1.27, n = 2, and by 6.1.6, CZ(L) = 1 and VL is the
natural module for L/O2(L) ∼= L2(4). Applying these observations to R2(LT ) in
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the role of V , Z ≤ VL. Further replacing V by VL if necessary, we may assume V
is the natural module.

By Theorem 6.1.27, CG(ZS) ≤ M , so by 6.1.7.1, CG(ZS) ≤ MV := NM (V );
hence by 6.1.9.5:

Lemma 6.2.1. NG(ZS) ≤ NG(V ) ≤M .

Observe that ZS is the T -invariant 1-dimensional F4-subspace of V regarded
as a 2-dimensional F4-space. Let M̄V :=MV /CM (V ).

Lemma 6.2.2. (1) L̄T̄ ∼= S5.
(2) Z is of order 2.
(3) CG(Z) 6≤M .

Proof. Part (3) follows from 6.1.5. Recall Z ≤ V , so if L̄T̄ ∼= A5, then
ZS = CV (T ) = Z, and (3) contradicts 6.2.1. Hence (1) holds and Z = CV (T ) is of
order 2 by (1), establishing (2). ¤

Lemma 6.2.3. If g ∈ G with V ≤ NG(V
g) and V g ≤ NG(V ), then [V, V g ] = 1.

Proof. If [V, V g ] 6= 1, then 6.1.11 says V g ∈ V CG(ZS). But CG(ZS) ≤ NG(V )
by 6.2.1, contradicting our assumption that 1 6= [V, V g ]. ¤

Lemma 6.2.4. Assume U ≤ V with m(V/U) = 2 and H := CG(U) 6≤ NG(V ).
Choose notation so that TU := NT (U) ∈ Syl2(NM (U)), and let Q := CT (V ),

LU := O2(NL(U)), UH := 〈V H〉, H̃ := H/U , and H∗ := H/CH(ŨH). Then

(1) U = CV (t) for some t ∈ T inducing a field automorphism of order 2 on L̄.
(2) F ∗(H) = O2(H), R := Q〈t〉 ∈ Syl2(H), NG(R) ≤ NG(J(R)) ≤ M , TU ∈

Syl2(NG(U)), and |T : TU | = 2.
(3) W0(R, V ) ≤ Q.

(4) UH is elementary abelian, ŨH ≤ Z(O2(H̃)), and CH(ŨH) = O2(H), so

ŨH ∈ R2(H̃).
(5) LU/O2(LU ) ∼= Z3 with O2(LU ) = LU ∩H.
(6) There is at most one K ∈ C(H) of order divisible by 3, and if such a K

exists then either

(i) K = O3′ (H) and m3(K) = 1, or
(ii) K/O2(K) ∼= (S)Lε3(q), and a subgroup of order 3 in LU induces a

diagonal automorphism on K/O2(K).

Proof. Observe by 6.1.8 that as H = CG(U), H ∩ M = NH(V ), so that
our hypothesis H 6≤ NG(V ) is equivalent to H 6≤ M . As CG(ZS) ≤ M , case (3)
of 6.1.13 must hold, proving (1). Next by (1), |T : TU | = 2, and the remaining

statements of (2)–(4) follow from 6.1.14, except for the inclusion O2(H) ≥ CH(ŨH)
in part (4). Part (5) follows from (1), and (6) follows from A.3.18 in view of (5).

Finally CH (ŨH) ≤ NG(V ) ≤M , and by Coprime Action, Y := O2(CH(ŨH)) ≤
CM (V ) ≤ CM (L/O2(L)). Thus LT normalizes O2(Y O2(L)) = Y . Therefore if
Y 6= 1 then H ≤ NG(Y ) ≤ M = !M(LT ), contradicting our initial observation

that H 6≤ M . Thus CH(ŨH) is a 2-group, completing the proof of (4), and hence
also the proof of 6.2.4. ¤

Define a 4-subgroup F of V g to be of central type if F is centralized by a Sylow
2-subgroup of Lg; of field type if F is centralized by an element of M g

V inducing a
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field automorphism on Lg/O2(L
g) and V g; and of type 3 if F is of neither of the

first two types. By 6.2.2, there exist 4-subgroups of V of field type, and of course
ZS is of central type.

Lemma 6.2.5. (1) Let ξ denote the number of orbits of MV on the 4-subgroups
of V of type 3. Then ξ = 0 or 1 for |M̄V : L̄| = 6 or 2, respectively. The orbits are
of length 0 or 20, respectively.

(2) MV is transitive on 4-subgroups of V of each type.
(3) For each 4-subgroup U of V , UG ∩ V = ULT .
(4) V is the unique member of V G containing ZS.
(5) If g ∈ G with V ∩ V g noncyclic, then [V, V g ] = 1.
(6) V is the unique member of V G containing any hyperplane of V .

Proof. As V is the natural module for L̄, L̄ preserves an F4-space structure
VF4 on V , in which the central 4-subgroups are the five 1-dimensional subspaces
of VF4 , and M̄V ≤ AutGL(V )(L̄) = ΓL(VF4). In particular, L is transitive on 4-
subgroups of central type, and there are 30 4-subgroups not of central type, which
form an orbit under AutGL(V )(L̄). This orbit splits into three orbits of length 10

under L̄, and AutGL(V )(L̄) induces S3 on this set of orbits. By 6.2.2, M̄V
∼= S5 or

ΓL2(4), so it follows that (1) and (2) hold.
By 6.2.4, we can choose a representative U for each orbit so that NT (U) ∈

Syl2(NG(U)). Now T = NT (U) iff U is of central type, so groups of central type
are not fused to groups of field type or type 3. Similarly if NT (U) < T , then
|T : NT (U)| = 2 or 4 for U of field type, or type 3, respectively, so distinct M -
orbits are not fused in G. Thus (3) holds.

By (3) and A.1.7.1, NG(ZS) is transitive on G-conjugates of V containing ZS;
then as NG(ZS) ≤ NG(V ) by 6.2.1, (4) holds. As V is a self-dual F2L-module and
L is transitive on V #, L is transitive on hyperplanes of V , so (4) implies (6).

Assume the hypotheses of (5), and let U be a 4-subgroup of V ∩V g ; then by (3)
and A.1.7.1, NG(U) is transitive on G-conjugates of V containing U . Furthermore
for U of each type, AutG(U) ∼= S3 ∼= AutMV (U), so that NG(U) = CG(U)NMV (U);
we conclude that CG(U) is transitive on the G-conjugates of V containing U . Thus
if CG(U) ≤ NG(V ), then V = V g and (5) is trivial. If CG(U) 6≤ NG(V ), then U
is of field type by 6.2.4.1, so 〈V, V g〉 is abelian by 6.2.4.2, completing the proof of
(5). ¤

Lemma 6.2.6. Assume A := V g ∩NG(V ) and U := V ∩NG(V
g) are of index

2 in V g and V , respectively. Then either

(1) Ā and U/CU (V
g) are of order 2, CA(V ) and CU (V

g) are of field type, and
〈V, V g〉 is a 2-group, or

(2) Ā ∼= E4, Ā 6≤ L̄, Y := 〈V, V g〉 ∼= S3/Q
2
8, V ∩ V

g = [A,U ] is of order 2, and
O2(Y ) ≤ O2(Y ).

Proof. Without loss, we may assume A ≤ T . First B := [A,U ] ≤ A ∩ U ,
so B 6= ZS by 6.2.5.4, and hence Ā /∈ Syl2(L̄). Also Ā 6= 1, as otherwise V ≤
CG(A) ≤ NG(V

g) by 6.2.5.6, contrary to hypothesis.
Suppose first that Ā is of order 2. Then A0 := CA(V ) is of codimension 2

in V g, so as V ≤ CG(A0) but V 6≤ NG(V
g), we conclude from 6.2.4.1 that A0 is

of field type. Then as U centralizes A0, U0 := CU (V
g) is of index 2 in U since

|CG(A0) : CG(V
g)|2 = 2 by 6.2.4.2. Thus we have symmetry between V and V g, so
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U0 is also of field type. Also 〈V, V g〉 ≤ CG(U0), and by 6.2.4.4, V ≤ O2(CG(U0)),
so 〈V, V g〉 is a 2-group and (1) holds.

Thus we may assume that Ā is of order 4, so Ā 6≤ L̄ as we saw Ā /∈ Syl2(L̄).
From (1), our hypotheses are symmetric in V and V g , so also AutU (V

g) is a 4-

group not contained in AutLg(V
g). Let Q := UA and Q̃ := Q/B. From the

action of Ā on V , B = CV (Ā) is of order 2 and CA(V ) is the centralizer in A of
each hyperplane of V . Also |V g : B| = 8, so as |V g | = 16, it follows that B =
CA(V ) = CA(U) = V ∩ V g. Then we conclude Q ∼= Q2

8 with B = Z(Q). Further
[[V,A], A] ≤ CV (A) = B ≤ A, so [V,A] ≤ NV (A) ≤ NV (V

g) = U by 6.2.5.6, and
thus we conclude [V,A] = U as both groups have rank 3. Thus [V,A] ≤ Q, so V
acts on Q, and then by symmetry, V g acts on Q. Hence Y := 〈V, V g〉 acts on Q.
Set Y ∗ := Y/Q, so that Y ∗ is dihedral, as V ∗ and V g∗ are of order 2. We have

seen that [Ã, V ∗] = Ũ , so we conclude [Q̃, V ∗] = Ũ = CQ̃(V
∗). Therefore V ∗ is

generated by an involution of type a2 in Out(Q) ∼= O+
4 (2), Y

∗/CY ∗(Q) ∼= S3 with
Q ≤ O2(Y ), and the images of V ∗ and V ∗g are conjugate in this quotient. Thus

Ũ = CQ̃(V
∗) is conjugate to Ã = CQ̃(V

g∗) in Y , and hence U is conjugate to A
in Y . Therefore V g is conjugate to V in Y by 6.2.5.6. Thus V ∗ is conjugate to
V ∗g in Y ∗, so that |Y ∗| ≡ 2 mod 4. Again by 6.2.5.6, CY (Q) ≤ NG(V ), so as V ∗

inverts O(Y ∗), CY (Q)∗ = CY ∗(Q) = 1. Thus CY (Q) = Z(Q) = B, so Y ∼= S3/Q
2
8,

completing the proof of (2). ¤

Lemma 6.2.7. W0(T, V ) ≤ CT (V ) = O2(LT ), so that NG(W0(T, V )) ≤M .

Proof. By E.3.34.2, it suffices the prove the first assertion. So assume by way
of contradiction that W0(T, V ) 6≤ CT (V ). Then there is g ∈ G such that V ≤ T g

but [V, V g] 6= 1. By 6.2.3, V g 6≤ NG(V ). Let U := CV (V
g). Then m(V/U) = 2

by 6.1.10.3, and as V g 6≤ NG(V ), CG(U) 6≤ NG(V ), so the hypotheses of 6.2.4

are satisfied. Adopt the notation of that lemma (e.g., H = CG(U), H̃ = H/U ,
UH = 〈V H〉, etc.) and let A := V g , B := ZgS, and DU of order 3 in LU . Then
V = [V,DU ]. By 6.1.10.2 and E.3.10, V CG(A)/CG(A) ∈ A2(NG(A)/CG(A), A), so
Sg = V CSg (V

g) and [A, V ] = B.
We claim next that if K∗ is a subgroup of CH∗(D

∗
U ) with A∗ ≤ K∗, then

[ŨH ,K
∗, D∗U ] 6= 1: For otherwise using the Three-Subgroup Lemma, A∗ ≤ K∗ ≤

CH∗([ŨH , D
∗
U ] ≤ CH∗(Ṽ ), contrary to the fact that A does not act on V .

Now A ≤ H := CG(U) and V ≤ UH , so B = [A, V ] ≤ UH , which is abelian by
6.2.4.4. Thus UH ≤ CG(B) ≤ NG(A) by 6.2.1, so we may take UH ≤ T g. Indeed
as UH centralizes B, we have V ≤ UH ≤ CT g (Z

g
S) = Sg . Then UH = V CUH (A)

by the first paragraph of the proof, so [UH , A] = [V,A] = B, m(UH/CUH (A)) = 2,
and B = CA(U0) for CUH (A) < U0 ≤ UH .

We saw V ≤ CG(B), so B ≤ NA(V ). If B < NA(V ), then as Sg = V CSg (A),
B = [V,NA(V )] ≤ V ; but now ZgS = B ≤ V 6= V g , contrary to 6.2.5.4. Hence

B = NA(V ). We saw B ≤ UH , so in particular B = CA(ŨH) as CG(ŨH) ≤ NG(V ),
and hence A∗ ∼= E4.

Let B < A1 ≤ A. Suppose that Ũ1 := CŨH (A1) > C̃UH (A). We saw B =

CA(U0) for CUH (A) < U0 ≤ UH . Thus B = CA(U1), so as [UH , A] = B, 1 6=
[U1, A1] =: B1 ≤ U ∩ B. We will show that 1 6= U ∩ B leads to a contradiction.

For B is of rank 2, so m(B̃) ≤ 1. Then since [A,UH ] = B, A∗ induces a 4-

group of transvections on ŨH with center B̃. Thus by G.3.1, there is K ∈ C(H)
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such that K = [A,K], A∗ ≤ K∗, K∗ induces GL(Ũ1) on Ũ1 := 〈B̃K〉 of rank at
least 3, and the kernel of the action lies in O2(K

∗). But O2(H
∗) = 1 by 6.2.4.4, so

K∗ ∼= GL(Ũ1). Then by 6.2.4.6, K∗ ∼= L3(2) (so that m(Ũ1) = 3) and K = O3′(H).

As [ŨH , A] = B̃ ≤ Ũ1 and K = [K,A], Ũ1 = [ŨH ,K]. We sawm(UH/CUH (A)) = 2,

so ŨH = Ũ1⊕CŨH (K). (cf. B.4.8.3). NowDU of order 3 in LU acts on the subgroup

R of 6.2.4.2, and then on RK := R ∩ K in view of 1.2.1.3. But R∗K ∈ Syl2(K
∗),

so R∗K is self-normalizing in K∗ and hence [D∗U ,K
∗] = 1. Then DU centralizes Ũ1

since K∗ = Aut(Ũ1). As A
∗ ≤ K∗, this contradicts our claim in paragraph two.

This contradiction shows that B ∩ U = 1 and that

CŨH (A1) = C̃UH (A) for each 1 6= A∗1 ≤ A∗. (∗)

Since A∗ ∼= E4, (*) says

A∗ ∈ A2(H
∗, ŨH); (∗∗)

and since B ∩ U = 1 we have

B̃ = [ŨH , A
∗] ∼= E4. (!)

Further applying (*) when A1 = A and recalling m(UH/CUH (A)) = 2, we conclude

m(ŨH/CŨH (A)) = 2. (!!)

Thus A∗ is an offender on the FF-module ŨH . Recall ŨH ∈ R2(H̃) by 6.2.4.4,
and let K∗A := 〈A∗H 〉. By (**) and E.4.1, A∗ centralizes O(H∗), so that F (K∗A) ≤
Z(K∗A). Next (!!) restricts the possible componentsK∗ ofK∗A in the list of Theorem
B.5.6 to alternating groups or groups defined over F2 or F4. Now K∗ is the image
of K ∈ C(H), and by 6.2.4.6 and inspection of our restriced list from B.5.6, either

(i) m3(K
∗) = 1, so that K∗ ∼= L2(4) or L3(2), or

(ii) K∗ ∼= SL3(4) and DU induces outer automorphisms on K∗.

In particular K∗ = J(K∗A)
∞ is described by Theorem B.5.1. As in the previous

paragraph, RK := R ∩K ∈ Syl2(K).

Suppose first that case (ii) holds. By Theorem B.5.1.1, either ṼK := [ŨH ,K
∗] ∈

Irr+(K
∗, ŨK), or ṼK is the sum of two isomorphic natural modules for K∗. In the

former case, ṼK is a natural module by B.4.2. In either case, A.3.19 contradicts
the fact that DU 6≤ K.

Thus case (i) holds. By Theorem B.5.1.1, either ṼK := [ŨH ,K
∗] ∈ Irr+(K∗, ŨH),

or K∗ ∼= L3(2) and ṼK is the sum of two isomorphic natural modules.

Assume first that K∗ ∼= L3(2). If ṼK is the sum of two isomorphic natural
modules, then by (*), A∗ induces the group of transvections with a fixed axis on

each of the natural summands, contrary to (!). Thus ṼK ∈ Irr+(K
∗, ŨH). Then

by B.4.8.4, ṼK = [ŨH ,K
∗] is either the natural module or the extension in B.4.8.2.

Now as DU acts on R∗K ∈ Syl2(K
∗), DU centralizes K∗ and ṼK/CṼK (K

∗), and

hence DU centralizes ṼK by Coprime Action. As A∗ ≤ K∗, this contradicts our
claim in paragraph two.

This contradiction shows K∗ ∼= L2(4), so ṼK ∈ Irr+(ŨH ,K). Then by B.4.2,

either ṼK is the A5-module, or ṼK/CṼK (K) is the natural module. The first case

is impossible by (*). Thus the second case holds, and A∗ ∈ Syl2(K
∗) by B.4.2.1.

Further CṼK (K) = 1 by (!), so ṼK is the natural module, and ŨH = ṼK ⊕CŨH (K)
by B.5.1.4.
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Set LK := O2(NK(RK)), so that LK/O2(LK) ∼= Z3. First suppose LK ≤ M .
As K ≤ H = CG(U), by 6.1.8 we obtain LK ≤ K ∩ M = NK(V ). Then as
[LK , U ] = 1 and U is of field type, [LK , V ] = 1. But CŨH (LK) = CŨH (K), so

Ṽ ≤ CŨH (K
∗) ≤ CŨH (A

∗), and then A ≤ NG(V ), contrary to paragraph one.

Therefore LK 6≤M . By 6.2.4.2, NG(R) ≤M . If [D∗U ,K
∗] 6= 1, then

R = O2(DUR) = O2(KR)(K ∩ R) E LKR,

so LK ≤ NG(R) ≤M , contradicting the reduction just obtained; hence [D∗U ,K
∗] =

1. Thus as A∗ ≤ K∗, [ṼK , D
∗
U ] 6= 1 by our claim in paragraph two. Thus D∗UK

∗

acts on ṼK as GL2(4) with D∗U = Z(D∗UK
∗). As NG(R) ≤ M but LK 6≤ M ,

R∗ 6= R∗K , so there is r ∈ R inducing an involutory field automorphism on K∗.
This is impossible, as the field automorphism r∗ inverts the center D∗U of GL2(4),
whereas R E RDU . This contradiction completes the proof of 6.2.7. ¤

For the remainder of the section, let z denote the generator of Z, set Gz :=
CG(z), and G̃z := GZ/Z. By 6.2.2.3, Gz 6≤M , so H1 6= ∅, where

H1 := {H ≤ H(T ) : H ≤ Gz and H 6≤M}.

Consider any H ∈ H1, and observe that Hypothesis F.7.6 is satisfied with LT , H in
the roles of “G1, G2”. Form the coset graph Γ as in section F.7, and more generally
adopt the notational conventions of section F.7. By 6.2.3 and F.7.11.2, b := b(Γ, V )
is odd.

Lemma 6.2.8. V 6≤ O2(Gz).

Proof. Choose H minimal in H1; then H ∈ H∗(T,M) ∩Gz . Thus n(H) = 1
by Hypothesis 6.1.1.2. We assume that V ≤ O2(Gz) and derive a contradiction.

Then V ≤ O2(H) so V ≤ G
(1)
γ1 by F.7.7.2, and hence b > 1; thus b ≥ 3 as we saw b

is odd. Let UH := 〈V H〉 ≤ O2(H). As b ≥ 3, UH is abelian by F.7.11.4. As usual,
let γ ∈ Γ with d(γ0, γ) = b, and γi at distance i from γ0 on a fixed geodesic from
γ0 to γ. By F.7.11.6, [UH , Uγ ] ≤ UH ∩Uγ , where Uγ is the conjugate of UH defined
in section F.7.

As H ≤ Gz , H ∩ M = NH(V ) by 6.1.8. By 3.3.2.4, H ∩ M is the unique
maximal subgroup of H containing T . Hence we may apply F.7.13 to UH in the
role of “A” to conclude there exists α ∈ Γ(γ) such that m(UH/NUH (Vα)) = 1.

As UH does not act on Vα, there exists β ∈ Γ(γ1) such that Vβ does not
act on Vα; we consider any β satisfying these two conditions. Notice that as
m(UH/NUH (Vα)) = 1, also m(Vβ/NVβ (Vα)) = 1. Let Uβ := CVβ (Vα), so that
Uβ ≤ NVβ (Vα) < Vβ . Then Vα 6≤ NG(Vβ), since otherwise [Vα, Vβ ] = 1 by 6.2.7,
contradicting Uβ < Vβ . As m(Vβ/NVβ (Vα)) = 1, CG(NVβ (Vα)) ≤ NG(Vβ) by
6.1.10.1. So as Vα centralizes Uβ but does not normalize Vβ , Uβ < NVβ (Vα); hence
Uα := [NVβ (Vα), Vα] is a noncyclic subgroup of Vα. But Uα ≤ [UH , Vα] ≤ UH , so as
Vβ ≤ UH which is abelian, Uα ≤ CVα(Vβ). Now as Vβ 6≤ NG(Vα), CG(CVα(Vβ)) 6≤
NG(Vα), so that m(CVα(Vβ)) ≤ 2 by 6.1.10.1; as Uα is noncyclic, we conclude
Uα = CVα(Vβ) is a 4-group. Then Uα is of field type by 6.2.4.1. So as Vβ centralizes
Uα, m(NVβ (Vα)/Uβ) = 1 by 6.2.4.2, with NVβ (Vα) inducing a field automorphism
on Vα. Then m(Vβ/NVβ (Vα)) = 1 = m(NVβ (Vα)/Uβ), so Uβ is also a 4-group.
Therefore as Vα centralizes Uβ but does not normalize Vβ , CG(Uβ) 6≤ NG(Vβ), and
then Uβ is also of field type by 6.2.4.1.
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As Vα 6≤ NG(Vβ), Vα 6≤ G
(1)
γ1 , so d(α) = b with α, γ, · · · , γ1 a geodesic, and we

have symmetry between γ and γ1. By this symmetry (as in the proof of 6.1.19) we
can apply F.7.13 to Vα in the role of “A”, to conclude that there exists β′ ∈ Γ(γ1)
such that m(Vα/NVα(Vβ′)) = 1, and also that there exists h ∈ H such that V hα fixes
β′ and I := 〈Vα, V hα 〉 is not a 2-group.

Observe next that if µ, ν ∈ Γ0, and Vµ acts on Vν , then [Vµ, Vν ] = 1 by 6.2.7.
But as V hα fixes β′, and β′ = γg0 for some g ∈ G, V hα ≤ Gg1 ≤ NG(Vβ′), so V

h
α

centralizes Vβ′ . Similarly as Vα does not centralize Vβ′ , Vβ′ does not act on Vα.
Thus β′ satisfies the two conditions for “β” in our earlier argument, so we may
take β′ = β. Then m(Vα/NVα(Vβ)) = 1, so that we have symmetry between α and
β. Thus as we showed that [NVβ (Vα), Vα] = CVα(Vβ) = Uα, by symmetry between
α and β, [NVα(Vβ), Vβ ] = CVβ (Vα). In particular as Uβ = CVβ (Vα), we also have
symmetry between Uα and Uβ. Further NVβ (Vα) and NVα(Vβ) are each of rank 3,
and induce a field automorphism on Vα and Vβ , respectively. Hence

1 6= Uα,β := [NVβ (Vα), NVα(Vβ)] ≤ Uα ∩ Uβ.

Now Uα,β ≤ Uβ centralizes I as Vα centralizes Uα and V hα centralizes Vβ′ = Vβ .

Thus for z0 ∈ U#
α,β, z0 ∈ Vα, but Vα 6≤ O2(Gz0)—since I ≤ Gz0 , and Vα 6≤ O2(I)

as I = 〈Vα, V hα 〉 is not a 2-group. As the pair (V, z) is conjugate to (Vα, z0), 6.2.8
is established. ¤

In the remainder of this section, choose

H := Gz ,

and let Mz := CM (z), U := 〈ZHS 〉, K := 〈V H〉, MK := K ∩ M , and H∗ :=

H/CH(Ũ). By 6.2.8, V 6≤ O2(K), so K 6≤ NG(V ). By 6.2.1, NG(ZS) ≤ NG(V ) =
MV , and as V is the natural module for L̄, CMV (z) ≤ NM (ZS). As H = Gz, by
6.1.8 we conclude:

Lemma 6.2.9. H ∩M = NH(V ) = NH(ZS) and MK = NK(V ) = NK(ZS).

Lemma 6.2.10. (1) F ∗(H) = O2(H) =: QH and Ũ ≤ Z(Q̃H).

(2) CH(Ũ) ≤ NG(V ) ≤M , so CV (Ũ) ≤ QH .
(3) O2(H

∗) = 1.
(4) V ∗ 6= 1.
(5) [V, U ] ≤ V ∩ U .

Proof. The first assertion in (1) holds by 1.1.4.6. Hypothesis G.2.1 is sat-
isfied with Z, ZS in the roles of “V1”, “V ”, so G.2.2 completes the proof of (1)

and establishes (3). By 6.2.9, CH(Ũ) ≤ NH(ZS) = NH(V ) ≤ M , so CV (Ũ) ≤
O2(CH (Ũ)) ≤ QH , proving (2). By (1), Ũ is abelian, so by (2), U acts on V . Also
V ≤ H ≤ NG(U), so (5) holds. As V 6≤ QH by 6.2.8, (4) follows from (2). ¤

Lemma 6.2.11. V ∗ is of order 2.

Proof. Assume the lemma fails; then as V ∗ 6= 1 by 6.2.10.4, m(V ∗) ≥ 2. By

6.2.10.1, ZS ≤ CV (Ũ), so that m(V ∗) ≤ m(V/ZS) = 2. Thus m(V ∗) = 2, and

ZS = V ∩ QH = V ∩ U = CV (Ũ). Next by (4) and (5) of 6.2.10, 1 6= [V ∗, Ũ ] ≤

Ṽ ∩ U = Z̃S of order 2. Thus V ∗ induces a 4-group of transvections on Ũ with
center Z̃S . Also O2(H

∗) = 1 by 6.2.10.3. Thus we may apply G.3.1 and the results

of section G.6 to H∗. In particular, since Ũ = 〈ZHS 〉, we conclude from G.3.1 that
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K∗ is the direct product of copies of GLm(2) for some m ≥ 3. Next as V E T ,

1 6= V ∗ ∩ Z(T ∗), so by G.6.4.4, K∗ = GL(Ũ). By 6.2.9,

CH∗(Z̃S) =M∗
z = NM (V )∗.

Thus as V ∗ is a 4-group we conclude m(Ũ) = 3 and H∗ ∼= L3(2).

As Φ(ZS) = 1 and H∗ is transitive on Ũ#, Φ(U) = 1, so U ∼= E16. As V ∗ is

the group of transvections with center Z̃S , Z̃S = CŨ (V
∗), so ZS = CU (V ). Further

U ≤ CT (ZS) = TLCT (V ), where TL := T ∩ L; thus |Ū | = |U/CU (V )| = |U : ZS | =
4 = |T̄L|, so Ū = T̄L ∈ Syl2(L̄).

Now [CH (Ũ), V ] ≤ CV (Ũ) ≤ V ∩QH by 6.2.10.2, and we saw that V ∩QH ≤ U .

Hence K = 〈V H〉 centralizes CH(Ũ)/CH(U). Next CH (Ũ)/CH(U) is a subgroup

of the group X of all transvections on U with center Z, and Ũ is the dual of X as a
module for CGL(U)(Z). Thus as Ũ is the natural module for K∗ and K centralizes

CH(Ũ)/CH(U), we conclude CH(Ũ) = CH(U).
Next L = [L,U ] with [U,O2(LT )] ≤ CU (V ) = ZS ≤ V , so L is an L2(4)-

block. Also CT∗(V
∗) = V ∗ as V ∗ is a 4-subgroup of H∗ ∼= L3(2); thus CT (V ) ≤

V CT (Ũ). Therefore as CT (Ũ) = CT (U) by the previous paragraph, we conclude
CT (V ) = V CT (UV ). Then as Ū ∈ Syl2(L̄), it follows from Gaschütz’s theorem
A.1.39 and C.1.13.a that LO2(LT ) = LCT (L). On the other hand, CT (L) = 1
by 6.1.6.1. Therefore V = O2(LT ) = O2(M) using A.1.6. Then TL = J(T ) with
A(T ) = {A1, A2} and A1 = V , so as m(U) = 4, U = A2. Thus as NL(TL)
acts on V , it also acts on U , so that L0 := 〈NL(TL), H〉 acts on U , and hence

L̂0 := L0/CL0(U) ≤ GL(U) ∼= A8. As NL(TL) is transitive on Z#
S and H is

transitive on U − Z, L0 is transitive on U#. Further CL̂0
(z) = Ĥ ∼= L3(2), so we

conclude L̂0
∼= A7. Moreover setting M0 :=M ∩L0, NL0(ZS) ≤M0 < L0 by 6.2.1.

The stabilizer of any 4-subgroup of U in L̂0 is the global stabilizer in L̂0 of 3 of the

7 points permuted by L̂0 in its natural representation, which is a maximal subgroup
of L̂0. Thus M̂0 = NL0(ZS). Now we can also embed T ≤ Y ≤ L0 with Ŷ ∼= S5
and |Y : Y ∩M0| = 5. Thus Y ∈ H∗(T,M) with n(Y ) = 2 by E.2.2, contradicting
Hypothesis 6.1.1.2. ¤

Lemma 6.2.12. (1) O2(H ∩M) ≤ CM (V ) ≤ CM (L/O2(L)).

(2) O2(CH (Ũ)) = 1, so CH(Ũ) = QH .

Proof. As V ∗ has order 2 by 6.2.11, we conclude from 6.2.9 and 6.2.2 that
H ∩M acts on the series V > CV (Ũ) > ZS > Z, and all factors in the series are of
rank 1. Therefore O2(H ∩M) centralizes V by Coprime Action. Then O2(H ∩M)
centralizes L/O2(L), proving (1).

Next using 6.2.10.2 and (1), X := O2(CH (Ũ)) ≤ O2(H ∩M). Thus X cen-
tralizes L/O2(L), so that L normalizes O2(XO2(L)) = X . Now if X 6= 1, then
O2(X) 6= 1 by 1.1.3.1, since H ∈ He by 1.1.4.6. But then H ≤ NG(O2(X)) ≤M =

!M(LT ), contradicting H 6≤ M . This shows that CH (Ũ) is a 2-group, and then
6.2.10.1 completes the proof of (2). ¤

We can now isolate the case leading to M22, which we identify via a recent
characterization of Chao Ku. Recall that U = 〈ZHS 〉, so that ZS ≤ V ∩ U .

Proposition 6.2.13. If ZS = V ∩ U , then G ∼=M22.
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Proof. Assume ZS = V ∩ U . We begin by arguing much as at the start
of the proof of 6.2.11, except this time V ∗ has order 2 by 6.2.11. By 6.2.10.5,

1 6= [V ∗, Ũ ] ≤ Ṽ ∩ U = Z̃S of order 2, so that V ∗ is generated by a transvection

on Ũ with center Z̃S . As Ũ = 〈Z̃HS 〉 and Z̃S = [Ũ , V ∗], Ũ = [Ũ ,K∗] by G.6.2. As
V E T , V ∗ ≤ Z(T ∗), so G.6.4.4 shows that K∗ ∼= Ln(2), 2 ≤ n ≤ 5, S6, or S7; and

by G.6.4.2, Ũ is the natural module or the core of the permutation module for S6.
In each case K∗ = NGL(Ũ)(K

∗), so H∗ = K∗. Next by 6.2.9:

CH∗(Z̃S) = NH(ZS)
∗ =M∗

z = NH(V )∗ = CH∗(V
∗).

But if H∗ is Ln(2) with 3 ≤ n ≤ 5, then V ∗ is not normal in CH∗(Z̃S). Thus
H∗ = K∗ ∼= L2(2), S6, or S7. In each case, V ∗ 6≤ O2(H∗), so in particular
V 6≤ O2(X), where X := O2(Mz), and hence V > V ∩X . By 6.2.12.1, L acts on
O2(O2(H ∩M)O2(L)) = X , so L acts on V ∩X . Therefore as L is irreducible on
V , V ∩X = 1.

Suppose first that H∗ is S6 or S7. Then there are x, y ∈ H such that I :=
〈V x, V y〉 ≤ Mz and I∗ ∼= S3. Then V x 6≤ NG(V

y), but CV x(Ũ) ≤ NG(Z
y
S) ≤

NG(V
y) by 6.2.1; so as V ∗x has order 2, NV x(V

y) = CV x(Ũ) is of index 2 in V x.
Similarly |V y : NV y (V

x)| = 2, so as I is not a 2-group, O2(I) ≤ O2(I) ≤ X and
|Z(O2(I))| = 2 by 6.2.6. But as x, y ∈ Gz , Z ≤ V x∩V y = Z(O2(I)), so Z ≤ V ∩X ,
contrary to the previous paragraph.

This contradiction shows that H∗ ∼= S3, so H
∗ = 〈V ∗, V g∗〉 for g ∈ H−M and

|V H | = |H : Mz| = 3. Thus V H ≤ 〈V, V g〉, so that K = 〈V, V g〉. Therefore case
(2) of 6.2.6 holds with K ∼= S3/Q

2
8, and Z = V ∩ V g = Z(P ), where P := O2(K).

Notice as ZS ≤ P E H that U = 〈ZHS 〉 ≤ P . Then R := CH (P̃ ) ≤ CH(Ũ) =

QH by 6.2.12.2. Also as case (2) of 6.2.6 holds, NV g (V ) = P̄ ∼= E4, CP (V ) =
P ∩ V , and P̄ 6≤ L̄. Therefore T̄ = P̄ 〈t̄〉, where t ∈ T ∩ L acts nontrivially
on P̄ . Thus t is nontrivial on P/(P ∩ V ), so that t∗ /∈ V ∗ since [P, V ] ≤ P ∩
V . Therefore as NOut(P )(K

∗) ∼= S3 × S3 and H = KT , we conclude H/R ∼=

S3 × Z2 and CT (V ) = V CR(V ). Now R = PCR(P ) as Inn(P ) = CAut(P )(P̃ ) by
A.1.23. But CR(P ) ≤ CR(V ∩ P ) = CR(V ) by 6.1.10.2, so as CR(P ) E H , CR(P )
centralizes 〈V H〉 = K. Therefore CR(P ) = CR(K), so R = PCR(K) and CR(K) ≤
CR(V ). Thus CR(V ) = CR(K)CP (V ) = CR(K)(P ∩ V ), and hence CT (V ) =
V CR(V ) = V CR(K) = V CR(P ). Then [P,CT (V )] = [P, V ] ≤ V , so as L = [L, P ],
[L,O2(LT )] ≤ V , and hence L is an L2(4)-block. Now Φ(CT (V )) ≤ CT (L) = 1
by C.1.13.a and 6.1.6.1. Then since CT (V ) = V CR(K), CR(K) is also elementary
abelian. Also we chose t ∈ T∩L with T ∩ L ≤ 〈t̄〉P̄ ; so as CT (L) = 1, by Gaschütz’s
Theorem A.1.39 CT (V ) ∩ CG(P 〈t〉) = CV (P 〈t〉) = Z. Thus as CR(K) centralizes
P , CR(K) ∩ CG(t) = Z. But [t, CR(K)] ≤ C[T∩L,CT (V )](K) = CV (K) = Z, so we
conclude m(CR(K)) ≤ 2, and in case of equality, [t, CR(K)] = Z.

In any case, V is of index at most 2 in Q := O2(LT ). By 1.1.4.6, F ∗(M) =
O2(M). Then as Q contains O2(M) by A.1.6 and Q is abelian, Q ≤ CM (O2(M)) ≤
O2(M), so O2(M) = Q. Next by 6.2.12.1, O2(H ∩M) centralizes V , so by Coprime
Action, O2(H ∩M) ≤ CM (Q) ≤ Q, so O2(H ∩M) = 1. In particular, CM (V ) = Q,
so that M̄ = M/Q. An involution in V g induces a nontrivial inner automorphism
on L̄, so L/V is not SL2(5) and hence V = O2(L).

Now V = O2(L) E M , so S5 ∼= L̄T̄ ≤ M̄ ≤ NGL(V )(L̄) ∼= ΓL2(4). Further if

M̄ ∼= ΓL2(4), then an element of order 3 whose image is diagonally embedded in
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L̄ × CM̄ (L̄) centralizes z and hence lies in H , contrary to O2(H ∩M) = 1. Thus
S5 ∼= M̄ = L̄T̄ , so that M = LT .

Assume first that CR(K) = Z is of order 2. Thus M ∼= S5/E16, with H =
K〈t〉 ∼= (S3 × Z2)/Q

2
8. Then as CR(K) = Z, CH(P ) ≤ P , and Z = CP (X) for

X ∈ Syl3(H); thus G satisfies the Hypothesis on page 295 of C. Ku in [Ku97].
(Note that the term Zz there is unnecessary, and also that Z1 in H/Q should read
Z2). We next verify that G is of type M22 as defined on p. 295 of that paper—
namely we show there exists z 6= zd ∈ P with m(P ∩ P d) = 2: Let DL be of order

3 in NL(T ∩ L), and pick d ∈ D#
L . Then ZS = 〈z, zd〉 and P ∩ P d = ZS ∼= E4, as

P̄ ∩ P̄ d = 1 and ZS = P ∩P d∩V from the structure of L̄ and its action on V . Thus
G is of type M22, so we may apply the Main Theorem of that paper to conclude
that G ∼=M22.

So now we assume that CR(K) ∼= E4, and it remains to derive a contradiction.
Then M ∼= S5/E32, with Q ∼= E32. As CT (L) = 1 by 6.1.6.1, Q does not split over
V as an L-module. Thus Q = J(T ).

Next all involutions in P are fused into V in K, and all involutions in V are
fused in L, as are all involutions in L− V . Thus all involutions in L are conjugate
in G, and are fused to some j ∈ P − L. Next j induces a field automorphism on
L/V , so all involutions in jL are conjugate in L. Let T0 := P (T ∩L) = 〈j〉(T ∩L),
so that all involutions in T0 are in z

G. Let r ∈ CR(K)−Z. Then r ∈ Q−V , and as
Q = J(T ), M = NG(Q) controls fusion in Q by Burnside’s Fusion Lemma A.1.35.
Hence r /∈ zG. Therefore rG ∩ T0 = ∅, so by Thompson Transfer, O2(G) < G,
contradicting simplicity of G. This completes the proof of 6.2.13. ¤

By 6.2.13, we may assume during the remainder of the section that ZS < V ∩
U =: VU ; in Theorem 6.2.19, we will obtain a contradiction under this assumption.
Let ZU := Z(U).

As V ∗ has order 2 by 6.2.10.4, m(VU ) ≤ m(V ∩QH) = 3, so as ZS < VU :

Lemma 6.2.14. VU = V ∩QH is of rank 3.

Lemma 6.2.15. (1) U = ZU ∗ U0 is a central product, where U0 is extraspecial
of width at least 2 and rank at least 3.

(2) For v ∈ V −U there exists g ∈ H with v∗v∗g not a 2-element, and for each
such g, |v∗v∗g| = 3 and 〈V, V g〉 ∼= S3/Q

2
8 with VUV

g
U = O2(〈V, V g〉) ≤ U .

(3) ZU ≤ Z(K) and K∗ is faithful on U/ZU .

Proof. By 6.2.10.3, O2(H
∗) = 1, so by the Baer-Suzuki Theorem A.1.2, there

is g ∈ H with v∗v∗g not a 2-element. Then V 6≤ NG(V
g), and so VU ≤ NV (V

g) < V ,
so by 6.2.14, VU = NV (V

g) is of index 2 in V . Similarly V gU = NV g (V ) is of index
2 in V g , so part (2) follows from 6.2.6. As ZU centralizes VU , it centralizes V by
6.1.10.2, so ZU centralizes K = 〈V H〉. Thus CK∗(U/ZU ) ≤ O2(K

∗) ≤ O2(H
∗) = 1

using 6.2.10.3, so that K∗ is faithful on U/ZU , completing the proof of (3). As
Φ(U) ≤ Z of order 2 by 6.2.10.1, and U is nonabelian by (2), Φ(U) = Z. We
conclude (1) holds, using (2) to see that U0 is of width at least 2 and rank at least
3. ¤

Let Ĥ := H/ZU and Ḣ := H/CH(Û), and identify Z with F2. Thus by 6.2.15.1,

Û = Û0 is an F2Ḣ-module, and Ḣ preserves the symplectic form (û1, û2) := [u1, u2]

on Û , so Ḣ ≤ Sp(Û).
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Lemma 6.2.16. (1) V ∩ ZU = Z, so dim(V̂U ) = 2.

(2) Û = 〈ẐHS 〉 and O2(Ĥ) = 1.

(3) K∗ ∼= K̇.

(4) V̂U = [V̇ , Û ], and V̇ is generated by an involution in Sp(Û) of type a2.

(5) CH(V̇ ) = NH(V̂U ) = H ∩M .

(6) NḢ(V̂U ) is not transitive on V̂
#
U .

Proof. Part (1) follows from 6.2.15.2, and part (3) from 6.2.15.3. As U =

〈ZHS 〉, Û = 〈ẐHS 〉, so as ẐS ≤ Z(T̂ ), Û ∈ R2(Ĥ) by B.2.13, establishing (2). By

6.2.10.2, [U, V ] ≤ VU , so by 6.2.15.2, V̂U = [Û , V̇ ] is of rank 2 and U = V gCU (V ) for

some g ∈ H . Thus V̇ is generated by an involution of type a2 or c2 in Sp(Û) in the
sense of Definition E.2.6. Indeed for y ∈ V g −Z and v ∈ V −U , [y, v] ∈ CVU (y) as
y induces an involution on V , so (ŷ, ŷv) = 0 and hence v̇ is of type a2, establishing

(4). As there is a unique involution i ∈ Sp(Û) of type a2 with [Û , i] = V̂U , it follows

that NḢ(V̂U ) = CḢ (V̇ ).

Let h ∈ CH (V̇ ); then V ∗h = V ∗ by (3), so that h acts on [Ũ , V ∗] = ṼU .

Thus CH (V̇ ) ≤ NH(VU ). But by the previous paragraph, NḢ(V̂U ) = CḢ(V̇ ),

so NH(VU ) = NH(V̂U ) = CH(V̇ ). Finally NH(VU ) ≤ H ∩ M by 6.2.5.6, while
H ∩M = NH(V ) by 6.2.9, and NH(V ) acts on V ∩ U = VU , so (5) holds.

By 6.2.9, H ∩M acts on ZS , so (5) implies (6). ¤

Let LS := O2(NL(ZS)), l ∈ LS − H , E := U ∩ U l, W := CU (ZS), and
X := CU l(ZS). Observe as ZS ≤ U that ZS ≤ U l, and hence

Z ≤ ZS ≤ E.

Lemma 6.2.17. (1) ZU ∩ ZlU = 1.
(2) ZU ∩ U l = (ZU ∩ ZlU )Z.

(3) Ŵ = Ẑ⊥S and [Ẋ, Ŵ ] ≤ Ê.

(4) Ê is totally singular.

(5) For ẋ ∈ Ẋ − ŻlU , CÛ (ẋ) ≤ Ŵ .

(6) CX (Û) = ECZl(Û ).

(7) Ẋ induces the full group of transvections on Ê with center ẐS.

(8) CÊ(Ẋ) = ŻS.

(9) V̇ ≤ Ẋ.

(10) m(Ê) +m(Ẋ/ŻlU ) = m(Û)− 1.

Proof. Part (1) follows as V ∩ ZU = Z by 6.2.16.1.
Next Φ(U l) = Zl and X acts on ZU , so [ZU ∩ U l, X ] ≤ ZU ∩ Zl = 1 by

(1). Thus ZU ∩ U l ≤ Z(X). By 6.2.15.1, U = U0ZU with U0 extraspecial, so
ZlUZ = Z(CU l(Z)) = Z(X). Therefore ZU ∩ U l ≤ Z lUZ, so as Z ≤ ZU ∩ U l, (2)
holds.

Observe Hypothesis G.2.1 is satisfied with Z, ZS , LS , H in the roles of “V1, V ,
L, H”, and set I := 〈U,U l〉 and P := O2(I). As U is nonabelian by 6.2.15.1, while
LS/O2(LS) ∼= L2(2)

′, the hypotheses of G.2.3 are also satisfied. So by that lemma,
I = LSU , P = WX , 1 < ZS ≤ E ≤ P is an I-series such that [I, E] ≤ ZS , and
for some nonnegative integer s, and P/E = W/E ⊕ X/E is the sum of s natural
modules for I/P ∼= L2(2) with W/E = CP/E(U). Now V = [V, LS] ≤ LS ≤ I , so

V ≤ P and hence V̇ ≤ Ṗ = Ẇ Ẋ = Ẋ, establishing (9).
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By definition of the bilinear form on Û , Ẑ⊥S is the image of CU (ZS) =W in Û ,

and the image of a subgroup Y of U in Û is totally singular iff Y is abelian. As P/E
is abelian, [X,W ] ≤ E, completing the proof of (3). As Φ(E) ≤ Φ(U) ∩ Φ(U l) =
Z ∩ Zl = 1, (4) holds.

Pick u ∈ U − W ; from the action of I on P/E, the map ϕ : X → W/E
defined by ϕ(x) := [x, u]E is a surjective linear map with kernel E. In particular

as Z ≤ E, CŨ (x) ≤ W̃ for each x ∈ X − E. Further setting D := ϕ−1(ZUE/E),
D = CX (U/ZUE). As P/E is a sum of natural modules for I/P , DZU = 〈ZIU 〉E =

ZUZ
l
UE, so D = Z lUE. Thus CX (Û) ≤ CX (U/ZUE) = D = Z lUE. In particular

for u ∈ U −W , CX(û) ≤ Z lE, and hence (5) follows.

Let R := CT (Û), and ŨR := CŨ (R) with preimage UR. By a Frattini Argu-

ment, H = CH(Û)NH(R), so as ZS ≤ UR and U = 〈ZHS 〉, U = URZU . Therefore

as ZU ≤W < U , R centralizes ũ ∈ Ũ − W̃ . In particular CX(Û) ≤ CX (û) ≤ Z lE,
so (6) holds.

Let E0 := EZlU ∩U
l
0 and Z0 := ZZlU ∩U

l
0. Then EZ

l
U ≤ U l = U l0Z

l
U , so EZ

l
U =

E0Z
l
U , and similarly ZSZ

l
U = ZZlU = Z0Z

l
U . Thus X = CU l(ZS) = CU l(Z0). As

EZlU is abelian, so is E0. Therefore as U0 is extraspecial, we conclude that:

X induces the full group of transvections on E0 with center Z l centralizing Z0.
(!)

Let ê ∈ Ê − ẐS . As EZlU = E0Z
l
U , eZ

l
U = e0Z

l
U for some e0 ∈ E0. By (2),

E ∩ ZSZU = ZS(E ∩ ZU ) = ZS(U
l ∩ ZU ) = ZS(ZU ∩ Z

l
U ) = E ∩ ZSZ

l
U .

Thus as ê /∈ ẐS , e /∈ ZSZ
l
U , so as ZSZ

l
U = Z0Z

l
U , e0 /∈ Z0Z

l
U . Thus [e,X ] =

[e0, X ] = Zl by (!). Hence (7) holds and of course (7) implies (8). Finally

m(Û) = m(Ê) +m(Ŵ/Ê) + 1 = m(Ê) +m(X/EZ lU) + 1 = m(Ê) +m(Ẋ/ŻlU ) + 1,

where the last equality follows from (6). Thus (10) holds. ¤

Lemma 6.2.18. (1) Ẋ and ŻlU are normal in CḢ(V̇ ).

(2) Ḣ and its action on Û satisfy one of the conclusions of Theorem G.11.2.

Proof. We first verify that Û , Ḣ, ẐS , Ê, Ẋ, ŻlU satisfy Hypothesis G.10.1 in

the roles of “V , G, V1, W , X , X0”. As Φ(X) ≤ Z l ≤ U , Ẋ is elementary abelian,

and Ê is totally singular by 6.2.17.4. By construction condition (a) of part (2) of
Hypothesis G.10.1 holds. Conditions (b), (c), (d), and (e) are parts (10), (3), (5),
and (7) of 6.2.17, respectively. So Hypothesis G.10.1 is indeed satisfied.

Let MH := H ∩M . By 6.2.16.5, ṀH = CḢ(V̇ ), and by 6.2.9, MH = NH(ZS),

so since [ZS , U ] = Z, we conclude MH = UCH(ZS). Then as X and Z lU are normal
in CH (ZS), (1) holds.

Next we verify Hypothesis G.11.1. Case (ii) of condition (3) of that Hypothesis

holds by 6.2.17.9 and 6.2.16.4. As ṀH contains the Sylow 2-subgroup Ṫ of Ḣ , con-
dition (4) of Hypothesis G.11.1 follows from part (1) of this lemma. So Hypothesis
G.11.1 is verified. Then part (2) of the lemma follows from Theorem G.11.2. ¤

We can now complete the elimination of the case remaining after 6.2.13.

Theorem 6.2.19. If G satisfies Hypothesis 6.1.1, then G ∼=M22.
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Proof. By 6.2.13, we may assume ZS < U ∩ V , so the subsequent lemmas in
this section are applicable. In particular by 6.2.18.2, Ḣ and its action on Û are
described in Theorem G.11.2.

By 6.2.16.4, V̇ is generated by an involution v̇ of type a2 in Sp(Û) and by

6.2.17.9, v̇ ∈ Ẋ. However in cases (8) and (10)–(13) of G.11.2, Ẋ contains no

involution i with m([Û , i]) = 2, so none of these cases holds. Similarly in case (9),

we must have Ḣ = Ḣ1 × Ḣ2 with Ḣ ∼= S5, Ḣ2
∼= L2(2), Û is the tensor product of

the natural modules for Ḣ1 and Ḣ2, and v̇ is a transposition in Ḣ1. But then Ḣ2 is
transitive on [Û , v̇]#, contrary to parts (4) and (6) of 6.2.16. The same argument

eliminates case (3) of G.11.2, as there v̇ centralizes Z(O(Ḣ)) which is transitive on

[Û , v̇]#.

Let d := dim(Û). By 6.2.15.1, d ≥ 4, so case (1) of Theorem G.11.2 does not
hold.

In case (2) of G.11.2, d = 4 so Sp(Û) ∼= S6 acts naturally on Û . Thus as v̇ is of

type a2, v̇ is of cycle type 23 in S6 and 3 ∈ π(Ḣ), so 15 or 18 divides |Ḣ| by G.11.2.

Therefore Ḣ is S6, S5 with Û the L2(4)-module, or a subgroup of O+
4 (2) of order

divisible by 9. In each case NH(F̂ ) is transitive on F̂
# for each totally singular line

F̂ in Û , contrary to 6.2.16.6.
As v̇ is of type a2 in Spd(2), |v̇v̇h| ≤ 4 for each h ∈ H . Thus in case (4) of

Theorem G.11.2, v̇ is a transposition; in case (5), v̇ is a transposition or of type 24;

in case (6), v̇ is a long root involution; and case (7) is eliminated. Asm([Û , v̇]) = V̂U
is of rank 2, while transpositions in cases (4) and (5) act as transvections on Û , we
conclude that case (4) does not hold, and in case (5), that v̇ is of type 24. But now

NḢ(V̂U ) is transitive on V̂
#
U , contrary to 6.2.16.6. This contradiction completes the

proof of the Theorem. ¤

We summarize the work of the previous two chapters in:

Theorem 6.2.20. Assume G is a simple QTKE-group, T ∈ Syl2(G), L ∈
L∗f (G, T ) with L/O2(L) ∼= L2(2

n) and L E M ∈ M(T ), and V ∈ R2(LT ) with

[V, L] 6= 1. Then one of the following holds:

(1) L/O2(L) ∼= A5, and [V, L] is the sum of at most two A5-modules for
L/O2(L). Further n(H) = 1 for all H ∈ H∗(T,M).

(2) G is a rank-2 group of Lie type and characteristic 2, but G is U5(q) only if
q = 4.

(3) G ∼=M22 or M23.

Proof. Suppose first that Hypothesis 5.1.8 holds. Then we may apply The-
orem 5.2.3, whose conclusions are among those of (2) and (3) in Theorem 6.2.20.
Thus we may suppose that Hypothesis 5.1.8 fails, and hence n(H) = 1 for all
H ∈ H∗(T,M). Then we are done if the first statement in conclusion (1) of 6.2.20
holds; so we may assume it fails, and then we have Hypothesis 6.1.1. Then Theorem
6.2.19 says G ∼=M22, so that (3) holds. ¤

In particular, since the groups in conclusions (2) and (3) appear in the list of
our Main Theorem, the treatment of QTKE-groups G containing some T -invariant
L ∈ L∗f (G, T ) with L/O2(L) ∼= L2(2

n) is reduced the case where conclusion (1) is
satisfied. As mentioned at the outset, we treat this case later in Part F2, which
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deals with the situation where there exists L ∈ L∗f (G, T ) with L/O2(L) defined
over F2.



Part 3

Modules which are not FF-modules



In Part 3, we consider most cases where the Fundamental Setup (3.2.1) holds for
a pairL, V such that V is not a failure of factorization module forNGL(V )(AutL0(V ))

where L0 := 〈LT 〉. The object of Part 3 is to eliminate all but one of the pairs
considered here: we will show that G ∼= J4 when V is the cocode module for
M/V ∼= M24, and that none of the other pairs lead to examples. However we will
also have to deal with a number of shadows whose local subgroups possess the pairs
considered in this chapter.

THEOREM Assume the Fundamental Setup (3.2.1). Then one of the follow-
ing holds:

(1) V is an FF-module for NGL(V )(AutL0(V )).
(2) V is the cocode module for M/V ∼=M24 and G ∼= J4.
(3) V is the orthogonal module for AutL0(V ) ∼= L2(2

2n) ∼= Ω−4 (2
n), with n > 1.

(4) Conclusion (3) of 3.2.6 is satisfied. In particular L < L0 and L/O2(L) ∼=
L2(2

n), Sz(2n), or L3(2).

Note that case (3) and a part of case (1) were handled earlier in Part 2; while
case (4) and the remainder of case (1) will be handled later in Part 4 and Part 5.

In the initial chapter of Part 3, we begin to implement the outline for weak
closure arguments described in subsection E.3.3. The cases not corresponding to
shadows or J4 will then be quickly eliminated by comparing various parameters
associated to the representation of L0T on V . The remaining two chapters in Part
3 will pursue the deeper analysis required when the configurations do correspond
to shadows or J4.



CHAPTER 7

Eliminating cases corresponding to no shadow

Recall we wish to prove:

Theorem 7.0.1. Assume the Fundamental Setup (3.2.1). Then one of the
following holds:

(1) V is an FF-module for NGL(V )(AutL0(V )).
(2) V is the cocode module for M/V ∼=M24 and G ∼= J4.
(3) V is the Ω−4 (2

n)-module for AutL0(V ) ∼= L2(2
2n).

(4) Conclusion (3) of 3.2.6 is satisfied. In particular L < L0 and L/O2(L) ∼=
L2(2

n), Sz(2n), or L3(2).

Recall also that in Part 3, we concentrate on the cases in the FSU not appearing
in cases (1), (3), or (4) of Theorem 7.0.1; so we assume the following hypothesis:

Hypothesis 7.0.2. (1) The Fundamental Setup (3.2.1) holds. In particular
L ∈ L∗f (G, T ) with L/O2(L) quasisimple, L0 := 〈LT0 〉, and M := NG(L0).

(2) V is not an FF-module for NGL(V )(AutL0(V )).
(3) Case (3) of 3.2.6 does not hold.
(4) V is not the orthogonal module for AutL0(V ) ∼= Ω−4 (2

n).

Part (1) of Hypothesis 7.0.2 has various consequences including the following:
As L ∈ L∗(G, T ), by 1.2.7.3 L0T is a uniqueness subgroup with M =!M(L0T ).
Furthermore by 3.2.2.8, our module V for L0T is 2-reduced, and we have various
other properties including Q := O2(L0T ) = CT (V ), V E T , andM = !M(NG(Q)),
so that C(G,Q) ≤M , as in 1.4.1.

By part (2) of Hypothesis 7.0.2 and Remark B.2.8, J(T ) ≤ CG(V ), so Q con-
tains J(T ). By 3.2.10, a number of useful properties follow from this fact; for
example, NG(J(T )) ≤ M , so that J(T ) ≤ S ≤ T implies NG(S) ≤ M . Further
there are restrictions on the subgroups H ∈ H∗(T,M): By 3.1.8.3, H centralizes
Z := Ω1(Z(T )) and CV (L0) = 1.

Finally by part (3) of Hypothesis 7.0.2 and 3.2.7, V is a TI-set under M . It
follows that H ∩M ≤ CM (Z) ≤ NG(V ) =MV .

In this chapter we begin the anaysis of groups satisfying Hypothesis 7.0.2. In
the first section, we list the cases that can arise. The last of these cases seems
difficult to treat using only the methods of this chapter, so in the third section we
also add Hypothesis 7.3.1, which excludes that case; the case is treated in the final
chapter of part 3. Also the penultimate case and the case where L0/O2(L0) ∼= L3(2)
and m(V ) = 6 cause difficulties, requiring extra analysis; these cases are treated in
the last sections of this chapter and the next chapter.
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7.1. The cases which must be treated in this part

Recall we are assuming Hypothesis 7.0.2 and the notation established in the
discussion following that Hypothesis in the introduction to this chapter.

Section 3.2 determines the list of possibilities for L̄0 and V . We first extract the
sublist consisting of those cases where V is not an FF-module forNGL(V )(AutL0(V )).
We begin that deduction, later summarizing the final results in the Table of Propo-
sition 7.1.1.

Recall in the Fundamental Setup that V = 〈V T
◦ 〉 for some member V◦ of

Irr+(L0, R2(L0), T ), while VM := 〈V M 〉,MV := NM (V ), and M̄V :=MV /CMV (V )
= AutG(V ). We wish to determine the cases where V is not an FF-module for
NGL(V )(AutL0(V )).

We first consider the case where T 6≤ NG(L). Here 3.2.6 applies, and we see
that in cases (1) and (2) of 3.2.6, V is not an FF-module and VM = V = V◦; these
examples appear as the last two cases (below the second horizontal line) in the
Table of Proposition 7.1.1. By part (3) of Hypothesis 7.0.2, case (3) of 3.2.6 does
not hold. These are the modules where V 6= V◦; they are treated later in chapter
10 of part 4 in a uniform manner, although some of these examples are FF-modules
and some are not.

Therefore we may assume that T ≤ NG(L), so L0 = L and 〈L, T 〉 = LT . We
first consider the case where T 6≤ NG(V◦), so that case (3) of 3.2.5 holds. These
modules satisfy VM = V = V◦⊕V t◦ for t ∈ T−NT (V◦); the examples with L̄ ∼= L4(2)
or L5(2) are FF-modules, but the others are not, and so the latter appear as the
second group in the Table (between the horizontal lines).

Thus we are reduced to the case T ≤ NG(V◦), so that V = V◦. Furthermore
CV (L) = 1 as remarked in the introduction to this chapter, so V is an irreducible
L-module. These cases are listed in 3.2.9, and form the first group in the Table—
except for the first case 3.2.9.1, which is excluded by part (4) of Hypothesis 7.0.2.
This case was handled in part 2 in the “Generic Case”, since the unitary groups
U4(2

n) arise in that case.
This completes the deduction of Proposition 7.1.1.

We also indicate, in the last two columns of the Table of that result, first
the “shadows”(that is, groups having such a local configuration but which are not
quasithin or simple), and then the single simple quasithin example given by J4.

Three of the cases seem to require treatment different from the fairly uniform
approach used to treat the remaining cases. In the final case where V is the orthog-
onal module for L̄0 = Ω+

4 (2
n), we have m = 2 when n = 2—and worse, a = m = n

for any n, and as L is not normal in M , we can’t appeal to Remark 4.4.2. Because
of these difficulties, this case will be treated by more direct methods in the third
and final chapter of this part. The penultimate case poses similar difficulties, and
is treated in the last section of the second chapter 8 of this part. Finally the case
where L̄0T̄ ∼= Aut(L3(2)) and V is the sum 3 ⊕ 3̄ of the natural and dual module
requires special treatment, particularly as m = 2 makes it difficult to establish
lemma 7.3.2. This case is dealt with at the end of chapter 7.

We have established the list of cases to be treated under Hypothesis 7.0.2:

Proposition 7.1.1. The cases where V is not an FF-module, and which appear
in neither conclusion (3) nor (4) of Theorem 7.0.1, are:
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M̄V ≥ restr. on n dimV descr. V shadows example

U3(2
n) n ≥ 2 6n natural

Sz(2n) odd n ≥ 3 4n natural
L3(2

2n) n ≥ 2 9n 3⊗ 3σ U6(2
n), U7(2

n)
Aut(M12) 10 irred.perm.

M̂22 12 unitary
M22 10 code Co2

10 cocode F22
M23 11 code

11 cocode F23
M24 11 code Co1

11 cocode F24 J4
SL3(2

n).2 6n 3n⊕ 3n

Sp4(2
n)′.2 8n 4n⊕ 4nt̄

S7 8 4⊕ 4̄

L3(2) o 2 9 3⊗ 3t̄ L6(2).2, L7(2).2

L2(2
n) o 2 n ≥ 2 4n 2n⊗ 2nt̄ L4(2

n).2, L5(2
n).2

7.2. Parameters for the representations

Our main task in chapter 7 will be to eliminate the cases not corresponding
to a shadow or example. We use the weak closure methods of section E.3. These
methods are “numerical”, in the sense that they compare parameters—such as
a,m, n′, α, β determined only by the representation of M on V , and on other pa-
rameters r, s, w determined by suitable subspaces U of V with CG(U) ≤M . We will
obtain a numerical contradiction from the Fundamental Weak Closure Inequality
involving these parameters, established in E.3.29. 1

Because the initial steps in the weak closure argument involve primarily the
parameters m2 of M̄V and m, a of the module V , estimates on these values are
included in the early columns of the Table in Proposition 7.2.1 below.

Proofs that the parameters are indeed as indicated in the Table appear in cor-
responding sections of chapter H of Volume I—with the exception of the parameter
n′, which is determined in 7.3.4. Certain values in the table are given in parenthe-
ses; these are values which seem to be well known, but which we do not require in
our argument, and hence are not verified in chapter H. The last two columns of the
table list parameters α and β primarily relevant to an application of E.6.27 later in
this chapter; the derivation of these parameters also appears in chapter H, except
in some cases like the last case where they are not used.

We now describe the Table in more detail: Column 1, labeled “case”, indicates
the pair L̄0, V discussed in the corresponding row. Column 2, labeled “a ≤”, gives
an upper bound on a := a(M̄V , V ). Column 3, labeled “m ≥”, gives a lower bound
on m := m(M̄V , V ). The definitions of these parameters appear as E.3.9 and E.3.1.
Column 4, labeled “w ≥”, gives the resulting lower bound on the difference m− a,
which is in turn a lower bound on the parameter w of Definition E.3.23 by 7.3.3.
Column 5, labeled “n′”, is the parameter n′ := n′(AutG(V )) given in Definition

1Of course, local configurations L̄, V that actually exist in shadows are not eliminated nu-
merically. So in the following chapter 8, we instead show that those configurations provide the
unique solution to the FWCI; and then eliminate the cases by showing those configurations violate
our SQTK hypothesis.
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E.3.37; by 7.3.4 this column will give an upper bound on w. Column 6, labeled
“m2 ≤”, gives an upper bound on m2 := m2(M̄V ). Columns 7 and 8, labeled
“β ≥” and α ≥”, give the minimum codimension of a subspace U of V such
that O2(CM (U)) 6≤ CM (V ), or such that CM̄V

(U) contains an (F − 1) offender,
respectively. If there are no (F −1)-offenders, then J1(T ) centralizes V and column
8 contains ∞. We remark that the minimum of α and β by 7.4.1 gives a lower
bound for the parameter r of Definition E.3.3 in the cases where L E M .

Proposition 7.2.1. The values of various parameters for our modules are:

case a ≤ m ≥ w ≥ n′ m2 ≤ β ≥ α ≥

SU3(2
n)/6n n 2n n n n+ 1 4n ∞

Sz(2n)/4n n 2n n n n 8
3n ∞

(S)L3(2
2n)/9n 3n 3n 0 2n 4n 4n ∞; 5 if n = 1
M12/10 2 4 2 2 4 6 ∞

3M22/12 3 4 1 2 5 8 ∞
M22/10 3 3 0 2 5 6 6
M22/10 3 3 0 2 5 6 5
M23/11 3 4 1 2 4 6 ∞
M23/11 3 4 1 2 4 6 5
M24/11 3 4 1 2 6 6 7
M24/11 3 4 1 2 6 6 5

SL3(2
n).2/3n⊕ 3n n 2n n n 2n 4n ∞; 2 if n = 1

Sp4(2
n)′.2/4n⊕ 4nt̄ < 2n 3n > n n 3n 4n ∞

S7/4⊕ 4̄ 2 4 2 2 3 4 ∞

L3(2) o 2/3⊗ 3t̄ 2 3 1 2 4 6 3

L2(2
n) o 2/2n⊗ 2nt̄ (n) n 0 n 2n (2n) ∞; 2 if n = 1

7.3. Bounds on w

We now implement the outline discussed in subsection E.3.3.
As remarked earlier, in chapter 7 and the next chapter 8, we exclude the final

case in the Tables of Propositions 7.1.1 and 7.2.1:

Hypothesis 7.3.1. V is not the orthogonal module for L̄0
∼= Ω+

4 (2
n).

Recall that the case excluded by Hypothesis 7.3.1 will be treated by other
methods in the third chapter 9 of this part 3. Thus in this chapter and the next,
discussion of “all” cases in the Tables refers to the remaining cases, with the final
row of the Tables excluded.

We first discuss the parameters r and s. See Definitions E.3.3, E.3.5, E.3.1,
and E.3.9 for the parameters r, s, m, and a.

Proposition 7.3.2. r ≥ m, so that s = m.

Proof. This follows from Theorem E.6.3 when m > 2, which we see from
Table 7.2.1 holds in all cases except for L3(2) on 3 ⊕ 3̄. In that case we make
a direct argument, but as the methods are of a different flavor from the uniform
treatment in this chapter, we banish those details to a mini-Appendix at the end
of the chapter; see 7.7.1 for the proof. ¤
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In view of 7.3.2, the column headed m ≥ in Table 7.2.1 also provides a lower
bound for the parameter s. Then comparison with a gives us information on w.
Recall from Definition E.3.23 that

w := min{m(V g/V g ∩ T ) : g ∈ G and [V, V g ∩ T ] 6= 1}.

Lemma 7.3.3. The column “w ≥” of Table 7.2.1 gives a lower bound for w.

Proof. Recall from E.3.34.1 that w ≥ s− a. As s = m by 7.3.2, we subtract
the column for a from the column for m in the Table, and obtain the result. ¤

Having established a lower bound on w, we now apply E.3.35 in order to obtain
an upper bound for w.

Let H denote an arbitrary member of H∗(T,M), although from time to time
we may temporarily impose further constraints on H .

Proposition 7.3.4. w ≤ n(H) ≤ n′(M̄V ) = n′ < s, where n′ is listed in the
column headed “n′” in Table 7.2.1.

Proof. Let k denote the value of n′ given in Table 7.2.1; we first assume
n′ = k. Recall that s = m by 7.3.2, and observe further that m > n′ in all cases
in the Table, so that s > n′. Next we check that Hypothesis E.3.36 is satisfied:
We observed in the introduction to this chapter that V E T , M = !M(NG(Q)),
and V is a TI-set under M , with H ≤ CG(Z), and H ∩M ≤ CM (Z) ≤ NM (V ).
Further by Hypothesis 7.0.2, V is neither an FF-module nor the orthogonal module
for L2(2

2n), so whenever n(H) > 1 we can apply Theorem 4.4.14 to conclude that
a Hall 2′-subgroup B of H ∩M is faithful on L̄0, and hence also on V . It follows
that CH∩M (V ) ≤ O2(H ∩M), completing the verification of Hypothesis E.3.36.
Now since n′ < s ≤ r, the lemma holds by E.3.39.1.

Thus it remains to verify that k = n′. If L̄ is L3(2) on 3⊕ 3̄ or Sp4(2)
′ ∼= A6 on

4⊕ 4̄, then T is nontrivial on the Dynkin diagram of L̄, and hence T̄ permutes with
no nontrival subgroup of M̄V of odd order, so that n′ = 1 = k. In all other cases
where L̄ is of Lie type, T̄ permutes with a Cartan subgroup of L̄, which contains a
cyclic subgroup of order 2k − 1, so that n′ ≥ k in these cases. Similarly when L̄ is
sporadic, T̄ permutes with a subgroup of order 3 and k = 2, so n′ ≥ k. Finally if
n′ > k then n′ > 2 and we may apply A.3.15 to some prime p > 3 which does not
divide k(2k − 1) and obtain a contradiction which completes the proof. ¤

We can already see that when L̄ is Sp4(2
n), the value in the column w ≥ strictly

exceeds the value in the column n′, so that 7.3.3 and 7.3.4 provide our first example
of a numerical contradiction, eliminating one of our cases from Table 7.1.1:

Corollary 7.3.5. L̄ is not Sp4(2
n)′. 2

7.4. Improved lower bounds for r

We saw earlier in 7.3.2 that r ≥ m ≥ 2. In many cases, we can improve this
bound on r using E.6.28: First r > 1, giving hypothesis (1) of E.6.28. As V is
not an FF-module, hypothesis (2) of E.6.28 holds. Finally if L E M , and X is
an abelian subgroup of CM (V ) of odd order, then NG(X) ≤M by Theorem 4.4.3.

2It would also be possible to eliminate case (iii) of 3.2.6.3.c at this point (adjusting for the
fact that V might not be a TI-set under M). However, it seems more natural to treat all cases of
3.2.6.3.c uniformly in chapter 10.
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Note that when L E M , Hypothesis 4.4.1 is satisfied by any abelian subgroup X
of CM (V ) of odd order, in view of Remark 4.4.2. Thus the hypotheses of E.6.28
are satisfied, so r ≥ min{α, β} by that result, while column 7 and 8 in Table 7.2.1
give lower bounds on α and β, so:

Proposition 7.4.1. If L E M then r ≥ min{α, β}, the bound appearing in
the final column of Table 7.2.1.

7.5. Eliminating most cases other than shadows

We begin with the cases which are simplest to eliminate. Recall the Funda-
mental Weak Closure Inequality E.3.29:

Lemma 7.5.1. (FWCI) m2 + w ≥ r.

We add the adjacent columns for w ≤ and m2 ≤ in Table 7.2.1, and compare
this sum S with the bound R given by the final column min{α, β} of the Table.
We find in the following cases that we get the contradiction S < R to the FWCI,
in view of 7.4.1:

Lemma 7.5.2. (1) L̄ is not U3(2
n), Sz(2n), or M̂22.

(2) If L̄0 is L3(2
n) on 3⊕ 3̄, then n = 1.

Certain other cases are not immediately ruled out, but require only a slight
extension of this argument.

For the rest of the section, adopt the notation of the latter part of section E.3:
Let A := NV g (V ), be a “w-offender” on V ; that is m(V g/A) = w with A 6≤ CG(V ),
so that Ā 6= 1.

Lemma 7.5.3. (1) Assume the inequality in 7.5.1 is an equality, and let

B := {B ≤ A : |B : CA(V )| = 2}, and W := 〈CV (B) : B ∈ B〉.

Then m(Ā) = m2, r = m(V g/CA(V )), and W ≤ NV (V
g). Further m(V/W ) ≥ w,

and in case of equality, W = NV (V
g) is a w-offender on V g and m(W/CV (A)) =

m2.
(2) m(Ā) ≥ r − w.
(3) CV (A) = CV (V

g).

Proof. By 7.3.4, w < s, so (3) follows from E.3.6. By part (2) of Hypothesis
7.0.2, Hypothesis E.3.24 is satisfied. Thus (1) follows from E.3.31 and (3), and (2)
from E.3.28.3. ¤

In certain cases when the FWCI has a unique solution, the embedding of Ā in
M̄V is determined, which leads to a contradiction:

Lemma 7.5.4. L̄ is neither M12, nor M23 on the code module 11.

Proof. Assume otherwise. From Table 7.2.1 and 7.4.1, the FWCI is an equal-
ity with w = 2. Therefore by 7.5.3.1, m(Ā) = m2 = 4 and r = 6 = m(V g/CA(V )).
Define W as in 7.5.3.1, and observe that W ≤ NV (V

g) and m(V/W ) ≥ w = 2 by
that result. But if M̄V = M23, then as m(Ā) = 4, H.16.8 says m(V/W ) < 2, a
contradiction.

Therefore M̄V = M12. Here as m(Ā) = 4, U = CV (A) is of dimension at most
3 and m(W ) ≥ 8 by H.11.1.4. But then m(W/U) ≥ 5 > 4 = m2, contrary to
7.5.3.1. This contradiction completes the proof. ¤
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In the case of A7, we can dig a little deeper to increase r:

Lemma 7.5.5. L̄ is not A7.

Proof. Assume L̄ is A7. First r ≥ 4 by 7.4.1, and by the FWCI 7.5.1, it
suffices to show that r > 5. We appeal to E.6.27 with j = 1: As ∞ is in the
column for α in Table 7.2.1, V is not an (F − 1)-module for AutM̄ (L̄), hence
J1(M) ≤ CM (V ). From the proof of 7.4.1, CG(X) ≤M for any 1 6= X ≤ CM (V ) of
odd order. Thus for U ≤ V with O2(CM (U)) ≤ CM (V ), E.6.27 says CG(U) ≤ M .
Let U consists of those U1 ≤ V with O2(CM (U1)) 6≤ CM (V ); it suffices to show
CG(U1) ≤M , for eachU1 ∈ U withm(V/U1) < 6. But if U1 ∈ U withm(V/U1) < 6,
then U1 < Us := CV (s̄) where s̄ is a 3-element of cycle type 32 in A7. Thus it
will suffice to show that CG(U1) ≤ M , for each U1 of codimension at most 1 in
Us. Choose a counterexample U1, and let U1 ≤ U2 ≤ V be maximal subject to
CG(U2) 6≤M . Note that CM̄ (U1) = 〈s̄〉, and in particular O2′(CM (U1)) ≤ CM (V ):
For V = V1⊕V2 where {V1, V2} = Irr+(L, V ), so that Us = (Us∩V1)⊕(Us∩V2) and
Us∩Vj is a 2-subspace of Vj . If ī is an involution in M̄ centralizing U1, then i must
act on U1 ∩Vj 6= 0 and hence on Vj . Thus i centralizes the projection U1,j of U1 on
Vj , and so for j = 1 or 2, U1,j = Us ∩ Vj . This is impossible as CL̄(Us ∩ Vj) = 〈s̄〉.
So U1, and hence also U2, lies in the set Γ of Definition E.6.4. Then U2 satisfies
the hypotheses of E.6.11, so as m(V/U2) < 6 and m(V/U2) ≥ r ≥ 4, we conclude
from E.6.11 that AutCM (U2)(V ) contains an element of order 15 or 31, whereas A7

has no such element. This contradiction shows that CG(U1) ≤ M , completing the
proof of the lemma. ¤

Finally our weak closure methods provide some numerical information which
will be useful in the next chapter in treating two cases arising in certain shadows:

Lemma 7.5.6. (1) If L̄ is M22 on the code module then w > 0.
(2) If L̄ is (S)L3(2

2n) on 9n then w ≥ n.

Proof. Assume that the lemma fails. From Table 7.2.1 and 7.4.1, r ≥ 4n if
L̄ is (S)L3(2

2n), while r ≥ 6 if L̄ is M22 on the code module. From Table 7.2.1,
m2 ≤ 5 when L̄ is M22, so 7.5.1 supplies a contradiction to our assumption that
w = 0 in that case. Thus L̄ is (S)L3(2

2n).
By E.3.10, Ā ∈ As−w(M̄V , V ), while by 7.3.2, s = m. Thus s ≥ 3n by Table

7.2.1, so as w < n, Ā ∈ A2n+1(M̄V , V ). By 7.5.3.2, m(Ā) ≥ r − w > 3n. Thus we
have verified the hypotheses of lemma H.4.5.

Next if B̄1 ≤ Ā with m(Ā/B̄1) ≤ 3n and B is the preimage in A of B̄1, then
m(V g/B) ≤ 3n+ w < 4n ≤ r, so CV (B̄1) = CV (B) ≤ NG(V

g) by E.3.4. Thus

WA = 〈CV (B̄1) : m(Ā/B̄1) ≤ 3n〉 ≤ NV (V
g).

Therefore [WA, A] ≤ WA ∩ V g ≤ CWA(A), so A is quadratic on WA, contrary to
H.4.5.2. This contradiction completes the proof of (2) and establishes the lemma.

¤

7.6. Final elimination of L3(2) on 3⊕ 3̄

In this section, we eliminate the case left open in 7.5.2.2. This “small” case
of L3(2) on 3 ⊕ 3̄ seems to require special treatment: For example, we’ve already
seen in 7.3.2 that the fact that m = 2 requires arguments of a different flavor to
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prove that r ≥ m; indeed recall that we are postponing that proof that r ≥ m until
Theorem 7.7.1 in the final section of the chapter.

A second difficulty is that we cannot improve our lower bound on r using E.6.28:
since when V is the 3 ⊕ 3̄-module for L3(2), the elementary groups of rank 1 or
2 in L̄ centralize subspaces of codimensions 2 or 3 in V , respectively, and hence
are (F − 1)-offenders. In the next lemma, we use ad hoc methods to complete the
treatment of the case of L3(2) on 3⊕ 3̄.

Lemma 7.6.1. L̄0 is not L3(2) on 3⊕ 3̄.

Proof. From Table 7.2.1, n′ = 1, so n(H) = 1 for each H ∈ H∗(T,M) by
7.3.4. Also w > 0 by 7.3.3 and Table 7.2.1, while w ≤ n(H) = 1 by 7.3.4; so in fact
w = 1.

Next r ≥ 3 as we will show in 7.7.1 in the final section, so as m2 = 2, 7.5.1 is
an equality; hence m(Ā) = 2 and m(V g/CA(V )) = 3 = r by 7.5.3.1.

Suppose first that Ā 6≤ L̄. Then by H.4.3.1, U := CV (A) has dimension 2, and
(for B as in 7.5.3.1) A1 := 〈CV (B) : B ∈ B〉 is of dimension 5, while A1 ≤ NV (V

g)
by 7.5.3.1. Also U = CV (V

g) by 7.5.3.3, so that m(AutA1(V
g)) = 3, contradicting

m2(M̄) = 2.
Thus Ā ≤ L. In the notation of 7.7.1 and subsection H.4.1 of chapter H of

Volume I, V = V1 ⊕ V2 with Vi ∈ Irr+(L, V ), V2 = V t1 for t ∈ T −NT (V1), and V1
has basis denoted by 1, 2, 3. By H.4.3.2, we may take Ā to be the unipotent radical
of the centralizer of the vector 1 ∈ V1; then U := CV (A) = 〈1〉 ⊕ 〈2t, 3t〉 is of rank
3, and

A1 = 〈CV (ā) : ā ∈ Ā
#〉 = V1 ⊕ 〈2

t, 3t〉

is of rank 5. So by 7.5.3.1, A1 = NV (V
g); thus we have symmetry between V

and V g , in that A1 is also a w-offender on V g . Set (Mg)∗ := Mg/CG(V
g). Then

A∗1 ≤ Lg∗ by the previous paragraph, so U1 := CV g (A∗1) is 3-dimensional and
U1 = CA(V ).

In particular Z1 := [A,A1] ≤ V ∩ V g, and by H.4.3.2, Z1 is generated by the
vector 1 ∈ V1. Thus

X := 〈V g , V 〉 ≤ G1 := NG(Z1) = CG(Z1).

Now A centralizes U and V/U , and by symmetry, A1 centralizes U1 and V
g/U1.

It follows that X centralizes the quotients in the series

1 < UU1 < AA1.

Set X̃ := X/AA1. As Ṽ and Ṽ g have order 2, X̃ is dihedral; set Ỹ := O(X̃). A

Hall 2
′

-subgroup Y0 of the preimage of Ỹ centralizes AA1 by Coprime Action, and
then as r = 3 while m(V/A1) = 1 = m(V g/A), Y0 centralizes 〈V g , V 〉 = X . As Ỹ

is dihedral, Ỹ0 = 1, so X is a 2-group.

We can now finish the proof of the lemma using later Proposition 7.7.2, which
says that G1 ∈ He; we postpone the statement and proof of Proposition 7.7.2 until
the next section, as it is proved in parallel with lemma 7.7.6.

Set G̃1 := G1/Z1; then as G1 ∈ He, F ∗(G̃1) = O2(G̃1) by A.1.8. Recall
T1 := CT (Z1) is Sylow in G1 by 3.2.10.4. Now T1 ≤ LO2(LT ), so CṼ1(T1) and

CṼ t1
(T1) are nontrivial, and by B.2.14 both lie in O2(G̃1). Then as CL(Z1) is

irreducible on Ṽ1 = Ã1 ∩ V1 and 〈2̃t, 3̃t〉 = Ã1 ∩ V2, it follows that A1 ≤ O2(G1).
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Since Z1 ≤ V ∩ V g with [V, V g ] 6= 1, 3.2.10.6 says that V 6≤ O2(G1). So as
|V : A1| = 2, A1 = V ∩ O2(G1), and hence m(V/V ∩ O2(G1)) = 1. Then for any
h ∈ G1, we have m(V h/V h ∩ O2(G1)) = 1, with V h ∩ O2(G1) ≤ T1 ≤ NG(V ). If
V h centralizes V , then 〈V, V h〉 = V V h is a 2-group, while if V h does not centralize
V then V h ∩O2(G1) is a w-offender on V , so our argument above for V g applies to
V h to show 〈V, V h〉 is again a 2-group. Therefore the Baer-Suzuki Theorem forces
V ≤ O2(G1), which we saw is not the case. This completes the proof. ¤

7.7. mini-Appendix: r > 2 for L3(2).2 on 3⊕ 3̄

Our goal in this section is to prove the following two results:

Theorem 7.7.1. If L̄0 is L3(2) on 3⊕ 3̄, then r > 2. In particular, s = m = 2.

Proposition 7.7.2. Assume L̄0 is L3(2) on 3⊕ 3̄, and r > 2. Then

F ∗(CG(v1)) = O2(CG(v1)) for each V1 ∈ Irr+(L, V ) and v1 ∈ V
#
1 .

So throughout this section, assume we are in the case where L̄0 is L3(2) on
3⊕ 3̄. Recall L ∈ L∗(G, T ), L E M ∈M(T ), V ∈ R2(LT ) is normal in M , M̄ :=
MV /CM (V ) ∼= Aut(L3(2)), and V = V1 ⊕ V2, where V2 := V t1 for t ∈ T −NT (V1)
and V2 is the dual of the natural module V1. Recall Q := O2(LT ).

The module V is discussed in subsection H.4.1 of chapter H of Volume I, where
we find that we can view L̄ as the group of invertible 3 × 3 matrices over F2,
with respect to some basis of V1 denoted by {1, 2, 3}, with t̄ the inverse-transpose
automorphism.

7.7.1. Reduction to CG(V0) ≤M for V0 := 〈1,1t〉. Our goal in Theorem
7.7.1 is to show that r(G, V ) > 2, so we need to prove that CG(U) ≤ M for each
U ≤ V with m(V/U) ≤ 2. It turns out this can be accomplished by controlling the
centralizer of the single subspace V0 := 〈1, 1t〉, by showing:

Proposition 7.7.3. G0 := CG(V0) ≤M .

In this short subsection, we prove that Theorem 7.7.1 can be deduced from
Proposition 7.7.3.

So assume Proposition 7.7.3, and suppose that for some U ≤ V withm(V/U) ≤
2, we have CG(U) 6≤M .

We first consider the case where m(V/U) = 1. Since V admits an orthogonal
form, U = v⊥ for some v ∈ V . Now replacing the orbit representatives in H.4.2 by
conjugates v = 2, 2 + 3t, 2 + 2t, we see using the form in H.4.1 that V0 ≤ v⊥ = U ,
so that CG(U) ≤ CG(V0) ≤M by Proposition 7.7.3.

Thus we have established that r > 1, so it remains to treat the case m(V/U) =
2.

First assume U is centralized by no involution of M̄ . Then Q is Sylow in
CM (U), and no nontrivial element of odd order in M̄ centralizes a subspace of V
of codimension 2, so that CM (U) = CM (V ). Hence as r > 1, we get CG(U) ≤ M
from E.6.12.

This leaves the case where U is centralized by some involution ī ∈ M̄ . Since
m(V/U) = 2, we must have ī ∈ L̄, and conjugating in L̄, we may take ī to be given
by the matrix for the permutation (2, 3) (and hence also (2t, 3t)). So again V0 ≤ U ,
and Proposition 7.7.3 gives CG(U) ≤M .

This completes the proof of Theorem 7.7.1 modulo Proposition 7.7.3. So the
remainder of this section is devoted to the proof of Propositions 7.7.3 and 7.7.2.
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7.7.2. More detailed properties of V0 and its centralizer. Observe
CM̄ (V0) is the subgroup of L̄ fixing 1 and acting on the subspace 〈2, 3〉, so CM̄ (V0) ∼=
L2(2) ∼= S3 .

Set L0 := O2(CL(V0)), so that L̄0/O2(L̄
0) is of order 3. Let θ ∈ L0 be of order

3. Observe

[V, L0] =: V− = 〈2, 3〉 ⊕ 〈2t, 3t〉 = V ⊥0 .

and

V = V0 ⊕ V−.

Set T0 := CT (V0) and M0 := CM (V0). Then CLT (V0) = L0T0, T0 ∈ Syl2(CM (V0)),
and T0 of order 2 is generated by the involution ī defined in the previous subsection.

Let Z1 := 〈1〉, G1 := CG(Z1), and L1 := O2(CL(Z1)). Thus Z1 ≤ V0, so
G0 ≤ G1 and L0 ≤ L1. Again L1/O2(L1) is of order 3, but L1/Q ∼= A4 while
L0/Q ∼= Z3.

Let V+ denote either V0 or Z1, and define G+ := CG(V+), L+ := O2(CL(V+)),
M+ := CM (Z+), and T+ := CT (V+). Then

M+ = CM (V )L+T+,

and by 3.2.10.4, T+ is Sylow in G+.
We emphasize that

Q = O2(L
0T0),

and that this property is crucial to our proof that G0 ≤M .

Lemma 7.7.4. If Y is an abelian subgroup of CM (V+) of odd order, then

(1) YC := CY (V ) is of index at most 3 in Y , and
(2) if YC 6= 1, then NG(YC) ≤M .

Proof. As Y is of odd order in O2(CM (V+)) = O2(CM (V ))L+ and |L̄+ :
O2(L̄+)| = 3, |Y : YC | ≤ 3. By Theorem 4.4.3 and Remark 4.4.2,NG(YC) ≤M . ¤

Lemma 7.7.5. If w ∈ V # is 2-central in G, and L+T+ ≤ H ≤ G+, then

F ∗(CG(w)) = O2(CH (w)).

Proof. We show that the hypotheses of 1.1.4.4 are satisfied with Gw := CG(w)
in the role of “M”, and H ∩ Gw in the role of “N”. First Gw ∈ He by 1.1.4.3 and
our hypothesis that w is 2-central. Set G+,w := CG(V+〈w〉), and embed Q ≤
Tw ∈ Syl2(G+,w). Then J(T ) ≤ Q ≤ Tw so Tw ≤ NG(Tw) ≤ M by 3.2.10.8.
Consequently Tw ≤ M+, which we saw above is CM (V )L+T+. Then by Sylow’s
Theorem, T cw ≤ L+T+ for some c ∈ CM (V ) ≤ G+,w, so without loss Tw ≤ L+T+ ≤
H . Hence V+ ≤ H ∩O2(G+) ∩Gw ≤ O2(H ∩Gw). So

CO2(Gw)(O2(H ∩Gw)) ≤ CO2(Gw)(V+) ≤ O2(Gw) ∩G+,w ≤ O2(G+,w)

≤ Tw ≤ H ∩Gw.

Thus we finally have the hypothesis for 1.1.4.4, and we conclude from 1.1.4.4 that
H ∩Gw ∈ He. ¤
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7.7.3. Proof of Proposition 7.7.2. In the remaining two subsections of the
section, we assume that either

(H0) V+ = V0 and G0 6≤M , or
(H1) V+ = Z1, r > 2, and G1 /∈ He.

In each case, we work toward a contradiction. In this subsection, we assume
(H1) and obtain a contradiction establishing Proposition 7.7.2, and hence also com-
pleting the proof of lemma 7.6.1, which depended upon that Proposition. At the
same time, we will prove a lemma 7.7.6, necessary for the proof of Proposition 7.7.3.
Then in the final subsection we assume (H0) and complete the proof of Proposition
7.7.3, on which various earlier results depended.

Under (H0), choose H ∈ H∗(L0T0,M) with H ≤ G0. Under (H1), choose
H ∈ H(L1T1,M) with H ≤ G1, and H minimal subject to H /∈ He.

In either case set MH := H ∩ M . As H ∈ H, H is an SQTK-group. Set
A := V+V−; and observe that A = V under (H0), while A is a hyperplane of
V under (H1). Therefore CG(A) ≤ M under either hypothesis, since r > 1 in
Hypothesis (H1).

Under Hypothesis (H0) we will prove:

Lemma 7.7.6. Assume Hypothesis (H0). Then

(1) T0 ∈ Syl2(H).
(2) H = J(H)L0T0.
(3) F ∗(H) = O2(H).

We prove lemma 7.7.6 and Proposition 7.7.2 together.
First assume just Hypothesis (H0). Since T0 is Sylow in G0, part (1) of 7.7.6

holds. As O2(L
0T0) = Q, with T0 Sylow in both L0T0 and H , we conclude from

A.1.6 that O2(H) ≤ Q. By a Frattini Argument, H = J(H)NH(R), where R :=
T0 ∩ J(H) ∈ Syl2(J(H)), and J(T ) = J(R). Then NH(R) ≤M by 3.2.10.8, so as
H 6≤ M , also J(H) 6≤ M—and hence part (2) of 7.7.6 follows from minimality of
H .

It now remains to prove part (3) of 7.7.6, as well as Proposition 7.7.2. Thus
we assume either (H0) or (H1), and it remains to show that F ∗(H) = O2(H). As
a first step, A.1.6 says O2(M) ≤ Q ≤ T+ ≤ H , so by 1.1.4.5, F ∗(MH) = O2(MH).

Next applying A.1.26.1 to L0 on V− = [V−, L
0], V− centralizes O(H). Therefore

O(H) ≤ CH (V−) = CH (V+V−) = CH(A).

Thus given our earlier observation that CG(A) ≤M , O(H) ≤ O(MH ), so O(H) = 1
since MH ∈ H

e.
It remains to show that E(H) = 1. Thus we may assume that there is a

component K of H . If K ≤ M , then K ≤ E(MH), contradicting MH ∈ He; thus
K 6≤ M . By 1.2.1.3, L+ = O2(L+) ≤ NH(K), so L+T+ acts on K0 := 〈KT+〉.
Therefore by minimality of H , H = K0L+T+.

Next as L0 acts on K, so does V− = [V−, L
0]. We claim V− acts faithfully

on K, so assume otherwise; the proof will require several paragraphs. First V+ <
W := CA(K), so as L0 acts on W , W contains at least one of the five nontrivial

orbits O of 〈θ〉 on V #
− . Now O = W#

− for some 2-subspace W− of W . Observe
W contains no involution w 2-central in G: For if w is such an involution, then
K ≤ E(H) ∩Gw ≤ E(H ∩Gw), while E(H ∩Gw) = 1 by 7.7.5.
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Suppose first that (H0) holds. Then W contains the orthogonal sum of the
hyperbolic 2-space V0 with W−, and either W− lies in V1 or V2 and hence is totally
singular, orW− is diagonal and definite. Set w := v0+w− for 0 6= w− ∈ W−, where
we choose v0 to be singular in V0∩V3−i in caseW− ≤ Vi, or the non-singular vector
in V0 in case W− is definite. Then by construction w is singular and diagonal, so
by H.4.2, w is 2-central, contrary to the previous paragraph. This establishes the
claim when (H0) holds.

So suppose instead that (H1) holds. As W contains no 2-central involution, W
is not CV (O2(L1)), so O does not contain 2t. Therefore W is not centralized by
an involution of M̄—so that W ∈ Γ in the language of Definition E.6.4. By (H1),
r > 2, so as m(W ) = 3, W is maximal subject to CG(W ) 6≤M . But then E.6.11.2
says there is a subgroup of order 7 normal in NM̄ (W ), which cannot happen—

since NM̄ (W ) is a 7
′

-group unless W = V1, where NM̄ (W ) ∼= L3(2) has no normal
subgroup of order 7. This completes the proof of the claim that V− is faithful on
K.

Next observe that V− induces inner automorphisms on K: We check that the
groups listed in Theorem C (A.2.3) have no A4-group of outer automorphisms,
whereas V− = [V−, θ]. Thus the projection VK of V− on K is faithful of rank 4.

Let Z+ := 1 under (H0) and Z+ := Z1 under (H1). In either case, set H̃ :=

H/Z+. Now O2(L+)Q is of index 2 in T+, and centralizes Ã = Ṽ+Ṽ−. Thus Ã

centralizes a subgroup of T̃+ of index 2. Therefore ṼK is centralized by QK :=

O2(L+)Q∩K of index at most 2 in TK := T+ ∩K, so Z̃K := CṼK (TK) is noncyclic

and contained in Z(T̃K). Therefore m2(K/Z(K)) ≥ 4 and Z(T̃K) is noncyclic.
We check the groups on the list of Theorem C for groups with these properties:
m2(K/Z(K)) ≥ 4 eliminates the groups in cases (1) and (2) of Theorem C (other

than A8 which also appears in case (4)), while Z(T̃K) noncyclic eliminates those in
cases (4) and (5) as well as those in case (3) over the field F2. Therefore K/Z(K)

is of Lie type over F2n for some n > 1. Now if R̃ is a root group of K̃ in T̃K ,

then 1 6= R̃ ∩ Q̃K , so ṼK ≤ CT̃K (R̃ ∩QK) ≤ CT̃K (R̃), and hence ṼK ≤ Z(T̃K),

so Ã centralizes T̃K . In particular m2(Z(T̃K)) ≥ 2, so either n ≥ 4 or K/Z(K) is

Sp4(4). Thus by I.1.3, the multiplier of K/Z(K) is of odd order, so as [Ã, T̃K ] = 1,
[A, TK ] ≤ K ∩ Z+ ≤ O2(K) = 1. Therefore TK ≤ CT (A) = Q, so Q is Sylow in
QK0. However C(G,Q) ≤ M , so C(K0, Q) ≤ K0 ∩M < K0. Thus we may apply
the local C(G, T )-theorem C.1.29 to the maximal parabolics of K0. Now if K is of
Lie type G2,

3D4, or
2F4, neither of the two maximal parabolics of K are blocks,

so by C.1.29, each is contained in M . Thus K ≤ M as K is generated by these
maximal parabolics, a contradiction. This reduces us to the case where K/Z(K) is
a Bender group over F2n , L3(2

n), or Sp4(2
n), andM∩K0 is either a Borel subgroup

of K0 or a maximal parabolic K1 of K ∼= L3(2
n) or Sp4(2

n). In any case M ∩K0

contains a Borel subgroup B of K0 normalizing TK . By an earlier remark, either
n ≥ 4 or K ∼= Sp4(4).

Now let Y be a Cartan subgroup of B. By 7.7.4, YC := CY (V ) is of index
at most 3 in Y . But when n ≥ 4, certainly |Y : YC | > 3, since YC centralizes
V and hence centralizes VK ≤ Z(TK), while some subgroup of Y isomorphic to
Z2n−1 is semiregular on Z(TK). Therefore K0 is Sp4(4), with YC of order 3—again
centralizing V and hence VK . This is impossible, as the Cartan group of B is
faithful on Z(TK) in Sp4(2

n).
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This completes the proof of Lemma 7.7.6 and Proposition 7.7.2.

7.7.4. Proof of Proposition 7.7.3. Now that Proposition 7.7.2 is estab-
lished, we work under Hypothesis (H0), and it remains to obtain a contradiction,
establishing Proposition 7.7.3.

We are in a position to exploit Thompson factorization: First, lemma B.2.14
tells us that

U := 〈Ω1(Z(T0))
H〉 ∈ R2(H),

so setting H∗ := H/CH(U), we have O2(H
∗) = 1. Further

V = 〈CV (T0)
L0

〉 ≤ U,

so

CH(U) ≤ CH(V ) ≤MH .

We saw early in the proof of 7.7.6 that J(H) 6≤M , so J(H)∗ 6= 1.
Next J(H)∗ is described in Theorem B.5.6. In particular as J(H) 6≤M , either

O3(J(H)∗) 6≤M∗
H or some component K∗ of J(H)∗ is not contained in M∗

H .
Assume the first case holds. Then

X∗ := O3(J(H)∗) = X∗1 × · · · ×X
∗
d

with X∗i
∼= Z3 and [U,X ] = U1 ⊕ · · · ⊕ Ud where Ui := [U,Xi] is of rank 2.

Further d ≤ 2 so that L0 = O2(L0) acts on each Ui. As J(T ) E L0T0 and L0

acts on Ui, L
0 acts on CUi(J(T ))

∼= Z2, so [Ui, L
0] = 1. Then 1 = [U,X,L0], and

[X∗, L0∗] = 1 which says [X,L0, U ] = 1. So by the Three-Subgroup Lemma we have
[L0, U,X ] = 1. But recall V− = [L0, V ] ≤ [L0, U ]. Thus X centralizes V0V− = V ,
contradicting X 6≤M .

Therefore some component K∗+ of J(H)∗ is not contained in M∗
H , so taking

K ∈ C(H) with K∗+ = K∗ and setting K0 := 〈KT0〉, H = K0L
0T0 by minimality of

H . Similarly by a Frattini Argument, H = CH(U)NH(CT0 (U)), so that K/O2(K)
is quasisimple by 1.2.1.4 and minimality of H .

Lemma 7.7.7. Hypothesis C.2.3 is satisfied with Q in the role of “R”.

Proof. Recall C(G,Q) ≤ M , so C(H,Q) ≤ MH < H . By A.4.2.4, Q ∈
Syl2(C0), where C0 := CMH (L

0/O2(L
0)) E MH ; then C0 ≥ 〈QMH 〉, so Q is also

Sylow in the latter group. Also Q ∈ B2(MH) by C.1.2.4, so that Q ∈ B2(H) by
C.1.2.3. Thus we have verified Hypothesis C.2.3. ¤

Lemma 7.7.8. Q ≤ NH(K).

Proof. Assume otherwise. Then by C.2.4, Q∩K ∈ Syl2(K), and as K 6≤M ,
K is a χ0-block. Further as K∗ is quasisimple and K < K0, we conclude from
the list in A.3.8.3 that K∗ ∼= L2(2

n) with n ≥ 2. Then by C.2.4, K0 ∩M is the
Borel subgroup B normalizing Q ∩ K0. Let Y be a Cartan subgroup of B. By
7.7.4, |Y : YC | ≤ 3 and NG(YC) ≤ M because YC 6= 1 since K0 is the product of
two conjugates of K. On the other hand, Y T0 = T0Y and T0 acts on L, so also
YCT0 = T0YC . Then as H 6≤ M , NH(YC) 6≤ M by 4.4.13.1. This contradiction
completes the proof. ¤

Now that Q ≤ NH(K) by 7.7.8 and K/O2(K) is quasisimple, we may apply
C.2.7 to conclude that K is desribed in C.2.7.3.
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Lemma 7.7.9. (1) If case (a) of C.2.7.3 holds, then K is an A7-block.
(2) [L0∗, T ∗0 ∩K

∗] 6≤ O2(L
0∗).

Proof. Suppose case (a) of C.2.7.3 holds, where K is a χ-block. Suppose first
that K is an L2(2

n)-block, and either n > 2 or K < K0. Let Y be a Cartan
subgroup of K0 ∩M . An argument in the proof of the previous lemma shows that
YC 6= 1, and supplies a contradiction. Thus K = K0 is a block of type L2(4), A5,
or A7.

Suppose next thatK is a block of type A5 or L2(4), and let Y ∈ Syl3(M∩KL0),
YC := CY (V ), YL := Y ∩ L0, and YK := Y ∩ K. By 7.7.4.1, |Y : YC | ≤ 3. As
NK(YK) 6≤ M , 7.7.4.2 says that YK 6= YC , and hence Y = YKYC = YLYC as
|Y : YC | ≤ 3. Then

V− = [V, L0] = [V, YL] = [V, YK ] ≤ U ∩K ≤ O2(K).

But as K is of type A5 or L2(4), m(O2(K)/Z(K)) = 4 = m(V−), so V−Z(K) =
O2(K). This is impossible, as Q ∩ K ∈ Syl2(K), and Q centralizes V but not
O2(K). This establishes (1); in particular K is not a χ0-block.

Assume that [L0∗, T ∗0 ∩K
∗] ≤ O2(L

0∗). Then T0 ∩K ≤ CT0(L
0/O2(L

0)) = Q,
so Q ∈ Syl2(K0Q). Therefore K is a χ0-block by C.2.5, contrary to the previous
paragraph. Thus (2) holds. ¤

Lemma 7.7.10. L0 ≤ K, and hence T0 ≤ NH(K), so that K = K0.

Proof. We may assume L0 6≤ K, and it suffices to derive a contradiction.
Since 1 6= [V, L0] ≤ [U,L0], we have L0∗ 6= 1. We will appeal frequently to the
fact that L0∗ is normal in M∗

H , and hence is normalized by MK := M ∩K, with
L0∗/O2(L

0∗) of order 3.
Inspecting the groups listed in C.2.7.3 and appealing to 7.7.9.1, eitherm3(K) =

2 or K∗ ∼= SL3(2
n) with n odd. In the former case we apply A.3.18, and A.3.19

when K∗ ∼= SL3(2
n) with n even; we conclude that K is the subgroup of H gen-

erated by all elements of order 3 so that L0 ≤ K, and the lemma holds in this
case.

Therefore we are reduced to the case whereK∗ ∼= SL3(2
n) with n odd, andM∗

K

is a maximal parabolic. Assume L0 6≤ K0. Then [L0∗,M∗
K ] ≤ L0∗∩M∗

K ≤ O2(M
∗
K),

so as CAut(K∗)(M
∗
K/O2(M

∗
K)) is a 3′-group, [L0∗,K∗] = 1, contrary to 7.7.9.2.

This contradiction shows L0 ≤ K0. As we are assuming L0 6≤ K, we must have
K < K0 = KKs for s ∈ T0 −NT0(K). Hence K∗ ∼= L3(2) by A.3.8.3. As L0 6≤ K
and T0 acts on L0, L0∗ is diagonally embedded in K∗0 . But the Sylow group T ∗0
acts on no such diagonally embedded subgroup with Sylow 3-subgroup of order 3,
completing the proof of the lemma. ¤

As L0 ≤ K, L0∗ E M∗
K . Hence as L0∗/O2(L

0∗) is of order 3, K∗ is not L3(2
n)

with n > 1 odd. Similarly if K∗ ∼= SL3(2
n) with n even, then L0∗ = Z(K∗), so

that [L0∗,K∗] = 1, contrary to 7.7.9.2. Thus n = 1 in case (g) of C.2.7.3.
Assume we are in the subcase of case (e) of C.2.7.3 where K∗ ∼= Sp4(4) and

M∗
K is a maximal parabolic. Then as L0∗ E M∗

K , L
0∗ = O2,3(M

∗
K)). But then

[L0∗, T ∗K ] ≤ O2(L
0∗), contrary to 7.7.9.2.

Thus we are left with the subcase of case (a) of C.2.7.3 where K is an A7-block,
or one of cases (b)–(d), case (e) with K∗ ∼= A6, case (f), case (g) with n = 1, or
case (h).
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We now eliminate the cases (a)–(d), (e) with K∗ ∼= A6, and (f); in all these
cases, K is a block. We have V− = [V−, L

0] ≤ K using 7.7.10. Recalling that
V ≤ U ≤ O2(H), we see that V− ≤ O2(K). LetW be the unique noncentral 2-chief
factor of the block K, and W− the image of V− in W . As CV−(L

0) = 1, W− ∼= V−.
Further Q centralizes W− and Q is of index 2 in the Sylow group T0. However in
each case, W is of dimension 4 or 6, and no subgroup of index 2 in a Sylow group
centralizes a 4-subspace of W .

We are left with case (h), and with the subcase of case (g) where n = 1. Thus
K∗ ∼= Lm(2) with m := 3, 4, 5. As L0∗ is normal in the parabolic M∗

K and T0-
invariant, L0∗T ∗K is a rank one parabolic determined by a node δ in the Dynkin
diagram adjacent to no node in M∗

K . So when m is 4 or 5, unless K∗T ∗0
∼= S8 and

δ is the middle node, there is an L0T0-invariant proper parabolic which does not
lie in M , contrary to the minimality of H . When K∗T ∗0

∼= S8, Theorems B.5.1 and
B.4.2 say I := [U,K]/C[U,K](K) is either the orthogonal module or the sum of the
natural module and its dual. But in either case, m(CI (T0)) = 1, impossible as V−
is isomorphic to an L0T0-submodule of I and m(CV−(T0)) = 2.

ThereforeK∗ ∼= L3(2), and C.2.7.3 says that K is described in Theorem C.1.34.
As m(CV−(T0)) = 2, there are at least two composition factors on U ≤ Z(O2(K)),
ruling out all but case (2) of C.1.34. Hence O2(K) = U = U1 ⊕ U2 is the sum
of two isomorphic natural modules for K∗ = K/U , with V− = W1 ⊕W2 where
Wi = CUi(Q). Then an element θ of L0 of order 3 has a unique nontrivial composi-
tion factor on O2(L

0∗), (which is realized on Q/U) plus two nontrivial composition
factors W1 and W2 in U (realized in V ). Thus L0 has just one nontrivial com-
position factor on Q/V , which is impossible since the outer automorphism t̄ of
L̄ ∼= L3(2) must interchange any natural module and its dual, and these are the
only irreducibles with a unique nontrivial L0-composition factor. This contradic-
tion finally completes the proof of Proposition 7.7.3 and hence also of Theorem
7.7.1.





CHAPTER 8

Eliminating shadows and characterizing the J4
example

We begin by reviewing the cases remaining after the work of the previous
chapter, which eliminated those cases which do not lead to examples or shadows.

We continue to assume Hypotheses 7.0.2 and 7.3.1 from the previous chapter.
The latter hypothesis excludes the case where L̄0 is Ω+

4 (2
n) on its orthogonal mod-

ule; that case will be treated in chapter 9 of this part, because the methods used
to attack that case are different from those in the remaining cases.

The cases L̄0/V remaining from Table 7.1.1 that were not eliminated in the
previous chapter 7, and are not among the cases to be treated in later chapters, are:
L3(2

2n)/9n, M22/10 or M22/1̄0, M23/1̄1, M24/11 or M24/1̄1, and (L3(2) o 2)/9.
In the case of (L3(2) o2)/9, technical complications also arise, primarily because

the existence of small (F −1)-offenders on V only gives r ≥ 3. As a result, different
methods are required to treat this case; thus we will defer its treatment to 8.3.1 in
the final section of this chapter.

As indicated in Table 7.1.1 in the previous chapter, the subgroupsM we study
in this chapter do arise as maximal 2-locals in various shadows, and in the case of
M24 on its cocode module 11, in the quasithin example J4. Thus we should not
expect the methods of the previous chapter to eliminate these configurations on
simple numerical grounds. Instead we seek to show that our bounds determine a
unique solution for the various parameters: namely, the solution corresponding to
the shadow or example. Then to eliminate the shadows, we go on to show that this
unique solution leads (via study of w-offenders and subgroups H ∈ H∗(T,M)) to
a local subgroup other than M which is not an SQTK-group. In the M24/11 case,
we construct the centralizer of a 2-central involution, which allows us to identify G
as J4.

8.1. Eliminating shadows of the Fischer groups

In this section, we assume L̄ isM22,M23, orM24 and V is the cocode module for
L̄. In these cases we take a shortcut bypassing the uniform route we just outlined.
This is because the initial bound on r given by the columns in Table 7.2.1 is a little
too weak to pin down the structure of appropriate 2-locals, without a much more
detailed analysis of elementary subgroups of M̄ and their fixed points on V , and
we wish to avoid that analysis.

In fact we will be able to eliminate these configurations, which correspond to
the shadows of the Fischer groups, not by directly constructing a local subgroup
that is not strongly quasithin, but instead by the use of techniques of pushing up
from sections C.2, C.3, and C.4. These results implicitly rule out a number of locals
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which are not SQTK-groups; as a consequence we obtain an improved bound on
r, and this slight improvement makes the remaining weak closure analysis much
easier. Since this improved bound on r now exceeds the value occurring in the
shadows, our calculations will in effect eliminate the Fischer groups—and in the
case of M24, will produce the centralizer of a 2-central involution resembling that
in J4.

In brief, we will use methods of pushing up to show for certain x ∈ V that
CG(x) ≤ M . Consequently any U ≤ V with CG(U) 6≤ M must contain only
elements in conjugacy classes other than that of x. This restriction, added to those
from Table 7.2.1, produces the improved bound on r. Then the remaining weak
closure analysis proceeds rapidly.

In this section, we will by convention order the cases so that the case L̄ ∼=M22

is first, the case L̄ ∼=M23 is second, and the case L̄ ∼=M24 is third. When we make
an argument simultaneously for all cases, we will list values of parameters for the
cases in that order, without explicitly writing “respectively”. Thus for example,
the module V is the cocode module, which we are denoting by 10, 11, 11.

We take the standard point of view (cf. section H.13 of Volume I) that the
cocode modules are sections of the space spanned by the 24 letters permuted by
M24, modulo the 12-dimensional subspace given by the Golay code. For M24, the
11-dimensional cocode module V is the image of the subspace of all subsets of even
size. The orbits of M24 on V consist of the set O2 of images of 2-sets and the set
O4 of images of 4-sets, with the latter determined only modulo the code—that is,
O4 is in 1-1 correspondence with the sextets in the terminology of Conway [Con71]
and Todd [Tod66]. For M23 and M22 we can consider 2-sets containing just one
of the letters fixed by this subgroup, and denote the corresponding vector orbit by
O2.

Our subgroup M corresponds to a local subgroup Ṁ in the shadow group
Ġ := F22, F23, F24. Notice in these shadows that for ẋ ∈ Ȯ2, CĠ(ẋ) 6≤ Ṁ ; in
fact CĠ(ẋ) has a component, which is not strongly quasithin. We will see that the
results on pushing up in section C.2 apply, and in fact rule out these components
which arise in the shadows, forcing CG(x) ≤M .

Proposition 8.1.1. CG(x) ≤M for x ∈ O2.

Proof. By H.15.1.1,

CL̄(x)
∼=M21, M22, Aut(M22),

where M21
∼= L3(4). Let H := CG(x), MH := H ∩ M , and LH := CL(x)

∞.
Replacing x by a suitableM -conjugate if necessary, we may assume TH := CT (x) ∈
Syl2(CM (x)). As F ∗(CL̄(x)) is simple, O2(CL(x)TH) = Q = O2(LT ).

Next we show that Hypothesis C.2.8 is satisfied with Q, LH in the roles of “R,
M0”. Recall first that as part of the general setup in the introduction to chapter
7, C(G,Q) ≤M . By A.4.2.7, Q is Sylow in CMH (LH/O2(LH)), so that the second
hypothesis of C.2.8 is satisfied. By H.15.1.2, we have V = [V, LH ] for the cocode
modules. By construction Q = O2(LHQ) centralizes V , with NG(V ) ≤M , so that
the third hypothesis of C.2.8 is satisfied. Finally O2(M) ≤ Q ≤ H using A.1.6, so
that MH ∈ H

e by 1.1.4.4, establishing the first hypothesis of C.2.8.
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Thus Hypothesis C.2.8 holds, and we may apply Theorem C.4.8. If CG(x) 6≤
M , then MH < H . But LH is not listed among the possibilities in C.4.8. This
contradiction show that CG(x) ≤M . ¤

Corollary 8.1.2. r ≥ 6, 7, 8.

Proof. Suppose that U ≤ V with CG(U) 6≤M . We must show thatm(U) ≤ 4,
4, 3. By Proposition 8.1.1, U ∩ O2 = ∅. During the proof of 7.4.1, we verified the
hypotheses of E.6.28; and hence (as observed in the proof of that result), also
hypotheses (1) and (4) of E.6.27 with j = 1. So since the conclusion CG(U) ≤ M
of that latter result fails, hypothesis (2) or (3) of that result must fail; hence U
centralizes either some (F − 1)-offender on V , or some nontrivial element of M̄V of
odd order.

First we consider the case where U ≤ CV (Ā) for some (F − 1)-offender Ā. By
H.15.2.3, if U ≤ CV (Ā) with U ∩O2 = ∅, then m(U) ≤ 4, 4, 3, completing the proof
in this case.

So it remains to consider the case where U ≤ W := CV (ȳ) for some nontrivial
element ȳ of L̄ of odd order. In the case of M22, m(W ) ≤ 4 as β = 6 in Table
7.2.1. When L̄ is M23 or M24, then as U ≤W with U ∩O2 = ∅, m(U) ≤ 4 or 2 by
H.15.7.3, completing the proof. ¤

Using this improved bound on r, it is not hard to eliminate the shadows of the
Fischer groups, and isolate the configuration leading to J4:

Theorem 8.1.3. If V is the cocode module for L̄ ∼=M22,M23, orM24, then L̄ ∼=
M24, and there is a unique solution of the Fundamental Weak Closure Inequality
7.5.1. Indeed that solution satisfies r = 8, m(CA(V )) = 3, w = n(H) = 2, and
Ā = KT of rank 6, for A a w-offender on V and H ∈ H∗(T,M).

Proof. Let A be a w-offender, with A ≤ V g for suitable g ∈ G. By 8.1.2,
r ≥ 6, 7, 8, while by Table 7.2.1, w ≤ 2 and m2 ≤ 5, 4, 6. Thus the FWCI is violated
when L̄ ∼= M23. When L̄ ∼= M24, the FWCI is an equality, so all inequalities are
equalities, and hence w = 2 and r = 8. Finally when L̄ ∼=M22, w ≥ 1 by the FWCI.
Further m(Ā) ≥ r − w ≥ 4 by 7.5.3.2, and when these inequalities are equalities,
we must have w = 2 and r = 6—since we saw w ≤ 2 and r ≥ 6.

In particular, we have eliminated M23. Suppose next that L̄ ∼= M24, where
we have shown the FWCI is an equality with r = 8 and w = 2. Let W be the
subspace of V defined in 7.5.3.1, and note W = ξV (Ā) in the language of H.10.1.

As w = 2 = n
′

, n(H) = 2 by 7.3.4. By 7.5.3.1, m(Ā) = m2 = 6. Therefore by
H.14.1.1, Ā is KT or KS . If Ā = KS , then W = V by H.15.3.3, contrary to 7.5.3.1.
Thus Ā = KT , so that the Theorem holds in this case.

We have reduced to the case where L̄ ∼=M22. This case is a little harder. Recall
m2 ≤ 5, w ≤ 2, and m(Ā) ≥ 4, with w = 2 in case m(Ā) = 4. Let B be the set of
B ≤ A with CA(V ) ≤ B and m(V g/B) = 5. Then for B ∈ B, m(V g/B) < 6 ≤ r,
so CG(B) ≤ NG(V

g) and hence

W := 〈CV (B) : B ∈ B〉 ≤ NV (V
g).

Further m(B̄) = m(Ā) − 5 + w, so m(B̄) = 1 if m(Ā) = 4 (since in that case
we showed w = 2); while if m(Ā) = 5, then m(B̄) = w is either 1 or 2. As
W ≤ NV (V

g), m(V/W ) ≥ w ≥ 1 by definition of w, so in particular W < V .
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If m(Ā) = 5, then by H.14.3.1, Ā = KQ. ThenW = V by H.15.4.4, contrary to
the previous paragraph. Thus m(Ā) = 4, so as W < V , H.15.5 says m(V/W ) ≤ 1.
But by earlier remarks, w = 2 and m(V/W ) ≥ w. This contradiction completes
the proof of the Theorem. ¤

8.2. Determining local subgroups, and identifying J4

In this section we treat the remaining cases other than L3(2) wr Z2, which
we consider in the final section of the chapter; thus in addition to Hypotheses 7.0.2
and 7.3.1, we assume:

Hypothesis 8.2.1. L̄0 is not L3(2)× L3(2) on the tensor module 9.

As a result of the previous section, we have eliminated M22 and M23 on their
cocode modules, and in the case of M24 on its cocode module, we showed there is
a unique solution for the weak closure parameters of a w-offender A on V . Indeed
in that case we showed that Ā = KT and CV (A) = CV (KT ) is of dimension 3.

Because of Hypothesis 8.2.1, the other cases to be treated in this section are:

L̄ ∼= (S)L3(2
2n)/9n, M22/10, M24/11.

As before we will use this ordering in common arguments, and we adjoin M24/11
as the fourth case on our list. In the first three cases we will show (as we did
in case four) that there is a canonical choice for our w-offender A, and for each
such canonical A, CV (A) is determined. Then in all four cases, we construct a
sizable part of the local subgroup N := NG(CV (A)). In some cases N will not be
strongly quasithin, so those cases are eliminated. In the surviving cases we study
C := CG(z), where z is a 2-central involution in V ; from CM (z) and CN (z) we
can construct enough of C to see that either C is not strongly quasithin, or that
M ∼= M24/11 and C has the structure of the centralizer of an involution in J4.
Then we identify G as J4 in the final subsection of this section.

8.2.1. Isolating a w-offender. As usual let H ∈ H∗(T,M). Recall H is a
minimal parabolic by 3.3.2.4, with H ∩M the unique maximal overgroup of T in
H . We see in the next lemma that V 6≤ O2(H), so from lemma E.2.9, the set
I(H,T, V ) of Definition E.2.4 is nonempty.

Proposition 8.2.2. (1) V 6≤ O2(H).
(2) There exists h ∈ H such that I := 〈V, V h〉 is in the set I(H,T, V ) and

h ∈ I.
(3) 1 6= ZI := V ∩ V h ≤ Z(I).
(4) TI := T ∩ I ∈ Syl2(I) and MI :=M ∩ I = NI(V ).
(5) kerMI (I) = O2(I), and I

∗ := I/O2(I) ∼= D2m, m odd (in which case we set
k := 1), L2(2

k), or Sz(2k), for some suitable k dividing n(H).
(6) V ∗ = Z(T ∗I ) and M

∗
I = NI∗(T

∗
I ).

(7) A := V h∩O2(I) = NV h(V ), CA(V ) = ZI , A is cubic on V , rAutA(V ),V < 2,

m(Ā) = m(V/ZI )− k, and CV (A) ≤ B := V ∩ O2(I).
(8) If k > 1, then CV (X̄) = ZI for X̄ of order 2k − 1 in M̄I .

Proof. From Table B.4.5, either M̄V = Aut(M22) and V is the code module;
or q(M̄V , V ) > 2, so that V 6≤ O2(H) by 3.1.8.2, and (1) holds.

Therefore we may assume that V ≤ O2(H) with V the code module for
M̄V = Aut(M22), and it remains to derive a contradiction. We first verify that
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the hypotheses of 3.1.9 hold with LT in the role of “M0”: Recall we saw after
Hypothesis 7.0.2 that H ∩M ≤MV ; thus case (II) of Hypothesis 3.1.5 holds. Now
part (c) in the hypothesis of 3.1.9 holds by hypothesis, part (a) is a consequence of
Table B.4.5, and (d) follows as the dual V ∗ of V satisfies q(L̄T̄ , V ∗) > 2. Finally
M = !M(LT ) by 1.2.7.3, so (b) holds.

By A.3.18, L = O3′ (M). Then we observe that each element of order 3 in M22

has six 3-cycles on 22 points, so it has three noncentral chief factors on each of V
and V ∗. Set Lz := O2(CL(z)); then L̄z = O2(CM̄ (z)) and Lz/O2(Lz)) ∼= A6. Thus
each {2, 3}′-subgroup of CM (Z) permuting with T centralizes V . As q(M̄V , V ) = 2,
but m(M̄V , V ) = 3 by H.14.4, each member of Q(MV , V ) has rank at least 2. Thus
3.1.9.6 says that H/O2(H) ∼= S3 wr Z2 or D8/3

1+2; in particular X := O2(H) ∈
Ξ(G, T ). Next by 1.2.4, Lz ≤ Kz ∈ C(CG(z)); and by A.3.12, either Kz = Lz
or Kz/O2(Kz) ∼= A7, M11, M22, M23, or U3(5). By A.3.18, Kz = O3′ (CG(z)),
so X ≤ Kz. Thus Kz/O2(Kz) ∼= M11 by 1.3.4. But then H/O2(H) ∼= SD16/E9,
impossible as H/O2,3(H) ∼= D8. This completes the proof of (1).

Then as H is a minimal parabolic, V 6≤ kerM∩H(H) by B.6.8.5, so that Hy-
pothesis E.2.8 holds. Then (2) follows from E.2.9. By E.2.11.5, O2(I) = kerMI (I).
By 7.3.3 and 7.5.6, w > 0, so W0(T, V ) centralizes V . Therefore I∗ is not Sp4(2

k)
by E.2.13.5; in particular the remainder of (5) holds by definition of I(H,T, V ).
As q(M̄, V ) > 1, E.2.13.4 says that (3) holds. We recall from the introduction
to the previous chapter that V is a TI-set under M , so that with (3), we have
the hypotheses of E.2.14. Now (4) follows from the definition of I(H,T, V ) and
E.2.14.1, while (6) follows from E.2.14.2. The first few statements in (7) follow
from E.2.13.1 and E.2.15. Then we compute m(Ā) using (5), (6), and the fact
that CA(V ) = ZI . By E.2.10.1, AB E I , while by parts (3), (4), or (10) of
E.2.14, CI(AB) ≤ kerMI (I) = O2(I); thus CV (A) ≤ CV (AB) ≤ O2(I) ∩ V = B,
completing the proof of (7). Finally, (8) follows from (5) using E.2.14.9. ¤

As in 8.2.2, pick I = 〈V, V h〉 ∈ I(H,T, V )), and adopt the rest of the notation
established in the lemma; e.g., TI := T∩I ∈ Syl2(I),MI :=M∩I , I∗ := I/O2(I) =
I/ kerMI (I), k := n(I), etc.

Proposition 8.2.3. k = n(I) = w = n, 1, 1, 2, and A is a w-offender on V .

Proof. By 8.2.2.5, k divides n(H), so k ≤ n(H). By definition w ≤ m(V ∗),
while m(V ∗) = k using 8.2.2.6. Then we can extend the inequality in 7.3.4 to

w ≤ m(V ∗) = n(I) = k ≤ n(H) ≤ n′ = 2n, 2, 2, 2 (∗)

using the values in Table 7.2.1.
In the fourth case M24/11, w = 2 by 8.1.3, so the lemma follows from (*).
Thus we may assume L̄ is not M24 on 11. If w = k, then A is a w-offender.

By Table 7.2.1 and 7.5.6, w ≥ n, 1, 1. Thus if k ≤ n, 1, 1, then w = k by (*) and
the lemma holds. Therefore by (*), we may assume that k = 2 if L̄ is M22 or M24,
while n < k ≤ 2n if L̄ ∼= (S)L3(2

2n), and it remains to derive a contradiction.
Assume first that L̄ ∼= (S)L3(2

2n). Then k > n ≥ 1, so I∗ ∼= L2(2
k) or

Sz(2k) and hence AutI(V ) contains a cyclic subgroup X̄ of order 2k − 1 ≥ 3
acting nontrivially on Ā. Therefore as Out(L̄) is 2-nilpotent, 1 6= [Ā, X̄] ≤ L̄ is
an X-invariant 2-group. Hence X̄ acts on some parabolic of L̄, and indeed on a
maximal parabolic as X̄ has odd order. Therefore 2k − 1 divides (24n − 1)n, so as
n < k ≤ 2n, it follows that k = 2n. Thus m(Ā) ≤ m2 = 4n = 2k, so by E.2.14.7,
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m(V/ZI) = 3k = 6n and m(Ā) = 4n. Therefore m(ZI) = m(V ) − 6n = 3n.
By 8.2.2.8, ZI = CV (X̄). This contradicts H.4.4.4, which says if m(Ā) = 4n, no
subgroup of M̄V of order 22n − 1 centralizes a subspace of CV (Ā) of rank exactly
3n.

Therefore L̄ is M22 or M24, with k = 2. This time m(Ā) ≤ m2 ≤ 6, so by
E.2.14.8, I∗ ∼= L2(4), m(Ā) = 2s for s := 2 or 3, and m(V/ZI) = 2(s + 1). Again
ZI = CV (X̄), contradicting H.16.7, which says there is no subgroup X̄ of order
3 centralizing a subspace of CV (Ā) of corank 2(s + 1) in V . So the lemma is
established. ¤

We can now eliminate the shadows of the groups U6(2
n) or U7(2

n), when
L̄ ∼= (S)L3(2

2n) and n > 1. Recall that U6(2) can be regarded as a Fischer group
F21.

Lemma 8.2.4. If L̄ ∼= (S)L3(2
2n) then n = 1, L̄ ∼= L3(4), r = 5, k = w = 1,

m(Ā) = 4, and CA(V ) = ZI is of rank 4.

Proof. By 8.2.3, k = w = n. By 7.4.1 and Table 7.2.1, r ≥ 4n with equality
only if:

(*) CG(U) 6≤M for some U of rank 5n where U is the centralizer of an element
ȳ 6= 1 of odd order in M̄V .

So by E.3.28.3, m(Ā) ≥ r−w ≥ 3n, and hence by H.4.4.3, m(V/CV (Ā)) ≥ 5n. But
by 8.2.2.7,

m(Ā) = m(V/ZI )− k ≥ m(V/CV (Ā))− n ≥ 4n,

so as m(Ā) ≤ m2 = 4n, we conclude that all inequalities are equalities, so that
m(Ā) = 4n and ZI = CV (A) is of rank 4n. Then by the FWCI, r ≤ m(Ā)+w = 5n.

Assume n = 1. Then from H.4.4.7, L̄ ∼= L3(4), and we saw earlier that k =
w = n = 1, m(Ā) = 4n = 4, and ZI = CV (A) is of rank 4n = 4. The lemma holds
when r = 5, so as 4 ≤ r ≤ 5, we may assume r = 4, and it remains to derive a
contradiction. Thus (*) holds. By H.4.6.1, 〈ȳ〉 = CM̄V

(U) is of order 3, so U is in
the set Γ of Definition E.6.4. But now E.6.11.2 contradicts the fact that U is not
centralized by an element of M̄V of order 15.

Thus we may take n > 1, and it remains to derive a contradiction. As n = k,
there is X̄ of order 2n − 1 in M̄V with CV (X̄) = ZI by 8.2.2.8. However this
contradicts H.4.4.5, completing the proof. ¤

If L̄ ∼= (S)L3(2
2n) then L̄ ∼= L3(4) by 8.2.4 and H.4.4.7. In that event, let UL

denote the unipotent radical of the stabilizer of a line in the natural module for
L3(4). We now obtain the analogue of lemma 8.1.3 in our remaining cases:

Proposition 8.2.5. Let U := CV (A). Then w = k = n(I) and:
L̄/V w r Ā m(Ā) m(U)
L3(4)/9 1 5 UL 4 4
M22/10 1 6 KQ 5 4
M24/11 1 7 KS 6 4
M24/11 2 8 KT 6 3
In each case, U ET , so NG(U) ∈ H(T ). Further U = CA(V ) = ZI ≤ Z(I) and

so I ≤ CG(U).

Proof. Recall ZI = V ∩ V h ≤ Z(I) by 8.2.2.3, and w = k = n(I) by 8.2.3.
By 8.2.2.7, ZI = CA(V ), so m(ZI) = m(V ) − k −m(Ā). Thus if m(U) and m(Ā)
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are as described in the Table, then m(U) = m(ZI), so ZI = U . Further the Table
says Ā E T̄ , so U = CV (A) E T . Hence it remains to verify the Table.

When L̄ is M24 on the cocode module, we verified the Table in 8.1.3. If L̄ is
L3(4), the Proposition follows from 8.2.4 modulo the following remark: As both
U = CV (A) and Ā have rank 4, H.4.4.2 says that Ā = UL.

Thus we may assume L̄ isM22 orM24 on the code module. By 8.2.3, k = w = 1.
By 7.4.1 and the values in Table 7.2.1, r ≥ 6.

Suppose L̄ ∼=M24 and r = 6. Then arguing as in the proof of (*) in the previous
lemma, CG(U0) 6≤M for some subspace U0 of V of rank 5 which is the centralizer
of an element ȳ of order 3 in M̄V . By H.16.6, 〈ȳ〉 = CM̄V

(U0) so that U0 ∈ Γ. Then
by E.6.11.2, there is an element of order 63 centralizing U0, contradicting H.16.6.
Thus r ≥ 7 when L̄ ∼=M24 on the code module.

Now by E.3.28.3,
m(Ā) ≥ r − w = r − 1,

so as r − 1 ≥ 5, 6 = m2, we conclude m(Ā) = m2 = r − 1 = 5, 6. Then by 8.2.2.6,

m(Ā) = m(V/ZI)− k ≥ m(V/CV (Ā))− 1, (∗)

so m(V/CV (Ā)) ≤ m(Ā) + 1 = 6, 7. Since V is not an FF-module, this inequality
is an equality, so the inequality in (*) is also an equality. Thus U = ZI is of rank
4. Further it follows from H.16.5 that Ā = KQ,KS, so the proof is complete. ¤

8.2.2. Constructing NG(U). We now use the results from the previous sub-
section to study the subgroup N := NG(U), where U is defined in 8.2.5. Let

Ñ := N/U and LU := NL(U)∞. Recall from 8.2.5 that T ≤ N , so N ∈ He by
1.1.4.6.

As k ≤ 2 by 8.2.5, 8.2.2.5 says I∗ ∼= D2m or L2(4). Thus case (i) of E.2.14.2
holds, with P := O2(I) = AB and A = Bh. By 8.2.5, U = ZI ; it follows from
E.2.14 that P = [P,O2(I)]U .

We first observe:

Lemma 8.2.6. (1) LU ∈ C(NM (U)).
(2) LU acts naturally on U as A5, A5, A6, L3(2).
(3) Either O2(LU ) = CLU (U), or L̄ is M24 on the code module, LU/O2(LU ) ∼=

Â6, and CLU (U) = O2,Z(LU ).

Proof. Part (1) follows from the definitions. Parts (2) and (3) follow from
H.4.6.2, H.16.3.2, H.16.1.2, and H.15.6.2. ¤

As T ≤ NM (U), T acts on LU , so by 8.2.6.1 and 1.2.4, LU ≤ KU ∈ C(N) with
T ≤ NN (KU ).

Lemma 8.2.7. KU/O2(KU ) is quasisimple.

Proof. Assume not. Then by 1.2.1.4, KU/O2,F (KU ) ∼= SL2(q) for some
odd prime q. Then as LU ≤ KU , A.3.12 says that either KU = LUO2,F (KU )
or LU/O2(LU ) ∼= L2(4) and q ≡ ±1 mod 5. In any case (in the notation of chap-
ter 1) X := Ξp(KU ) 6= 1 for some prime p > 3, and by 1.3.3, X ∈ Ξ(G, T ).
By 1.2.1.4 either p = q and X = O2(O2,F (KU )), or KU = LUO2,F (KU ) and
LU/O2(LU ) ∼= L2(4). In particular V is not the code module for L̄ ∼= M24, since

Â6 is not isomorphic to L2(p) for any odd prime p.
Now X = [X,LU ], so as LU E NM (U), X 6≤ M ; hence XT ∈ H∗(T,M), so

replacing H by XT if necessary, we may take H = XT ≤ N . Then H and the
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subgroup I of H are solvable, so that 1 = n(I) = k by E.1.13; hence by 8.2.3, V is
not the cocode module for M24. Thus L̄ is L3(4) or M22.

Let Y ∈ Sylp(X), so that also Y 6≤ M . Then Y ∼= Ep2 or p1+2 by definition
of X ∈ Ξp(G, T ). Suppose Y ∼= p1+2. Then Φ(Y ) ≤ M by B.6.8.2, so as p > 3, Y
centralizes U from the action of AutM (U) on U in 8.2.6. Then as p > 3, [V,Φ(Y )] =
1 by H.4.6.3 and H.16.3.4. Thus Y ≤ NG(Φ(Y )) ≤ M by 4.4.3 and Remark 4.4.2,
contradicting our observation that Y 6≤M . We conclude Y ∼= Ep2 .

Let Ĥ := H/O2(H). As k = 1, H = O2,p,2(H) by B.6.8.2. Thus as we saw
O2(I) = P = [P,O2(I)]U and H ≤ N , P ≤ O2(H). Then as U = ZI ≤ Z(I) by
8.2.2.3, and I ≤ O2(H) = X , there is a chief factor W for H on O2(X)U/U with
W = [W,Y ]. As V 6≤ O2(H) by 8.2.2.1, V 6≤ O2(X); and V/B is of rank k = 1,

B = V ∩ P = V ∩ O2(H) = V ∩ O2(X), so that V̂ is of rank 1. Therefore as

T̂ is irreducible on Ŷ , V̂ inverts Ŷ , so m(W ) = 2m([W,V ]). But [O2(X)U, V ] ≤
O2(X) ∩ V = B, so [W,V ] ≤WB , where WB is the image of B in W . Thus

m(W ) = 2m([W,V ]) ≤ 2m(WB) ≤ 2m(B/U) ≤ 10

using 8.2.5. But this is impossible, as SL2(q)/Ep2 for p > 3 has no faithful module
of dimension less than 52 − 1 = 24. ¤

Proposition 8.2.8. (1) LU = KU E N .
(2) [LU , CG(U)] ≤ O2(LU ).
(3) Either

(a) I/P ∼= L2(2
k), or

(b) L̄ is L3(4) or M24 on the code module, and I/P ∼= D10.

(4) LU acts on I and P with O2(LUI) = PO2(LU ) = CLU I(P̃ ).

(5) Let J̃ ∈ Irr+(I, P̃ ) and set F := F2 in case (a) of (3), and F := F4 in case

(b). Then P̃ , J̃ , and B̃ can be regarded as F -modules P̃F , J̃F and B̃F , for LUI, I,

and LU , respectively, and P̃F = J̃F ⊗ B̃F as an FLUI-module.
(6) If V is the code module for L̄ ∼=M24, then case (b) of (3) holds and T does

not act on O2(I).

Proof. By 8.2.7, KU/O2(KU ) is quasisimple, while LU ≤ KU and CLU (U) =
O2,Z(LU ) by 8.2.6.3. ThereforeCKU (U) ≤ O2,Z(KU ). But [KU , CG(U)] ≤ CKU (U),
so [KU , CG(U)] ≤ O2(KU ). Hence (2) follows.

Choose h as in 8.2.2.2. By 8.2.5 and (2), h ∈ I ≤ CG(U) ≤ NG(LUO2(KU )).
Therefore as LUO2(KU ) acts on V , LUO2(KU ) also acts on V h, and hence on
〈V, V h〉 = I and on O2(I) = P .

Set Y := ILU and Ẏ := Y/CY (P̃ ). Since B̃ is an LU -submodule of rank m(Ã)

given in 8.2.5, in the various cases the LU/O2(LU )-module B̃ is identified as: the
natural module for L2(4) by H.4.6.2; the 5-dimensional indecomposable (with trivial

quotient) for L2(4) by H.16.3.3; a natural module for Â6 by H.16.1.3; the sum of
two isomorphic natural modules for L3(2) by H.15.6.3. Furthermore in each case

CLU (B̃) = O2(LU ). In particular, the number of L̇U -constituents on B̃ is 1, 1, 1, 2,
and hence is equal to k by 8.2.5.

Now by E.2.10.2, P̃ = B̃⊕Ã is the sum of two I-conjugates of B̃, and P = CI(P̃ )

by E.2.14. Therefore as [LU , I ] ≤ O2(LU ) = CLU (B̃) by (2), O2(LU ) = CLU (P̃ )

and L̇U ∼= LU/O2(LU ) is quasisimple and centralized by İ ∼= I/P , so Ẏ = İ × L̇U
and (4) holds.
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If İ is L2(2), then conclusion (a) of (3) holds for k = 1, and P̃ is the sum of

copies of the natural module J̃ with EndF2I(J̃) = F2, so (5) follows from 27.14 in
[Asc86a] in this case.

Suppose L̄ is M22. Then P̃ /[P̃ , LU ] is of rank 2, so as P̃ is the sum of copies

of J̃ , it follows that İ is L2(2), so that (3a) and (5) hold in this case by the

previous paragraph. In the remaining cases for L̄, B̃ is the sum of k copies of the
natural irreducible module Λ for L̇U , so P̃ is the sum of 2k copies of Λ. Further
∆ := EndF2L̇U

(Λ) is F4, F4, F2, respectively; and by 27.14 in [Asc86a], P̃ has the

structure P̃∆ of a ∆-module for L̇UΣ, where Σ := CGL(P̃ )(L̇U ) = GL(Θ) for some

2k-dimensional ∆-module Θ, and P̃∆ = Λ⊗Θ as a L̇UΣ-module. Then İ ≤ Σ, and
among the possibilities for İ listed in 8.2.2.5, the only ones which are subgroups
of GL2k(∆) are İ ∼= L2(2

k), or D10 in the case k = 1 and ∆ = F4. Further J̃ is

F2İ-isomorphic to Θ by parts (3) and (10) of E.2.14. This completes the proof of
(3) and (5).

Suppose V is the code module for M24. Then by (3), L̇U İ ∼= Â6 × D2m for
m := 3 or 5. Therefore as m3(N) ≤ 2 since N is an SQTK-group, m = 5. 1

Next T̄ L̄U/O2(T̄ L̄U ) ∼= Ŝ6/E64 with Ā = O2(L̄U ), where each involution in T̄ is
fused into Ā under M̄ , and there is an involution in T̄ − L̄U . Therefore there is an
involution t ∈ T − LUO2(LUT ). Assume T acts on O2(I). Then as I = 〈V, V h〉 =
O2(I)(T ∩ I) since T ∩ I ∈ Syl2(I), while V E T , I = O2(I)V , so that T acts on

I . Extend the earlier “dot notation” to YT := Y T by defining ẎT := YT /O2(YT ),

and let v ∈ V −B. Then ṡ := ṫ or ṫv̇ centralizes İ . Thus İ acts on CP̃ (ṡ), whereas

by (5), CP̃ (ṡ) is of 2-rank 6, while all irreducibles for İ on P̃ are of rank 4. This
contradiction completes the proof of (6).

It remains to establish (1). As KU E N , we must show that KU = LU . First
AutLU (U) ≤ AutKU (U), and by 8.2.7 and 8.2.6.3, either CKU (U) = O2(KU ), or V
is the code module for M24 and CKU (U) = O2(KU )O

2(O2,3(LU )). If L̄ is M24 on
the cocode module then AutLU (U) = GL(U), so KU = LUCKU (U) = LUO2(KU ),
and hence LU = KU in this case. Thus we may assume one of the first three cases
holds, so m(U) = 4 by 8.2.5.

Suppose case (a) of (3) holds. Then by (6), one of the first two cases holds. Now
m3(I) = 1 = m3(LU ), LU ≤ KU with [KU , I ] ≤ O2(KU ), andN is an SQTK-group,
som3(KU ) = 1. AlsoAutLU (U) ∼= A5, and AutT (U) acts onAutLU (U). The proper
overgroups of AutTLU (U) in GL(U) have 3-rank at least 2, so as m3(KU ) = 1, we
conclude again that AutKU (U) = AutLU (U) and KU = LU .

Finally assume case (b) of (3) holds. As O2(KU ) acts on I , X := O2(I) =
O2(IO2(KU )). Thus as [KU , I ] ≤ O2(KU ), KU acts on X , and hence also on

O2(X)U = P . Now F16 = EndF2X (J̃), and P̃ is the sum of e := m(P̃ )/4 = 2

or 3 copies of J̃ , so by 27.14 in [Asc86a], KU/CKU (P̃ ) ≤ GL(Ω), where Ω is an
e-dimensional space over F16. Arguing as in the previous paragraph, m5(I) = 1 =
m5(LU ) so that m5(KU ) = 1. Then inspecting the overgroups of AutTLU (Ω), we
conclude as before that KU = LU . This completes the proof of the lemma. ¤

Lemma 8.2.9. (1) T acts on O2(I), and H = IT .
(2) T normalizes V A.
(3) V is not the code module for L̄ ∼=M24.

1We just eliminated the shadow of Co1, where m = 3 in the 2-local N .
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Proof. We begin with the proof of (1), although we will obtain (3) along the
way. Set H+ := H/O2(H) and H0 := 〈I, T 〉. Then T ≤ H0 ≤ H but H0 6≤ M ,
so H0 = H by minimality of H ∈ H∗(T,M). By 7.3.4 and Table 7.2.1, n(H) ≤ 2.
Next H = 〈IT 〉T , so O2(H) ≤ 〈IT 〉 ≤ CG(U) since I ≤ CG(U) and U E T by 8.2.5.
Now I acts on LU by 8.2.8.2, and hence so does H = 〈I, T 〉; thereforem3(HLU ) ≤ 2
as HLU is an SQTK-group. We conclude from 8.2.8.2 and the description of LU in
8.2.6 that O2(H) centralizes LU/O2(LU ), and m3(H) ≤ 1.

Suppose that V is the code module for L̄ ∼= M24. Then LU/O2(LU ) ∼= Â6, so
the argument of the previous paragraph shows that H is a 3′-group. Therefore as
n(H) ≤ 2, and 5 ∈ π(H) by 8.2.8.6, we conclude from E.2.2 and B.6.8.2 that H is
a {2, 5}-group. Then as m5(LUH) ≤ 2, it follows that O2(I) = O2(H), whereas T
does not act on O2(I) by 8.2.8.6. This establishes (3).

Suppose that L̄ ∼= M24, so that V is the cocode module by the previous para-
graph. Then n(H) = 2 = k = n(I) by 8.1.3 and 8.2.5, and I/O2(I) ∼= L2(4) by
8.2.8.3. As m3(H) ≤ 1 by the first paragraph, inspecting the possibilities in E.2.2,
we conclude that O2(H+) ∼= L2(4) or U3(4). In the former case, H = IT and
O2(H) = O2(I) so that (1) holds; so we may assume the latter. Then I+ ∼= L2(4)
is generated by the centers of a pair of Sylow 2-groups of O2(H+) and hence I+ is
centralized by a subgroup X of H∩M of order 5. Recall H∩M acts on V since V is
a TI-set underM , so X acts on 〈V O2(H)I 〉 = 〈V I〉 = I . Thus X acts on O2(I) = P .

As m(U) = 3 by 8.2.5, GL(U) is a 5′-group, as is CGL(P̃ )(AutLUI(P̃ )) by 8.2.8.5.

Thus X centralizes P by Coprime Action, and then as m(V/V ∩ P ) = k = 2, X
centralizes V . Then as I = O2(I)CI (X), X centralizes 〈V CI(X)〉 = I . Therefore
I ≤ NH(X) ≤ H ∩M by Remark 4.4.2 and 4.4.3, impossible as we saw that V is
normal in H ∩M but not in I .

Thus we may assume that L̄ is L3(4) or M22. Hence k = n(I) = 1 by 8.2.5,
and by 8.2.8, either

(i) L̄ ∼= L3(4), I/O2(I) ∼= D2m for m := 3 or 5, and B̃ = [B̃, LU ], or

(ii) L̄ ∼=M22, I/O2(I) ∼= L2(2), and |B̃ : [B̃, LU ]| = 2.

Recall H acts on LU and U , so that B ≤ O2(LU )U ≤ O2(H) in case (i), and
similarly |B : B ∩O2(H)| ≤ 2 in case (ii). As m(V/B) = 1 and V 6≤ O2(H), either

(I) B = V ∩ O2(H), so that V + = 〈v+〉 is of order 2, or
(II) case (ii) holds and m(V +) = 2.

Suppose case (II) holds. As n(H) ≤ 2, V EH∩M , andm3(H) = 1, we conclude
from E.2.2 that O2(H+) ∼= L2(4) or U3(4) and V

+ is the center of T+ ∩ O2(H+).
This contradicts I ∈ I(H,T, V ) with n(I) = 1. The argument also shows that
n(H) = 1.

Therefore case (I) holds and n(H) = 1. Thus for any g ∈ H with 1 6= |v+v+g|
an odd prime power, I1 := 〈V, V g〉 ∈ I(H,T, V ). Therefore by 8.2.8.4, |v+v+g| ∈ π,
where π := {3, 5} or {3}, in case (i) or (ii), respectively. Also we saw earlier that
m3(H) ≤ 1, and as m5(LUH) ≤ 2 while m5(LU ) = 1, m5(H) ≤ 1. We conclude by
inspection of the list of possibilities for H with n(H) = 1 in B.6.8.2 and E.2.2 that
either H+ is L2(2) or Aut(L3(2)), or case (i) holds and O2(H+) is Z5 or L2(31).

2

2In particular, we cannot have H+ ∼= U3(2); thus in the first case we are eliminating the
shadow of U7(2), where N is not an SQTK-group—though the shadow of U6(2) still survives in
that first case.
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If O2(H+) is of order 3 or 5, then H = IT , so that (1) holds. Thus we may assume
O2(H+) ∼= L3(2) or L2(31).

Let W be a chief section for LUH on O2(L̃UH̃) with [W,O2(H)] 6= 1 and set
(LUH)! := LUH/CLUH(W ). As LUH is irreducible on W , O2(H) = CH (W ) and
O2(LU ) ≤ CLU (W ). Then as O2(H) centralizes LU/O2(LU ), H

+ ∼= H ! centralizes
L!
U , and W is the sum of isomorphic irreducibles for H ! and for L!

U by Clifford’s

Theorem. Recall P̃ = Ã ⊕ B̃, with B̃ either natural or a 5-dimensional indecom-
posable for L̇U ∼= SL2(4). Thus we may choose W so that W is the sum of d ≥ 2
copies of the natural module for L!

U , and W is the tensor product of the natural
module for L!

U with a d-dimensional O2(H)-submodule D of W . As case (I) holds,

[O2(L̃U H̃), V ] ≤ ˜V ∩O2(H) = B̃, so [W,V ] is the image of B̃ inW . Therefore LU is
irreducible on [W, v+], so it follows that v+ induces a transvection on D. Therefore
D is a natural module for O2(H !) ∼= L3(2), which is impossible asH+ ∼= Aut(L3(2))
and W is a homogeneous L!

U -module. Therefore (1) is established.
Finally V is T -invariant, and by (1) so is O2(I) = AB, establishing (2). ¤

Lemma 8.2.10. (1) L is a block of type L3(4)/9, M22/10, or M24/11.
(2) CT (L) = 1.
(3) V = O2(L).
(4) Z = CV (T ) is of order 2.

Proof. By 8.2.9.3, V is not the code module for L̄ ∼= M24. By 8.2.9.2, T
normalizes V A, so [O2(L), A] ≤ O2(L) ∩ V A ≤ V CA(V ) = V U = V . Then
L = [L,A] centralizes O2(L)/V , so that (1) holds. By 3.2.10.9, CZ(L) = 1, so (2)
follows. By (1), [Z,L] ≤ V . Then as the Sylow group T centralizes Z, we conclude
from (2) and Gaschütz’s Theorem A.1.39 that V Z = V CZ(L) = V . Therefore
Z = CV (T ), so Z is of order 2, completing the proof of (4). By (1), L/V is
quasisimple, and as F ∗(L) = O2(L), Z(L/V ) is a 2-group. Thus as the multiplier
ofM24 is trivial, (3) holds when L̄ ∼=M24; and similarly (3) holds when Z(L/V ) = 1,
so we may assume that Z(L/V ) 6= 1. If L̄ ∼= L3(4), we may consider a quotient of
L/V with center of order 2; then from the structure of the covering group in (3b)
of I.2.2, O2(LU )V/V is an indecomposable extension of a natural L2(4) module

over a nonzero trivial submodule, which is not isomorphic to B̃ as an LU -module,
contrary to 8.2.8.5. Since an extension of M22 over a center of order 2 restricts to
such an extension of L3(4), this argument also eliminates extensions of M22. This
completes the proof of (3). ¤

8.2.3. Constructing CG(z). At this stage, in view of 8.2.10.1, the cases re-
maining are

L3(4)/9, M22/10, and M24/11.

By 8.2.10.4, Z = CV (T ) is of order 2. In this section we let z denote a generator
of Z, and set C := CG(z).

Using the subgroup of C generated by CM (z) and H (appearing essentially as
KzT in the proof of 8.2.13), we will show that O2(C) is extraspecial with center
Z. Then using the fact that C is an SQTK-group, we eliminate the L3(4)/9 and
M22/10 cases, where C/O2(C) is U4(2) or Sp6(2) in the shadows U6(2) or Co2.
This reduces us to the case where L/V ∼=M24 and V is the cocode module. There
we show C has the structure of the centralizer of a 2-central involution in J4, which
allows us to identify G as J4.
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Let Lz := CL(z)
∞ and C̃ := C/Z.

Lemma 8.2.11. (1) Lz ∈ C(CM (z)).

(2) There exists an LzT -series 1 < Z < Vz < V with Vz := [V,O2(Lz)], and Ṽz
is the natural module for Lz/O2(Lz) ∼= L2(4), A6, Â6.

(3) V/Vz is the A5-module, the core of the 6-dimensional permutation module,
the 4-dimensional irreducible, respectively.

(4) O2(Lz)/V induces the group of transvections on Vz with center Z, so

O2(L̄zT̄ ) = O2(L̄z) is LzT -isomorphic to the dual of Ṽz.

Proof. Parts (2)–(4) follow from H.4.6.4, H.16.4, and H.15.3. Then (2) implies
(1). ¤

Set E := 〈V Cz 〉.

Lemma 8.2.12. (1) E ∼= De
8 is extraspecial, for e := 4, 4, 6.

(2) E = O2(C).
(3) O2(Lz) = EV and Vz = E ∩ V .

Proof. By 1.1.4.6, F ∗(C) = O2(C) =: QC , so F
∗(C̃) = Q̃C by A.1.8. There-

fore as Vz E T , 1 6= CṼz (T ) ≤ Z(Q̃C). Then as Lz is irreducible on Ṽz by 8.2.11.2,

Ṽz ≤ Z(Q̃C), so Ẽ = 〈Ṽ Cz 〉 ≤ Z(Q̃C).
Let QM := O2(LT ). By parts (2) and (5) of 8.2.8, [V, LU ] = B. Then by

H.4.6.5, H.16.4.4, and H.15.8, Vz ≤ B but Vz 6≤ U ; therefore V hz ≤ A but V hz 6≤ U .
Thus as U = A ∩QM and V hz ≤ E, E 6≤ QM . But by 8.2.11.4, Lz is irreducible on
O2(L̄zT̄ ) = O2(L̄z), so Ē = O2(L̄z). Thus as V = O2(L) by 8.2.10.3, EV = O2(Lz),
establishing the first statement in (3).

Now Z ≤ V = O2(L) with L irreducible on V , so if Φ(QM ) 6= 1 then Φ(QM ) ≥
V . But CLT (QM ) ≤ QM , so each x of odd order in L is faithful on QM/Φ(QM ),
whereas [QM , x] ≤ V by 8.2.10.1. Thus Φ(QM ) = 1. Similarly as Z ≤ V , L is inde-

composable onQM . But by earlier remarks, ˜QM ∩QC ≤ CQ̃M (Ẽ) ≤ CQ̃M (O2(L̄z)).

Next from the structure of indecomposable extensions of V by a trivial quotient (ob-
tained from the duals of modules described in I.1.6), CQ̃M (O2(L̄z)) ≤ CṼ (O2(L̄z)),

while CṼ (O2(L̄z)) = Ṽz by H.4.6.6, H.16.4.5, and H.15.3.4. Hence Vz = QM ∩QC .
Thus Vz = V ∩E, completing the proof of (3). Now using (3) we have

|E| = |Vz ||E : Vz| = |Vz ||EV : V | = |Vz| · |O2(L̄z)| = 21+2e

where e := 4, 4, 6. By 8.2.11.4, Z = CVz (E), so (1) holds. (As e + 1 = m(Vz),
E ∼= De

8).
As E ≤ QC ≤ O2(CLT (z)) = EQM , and QC ∩QM = Vz ≤ E, (2) holds. ¤

Proposition 8.2.13. (1) V is the cocode module for L/V ∼=M24.

(2) L =M and C/E ∼= M̂22.2

Proof. By 8.2.11.1, Lz ∈ C(CM (z)), and of course Lz is T -invariant. Then
by 1.2.4, Lz ≤ Kz ∈ C(C), and the possibilities for Kz/O2(Kz) are described in
A.3.12.

By 8.2.12.2, E = O2(C). Let C∗ := C/E. As Kz E C and E = O2(C),
O2(K

∗
z ) = 1; in particular Lz < Kz by 8.2.12.3. Indeed using that result, O2(L

∗
z)
∼=

V/Vz is described in 8.2.11.3. We inspect the lists in A.3.12 and A.3.14 for such

subgroups, and conclude that L̄ is M24 and K∗z
∼= M̂22; in particular, notice when
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L∗z/O2(L
∗
z)
∼= A5 that the A5-module V/Vz does not arise in A.3.14. 3 That is, (1)

holds.
By 8.2.12.1, Ẽ is of rank 12. Therefore by H.12.1, Ẽ is irreducible and

EndK∗z (Ẽ) ∼= F4, so Z(K
∗
z ) = CC∗(K

∗
z ). Finally there is t ∈ T ∩ L inducing an

outer automorphism on Lz/O2(Lz) and hence also onK∗z , so as |Aut(K
∗
z ) : K

∗
z | = 2,

C = TKzCC(Kz) = TKz with Kz of index 2 in C. Therefore CM (z) = LzT with
|T | = 221 = |L ∩ T |. Then as M = LCM (z), L =M , so (2) holds. ¤

As a corollary we get:

Theorem 8.2.14. G ∼= J4.

Proof. By 8.2.12, E = F ∗(C) ∼= D6
8, and by 8.2.13, C/E ∼= Aut(M̂22). Also

zL ∩ Vz 6= {z}, so z is not weakly closed in E with respect to G. These are the
hypotheses of Aschbacher-Segev [AS91], so we conclude from the main theorem
of that paper that G ∼= J4. We mention that their work uses the graph-theoretic
methods used elsewhere in this work to establish recognition theorems. ¤

8.3. Eliminating L3(2) o 2 on 9

In this final section of chapter 8, we treat the exceptional case of L3(2) o2 on its
tensor product module, which we have been postponing since the previous chapter.
We prove:

Theorem 8.3.1. The case L̄0
∼= L3(2) × L3(2) on its 9-dimensional tensor

product module cannot arise.

We begin by defining notation: Let L1 := L, L2 := Lt, L0 := L1L2, V1 ∈
Irr+(L1, V ) with V1 NT (L)-invariant, and V2 := V t1 , so that V is the tensor product
of V1 and V2 as an L̄0-module. Thus we can appeal to subsection H.4.4 of chapter
H of Volume I.

Let Vi,m be the NT (L)-invariant m-dimensional subspace of Vi, and adopt
the following notation for the unipotent radicals of the corresponding parabolic
subgroups: Ri := CT∩LiO2(L0T )(Vi,2), and Si := CT∩LiO2(L0T )(Vi/Vi,1). Let R :=
R1R2, S := S1S2, and as usual set Q := O2(L0T ). Notice T0 := RS is Sylow in
L0Q, and of index 2 in T . Let Wj :=Wj(T, V ) for j = 0, 1.

From 3.2.6.2, we have V = VM , so M =MV .

Lemma 8.3.2. s(G, V ) = 3.

Proof. This follows from 7.3.2 and Table 7.2.1. ¤

Recall from 7.3.3 and Table 7.2.1 that w ≥ 1; indeed we can show:

Lemma 8.3.3. Either

(1) W1 centralizes V , so that w > 1; or
(2) W̄1 = R̄ and W1(S, V ) =W1(Q, V ).

Proof. Suppose A ≤ V g ∩ T with m(V g/A) ≤ 1, but Ā 6= 1. By 8.3.2, s = 3,
so that Ā ∈ A2(M̄, V ) by E.3.10. Then by H.4.11.2, Ā ≤ R̄. So if W1 does not
centralize V , W̄1 = R̄ since NM (R) is irreducible on R̄. Similarly R̄ ∩ S̄ contains
no members of A2(M̄, V ), so W1(S, V ) =W1(Q, V ). ¤

3We just eliminated the shadows of U6(2) and Co2, where C/E ∼= U4(2), Sp6(2) are not
SQTK-groups.
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Remark 8.3.4. The second case of lemma 8.3.3 in fact arises in the shadows of
G = Aut(Ln(2)), n = 6 and 7. In those shadows, H is the parabolic determined by
the node(s) complementary to those determining the maximal T -invariant parabolic
M . Further w = 1, and U = CV (R) is the centralizer of a w-offender. In most
earlier cases in this chapter, we were able to use elementary weak closure arguments
to show that the configuration correponding to a shadow is the unique solution of
the Fundamental Weak Closure Inequality FWCI, and then obtain a contradiction
to the fact thatNG(U) is an SQTK-group. But here, as in our treatment of the cases
corresponding to the Fischer groups, we instead use the fact that G is quasithin to
show that CG(U) ≤ M for suitable subgroups U of V , and then use weak closure
to obtain a contradiction.

Lemma 8.3.5. NG(W0(S, V )) ≤M ≥ CG(C1(S, V )).

Proof. By 8.3.3, W1(S, V ) = W1(Q, V ). As W0(S, V ) ≤ W1(S, V ) and M =
!M(NG(Q)), the lemma follows from E.3.16. ¤

Lemma 8.3.6. If H ∈ He with S ∈ Syl2(H) and n(H) = 1, then H ≤M .

Proof. Since s(G, V ) = 3 by 8.3.2, this follows from 8.3.5 using E.3.19 with
0, 1 in the roles of “i, j”. ¤

As usual we wish to show that CG(U) ≤ M for various subspaces U of V .
Usually these subspaces will contain a 2-central involution, so it will be useful to
establish some restrictions on the centralizers of such involutions.

Let z be a generator for CV (T ); in the notation of subsection H.4.4, we may
take z to the involution x1,1 generating V1,1⊗V2,1. Set Gz := CG(z),Mz := CM (z),
X := O2(CL0(z)), and Kz := 〈XGz〉. Note that O2(XT ) = S.

Lemma 8.3.7. Gz = KzMz, where either

(i) Kz = KKs for some K ∈ C(Gz) and s ∈ T − NT (K) with K/O2(K) ∼=
L2(p), p prime, or

(ii) Kz/O2(Kz) ∼= L4(2) or L5(2).

Proof. Let P ∈ Syl3(X); then X ∈ Ξ(G, T ), P ∼= E9, and AutT (P ) ∼= D8.
We apply 1.3.4 to Gz ∈ H(XT ) in the role of “H”. If X / Gz, define Kz := X ;
otherwise 1.3.4 gives X ≤ Kz := 〈KT 〉, where K ∈ C(Gz) is described in one of
the cases of 1.3.4. Notice case (3) of 1.3.4 is ruled out, as there AutT (P ) is cyclic.
Similarly case (2) of 1.3.4 and case (4) with Kz/O2(Kz) ∼= M11 are eliminated,
as in those cases AutT (P ) contains a quaternion subgroup. We may assume the
lemma fails. Thus neither of the remaining possiblities in case (4) of 1.3.4 holds, so
case (1) of 1.3.4 holds and we may take Kz = KKs with K/O2(K) ∼= L2(2

n) and
n ≥ 4 even, as p = 3 and L2(4) ∼= L2(5).

Note in either case that Kz E Gz . Set Yz := CGz(X/O2(X)). As T ∈ Syl2(G)
acts onX , T∩Yz ∈ Syl2(Yz), so by A.4.2.4, S = T∩Yz . IfK/O2(K) ∼= L2(2

n), X is
characteristic in NKz(T ∩Kz) and T ∩Kz = O2(Kz)O2(X)), so by Sylow’s Theorem
XNG(Kz) = XKz . This holds trivially if Kz = X . Hence by a Frattini Argument,
Gz = KzNGz(X) = KzNGz(Yz). Then as S ∈ Syl2(Yz), Gz = KzYzNGz(S)
by another Frattini Argument. As J(T ) ≤ Q ≤ S, NG(S) ≤ M by 3.2.10.8, so
Gz = KzYzMz. Next Yz = XY , where Y := O3(Yz) is a 3′-group as m3(Gz) = 2.
As S ∈ Syl2(Yz), S ∈ Syl2(Y S).



8.3. ELIMINATING L3(2) o 2 ON 9 725

We claim Y ≤M . If Y is solvable, then n(Y ) = 1 by E.1.13, so Y ≤M by 8.3.6.
So suppose Y is not solvable. Then there is Y1 ∈ C(Y ) with Y1/O2(Y1) ∼= Sz(2k).
Now a Borel subgroup B of Y1 is solvable, so as before B ≤ M using 8.3.6. Set
H := 〈Y1, T 〉; then n(H) = k is odd and k ≥ 3. If H 6≤ M then as B ≤ M , we
get H ∈ H∗(T,M), contradicting 7.3.4, which says n(H) ≤ 2. So H ≤ M , and in
particular Y1 ≤ M . These arguments apply to each minimal parabolic H of Y S
over S, so as this set of parabolics generates O2′(Y S) by B.6.5, O2′ (Y S) ≤ M .

Finally as S ∈ Syl2(Y S), by a Frattini Argument Y S = O2′ (Y S)NY S(S) ≤ M ,
since we saw NG(S) ≤M . This completes the proof of the claim.

As Gz = KzYzMz, and Yz = XY with X ≤ Kz, we conclude Gz = KzMz,
establishing the first assertion of the lemma.

If Kz = X , then Gz = XMz = Mz ≤M , contradicting 3.1.8.3.ii, which shows
H ≤ Gz for each H ∈ H∗(T,M). Thus X < Kz, so K/O2(K) ∼= L2(2

n) with
n > 2. But now we replace Y1 by K in the argument above, and again obtain a
contradiction to n(H) ≤ 2 in 7.3.4. This completes the proof. ¤

We can now essentially eliminate the shadows of the linear groups:

Lemma 8.3.8. CG(CV (R)) ≤M .

Proof. Set U := CV (R); our proof relies on the following properties:

(a) z ∈ U .
(b) NL0(R) ≤ NL0(U), and there is a subgroup P ∼= E32 of NL0(R) faithful on

U .
(c) T ≤ NG(U).

Since CG(U) 6≤M , using (c) we may choose H ∈ H∗(T,M) with I := O2(H) ≤
CG(U). By (a), I ≤ Gz, and by (b) and A.1.27, CG(U) is a 3′-group.

Next Gz = KzMz by 8.3.7. As I 6≤ Mz, the projection K∗I of I on (KzT )
∗ :=

KzT/O2(KzT ) is non-trivial. Furthermore CG(U), and hence also K∗I , is a T -
invariant 3′-group. In case (ii) of 8.3.7, K∗I (T

∗ ∩K∗I ) contains a Sylow 2-subgroup
of K∗z and hence is a parabolic subgroup of K∗; as this parabolic is a 3′-group,
I ≤ TMz, contradicting I 6≤ M . So instead case (i) of 8.3.7 holds, and Kz =
KKs with K ∼= L2(p). Now m2(L2(p)) = 2, so if P ∗ is a 3′-subgroup of K∗,
then O2(P ∗) = O(P ∗). Thus as I = O2(I), the 3′-group K∗I is of odd order, so
O2(I) ≤ O2(KzT ), and O2(I) is Sylow in I . Then since X ≤ Kz, by A.1.6 we have
O2(I) ≤ O2(KzT ) ≤ O2(XT ) = S. It follows that S ∈ Syl2(IS). But n(I) = 1 as
I is solvable, so I ≤M by 8.3.6, a contradiction which establishes the lemma. ¤

Now we achieve our initial goal:

Proposition 8.3.9. n(H) = 2 for each H ∈ H∗(T,M).

Proof. Recall n(H) ≤ 2 by 7.3.4. As w > 0, NG(W0) ≤M by E.3.16.1. Also
s = 3 by 8.3.2. Thus if CG(C1(T, V )) ≤M , then n(H) = 2 by E.3.19, so the lemma
holds. However if W1 ≤ CG(V ), then CG(C1(T, V )) ≤M by E.3.16.1.3, so we may
assume that W1 6≤ CG(V ). Then by 8.3.3,W1 = R̄. Therefore CV (R) ≤ CT (W1) =
C1(T, V ), so CG(C1(T, V )) ≤M by 8.3.8, completing the proof. ¤

Lemma 8.3.10. (1) Kz = KKs with K/O2(K) ∼= L2(5) ∼= L2(4), KzT ∈
H∗(T,M), and X(T ∩Kz) = Kz ∩M is a Borel subgroup of Kz.

(2) Gz = KzT and M = L0T .
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Proof. We first prove (1). Assume the first statement in (1) fails. We claim
then that n(H) = 1 for each H ∈ H∗(T,M) with H ≤ KzT . We examine the
groups listed in 8.3.7. The claim follows in case (i) of 8.3.7 from E.1.14.6 when
p ≥ 7, and in case (ii) from E.1.14.1. Thus the claim is established, and of course
it contradicts 8.3.9. Thus the first part of (1) holds, and as the Borel subgroup
X(Kz∩T ) of Kz is the unique T -invariant maximal subgroup of Kz, the remaining
statements of (1) hold.

Next by 8.3.7, Gz = KzMz. Assume that Gz > KzT . Then Y :=
O2(CGz (Kz/O2(Kz)) 6= 1, and Y ≤Mz. But Y is a 3′-subgroup of Mz by 1.2.2.a,
so as M̄z is a {2, 3}-group, Y centralizes V . Then [L0, Y ] ≤ CL0(V ) = O2(L0), so
that L0T normalizes O2(Y L0) = Y , and hence Gz ≤ NG(Y ) ≤ M = !M(L0T ),
contradicting Kz 6≤ M . Thus Gz = KzT , so Mz = XT , and hence CM (V ) is a
2-group. Therefore M = L0T , completing the proof of (2). ¤

Lemma 8.3.11. r(G, V ) > 3.

Proof. Recall r(G, V ) ≥ 3 by 7.3.2. Assume r(G, V ) = 3. Then there is
U ≤ V with m(V/U) = 3 and CG(U) 6≤M . By E.6.12, Q < CM (U), and CM (U) =
CL0T (U) by 8.3.10.2. Therefore by H.4.12.3 and H.4.10, U = CV (̄i) for some
involution ī ∈ L̄0T̄ . By H.4.12.3, CM̄ (U) is a 2-group, so by E.6.27, U is centralized
by an (F − 1)-offender. Thus ī ∈ L̄0 by H.4.10.3. Consequently as m(V/CV (̄i)) =
3, we may assume ī ∈ R̄1, so that U = CV (R1). But of course R1 ≤ R and
CG(CV (R)) ≤M by 8.3.8. This contradiction establishes 8.3.11. ¤

Lemma 8.3.12. V ≤ O2(Gz).

Proof. Let Qz := O2(KzT ). If V ≤ Qz, then the lemma holds, since Gz =

KzMz by 8.3.7 and V E M . So we assume V 6≤ Qz. Let G̃z := Gz/〈z〉 and
K∗zT

∗ := KzT/Qz. By H.4.9.2, XT is irreducible on Ṽ5 and V/V5, where V5
denotes the 5-dimensional space in H.4.9.2.

We claim that V5 = V ∩Qz: to see this, we apply G.2.2, which is designed for
such situations. Note that Hypothesis G.2.1 is satisfied with 〈z〉, V5, L0, X , KzT
in the roles of “V1, V , L, L1, H”. We conclude from G.2.2 that

Ũ := 〈Ṽ Kz

5 〉 ≤ Z(Q̃z),

and Ũ is a 2-reduced module for K∗z . Further as V 6≤ Qz and XT is irreducible on
V/V5, V5 = V ∩Qz as claimed.

Notice as U ≤ Qz ≤ T that [U, V ] ≤ V ∩Qz = V5; so as m(Ṽ5) = 4 = m(V/V5),

Ũ is a dual FF-module for K∗zT
∗, with dual FF ∗-offender V ∗. Now V ∗ is a normal

E16-subgroup of the Borel subgroup (M ∩ KzT )
∗ in 8.3.10, so V ∗ ∈ Syl2(K

∗
z ).

In particular there is h ∈ Kz with K∗z = 〈V ∗, V ∗h〉. Observe Ũ = [Ũ ,K∗z ], since

Ṽ5 = [Ṽ5, X ] and Ũ = 〈Ṽ Kz
5 〉. Then as [Ṽ5, V

∗] ≤ Ṽ5 and K∗z = 〈V ∗, V ∗h〉, we
conclude

Ũ = [Ũ ,K∗z ] = Ṽ5 + Ṽ h5 ,

so that Ũ has dimension at most 8, and hence is itself an FF-module, with quadratic
FF ∗-offender V ∗. By Theorems B.5.6 and B.5.1, the only possibility is Ũ = ŨK ⊕
ŨsK for ŨK a natural module for K∗. But now P of order 3 in X diagonally

embedded in KKs is fixed-point-free on Ũ , and hence on Ṽ5 of rank 4. Also X is
fixed-point-free on V ∗, so CV (X) = 〈z〉, contradicting H.4.12.1. This completes the
proof of 8.3.12. ¤
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Lemma 8.3.13. If V g ∩ V ∩ zG 6= ∅, then V g ≤ CG(V ).

Proof. This is a consequence of 8.3.12 and 3.2.10.6. ¤

Lemma 8.3.14. W2(S, V ) ≤ CG(V ).

Proof. If not, there is V g with m(V g/A) = 2 and A := V g ∩ M satisfies
1 6= Ā ≤ S̄. As A 6≤ CG(V ) we may assume without loss that A 6≤ CG(V1)—so
Ā has non-trivial projection Ā1 on S1. If Ā1 = S̄1, then for any hyperplane B̄
of Ā1, Ā is non-trivial on the proper subspace CV1(B) of V1. On the other hand,
if Ā1 is of rank 1, the same is true for the hyperplane B := S2 ∩ A of A with

CV1(B) = V1. Since V #
1 ⊆ zG, without loss we may assume z ∈ [CV1(B), A]. By

construction, m(V g/B) = 3, so as r > 3 by 8.3.11, CV1(B) ≤ NG(V
g). Therefore

z ∈ [CV1(B), A] ≤ V ∩ V g . But now 8.3.13 says V g ≤ C(V ), contrary to our choice
of V g . This establishes the lemma. ¤

Now we are in a position to complete the proof of Theorem 8.3.1. Recall
S = O2(XT ), so from the embedding of X in Kz in 8.3.10, S is Sylow in KzS
and n(Kz) = 2. From 8.3.14 and E.3.16.3, CG(C2(S, V )) ≤ M ; and from 8.3.5,
NG(W0(S, V )) ≤M . Therefore as s = 3 by 8.3.2, E.3.19 says Kz ≤M , contradict-
ing 8.3.10.





CHAPTER 9

Eliminating Ω+
4 (2

n) on its orthogonal module

The results in chapters 7 and 8 almost suffice to establish Theorem 7.0.1, our
main result on pairs L, V in the Fundamental Setup (3.2.1) where V is not an
FF-module. The only case left to treat is the case where L0/O2(L0) ∼= L2(2

n) ×
L2(2

n) ∼= Ω+
4 (2

n) with n > 1, and V is the orthogonal module for L0/O2(L0).
The standard weak closure arguments that handle most of the pairs in chapters

7 and 8 are not so effective in this case. Difficulties are already apparent from the
parameters in Table 7.2.1: For example if T contains an orthogonal transvection
σ, then m(M̄, V ) = n, so that if n = 2 we cannot immediately apply Theorem
E.6.3 to obtain r(G, V ) ≥ m(M̄, V ) as in 7.3.2. We are able to circumvent this
difficulty in Lemma 9.2.3 below. There are more serious problems, however: First,
a(M̄, V ) = n = s(G, V ), so 7.3.3 is ineffective. Second, L is not normal in M , so
we can’t appeal to 7.4.1 to get an effective lower bound on r. Thus we will instead
use the fact that G is a QTKE-group to restrict various 2-locals, in order to show
that r is large and n(H) is small for each H ∈ H∗(T,M). Then weak closure will
become effective.

9.1. Preliminaries

We begin by establishing some notation and a few properties of M .
Let F := F2n and regard V as a 4-dimensional orthogonal space VF over F .

As usual, let Q := O2(L0T ). Notice that we are in case (1) of 3.2.6, and in that
case V = VM E M , so MV =M .

Lemma 9.1.1. L0 = Op
′

(M) for each prime divisor p of 22n − 1.

Proof. This follows from 1.2.2.a. ¤

Lemma 9.1.2. (1) M̄ :=M/CG(V ) is a subgroup of NGL(V )(L̄0) = NΓL(VF )(L̄0),

which is the product of L̄0 with the F -scalar maps, extended by 〈f, σ〉 ∼= Z2 × Zn,
where σ induces an F -transvection on VF normalizing T̄ , with L̄σ = L̄t, and f
generates the group of field automorphisms (simultaneously) on L̄ and L̄t.

(2) There are elements in T̄ −NT̄ (L̄) of the form σf0 with f0 ∈ O2(〈f〉).
(3) L0 has two orbits on F -points of V , consisting of the singular and nonsin-

gular F -points.
(4) VN := [V, σ] is a nonsingular F -point, and setting LN := O2(NL0(VN )),

NL0Q(VN ) = LNQ with L̄N ∼= L2(2
n) and [V, LN ] = CV (σ) = V ⊥N an indecompos-

able 3n-dimensional L̄N -module, with CV (σ)/VN the natural L̄N -module.
(5) Let V1 denote the singular F -point stabilized by T . Then NL0T (V1) is a

Borel subgroup of L0T , and is transitive on V
#
1 .

Proof. This is straightforward. ¤

729
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9.2. Reducing to n = 2

Our first goal is to show that n ≤ 2. We cannot use the uniform approach
of chapters 7 and 8, but we can still use some of the underlying techniques. For
example we will not be able to bound r as in 7.4.1 using E.6.28 (which relies on
E.6.27), but we can instead use extended Thompson factorization to achieve the
hypotheses of E.6.26, which we use in place of E.6.27:

Lemma 9.2.1. (1) [V, Jn−2(T )] = 1.
(2) Either [V, J1(T )] = 1, or n = 2 and σ ∈ T̄ .

Proof. This follows from H.1.1.2 and B.2.4.1. ¤

Recall Z := Ω1(Z(T )).

Lemma 9.2.2. (1) V = Ω1(Z(Q)).
(2) If Q ≤ S ≤ T , then Ω1(Z(S)) ≤ CV (S).
(3) Z ≤ V1 = CV (T ∩ L).

Proof. By 3.2.10.9, CZ(L0) = 1. Assume (1) fails. Now H1(L̄0, V ) = 0
(e.g., using Exercise 6.4 in [Asc86a]). So we obtain [Ω1(Z(Q)), L0] 6≤ V . But
q̂(L̄0T̄ , V ) > 1 since V is not an FF-module, and q̂(AutL0T (W ),W ) ≥ 1 for any non-
trivialL0T -chief factorW on Ω1(Z(Q)) by B.6.9.1, so q̂(AutL0T (Ω1(Z(Q)),Ω1(Z(Q))) >
2, contrary to 3.1.8.1. Thus (1) is established. Further for Q ≤ S ≤ T , Z(S) ≤ Q
since L0T ∈ He, so (1) implies (2) and (3). ¤

We can now prove the analogue of 7.3.2 in the case L̄0
∼= Ω+

4 (2
n), using 9.2.2

as an alternative to E.6.3 when n = 2:

Lemma 9.2.3. r(G, V ) ≥ n.

Proof. As m(M̄, V ) = n, this follows from Theorem E.6.3 when n > 2. Thus
we may assume that n = 2 and r = 1; that is CG(U) 6≤ M for some U of corank
1 in V—and without loss, NT (U) ∈ Syl2(NM (U)). Now U contains a unique F -
hyperplane U0, and from 9.1.2.3, there are two M -orbits on F -hyperplanes, each of
the form W⊥ for an F -point W of V . Next T0 := NT∩L(U0) ≤ NT (U), so that

CV (NT (U)) ≤ CV (T0) ≤ U0 ≤ U. (∗)

But U ∩Z 6= 1, so by E.6.10.4, Ω1(Z(NT (U))) 6≤ U . On the other hand by 9.2.2.2,
Ω1(Z(NT (U))) ≤ CV (NT (U)), so CV (NT (U)) 6≤ U , contradicting (*). ¤

From now on, let H ∈ H∗(T,M). Recall that H is a minimal parabolic in
the sense of Definition B.6.1 by 3.3.2.4. Further by 3.1.8, H centralizes Z. Set
K := O2(H). If n(H) > 1, let B be a Cartan subgroup of H ∩M .

Lemma 9.2.4. (1) n(H) ≥ n− 1.
(2) If n(H) = 1, then [V, J1(T )] 6= 1 and n = 2.

Proof. To prove (1), we may assume n ≥ 3; we will apply E.6.26 with j :=
n − 2 ≥ 1. By 9.2.3, r > j, and by 9.2.1.1, Jj(T ) ≤ CT (V ); therefore (1) follows
from E.6.26. Similarly (2) follows from E.6.26, this time using j := n − 1 and
9.2.1.2. ¤

Lemma 9.2.5. Either n(H) = n, or n = 2 and n(H) = 1.
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Proof. Recall that H centralizes Z. By 9.2.4.1, k := n(H) ≥ n− 1, so either
k > 1 or n = 2. Thus we may assume k > 1, and it remains to show that k = n.
As k > 1, K/O2(K) is of Lie type over F2k by E.2.2.

If k 6= 6, let p be a Zsigmondy prime divisor of 2k − 1; recall by Zsigmondy’s
Theorem [Zsi92] that this means that a suitable element of order p in GLk(2) acts
irreducibly. If k = 6, let p = 3. Set Bp := Op(B). By Theorem 4.4.14, B is faithful
on L̄0, so as BT = TB, either some b ∈ B#

p induces an inner automorphism on L̄0,

or |Bp| divides n and Bp induces field automorphisms on L̄0. Assume the former.
If p is a Zsigmondy prime divisor of 2k − 1, then k divides n; while if k = 6, then
p = 3 so that n is even. Hence as k ≥ n− 1, either n = k and the lemma holds, or
k = 6 and n = 2 or 4, impossible as then B3 of order 9 is faithful on L̄0. Therefore
we may assume that Bp induces field automorphisms on L̄ and L̄t, and |Bp| divides
n. Then as k ≥ n − 1, k 6= 6. Thus p is a Zsigmondy prime divisor of 2k − 1, so
k divides p − 1. Hence as p divides n and k ≥ n − 1, we conclude p = n = k + 1.
Then n is odd, and so V1 = Z ≤ Z(H) by 9.2.2.3, a contradiction as [V1, Bp] 6= 1
since Bp induces field automorphisms on L̄0. This establishes the lemma. ¤

Lemma 9.2.6. If n(H) > 1, then B is contained in a Cartan subgroup D of L0

acting on T ∩ L0.

Proof. This is a consequence of 9.1.1 and 9.2.5. ¤

Lemma 9.2.6 has essentially eliminated the shadows of Aut(Lm(2
n)) for m := 4

or 5, since in those groups B 6≤ D: our argument above that B ≤ D assumes G
quasithin, whereas in those groups the parabolic M = NG(V ) has 3-rank 3. So the
remainder of the proof (or more precisely, the reduction to n(H) = 1 in the next
section) can be viewed as showing that any embedding of B in D leads to a con-
tradiction. In the previous chapter 8, the road after eliminating the configurations
corresponding to shadows was typically fairly short; unfortunately in this case the
only route after that we know is fairly long and hard.

We can at least immediately eliminate all cases where n > 2:

Proposition 9.2.7. (1) n = 2.
(2) n(H) = 1 or 2.
(3) If n(H) = 2, then K/O2(K) ∼= L2(4), B is cyclic of order 3, and B =

CD(V1) with B̄ = [D̄, σ].

Proof. If n = 2 then (2) holds by 9.2.5, so it only remains to prove that (3)
holds; thus in this case we may assume n(H) = 2 = n. On the other hand if n > 2,
then n(H) = n by 9.2.5. So in any event we may assume that n(H) = n > 1.

By 9.2.6, B ≤ D, so as B ≤ K ≤ CG(Z) and CD(Z) = CD(V1) is cyclic of
order 2n− 1, B is cyclic of order at most 2n− 1. Therefore as n(H) = n > 1, E.2.2
says K/O2(K) ∼= L2(2

n) or Sz(2n) and |B| = 2n − 1, so B = CD(V1). By 9.1.2.2,
T̄ contains t̄ = σf0 with f0 a field automorphism of order a power of 2. Observe
σ inverts B̄ = CD̄(V1) = [D̄, σ]. Pick a preimage t ∈ NT (D). Then either t acts
nontrivially on B, or n = 2, f0 6= 1, and t centralizes B. In the latter case the
lemma holds, so we may assume the former.

As B is not inverted by an inner automorphism of K/O2(K) in T , t induces
an outer automorphism on K/O2(K). Therefore n is even, and hence K/O2(K) ∼=
L2(2

n) and t induces a field automorphism of some order 2i onK/O2(K). Therefore
n = 2im and |CB(t)| = 2m − 1. If t̄ = σ, then t inverts B so m = 1 = i, and hence
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n = 2, so the lemma holds. Finally if t̄ 6= σ, then t induces an automorphism on
B of order |f0|, so that |f0| = 2i. Then since B = CD(V1), we calculate in L0 that
|CB(t)| = 2m + 1. This is impossible as 2m − 1 6= 2m + 1. Thus the Proposition is
established. ¤

9.3. Reducing to n(H) = 1

In this subsection, we assume n(H) = 2, and eventually arrive at a contradic-
tion.

Set G1 := NG(V1). By 9.2.7.3, K/O2(K) ∼= L2(4), B̄ = [D̄, σ], and B =
CD(V1).

Proposition 9.3.1. D acts on K and [K,V1] = 1.

Proof. Define D̄σ := CD̄(σ). Then D̄ = [D̄, σ]D̄σ, and hence D = BDσ for a
suitable preimage Dσ in D of D̄σ. Thus Dσ is of order 3 and faithful on V1. The
proof begins with a series of three reductions:

First, notice if Dσ ≤ NG(K), then D ≤ NG(K), and hence V1 ≤ 〈ZDσ 〉 ≤
CG(K), so that we are done. Thus we may assume Dσ 6≤ N(K); in particular, K
is not normal in G1.

Second, suppose that K ≤ G1. Then K ∈ L(G1, T ), so by 1.2.4, K ≤ K1 ∈
C(G1), and indeed K < K1 by the previous paragraph, soK1 is described in A.3.14.
Suppose m3(K1) = 2. Then K1 E G1 by 1.2.2.b. As Dσ 6≤ K, comparing the
list in A.3.18 to that of A.3.14, we conclude Dσ induces diagonal automorphisms
on K1/O2(K1) ∼= L3(4) or U3(5), and so D normalizes K from the embedding
described in A.3.14. Thus in this case we are done by our first reduction, so we
may assume that m3(K1) = 1. Then by A.3.14, K1/O2(K1) is J1, L2(25), or L2(p),
or K1/O2,2′(K1) ∼= SL2(p) for suitable p. We can reduce the fourth case to the
third case by noting that K0 := NK1(T ∩O2,2′,2(K1))

∞ is D-invariant. But in the
first three cases, D = CD(K1/O2(K1))B acts on K, contrary to the first reduction.
Therefore we may assume that K 6≤ G1. In particular, [K,V1] 6= 1.

Third, we recall that K centralizes Z, so K ≤ G1 if T̄ ≤ L̄0〈σ〉 by 9.2.2.3,
contrary to the second reduction.

In view of our three reductions, we may assume D does not act on K, K 6≤ G1,
and T̄ 6≤ L̄0〈σ〉. To complete the proof, we construct an overgroup X of K, and
obtain a contradiction in X .

By the third reduction and 9.1.2.2, there is t ∈ T with t̄ = σf , where f is an
involution inducing a field automorphism on L̄0. As σ and f invert B̄, t centralizes
B̄, so T2 := 〈t〉O2(DT ) is B-invariant and DσT2/O2(DσT2) ∼= S3. Set X := 〈D,H〉.
Suppose O2(X) = 1. Then K, DσT2, T satisfies Hypothesis F.1.1 in the roles of
“L1, L2, S”, so the amalgam α := (KT,BT,DT ) is a weak BN-pair of rank 2 by
F.1.9. Further T2 is maximal in DσT2, so the hypotheses of F.1.12 are satisfied, and
hence α is one of the amalgams listed in that lemma. As DσT2/O2(DσT2) ∼= L2(2)
and K/O2(K) ∼= L2(4), α is of type U4(2), J2, or Aut(J2), so that |T | ≤ 28. This
contradicts |V | = 28 with V < T .

Thus O2(X) 6= 1, so X ∈ H(T ) ⊆ He by 1.1.4.6. By 1.2.4, K ≤ KX ∈
C(X), and KX E X by (+) in 1.2.4, so X = KXTD. As D 6≤ NG(K), K <
KX . Next V1 ≤ VX := 〈ZX〉 ∈ R2(X) by B.2.14. As [K,V1] 6= 1, [KX , VX ] 6=
1. Set X∗ := X/CX(VX ). Then K∗ 6= 1. Also K = [K, J(T )], or else K ≤
NG(J(T )O2(K)) ≤ M using 3.2.10.8. Thus J(T )∗ 6= 1, so VX is an FF-module



9.3. REDUCING TO n(H) = 1 733

for K∗XT
∗. Comparing the list in A.3.14 with the list of FF-modules in B.5.6, we

conclude K∗X
∼= SL3(4), Sp4(4), G2(4), or A7. In the first three cases, D induces

inner-diagonal automorphisms onK∗X in a Cartan group stabilizing the parabolic of
K∗X normalizing K∗ and hence K, contrary to an earlier reduction. In the last case
as [Z,K] = 1 we have a contradiction since CK∗X (CVX (T )) contains no A5-subgroup
when VX is either of the FF-modules of dimension 4 and 6 for K∗X

∼= A7 listed in
B.4.2. This finally establishes 9.3.1. ¤

Define TK := T ∩K and TL := T ∩ L0 ∈ Syl2(L0).

Lemma 9.3.2. TLQ = O2(TD) = TKO2(HD).

Proof. First TLQ = O2(TD) and TD = DT from the structure of L̄0T̄ .
Also H = KT with D ≤ NG(K) by 9.3.1. Then as K/O2(K) ∼= L2(4), we conclude
HD/O2(HD) is a subgroup of S3×S5, containing GL2(4). Then from the structure
of this group, O2(TD) = TKO2(HD). ¤

Our strategy for the remainder of the section, much as in the proof of 9.3.1,
is to construct an overgroup M0 of K and L, and use this overgroup to obtain a
contradiction.

Set T1 := NT (L). Then T1 is Sylow in NM (L) of index 2 in M , so |T : T1| = 2.
In particular T1 contains TLQ, so T1 ∈ Syl2(LDT1) by 9.3.2. Similarly as TLQ =
TKO2(HD), T1 is Sylow in KDT1 as well.

Define M0 := 〈LDT1,K〉, and V2 := 〈V L1 〉. Of course M0 6≤ M as K 6≤ M .
Observe V2 is a natural module for L/O2(L) ∼= L2(4).

Lemma 9.3.3. O2(M0) 6= 1.

Proof. Assume otherwise and let S := TLQ. Then Hypothesis F.1.1 is satis-
fied by K, L, S in the roles of “L1, L2, S”, and S E DS so α := (KDS,DS,LDS)
is a weak BN-pair of rank 2 described in F.1.12. As K/O2(K) ∼= L/O2(L) ∼= L2(4),
the amalgam is one of the untwisted types A2, B2, G2 over F4. As [K,V1] = 1 by
9.3.1, while V2 is the natural module for L/O2(L), we conclude α is of type G2(4).
But then O2(LS) = [O2(LS), L] ≤ L, which is not the case since TL ∩ Lt 6≤ L. ¤

Lemma 9.3.4. T1 ∈ Syl2(M0).

Proof. Recall J(T ) ≤ T1, so if T1 ≤ T0 ∈ Syl2(M0), then T0 ≤M by 3.2.10.8.
If T1 < T0, then T0 ∈ Syl2(G) as |T : T1| = 2, and then L0T0 ≤ M0 6≤ M ,
contradicting M = !M(L0T0). ¤

Lemma 9.3.5. (1) [V2,K] 6= 1.
(2) [L,K] 6≤ O2(L).

Proof. First B ≤ K; and B is faithful on V2 as V2 is the natural module
for L/O2(L) ∼= L2(4) while B = CD(V1). Thus (1) holds. If (2) fails, then as
[V1,K] = 1 by 9.3.1, K centralizes V2 = 〈V L1 〉, contrary to (1). ¤

Now M0 ∈ H by 9.3.3. As L ∈ L(G, T1), and T1 ∈ Syl2(M0) by 9.3.4, L ≤
KL ∈ C(M0) by 1.2.4. Similarly K ≤ KK ∈ C(M0). If KL 6= KK , then by 1.2.1.2
[K,L] ≤ [KK ,KL] ≤ O2(M0), contrary to 9.3.5.2; therefore KK = KL =: K0 ∈
C(M0) and 〈L,K〉 ≤ K0.

Lemma 9.3.6. M0 = K0T1 ∈ He, K0 = O2(M0), and Z(M0) = 1.
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Proof. By 9.2.7, B = CD(V1) ≤ K is diagonally embedded in LLt, so D =
B(D ∩ L) ≤ 〈K,L〉 ≤ K0. As M0 = 〈LDT1,K〉, O2(M0) = 〈L,K〉 ≤ K0, so
M0 = K0T1 and K0 = O2(M0). Next using parts (2) and (3) of 9.2.2, Ω1(Z(T1)) ≤
CV (T1) ≤ V1. Hence as O2(M0) ∩ Ω1(Z(T1)) 6= 1, and as D is irreducible on V1,
V1 ≤ O2(M0). ThereforeNG(O2(M0)) ∈ H

e by 1.1.4.1. Next V2 = 〈V L1 〉 ≤ O2(M0),
and then

CT (O2(M0)) ≤ CT (V2) ≤ NT (L) ≤ T1 ≤M0,

so M0 ∈ He by 1.1.4.4 with NG(O2(M0)) in the role of “M”. Also Z(M0) = 1 as
Ω1(Z(T1)) ≤ V1 and CV1(D) = 1. ¤

We now proceed as in the last paragraph of the proof of 9.3.1. Let U := 〈V M0
1 〉.

As V1 = 〈ZD〉, U = 〈ZM0〉, so by B.2.14, U ∈ R2(M0). Set M∗
0 := M0/CM0(U).

By 9.3.5.1, K∗ 6= 1. Now as in the proof of 9.3.1, K = [K, J(T )] and hence
[U, J(T )] 6= 1, so U is an FF-module for K∗0 . Then we obtain the same four
possiblities for K∗0 as in the proof of 9.3.1, and eliminate the fourth case K∗

0
∼= A7

as in that proof, to conclude:

Lemma 9.3.7. K∗0
∼= SL3(4), Sp4(4), or G2(4), and U is an FF-module for

M∗
0 .

Lemma 9.3.8. K∗0 is not SL3(4).

Proof. Otherwise Z(K∗0 ) = CD(L
∗) = (D ∩ Lt)∗, as each is of order 3. But

then K/O2(K) ∼= L2(4) is centralized by 〈(D ∩ Lt)NT (D)〉 = D, a contradiction
since B ≤ D ∩K. ¤

Lemma 9.3.9. K∗0
∼= Sp4(2

n).

Proof. If not, by 9.3.7 and 9.3.8, K∗0
∼= G2(4). Now L and K are normalized

by T , so L = P∞1 andK = P∞2 , where P ∗1 and P ∗2 are the maximal parabolics of K∗0
containing (T ∩K0)

∗. By 9.3.7, U is an FF-module for K∗0 , and by 9.3.6, Z(M0) =
1—so U is the natural G2(4)-module by Theorems B.5.1 and B.4.2.4. Therefore by
B.4.6.14, D∩L centralizes K/O2(K). We again use the action of NT (D) to obtain
the same contradiction obtained at the end of the proof of 9.3.8. ¤

Lemma 9.3.10. K0 is an Sp4(4)-block.

Proof. Recall T1 is of index 2 in T . If 1 6= C char T1 with C E M0, then
NG(C) contains M0 6≤ M and 〈L, T 〉 = L0T , contradicting M = !M(L0T ). Thus
no such characteristic subgroup exists, giving the condition (MS3) of Definition
C.1.31. We obtain (MS1) and (MS2) using 9.3.9. Then the lemma follows from
C.1.32.3. ¤

We are now in a position to obtain a contradiction, eliminating the case n(H) =
2. For by 9.3.6, Z(M0) = 1, so U is the natural module for the Sp4(4)-block K0 by
9.3.10. Now V/V2 is the natural module for L/O2(L). However L = P∞ for some
maximal parabolic P ∗ of K∗0 , so O2(L)/U is an indecomposable of F -dimension 3
with no natural submodule. Therefore V ≤ U , so V = U as both are of order 28.
Then K0 ≤ NG(U) = NG(V ) =M , a contradiction.
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9.4. Eliminating n(H) = 1

As we just showed n(H) 6= 2, n(H) = 1 for all H ∈ H∗(T,M) by 9.2.5. This
makes weak closure arguments effective, once we obtain restrictions on the weak
closure parameters r and w.

Define VN and LN as in 9.1.2.4, and let UN := V ⊥N . By 9.1.2.4, UN = [V, LN ]

and UN/VN is the natural module for LN/O2(LN ) ∼= L2(4). For v ∈ V #
N , set

Gv := CG(v).

Proposition 9.4.1. LN / Gv.

Proof. Assume the lemma fails. Then Gv 6≤ M . We can assume Tv :=
CT (v) ∈ Syl2(CM (v)), and then by 3.2.10.4, Tv ∈ Syl2(Gv). By 1.2.4, LN ≤ Lv ∈
C(Gv) with Lv described in A.3.14, and Lv E Gv by (+) in 1.2.4 applied to Tv.
We are done if LN = Lv, so assume LN < Lv; thus Lv 6≤M .

We claim that LvTv ∈ He. Suppose first that Lv is quasisimple. As v ∈
[V, LN ] ≤ LN ≤ Lv, v ∈ Z(Lv), so the multiplier of Lv/Z(Lv) is of even order.
Also CV (Lv) ≤ CV (LN ) = VN , so m2(Aut(Lv)) ≥ m(V/VN ) = 6. Inspecting the
lists of A.3.14 and I.1.3 for groups with an automorphism group of 2-rank at least
6, we conclude Lv/Z(Lv) ∼= G2(4). But then by I.1.3, Z(Lv) is of order 2, so 〈v〉 =
CVN (Lv) and hence m2(AutV (Lv)) = 7 > m2(Aut(G2(4)), a contradiction. Thus
Lv is not quasisimple. As z ∈ UN = [UN , LN ] and CT (O2(LvTv)) ≤ CT (v) = Tv,
we conclude using 1.2.11 that LvTv ∈ H

e.
As LvTv ∈ He, it follows from B.2.14 that U := 〈ZLv〉 ∈ R2(LvTv). Notice

using 9.1.2.4 that U contains UN and V1. Set (LvTv)
∗ := LvTv/CLvTv (U).

We next claim that L∗v = L∗N , so assume otherwise.
Suppose first that J(T ) 6≤ CG(U). Then [L∗v , J(T )

∗] 6= 1 and U is an FF-module
for L∗vT

∗
v . If Lv appears in case (c) or (d) of 1.2.1.4 then O∞(Lv)

∗ is a 3′-group,
so by B.5.6, [O∞(L∗v), J(T )

∗] = 1. Therefore as [L∗v, J(T )
∗] 6= 1 and L∗v/O∞(L∗v)

is quasisimple, L∗v = [L∗v, J(T )
∗]. On the other hand, if Lv/O2(Lv) is quasisimple,

then so is L∗v = [L∗v, J(T )
∗]. Thus in any case, L∗v = [L∗v, J(T )

∗] is quasisimple.
Now L∗v appears in A.3.14 and B.5.1, and hence as in a previous argument is
SL3(4), Sp4(4), G2(4), or A7. Further by B.5.1 and B.4.2, [U,Lv]/C[U,Lv](Lv)
is either the natural module or the sum of two natural modules for L3(4). As
v ∈ [UN , LN ], v ∈ C[U,Lv ](Lv). Hence the 1-cohomology of the natural module
is nontrivial, so that by I.1.6, L∗v

∼= Sp4(4) or G2(4), and [U,Lv] is a quotient
of a 5-dimensional orthogonal space or the 7-dimensional Cayley algebra over F4,
respectively. Further L∗N = P ∗∞ for some maximal parabolic P ∗ of L∗v. Then
CU (O2(L

∗
N )) = CU (O2(P

∗∞)) contains UN , which does not split over VN , and
v ∈ CVN (L

∗
v). This is impossible, since from the structure of these two modules,

CU (O2(P
∗)) = CU (L

∗
v)⊕ [CU (O2(P

∗)), P ∗].
Therefore J(T ) ≤ CG(U). By a Frattini Argument, L∗vT

∗
v = NLvTv (J(T ))

∗, so
as NG(J(T )) ≤M by 3.2.10.1, L∗v = L∗N , completing the proof of our second claim.

In particular as LN/O2(LN ) is simple and U is 2-reduced, the second claim says
L∗v = L∗N

∼= L2(4); hence O∞(Lv) ≤ CLv (U). Therefore as Lv 6≤M , CLv (U) 6≤M ,
so case (c) or (d) of 1.2.1.4 holds. In the notation of chapter 1, there is at least
one prime p > 3 with 1 6= X := Ξp(Lv). Then X is characteristic in Lv and hence
normal in Gv. Further X centralizes U , and hence centralizes V1VN . By 1.3.3,
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X ∈ Ξ(Gv , Tv). Now T acts on V1VN and there is g ∈ NL0(V1VN ) with vg /∈ VN
and vg ∈ Z(Tv). Then V1VN ≤ Ug , so Xg ≤ CG(v) = Gv, and hence Xg acts on X .
Further Tv ≤ Ggv ≤ NG(X

g), and X centralizes vg as vg ∈ V1VN , so X acts on Xg.
Recall from the definition of Ξ(Gv , Tv) that X = PO2(X) with P ∼= Ep2 or p1+2.
Set (XXgTv)

+ := XXgTv/O2(XX
gTv). Then Tv is irreducible on P+/Φ(P+) and

P g+/Φ(P g+), so P+ ∩ P g+ is 1, Φ(P+), or P+. As mp(XX
g) ≤ 2, the last case

holds, so X = Xg. Therefore X is normal in Gv and Gvg , so L0 = 〈LN , L
g
N〉 acts

on X . Then as Aut(X/O2,Φ(X))∞ ∼= SL2(p), either L or Lt centralizes X/O2(X),
and thus L0 = 〈LTv〉 centralizes X/O2(X), contradicting X = [X,LN ]. This finally
establishes 9.4.1. ¤

Lemma 9.4.2. (1) If v ∈ V #
N , g ∈ L0−NG(VN ), and u ∈ V g#N , then CG(〈u, v〉) ≤

M .
(2) V is the unique member of V G containing V1VN .

Proof. Part (1) follows as CG(〈u, v〉) acts on 〈LN , L
g
N〉 = L0 by 9.4.1. As

V1VN = VNV
l
N for suitable l ∈ L, CG(V1VN ) ≤ M = NG(V ) by (1). By 3.2.10.2,

M controls fusion in V , so we conclude that NG(V1VN ) ≤M , and that (2) follows
from the proof of A.1.7.2. ¤

We can finally begin to implement our standard weak closure strategy.

Lemma 9.4.3. r(G, V ) > 3.

Proof. Suppose U ≤ V with m(V/U) ≤ 3 and CG(U) 6≤M . As m(V/U) ≤ 3,
CM̄ (U) is a 2-group by 9.1.2. Recall from 9.2.3 that r > 1, so by E.6.12, CM̄ (U)
is a nontrivial 2-group. As m(V/U) < 4, we may take U ≤ CV (t) = UN . Now for
each V gN ≤ UN , 1 6= V gN ∩U as m(UN/U) ≤ 1, so the lemma follows from 9.4.2. ¤

Lemma 9.4.4. W0 :=W0(T, V ) centralizes V , so w > 0.

Proof. Suppose A := V g ≤ T with Ā 6= 1. If m(CA(V )) ≥ 5, then V ≤
NG(V

g) by 9.4.3, contrary to E.3.11. Hence m(Ā) ≥ 4, so as m2(M̄) = 4 and
T̄L = J(T̄ ), Ā = T̄L. Then CV (Ā) = V1, so if U1 is the L-irreducible containing V1,
then CA(L̄) centralizes 〈V L1 〉 = U1. Now m(A/CA(L̄)) = 2, so as r > 3, U1 ≤Mg.
Similarly U t1 ≤ Mg , so U1U

t
1 = V ⊥1 ≤ Mg, and [U1U

t
1, A] = V1, so U1U

t
1 induces

F -transvections on A with center V1. This is impossible since M controls fusion in
V by 3.2.10.2, while the center of an F -transvection on V is nonsingular by 9.1.2.4,
and V1 is singular by 9.1.2.5. ¤

Lemma 9.4.5. W1(T, V ) centralizes V , so w > 1.

Proof. If not, then arguing as in the proof of the previous lemma, there is a
hyperplane A := V g ∩ T of V g with Ā 6= 1, and this time m(Ā) ≥ 3. Suppose first
Ā 6≤ L̄0. Then Ā has maximal rank (namely 3) subject to Ā 6≤ L̄0, so Ā ∈ A(CM̄ (ā))
for each ā ∈ Ā − L̄0. Observe m(V g/CA(V1)) ≤ 2, so V1 ≤ Mg since r > 3 by
9.4.3. Thus if A does not centralize V1, then Z = [V1, A] ≤ M ∩ V g = A. As
CA(V1) is of codimension at most 2 in V g, V1 induces an F-transvection on V g

with Z contained in the center [V g , V1], a contradiction as in the proof of the
previous lemma. Therefore [A, V1] = 1, so as Ā 6≤ L0, there is t ∈ A with t̄ = σ
and Ā = 〈t̄〉(Ā ∩ L̄N). But then m(V g/CA(UN )) ≤ 3, so UN ≤ Mg since r > 3.
Therefore VNV1 = [A,UN ] ≤ A ≤ V g , contrary to 9.4.2.2.
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Thus Ā ≤ T̄L, so Ā has rank 3 or 4. We now argue as in the proof of 9.4.4:
First CV (Ā) = CV (T̄L) = V1, and CA(V

g) has rank 4,3, with CĀ(L̄) of rank 1,2,
respectively. So in any case m(V g/CA(L̄)) = 3 < r, and hence we can continue the
argument in the proof of 9.4.4 to get U1U

t
1 ≤Mg , and obtain the same contradic-

tion. ¤

Observe that by 9.4.4, 9.4.5, and E.3.16, NG(W0) ≤ M ≥ CG(C1(T, V )). As
m(M̄, V ) ≥ 2, s(G, V ) ≥ 2 by 9.4.3. Then as n(H) = 1, E.3.19 forces H ≤ M , a
contradiction. This contradiction finally shows that case (1) of 3.2.6 cannot occur,
and hence completes the proof of Theorem 7.0.1 begun in chapter 7.





Part 4

Pairs in the FSU over F2n for n > 1.



In part 4, we prove two theorems about pairs L, V in the Fundamental Setup
(3.2.1): In chapter 10, we show that L = L0. Then in chapter 11, we show that L
is not of Lie type of Lie rank 2 over F2n for n > 1.

A counter example in chapter 10 is of the form L0 = LLt with t ∈ T −NT (L)
and L/O2(L) isomorphic to L2(2

n) or Sz(2n) with n > 1, or to L3(2). In the first
two cases, we can view L0/O2(L0) as of Lie type of Lie rank 2 over F2n . Thus the
majority of the effort in part 4 is devoted to the elimination of cases in the FSU
where L̄0 is of Lie type and Lie rank 2 over F2n for some n > 1.

One of the main tools for treating such groups is the study of Cartan subgroups,
both of L0 and of H ∈ H∗(T,M): a Cartan subgroup of X := L0 or H is defined
to be a Hall 2′-subgroup of NX(T ∩X).

The most difficult cases are those where the Cartan subgroup is small or trivial:
that is, when n = 2, or in chapter 10 when L̄ ∼= L3(2) is defined over F2.



CHAPTER 10

The case L ∈ L∗f(G, T ) not normal in M .

In this chapter we prove:

Theorem 10.0.1. Assume G is a simple QTKE-group, T ∈ Syl2(G), and
L ∈ L∗f (G, T ) with L/O2(L) quasisimple. Then T ≤ NG(L).

10.1. Preliminaries

Assume Theorem 10.0.1 is false, and pick a counterexample L. Let L0 := 〈LT 〉
and M := NG(L0). By 3.2.3, there is V◦ ∈ Irr+(L0, R2(L0T )) such that L and
VT := 〈V T◦ 〉 are in the Fundamental Setup 3.2.1. Set V := 〈V MT 〉, and note that this
differs from the notation in the FSU where VT , V are denoted by “V, VM”. Note in
particular that by construction V E M , so that M = NG(V ).

As L < L0, we can appeal to Theorem 3.2.6. In the first two cases of Theorem
3.2.6, VT is not an FF-module, and those cases were eliminated in Theorem 7.0.1.
Thus we are left with case (3) of Theorem 3.2.6. We recall from that result that
V = V1V

t
1 for t ∈ T −NT (L), with V1 := [V, L] ≤ CV (L

t).

Recall that in the FSU with V E M , we set M̄ := M/CM (V ) and Ṽ =
V/CV (L0). Also set L1 := L, L2 := Lt for t ∈ T −NT (L), and Vi := [V, Li].

The cases to be treated are listed in the following lemma. Subcases (ii) and
(iii) of 3.2.6.3 appear as cases (5) and (6) in 10.1.1. In subcase (i) V1 ∈ Irr+(L, V ),

and by 3.2.6.3b, q̂(AutL0T (V1), V1) ≤ 2, so Ṽ appears in B.4.2 or B.4.5. As L < L0,
L̄ appears in 1.2.1.3. Intersecting those lists leads to the remaining cases in 10.1.1.

Lemma 10.1.1. V = V1V2 ∈ R2(M) with Vi := [V, Li] ≤ CV (L3−i), Ṽ =

Ṽ1 ⊕ Ṽ2, and one of the following holds:

(1) Ṽ1 is the natural module for L̄ ∼= L2(2
n), with n > 1.

(2) V1 is the A5-module for L̄ ∼= A5.

(3) Ṽ1 is the natural module for L̄ ∼= L3(2).
(4) V1 is the orthogonal module for L̄ ∼= Ω−4 (2

n), with n > 1.
(5) V1 is the sum of a natural module for L̄ ∼= L3(2) and its dual, with the

summands interchanged by an element of NT (L).
(6) V1 is the sum of four isomorphic natural modules for L̄ ∼= L3(2), and

O2(CM̄ (L̄)) ∼= Z5 or E25.
(7) V1 is the natural module for L̄ ∼= Sz(2n).

Let Z := Ω1(Z(T )), t0 := T ∩ L0, T1 := NT (L); and B0 := O2(NL0(T0)).
Note that B0T = TB0 and (except when L̄ ∼= L3(2) where B0 = 1) B̄0 is a Borel
subgroup of L̄0. Set S := Baum(T ).

Lemma 10.1.2. (1) Except possibly in the first three cases of 10.1.1, V is not
an FF-module for AutL0T (V ), so J(T ) ≤ CT (V ).
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(2) J(T ) ≤ NT (L) = T1.
(3) CT (V ) = O2(L0T ) except in case (6) of 10.1.1, where at least CT (V ) E

L0T . In any case, M = !M(NG(CT (V ))) = !M(NG(J(CT (V )))).
(4) Except possibly in cases (1) and (3) of 10.1.1, CV (L0) = 1.
(5) Assume L̄ is not L3(2) and let D be a Hall 2′-subgroup of B0. Then either:

(a) CD(Z) = 1, or
(b) V1 is the orthogonal module for L̄ ∼= Ω−4 (2

n) and CD(Z) ∼= Z2
2n+1.

(6) In cases (1) and (2) of 10.1.1, L0T is a minimal parabolic in the sense of
Definition B.6.1, with NL0T (T0) the unique maximal overgroup of T in L0T . Thus
if J(T ) 6≤ CT (V ) then L0T is described in E.2.3 and S ≤ NT (L) = T1.

Proof. Part (2) is clear if J(T ) ≤ CT (V ), while if J(T ) 6≤ CT (V ), it follows

from B.1.5.4. Except in cases (5) and and (6) of 10.1.1, Ṽ1 is an irreducible for L, and
(1) follows from B.4.2. In cases (5) and (6), V is not an FF-module for AutL0T (V )
by Theorem B.5.6, so (1) is established. Next in all cases of 10.1.1 except case (6),
V = VT , so that CT (V ) = O2(L0T ) by 1.4.1.4. In case (6), CL0T (V ) ≤ O2(L0T ),
so as V E L0T , CT (V ) = CL0T (V ) E L0T , and hence (3) holds in that case too.
Part (4) follows in the final four cases of 10.1.1 from (1) and 3.2.10.9; in the second
case it follows from I.1.6. Part (5) follows easily from (4) and the structure of the
modules in 10.1.1. Finally the first two remarks in (6) are elementary observations,
and then if J(T ) 6≤ CT (V ), the remaining remarks are a consequence of E.2.3. ¤

Lemma 10.1.3. L0 = Op
′

(M) for each prime divisor p of |L̄|.

Proof. This follows from 1.2.2. ¤

10.2. Weak closure parameters and control of centralizers

We will make use of weak closure, together with control of centralizers of el-

ements of V #
1 . In 10.2.3, we will use the fact that G is a QTKE-group to show

n(H) ≤ 2 for H ∈ H∗(T,M); subsequent results provide lower bounds on the weak-
closure parameters r(G, V ) and w(G, V ). In 10.2.13, we will eliminate most cases
using the relation n(H) ≥ w(G, V ) in E.3.39.

Lemma 10.2.1. Except possibly in case (3) of 10.1.1, NG(S) ≤M .

Proof. We may assume case (3) of 10.1.1 does not hold. If J(T ) ≤ CT (V ),
then as J(T ) ≤ S, NG(S) ≤ M by 3.2.10.8. Thus we may assume J(T ) 6≤ CT (V ),
so by 10.1.2.1, we are reduced to cases (1) and (2) of 10.1.1. In those cases, L0T is
a minimal parabolic, and is described in E.2.3 by 10.1.2.6.

In case (1) of 10.1.1, E.2.3.2 says S ∈ Syl2(L0S), so we can apply Theo-
rem 3.1.1 with L0T , NG(S), S in the roles of “H , M0, R”, to conclude that
O2(〈NG(S), L0T 〉) 6= 1. Thus NG(S) ≤M = !M(L0T ), as desired.

Therefore we may assume case (2) of 10.1.1 holds; the proof for this case will
be longer. Moreover for each S+ E T with T0 = T ∩ L ≤ S+, S+ ∈ Syl2(L0S+);
hence applying 3.1.1 as in the previous paragraph, we conclude that NG(S+) ≤
M . In particular NG(T1) ≤ M . We may also assume that NG(S) 6≤ M , so as
M = !M(L0T ), no nontrivial characteristic subgroup of S is normal in L0T . Then
E.2.3.3 says that L1 is an A5-block.

Suppose first that CZ(L0) = 1. Then O2(L0T ) = V by C.1.13.c, so that
V = O2(M) using A.1.6. Further using E.2.3, S = S1×S2, where Si := CS(L3−i) =
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Si,1 × Si,2 with Si,j ∼= D8, and T acts transitively as D8 on the four members of
∆ := {Si,j : i, j}. As S is the direct product of the subgroups in ∆, by the Krull-
Schmidt Theorem A.1.15, NG(S) permutes Γ := {DZ(S) : D ∈ ∆}. Let K be the
kernel of NG(S) on Γ and NG(S)

Γ := NG(S)/K. Then D8
∼= TΓ ≤ NG(S)

Γ ≤ S4.
Observe that for F ∈ Γ, A(F ) = {VF , AF } is of order 2, where VF := V ∩ F .
Thus O2(K) acts on each VF . Then as V E T , K = O2(K)(K ∩ T ) acts on
〈VF : F ∈ Γ〉 = V . Hence K ≤ NG(V ) = M , so as we are assuming NG(S) 6≤ M ,
there is x ∈ NG(S) with x inducing a 3-cycle on Γ. Therefore NG(S)

Γ ∼= S4. Let
KR be the preimage in NG(S) of O2(NG(S)

Γ) and R := T ∩ KR. By a Frattini
Argument, NG(S) = K(NG(S) ∩ NG(R)), so we may take x ∈ NG(R). But R
normalizes just two members V and A := 〈AF : F ∈ Γ〉 of A(S) = A(T ), so x
acts on V and A. Therefore NG(S) = KT 〈x〉 ≤ NG(V ) = M , contrary to our
assumption.

Thus in the remainder of the proof, we assume that CZ(L0) 6= 1. We may
choose H ∈ H∗(T,M) with H ≤ NG(S). Let E := Ω1(Z(S)), VH := 〈ZH〉, and
H∗ := H/CH(VH). As usual VH ∈ R2(H) by B.2.14. Now Z ≤ E and hence
VH ≤ E. As CZ(L0) 6= 1, CH (VH) ≤ CG(CZ(L0)) ≤ M = !M(L0T ), so H

∗ 6= 1.
Observe applying E.2.3.3 to L0T that for ti ∈ T ∩Li−S, ti induces a transvection
on E with center vi ∈ Vi. If t1 ∈ CH(VH ), then

S0 := T0S = 〈t1, t2, S〉 ≤ CT (VH ).

But we saw earlier that NG(S+) ≤ H for each S+ E T with T0 ≤ S+, so by a
Frattini Argument, H = NH(CT (VH))CH (VH ) ≤M , contrary to our assumption.

Thus t∗i 6= 1, so as VH ≤ E, t∗i induces a transvection on VH with center vi.
Then comparing the possibilities in E.2.3 to the list of groups in G.6.4 containing
F2-transvections, we conclude that either H∗ ∼= O+

4 (2) with m([VH , H ]) = 4, or
H∗ is one of S5 or S5 wr Z2. The latter cases are out, as then NM (S) is not a
3′-group, contrary to 10.1.3 and the fact that NL0(S) is a 3′-group. So [VH , H ] is
the orthogonal module for H∗ ∼= O+

4 (2). Let Y := O2(CH (v2)); then Y
∗ ∼= Z3, and

Y ∩M ≤ O2(H).
Let X := CG(v2). Then T1 = CT (v2), |T : T1| = 2, and L ≤ X . As T 6≤ X

but NG(T1) ≤M , T1 ∈ Syl2(X). Thus by 1.2.4, L ≤ I ∈ C(X). Suppose first that
L = I . Then L E X by 1.2.1.3, so X acts on [O2(L), L] = V1. As Y = [Y, T1]
while Y ∩M ≤ O2(H), we conclude from the structure of Aut(L/O2(L)) that Y ≤
O2(CX (L/O2(L))). Further EndF2(L/O2(L))(V1)

∼= F2, so that Y must centralize
V1. However, Y does not centralize v1 ∈ V1. This contradiction shows that L < I .

Suppose that V1 ≤ O2(I). Then since the A5-block L has a unique nontrivial
2-chief factor V1, and V1 is projective, W := 〈V I

1 〉 = V1 ⊕ CW (L) ≤ Z(O2(I))
and I has a unique nontrivial 2-chief factor. In particular W ∈ R2(I) and setting

Î := I/CI(W ), [W, â] = [V1, â] for each involution â ∈ L̂, so q(Î ,W ) ≤ 2. Also we

conclude from A.3.14 that I/O2(I) ∼= A7, Â7, J1, L2(25), or L2(p) with p ≡ ±1

mod 5 and p ≡ ±3 mod 8. Then as q(Î ,W ) ≤ 2, we conclude from B.4.2 and B.4.5
that I/O2(I) ∼= A7. Since the unique nontrivial L-chief factor V1 is the A5-module,

we conclude that W is the A7-module, so I is an A7-block. However I = O3′ (X)

by A.3.18, so 1 6= O3′(CL2(v2)) ≤ O2(CI(L)), contradicting O
2(CI(L)) = 1.

Therefore V1 6≤ O2(I), so as L is irreducible on V1, V1 ∩ O2(I) = 1. Set

İ := I/O2(I). Then L̇ is a T1-invariant A5-block in İ , a situation that does not
occur in A.3.14. This contradiction completes the proof. ¤
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Lemma 10.2.2. Assume H ∈ H∗(T,M) with [Z,H ] 6= 1, and set W := 〈ZH〉.
Then

(1) L0 = [L0, J(T )] and one of the first three cases of 10.1.1 holds.

If in addition case (1) or (2) of 10.1.1 holds, then:
(2) O2(H) = [O2(H), J(T )] and J(T ) 6≤ CT (W ), so W is an FF-module for

H/CH(W ).
(3) If case (1) of 10.1.1 holds, then B0 ≤ NG(S) and S ∈ Syl2(L0S).
(4) O2(〈NG(S), H〉) 6= 1.

Proof. As [Z,H ] 6= 1, [V, J(T )] 6= 1 by 3.1.8.3. Thus L0 = [L0, J(T )], and
then 10.1.2.1 completes the proof of (1). In the remaining assertions we may assume
case (1) or (2) of 10.1.1 holds. Then by 10.1.2.6, L0T is a minimal parabolic
described in E.2.3, and S ≤ T1.

In case (1) of 10.1.1, E.2.3.2 says that S ∈ Syl2(L0S) and S ≤ T+ := T0O2(L0T ),
so that S = Baum(T+). But B0 normalizes T+ so B0 ≤ NG(S), completing the
proof of (3).

Assume [O2(H), J(T )] < O2(H). Then as [Z,H ] 6= 1 we conclude from B.6.8.3d
that S = Baum(O2(H)) and hence H ≤ NG(S). However since we are excluding
case (3) of 10.1.1, NG(S) ≤M by 10.2.1. This contradicts H 6≤M , so (2) holds.

If J(H)∗ is the product of copies of L2(2
m) then by E.2.3.2, S ∈ Syl2(O2(H)S).

Then using Theorem 3.1.1 as in the proof of 10.2.1, (4) follows. Since we may assume
(4) fails, we conclude from E.2.3.1 that J(H∗) is a product of s ≤ 2 copies of S5,
and that no nontrivial characteristic subgroup of S is normal in H . Therefore by
E.2.3.3, O2(H) = K1 × · · · ×Ks is the product of A5-blocks Ki.

Next O2(H ∩M) ≤ L0 by 10.1.3, so O2(H ∩M) ≤ B0 and a Sylow 3-subgroup
P of O2(H ∩M) is contained in P0 ∈ Syl3(B0). As O2(H) is a product of A5-
blocks, P centralizes Z, so case (2) of 10.1.1 holds since CP0(Z) = 1 in case (1) by
10.1.2.5. Then since L0 = [L0, J(T )] by (1), L̄0T̄ ∼= S5 wr Z2 in view of B.4.2.5, so
B0 ∈ Ξ(G, T ). Since O2(H ∩M) is T -invariant and lies in B0, while T is irreducible
on B0/O2(B0), we conclude O2(H ∩M) = B0. Therefore P = P0 is of order 9, so
s = 2 and O2(H) = K1×K2 is the product of two blocks. Therefore O2(H ∩M) =
X1 × X2 with Xi := O2(Ki ∩M) ∼= Z3/Q

2
8. Now as O2(H ∩M) = B0, while Xi

has just two noncentral 2-chief factors, Xi cannot be diagonally embedded in L0, so
(interchanging L1 and L2 if necessary) Xi = B0 ∩Li. Then Xi is T1-invariant, and
Li is an A5-block as Xi has two noncentral 2-chief factors. Now Ki is T1-invariant,
I := 〈L1,K1〉 ≤ CG(X2), I is T1-invariant, and S = Baum(T1) since we saw
S ≤ T1. Hence NG(T1) ≤ M by 10.2.1. Therefore NT (X2) = T1 ∈ Syl2(NG(X2)),
so T1 ∈ Syl2(IT1). Hence we can apply 1.2.4 to embed L1 ≤ LI ∈ C(I), and
then K1 = [K1, X1] ≤ LI , so L1 < LI since K1 ∩ M = X1. Now NG(X2) is
an SQTK-group, so m3(NG(X2)) ≤ 2 and hence m3(LI) = 1. This rules out the
possibility that O2(L1) ≤ O2(LI) and LI/O2(LI) ∼= A7 in A.3.14. We now obtain
a contradiction via the argument in the last two paragraphs of the proof of 10.2.1.
This contradiction completes the proof of (4), and of the lemma. ¤

Proposition 10.2.3. If H ∈ H∗(T,M) with n(H) > 1, then

(1) n(H) = 2.
(2) A Hall 2′-subgroup of H ∩M is faithful on L̄0.
(3) If L̄ ∼= L3(2), then T0O

2(H∩M) is a maximal parabolic in L0 and H/O2(H)
∼= S5 wr Z2.
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(4) Case (1) of 10.1.1 does not hold; that is, n(H) = 1 for each H in that case.

Proof. Let BH be a Hall 2′-subgroup of H ∩M . Notice BH permutes with
T , so that B+ := BH ∩ L0 permutes with T0.

We first establish (2). If V is not an FF-module for L0T/CL0T (V ), then (2)
follows from Theorem 4.4.14; so we may assume that B := CBH (L̄0) 6= 1 and V is
an FF-module for L̄0T̄ . We first verify Hypothesis 4.4.1 and then we apply Theorem
4.4.3: By 4.4.13.2 we have BT = TB, giving (1) and (2) of Hypothesis 4.4.1. As
BT = TB, NH(B) 6≤M by 4.4.13.1. As Vi E O2(M), B acts on Vi. But by 10.1.3,

(|B|, |L̄|) = 1, so as |EndL̄i(Ṽi)| divides |L̄|, [V,B] = 1. Thus we also have 4.4.1.3,
with V in the role of “VB”. Since L < L0, case (1) of Theorem 4.4.3 must hold,
contradicting our earlier observation that NH(B) 6≤M . So (2) is established.

Appealing to (2), 10.1.3, and the structure of Aut(L̄i), we conclude that either

(i) L̄ is not L3(2) and BH = B+F , with B+ ≤ B0 (since B+ permutes with
T0), and F induces field automorphisms on L̄0, or

(ii) L̄ ∼= L3(2) and BH = B+ ≤ L0.

Assume first that (ii) holds; this case corresponds to cases (3), (5), and (6)
of 10.1.1. Then as BH permutes with T0, BH is a 3-group, and so n(H) = 2.
Further BHO2(BHT ) is T -invariant, so B̄H T̄ contains a Sylow 3-group of L̄0, and
hence BHT0 = O2(H ∩M)T0 is a maximal parabolic in L0. In particular, (H ∩
M)/O2(H ∩M) ∼= S3 wr Z2, and the only case in E.2.2 with n(H) = 2 satisfying
this condition is H/O2(H) ∼= S5 wr Z2. For example case (2b) of E.2.2 is ruled
out as here (H ∩M)/O2,3(H ∩M) ∼= D8. Thus we have established (3), and also
proved (1) in this case. So from now on, we may assume that (i) holds.

Suppose next we are in case (2) of 10.1.1, where L̄ ∼= A5. Then F = 1, so that
BH = B+ ≤ B0. Now we may argue much as in the previous paragraph: As BH
permutes with T , it is a 3-group and so n(H) = 2, completing the proof of (1) and
hence of the lemma in this case.

So at this point, we have reduced to one of cases (1), (4), or (7) of 10.1.1. Since
BH = B+F by (i), there is a BH -invariant Hall 2

′-subgroup D of B0, and B+ ≤ D.
By 10.1.2.5, CD(Z) = 1 in cases (1) and (7) of 10.1.1, while CD(Z) ∼= Z2

2n+1 in
case (4). Further in any case, CF (Z) = 1.

Suppose first that [Z,H ] = 1. Then F = CF (Z) = 1, so B+ = BH ≤ CD(Z),
and hence CB0(Z) 6= 1 so that case (4) of 10.1.1 holds by the previous paragraph.
Set m := n(H) ≥ 2. From E.2.2, BH has a cyclic subgroup B of order 2m − 1. As
B ≤ CD(Z), 2

m − 1 divides 2n + 1, so m divides 2n. If m divides n then 2m − 1
divides 2n − 1, impossible as (2n + 1, 2n − 1) = 1. Thus m = 2d is even and d
divides n, so as (2n + 1, 2n − 1) = 1, 2d − 1 = 1 and hence m = 2. Therefore the
lemma holds in this case.

We may now assume that [Z,H ] 6= 1. Then L0 = [L0, J(T )] by 10.2.2.1,
eliminating cases (4) and (7) of 10.1.1, leaving only case (1), where it remains to
derive a contradiction in order to complete the proof of the lemma. Recall in this
case that CDF (Z) = 1.

By 10.2.2.2, O2(H) = [O2(H), J(T )]. By E.2.3.1, O2(H) = 〈KT 〉 where K ∈
C(H) with K/O2(K) ∼= L2(2

m) or A5, and setting W := 〈ZH〉 and VK := [W,K],
VK/CVK (K) is the natural module forK/O2(K). Observe VK is not the A5-module
asBH ≤ DF and CDF (Z) = 1, whereas if VK were the A5-module then [Z,BH ] = 1.

We next claim that B0 ≤ NG(K): By 10.2.2.3, B0 ≤ NG(S), so by 10.2.2.4,
〈B0, H〉 ≤ M1 ∈ M(T ). Hence by 1.2.4, K ≤ I ∈ C(M1), and as K = [K, J(T )]
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and [Z,K] 6= 1, also I = [I, J(T )] and 1 6= U := [Z, I ] ∈ R2(I) using B.2.14. Thus
J(T ) 6≤ CT (U) and U is an FF-module. We conclude from intersecting the lists of
A.3.12 and B.4.2 that one of the following holds:

(a) K = I .
(b) I/O2(I) ∼= SL3(2

m), Sp4(2
m), or G2(2

m).

(c) m = 2 and I/O2(I) ∼= A7 or Â7, with I/CI(U) ∼= A7.
(d) I/O2(I) is not quasisimple, I = O2,F (I)K, and O2,F (I) centralizes U .

By 1.2.1.3, B0 = O2(B0) normalizes I , so we may assume that K < I , and
so one of (b)–(d) holds. Hence T acts on I by 1.2.1.3, and then also T acts on
K by 1.2.8. In case (d), as CD(Z) = 1, B0 ∩ O2,F (I) ≤ T , so B0 acts on the
unique (T ∩ I)-invariant supplement K to O2,F (I) in I . Suppose case (c) holds.

By A.3.18, I = O3′(M1), so D = DI ×DC , where DC := O3(D) = CD(I/O2(I))
and DI := O3(D) = D ∩ I . As DC acts on K, we may assume DI 6≤ K. Then
DI ∈ Syl3(I). But from the structure of the FF-modules for A7, CDI (Z) 6= 1,
contradicting CD(Z) = 1. Suppose case (b) holds. Then K = P∞ for some T -
invariant parabolic P in I/O2(I), so as B0 = O2(B0) permutes with T , it must also
act on K, completing the proof of the claim.

By the claim B0 acts on K, and by symmetry B0 also acts on Kt if there is
t ∈ T −NT (K). Thus B0 acts on O2(H). Recall that by construction BH acts on
D, so D acts on O2(H) ∩ DBH = BH . Therefore [BH , D] ≤ BH ∩ D ≤ CD(BH)
since the Hall subgroup BH of O2(H ∩M) is abelian. Now if F 6= 1, then F does
not centralize [F,D]; thus F = 1, and hence BH = B+ ≤ D. Since BH ∩K is cyclic
of order 2m − 1, while D ∼= Z2

2n−1, m divides n.
In the remainder of the proof, we will show that BH = D, and that K 6= Kt

for some t ∈ T − T1. Then we will see that the embeddings of D in LLt and KKt

are incompatible.
As M = !M(L0T ), CZ(〈L0, H〉) = 1. As ṼK is the natural module for

K/O2(K) ∼= L2(2
m), CZ(H) = CZ(b) for each b ∈ B

#
H . Similarly CZ(L0) = CZ(d)

for each d ∈ D#, so as 1 6= BH ≤ D, we conclude CZ(L0) = CZ(H) = 1. Thus V1
and VK are natural modules, with CV1(L) = 1 = CVK (K).

Next C.1.26 says that there are nontrivial characteristic subgroups C1(T ) ≤ Z
of T and C2(T ) of S, such that one of the following holds: K is a block, C1(T ) ≤
Z(H), or C2(T ) E H . As CZ(H) = 1, C1(T ) 6≤ Z(H), so either K is a block or H
normalizes C2(T ). Similarly either L is a block or C2(T ) E L0T . However C2(T )
cannot be normal in both H and L0T , since M = !M(L0T ); therefore either K or
L is a block.

Next set E := Ω1(Z(J(T ))) and E0 := 〈EL0〉. By 10.1.2.6 we may apply
E.2.3.2 to L0T , to conclude that E0 = CE0(L0)V . Therefore as CZ(L0) = 1,
E0 = V = V1 × V2 is of rank 4n. In particular, E ≤ V and E = E1 × E2 with
Ei := E ∩ Vi of rank n. Also D = D1 × D2, where Di := D ∩ Li = CD(E3−i).
Notice that CE(d) = 1 for d ∈ D− (D1 ∪D2). Similarly applying E.2.3.2 to H and
using CZ(H) = 1, we conclude that E = EK × CE(K) = EK × CE(BK), where
EK := E ∩ VK has rank m = n(H), and BK := B ∩ K. We saw m divides n, so
m ≤ n, and hence

m(CE(BK)) = m(E)−m(VK) = 2n−m ≥ n. (∗)

So as CE(d) = 1 for each d ∈ D − (D1 ∪D2), we conclude (interchanging the roles
of L and Lt if necessary) that BK ≤ D1, so EK = [E,BK ] = [E,D1] = E1 and
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CE(BK) = CE(D1) = E2 are of rank n. Thus m = n by (*), and D1 = BK as
BK ≤ D1 and |D1| = 2n − 1 = 2m − 1 = |BK |.

Next recall from E.2.3.2 that S normalizes L and K. Therefore as D1 = BK ,
S1 := [S,D1] ≤ L ∩K. Since either L or K is a block, and CZ(L0) = CZ(H) = 1,
we conclude S1 is special of order 2

3n; then it follows that both L and K are blocks,
with O2(L) and O2(K) of rank 2n, and S1 is Sylow in both L and K.

Next L1 and L2 commute by C.1.9, so [S1, D2] ≤ [L1, D2] = 1. So as D2

centralizes S1 ∈ Syl2(K), D2 centralizesK from the structure of Aut(K). Similarly
S2 := [S,D2] ∈ Syl2(L2) and S2 centralizes K. But S2 = St1 for t ∈ T − T1, so
S2 is Sylow in the block Kt and Kt 6= K. Hence O2(H) = KKt = K ×Kt since
CVK (K) = 1. Setting K1 := K and K2 := Kt, SiDi is Borel in both Li and Ki.

Set M1 := NG(S1D1). As L2 centralizes L1, L2T1 ≤ M1, with T1 = T ∩M1.
Similarly K2T1 ≤ M1. Embed T1 ≤ T+ ∈ Syl2(M1). Recall that S ≤ T1, so
S = Baum(T+), and hence T+ ≤ NG(S) ≤M by 10.2.1. If T1 < T+ then T+ is also
Sylow in M , so M = !M(L0T+) by 1.2.7.3. However L0T+ = 〈L2, T+〉 ≤ M1, so
K2 ≤M1 ≤M , contradicting K2 6≤M .

This contradiction shows that T1 = T+ is Sylow in M1. Hence L2 ≤ L+ ∈
C(M1) by 1.2.4. Now K2 = O2(K2) normalizes L+ by 1.2.1.3, so as D2 ≤ L2 ≤ L+,
also K2 = [K2, D2] ≤ L+, and hence L2 < L+. As L2 and K2 are distinct members
of L(L+, T1) and both are blocks of type L2(2

n) with trivial centers, we conclude
from A.3.12 that O2(L+) = 1 and L+

∼= (S)L3(2
n). Now L+ normalizes S1D1,

and so in fact centralizes S1D1 since S1 is special of order 23n. Therefore for p a
prime divisor of 2n − 1, mp(D1L+) > 2, contradicting M1 an SQTK-group. This
completes the elimination of case (1) of 10.1.1 when n(H) > 1, and hence establishes
10.2.3. ¤

Lemma 10.2.4. Assume that L̄ ∼= L3(2), but case (5) of 10.1.1 does not hold,
so that L̄T̄1 ∼= L3(2). Let P be one of the two maximal subgroups of L0T containing
T . Set X := O2(P ), assume H ∈ H(XT ), and set K := 〈XH〉. Then one of the
following holds:

(1) K = X.
(2) K = K1K

s
1 with K1 ∈ C(H), K1/O2(K1) ∼= L2(2

m) for some even m or
L2(p) for some odd prime p, and s ∈ T −NT (K1).

(3) K ∈ C(H) and KT/O2(KT ) ∼= Aut(Lk(2)), k = 4 or 5.

Proof. As X ∈ Ξ(G, T ), K is described in 1.3.4 with p = 3. Further
XT/O2(XT ) ∼= S3 wr Z2, which reduces the list to the cases appearing in the
lemma. ¤

Lemma 10.2.5. NG(T1) ≤M .

Proof. If J(T ) ≤ CT (V ) then the lemma follows from 3.2.10.8, so we may
assume J(T ) 6≤ CT (V ). Then one of the first three cases of 10.1.1 holds by 10.1.2.1.
If case (1) or (2) of 10.1.1 holds then S ≤ T1 by 10.1.2.6, so S = Baum(T1) and
then NG(T1) ≤M by 10.2.1.

Thus we may assume case (3) of 10.1.1.3 holds, so L̄ = L̄T̄ ∼= L3(2). Let H1

and H2 be the two maximal subgroups of L0T containing T . Thus Xi := O2(Hi) ∈
Ξ(G, T ) and Hi/O2(Hi) ∼= S3 wr Z2. Since O2(Xi) ≤ T1, T1 ∈ Syl2(XiT1).
Further T is a maximal subgroup ofHi, so applying Theorem 3.1.1 withHi,NG(T1),
T1 in the roles of “H , M0, R”, we conclude O2(Gi) 6= 1, where Gi := 〈NG(T1), Hi〉.



748 10. THE CASE L ∈ L∗f (G,T ) NOT NORMAL IN M .

It will suffice to show NG(T1) acts on Xi for i = 1 and 2, since then NG(T1) acts on
〈X1, X2〉 = L0, so NG(T1) ≤ NG(L0) = M , as desired. Therefore we may assume
NG(T1) 6≤ NG(Xi) for some i, and we now fix that value of i.

Set Kj := 〈X
Gj
j 〉 and K∗j T

∗ := KjT/O2(Kj) for each j. Notice O2(Kj) ≤
O2(Hj) ≤ T1 using A.1.6. Now NG(T1) ≤ Gj so NG(T1) acts on Kj . Thus as
NG(T1) 6≤ NG(Xi), Xi < Ki, and hence by 10.2.4 either Ki = Ki,1K

s
i,1 with

Ki,1 ∈ C(Gi) and s ∈ T −NT (Ki,1), or K
∗
i T

∗ ∼= Aut(Lk(2)), k := 4 or 5. In either
case, NG(T1) acts on R := T1 ∩Ki and O2(Xi(T ∩Ki)) ≤ R.

Suppose first that either K∗i
∼= Lk(2), or K

∗
i,1
∼= L2(2

m). As Hi ∩ Ki is T -
invariant, Hi ∩Ki ≤ Ji, where J

∗
i is a T -invariant parabolic of K∗i such that Xi is

the characteristic subgroup generated by the elements of order 3 in Ji. Notice

O2(Ji) ≤ O2(Xi(T ∩Ki)) ≤ R ≤ T ∩Ki. (∗)

Now when K∗i,1
∼= L2(2

m), T ∩Ki = O2(Ji), so the inequalities in (*) are equalities,
and then NG(T1) ≤ NGi(R) ≤ NGi(Ji) ≤ NG(Xi), contrary to our assumption. On
the other hand if K∗i

∼= Lk(2), then O2(J
∗
i ) is a unipotent radical, and so by I.2.5

is weakly closed in (T ∩Ki)
∗ with respect to Gj ; thus NG(T1) ≤ NGi(O2(Ji))) ≤

NG(Xi), for the same contradiction.
This leaves the case whereK∗i,1

∼= L2(p). If p ≡ ±3 mod 8, then again T∩Ki =
O2(Xi(T ∩ Ki)) ≤ R, so R = T ∩ Ki; and NG(T1) normalizes NKi(T ∩ Ki) =
Xi(T ∩ Ki) and hence also O2(Xi(T ∩ Ki)) = Xi, for our usual contradiction.
Therefore p ≡ ±1 mod 8, and (T ∩Ki,1)

∗ is a nonabelian dihedral 2-group. Since
(Xi ∩Ki,1)

∗ is a T ∩Ki-invariant A4-subgroup of K∗i,1, |(T ∩Ki,1)
∗| = 8.

Next R is of index r ≤ |T : T1| = 2 in T ∩ Ki. Further if r = 2, then
O2(Xi(T ∩ Ki))

∗ = J(R∗), so NG(T1) ≤ NGi(O2(Xi(T ∩ Ki)) ≤ NG(Xi), again
contrary to assumption. Therefore R = T ∩Ki and there are exactly two subgroups
Y of Ki,1 with R ∩ Ki,1 ≤ Y and Y ∗ ∼= S4. So O2(NG(T1)) acts on both such
subgroups, and in particular on Xi∩Ki,1. Similarly O2(NG(T1)) acts on Xi ∩Ks

i,1,

and hence on the product Xi of these two subgroups, so NG(T1) = TO2(NG(T1)) ≤
NG(Xi), for our final contradiction. ¤

Lemma 10.2.6. (1) M = !M(L0T1).
(2) NG(Vi) ≤M ≥ NG(L).

Proof. Notice (1) implies (2), so it suffices to prove (1). Suppose that there is
H ∈ M(L0T1)− {M}. Then |T : T1| = 2, and NG(T1) ≤M by 10.2.5. By 1.2.7.3,
M = !M(L0T+) for each T+ ∈ Syl2(M), so that T1 ∈ Syl2(H). Thus by 1.2.4,
Li ≤ Ki ∈ C(H), and Ki E H by (+) in 1.2.4. Now from A.3.12, Ki does not
contain L0 = L1L2, so K1 6= K2. Thus as mp(H) ≤ 2 for each prime divisor p of
|L̄|, while L3−i ≤ CH (Ki/O2(Ki)), we conclude mp(Ki) = 1 for each such prime.
As H 6= M = NG(L0), L0 is not normal in H , so Li < Ki for i := 1 or 2; we fix
this value of i.

Now if L̄ ∼= Sz(2n), A.3.12 says Li is properly contained in no Ki with
mp(Ki) = 1 for each prime p dividing 2n − 1, and similarly Li is proper in no
Ki with m7(Ki) = 1 = m3(Ki) when L̄ ∼= L3(2). Therefore L̄ ∼= L2(2

n).
Assume F ∗(Ki) = O2(Ki). Set H0 := KiL3−iT1 and R := O2(L0T ). Then

L0T1 ≤ M0 := M ∩ H0. As M =!M(L0T ), C(H0, R) ≤ M0, and by A.4.2.7,
R ∈ B2(H0) and R ∈ Syl2(〈RM0〉). Thus Hypothesis C.2.3 is satisfied, so Ki is
described in C.2.7.3. Comparing the list of possiblities for Ki appearing there such
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that mp(Ki) ≤ 1 for each p ∈ π(|L̄|) to the list of embeddings of L2(2
m) in A.3.12,

we obtain a contradiction.
Therefore we may assume instead that F ∗(Ki) 6= O2(Ki). By A.1.26, V =

[V, L0] centralizes O(Ki), so O(Ki) ≤ CG(V ) ≤ M . Then as O2(M) ≤ T1,
[O2(M), O(Ki)] ≤ O2(M) ∩ O(Ki) = 1, so O(Ki) = 1 as M ∈ He. Thus
as Ki/O∞(Ki) is quasisimple, Ki is quasisimple. As Li does not centralize Vi,
O2(Li) 6≤ Z(Ki). But now each possibile embedding of Li in Ki in A.3.12 with
O2(Li) 6≤ Z(Ki) has mp(Ki) > 1 for some odd prime p dividing |L̄|, again contra-
dicting our earlier observation. This completes the proof. ¤

At this point, we eliminate the sixth case of 10.1.1; this will avoid complications
in the proof of 10.2.9.

Lemma 10.2.7. Case (6) of 10.1.1 does not hold. In particular, CT (V ) =
O2(L0T ).

Proof. The second statement follows from the first by 10.1.2.3. Assume the
first statement fails. Then m := m(M̄, V ) = 4 and a := a(M̄, V ) = 2. By Theorem
E.6.3, r := r(G, V ) ≥ m, so r ≥ 4 and s := s(G, V ) = 4.

Indeed we show r > 4: For suppose U ≤ V with m(V/U) = 4 and CG(U) 6≤M .
If U ≤ CV (x̄) for some x̄ ∈ M̄#, then x̄ is an involution and U = CV (x̄) ≥ Vi for
i = 1 or 2. But then CG(U) ≤ CG(Vi) ≤ M by 10.2.6, a contradiction. Therefore
CM (U) = CM (V ), and E.6.12 supplies a contradiction.

We observe next that 10.1.2.3 and 10.2.3.2 establish Hypothesis E.3.36. A
maximal cyclic subgroup of odd order in M̄ permuting with T̄ is of order 15, so
n′(AutG(V )) = 4 < r. Finally by 10.2.3.1, n(H) ≤ 2 for each H ∈ H∗(T,M).
Therefore by E.3.39.2,

2 = s− a ≤ w ≤ n(H) ≤ 2

where w := w(G, V ) is the weak closure parameter defined in E.3.23. Thus w =
2. Let A ≤ V g be a w-offender in the sense of Definition E.3.27. By E.3.33.4,
Ā ∈ A2(M̄, V ). Thus 1 6= CV1(NA(V1)) ≤ CV (A), so A acts on V1. As Ā ∈
A2(M̄, V ), Ā centralizes O(M̄ ) by E.3.40, so m(A/CA(V1)) ≤ m2(Aut(L̄)) = 2.
Thus m(V g/CA(V1)) ≤ w + 2 = 4 < r, and hence V1 ≤ CG(CA(V1)) ≤ M g.
Similarly V2 ≤Mg, so V ≤M g = NG(V

g), contrary to E.3.25 since w > 0. ¤

Lemma 10.2.8. Assume L̄ ∼= L3(2) and CV1 (L) 6= 1. Set Q := CT (V ). Then

(1) [Z,L] = 1.
(2) ZQ := Ω1(Z(Q)) = ZT1V , where ZT1 := Ω1(Z(T1)) = CZQ(L0).
(3) L = [L, J(T )], and [Z,H ] 6= 1 for each H ∈ H∗(T,M).

(4) Set Ũi := CṼi(T1), let Ri be the preimage in T of O2(CL̄i(Ũi), R := R1R2Q,

and v2 ∈ U2 − CV2(L0). Then CL̄0T̄ (v2)
∼= A4 × L3(2), R = J(T )Q, CT (v2) =

(T ∩ L)R2Q, and Ω1(Z(CT (v2))) = ZT1〈v2〉.

Proof. As ZT1 ≤ CT (V ) = Q ≤ T1, ZT1 = CZQ(T1). As Zi := CVi(L0) 6= 1

and Ṽ1 is a natural module for L̄, Zi ∼= Z2 by B.4.8.1. In particular CZ(L) 6= 1, so
(3) follows from 3.1.8.3, since H 6≤M = !M(L0T ) = !M(CG(CZ(L0))).

By 1.4.1.5, ZQ = R2(L0T ) with Q = CL0T (ZQ) = CL0T (V ) and V ≤ ZQ.
By (3), ZQ is an FF-module for L0T . As V1 ∈ Irr+(ZQ, L) with CV1(L) 6= 1,
by part (1) of Theorem B.5.1, V = [ZQ, L0], and that for any A ∈ A(T ) with
L = [L,A] and Ā minimal subject to this constraint, Ā ≤ L̄ and ZQ = V1CZQ(A).
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By B.4.8.2, Ā = R̄1 and rZQ,Ā = 1, so by B.4.8.4, ZQ = V1CZQ(L). This shows

ZQ = V CZQ(L0), R = J(T )Q, and CT (v2) = (T ∩ L)R2Q, establishing (4) except
for its final assertion. Notice it also shows Z ∩ V ≤ ZT1 ∩ V ≤ CV (L0). But
T1 = T0Q, so CZQ(L0) ≤ ZT1 . Conversely, ZT1 ≤ ZQ and we saw V ∩ZT1 ≤ CV (L0),
so ZT1 ≤ CZQ(L0), and hence (2) holds. Further Z ≤ ZT1 , so (2) implies (1).
Finally Q ≤ CT (v2) and Q = F ∗(L0T ), so Ω1(Z(CT (v2))) ≤ ZQ = V ZT1 ; therefore
Ω1(Z(CT (v2))) = ZT1CV (CT (v2)) = ZT1〈v2〉, completing the proof of (4), and
hence of the lemma. ¤

We are now in a position to produce a crucial bound on the weak closure
parameter r of Definition E.3.3:

Proposition 10.2.9. (1) CG(v) ≤M for each v ∈ V #
i .

(2) r(G, V ) ≥ m(Vi).
(3) If v ∈ Vi − CVi(L0), then CG(v) ≤ NM (Vi).

Proof. Part (3) follows from (1) and the fact that M permutes {V1, V2} and
V1 ∩ V2 = CV (L0). Also (1) implies (2), so it remains to prove (1).

Let v ∈ V #
2 , and suppose by way of contradiction that H := CG(v) 6≤ M .

Without loss Tv := CT (v) ∈ Syl2(CM (v)). By 10.2.6.1, v /∈ CV2(L0T1).
We claim first that NG(Tv) ≤M . If J(T ) ≤ CT (V ), this follows from 3.2.10.8;

so by 10.1.2.1 we may assume that one of the first three cases of 10.1.1 holds.
Suppose first that case (3) of 10.1.1 holds, and also CV1(L) 6= 1. Then by 10.2.8.2,
ZT1 := Ω1(Z(T1)) ≥ CV (L0), so v /∈ CV (L0) using our observation in the previous

paragraph. Therefore as L2 is transitive on Ṽ #
2 , we may assume 〈ṽ〉 = CṼ2(T1).

Hence by 10.2.8.4, Tv = (T ∩ L)R2Q, and Zv := Ω1(Z(Tv)) = ZT1〈v〉. By 10.2.8.1,
L0 centralizes Z, so CG(Zv) ≤ CG(Z) ≤ M = !M(L0T ), and hence by 10.1.3, L
is the unique member of C(CG(Zv)) of order divisible by 3. Therefore NG(Tv) ≤
NG(Zv) ≤ NG(L) ≤ M using 10.2.6.2. We now turn to the remaining subcase
of case (3) of 10.1.1, where CV1(L) = 1. Then Tv = T1, so NG(Tv) ≤ M by
10.2.5. Finally in cases (1) and (2) of 10.1.1, S ≤ T1 by 10.1.2.6; and in case (2),
S centralizes both singular and nonsingular vectors. So in either case, S ≤ Tv.
Therefore S = Baum(Tv) and NG(Tv) ≤ NG(S)) ≤ M by 10.2.1. This completes
the proof of the claim.

AsNG(Tv) ≤M by the claim, while we chose Tv ∈ Syl2(CM (v)), Tv ∈ Syl2(H).
Also L ≤ H , so by 1.2.4, L ≤ I ∈ C(H), with I E H by (+) in 1.2.4. By 10.2.6,
NG(L) ≤M , so L < I and hence I 6≤M . Thus I is described in A.3.12.

Suppose first that I is quasisimple. Then V1 ∩ Z(I) ≤ CV1(L), so Ṽ1 ∼=
V1/CV1(L) is a subquotient of R2(LZ(I)/Z(I)). Inspecting the list in A.3.12 for
embeddings with such a subquotient appearing in 10.1.1, we conclude that case (1)
or (3) of 10.1.1 holds; and keeping in mind that NG(V1) ≤M so that L E NI(V1),
we conclude that either:

(i) L̄ ∼= L2(2
n), and either I/Z(I) is of Lie type and Lie rank 2 over F2n , or

n = 2 and I/Z(I) is M22, M̂22, or M23; or
(ii) case (3) of 10.1.1 holds with CV1(L) ≤ Z(I), and I/Z(I) is L4(2), L5(2),

M24, J4, HS, or Ru.

In particular either CT (L) = CT (I), or I ∼= Sp4(2
n) in (i), using I.1.3 to conclude

the Schur multiplier of Sp4(2
n) is trivial when n > 1. When CT (L) = CT (I),

V2 ≤ CT (L) = CT (I), so I ≤ CG(V2) ≤ M by 10.2.6, contradicting I 6≤ M . On
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the other hand if I ∼= Sp4(2
n), then L is indecomposable on O2(L), so V1 = O2(L).

Then there is X ≤ NI(L) of order 2
n−1 centralizing L/V1 and faithful on V1. Thus

X ≤ NG(L) ≤M , so X ≤ L0 by 10.1.3, impossible as there is no such subgroup of
L0.

Thus I is not quasisimple. So E(I) = 1 by A.3.3.1. We claim F ∗(ITv) =
O2(ITv): If not, then O(I) 6= 1 as E(I) = 1. But by A.1.26.1, V1 = [V1, L] central-
izes O(I), so O(I) ≤ M by 10.2.6.2, and hence O(CM (v)) 6= 1, a contradiction as
CM (v) ∈ He by 1.1.3.2.

We have shown that F ∗(ITv) = O2(ITv). So VI := 〈CV1(Tv)
I 〉 ∈ R2(ITv)

by B.2.14. Let (ITv)
∗ := ITv/CITv (VI ). Now Vv := 〈CV1(Tv)

L〉 ≤ VI , and from
the action of L0 on V in 10.1.1, either V1 = Vv or case (3) of 10.1.1 holds with
CV1(Tv) = CV1(L0) 6= 1 and Vv = CV1 (L0). Therefore either CV (L0) 6= 1, or
NG(Vv) ≤ M by 10.2.6.2. In the former case, 1 6= CZ(L0) ≤ VI , so CG(VI) ≤
CG(CZ(L0)) ≤ M = !M(L0T ); in the latter, CG(VI ) ≤ CG(Vv) ≤ M . So in any
case, CG(VI) ≤M , and hence L∗ < I∗ as I 6≤M , while L∗ 6= 1 as I = 〈LI〉.

Next observe that J(T ) ≤ Tv, so that J(T ) = J(Tv) and S = Baum(Tv): If
J(T ) ≤ CT (V ) this is clear, so by 10.1.2.1 we may assume that one of the first three
cases of 10.1.1 holds. But in each of these cases v centralizes some M -conjugate of
J(T ), so again the remark holds.

We next claim that I∗ = [I∗, J(Tv)
∗] is quasisimple. Suppose not, so that either

[VI , J(Tv)] = 1 or I∗ is not quasisimple. Suppose first that J(Tv)
∗ 6= 1. Then

I∗ is not quasisimple, so I∗ is described in case (c) or (d) of 1.2.1.4, and hence
[X∗, J(Tv)

∗] 6= 1 for X := Ξp(I) and some prime p > 3, contradicting Solvable
Thompson Factorization B.2.16. Thus we may take J(Tv)

∗ = 1. However L∗ 6= 1,
so J(T ) ≤ O2(LTv) and hence J(T ) E L0T , so that NG(J(T )) ≤ M . Then by a
Frattini Argument, I = CI (VI)NI(J(T )) ≤M , contradicting I 6≤M . So the claim
is established.

By the claim, VI is an FF-module for I∗T ∗v . Now intersecting the list of pos-
sibilities for the embedding of L∗ in I∗ in A.3.12 with the list of B.4.2, we get the
following cases:

(a) L̄ ∼= L2(2
n), I∗ ∼= SL3(2

n), Sp4(2
n), or G2(2

n), and O2(L
∗) 6= 1.

(b) L̄ ∼= A5 or L3(2), and I
∗ ∼= A7 with O2(L

∗) = 1.
(c) L̄ ∼= L3(2) and I

∗ ∼= L4(2) or L5(2), with O2(L
∗) 6= 1.

Observe in particular that I does not appear in case (c) or (d) of 1.2.1.4, so I/O2(I)
is quasisimple.

Assume case (a) holds. Recall we saw earlier that V1 = Vv ≤ VI and the
FF-module VI is described in Theorem B.5.1. Then L = NI(V1)

∞ and NI∗(V1)
is a maximal parabolic of I∗, so NI(L) contains a subgroup X of order 2n − 1
centralizing L/O2(L) and nontrivial on V1. We now get a contradiction much as
in the earlier case of Sp4(2

n) where I was quasisimple: for X ≤ NG(L) ≤M , and
hence X ≤ L0 by 10.1.3, whereas there is no such subgroup of L0.

Thus we have shown that (b) or (c) holds, so L̄ ∼= A5 or L3(2). We next show:
In case (b) either

(b1) I is an exceptional A7-block, I
∗T ∗v

∼= A7, and VI is the natural module for
L∗ ∼= L2(4), or an indecomposable of rank 3 or 4 for L∗ ∼= L3(2), or

(b2) I is an A7-block, I
∗T ∗v

∼= S7, and [VI , L] is the A5-module for L∗ ∼= A5.

For assume case (b) holds. We saw that S = Baum(Tv), so applying C.1.24
with I , Tv, Tv in the roles of “L, T , R”, either I is an A7-block or an exceptional
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A7-block, or there is a nontrivial characteristic subgroup C of S normal in ITv.
However in the last case G0 := 〈I, T 〉 ≤ NG(C), so as L ≤ I , L0T ≤ G0 and
hence I ≤ G0 ≤M = !M(L0T ). This contradicts I 6≤M , so I is a block. Further
if I is an A7-block, then as I = [I, J(Tv)], I

∗T ∗v
∼= S7, so L/O2(L) is not L3(2)

as L ∈ L(ITv , Tv). If I is an A7-block, then I∗ is self-normalizing in GL(VI ), so
I∗T ∗v = I∗. Thus (b1) or (b2) holds.

In particular in case (b), O2(I) = CI(VI ). In case (c) since I/O2(I) is quasisim-
ple, the list of Schur multipliers in I.1.3 says I/O2(I) ∼= I∗, so againO2(I) = CI(VI ).

Assume L̄ ∼= L3(2); this argument will be fairly lengthy. By 10.2.7, case (3)
or (5) of 10.1.1 holds. In case (b), subcase (b1) holds; so L∗ is self-normalizing in
I∗T ∗v

∼= A7, and hence Tv induces inner automorphisms on L̄ so that case (3) of
10.1.1 holds. Similarly in case (c): if I∗ ∼= L4(2), then L

∗ ∼= L3(2)/E8, and so Tv
induces inner automorphisms on L̄ and L∗ is self-normalizing in I∗; while if I∗ ∼=
L5(2), then either Tv induces inner automorphisms on L̄, or I∗T ∗v

∼= Aut(L5(2)),
L∗ is the Tv-invariant nonsolvable rank-2 parabolic, and L∗ is self-normalizing in
I∗. Except in this last case, case (3) of 10.1.1 holds.

Set Y := O2(CL2(v)). In case (3) of 10.1.1, Y/O2(Y ) ∼= Z3. In case (5) of
10.1.1, either Y/O2(Y ) ∼= Z3, or v is diagonally embedded in the two summands
with Y = 1, and Tv = T1 with LTv/O2(LTv) ∼= Aut(L3(2)).

Suppose Y 6= 1. By A.3.18, I = O3′(H) so Y ≤ NI(L). As we saw CI(VI ) =
O2(I), 1 6= Y ∗ ≤ NI∗(L

∗) and Y ∗ 6≤ L∗. Thus L∗ < O2(NI∗(L
∗), so by the previous

two paragraphs, I∗T ∗v
∼= L5(2), Y

∗L∗T ∗v
∼= S3×L3(2), and case (3) of 10.1.1 holds.

On the other hand if Y = 1, then by the previous two paragraphs, case (5) of 10.1.1
holds, and I∗T ∗v

∼= Aut(L5(2)). Therefore in any case for Y , I∗ ∼= L5(2).
Suppose that CV (L0) 6= 1. Then case (3) of 10.1.1 holds by 10.1.2.4, so by the

previous paragraph, LY Tv/O2(LY Tv) ∼= L2(2)×L3(2), contrary to 10.2.8.4, which
says that LY Tv/O2(LY Tv) ∼= Z3 × L3(2).

Therefore CV (L0) = 1. By B.4.2 and Theorem B.5.1 VI is either an irreducible
of rank either 5 or 10, the sum of the 5-dimensional module and its dual, or the sum
of isomorphic 5-dimensional modules. If Y = 1, we saw that I∗T ∗v

∼= Aut(L5(2))
and L∗ is the nonsolvable T ∗v -invariant rank 2 parabolic. Thus VI = VI,1 ⊕ VI,2
with VI,1 a natural I∗-submodule and VI,2 its dual. But we also saw that case (5)
of 10.1.1 holds, and in that case we saw that Vv = V1 ≤ VI . However V1 is the
sum of a natural module for L̄ and its dual, whereas the parabolic L∗ has no such
submodule on VI .

Thus Y 6= 1, I∗T ∗v
∼= L5(2), and L

∗Y ∗T ∗v
∼= S3 × L3(2). In case (5) of 10.1.1,

V1 ≤ VI and V1 is the sum of a natural module for L̄ and its dual. However
examining the possibilities for VI listed above, we see that the parabolic L∗Y ∗T ∗v
has no such submodule.

Therefore case (3) of 10.1.1 holds. Since CV (L0) = 1, V1 is the natural module
for L. But from the our list of possibilities for VI , each natural submodule for L is
contained in an I-irreducible. Thus as VI = 〈V I1 〉, VI is an I-irreducible, and hence
dim(VI ) = 5 or 10.

Again since CV (L0) = 1, Tv = T1, so that T normalizes Tv. Let t ∈ T − Tv,
u := vt, and E := 〈u, v〉. Then 〈u〉 = CV1(Tv) and CGv (E) = CGv (u). Since VI is
an irreducible of dimension 5 or 10, CI∗T∗v (u) is a maximal parabolic of I∗T ∗v , and
so from the structure of such parabolics,

CITv (E) = O3′(CG(E))Tv ≤ I tTv,
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as It = O3′(CG(u)) since I = O3′(H). Then CITv (E) = CItTv (E), so that t acts
on CITv (E).

Let P be the rank one parabolic of ITv over Tv not contained in M , and let
Pc and Pf be the rank one parabolics of L centralizing and not centralizing u,
respectively. Observe that as Lt = L2, t interchanges Y and Pc. If m(VI ) = 10,
then CI∗T∗v (u) is an L3(2)×L2(2) parabolic and CITv (u) = 〈Y, P 〉Pc. Therefore as t
interchanges Y and Pc, and t acts on CITv (E) = CITv (u) by the previous paragraph,
P = P t. This is impossible, as 〈Y, P 〉 is of type L3(2), while PPc is of type
L2(2)×L2(2). Thereforem(VI) = 5, and CITv (u) = 〈Y, P, Pc〉 is of type L4(2); again
P t = P , and as Pf acts on O2(P ), so does P tf . This is impossible, as P centralizes

E, but PfP
t
f contains a E9-subgroup D with CE(D) = 1 so m3(DO

2(P )) = 3,

contradicting DO2(P ) an SQTK-group. This concludes the treatment of the case
L̄ ∼= L3(2).

Therefore L̄ ∼= L2(4) and case (b1) or (b2) holds. In (b1), V1 = VI E I ,
so I ≤ NG(V1) ≤ M by 10.2.6.2, contrary to I 6≤ M . In (b2), [VI , L] is the A5-

module, so case (2) of 10.1.1 holds with V1 = [VI , L]. Then Y := O3′(CL2(v)) 6= 1,

and Y ≤ I as O3′(H) = I by A.3.18. Hence 1 6= Y ∗ ≤ NI∗(L
∗) but Y ∗ 6≤ L∗,

contradicting L∗ = O2(NI∗(L
∗). This contradiction finally completes the proof of

10.2.9. ¤

Lemma 10.2.10. (1) For g ∈ G−M , V2 ∩ V
g
2 = 1.

(2) If CV (L0) = 1, then Vi is a TI-set in G.

Proof. AsM permutes {V1, V2} transitively and V1∩V2 = CV (L0), (1) implies
(2).

Suppose g ∈ G with 1 6= v ∈ V2 ∩ V
g
2 . By 10.2.9.1, CG(v) ≤ M ∩M g. Let

p be an odd prime divisor of |L̄|, and for X ≤ G let θ(X) := Op
′

(X∞). By
10.1.3, L0 = θ(M), so Lg ≤ L0; and L0 ≤ Lg0 if v ∈ CV2 (L0). In the latter case
g ∈ NG(L0) =M , so we may assume v /∈ CV2(L0). Thus L = θ(CL0(v)), so L

g = L.
Then g ∈M by 10.2.6.2, establishing (1). ¤

Lemma 10.2.11. Assume case (3) of 10.1.1 holds with CV (L0) = 1. Let 1 6=
vi ∈ CVi(T1), set E := 〈v1, v2〉, and z := v1v2. Let Gz := CG(z), X := O2(CL0(z)),
Kz := 〈XGz〉, and Vz := 〈EGz〉. Then

(1) Vz ≤ Z(O2(Gz)) and CGz (Vz) ≤ NM (V1).
(2) If X < Kz then Vz ∈ R2(Gz).
(3) V ≤ O2(Gz).

Proof. By construction, z ∈ Z(T ), so Gz ∈ He by 1.1.4.6. As XT ≤ Gz,
O2(Gz) ≤ O2(XT ) by A.1.6; then as O2(XT ) ≤ T1 ≤ CGz (E), Vz ≤ Z(O2(Gz)).
Further

CGz(Vz) ≤ CGz (v1) ≤ NM (V1)

by 10.2.10, since by hypothesis CV (L0) = 1, so (1) holds.
Set G∗z := Gz/CGz(Vz) and let R denote the preimage in T of O2(G

∗
z). By a

Frattini Argument, Gz = CGz(Vz)NG(R). Thus if R ≤ T1, then R centralizes E,
and hence also 〈ENGz (R)〉 = Vz , so that Vz ∈ R2(Gz). Thus to prove (2), we may
assume R 6≤ T1. In particular [X,R] 6≤ O2(X), so as T is irreducible on X/O2(X)
and normalizes R, X = [X,R]. Thus X∗ = [X∗, R∗] ≤ R∗, so X∗ is a 2-group

and hence X = O2(X) ≤ CGz (Vz). By 10.1.3, X = O3′(Gz ∩ M), so by (1),

X = O3′(CGz (Vz)) E Gz and hence X = Kz, establishing (2).
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Assume (3) fails. If V centralizes Vz , then as CGz (Vz) ≤ M by (1), V ≤
O2(CGz (Vz)) ≤ O2(Gz), contrary to assumption. Hence as XT is irreducible on
V/E, E = CV (Vz). If X E Gz, then as X centralizes E, it centralizes Vz ; then
V = [V,X ]E centralizes Vz , a contradiction. Thus X < Kz, and hence Kz 6≤M so
Vz ∈ R2(Gz) by (2).

As E = CV (Vz), V
∗
1 is a 4-group. By (1), Vz ≤ NM (V1), so [Vz , V1] ≤ Vz ∩

V1 = 〈v1〉. That is V ∗1 is a 4-group inducing transvections on Vz with center v1.
Further K∗zT

∗ is described in case (2) or (3) of 10.2.4. Appealing to G.3.1, the
only group K∗zT

∗ listed there containing a 4-group of F2-transvections with a fixed
center in some representation is L3(2) wr Z2 with [Vz ,Kz] = Vz,1 ⊕ Vz,2, where
Vz,i := [Vz,Kz,i] is a natural module. However in that case, V ∗i ≤ K∗z,i with

vi = [Vz, V
∗
i ] ≤ Vz,i, so z = v1v2 ∈ [Vz ,Kz], which is impossible as z ∈ Z(Gz) but

C[Vz,Kz](K
∗
z ) = 1. This contradiction completes the proof. ¤

We can now prove our major weak closure result, which establishes an effective
lower bound on the parameter w(G, V ).

Proposition 10.2.12. One of the following holds:

(1) w(G, V ) > 2.
(2) w(G, V ) = 2, and case (3) of 10.1.1 holds.
(3) w(G, V ) = 2, and case (1) of 10.1.1 holds with n = 2.

Proof. In case (3) of 10.1.1, and in case (1) when n = 2, set j := 1. Otherwise
set j := 2. We must prove w(G, V ) > j, so we may assume A := V g ∩M with
k := m(V g/A) ≤ j and [V, V g ] 6= 1, and it remains to derive a contradiction.

Let m := m(Ṽ1) and a := a(AutM (V1), V1). Observe m > j + 1. Recall
a ≤ m2(AutM (V1)) and in case (2) of 10.1.1, a = 1. Thus k < m − a unless case
(3) of 10.1.1 holds and k = 1.

For i = 1, 2, set Ai := V gi ∩A and Bi := NAi(V1). Suppose A1A2 centralizes V1.
Then by 10.2.9.1, V1 ≤ NMg (V gi ), so CV1(V

g
i ) 6= 1 since m(Vi) < m2(AutM (V1))

in each case. Then A = V g by another application of 10.2.9.1. But then V g =
A1A2 ≤ CM (V1) = CM (V ), contrary to our choice of V g . Thus we may assume Ai
does not centralize V1 for some choice of i := 1 or 2.

Next m(V gi /Ai) ≤ k with m(Ai/Bi) ≤ 1, so m(V gi /Bi) ≤ k + 1 < m =
m(V gi /CV g

i
(Lg0)) by paragraph two. Thus Bi 6≤ CV g (Lg0), so there exists b ∈ Bi −

CV g (L
g
0). For each such b and each r = 1, 2, we may apply 10.2.9.1 to get

CVr (b) ≤ NVr(V
g
i ) =: Ur,

so V0 := [Ai, CV1(b)] ≤ V gi ∩V and [Bi, CV1(b)] ≤ V gi ∩V1 = 1 by 10.2.10.1. Thus if
V0 6= 1 then Ai > Bi and V ≤ CG(V0) ≤Mg by 10.2.9.1. Thus [Ai, V ] ≤ V g ∩ V ≤
CV (b), and as Ai > Bi, for any a ∈ Ai − Bi, V = [a, V ]V2, so b centralizes V/V2.
Thus b ∈ CT (V/V2) = CT (V1), so V1 = CV1(b) and V = V0V2. Then by 10.2.9.1,

L = 〈CL(v0) : v0 ∈ V
#
0 〉 ≤Mg,

so L0 = 〈LAi〉 ≤Mg and hence L0 = Lg0 by 10.1.3, contradicting g /∈M . Therefore
V0 = 1, so

CV1(Ai) = CV1(b). (∗)

As CV1(b) 6≤ CV1 (L) from the structure of the modules in 10.1.1, Ai acts on V1 by
(*), so Ai = Bi. Then as Ai does not centralize V1, (*) says

AutAi(V1) ∈ Am−k(AutM (V1), V1).
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Thus k ≥ m−a, so by paragraph two, case (3) of 10.1.1 holds with w(G, V ) = k = 1.
Hence V 6≤M g by E.3.25.

Assume first that CV (L0) 6= 1. Then m(V1) = 4 by I.1.6, so m(Ai) ≥ 3 as
k = 1, and hence CAi(V1) 6= 1 as m2(AutM (V1)) = 2. But then V1 ≤ Mg by
10.2.9.1, and similarly V2 ≤Mg, contradicting V 6≤M g .

Therefore CV (L0) = 1, so V1 is a TI-set in G by 10.2.10.2. As AutAi(V1) ∈
A2(AutM (V1), V1), AutAi(V1) is a 4-group of transvections with a fixed axis U1, so
Ai ∼= E4

∼= U1.
Set I := 〈V gi , V1〉. We’ve shown that

Ai = Bi = NV gi (V1) 6= 1 6= U1 = NV1(V
g
i ).

By I.6.2.2a, O2(I) = Ai × U1 is of rank 4 with CI (V1) = U1, and as |V1 : U1| = 2,
I/O2(I) is dihedral of order 2d, with d odd. As D2d ≤ GL4(2), d = 3 or 5. Now Ai
is of index 2 in V gi , so as k = 1, A = A1A2〈c〉 with c = c1c2, where ci ∈ V

g
i − Ai.

Further as I/O2(I) ∼= D2d, there is an involution in I interchanging V1 and V gi ,
and U := V ∩Mg = U1U2〈w〉, where w = w1w2 with wr ∈ Vr − Ur. If w acts on
V gi then 1 6= [Ai, w] ≤ V gi ∩V , so that V ≤ CG([w,Ai]) ≤Mg by 10.2.9.1, contrary
to an earlier reduction. Thus w interchanges Lg1 and Lg2, so by symmetry, Lc = L2.
Now [c, U1] ≤ V g is diagonally embedded in V , so we may take z ∈ Z# to lie in
[c, U1] ≤ V g . Then V, V g ≤ Gz , so I ≤ Gz . Hence as Vr 6≤ O2(I), V 6≤ O2(Gz),
contradicting 10.2.11.3. This completes the proof. ¤

Corollary 10.2.13. Case (3) of 10.1.1 holds with w(G, V ) = 2 = n(H) for
each H ∈ H∗(T,M).

Proof. Take H ∈ H∗(T,M). By 10.1.2.3 and 10.2.3.2, Hypothesis E.3.36
holds. By 10.2.9.2, r(G, V ) ≥ m(V1) and it is easy to check in each case of 10.1.1
that n′(M̄) < m(V1). Thus the hypotheses of lemma E.3.39 are satisfied. By
10.2.3.1, n(H) ≤ 2, with n(H) = 1 in case (1) of 10.1.1. Thus by E.3.39.1,
w(G, V ) ≤ n(H) ≤ 2, so 10.2.12 completes the proof of the corollary. ¤

10.3. The final contradiction

Lemma 10.3.1. (1) CV (L0) = 1.
(2) Vi is a TI-set in G.

Proof. By 10.2.10.2, (1) implies (2). Thus we may assume CV (L0) 6= 1, and
it remains to derive a contradiction. Let H ∈ H∗(T,M) and set U := 〈ZH〉 and
H∗ := H/CH(U). By 10.2.13, case (3) of 10.1.1 holds, so by 10.2.8.1, CH(U) ≤
CG(Z) ≤M = !M(L0T ), and hence H∗ 6= 1. By 10.2.13, n(H) = 2, so by 10.2.3.3,
H∗ ∼= S5 wr Z2 and O2(H ∩M)T0 is a maximal parabolic of L0. In particular by
10.2.8.1,

[O2(H ∩M), Z] ≤ [L0, Z] = 1.

Then as 3-elements are fixed-point-free on natural modules for L2(4), any I ∈
Irr+(H,U) satisfies either

(a) I = I1 ⊕ I2, where Ii := [I,Ki] is the A5-module for Ki ∈ C(H), or
(b) I = I1 ⊗ I2 is the tensor product of A5-modules Ii for Ki.

In either case we compute directly that a(H∗, I) = 1. But by 10.2.9, r(G, V ) ≥
m(V1) and m(V1) = 4 by I.1.6, so s(G, V ) = m(M̄, V ) = 2 using B.4.8.2. SetW0 :=
W0(T, V ). By 10.2.13, w(G, V ) > 0, so NG(W0) ≤ M by E.3.16. If W ∗

0 = 1, then
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W0 ≤ O2(H) by B.6.8.3d, so W0 = W0(O2(H), V ) and then H ≤ NG(W0) ≤ M ,
contradictingH 6≤M . ThusW ∗ 6= 1; since s(G, V ) = 2, we must have a(H∗, I) ≥ 2
by E.3.18, contradicting a(H∗, I) = 1. ¤

Lemma 10.3.2. CG(z) 6≤M for z ∈ Z# ∩ V .

Proof. Assume that CG(z) ≤ M . We first prove that V is a TI-subgroup
of G: For as CV (L0) = 1 by 10.3.1.1, each diagonal involution in V is conjugate
in L0 to z, and hence has centralizer contained in M by hypothesis. By 10.2.9.1,
centralizers of nondiagonal involutions are contained in M . Thus these involutions
are not 2-central in G, so they are not fused in G to diagonal involutions, and hence
M controls fusion of involutions in V . Therefore V is a TI-set in G by I.6.1.1.

As V is a TI-subgroup of G, r(G, V ) = m(V ) = 6. Let A be a w-offender on
V . By 10.2.13, w(G, V ) = 2, so as m2(AutG(V )) = 4, m(Ā) = 4 by E.3.28.2. But
as V is a TI-subgroup of G, I.6.2.2a says that CV (a) = V ∩Mg for each a ∈ A#.
This is impossible as no rank-4 subgroup of M̄ satisfies CV (ā) = CV (Ā) for each
ā ∈ Ā#. This contradiction completes the proof. ¤

By 10.2.13 and 10.3.1.1, the hypotheses of 10.2.11 hold. So for the remainder
of the section, we adopt the notation of that lemma; in particular, we study the
group Kz = 〈XGz〉.

Lemma 10.3.3. KzT/O2(KzT ) ∼= S5 wr Z2.

Proof. We first observe that if Y ∈ H(T ) is generated by NY (T ) and a set
∆ of minimal parabolics D such that n(D) = 1 for each D ∈ ∆, then Y ≤ M
by Theorem 3.3.1 and 10.2.13. In particular each solvable member H of H(T )

is contained in M by E.1.13 and B.6.5, since H = O2′ (H)NH(T ) by a Frattini
Argument.

Let J := G∞z . By a Frattini Argument, Gz = JNGz(T ∩ J), and as Gz/J
and NJ(T ∩ J) are solvable, NGz(T ∩ J) is a solvable member of H(T ). Therefore
NGz(T ∩J) ≤M by the previous paragraph, so J 6≤M by 10.3.2. Hence by 1.2.1.1
there is I ∈ C(Gz) with I 6≤M .

Suppose I/O2(I) is a Bender group. Then a Borel subgroup of I0 := 〈IT 〉 lies
inM by the first paragraph, so I0T ∈ H∗(T,M). Hence by 10.2.13, n(I) = 2. Then
by 10.2.3.3, I0T/O2(I0T ) ∼= S5 wr Z2 and X ≤ I0, so I0 = Kz, and the lemma
holds.

Therefore we may assume I/O2(I) is not a Bender group. Suppose next that
X = Kz. As Gz is an SQTK-group, m3(IX) ≤ 2, so I is a 3′-group. Thus I/O2(I)
is a Suzuki group and hence a Bender group, contrary to our assumption.

Thus X < Kz, so by 10.2.4, Kz = 〈IT 〉, for I ∈ C(Gz) with I 6≤ M , and as
I/O2(I) is not a Bender group, I/O2(I) ∼= L2(p) for an odd prime p > 5, L4(2),
or L5(2). But then KzT is generated by NKzT (T ) and minimal parabolics D with
n(D) = 1, contrary to an earlier remark. ¤

We are now in a position to obtain our final contradiction.
By 10.3.3, Kz = 〈KT 〉 with K ∈ L(G, T ) and K/O2(K) ∼= A5. In particular

X < Kz, so by 10.2.11.2, Vz ∈ R2(Gz). Thus K ∈ Lf (G, T ).
Let M+ ∈ M(KzT ) and set Jz := 〈XM+〉. As X < Kz ≤ Jz , by 10.2.4,

Jz = 〈ITz 〉 for Iz ∈ C(M+). Furthermore arguing as in the proof of 10.3.3, Jz is not
generated by minimal parabolics D with n(D) = 1, so from 10.2.4, Iz/O2(Iz) ∼=
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L2(2
m) with m ≥ 2. However the embedding K < Iz does not occur in the list of

A.3.14, so we conclude thatKz = Jz . ThereforeK ∈ L∗f (G, T ) withM+ = NG(Kz).
Thus the hypotheses of Theorem 10.0.1 are satisfied with K in the role of “L”. As
K/O2(K) is A5 rather than L3(2), 10.2.13 applied to K in the role of “L” supplies
a contradiction. This contradiction completes the proof of Theorem 10.0.1.





CHAPTER 11

Elimination of L3(2
n), Sp4(2

n), and G2(2
n) for n > 1

In this chapter, we complete the elimination of the groups possessing a pair L,
V arising in the Fundamental Setup (3.2.1) such that L/O2(L) is of Lie type of Lie
rank 2 over a field of order 2n, n > 1.

Choose V so that L, V are in the FSU and L/O2(L) is of Lie type of Lie rank
2 over a field of order q := 2n, n > 1. By Theorem 7.0.1, V is an FF-module. The
weak closure parameters of FF-modules make it difficult to do weak closure without
first doing some extra work. Furthermore corresponding local configurations do
actually occur in suitable maximal parabolics in non-quasithin shadows given by
certain groups G of Lie type and Lie rank 3: namely for L̄ ∼= SL3(q), in G ∼= L4(q),
Sp6(q), Ω

+
8 (q).2, and Ω−8 (q); and for L̄ ∼= Sp4(q), in G ∼= Sp6(q).

We restrict attention at this point to q = 2n for n > 1, largely because for such
q, L̄ has a Cartan subgroup X of p-rank 2 for primes p dividing q − 1. Using our
quasithin hypothesis, G contains no member of H(X) of larger p-rank, whereas the
the groups of Lie type in the previous paragraph do contain such subgroups. This
leads to a contradiction, which does not arise in the shadows of groups over the
small field F2; the more complicated treatment needed for the subcase of L of rank
2 over F2 is postponed to part 5.

Thus in this chapter we will prove:

Theorem 11.0.1. Assume G is a simple QTKE-group, T ∈ Syl2(G), and
L ∈ L∗f (G, T ). Then L/O2(L) is not isomorphic to (S)L3(2

n), Sp4(2
n), or G2(2

n)
with n > 1.

Throughout this chapter we assume L is a counterexample to Theorem 11.0.1
By 1.2.1.3, L is T -invariant, so by 3.2.3, M := NG(L) ∈M(T ), M = !M(LT ),

and we can choose V so that L and V are in the FSU. In particular let VM :=
〈V M 〉, ṼM := VM/CVM (L), MV := NM (V ), and M̄V := MV /CM (V ). Let TL :=
T ∩LO2(LT ) and let X be a Hall 2′-subgroup of NL(TL); since n > 1, mp(X) = 2
for each prime divisior p of |X | (see 11.0.4). As mentioned earlier, the Cartan
subgroup X will provide a main focus for our analysis. Set Z := Ω1(Z(T )) and
abbreviate q := 2n.

Lemmas 11.0.2, 11.0.3, and 11.0.4 collect observations from various earlier re-
sults, and provide a starting point for the analysis.

Lemma 11.0.2. (1) V ∈ Irr+(L,R2(LT )) and V is T -invariant. Moreover T
is trivial on the Dynkin diagram of L/O2(L).

(2) V/CV (L) is the natural module for L/O2(L) ∼= L̄ ∼= SL3(q), Sp4(q), or
G2(q).

759
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Proof. By Theorem 7.0.1, V is an FF-module for AutGL(V )(L̄). By construc-

tion in the FSU, V = 〈V T◦ 〉 for some V◦ ∈ Irr+(L,R2(LT ), T ), so V is T -invariant.
If V > V◦, then V is described in case (3) of Theorem 3.2.5. However in that case
by Theorem B.5.1, V is not an FF-module for AutGL(V )(L̄). Therefore V = V◦, so
as V is an FF-module, (2) follows since one of cases (2), (3), or (4) of 3.2.8 must
hold. Then as V is T -invariant, T is trivial on the Dynkin diagram of L/O2(L),
completing the proof of (1). ¤

Lemma 11.0.3. (1) VM ∈ R2(M).

(2) ṼM is a homogeneous F2L-module.
(3) Either CV (L) = CVM (L) = 1; or L̄ ∼= Sp4(q) or G2(q), V = VM , m(CV (L))

≤ n, and L = [L, J(T )].
(4) V is a TI-set under M .
(5) If L̄ is Sp4(q) or G2(q) then H ∩M ≤ NM (V ) for each H ∈ H∗(T,M).

Proof. Part (1) is 3.2.2.2; part (2) follows from 3.2.2.3; and as n > 1, part (4)
is a consequence of 3.2.7. By 3.2.2.4, CVM (L) = 〈CV (L)M 〉. If L ∼= SL3(q), then as
n > 1 we have H1(L, V/CV (L)) = 0 by I.1.6, so CV (L) = 1. Hence CVM (L) = 1,
so that (3) holds in this case. If CV (L) 6= 1, then L = [L, J(T )] by 3.2.2.6, and
V = VM by Theorem 3.2.5, since now neither cases (2) nor (3) of that result hold.
Further by I.1.6, m(CV (L)) ≤ m(H1(L, V/CV (L)) = n, completing the proof of
(3).

Finally assume the hypotheses of (5), and supposeH ∈ H∗(T,M) withH∩M 6≤
NM (V ). In particular V < VM as VM E M . As V is a TI-set underM by (4), while
Z∩V 6= 1, [Z,H∩M ] 6= 1 and hence [Z,H ] 6= 1. Thus J(T ) 6≤ CT (V ) by 3.1.8.3, and
so L = [L, J(T )]. So settingM∗ :=M/CM (VM ), by B.2.7 there is A∗ ∈ P(M∗, VM )
with L∗ = [L∗, A∗]. Then by Theorem B.5.6, F ∗(J(M∗, VM )) = L∗, and then
Theorem B.5.1 supplies a contradiction to V < VM . ¤

Lemma 11.0.4. L = Op
′

(M) for each prime p such that

(1) p divides q2 − 1, if L̄ is Sp4(q) or G2(q); or
(2) p divides q − 1 and p > 3, if L̄ is SL3(q).

Moreover if L̄ ∼= SL3(q) with n even, then L contains each element of M of order
3.

Proof. The primes p are chosen so that mp(L) = 2; hence the lemma follows
from A.3.18, using A.3.19 for the final assertion. ¤

11.1. The subgroups NG(Vi) for T-invariant subspaces Vi of V

By 11.0.2.2, Ṽ is the natural FqL̄-module; thus the two classes of maximal
parabolics of L̄ preserve Fq-subspaces of dimension 1 and 2. We will use our
structure theory of QTKE-groups to restrict the normalizers of these subspaces.
The results in this section roughly have the effect of forcing these normalizers to
resemble those in the shadows mentioned earlier.

For i = 1, 2, 3, let Vi denote the set of U ≤ V such that CV (L) ≤ U and Ũ is

an i-dimensional FqT
′-subspace of Ṽ for some T ′ ∈ Syl2(M). Further for i = 1, 2,

set L(U) := NL(U)∞.
Denote by Vi the unique T -invariant member of Vi. For i = 1, 2, let Li := L(Vi)

and Ri := O2(LiT ). Then Li/O2(Li) ∼= L2(2
n). By construction T ≤ NG(Vi), so
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that NG(Vi) ∈ He by 1.1.4.6. Notice when L̄ ∼= SL3(q) that V3 = V , while in the

other cases, from the action of NGL(Ṽ )(L̄) on Ṽ , NM (V3) = NM (V1).

We begin by considering the embedding of Li in a C-component Ki of NG(Vi).
1

Lemma 11.1.1. Assume either

(i) i = 1, 1 6= V0 ≤ V1, H := NG(V0), and T0 := NT (V0) ∈ Syl2(H), or
(ii) i = 2 and H := NG(V2).

Then Li ≤ K ∈ C(H) with K E H, and one of the following holds:

(1) Li = K.
(2) K/O2(K) ∼= (S)L3(q), Sp4(q), G2(q),

2F4(q),
3D4(q), or

3D4(q
1/3).

(3) n = 2 and K/O2(K) is isomorphic to A7, Â7, L2(p) for a prime p with

p ≡ ±1 mod 5 and p ≡ ±3 mod 8, L2(25), (S)L
ε
3(5), M22, M̂22, M23, J1, J2, J4,

HS, Ru, SL2(5)/P0 for a suitable nilpotent group P0 of odd order, or SL2(p)/Ep2
for a prime p satisfying the congruences above.

Proof. If i = 1, V0 and T0 are defined in (i); if i = 2, set V0 := V2 and T0 := T .
Thus in either case H = NG(V0), and T0 ∈ Syl2(H) acts on Li, so Li ∈ L(H,T0).
Thus by 1.2.4, Li is contained in a unique K ∈ C(H), and the embedding Li ≤ K
appears on the list of A.3.12. As T0 acts on Li, T0 also acts on K, so K E H by
1.2.1.3. The possibilities for K are determined by restricting the list of A.3.12 to
Li/O2(Li) ∼= L2(q). The groups in (2) are the groups of Lie type, characteristic 2,
and Lie rank 2 in Theorem C (A.2.3). When n = 2, we use the list in A.3.14, and
get the further examples in (3). ¤

We next determine the possible embeddings of Li in NG(Vi) for i = 1 and 2.
Recall that X is a Hall 2′-subgroup of NL(TL), so X ≤ NL(Vi).

Proposition 11.1.2. For i = 1, 2, Li ≤ Ki ∈ C(NG(Vi)) with Ki E NG(Vi)
and Ki ∈ He. Furthermore for K := Ki either Li = K, or i = 1, q = 4, and one
of the following holds:

(1) K/O2,2′(K) ∼= SL2(p) where p = 5, or p ≥ 11 is prime.
(2) K/O2(K) ∼= L2(p) for a suitable prime p ≥ 11, and L/O2(L) is not SL3(4).
(3) KX/O2(KX) ∼= PGL3(4). Further if K0 denotes the member of L(G, T )∩

K distinct from K and L1, and I := 〈K0, L2〉, then I ∈ L∗f (G, T ), and interchanging
the roles of L and I if necessary, L/O2(L) ∼= G2(4) and I/O2(I) ∼= Sp4(4).

Proof. By 11.1.1, Li ≤ Ki E NG(Vi). Recall NG(Vi) ∈ He, so Ki ∈ He by
1.1.3.1. So we may assume Li < Ki =: K, and K appears in case (2) or (3) of
11.1.1, but not among the conclusions of 11.1.2. In particular K 6≤M .

Let Gi := CG(Vi); observe that X ≤ NG(Vi), and set (GiX)∗ := GiX/O2(K).
As NG(Vi) ∈ He, Gi ∈ He by 1.1.3.1. Set Xi := CX(Li/O2(Li)). By 11.0.2.2,
|Xi| = q − 1.

Suppose first that i = 1. By inspection of the possiblities for K, namely in (2)
and (3) of 11.1.1 but not in 11.1.2, K/O2(K) is quasisimple and either

(i) mp(K) = 2 for some prime p dividing q − 1, or
(ii) q = 4 and K/O2(K) ∼= L2(p) for a prime p ≥ 11, L2(25), L3(5), or J1.

1Notice that in the shadows we expect Li = Ki
�
NG(Vi).
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Next L1 = L∞1 ≤ CG(V1) = G1, so K = [K,L1] ≤ G1. As X1 is faithful on
V1, the product KX1 is semidirect. Thus for each prime p dividing q − 1, K does
not contain all elements of order p centralizing L1/O2(L1), so applying A.3.18 we
conclude that in case (i):

(*) q = 4, K∗ ∼= L3(4), and K
∗X∗1

∼= PGL3(4) with X1 inducing outer auto-
morphisms on K∗.

We will return to case (*), after treating case (ii). There q = 4 so that |X∗1 | =
3. If K∗ ∼= J1 then K = 〈L1, NK(T )〉 ≤ M using Theorem 3.3.1, contradicting
K 6≤ M . Thus K/O2(K) is L2(p) or L2(25) or L3(5), so Out(K

∗) is a 3′-group,
and hence X∗1 centralizes K∗. If K/O2(K) ∼= L2(25) or L3(5), then some t ∈ T ∩K
induces an outer automorphism on L1/O2(L1), so t induces a field automorphism on
L/O2(L), impossible as [t,X1] ≤ O2(X1T ). Thus K/O2(K) ∼= L2(p), so conclusion
(2) will hold in this case, once we show L/O2(L) is not SL3(4). But in that case,
X1O2(L) = O2,Z(L) E M , so Y := O2(X1T ) E LT , and hence NG(Y ) ≤ M =
!M(LT ). Then as [K,X1] ≤ O2(K) ≤ T , K normalizes O2(Y O2(K)) = Y so that
K ≤ NG(Y ) ≤M , contrary to K 6≤M .

Thus to complete the treatment of the case i = 1, we assume (*) holds; as
this is the first requirement of conclusion (3), it remains to establish the remaining
assertions of (3). This argument will require several pages.

Our strategy will be to use K and L to construct a third group I , and obtain
a triple L = 〈L1, L2〉, K = 〈L1,K0〉, and I := 〈L2,K0〉—where K0 is essentially
the maximal parabolic of K over T ∩K other than L1(T ∩K). We will be able to
exploit some symmetry in this triangle of subgroups.

Let K0 denote the member of L(G, T ) ∩ K distinct from L1 and K—that is,
K0/O2(K) is normal in the maximal parabolic of K/O2(K) stabilized by XT which
is distinct from NK(L1). In particular, K0/O2(K0) ∼= L2(4), and K0 ∈ He. Set
S := O2(XT ), H1 := K0SX , H2 := L2SX , and H1,2 = SX .

Assume that there is no nontrivial normal subgroup of T normal in H :=
〈H1, H2〉. Then Hypothesis F.1.1 is satisfied with K0, L2, S in the roles of “L1, L2,
S”, so by F.1.9, α := (H1, H1,2, H2) is a weak BN-pair of rank 2. As S E H1,2,
α appears on the list of F.1.12. Indeed α must be one of the (untwisted) cases
where the nonabelian chief factor of H1 and H2 is isomorphic to L2(4). As L2 has
at least two noncentral 2-chief factors, α is not the PGL3(4), SL3(4), or Sp4(4)
amalgam, so α is the G2(4)-amalgam. By construction V1 is H1,2-invariant, and
hence plays the role of the long root group of G2(4) normal in a maximal parabolic.
The parabolic H1 stabilizing this long root group is irreducible on O2(H1)/V1, and
H∞1 /O2(H1) has two A5-modules on this section; but in our construction K0 has
a natural L2(4)-chief factor on O2(K0).

This contradiction shows that O2(H) 6= 1, and hence HT ∈ H(T ) ⊆ He using
1.1.4.6. Now by 1.2.4, L2 ≤ I ∈ C(HT ), and I E HT by 1.2.1.3 as L2 is T -invariant,
so also I ∈ He. Similarly K0 ≤ I0 ∈ C(HT ). We conclude from (*) that

XK := X ∩K = X ∩ L1 = X ∩K0.

But as [V1, L1] = 1 while V1 = [V1, X2] from the action of L on V , X ∩ L1 6= X2;
so XK does not centralize L2/O2(L2), and hence [I,XK ] 6≤ O2(I). Thus [I, I0] 6≤
O2(I), so K0 ≤ I0 = I . Therefore

X = (X ∩ L1)(X ∩ L2) = XK(X ∩ L2) ≤ I,
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so m3(I) = 2. Also L(G, T )∩ I contains two members L2, K0 with L2X/O2(L2) ∼=
K0X/O2(K0) ∼= GL2(4); inspecting the list of A.3.14, we conclude I/O2(I) ∼=
SL3(4), Sp4(4), orG2(4) and I = 〈K0, L2〉. FurthermoreO2(H) = 〈K0, L2, X〉 ≤ I ,
so I = O2(HT ) and HT = IT .

Suppose first that L̄ ∼= SL3(4); we must eliminate this case as part of our proof
that (3) holds. This subcase will require approximately a page of argument.

First

X1 = X2,

and X1 is Sylow in O2,Z(L). Thus I/O2(I) is not SL3(4) or else X1 = X2 =
CX(L2/O2(L2)) = CX (K0/O2(K0)), which is not the case in K∗X∗ ∼= PGL3(4).
In the remaining cases the subgroup X1 = X2 of the Cartan group X of I is
inverted by a 2-element projecting on the center of the Weyl group (D8 or D12) of
I/O2(I), so this element is not in L2X . Thus NI(X2) 6≤ L2X = I ∩M . Therefore
as X1 = X2, GX1 := NG(X1) 6≤M .

Let LX1 := NL(X1)
∞, so that L = O2(L1)LX1 and X1 ≤ LX1 . We now show

that it suffices to prove QX1 := [O2(LX1), LX1 ] 6= 1: For then O2(LX1) 6= 1, so that
Theorem 4.2.13 saysM = !M(LX1). Then as GX1 6≤M by the previous paragraph,
O2(GX1 ) = 1. Next as QX1 6= 1, LX1 has a 2-chief section of rank at least 6, so
m2(GX1) ≥ m(QX1) > 3. Therefore mp(Op(GX1 )) ≤ 2 for each odd p by A.1.28,
so LX1 ≤ CX1 := CG1(O(F (GX1 ))). As O2(GX1) = 1, F ∗(CX1) = EZ(CX1),
where E := E(GX1)). Further using (1) of Theorem A (A.2.1), |JGX1 | ≤ 3 for
each component J of GX1 , so G

∞
X1

normalizes J . Hence E = C∞X1
as J satisfies the

Schreier Conjecture. Then LX1 ≤ E, so that QX1 projects nontrivially on some
component KX1 of GX1 . As G is quasithin, m2,3(E) = 2, so KX1 is the unique
component not centralized by LX1 , and hence LX1 ≤ KX1 , so X1 ≤ Z(KX1).
However KX1/Z(KX1) appears in Theorem B (A.2.2), and inspecting such groups

for a 2-local containing a subgroup L̂ with L̂/O2(L̂) ∼= L3(4) and [O2(L̂), L̂] 6= 1,
we conclude KX1/Z(KX1)

∼= J4. This is contradiction as X1 ≤ Z(KX1) but the
multiplier of J4 is trivial. This completes the proof that to eliminate L/O2(L) ∼=
SL3(q), it is sufficient to show QX1 6= 1.

So we assume QX1 = 1, and it remains to derive a contradiction. We set up the

apparatus to apply lemma G.2.5. Set U := 〈V G1〉 and Ĝ1 := G1/V1. It is straight-
forward to check that Hypothesis G.2.1 is satisfied, with NG(V1), O

2(NL(V1)),

G1X1T , U , V in the roles of “G1, L1, H , U , V ”. Therefore Û ≤ Z(O2(Ĝ1)) by
G.2.2.

Let P be a Sylow 3-subgroup of KX containing X with XK = Z(P ), so that
P ∼= 31+2. As Z(P ) = XK = X ∩ L1 is nontrivial on V , P is faithful on U ; so as
P ∼= 31+2, 1 6= [CU (X1), X ] = [CU (X1), XK ]. If Y := [CU (X1), X ] ≤ O2(LT ), then

LX1 = 〈X
LX1

K 〉 is nontrivial on O2(LX1), which we saw above suffices; so we may
assume Y 6≤ O2(LT ). In particular U 6≤ O2(LT ) so the hypotheses of G.2.5 are also
satisfied. Thus by G.2.5.1, R1 = UO2(LT ). Furthermore by G.2.5.2, L ≤ J ≤ LT ,
where J plays the role of “I” in G.2.5—with the structure of O2(J) described
in detail in the remaining parts of G.2.5. Let L+ := NL1(X1)

∞. As 1 = QX1 ,
CR1(X1)/CO2(LT )(X1) is the unique noncentral chief factor for L+ on CR1(X1), so
CR1(X1)/CR1(L+X1) is the natural module for L+/O2(L+) ∼= L2(4). Let W be a
KX-chief factor in O2(KT ) with K nontrivial on W . By G.2.5, the nontrivial L-
constituents on O2(J) are natural or dual, so the nontrivial L+-constituents are all
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natural. Therefore by B.4.14, W is the adjoint module for K/O2(K) and CW (X1)
is indecomposable of F4-dimension 4 for L+/O2(L+). In particular CW (X1) does
not split over [CW (X1), L+], a contradiction as CR1(X1)/CR1(L+X1) is the natural
module for L+/O2(L+). This contradiction finally completes the elimination of the
case where (*) holds and L/O2(L) ∼= L̄ ∼= SL3(4).

Thus in view of 11.0.2.2, we have shown that if (*) holds then L/O2(L) ∼= L̄ ∼=
Sp4(4) or G2(4), and to complete our treatment of the case i = 1 it remains to show
that (*) implies the remaining statements in (3). Recall I/O2(I) ∼= SL3(4), Sp4(4),
or G2(4), so I ∈ L∗(G, T ) by 1.2.8.4, and then as [Z,L2] 6= 1, even I ∈ L∗f (G, T ).
This begins to establish some symmetry between L and I ; in particular applying
11.0.2 to I , we conclude there is VI ∈ R2(IT ) with VI/CVI (I) the natural module.

Assume [Z,K] 6= 1. ThenK ≤ K+ ∈ L∗f (G, T ) by 1.2.9. Now sinceK/O2(K) ∼=
L3(4), by A.3.12, either K = K+ or K+/O2(K+) ∼= M23. By B.4.2, neither L3(4)
nor M23 has an FF-module, so Theorem 7.0.1 supplies a contradiction.

Therefore [Z,K] = 1, so if CVI (I) 6= 1 then ZI := CZ(I) 6= 1. But then by
1.2.7.3, NG(I) = !M(IT ) = !M(CG(ZI)), so L1 ≤ K ≤ NG(I) ≥ L2, and hence
K ≤ M = !M(LT ), for our usual contradiction. Thus CVI (I) = 1. As [Z,K] = 1,
K0 stabilizes the 1-dimensional F4-subspace VI,1 of VI stabilized by T . Thus K0

plays the same role in I that L1 plays in L. As XT = TX and we saw X ≤ I , X
is also a Cartan subgroup of I and VI,1 = [Z ∩ VI,1, XK ] ≤ CG(K). Therefore K is
the member of C(NG(VI,1)) containing K0, so K plays the role of “K” for I as well
as for L. In particular, (*) is also satisfied by I . Therefore applying our previous
reduction to I , I/O2(I) is not SL3(4). Notice also that L2 plays the same role in
both L and I : L2 is the derived group of the stabilizer of a line of V and VI .

Suppose L/O2(L) ∼= G2(4). Then X1 ≤ L2 by B.4.6.14. From the previous
paragraph, K0 centralizes VI,1, so if I/O2(I) ∼= G2(4), then by the same argument,

CX(K0/O2(K0)) = X ∩ L2 = X1.

But from (*), [K0, X1] 6≤ O2(K0), a contradiction. Therefore if L/O2(L) ∼= G2(4),
then I/O2(I) ∼= Sp4(4) and so (3) holds.

This leaves the case L/O2(L) ∼= Sp4(4). Interchanging the roles of L and I
if necessary, and appealing to the previous paragraph, we may assume that also
I/O2(I) ∼= Sp4(4). As L/O2(L) ∼= Sp4(4), XK = X ∩ L1 and X1 are the two
diagonally-embedded subgroups of order 3 with respect to the decomposition

X = X2 × (X ∩ L2).

Therefore asK0 centralizes VI,1, andXK = X∩K0, from the structure of I/O2(I) ∼=
Sp4(4), the second diagonal subgroup X1 centralizes K0/O2(K0). But again this
does not hold in (*), a contradiction completing the treatment of the case i = 1.

Now we turn to the easier case i = 2. We assume that L2 < K2 = K, and
it remains to derive a contradiction. Here V2/CV2(L) is the natural module for
L2/O2(L2) ∼= L2(q), and by 11.0.3.3, either CV2(L) = 1, or L̄ is Sp4(q) or G2(q)
with m(CV2(L)) ≤ n. Thus m(V2) ≤ 3n. Examining the possibilities in (2) and (3)
of 11.1.1 for cases where K possesses a nontrivial module of rank at most 3n, we
conclude that one of the following holds:

(a) K/O2(K) ∼= SL3(q) and V2 is the natural module.
(b) q = 4, K/O2(K) ∼= A7, and V2 is the natural module.
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(c) q = 4, K/O∞(K) ∼= L2(5), and O2(K) < O∞(K) centralizes V2 of rank at
least 4.

In case (b), K = O3′(NG(V2)) by A.3.18, so X2 ≤ CK(L2/O2(L2)), contrary to the
structure of A7. In case (a), m(V2) = 3n so m(CV (L)) = n, and from the action
of L̄ ∼= Sp4(2

n) or G2(2
n) on V in I.2.3.1.ii.a, R2 centralizes V2, whereas this is

not the case for the parabolic L∗2 in K∗ ∼= SL3(q) on VI . Hence case (c) holds
so K/O2(K) is not quasisimple and there is Y ∈ Ξ(G, T ) contained in O2,F (K)
by 1.3.3; in particular Y is normalized by L2T . Next Y T ≤ CG(V2)T ≤ NG(V1),
so as Y ∈ Ξ(G, T ), we may apply 1.3.4 to conclude that either Y E NG(V1), or
Y ≤ KY ∈ C(NG(V1)) with KY described in 1.3.4. Therefore either K1 ≤ NG(Y )
or K1 = KY . However comparing the list of possibilities for KY in 1.3.4 to the list
of possiblities for K1 in this lemma, we find no overlap. Thus K1 ≤ NG(Y ), so

LT = 〈L1, L2T 〉 ≤ NG(Y ).

Then K ≤ NG(Y ) ≤ M = !M(LT ), for our usual contradiction. This completes
the treatment of the case i = 2, and hence the proof of 11.1.2. ¤

In the remainder of the section, we obtain several further technical restrictions
on the normalizers of the subspaces Vi.

Lemma 11.1.3. L2 is the unique member of C(NG(V2)) which does not centralize
V2.

Proof. By 11.1.2, L2 ∈ C(NG(V2)). If there is L2 6= K ∈ C(NG(V2)), then by
1.2.1.2, [K,L2] ≤ O2(L2) ≤ CG(V2), so as V2 ∈ Irr+(L2, V2), K centralizes V2 by
A.1.41. ¤

Lemma 11.1.4. CG(V3/V1) ≤M ≥ NG(V3) ∩NG(L1).

Proof. If L̄ is SL3(q) then V3 = V , so NG(V3) ≤ M = !M(LT ). Hence we

may take L̄ to be Sp4(q) or G2(q). Let ∆ := V L1
2 and H := NG(V3); note that

V1 is the intersection of the members of ∆, while V3 is their span. Then by 11.1.3,
NH(∆) acts on

〈L(U) : U ∈ ∆〉 = L,

where we recall L(U) = NL(U)∞. Therefore NH(∆) ≤ NG(L) = M . In particular
CG(V3/V1) ≤ M . Further ∆ is the set of subspaces CV3(S) for S ∈ Syl2(L1), so
NH(L1) ≤M . ¤

Lemma 11.1.5. Either

(1) NG(R1) ≤M , or
(2) V = VM , L is an SL3(q)-block or Sp4(4)-block, CT (L) = 1 and V1 =

Ω1(Z(R1)).

Proof. Assume NG(R1) 6≤M . Then as M = !M(LT ), there is no nontrivial
characteristic subgroup of R1 normal in LT . Therefore L, R1 is an MS-pair in the
language of Definition C.1.31. so L appears on the list of Theorem C.1.32. Therefore
L is an Sp4(4)-block or an SL3(q)-block, since the remaining possibilities in C.1.34
explicitly exclude the case where R1 is the unipotent radical of the point stabilizer.
In particular V = VM .

Set Q := O2(LT ) and Q1 := V CT (V ). If V = Q then Ω1(Z(R1)) = CV (R1) =
V1 and the lemma holds, so we may assume V < Q. By C.1.13, Φ(Q) ≤ CT (L) and
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m(Q/Q1) ≤ m(H1(L̄, Ṽ )), so H1(L̄, Ṽ ) 6= 0. Therefore by I.1.6, L is an Sp4(4)-
block and m(Q/Q1) ≤ 2, and by I.2.3.1, Q/CT (L) is a submodule of the dual of the
natural 5-dimensional module over F4 for Ω5(4) ∼= Sp4(4). Here we compute (e.g.
by restricting to the subgroup Sp4(2) ∼= S6) that CQ(R1) ≤ Q1 and CV (R1) = V1.
Therefore Z1 := Ω1(Z(R1)) = V1CZ1(L).

If CT (L) = 1 then Z1 = V1 by the previous paragraph, and hence (2) holds.
Thus we may assume that CT (L) 6= 1. Now [O2(LT ), X ] ≤ [O2(LT ), L] = V , so

Z1 := Ω1(Z(R1)) = ZX × ZC ,

where ZX := [V1, X ], ZC := CZ1(X) = CZ1(L), and ZC 6= 1 as CT (L) 6= 1. For
D ≤ G, let θ(D) be the subgroup generated by all elements of D whose order lies
in ∆, where ∆ is the set of divisors of 2n − 1 if L̄ is SL3(2

n) with n odd, and
∆ := {3} otherwise. Thus L = θ(M) by 11.0.4. By Theorem 4.2.13, M = !M(L),
so ZC is a TI-set under the action of Y := NG(R1), with YM := Y ∩M = NY (ZC):
for if y ∈ Y with 1 6= ZC ∩ Z

y
C , then 〈L,L

y〉 ≤ CG(ZC ∩ Z
y
C), so as M = !M(L),

Ly ≤ θ(CG(ZC ∩ Z
y
C)) ≤ θ(M) = L, and hence y ∈ NY (L) = YM . Notice YM < Y

as (1) fails. Set Y ∗ := Y/CY (Z1). Then X∗ is regular on Z#
X , and normal in

Y ∗M since L1R1 centralizes V1. Thus we have the hypotheses for a Goldschmidt-
O’Nan pair in the sense of Definition 14.1 in [GLS96]; so we may apply O’Nan’s
Lemma 14.2 in [GLS96, 14.2], with Y ∗, X∗, Z1 in the roles of “X , Y , V ”. Observe
conclusion (iv) of that result must hold—since in (i), Y normalizes ZC giving YM =
Y ; while in (ii) and (iii), T does not normalize ZC . In conclusion (iv) of 14.2 of
[GLS96, 14.2], q = 4, Z1

∼= E8, and Y ∗ is a Frobenius group of order 21. Next
CG(Z1) ≤ CG(ZC) ≤ M = !M(L), so L1 ∈ C(NG(Z1)) and hence Y acts on L1.
If L is an SL3(4)-block, the noncentral 2-chief factors for L1 are V Z(L1)/Z(L1)
and O2(L1)/V Z(L1), and both are natural modules. Therefore the induced action

of NG(L1) on Irr+(L1, O2(L1)/Z(L1)) is contained in ΓL2(4), so O
7′ (Y ) acts on

V Z(L1) and then on [V Z(L1), L1] = V . But then Y = O7′(Y )YM ≤ NG(V ) ≤M ,
contradicting YM < Y . Similarly if L is an Sp4(4)-block, then Y acts on [V, L1] =
V3, so Y ≤M by 11.1.4, for the same contradiction. This completes the proof. ¤

11.2. Weak-closure parameter values, and 〈VNG(V1)〉

Since V is an FF-module, we do not have the ideal situation for weak closure
described in subsection E.3.3; however, we will be able to establish at least some
restrictions on the weak closure parameters r(G, V ), w(G, V ), and n(H) discussed
in Definitions E.3.3, E.3.23, and E.1.6. Recall that the paramter n′(AutM (V )) is
defined in Definition E.3.37, and notice that n′(AutM (V )) = n > 1: for example
this follows from A.3.15.

Lemma 11.2.1. For H ∈ H∗(T,M), either

(1) n(H) ≤ n, or
(2) L̄ ∼= SL3(q), VM is the sum of two isomorphic natural modules for L/O2(L),

CV (H) = 1, L = [L, J(T )], and n(H) ≤ 2n. 2

Proof. Assume (1) fails, so that n(H) > n > 1. Then by E.2.2, O2(H/O2(H))
is of Lie type over F2m , for m := n(H) > n, and H ∩M is a Borel subgroup of

2Notice this essentially eliminates the shadow of Ω−8 (2
n), in which n(H) = 2n but V

�
M .

Our use of the quasithin hypothesis is via reference to the pushing up result Theorem 4.4.3.
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H . Let B be a Hall 2′-subgroup of H ∩M . If A := CB(V ) 6= 1, then by 4.4.13.1,
NG(A) 6≤M , contrary to Theorem 4.4.3 using Remark 4.4.2. Thus CB(V ) = 1.

Suppose that B normalizes V . Then B is faithful on V , giving Hypothesis
E.3.36—so that by E.3.38 we have n(H) ≤ n′(AutM (V )) = n, contrary to assump-
tion.

Hence we may assume that B does not normalize V , so in particular V < VM .
By 11.0.3.5, L̄ ∼= SL3(q), and then by 11.0.3.4, CV (B) = 1, so CV (H) = 1. In
particular as Z ∩V 6= 1, [Z,H ] 6= 1, so L = [L, J(T )] by 3.1.8.3. Now the argument
in the final paragraph of the proof of 11.0.3 and an appeal to B.5.1.1.ii shows VM is
the sum of two isomorphic natural modules for L̄ ∼= SL3(q). Thus CGL(VM )(L) ∼=
GL2(q), so if m > 2n then CB(VM ) 6= 1, contrary to paragraph one. Thus m ≤ 2n,
completing the verification of (2) and hence the proof. ¤

Recall MV = NM (V ) = NG(V ) and TL = T ∩ LO2(LT ) = T ∩ LCT (V ).

Lemma 11.2.2. Set m := 2n if L̄ ∼= G2(q) and m := n otherwise. Let U ≤ V ,
and set k := m(V/U). Then

(1) m(M̄V , V ) = m.

(2) Assume that O2′(CM (U)) ≤ CM (V ) and k < 2m. Then CG(U) ≤M , and

so O2′(CG(U)) ≤ CM (V ).
(3) Either r(G, V ) > m; or L̄ ∼= SL3(q), r(G, V ) = m, and CG(V2) 6≤ M . In

particular, s(G, V ) = m.
(4) Wj(T, V ) ≤ TL for j < m− 1, so V1 ≤ CV (Wj(T, V )).
(5) If L̄ ∼= G2(q) then W0(T, V ) ≤ CT (V ), so NG(W0(T, V )) ≤ M ; that is,

w(G, V ) > 0.
(6) If L̄ ∼= G2(q) then CG(C1(R1, V )) ≤M .

Proof. Part (1) is a standard fact about the natural module and its nonsplit
central extensions in I.2.3.1; cf. B.4.6 when L̄ ∼= G2(q).

Next we claim r(G, V ) ≥ m. By (1), m(M̄V , V ) ≥ m; so if m > 2, the claim
follows from Theorem E.6.3. Assume m ≤ 2; then m = 2 = n, and L̄ is SL3(4) or
Sp4(4). If L̄ is Sp4(4), assume further that CV (L) = 1. Then L is transitive on
non-zero vectors in the dual of V , and hence transitive on F2-hyperplanes U of V ,
so in particular each hyperplane is invariant under a Sylow 2-subgroup ofM . Hence
as m(M̄V , V ) = m ≥ n > 1 by (1), r(G, V ) > 1 by E.6.13. Thus we may assume
L/O2(L) ∼= Sp4(4), CV (L) 6= 1, and U is a hyperplane of V with CG(U) 6≤M . By
Theorem 4.2.13, M = !M(L), so CU (L) = 1; hence U is an F2-space complement

to CV (L), and so m(CV (L)) = 1. Now V is a quotient of the full covering V̂ of the

natural module Ṽ for L̄, which has the structure of a 5-dimensional orthogonal space
over F4. From this structure, L has two orbits on the F4-complements to CV̂ (L)

in V̂ , with representatives Ûε, ε = ±1, such that AutL̄(Ûε)
∼= Oε4(4). Moreover

each F2-hyperplane of V̂ supplementing CV̂ (L) contains such an F4-hyperplane,

so the images Uε of Ûε, for ε = ±1, are representatives for the orbits of L on
F2-complements to CV (L). In particular NLT (U) is maximal in LT but not of
index 2, and there is a subgroup Y of order 3 in NL(U) faithful on U . Next
Z ∩V 6≤ CV (L), so that Z ∩U 6= 1, and hence NG(U) ∈ He by E.6.6.4. By E.6.7.1,
CG(U) contains a χ-block invariant under Y = O2(Y ). Then as Y is faithful on U ,
while m3(Y CG(U)) ≤ 2 as M is an SQTK-group, m3(CG(U)) ≤ 1. Hence we have
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the hypotheses of E.6.14, and that lemma supplies a contradiction, completing the
proof of the claim that r(G, V ) ≥ m.

Assume the hypotheses of (2). By 11.0.3.4, CM (U) ≤ MV . Then CM (U) =
CM (V ) since if Y is of odd prime order in M̄V , then m(V/CV (Y )) ≥ 2m; notice we
use 11.0.4 and A.1.41 to conclude CM̄V

(L̄) = Z(L̄), and to exclude diagonal outer
automorphisms. Now (2) follows from E.6.12 and the fact that r(G, V ) ≥ m > 1.

We have shown r(G, V ) ≥ m. Further in case of equality, we may pick U with

k = m, CG(U) 6≤ M , and O2′(CM̄V
(U)) 6= 1 by (2). But then U = CV (i) for a

suitable root involution i ∈ L̄, and up to conjugacy either:

(i) L̄ ∼= Sp4(q) or G2(q) and V3 ≤ U , or
(ii) L̄ ∼= SL3(q) and U = V2.

Case (i) contradicts 11.1.4, so that (3) holds.
Let A ≤ V g ∩T with m(V g/A) =: j < m− 1. To prove (4), we must show that

A ≤ TL, so we may assume Ā 6= 1. Then for B ≤ A with m(V g/B) < m = s(G, V ),
Ā ∈ Am−j(M̄V , V ) ⊆ A2(M̄V , V ), using E.3.10. Hence (using B.4.6.9 in case L̄ is
G2(q)) Ā ≤ L̄, so Wj(T, V ) ≤ TL. Then as V1 = CV (TL), (4) holds.

Assume next that L̄ ∼= G2(q) and j := m(V g/A) = 0 or 1 with Ā 6= 1. By
B.4.6.3, there is Eq3 ∼= A1 E NL̄(V1) with CV (A1) ∈ V3. As L̄ is G2(q), m = 2n,
so as n ≥ 2, Ā ∈ Am−j(T̄ , V ) ⊆ An+1(T̄ , V ) by the previous paragraph. Hence
by B.4.6.9, Ā ≤ Ah1 for some h ∈ L, and if j = 0, then Ā = Ah1 . Further if j = 1
and A ≤ R1, then by B.4.6.12, Ā ≤ A1. Thus CV (W1(R1, V )) ≥ CV (A1) = V3, so
CG(C1(R1, V )) ≤ CG(V3) ≤M by 11.1.4. That is, (6) holds.

Now take j = 0. Thus Ā = Ah1 , so without loss Ā = A1. Let D ≤ A with D̄ a
long root group of L̄. Then m(V g/D) = m(A/D) = 2n = m < r(G, V ) by (3), so
CV (D) ≤ NG(A). Set

E := 〈CV (D) : D ≤ A, D̄ is a long root subgroup of L̄〉.

Then by B.4.6.3, m(V/E) = n and [E,A] = V3. We just saw ED := CV (D) ≤
NG(A), so E acts on A, and hence V3 = [E,A] ≤ A. Thus V3 ≤ V ∩ V g,
so as V is a TI-set under M by 11.0.3.4, g 6∈ M . Furthermore D = CA(ED),
so m(A/CA(ED)) = m(A/D) = 2n. Therefore by B.4.6, the image of ED in
Lg/O2(L

g) is contained in a long root group, and [ED , A] =: AD ∈ V
g
2 =: V2(A).

But as Ā = A1, also [ED, A] ∈ V2 =: V2(V ). So if we define ∆(V3, V ) := V2(V )∩V3,
we see

∆(V3, V ) = ∆(V3, V )g := ∆(V3, A). (∗)

Define

L(V3, V ) := 〈L(I) : I ∈ ∆(V3, V )〉.

By (*) and 11.1.3, L(V3, V ) = L(V3, V )g =: L(V3, A). But we check that L(V3, V ) =
L, so by Theorem 4.2.13,

M = !M(L(V3, V )) = !M(L(V3, A)) =Mg ,

contradicting g /∈M . Together with E.3.16.1, this establishes (5). ¤

Lemma 11.2.3. (1) If CV (L) = 1, then NG(V1) = CG(V1)NM (V1).
(2) If CG(V1) ≤M , then NG(V1) ≤M .

Proof. Set Y := NG(V1) and Y ∗ := Y/CG(V1). Now CT (V1) = TL and
T = 〈f〉TL where f induces a field automorphism on L̄, so T ∗ is cyclic. Hence by
Cyclic Sylow 2-Subgroups A.1.38, Y ∗ = O(Y ∗)T ∗.
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Assume CV (L) = 1. Then X∗ is regular on V #
1 , so by A.1.12, X∗ is normal

in any overgroup of odd order in GL(V1). Hence O(Y ∗) ≤ NGL(V1)(X
∗), where

the latter group consists of X∗ extended by Zn, and contains T ∗. Then X∗T ∗ E
O(Y ∗)T ∗ = Y ∗, so by a Frattini Argument, Y ∗ = X∗NY (T )

∗ ≤ NM (V1)
∗, since

NG(T ) ≤M by Theorem 3.3.1. Thus (1) holds.
Assume G1 := CG(V1) ≤M . In view of (1), we may also assume that CV (L) 6=

1. Hence NG(R1) ≤ M by 11.1.5. As G1 ≤ M , L1 E G1, so as T acts on L1,
L1 E NG(V1) by 1.2.1.3. Then as R1 ∈ Syl2(CG1(L1/O2(L1)), by a Frattini
Argument Y = CG1(L1/O2(L1))NY (R1) ≤M , so that (2) holds. ¤

Lemma 11.2.4. Assume 〈V NG(V1)〉 is abelian, and [V,W0(T, V )] 6= 1. If L̄ ∼=
SL3(q), assume further that CG(V2) ≤M . Then

(1) W0(T, V ) ≤ R2.
(2) If V g ≤ T with [V, V g ] 6= 1, then V 6≤ NG(V

g).
(3) r(G, V ) ≤ 2n.

Proof. By hypothesis w(G, V ) = 0, so by 11.2.2.5, L̄ is notG2(q) and s(G, V ) =
n by 11.2.2.3. Furthermore there is A := V g ≤ T with Ā 6= 1. As s(G, V ) = n,

Ā ∈ An(T̄ , V ) by E.3.10. Let Â := A/CA(L
g) and L̇g := Lg/CLg(A).

Our hypothesis that CG(V2) ≤ M when L̄ ∼= SL3(q), together with 11.2.2.3,
says that r(G, V ) > n. Thus if m(A/B) ≤ n, then CG(B) ≤ NG(A). Also by
hypothesis 〈V NG(V1)〉 is abelian, so g 6∈ NG(V1) as [V,A] 6= 1.

We next claim there is no W ≤ V with [W̃ , A] = Ṽ1 and m(A/CA(W )) = n =
m(W/CW (A)). For if so, W ≤ CG(CA(W )) ≤ NG(A) by the previous paragraph,

and then W induces transvections on the Fq-space Â with axis ĈA(W ). If L̄ is
SL3(q) then CV (L) = 1 and by hypothesis V1 = [A,W ], so V1 is a 1-dimensional
Fq-subspace of A. If L̄ is Sp4(q) then asm(W/CW (A)) = n, AutW (A) is a root sub-

group of L̇g inducing transvections on A, so [Â,W ] is a 1-dimensional Fq-subspace

of Â, and CA(L
g) ≤ [A,W ] by I.2.3.1.ii.b. Thus as [W̃ , A] = Ṽ1, [W,A] = V1.

Now in either case Lg is transitive on 1-subspaces of Â with representative V̂ g1 ,
so conjugating in NG(A) we may assume g ∈ NG(V1), contrary to the previous
paragraph.

Next assume that A 6≤ R2. Then AutA(V2) ∈ An(AutT (V2), V2), so as R2 cen-

tralizes V2 and Ṽ2 is the natural module for L2/O2(L2), AutA(Ṽ2) ∈ Syl2(AutL2(Ṽ2)).

Hence [Ṽ2, A] = Ṽ1, and m(A/CA(V2)) = n = m(V2/CV2(A)), contary to the claim
applied to V2 in the role of W . Thus (1) is established.

By (1), A ≤ R2, and hence [V,A] ≤ V2. Suppose that [Ṽ , A] < Ṽ2. Then

m([A, Ṽ ]) = n and Ā is contained in the root subgroup of a transvection in R̄2.
In particular, m(Ā) = m(A/CA(V )) = n and conjugating in L2, we may assume

[Ṽ , A] = Ṽ1, contrary to the claim applied to V in the role of W . Therefore

[Ṽ , A] = Ṽ2, so CV (A) = V2 and CṼ (A) = Ṽ2 since A ≤ R2.
We next reduce (3) to (2). Namely as A ≤ R2,

V = 〈CV (B) : m(A/B) ≤ 2n〉,

so if r(G, V ) > 2n then V ≤ NG(A), contrary to (2).
Thus it remains to prove (2), so we may assume that V ≤ NG(A).
Assume first that V2 = [A, V ]. Then as V ≤ NG(A), V2 = [A, V ] ≤ V ∩ A. By

symmetry between A and V , since Ṽ2 = CṼ (A), V̂2 = ĈA(V ) is an Lg-conjugate of
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V̂ g2 . Thus V2 is an L2-conjugate of V g2 , and hence we may assume g ∈ NG(V2). In
particular V g1 ≤ V2. Now by 11.1.3, g ∈ NG(L2), so g permutes the fixed points of

Sylow 2-groups of L2. Of course V L2
1 is the set of these subspaces, so conjugating

in L2, we may assume g ∈ NG(V1), contradicting an earlier observation. Thus

[A, V ] < V2, so as Ṽ2 = [A, Ṽ ], CV (L) 6= 1, and hence L̄ ∼= Sp4(q).
Now V2 = CV (A), so m(AutV (A)) = 2n, and by symmetry m(Ā) = 2n. If

some ā ∈ Ā induces an Fq-transvection on Ṽ , then without loss [V3, a] = 1. Hence

V̇3 is the root group of a transvection on Â, and then by symmetry Ā contains the
root group centralizing V3 and [Ṽ3, A] = Ṽ1. Then m(A/CA(V3)) = n, contrary to
the claim applied to V3 in the role of W . Therefore Ā contains no transvections.

Let R̄l and R̄k be root groups of transvections contained in R̄2, S̄ := R̄lR̄k,
and ĀS = Ā ∩ S̄. Then m(S̄/ĀS) ≤ m(R̄2/Ā) = n, so as R̄l ∩ Ā = 1, we conclude
S̄ = R̄l × ĀS and m(ĀS) = n. Now R̄k ≤ Ȳ ≤ CL̄(R̄l) with Ȳ ∼= L2(q), and

setting VY := [V, Y ], ṼY is a nondegenerate 2-dimensional Fq-subspace of Ṽ with
VY ≤ CV (R̄l). Indeed taking R̄k E T̄ , V1 = [VY , R̄k], so V1 = [VY , S̄] = [VY , AS ];

hence as Ṽ2 = [V,A], V2 = [V,A]. This contradicts an earlier reduction, and
completes the proof. ¤

Lemma 11.2.5. Let H ∈ H(T ) with H 6≤ M . If L̄ ∼= SL3(q), assume further
CG(V2) ≤M . Then either

(1) W0(T, V ) 6≤ O2(H), or
(2) 〈V NG(V1)〉 is nonabelian.

Proof. We observe that Hypothesis F.7.6 is satisfied with LT , H in the roles
of “G1, G2”. Adopt the notation of section F.7, and assume W0(T, V ) ≤ O2(H).
Then the parameter b of Definition F.7.8 is even by F.7.9.4. Thus by F.7.11.2,
there exists g ∈ G with 1 6= [V, V g ] ≤ V ∩ V g , so 〈V NG(V1)〉 is nonabelian in view
of 11.2.4.2, and hence (2) holds. ¤

11.3. Eliminating the shadow of L4(q)

Notice that when L̄ ∼= SL3(q), the condition CG(V1) ≤ M distinguishes L4(q)
from the other shadows. In this section, we eliminate that troublesome configura-
tion, and also (when we show CV (L) = 1) eliminate the shadow of Sp6(q) in the
case L̄ ∼= Sp4(q).

Throughout this section we assume:

Hypothesis 11.3.1. (1) There exists H ∈ H∗(T,M) with [Z,H ] 6= 1.
(2) If L̄ ∼= SL3(q) then CG(V1) ≤M .

The object of this section is to prove:

Proposition 11.3.2. Assume Hypothesis 11.3.1. Then

(1) L̄ ∼= Sp4(q).
(2) CG(V1) 6≤M .
(3) CV (L) = 1.
(4) If W0(T, V ) ≤ O2(H), then 〈V CG(V1)〉 is nonabelian.

During this section we assume the pair G, L is a counterexample to Proposition
11.3.2. We begin a series of reductions.

Lemma 11.3.3. W0(T, V ) 6≤ O2(H).
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Proof. Assume that W0(T, V ) ≤ O2(H). We will show that 11.3.2 holds,
contrary to our choice of G as a counterexample. When L̄ ∼= SL3(q), we have
CG(V2) ≤ CG(V1) ≤M by Hypothesis 11.3.1.2, so we may apply 11.2.5 to conclude
that 〈V NG(V1)〉 is nonabelian. As V is a TI-set under M by 11.0.3.4, this forces
NG(V1) 6≤ M , so conclusion (2) of 11.3.2 follows from 11.2.3.2. Next CV (L) ≤
V1 E T , so if CV (L) 6= 1 then CV1(LT ) 6= 1, and hence CG(V1) ≤ CG(CV1(LT )) ≤
M = !M(LT ), whereas we just saw 11.3.2.2 holds; this contradiction establishes
conclusion (3) of 11.3.2. Hence NG(V1) = CG(V1)NM (V1) by 11.2.3.1, so 〈V CG(V1)〉
is nonabelian as NM (V1) ≤MV , establishing conclusion (4) of 11.3.2.

By Hypothesis 11.3.1.2 and as 11.3.2.2 holds, L is not SL3(q). Since H 6≤
M = !M(NG(O2(LT )), while H normalizes W0(T, V ) by E.3.15 since W0(T, V ) ≤
O2(H), L̄ is not G2(q) by 11.2.2.5. Thus L̄ ∼= Sp4(q), so that conclusion (1) of
11.3.2 holds. But now the choice of G as a counterexample is contradicted. ¤

Set W0 :=W (T, V ). By 11.3.3, W0 6≤ O2(H), so part (4) of Proposition 11.3.2
is vacously satisfied. Thus we only need to establish parts (1)–(3).

Let VH := 〈ZH〉, H∗ := H/CH(VH), m := s(G, V ), and k := n(H). By B.2.14,
VH ∈ R2(H). As W0 6≤ O2(H) while CH(VH ) is 2-closed by B.6.8, there exists
A := V g ≤ T with A∗ 6= 1.

Lemma 11.3.4. (1) A∗ ∈ Am(H∗, VH).
(2) L̄ is SL3(q) or Sp4(q).
(3) Either k = n, or k > n and conclusion (2) of 11.2.1 holds.
(4) NG(V1) ≤MV .

Proof. Part (1) follows from E.3.6. By E.3.20, k ≥ m. By 11.2.2, m ≥ n, and
m = 2n if L̄ is G2(2

n). Finally by 11.2.1, either k ≤ n, or conclusion (2) of 11.2.1
holds. Thus (2) and (3) hold.

Suppose CG(V1) 6≤ M . Then conclusion (2) of Proposition 11.3.2 holds, and
hence (as we saw during the proof of 11.3.3) also conclusion (3) of 11.3.2 holds.
Then by Hypothesis 11.3.1.2, L̄ is not SL3(q), so that conclusion (1) of Proposition
11.3.2 holds, contrary to our choice of G as a counterexample. Thus CG(V1) ≤M ,
and hence NG(V1) ≤MV by 11.2.3.2 and 11.0.3.4. This establishes conclusion (4),
and completes the proof. ¤

Lemma 11.3.5. (1) O2(H) = 〈KH〉, with K ∈ C(H) and K/O2(K) ∼= L2(2
k).

(2) If k > n assume k = 2n. Then K = O2(H).

Proof. By 11.3.4.3, k ≥ n > 1. Therefore by E.2.2, O2(H) = 〈KH〉, for
K ∈ C(H) described in E.2.2; in particular K/O2(K) is of Lie type over F2k .
As [Z,H ] 6= 1 by Hypothesis 11.3.1.1, K ∈ Lf (G, T ), so K ≤ K+ ∈ L∗f (G, T )
by 1.2.9.2. Now the possibilities for the embedding of K in K+ are described in
the list of A.3.12. In particular if K/O2(K) is not L2(2

k), then we conclude by
comparing that list with those of Theorems B.5.1 and B.5.6, that K+T has no
FF-module—contrary to Theorem 7.0.1.

Thus (1) is established, so we assume the hypotheses of (2) with K < O2(H).
By 11.3.4.3 and the hypotheses of (2), k = n or 2n.

Let D be a Hall 2′-subgroup of H ∩M , p a prime divisor of q − 1, and Dp :=
Ω1(Op(D)). As k = n or 2n, Dp 6= 1. AsK < O2(H), D = D1×Dt

1 forD1 := D∩K
and t ∈ NT (D) −NT (K). Thus [Dp, t] 6= 1 6= CDp(t).
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By 11.0.4, Dp ≤ L; so as DpT = TDp, D̄p is contained in a Cartan subgroup of
L̄. As [Dp, t] 6= 1, t induces a field automorphism on L̄. But then either CDp(t) = 1
or t centralizes Dp, contrary to the previous paragraph. This completes the proof
of (2). ¤

Lemma 11.3.6. k = n.

Proof. Assume k > n and let M̂ := M/CM (VM ) and CT (VM ) := QM . By
11.3.4.3, conclusion (2) of 11.2.1 holds, so L̄ ∼= SL3(q), VM is the sum of two

conjugates of V , k ≤ 2n, and m(M̂, VM ) = 2n. We first observe that the weak
closure hypothesis E.6.1 is satisfied with VM in the role of “V ”; in particular LT
normalizes CT (V ) ∩ CM (VM ) = QM , so M = !M(NM (QM )). As m(M̂, VM ) =

2n > 2, m(M̂, VM ) = 2n = s(G, VM ) by Theorem E.6.3.

Suppose first that B := V yM ≤ T for some y ∈ G with B̂ 6= 1. Then m(B̂) ≤

m2(M̂) = m2(L̂) = 2n = s(G, VM ). On the other hand, B̂ ∈ A2n(T̂ , VM ) by E.3.10,

som(B̂) = 2n. Now assume further that VM ≤ NG(B). Then [VM , B] ≤ VM ∩B, so
by symmetry between B and VM , m(VM/CVM (B)) = 2n. Thus from the structure

of the natural module V for L̄ ∼= SL3(q), B̂ = R̂2 and V2 = CV (B). Now for
v ∈ V − V2, [v,B] = [V,B], so by the symmetry between VM and B, v induces a
root element of My/CMy (B), and V induces the corresponding root group. Thus
[V, V y] = V1, and by symmetry, [V, V y] = V y1 ; then y ∈ NG(V1) ≤MV by 11.3.4.4,
contrary to [V, V y] = V1. Thus we have shown that if [VM , V

y
M ] ≤ VM ∩ V yM , then

[VM , V
y
M ] = 1.

We next reproduce the argument establishing 11.2.5: Namely we now have
Hypothesis F.7.6 with NM (QM ), H , VM in the roles of “G1, G2, V ”; for exam-
ple M = CM (VM )NM (QM ) by a Frattini Argument, so VM ∈ R2(NM (QM )) by
11.0.3.1. If W0(VM , T ) ≤ O2(H), then as in 11.2.5, the parameter bM for the graph
as in Definition F.7.8 is even using F.7.9.4, so 1 6= [VM , V

g
M ] ≤ VM ∩ V gM for some

g ∈ G by F.7.11.2, contrary to the previous paragraph.
Thus there is B := V gM ≤ T with B 6≤ O2(H). By E.3.20, k ≥ s(G, VM ) = 2n,

so as k ≤ 2n, k = 2n. Therefore O2(H) = K ∈ C(H) with K/O2(K) ∼= L2(2
2n) by

11.3.5.
Next NGL(VM )(L̄) is an extension of GL3(q)×GL2(q) by field automorphisms.

Using 11.0.4, we conclude that NM̄ (L̄) is an extension of L̄ by field automorphisms.
Therefore for each U ≤ VM with m(VM/U) = 2n, CAutM (VM )(U) is a 2-group. Also
m2(AutM (VM )) ≤ 3n.

We claim r(G, VM ) > 2n. For assume U ≤ VM with m(VM/U) = 2n and
CG(U) 6≤ M . Then 1 6= V ∩ U , so U contains a 2-central involution. By the

previous paragraph O2(CM (U)) ≤ CM (VM ). Thus O2′(CM (U)) 6≤ CM (VM ) by
E.6.12, so conjugating in L if necessary, V1 ≤ U . But then CG(U) ≤ CG(V1) ≤M ,
so the claim is established.

As r(G, VM ) > 2n while m(B̂) = 2n, VH ≤ CG(CB(VH )) ≤ NG(B). By
E.3.6, B∗ ∈ Ak(H∗, VH), so as K∗ ∼= L2(2

2n), B∗ ∈ Syl2(K
∗) is of rank 2n

and CVH (B
∗) = CVH (b

∗) for all b∗ ∈ B∗#. Thus by G.1.6, VH/CVH (K) is a
direct sum of s ≥ 1 copies of the natural module for K∗. Since VH normalizes
B, m(AutVH (B)) = ks = 2ns, so as m2(AutM (VM )) ≤ 3n by an earlier remark,
we conclude that s = 1 and VH/CVH (K) is the natural module for K∗. Now
m(AutVH (B)) = k = m(B/CB(VH)), so as B is the sum of two isomorphic natural
modules for SL3(q), VH induces Rg2 on B, m([B, VH ]) = 4n, and V g2 ≤ [B, VH ].
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As m([B, VH ]) = 4n, VH is the 6n-dimensional maximal central extension of the
natural module forK∗ appearing in I.2.3.1. Then from the structure of that module
as orthogonal 3-space over F2n , [VH , a] ∩ [VH , b] = 1 for a∗ 6= b∗ in B∗; whereas
from the action of Rg2 on V g, for elements a, b ∈ V g in distinct cosets of V g2 , we
[a, VH ] = [a,Rg2] = V2 = [b, Rg2] = [b, VH ]. This contradiction completes the proof
of the lemma. ¤

We now obtain successive restrictions forcing various 2-locals to closely resemble
those in the shadow L4(q).

Set K := O2(H), let D be a Hall 2′-subgroup of H ∩M , and further set D0 :=
O3(D)Ω1(O3(D)). Recall X is a Cartan subgroup of L acting on TL.

Lemma 11.3.7. (1) K ∈ C(H) and K∗ ∼= K/O2(K) ∼= L2(2
n).

(2) D0 ≤ L.
(3) CZ(L) = CV (L) = 1 = CVH (K).
(4) V = A and V ∗ ∈ Syl2(K∗).
(5) V1 = [V1, D0] and we may take D0 ≤ X.

Proof. Part (1) follows from 11.3.6 and 11.3.5.2, and then (2) follows from
11.0.4. Next L̄ ∼= SL3(q) or Sp4(q) by 11.3.4.2, so that m = s(G, V ) = n by 11.2.2.
Thus A∗ ∈ An(H∗, VH) by 11.3.4.1, so it follows that A∗ ∈ Syl2(K∗) is of rank n
and CVH (A

∗) = CVH (a
∗) for all a∗ ∈ A∗#. Then by G.1.6, VH/CVH (K) is a direct

sum of s copies of the natural module for K∗.
Let VL := [〈ZL〉, L] = [Z,L], so that V ≤ 〈ZL〉 = VLCZ(L) using B.2.14.

Similarly VH = [VH ,K]CZ(K). As [Z,H ] 6= 1 by Hypothesis 11.3.1.1, L = [L, J(T )]

by Theorem 3.1.8.3; therefore by Theorem B.5.1.1, either VL = V and Ṽ is the
natural module for L̄, or L̄ ∼= SL3(q) and VL is the sum of two isomorphic natural
modules for L̄. As D0 ≤ L and TD0 = D0T , we may take D0 ≤ X , and either
CZ(D0) = CZ(L), or conjugating in NL(V2) if necessary, we may assume [V1, D0] =
1 = [Z,D0]. On the other hand as VH/CVH (K) is a sum of natural modules for
K∗ and VH = [VH ,K]CZ(K), CZ(D0) = CZ(K). In particular, [Z,D0] 6= 1, so
CZ(D0) = CZ(L). Then as K 6≤ M = !M(LT ), 1 = CZ(K) = CZ(D0) = CZ(L),
so (3) follows, 3 [VH ,K] = VH , V1 = [V1 ∩ Z,D0] ≤ VH , and the proof of (5) is
complete. By 11.2.2.4, V1 ≤ CVH (W0) ≤ CVH (A).

Next CG(V2) ≤ CG(V1) ≤ M using 11.3.4.4. Thus as m(A/CA(VH )) = n,
11.2.2.3 says VH ≤ CG(CA(VH)) ≤ NG(A). Now VH centralizes CA(VH) of corank
n in A, so VH/CVH (A) is contained in the group Λ of all Fq-transvections on A
with axis CA(VH ). From the action of A∗ on VH , CVH (A) is of rank sn, so as
m2(Λ) = 2n, n for L̄ ∼= SL3(q), Sp4(q), conjugating in Lg if necessary, either:

(i) s = 1, m(VH/CVH (A)) = n, and [A, VH ] = V g1 , or
(ii) s = 2, L̄ ∼= SL3(q), AutVH (A) = AutRg2 (A), and V

g
2 = [A, VH ].

In case (i), V g1 = [A, VH ] = CVH (A), so V
g
1 = V1 using our earlier observation that

V1 ≤ CVH (A); hence A = V by 11.3.4.4. Similarly in case (ii), from the action of Rg2
on A, for each u ∈ VH − V

g
2 , [u,A] = V gx1 for some x ∈ Lg2 ≤ NG(A). Further VH

is the sum of two natural modules for K∗ and V1 = [V1, D0] ≤ CVH (A), so V1 is a
1-dimensional Fq-subspace of CVH (A). Therefore V1 = [A, u] for some u ∈ VH−V

g
2 ,

so again V1 = V gx1 for some x ∈ NG(A), and hence we may assume V1 = V g1 , so
A = V by 11.3.4.4. This completes the proof of (4). ¤

3So we have eliminated the shadow of Sp6(q) where L̄ ∼= Sp4(q) and CV (L) 6= 1.
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By 11.3.7.4, V = A 6≤ O2(H). Therefore we have Hypothesis E.2.8 with H , T ,
H ∩M in the roles of “H , T , M”. Let h ∈ H −M and set I := 〈V, V h〉. By 11.3.7,
K∗ ∼= L2(2

n) with V ∗ ∈ Syl2(K
∗), so I∗ = K∗. Thus I is in the set I(H,T, V )

defined in Definition E.2.4. Therefore by E.2.9.1, O2(H) acts on I , so K = O2(I),
and I E H as T acts on V and H = KT .

Next by E.2.11, the hypotheses of E.2.10 are satisfied with I , M ∩ I , T ∩ I , V
in the roles of “H , M , T , V ”. Notice also that B := CV (VH ) = V ∩ O2(H) plays
the role of “B” in E.2.10, and by that result P := BBh is a normal 2-subgroup of
I . Since V ∩V h ≤ Z(I) and K = O2(I), V ∩V h = 1 since CVH (K) = 1 by 11.3.7.3.
Therefore P = B×Bh and B = CP (V

∗) by E.2.10.2. By E.2.10.7, P = O2(I), and
by G.1.7, P is a sum of j natural modules for K/O2(K) ∼= L2(q), so P = [P,K]
and hence P = O2(K). Therefore Bh acts faithfully on V , with B = CV (B

h) of
corank n in V and m(Bh) = m(B) = jn. Thus Bh is a group of transvections with
axis B, so L̄ ∼= SL3(q), j = 2, and B is T -invariant of rank 2n; hence B = V2 and
P̄ = B̄h = R̄2. Thus P is of rank 4n with P ∩ V = V2. As V2 ∩ Z ≤ V1, and
V1 = [V1, D0] by 11.3.7.5, VK := 〈(Z ∩P )H 〉 = 〈V H1 〉. As P is a sum of two natural
modules for K∗ ∼= L2(2

n), VK is a natural submodule of P of rank 2n and

[O2(LT ), VK ] ≤ O2(LT ) ∩ VK = V1.

Therefore L = [L, VK ] centralizes O2(LT )/V , so L is an SL3(q)-block. Thus L/V is
a covering group of SL3(q), so from the list of Schur multipliers in I.1.3, either V =
O2(L) = CL(V ), or q = 4 and O2(L/V ) 6= 1. However in the latter case (R2∩L)/V
does not split over O2(L)/V by I.2.2.3b, whereas P̄ = R̄2 and PV/V ∼= P/V2 ∼= Eq2
is T -invariant. Thus V = CL(V ) = O2(L), and then as P = J(PV ) ∼= Eq4 ,
P = O2(L2).

Recall X is a Cartan subgroup of L acting on TL and we may take D0 ≤ X
by 11.3.7.5. Notice that in the shadow L4(q), the Cartan group D of H ∩M is not
contained in the derived subgroup L of M , and DX is a group of rank 3 for primes
dividing q− 1. Indeed, D0 6≤ L, so it remains to show that the unnatural inclusion
D0 ≤ L leads to a contradiction. This is accomplished by studying the action of X
on P and V .

Assume n is even. Then the subgroup D3 of D0 of order 3 is contained in X .
However CP (D3) = 1 = CV (D3) as P is the sum of natural modules for K∗ and
V ∗ = [V ∗, D3], whereas CX (L/V ) ∈ Syl3(O2,Z(L)) is the only subgroup of X of
order 3 having no fixed points on V , and it centralizes PV/V .

Thus n is odd, so D = D0 ≤ X and T = TL. Now CT (L) = 1 by 11.3.7,
and H1(L/V, V ) = 0 by I.1.6, so that V = O2(LT ) by C.1.13.b. Thus T = TL ∈

Syl2(L). Set GP := NG(P ), ĜP := GP /P , and Y := 〈L2, I〉. We’ve seen that

P = O2(L2) = O2(K) with L̂2
∼= K̂ ∼= L2(q) and T̂ ∼= Eq2 . As K ∈ L(GP , T ),

K ≤ K+ ∈ C(GP ) by 1.2.4, and if K < K+, then the embedding of K in K+ is

described in A.3.12. As K̂ ∼= L2(2
n) with n odd and T̂ is abelian, we conclude

K = K+ ∈ C(GP ). Similarly L2 ∈ C(GP ). Next L̂2 6= K̂ since K 6≤ M , so

Ŷ = K̂ × L̂2
∼= Ω+

4 (q). As |T̂ | = q2 = |Ŷ |2, Y = O2′(GP ). As P is the sum of two

copies of the natural module for K̂, and V and P/V are natural modules for L̂2,

P is the orthogonal module for Ŷ . As X ≤ NG(P ) and mp(NG(P )) ≤ 2 for each
prime divisor p of q − 1, X is a Cartan subgroup of Y .

We next show:
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Lemma 11.3.8. There exist Fq-structures on P and V , preserved by Y and L,
respectively, which agree on P ∩ V = V2.

Proof. Let

EV := EndFqL(V ), EP∩V := EndFqL2X(P ∩ V ), and EP := EndFqY (P ).

Then EW ∼= Fq for each W ∈ {P, V, P ∩ V }. In particular we may regard EP∩V as
the restriction of EW to P ∩ V for W := P, V , so the lemma holds. ¤

Let X1 := CX (L1/O2(L1)) and X2 := X ∩L2. Let W1 be an X-complement to
V ∩P in V , and W2 an X-complement to P ∩R1 in P . Finally let W3 := [W1,W2].
Then W3 is X-invariant, and 〈W1,W2〉 = W1W2W3 is a special group of order q3

with center W3. By 11.3.8, the Fq-structures on P and V restrict to X-invariant
Fq-structures on Wi, which agree on W3. Thus we may regard Wi as an FqX-
module.

Lemma 11.3.9. The map c : W1 ×W2 → W3 defined by c(w,w′) := [w,w′] is
X-invariant and Fq-bilinear.

Proof. Since X acts on Wi, c is X-invariant and F2-bilinear. Pick generators
wi for Wi as an Fq-space with [w1, w2] = w3. Using the Fq-structure on P , we may
write X2 = {x(λ) : λ ∈ F#

q } so that x(λ)w2 = λw2. Next [V,X2] ≤ [V, L2] ≤ V2 =
P ∩ V from the action of L on V , so as W1 is X-invariant, [W1, X2] = 1. As W1

centralizes X2, it acts on the λ-eigenspace of x(λ) on P ; then as W2 is contained
in that eigenspace, so is W3 = [W1,W2]—and hence x(λ)w3 = λw3. Thus

λw3 = x(λ)w3 = [x(λ)w1, x(λ)w2] = [w1, λw2],

and hence c is linear in its second variable. Similarly X1 centralizes W2, since W2

covers a Sylow 2-group of L1/O2(L1), so W1W3 is an eigenspace for each member

of X#
1 on V , and the same argument shows c is linear in its first variable. ¤

We are now in a position to obtain a contradiction, and hence finally eliminate
the shadow of L4(q). Let y be a generator for X ∩ K = D. Then y has two

eigenspaces on P : P ∩ V = V2 and 〈WL2
2 〉. Let λ be the eigenvalue on the second

space; then as y is of determinant 1 on P , y has eigenvalue λ−1 on P ∩V . Similarly
y is of determinant 1 on V , so the eigenvalue for y on W1 is λ2. Then by 11.3.9,
the eigenvalue for y on W3 is the product λ2λ = λ3 of its eigenvalues on W1 and
W2. This is impossible, as W3 = [W1,W2] ≤ [V, P ] = P ∩ V and the eigenvalue for
y on P ∩ V is λ−1. This contradiction completes the proof of Proposition 11.3.2.

11.4. Eliminating the remaining shadows

Recall from earlier discussion that the shadows other than Sp6(q) and Ω+
8 (q).2

with L̄ ∼= SL3(q), have been eliminated. In these remaining shadows, the central-
izer of a 2-central involution is not quasithin, and we essentially eliminate those
configurations in 11.4.4 in this section.

Lemma 11.4.1. (1) CV (L) = 1. In particular, L is transitive on V #.
(2) If L1 < K ∈ C(CG(V1), then K is described in case (1) or (2) of 11.1.2.
(3) R1 ≤ O∞(KT ), and [R1, X ] ≤ O2(KT ).
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Proof. Let H ∈ H∗(T,M). If CV (L) 6= 1, then L̄ is not SL3(q) by 11.0.3.3,
and [Z,H ] 6= 1 asH 6≤M = !M(LT ), contrary to 11.3.2.3. Then 11.0.2.2 completes
the proof of (1).

Suppose 11.1.2.3 holds. Observe I satisfies the hypotheses for L, so applying
11.0.2.2 and (1) to VI ∈ Irr+(I, R2(IT )) in the Fundamental Setup (3.2.1), we
conclude VI is the natural module for I∗ := I/CI(VI ) = I/O2(I) ∼= Sp4(4). From
the proof of 11.1.2.3, L2 stabilizes a line of VI . In 11.1.2.3, we also have L/O2(L) ∼=
L̄ ∼= G2(4). By 11.2.2.5, W0 := W0(T, V ) ≤ CT (V ), and hence W0 ≤ CL2T (V2) =
O2(L2T ); furthermore NG(W0) ≤ M , so as I 6≤ M , W0 6≤ O2(IT ) = CIT (VI ).
Thus 1 6=W ∗

0 ≤ O2(L
∗
2T
∗) = O2(L

∗
2) = R∗2, and R

∗
2 is of rank 6. Let A := V g ≤ T

with A∗ 6= 1. Let R∗ be a root subgroup of O2(L
∗
2), and AR the preimage in A of

A∗ ∩ R∗. Then m(A∗/A∗R) ≤ m(O2(L
∗
2)/R

∗) = 4. By 11.2.2.3 r(G, V ) > 2n = 4,
so CG(AR) ≤ NG(A). Hence from the action of R∗2 on VI ,

VI = 〈CVI (AR) : R
∗ ≤ O2(L

∗
2) 〉 ≤ NG(A).

On the other hand by 11.2.2.3, s(G, V ) = 4, som(A∗) ≥ 4 by E.3.10. It follows that
[VI , A] = CVI (A) is of rank 4 som(VI/CVI (A)) = 4; thus as A is the natural module
for L̄g, AutVI (A) is contained in a long root group of AutLg(A) ∼= G2(4) of rank
2 (e.g. see (6) and (13) of B.4.6), forcing m(VI/CVI (A)) ≤ 2. This contradiction
establishes (2).

If L1 = K, then (3) is immediate. Otherwise by (2), K is described in case
(1) or (2) of 11.1.2. In those cases, observe that L1 has no nontrivial 2-signalizers
in Aut(K/O∞(K)), so that R1 ≤ O∞(KT ). Since O2,F (KT ) is of index 1 or 2 in
O∞(KT ), [R1, X ] ≤ O2(KT ), so that (3) holds in these cases also. ¤

We can now return to our study of the embedding of L1 in CG(V0) for 1 6= V0 ≤
V1, begun in the initial section of the chapter. For 1 6= V0 ≤ V1 with T ≤ NG(V0),

define K(V, V0) := 〈L
NG(V0)
1 〉; and for z ∈ V #

1 , let K(V, z) = K(V, 〈z〉).

Lemma 11.4.2. Let z ∈ CV (T )#. Then K(V, z) = K(V, V1).

Proof. Let K := K(V, z) and K1 := K(V, V1). By 11.1.1, K ∈ C(NG(〈z〉))
and K1 ∈ C(NG(V1)). Then K1 ≤ CG(V1) ≤ CG(z), so K1 = 〈L

K1
1 〉 ≤ K.

We assume that K1 < K and derive a contradiction. As K1 E CG(V1),
K 6≤ CG(V1). Further L1 < K, so K is described in case (2) or (3) of 11.1.1. As
K ∈ L(G, T ), K ≤ K+ ∈ L∗(G, T ).

Assume first that K < K+. Then the embedding of K in K+ is described
in A.3.12. The pairs K/O2(K), K+/O2(K+) appearing there with K described in
case (2) or (3) of 11.1.1 (cf. also A.3.13) are: L3(4),M23; A7,M23; L2(p), (S)L

ε
3(p),

for a prime p ≥ 11; SL2(p)/Ep2 , (S)L3(p) for a prime p ≥ 5; M22, M23; M̂22, J4;
and SL2(5)/P0, SL2(5)/P1, where P0 and P1 are suitable nilpotent groups of odd
order. Moreover as K < K+, [z,K+] 6= 1, so in the last case [z,O∞(K+)] 6= 1,
contrary to 3.2.14. Therefore K+/O2(K+) is quasisimple. Further as [z,K+] 6= 1,
K+ ∈ L∗f (G, T ). But this contradicts Theorem 7.0.1, since K+ has no FF-module
by Theorem B.4.2.

Therefore K = K+ ∈ L∗(G, T ). As K1 < K, [V1,K] 6= 1. But by A.1.6,
O2(KT ) ≤ R1, and V1 ≤ Z(R1), so

V1 ≤ Ω1(Z(O2(KT ))) =: VK .

In particular [VK ,K] 6= 1, so K ∈ L∗f (G, T ) by A.4.9.
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Suppose first that K/O2(K) is not quasisimple. Then O∞(K) centralizes
R2(KT ) by 3.2.14, and we conclude from A.4.11 that O2,F (K) centralizes VK and
hence also V1. By 11.1.1, either K = O2,F (K)L1; or K/O2,F (K) ∼= SL2(p) for a
prime p with p ≡ ±1 mod 5 and p ≡ ±3 mod 8. However in the former case, K
centralizes V1, contrary to an earlier remark, so the latter case holds.

By 11.4.1.3, R1 ≤ O∞(KR1). Thus R1 ∈ Syl2(O∞(KR1)), so by a Frattini
Argument, K = O2,F (K)KJ , where KJ := NK(R1)

∞. Therefore KJ/O2(KJ) ∼=
K/O∞(K) ∼= L2(p). As O2,F (K) centralizes V1 but K does not, KJ 6≤ CG(V1).

First XT ≤ NG(R1) =: N . We claim that XT normalizes KJ . By 1.2.4, KJ ≤
K0 ∈ C(N). The claim is immediate if KJ = K0, so we may assume that KJ < K0,
and hence the embedding is described in A.3.12. As R1 is Sylow in O∞(KR1)
and normal in N , K0/O2(K0) is not SL2(p)/Ep2 , so K0/O2(K0) is quasisimple.
Hence as p ≥ 11 since p ≡ ±1 mod 5, we conclude that K0/O2(K0) ∼= L2(p

2).
But then T does not act on K1, establishing the claim. Therefore as KJ ≤ CG(z)
while X ≤ NN(KJ) by the claim, V1 = [z,X ] ≤ CG(KJ), contrary to the previous
paragraph.

Therefore K/O2(K) is quasisimple, so VK ∈ R2(KT ) and O2(KT ) = CT (VK)
by 1.4.1.4. Set K∗ := K/CK(VK). We saw O2(KT ) ≤ R1. Thus if J(R1) ≤
O2(KT ) then J(R1) = J(O2(KT )). Hence KT ≤ NG(J(R1)), so NG(J(R1)) ≤
NG(K) by 1.2.7.3. Thus X ≤ NG(K), so asK ≤ CG(z) and CV (L) = 1 by 11.4.1.1,
V1 = [z,X ] ≤ CG(K), for our usual contradiction.

Therefore J(R1)
∗ 6= 1, so we may apply B.2.10.2 with K, T , R1 in the roles of

“L, T , R” to conclude that VK is an FF-module forK∗T ∗, withK∗ = [K∗, J(R1)
∗] =

J(K∗T ∗, VK). Then Theorems B.5.1 and B.4.2 reduce the list in 11.1.1 to those
cases where either K∗ is SL3(q), Sp4(q), or G2(q), or q = 4 and K∗ is A7.

Assume K∗ is not A7, and let Y be a Hall 2′-subgroup of NK(R1). Then Y
centralizes z, and induces a group of order q − 1 on Z1 := Ω1(Z(R1)) containing
V1, so as V1 has order q, we conclude V1 < Z1. Hence Y ≤ NG(R1) ≤M by 11.1.5.
Then by 11.0.4, Y1 := O3(Y )Ω1(O3(Y )) ≤ L. As Y ∗ has p-rank 2 for primes p
dividing q − 1, so does Ȳ . Therefore as V is the natural module for L/O2(L).
z ∈ CV1(Y1) = CV (L), contrary to 11.4.1.1.

Thus K∗ is A7. As L∗1 centralizes z ∈ VK − CVK (K), [VK ,K] is not a 4-
dimensional irreducible for K∗. Therefore by B.4.2.5, [VK ,K] is the natural 6-
dimensional module, J(R1)

∗ is generated by a transposition, and q(K∗T ∗, VK) = 1,
so m2(T ) = m2(R1) by B.2.4.3. Thus conjugating in K, there is A ∈ A(T ) such
that A∗ induces a field automorphism on L∗1. However this is impossible since
J(T ) ≤ LCT (L̄) for the natural modules in 11.0.2.2 by (2)–(4) of B.4.2. This
contradiction finally shows that K1 = K, completing the proof. ¤

In the remainder of the section, fix z ∈ CV (T )#.

Set Gz := CG(z), Mz := CM (z), and K := K(V, V1). Then K = K(V, z) E Gz
by 11.4.2. By 11.4.1.2, either K = L1, or K is described in case (1) or (2) of 11.1.2.
Furthermore if Gz ≤M , then as z ∈ V1, CG(V1) ≤ Gz ≤M , so for H ∈ H∗(T,M),
[Z,H ] ≥ [z,H ] 6= 1; thus Hypothesis 11.3.1 holds, so CG(V1) 6≤ M by 11.3.2.2, a
contradiction. Therefore

Gz 6≤M.

Define G1 := NG(V1) (as opposed to CG(V1) in earlier sections), and M1 :=
NM (V1). Recall that X ≤ G1.
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Lemma 11.4.3. (1) Gz = KCGz(K/O2(K))Mz. Therefore if K = L1, then
CGz(K/O2(K)) 6≤M .

(2) G1 = K(CG1(V1) ∩ CG1(K/O2(K)))M1.

Proof. Recall K = K(V, V1) = K(V, z) is normal in G1 and Gz. Set Y :=
CGz(K/O2(K)). From 11.1.2, Out(K/O2(K)) is 2-closed, so Y KT E Gz, and hence
by a Frattini Argument, Gz = Y KNGz(T ). Now by Theorem 3.3.1, NG(T ) ≤ M ,
proving the first assertion of (1). So if K = L1, then as Gz 6≤ M , Y 6≤ M , giving
the remaining assertion of (1).

Now instead set Y := CG1(V1) ∩ CG1(K/O2(K)). The same proof shows that
CG1(V1)T = Y TKCM1(V1). As CV (L) = 1 by 11.4.1.1, G1 = CG1(V1)M1 by
11.2.3.1, proving (2). ¤

Since Gz 6≤ M , there is H ∈ H∗(T,M) ∩ Gz; H has this meaning for the
remainder of the chapter.

Since n(H) ≥ n in the shadows, our next result eliminates those groups:

Lemma 11.4.4. n(H) = 1.

Proof. Assume n(H) > 1; then from E.2.2, O2(H) = 〈IT 〉 for some I ∈
L(G, T ) with I 6≤M . By 1.2.4 I ≤ I1 ∈ C(Gz), and then by 1.2.1, either [L1, I ] ≤
[K, I1] ≤ O2(K) ≤ O2(L1T ), so [L1, I ] ≤ O2(L1), or I ≤ I1 ≤ K. But by 11.4.1.2,
either K = L1 or K is described in case (1) or (2) of 11.1.2; in either case L1 is the
unique minimal member of L(G, T ) ∩ K. Therefore if I ≤ K then I = L1 ≤ M ,
contradicting I 6≤M . Thus [L1, I ] ≤ O2(L1).

Let B be a Hall 2′-subgroup of I ∩ M . Then B ≤ CM (L1/O2(L1)) and B
centralizes z. For each prime divisor p of q − 1, L contains each subgroup Bp of B
of order p by 11.0.4, so Bp ≤ CL(z) ∩ CL(L1/O2(L1)) = L ∩R1 from the action of
L on the natural module V . Therefore (|B|, q − 1) = 1.

As B centralizes z, B ≤ MV by 11.0.3.4. Then as BT = TB, [L1, B] ≤
O2(L1), and (q − 1, |B|) = 1, it follows from the action of NAut(V )(L̄) on V that
[V,B] = 1. But then using Remark 4.4.2, NG(B) ≤ M by Theorem 4.4.3; so
H = 〈H ∩M,NH(B)〉 ≤M , contradicting H 6≤M . ¤

11.5. The final contradiction

We now work to obtain a contradiction, by analyzing the normal closure 〈V G1〉
of V in G1. The analysis falls into two cases, depending on whether 〈V G1〉 is
abelian or not. The strong restriction in 11.4.4 will make weak closure methods
more effective.

Lemma 11.5.1. L/O2(L) is SL3(q) or Sp4(q).

Proof. In view of 11.0.2, we may assume L̄ ∼= G2(q). Hence by parts (5) and
(6) of 11.2.2,

CG(C1(R1, V )) ≤M ≥ NG(W0(R1, V )).

Thus it will suffice to find H1 ≤ H with H1 6≤M , n(H1) = 1, and R1 ∈ Syl2(H1):
For since n(H1) = 1 and s(G, V ) > 1 by 11.2.2.3, we may apply E.3.19 to conclude
that H1 ≤M , contrary to our choice of H1.

Suppose first that K = L1. Then by 11.4.3.1, CGz(L1/O2(L1)) 6≤ M , so we
may chooseH with [L1, O

2(H)] ≤ O2(L1) and set H1 := R1O
2(H); then n(H1) = 1

using 11.4.4. On the other hand if L1 < K, then by 11.4.1.2, K is described in case
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(1) or (2) of 11.1.2. In case (1) of 11.1.2, O2,2′(K) 6≤ M , so we may choose R1 ≤
H1 ≤ R1O2,2′(K), and then n(H1) = 1 by E.1.13. As R1 ∈ Syl2(CG(L1/O2(L1)),
R1 ∈ Syl2(H1), completing the proof in these two cases by paragraph one.

In case (2) of 11.1.2, K/O2(K) ∼= L2(p) for a prime p ≥ 11, and L1 has no
nontrivial 2-signalizer in Aut(K/O2(K)), so R1 = O2(KT ). Thus K ≤ NG(R1) ≤
NG(W0(R1, V )) ≤M , a contradiction. ¤

As Gz 6≤ M , 11.4.3.1 says CGz (K/O2(K)) or K is not contained in H . Thus
the following choice is possible:

From now on we choose H so that either [K,O2(H)] ≤ O2(K), or O2(H) ≤ K.

In particular notice that if K = L1, then as H 6≤M , [K,O2(H)] ≤ O2(K). By

11.4.4, n(H) = 1. Recall G1 = NG(V1) and set G̃1 := G1/V1.

Lemma 11.5.2. (1) If z ∈ V ∩ V g then V g ∈ V Gz . That is Gz is transitive on
{V g : z ∈ V g}.

(2) K = K(V g, z) for each g ∈ Gz.

Proof. By 11.4.1.1, L is transitive on V #, so (1) holds using A.1.7.1.
As K E Gz , for g ∈ Gz

K = Kg = K(V, z)g = K(V g , z),

so (2) holds. ¤

Lemma 11.5.3. Assume K = L1 and set m := 2n, 3n, for L̄ ∼= SL3(q), Sp4(q),
respectively. Then

(1) For each g ∈ G−NG(V ), V ∩ V g ≤ V y1 for some y ∈ L.
(2) r(G, V ) ≥ m.
(3) 〈V G1〉 is nonabelian.

Proof. Let g ∈ G−NG(V ). Our first goal is to prove (1), so we may suppose
1 6= U := V ∩ V g. By transitivity of L on V #, we may assume U ∩ V1 6= 1, and we
may suppose that U 6≤ V1. For u ∈ U#, V g = V gu for some gu ∈ CG(u) by 11.5.2.1.
Now u ∈ V x1 for some x ∈ L, and K(u) := K(V, u) = K(V gu , u) = K(V g , u)
by 11.5.2.2, while K(u) = Lx1 by our hypothesis that K = L1. Since U 6≤ V1,

L = 〈K(u) : u ∈ U#〉; so as Ug
−1

≤ V , Lg
−1

= L, and hence g ∈ M ; indeed
g ∈MV since V is a TI-set under M by 11.0.3.4. This contradicts the choice of g,
so (1) is established.

If U ≤ V with m(V/U) < m, then U 6≤ V y
1 for any y ∈ L, so CG(U) ≤MV by

(1). Thus (2) holds.
Suppose that 〈V G1〉 is abelian. By (2), CG(V2) ≤M . HenceW0 :=W0(T, V ) 6≤

O2(H) by 11.2.5. Then since H is a minimal parabolic with H ∩M the unique
maximal overgroup of T , NH(W0) ≤ H ∩M . As m(M̄V , V ) > 1, s(G, V ) > 1 by
(2). Hence as n(H) = 1 by 11.4.4, it will suffice to show CG(C1(T, V )) ≤M , since
then E.3.19 supplies a contradiction. Indeed as CG(V2) ≤ M , it suffices to show
V2 ≤ C1(T, V ).

So suppose A := V g ∩ T is of corank at most 1 in V g , but [V2, A] 6= 1. Let
B := CA(V2). Then

m(V g/B) ≤ m2(AutM (V2)) + 1 = n+ 1 < 2n ≤ m,
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so by (2), V2 ≤ CG(B) ≤ NG(V
g). Hence D := CV g (V2) is of corank at most n+1

in V g , so from the action of M g
V on V g either:

(i) D is of corank exactly n in V g and V2 induces transvections with axis D on
V g , or

(ii) n = 2, L̄ = SL3(4), and V2 induces a group of field automorphisms on
AurLg(V

g).

By (1), [V2, A] ≤ V ∩V g ≤ V y1 ∩V
gw
1 for some y ∈ L and w ∈ Lg , so Ā ≤ T̄L and (i)

holds; then since [V2, Ā] 6= 1, [V2, A] = V1. As V2 induces transvections with axis D

on V g , V1 = [A, V2] ∈ V
gLg

1 , so we may take g ∈ G1. But then as [V, V g ] 6= 1, we
have a contradiction to our assumption that (3) fails. This shows V2 ≤ C1(T, V ),
and completes the proof. ¤

Lemma 11.5.4. CG(V1) 6≤ M , so we may choose H ≤ G1 with O2(H) ≤
CG(V1).

Proof. If L1 < K, then K ≤ CG(V1) but K 6≤ M . On the other hand, if
L1 = K, then by 11.5.3.3 〈V G1〉 is nonabelian, so G1 6≤ M since V ≤ Z(O2(M)).
Hence CG(V1) 6≤ M by 11.2.3.2, so using 11.4.3.2 and the argument we made just
before 11.5.2, we can choose H ≤ G1 with O2(H) ≤ CG(V1), while aintaining the
condition O2(H) ≤ K or [K,O2(H)] ≤ O2(K). ¤

Because of 11.5.4, the setH1 := H(L1T,M)∩G1 is nonempty. In the remainder

of this section we choose H1 ∈ H1 and set UH := 〈V H1
3 〉.

Lemma 11.5.5. (1) UH ≤ O2(H1).

(2) ŨH ≤ Z(O2(H̃1)), and Φ(UH) ≤ V1.

(3) If K = L1, then ŨH is a direct sum of natural modules for K/O2(K).

Proof. Observe that Hypothesis G.2.1 is satisfied with V3, H1 in the roles of
“V , H”; hence (1) and (2) hold by G.2.2. Further Ṽ3 is the natural module for
L1/O2(L1), so if L1 = K, then as K E G1, (3) holds. ¤

Lemma 11.5.6. Let Y := CG(V1) ∩ CG(K/O2(K)). Then

(1) (|Y |, q − 1) = 1.
(2) m3(Y ) ≤ 1, and if n is even, then Y is a 3′-group.
(3) If I ∈ C(Y ) then [I,X ] ≤ O2(Y ).
(4) If P = [P,X ] ≤ T and Φ(P ) ≤ O2(G1), then [P, Y ] ≤ O2(Y ).
(5) [O2(LT ), X ] ≤ O2(KT ).
(6) If O2(H1) ≤ K, then m(A/A ∩ O2(H1)) ≤ 1 for each elementary subgroup

A of R1.

Proof. For p a prime divisor of q − 1, mp(X) = 2 and CX(V1) = X ∩ L1 =
X ∩K, so X ∩ Y = 1. Next Op(X) normalizes Y and hence a Sylow p-group Yp
of Y—so as G1 is an SQTK-group, Yp = 1, proving (1). Similarly as Y centralizes
L1/O2(L1) of order divisible by 3, m3(Y ) ≤ 1, the first requirement of (2).

Assume n is even. Then Y is a 3′-group by (1), completing the proof of (2). Fur-
ther if I ∈ C(Y ), then I/O2(I) ∼= Sz(2k). If (3) fails then by (1), X/CX(I/O2(I))
is a nontrivial group of field automorphisms on I/O2(I). Let B be an XT -invariant
Borel subgroup of I0 := 〈IT 〉. Then using 1.2.1.3 as usual, either B = NB(T ), or
I < I0 and NB(T )T/T ∼= Z2k−1. In either case, X acts nontrivially on NB(T )T/T .
By 3.3.1, NB(T ) ≤ CM (V1)∩CG(L1/O2(L1)); thus a Hall 2′-subgroup B0 of NB(T )
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acts on R1X , and hence by a Frattini Argument can be taken to normalizeX . Then
[X,B0] ≤ X∩B0T = 1 using (1), contrary to an earlier observation. Thus (3) holds
when n is even.

So assume instead n is odd. Then X is a 3′-group of odd order coprime to |I |
by (1). Therefore as m3(Y ) ≤ 1 by (2), (3) follows from an examination of the
list of A.3.15, unless possibly X/CX(I/O2(I)) induces a nontrivial group of field
automorphisms on I/O2(I) ∼= L2(2

k) or L3(2
k). In that event, k = 2am for some

odd m divisible by |X : CX (I/O2(I))|, and X/O2(X) induces a faithful group of
field automorphisms on the subgroup I1 of I with I1/O2(I1) ∼= L2(2

m) or L3(2
m).

Further a Borel subgroup of I1 acts on T , unless possibly some t ∈ T induces a graph
automorphism on I1/O2(I1) ∼= L3(2

m), in which case a subgroup of order 2m − 1
acts on T . Then arguing as in the previous paragraph, [X,B0] = 1, contradicting
the fact that X/CX(I/O2(I)) induces nontrivial field automorphisms on I1/O2(I1).
This contradiction completes the proof of (3).

Assume the hypotheses of (4). Applying (3) and appealing to 1.2.1.1, we con-
clude X centralizes Y∞/O2(Y ), and hence so does [P,X ] = P . Thus P centralizes
E(Y/O2(Y )). As Φ(P ) ≤ O2(G1), P = [P,X ] centralizes F (Y/O2(Y )) by A.1.26.
Thus P centralizes F ∗(Y/O2(Y )), establishing (4).

If L1 = K, then O2(LT ) ≤ O2(KT ), while if L1 < K, then by 11.4.1.3,
[O2(LT ), X ] ≤ [O2(L1T ), X ] ≤ O2(KT ). Thus (5) is established.

Finally if O2(H1) ≤ K, then L1 < K so K is described case (1) or (2) of 11.1.2.
In particular in each case, m2(R1/CR1(K/O2(K)) ≤ 1 as R1 = O2(L1T ). But
CR1(K/O2(K)) ≤ O2(H1), since O

2(H1) ≤ K. Thus (6) holds. ¤

Proposition 11.5.7. 〈V G1〉 is abelian.

Proof. Assume that 〈V G1〉 is nonabelian. Set U := 〈V G1
3 〉. By 11.5.5 applied

to G1 in the role of “H1”, Ũ ≤ Z(O2(G̃1)) and Φ(U) ≤ V1. Let Y := CG(V1) ∩
CG(K/O2(K)).

We first treat the case L̄ ∼= SL3(q). Then V3 = V so that U is nonabelian
by assumption. Let x, y ∈ NL(X) with V = V1 ⊕ V x1 ⊕ V y1 . As U = 〈V G1〉 is
nonabelian, V 6≤ Z(U), so Ū 6= 1. From the proof of 11.5.5.1, Hypothesis G.2.1 is
satisfied, so by G.2.5, L ≤ I := 〈U,Ux, Uy〉 = LU , Ū = O2(L̄1) = R̄1,

S := O2(I) = CU (V )CUx(V )CUy (V ),

US/S = O2(L1)S/S, S has an L-series

1 =: S0 ≤ S1 ≤ S2 ≤ S3 ≤ S4 := S

such that S1 := V , S2 := U ∩ Ux ∩ Uy, (and setting Wi := Si/Si−1) L centralizes
W2, W3 is the direct sum of r copies of the dual V ∗ of V , and W4 is the direct sum
of s copies of V . As I = 〈UL〉, M1 acts on I and hence on S, as does L since L ≤ I .

We claim that S ≤ O2(G1). Set E := Ux∩Uy. By 11.5.5.2, Φ(E) ≤ V x1 ∩V
y
1 =

1. From the discussion above, W4 = [W4, L1] and for each irreducible J in W3, the
image of E in J is the X-invariant complement to [J, L1] in J . Hence S = [S,L1]E.
FurtherX acts on E and S/S2 = [S/S2, X ], so E = [E,X ]S2 and S = [S,X ](U∩S).
Now as Φ(E) = 1, [E,X ] centralizes Y/O2(Y ) by 11.5.6.4, so as S2 ≤ U ≤ O2(G1),
E = [E,X ]S2 centralizes Y/O2(Y ). Then as [L1, Y ] ≤ [K,Y ] ≤ O2(Y ), S =
[S,L1]E centralizes Y/O2(Y ). Also we saw that S ≤ O2(LT ), so [S,X ] centralizes
K/O2(K) by 11.5.6.5, and hence so does S = [S,X ](S ∩ U). Thus S centralizes
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KY/O2(KY ), so as G1 = KYM1 by 11.4.3.2 and M1 acts on S, we conclude that
S ≤ O2(G1), completing the proof of the claim.

As S ≤ O2(G1), [Ũ , S] = 1 by 11.5.52. Consequently r = 0 = s, so that
S = S2 ≤ U and L is an SL3(q)-block. Since H

1(L̄, V ) = 0 by I.1.6, C.1.13.b says
that S = CS(L)V . As S2 ≤ U ∩ E and Φ(E) = 1, CS(L) = CU (L) is abelian. As
Ū = R̄1 = [R̄1, L̄1], U = [U,L1]CU (L) = (U ∩ L)CU (L) and (U ∩ L)/CU∩L(L) is
special of order q5. Further CU (L1) = CZ(U)(L)V1 = Z(U), so that U/Z(U) is of
rank 4n. As L1 centralizes Z(U), also [K,L1] = K centralizes Z(U).

Assume that L1 < K. Then by 11.1.2, n = 2 and q = 4, so that U/Z(U) is
of rank 4n = 8 by an earlier observation. As we are assuming that L̄ ∼= SL3(4),
case (2) of 11.1.2 does not arise, so by 11.4.1.2, K is described in case (1) of 11.1.2.

As L1 E M1 and V ≤ U , CK(Ũ) acts on L1, so CK(Ũ) ≤ O2,Z(K). Then as
K centralizes Z(U), CK(U/Z(U)) ≤ O2,Z(K), impossible as K/O2,Z(K) is not a
section of GL8(2).

Therefore L1 = K. As L is an SL3(q)-block, L1 has two noncentral 2-chief

factors, so 11.5.5.3 says that Ũ is a sum of exactly two copies of the natural module
for K/O2(K) ∼= L2(q). In particular |U | = q5. Therefore as U = CZ(U)(L)(U ∩ L)
and |(U ∩ L)/CU∩L(L)| = q5, we conclude that U = U ∩ L = T ∩ L = O2(L1) =
O2(K), and CU∩L(L) = 1 so that V = O2(L).

As K = L1 ≤ M , KH := O2(H) ≤ Y by our choice of H . Let X1 :=
CX(K/O2(K) and C := 〈R1,KH , X1〉. Further since C ≤ CG1(K/O2(K)) and

R1 = CT (K/O2(K), R1 ∈ Syl2(C). Set Ĉ := C/CC(Ũ ). As Ũ is a sum of two

absolutely irreducible modules for K/O2(K) over Fq , Ĉ ≤ CGL(Ũ)(K/O2(K)) ∼=
GL2(q). Since L is an SL3(q)-block with V = O2(L), as before C.1.13.b says

TL = (T ∩ L)CT (L). (∗)

In particular as U ≤ L and Ū = R̄1, R1 = UCR1(L) by (*) and CR1(L) centralizes

U . Thus Ĉ is a subgroup of GL2(q) of odd order. Next CH(Ũ) ≤ NH(V ) ≤ H∩M ,

so CH(Ũ) ≤ kerH∩M (H). Therefore by B.6.8, KH = O2(KH)D for some p-group

D with D ∩ M = Φ(D). By 11.5.6.1, (p, q − 1) = 1, so as Ĉ is a subgroup of

GL2(q) of odd order, D̂ is cyclic of order dividing q + 1 and [D̂, X̂1] = 1. If n is

even then X0 := CX (L/V ) is a subgroup of X1 of order 3. Then as D̂ centralizes

X̂1, H = DT acts on [U,X0] = V , contradicting KH 6≤ M . Therefore n is odd so
T = TL. Then using (*) and our earlier observations that O2(K) = U = T ∩ L,

T = (T ∩ L)CT (L) = UCT (L) = UCT (U). (∗∗)

Further [CT (U),KH ] ≤ CKH (U) ≤ O2,Φ(KH), so H acts on CT (U) and hence by
(**), H ≤ NG(T ) ≤ M using Theorem 3.3.1, a contradiction. This completes the
treatment of the case L̄ ∼= SL3(q).

Therefore by 11.5.1 it remains to treat the case L̄ ∼= Sp4(q). At several places
we use the fact that:

(!) L̄1X̄ is indecomposable on O2(L̄1) with chief series 1 < Z(L̄1) < O2(L̄1),
and Z(L̄1) = CM̄V

(V3).

We first observe that V ≤ O2(G1): For V = [V,X ], so by parts (4) and (5) of
11.5.6, V centralizes KY/O2(KY ). Then recalling that G1 = KYM1 and V E M1

since V is a TI-set under M by 11.0.3.3.4, the observation is established.
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Suppose U is nonabelian. Then as U = 〈V G1
3 〉, U does not centralize V3, so

Ū 6= 1 and 1 6= [V3, U ] ≤ V1 by 11.5.5.2. As U E L1T , Ū = O2(L̄1) by (!). Therefore
[V, U ] = V3, which is impossible since by the previous paragraph, V ≤ O2(G1), so
[V, U ] ≤ V1 by 11.5.5.2.

Thus U is abelian. If [V, U ] 6= 1 then as [V3, U ] = 1, Ū = Z(L̄1) by (!). In this
case set W := U = UH . On the other hand if [V, U ] = 1, set W := WH , where
WH := 〈V G1〉. As U E G1, [U,W ] = 1. As V ≤ O2(G1),W ≤ O2(G1), so as we are
assuming that W is nonabelian, and as [V3,W ] = 1, again W̄ = Z(L̄1). Therefore
in either case, W̄ = Z(L̄1), so [V,W ] = [V, Z(L̄1)] = V1, and hence Φ(W ) = V1.

Choose an element y ∈ L so that 〈Z(L̄1), Z(L̄1)
y〉 ∼= L2(q), and I := 〈W,W y〉

contains X1 = CX (L1/O2(L1)). Observe that Ī = 〈W̄ , w̄y〉 for each 1 6= w̄ ∈ W̄ ,
and V = V3 ⊕ V

y
1 . Then as [W,O2(I)] ≤W ∩O2(I),

Q := (W ∩ O2(I))(W
y ∩ O2(I)) E I,

with [O2(I), I ] ≤ Q. Since I = 〈W,W y〉 and Φ(W ) = V1, [W ∩W y , I ] ≤ V1V
y
1 ≤ V .

Also Φ(W ) = V1 ≤ V , and

Q/(W ∩W y)V = (WV ∩Q)/(W ∩W y)V × (W yV ∩Q)/(W ∩W y)V,

with (WV ∩Q)/(W ∩W y)V = CQ/(W∩W y)V (w), as Ī = 〈W̄ , w̄y〉.
We claim that Q ≤ O2(G1) =: Q1: It follows from G.1.6 that Q/(W ∩W y)V

is a sum of natural modules for Ī , so that CQ(X1) ≤ (W ∩W y)V ≤ Q1. Thus
as Q = [Q,X1]CQ(X1), it remains to show [Q,X1] ≤ Q1. Next Φ(Q) ≤ (W ∩
W y)V ≤ Q1 and Q ≤ O2(I) ≤ O2(LT ), so using parts (4) and (5) of 11.5.6, [Q,X1]
centralizes KY/O2(KY ). Next L1 is transitive on V G1 ∩ (V − V3), so by a Frattini
Argument, M1 = L1NM1(V

y
1 ). Thus as NM1(V

y
1 ) acts on [Q,X1], G1 = KYM1 =

KYNM1([Q,X1]), so as [Q,X1] centralizes KY/O2(KY ), the claim is established.
Next L̄ is generated by three conjugates Ī li , 1 ≤ i ≤ 3, of Ī under L1. As O2(L)

acts on W , it acts on W yli for each i, so [O2(L), L] is the product of [O2(L),W ] ≤
Q ≤ Q1 and [O2(L),W

yli ] ≤ Q1, so [O2(L), L] ≤ Q1. Then as the Schur multiplier
of Sp4(q) is trivial by I.1.3, O2(L) = [O2(L), L] ≤ Q1.

Now as Z(L̄1) = W̄ ≤ Q̄1 E L̄1, Q̄1 = R̄1 or W̄ . However in the latter
case as O2(L) ≤ Q1, Q1 ∈ Syl2(IQ1), and then by C.1.29, there is a nontrivial
characteristic subgroup Q0 of Q1 normal in IQ1. But then Q0 E 〈I, L1T 〉 = LT ,
so G1 ≤ NG(Q1) ≤ NG(Q0) ≤M = !M(LT ), contradicting 11.5.4. Therefore Q̄1 =
R̄1, so R1 ∩ LQ1 = Q1. Then by C.1.32, either there is a nontrivial characteristic
subgroup Q0 of Q1 normal in LQ1, or L is an Sp4(4)-block. The former case leads
to the same contradiction as before.

Therefore L is an Sp4(4)-block. Since H
1(L̄, V ) = 0 by I.1.6, and we have seen

that O2(L) = [O2(L), L], we conclude from C.1.13.b that O2(L) = V .
We now treat the case that [V, U ] = 1. Here we recall that W = WH and

W̄ = Z(L̄1), so [W,L1] ≤ O2(L) = V , and hence [W,L1] = [V, L1] = V3 ≤ U .
Therefore K = 〈LK1 〉 centralizes W/U , so W = UV . But then as [V, U ] = 1 and U
and V are abelian, W =WH is abelian, contrary to our assumption.

Therefore [V, U ] 6= 1. In this case we recall that W = U . As 1 6= [V, U ],
W̄H 6≤ CL̄T̄ (V3) = Z(L̄1), so as WH is L1X-invariant, W̄H = R̄1 and there exists
g ∈ G1 with V̄ g ≤ R̄1 but V̄ g 6≤ Z̄(L̄1). Thus conjugating in L1 if necessary,
V1 ≤ CV (V

g) ≤ V2 ≤ [V, V g]. But WH ≤ Q1 ≤ NG(V ), so V g E WH , and
thus [V, V g ] ≤ V ∩ V g ≤ CV (V

g). Hence V2 = V ∩ V g is conjugate to V g2 under
Lg, so we may choose g ∈ NG(V2). By 11.1.3, g acts on L2, so as V = [V, L2],
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also V g = [V g , L2]. But then V̄ g = [R̄2, L2], contradicting V̄
g ≤ R̄1. This final

contradiction completes the proof of 11.5.7. ¤

With 11.5.7 in hand, we are finally in a position to obtain a contradiction to
11.5.3.3.

Proposition 11.5.8. K = L1.

Proof. Assume that L1 < K; then we may take H1 := KT to be our chosen
member of H1. Observe that Hypothesis F.7.6 is satisfied with LT , H1, L1T in the
roles of “G1, G2, G1,2”. Adopt the notation of section F.7, and in particular let
b := b(Γ, V ). By 11.5.7, U := 〈V H1〉 is elementary abelian, so b > 1 by F.7.7.2.

Assume first that b is even. Then by F.7.11.2, there is g ∈ G with 1 6= [V, V g ] ≤
V ∩ V g , and by F.7.11.5 with the roles of γ0 and γ reversed, we may choose V g ≤
O2(G1,2) = R1. Then inspecting the subgroups of R̄1 acting quadratically on V ,
either

(i) V1 = [V, V g] is a 1-dimensional Fq-subspace of V and V g, or
(ii) L̄ ∼= Sp4(q) and (conjugating in L1 if necessary) [V, V

g] = V2, and [V3, V
g ] =

V1 is a 1-dimensional Fq-subspace of V and V g.

In either case, as Lg is transitive on 1-dimensional Fq-subspaces, we may choose
g ∈ G1. Then 11.5.7 contradicts our choice of 1 6= [V, V g ].

So b is odd. Pick γ at distance b as in F.7.11, choose a geodesic

γ0, γ1, . . . , γb := γ

in Γ, and choose g so that γ1g = γ. Thus V 6≤ O2(H
g
1 ) and as γ1 is on the

geodesic, [U,Ug] ≤ U ∩ U g by F.7.11.1. By 11.5.6.6, U1 := U ∩ O2(H
g
1 ) and

U0 := Ug ∩ O2(H1) are of index at most 2 in U and U g, respectively. Further
V1 ∩ V

g
1 = 1—or else by 11.4.2, K = Kg, so [U,O2(Hg

1 )] ≤ [U,Kg] = [U,K] ≤ U ,
contradicting V 6≤ O2(H

g
1 ). Thus [U1, U0] ≤ V1 ∩ V

g
1 = 1, so U0 centralizes U1 ∩ V

of corank at most 1 in V . However by 11.2.2.3, s(G, V ) = m(M̄, V ) = n > 1, so
U0 centralizes V by E.3.6. Then as 1 6= [V, V g ] ≤ [V, Ug], V induces a group of

transvections on U g with axis U0. As V 6≤ G
(1)
γ , by F.7.7.2, V 6≤ O2(Gγ).

Since L1 < K, K is described in case (1) or (2) of 11.1.2 by 11.4.1.2. As
CH1(U) ≤ CH1(V ) ≤ M1 and L1 E M1, we conclude from the structure of those
groups that CK(U) ≤ O2,Z(K). Thus we may pick an Hg

1 -chief section W of U g

such that F := O2,F∗(K) is nontrivial on W . Again from the structure of K, as
V 6≤ O2(H

g
1 ), V is nontrivial on AutF (W ), so V induces a transvection on W .

But comparing the groups in 11.1.2 to those in G.6.4.2, AutH1(W ) contains no
transvection, completing the proof of the lemma. ¤

By 11.5.8, K = L1, so 〈V G1〉 is nonabelian by 11.5.3.3, contrary to 11.5.7. This
contradiction completes the proof of Theorem 11.0.1.



Part 5

Groups over F2



Results in the previous parts have reduced the choices for L, V in the Fun-
damental Setup (3.2.1) to the case where L/O2,Z(L) is essentially a group of Lie
type defined over F2, and V is highly restricted. We adopt the convention that A5

(regarded as Ω−4 (2)), and A7 (a subgroup of A8
∼= L4(2) ∼= Ω+

6 (2)) are considered
to be defined over F2. For a precise description of the pairs L, V which remain to
be considered, see conclusion (3) of Theorem 12.2.2 early in this part.

The first chapter 12 of this part contains a number of useful reductions which
smooth out the situation. For example, some reductions treat or eliminate certain
larger possibilities for L or V . These reductions use special and comparatively ele-
mentary techniques, such as the weak-closure methods from section E.3, or control
of centralizers of certain elements of V .

The cases that remain after these sections are then treated in chapters 13 and
14, using “generic” techniques for groups over F2, such as versions of the theory of
large extraspecial 2-subgroups in the original classification literature, and variants
on the amalgam method from section F.9



CHAPTER 12

Larger groups over F2 in L∗f(G, T )

In this chapter we consider the cases remaining in the Fundamental Setup
(3.2.1) after the work of the previous parts. Then we reduce that list further,
concentrating on cases which can be treated by methods such as weak closure and
control of centralizers of certain elements of V .

After an initial reduction in the first section 12.1, the cases that remain are
listed in part (3) of Theorem 12.2.2 in the second section. Then in Hypothesis
12.2.3, we add the assumption that G is not one of the groups already treated in
earlier analysis; the latter groups are listed in conclusions (1) or (2) of Theorem
12.2.2. In the remaining cases L/CL(V ) is essentially a group defined over F2.
Then the main goal of this chapter is to treat, and in most cases eliminate, the
largest of those groups over F2: namely Â6, A7, L4(2), and L5(2).

12.1. A preliminary case: Eliminating Ln(2) on n⊕ n∗

In this section we complete our analysis of case 3.2.5.3 of the Fundamental
Setup (3.2.1), where V is a sum of two T -conjugates of V◦ ∈ Irr+(L,R2(LT ), T ).
Recall that most such cases were eliminated in Theorem 7.0.1. Thus it remains to
consider the cases where L/CL(V ) ∼= L4(2) or L5(2), and V◦ is a natural module
for L/CL(V ). We eliminate these cases using the weak-closure techniques of part
3, together with reductions from chapters E.6 and 11. We must work a little harder
however, because m(M/CM (V ), V ) = 2, so that Theorem E.6.3 is not available to
give an initial lower bound on r(G, V ).

Once this case is eliminated, we will have completed the treatment of the cases
in the FSU where L is T -invariant and L is not irreducible on V/CV (L); for recall
chapter 10 completed the treatment of the case where L is not T -invariant, while
Theorems 6.2.20 and 7.0.1 treated the cases where V is not an FF-module.

Thus at the end of this section, the treatment of the FSU will be reduced to
the cases described in 3.2.8. The first four subcases of 3.2.8 include all cases where
L/CL(V ) is defined over F2n with n > 1, and those cases were handled in Theorems
6.2.20 and 11.0.1. Hence after this section it remains only to treat the cases where
L/CL(V ) is a group defined over F2; by convention we include Â6 and A7 among
such groups.

While in this section L/CL(V ) is also a group over F2, the fact that L is not
irreducible on V makes the treatment of this case easier, and different from the
treatment of the generic case of groups over F2.

So in this section we assume G is a simple QTKE-group, T ∈ Syl2(G), L ∈
L∗f (G, T ) with L/O2(L) ∼= Ln(2), n = 4 or 5, M := NG(L), V ∈ R2(M), M̄ :=

M/CM (V ) ∼= Aut(Ln(2)), and V = V1 ⊕ V2, with V1 the natural module for L̄ and
V2 = V t1 for t ∈ T −LQ, where Q := O2(LT ) = CT (V ). Thus V2 is the dual of V1 as

787
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an F2L-module. Let T1 := NT (V1), and for v ∈ V , let Mv := CM (v), Gv := CG(v),
and Lv := O2(CL(v)).

By 3.2.5.3, V E M ; hence

M = NG(V )

as M ∈ M.
Recall that the module V is described in section H.9 of Volume I. We adopt

the notation of that section, including the description of the orbits Oi (1 ≤ i ≤ 3)
of M on V #.

We now proceed to analyze our group G. Eventually we obtain a contradiction,
and hence show no such group exists.

Lemma 12.1.1. Let v ∈ O3. Then Gv = CG(v) ≤M .

Proof. First from lemma H.9.1.4, Q = O2(LvTv), where Tv := CT (v) ∈
Syl2(Mv). Now C(G,Q) ≤ M by 1.4.1.1. Thus as Lv E Mv, we conclude from
A.4.2.7 that Q ∈ B2(Gv) and Q is Sylow in 〈QMv 〉. Therefore Hypothesis C.2.3 is
satisfied by Gv , Mv, Q in the roles of “H , MH , R”.

LetW := [V, Lv]. By lemma H.9.1.4, Lv/O2(Lv) ∼= Ln−1(2) andW =W1⊕W2

withW1 the natural module for Lv/O2(Lv) andW2 its dual. Let z generateCW (Tv),
and observe z is 2-central in G by H.9.1.2.

For each value of n we define a subgroup Kv ∈ C(Gv) with Lv ≤ Kv E Gv: If
n = 4, then W is not an FF-module for Lv by Theorem B.5.1.1, so J(Tv) = J(Q)
by B.2.7. Then as C(G,Q) ≤ M , NG(Tv) ≤ Mv and hence Tv ∈ Syl2(Gv). So by
1.2.4, Lv ≤ Kv ∈ C(Gv), and as Tv acts on Lv, Kv E Gv by 1.2.1.3. On the other
hand, if n = 5, then by 1.2.1.1, Lv projects nontrivially on some Kv ∈ C(Gv), so

Kv has a section isomorphic to Lv/O2(Lv) ∼= L4(2). Therefore Kv = O3′(Gv) by
A.3.18, so that again Lv ≤ Kv E Gv .

Suppose that there is a component K of Gv . Then Lv = O2(Lv) acts on K
by 1.2.1.3. By A.1.6, O2(M) ≤ Q ≤ Gv , so Mv ∈ He by 1.1.4.4; thus K 6≤ Mv.
Similarly Gz ∈ H

e by 1.1.4.6, so Gv,z := Gv ∩Gz ∈ H
e by 1.1.3.2; thus K 6≤ Gv,z,

so K 6≤ Gz . But z ∈W = [W,Lv] ≤ Lv, so [K,Lv] 6= 1. Therefore [K,Kv] 6= 1, and
hence K = Kv by 1.2.1.2. Then CW (K) ≤ CW (Lv) = 1. Set G∗v := Gv/CGv(K).
Then W ∗ ∼=W as an L∗v-module, and L∗v E M∗

v . But no group with such a 2-local
M∗
v appears on the list of Theorem C (A.2.3).
This contradiction shows that E(Gv) = 1. Next W = [W,Lv], soW centralizes

O(Gv) by A.1.26. Therefore O(Gv) ≤ Gv,z , and hence O(Gv) = 1 as Gv,z ∈ He.
Thus we have shown O2(F ∗(Gv)) = 1, so that Gv ∈ He.

We now assume that Gv 6≤M , and derive a contradiction.
Suppose that Lv EGv and set Y := CGv(Lv/O2(Lv)). Then asAut(Lv/O2(Lv))

is induced in LvTv, Gv = LvTvY , so Y 6≤ M as Gv 6≤ M . Next embed Tv ≤ X ∈
Syl2(Gv); then NX(Tv) normalizes CTv (Lv/O2(Lv)) = Q, and so lies inMv—hence
Tv = X ∈ Syl2(Gv). Thus Q = Tv ∩ Y is Sylow in Y , so we conclude from the
C(G, T )-Theorem C.1.29 that there is a χ0-block B of Y with B 6≤ M . If B
is an L2(2

n)-block, then a Cartan subgroup D of B lying in B ∩ M centralizes
Lv/O2(Lv); hence D centralizes V , as M̄ = NGL(V )(L̄) and CM̄ (L̄v) = 1. Thus
V ≤ CTv (B ∩M) = CTv (B), and hence B ≤ CG(V ) ≤ M , contrary to the choice

of B. If B is an A5-block, then O
2(B ∩M) ≤ O3′(Mv) = Lv by A.3.18, whereas

Z(Lv/O2(Lv)) = 1. Thus B is an A3-block. Notice since B centralizes Lv/O2(Lv)
of order divisible by 3, and Gv is an SQTK-group, that B E Gv . Set H := BTv,



12.1. A PRELIMINARY CASE: ELIMINATING Ln(2) ON n⊕ n∗ 789

so that Tv ∈ Syl2(H), B = O2(H), and Q ∈ Syl2(QB). As B 6≤ M = !M(LT ),
there is no 1 6= R0 ≤ Q with R0 E 〈LT,H〉. Thus Hypotheses C.5.1 and C.5.2 are
satisfied with LT , Q in the roles of “M0, R”. Further LvTv is maximal in LT , so
LvTv = NLT (B). Then we have the hypotheses of C.5.7, and as |LT : LvTv| 6= 2,
C.5.7 supplies a contradiction.

This contradiction shows that Lv is not normal in Gv. Thus K := Kv > Lv,
so as Lv E Mv, K 6≤ Mv. As Gv ∈ He, K ∈ He by 1.1.3.1. By C.2.6.2,
O2,F (K) ≤Mv ≤ NG(Lv), so K/O2(K) is quasisimple by 1.2.1.4. As Lv ≤ K and
Tv is nontrivial on the Dynkin diagram of Lv/O2(Lv), K is not a χ0-block, so Q
normalizes K by C.2.4. Thus we have the hypotheses of C.2.7, so K is described
in C.2.7.3. Thus as Tv is nontrival on the Dynkin diagram of Lv/O2(Lv) ∼= L3(2)
or L4(2), and Lv E Mv ∩ K, we conclude that case (h) of C.2.7.3 holds with
KTv/O2(KTv) ∼= Aut(L5(2)) and LvTv∩K is the parabolic subgroup determined by
the middle two nodes; in particular n = 4. Let Zv := Ω1(Z(O2(KTv))), Y := 〈ZKv 〉,
and (KTv)

+ := KTv/O2(KTv). By C.2.7.2, Y is an FF-module for K+T+
V
∼=

Aut(L5(2)), so we conclude from Theorem B.5.1.1 that [Y,K] = U ⊕ U t for t ∈
Tv − NTv(U). By B.2.14, Y = [Y,K] ⊕ CZv (K). Thus the parabolic LvTv ∩ K
determined by the middle nodes of K centralizes Zv, whereas from the action of
LT on V , CV (T ) is not centralized by LvTv. This contradiction completes the proof
of 12.1.1. ¤

From Lemma H.9.1, V has the structure of an orthogonal space preserved by
M̄ , and O3 is the set of nonsingular vectors in that space.

Lemma 12.1.2. (1) If U ≤ V with CG(U) 6≤M , then U is totally singular.
(2) r(G, V ) ≥ n, so that s(G, V ) = m(AutM (V ), V ) = 2.

Proof. Part (1) follows from 12.1.1 and the fact that O3 is the set of nonsin-
gular vectors in V . Then (1) implies (2). ¤

Using the lower bound on the parameter r(G, V ) in 12.1.2.2, we can apply the
weak-closure machinery in section E.3 (subsection E.3.3) to establish successively
better lower bounds on the parameter w(G, V ). Often results are easier to establish
in the case n = 5; for example, the analogue of 12.1.3 below is not established for
n = 4 until 12.1.7.

Lemma 12.1.3. If n = 5 then W0 :=W0(T, V ) centralizes V .

Proof. Suppose that n = 5 but W0 6≤ CT (V ). Then there is A := V g ≤ T
with Ā 6= 1. Recall M = NG(V ) and Mg = NG(A).

We begin by showing we may choose A with m(Ā) ≥ 5. Suppose first that
V 6≤ NG(A); then as r(G, V ) ≥ 5 by 12.1.2.2, m(Ā) ≥ 5 by E.3.4.2. So suppose
instead that V ≤ NG(A). Here, interchanging the roles of A and V if necessary, we
may assume that m(Ā) = m(A/CA(V )) ≥ m(V/CV (A)); equivalentlym(CV (A)) ≥
m(CA(V )). Suppose that m(Ā) < 5. Then by our assumption above, m(CV (A)) ≥
m(CA(V )) > 5. Hence CV (A) is not totally singular and 1 6= CV1(A), so Ā ≤
T̄1 ≤ L̄. Then as A centralizes a nonsingular vector v ∈ V , by lemma H.9.1.4,
Ā ≤ L̄v ∼= L4(2) and V = CV (Lv) ⊕W , where W is the sum of a natural module
and its dual. Now m(Ā) ≥ m(W/CW (A)), so that Ā contains a member B̄ of
P(L̄v,W ) by B.1.4.4. Then B.4.9.2iii determines B̄ uniquely as J(CT̄ (v)), so that
B̄ = J(CT̄1 (v)) = Ā. In particular Ā is the unipotent radical of the stabilizer in

L̄v ∼= L4(2) of a 2-subspace of the natural module W . Thus m(Ā) = m(V/CV (A)),
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Ā is faithful on each Vi, and for u ∈ V1 − CV1(A), [u,A] = [V1, A] is of rank 2.
Set Ai := V gi . Now V ≤ NG(A) by our assumption, and we saw that m(Ā) =
m(V/CV (A)) = 4 < 5, so we have symmetry between V and A. Reversing the roles
of V and A, we conclude from that symmetry that V/CV (A) is faithful on Ai, so
as [A, V1] is of rank 2, V1 induces transvections on Ai with center [A, V1]∩Ai. This
is impossible as m(V1/CV1(A)) = 2 > 1 and A2 is dual to A1.

This contradiction establishes the claim that we may take m(Ā) ≥ 5. Hence
by lemma H.9.2.3, we may take Ā ≤ Ā0, where Ā0 is the centralizer in T̄1 of a
3-subspace of V1. Then by H.9.2.5,

V = Γ̌4,Ā(V ) = Γ̌4,A(V );

so as r(G, V ) ≥ 5, V = Γ̌4,A(V ) ≤ NG(A) by E.3.32. Then [V,A] ≤ V ∩A ≤ CV (A),
and applying lemma H.9.2.4 to the action of Ā on V , CV (A) = [V,A] = V ∩ A is
of rank 5. Thus m(V/CV (A)) = 5, so we have symmetry between V and A, and
by that symmetry CA(V ) = V ∩ A is of rank 5. Hence m(Ā) = 5. We saw that
Ā ≤ Ā0, so Ā acts faithfully on each Vi. In particular, V2 6≤ A, and for v ∈ V2 −A,
[v,A] ≤ A ∩ V2 = CV2(A), with m(CV2(A)) = 2 by H.9.2.4. By symmetry, V2
normalizes but does not centralize V gi , so as m([V2, A]) = 2 and m(V2/CV2(A)) > 1,
we have the same contradiction as in the previous paragraph. This completes the
proof of 12.1.3. ¤

Lemma 12.1.4. Assume n = 4 and let v generate CV1(T1). Then T1 ∈ Syl2(Gv).

Proof. Let T1 ≤ T0 ∈ Syl2(Gv). If the lemma fails, then as |T : T1| = 2,
T0 ∈ Syl2(G). But T1 ∈ Syl2(Mv), so T0 6≤ M , and hence NG(T1) 6≤ M . If C is a
nontrivial characteristic subgroup of T1 normal in LvT1, then C E 〈T, Lv〉 = LT , so
NG(T1) ≤ NG(C) ≤M = !M(LT ), contrary to the previous sentence. Thus no such
C exists, so (Lv, T1) is an MS-pair in the sense of Definition C.1.31. However Lv has
at least three noncentral 2-chief factors, and as v ∈ V1 = [V1, Lv] ≤ Lv by H.9.1.3,
v ∈ Z(Lv). Hence Lv must satisfy case (4) of C.1.34. Therefore Z1 := Ω1(Z(T1))
is of rank at least 3, with m(Z1/CZ1(Lv)) = 1. Now L = 〈Lv, Ltv〉 for t ∈ T − T1,
so 1 6= CZ1(Lv) ∩ CZ1(L

t
v) ≤ CZ1(L), and hence CZ(L) 6= 1.

Next J(T ) ≤ T1 by B.1.5.4. Thus J(T1) = J(T ), so as NG(T1) 6≤ M ,
NG(J(T )) 6≤ M . In particular J(T ) 6≤ Q, and hence R2(LQ) = V ⊕ CZ1(L) by
B.5.1.4. Now an FF ∗-offender in T̄ lies in P(T̄ , V ) by B.2.7, and by B.4.9.2iii the

unique member J(T ) of P(T̄ , V ) is the unipotent radical of the stabilizer in L of a 2-
subspace of V1. Thus NLT (J(T )) = XT , where X ∈ Ξ(G, T ) with XT/O2(XT ) ∼=
S3 wr Z2. As R2(LQ) = V ⊕ CZ1(L) with CV (X) = 1, CZ1(X) = CZ1(L). As
J(T ) ≤ T1, T0 ≤ NG(T1) ≤ NG(J(T )) =: GJ , and of course TX ≤ GJ . Thus
H := 〈T0, TX〉 ≤ GJ , so H ∈ H(XT ). Suppose X E H . Then T0 and T act on T1
and hence on CZ1 (X) = CZ1 (L), so T0 ≤ NG(CZ1 (L)) ≤ M = !M(LT ), contrary
to T0 6≤ M . Therefore X is not normal in H , so by 1.3.4, X < K0 := 〈KT 〉 for
some K ∈ C(H), and K0 is described in 1.3.4. Now K ∈ L(G, T ) and [Z,X ] 6= 1,
so K ∈ Lf (G, T ). By 1.3.9, K ∈ L∗f (G, T ), so by 3.2.3 there is VK ∈ R2(K0T )
such that the pairK,VK satisfies the Fundamental Setup. Hence by Theorem 3.2.5,
this pair is listed in 3.2.5.3, 3.2.8, or 3.2.9. By Theorem 10.0.1, K = K0, so case
(1) of 1.3.4 does not hold. Theorem 11.0.1 eliminates case (3) of 1.3.4. Case (2),
and case (4) with K/O2(K) ∼= M11, do not appear in the indicated lists for the
FSU. Thus KT/O2(KT ) ∼= S8 or Aut(L5(2)). Let H∗ := H/CH(K/O2(K)), so
that H∗ = K∗T ∗ since K∗T ∗ = Aut(K∗). Then X∗ = O2(P ∗), where P ∗ is the
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parabolic of K∗ determined by the end nodes of the Dynkin diagram. Therefore
R∗ := O2(X

∗) ≤ T ∗1 , and hence as it is the unipotent radical of P ∗, R∗ is weakly
closed in T ∗ with respect to H∗ by I.2.5. Since CT (K

∗) ≤ CT (X
∗) ≤ T1, a Frattini

Argument shows that NH(T1)
∗ = NH∗(T

∗
1 ). Thus T ∗0 ≤ NH(T1)

∗ = NH∗(T
∗
1 ) ≤

NH∗(R
∗) = NH∗(P

∗) = NH∗(X
∗), so

K∗0T
∗ = H∗ = 〈T ∗0 , X

∗T ∗〉 ≤ NH∗(X
∗) = X∗T ∗,

a contradiction. This completes the proof of 12.1.4. ¤

Lemma 12.1.5. (1) Let v generate CV1(T1). Then T1 ∈ Syl2(Gv).
(2) M controls fusion of involutions in V .

Proof. If n = 4, then (1) follows from 12.1.4. If n = 5, then by 12.1.3,
W0 ≤ Q ≤ T1, so NG(T1) ≤ NG(W0) by E.3.15. As M = !M(NG(Q)) by 1.4.1,
NG(W0) ≤ M by E.3.34.2. Thus NGv(T1) ≤ NGv(W0) ≤ Mv, so as T1 is Sylow in
Mv, (1) also holds in this case.

By (1), |Gv |2 = |T |/2 for any v ∈ O1, while |Gz |2 = |T | for z ∈ O2. Finally by
12.1.1, |Gv |2 < |T |/2 for v ∈ O3. Thus the distinct M -classes of involutions in V
are in different G-classes, so (2) holds. ¤

Lemma 12.1.6. (1) For v ∈ O1, 〈V Gv〉 is abelian.
(2) If V1 ∩ V g 6= 1, then [V, V g] = 1.

Proof. Let v ∈ O1. By 12.1.5.2, M = NG(V ) is transitive on G-conjugates
of v in V , so by A.1.7.1, Gv is transitive on G-conjugates of V containing v. Thus
(2) follows from (1), so it suffices to establish (1).

We may as well choose v to generate CV1(T1). By 12.1.5.1, T1 ∈ Syl2(Gv).
By lemma H.9.1, U := [V, Lv] = V1 ⊕ U2, where U2 := v⊥ ∩ V2. Let v2 generate
CV2(T1). Then z := vv2 generates CV (T ), and v2 ∈ U2.

By 1.1.6, the hypotheses of 1.1.5 are satisfied with Gv , Gz in the roles of “H ,
M”. But as z ∈ U , [O(Gz), z] = 1 by A.1.26, so O(Gv) = 1 as z inverts O(Gz) by
1.1.5.2.

Suppose first that Gv /∈ He. Then as O(Gv) = 1, there is a component K of
Gv, and by 1.1.5.3, K = [K, z] 6≤ M . As T1 ∈ Syl2(Gv), Lv ≤ Kv ∈ C(Gv) by
1.2.4. Now z ∈ U = [U,Lv] ≤ Kv, so as K = [K, z], we conclude K = [K,Kv] = Kv

from 1.2.1.2. Thus v ∈ Lv ≤ K. Set K∗ := K/O2(K). Then U ∩ Z(K) = 〈v〉,
so U∗ E L∗v, with U∗ = V ∗1 ⊕ U∗2 the sum of the natural module and its dual
for Lv/O2(Lv) ∼= Ln−1(2). As no group on the list of 1.1.5.3 has such a subgroup
invariant under a Sylow 2-group T ∗1 , we have a contradiction.

This contradiction shows that Gv ∈ He. Let Qv := O2(Gv), and G̃v := Gv/〈v〉.
Now T1 ∈ Syl2(Gv), and Lv is irreducible on Ṽ1, so Hypothesis G.2.1 holds with

〈v〉, V1, T1, Gv in the roles of “V1, V , T , H”. Then by G.2.2.1, Ṽ1 ≤ Z(O2(G̃v)) =

Z(Q̃v). Similarly as Lv is irreducible on U2, [Qv, U2] ≤ 〈v〉 ∩ U2 = 1, so that
U2 ≤ Z(Qv). In particular U = V1U2 ≤ Qv, so for any g ∈ Gv , U2 centralizes Ug.
Hence by 12.1.2.2, U2 ≤ CG(U

g) = CMg (V g).
Suppose first that V ≤ Qv. Then for all g ∈ Gv , V

g ≤ Qv ≤ M = NG(V ).
By the previous paragraph, V g centralizes U2, so V

g acts on V1 and V2; hence by
symmetry, V acts on V g1 and V g2 . Then as v /∈ V2,

[V1, V
g
2 ] ≤ [V1, Qv] ∩ V

g
2 ≤ 〈v〉 ∩ V

g
2 = 1,

so that V1 ≤ CMg (V g2 ) = CMg (V g). Then V g ≤ CM (V1) = CG(V ), so (1) holds.
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So assume instead that V 6≤ Qv. Then by the Baer-Suzuki Theorem, there is
g ∈ Gv such that I := 〈V, V g〉 is not a 2-group. We showed U2 ≤ CG(V

g), and by
symmetry Ug2 centralizes V , so U2U

g
2 〈v〉 ≤ Z(I) and V g1 ≤ CT1(U2). But CT̄1(U2)

is the group of transvections on V2 with axis U2, so as V1 is dual to V2, CT̄1 (U2) is
the group of transvections on V1 with center 〈v〉. Hence [V, V g1 ] ≤ U2〈v〉 = U2〈z〉,
and then [V1U2V

g
1 U

g
2 , I ] ≤ U2U

g
2 〈z〉. Therefore O

2(I) ≤ CG(V1U2) = CG(V ) using
12.1.2.2, contradicting I not a 2-group. This completes the proof of 12.1.6. ¤

Lemma 12.1.7. W0 :=W0(T, V ) centralizes V , so that w := w(G, V ) > 0.

Proof. Assume that W0 6≤ CT (V ). Then n = 4 by 12.1.3, and there is
A := V g ≤ T with Ā 6= 1.

Suppose first that V ≤ NG(A). Then interchanging the roles of A and V
if necessary, we may assume m(A/CA(V )) ≥ m(V/CV (A)). Then by B.1.4.4, Ā
contains a member of P(T̄ , V ), which is J(T̄ ) by B.4.9.2iii. Thus Ā is the unipotent
radical of the stabilizer in L̄ of a 2-subspace of V1, so that [V1, A] is of rank 2. As
Ā normalizes V1, and V1 ≤ V ≤ NG(A), 1 6= [V1, A] ≤ V1 ∩A, contrary to 12.1.6.2.

Therefore we may assume that V 6≤ NG(A). As r(G, V ) ≥ 4 by 12.1.2.2,
m(Ā) ≥ 4 by E.3.4, so that m(Ā) = 4 = m2(L̄T̄ ). Then by lemma H.9.3.3, we may
take Ā to be one of the groups denoted there by Āi for 0 ≤ i ≤ 2. As r(G, V ) ≥ 4,
we conclude from E.3.32 that

Γ̌3,Ā(V ) = Γ̌3,A(V ) ≤ U := NV (A). (∗)

As we are assuming U < V , i 6= 0 by lemma H.9.3.4. Let B := NA(V1). Then
B̄ = Ā ∩ L̄ has rank 3, as Ā is Ā1 or Ā2. Set Ui := Vi ∩ U . By 12.1.6.2,

1 = Vi ∩ A ≥ [Ui, B].

But for any b̄ ∈ B̄#, CVi(b) ≤ Ui by (*), so CVi(b) = Ui = CV (B). However this is
not the case as B̄ contains at least one transvection on V1, but not all elements of
B̄# induce transvections on V1. This contradiction completes the proof. ¤

Lemma 12.1.8. W1 :=W1(T, V ) centralizes V , so that w > 1.

Proof. Assume that W1 6≤ CT (V ). As w > 0 by 12.1.7, w = 1. Thus there
is a w-offender A := NV g (V ) ≤ T with A a hyperplane of V g and Ā 6= 1. Now
V 6≤ NG(V

g) by E.3.25. As r(G, V ) ≥ n by 12.1.2.2, m(Ā) ≥ n− 1 by E.3.28.3. As
r(G, V ) ≥ n, E.3.32 says that

Γ̌n−2,A(V ) = Γ̌n−2,Ā(V ) ≤ U := NV (V
g). (∗)

Let Ui := Vi ∩U and B := NA(V1). Then m(A/B) ≤ 1, so m(V g/B) ≤ 2. Also
[Ui, B] ≤ Vi ∩ V g = 1 by 12.1.6.2, so that Ui ≤ CVi(B̄).

Suppose m(Ā) = n − 1. Then by (*), CVi(b̄) ≤ Ui for each b̄ ∈ B̄#, so that
Ui = CVi(b̄) for each such b̄. However, if b̄ is a transvection in L̄, then Ui is
a hyperplane of Vi, so that B̄ must be the full group of transvections with axis
Ui for i = 1 and 2. This is not the case as V1 is dual to V2. Thus B̄ contains
no transvections, and hence dim(Ui) = n − 2 and B̄ lies in the unipotent radical
R̄i centralizing Ui. However m(R̄1 ∩ R̄2) = 4 and R̄1 ∩ R̄2 contains a 4-group
R̄ with each member of R# a transvection, so as B̄ contains no transvections,
m(B̄) ≤ m((R̄1∩R̄2)/R̄) = 2. Thus asm(B̄) ≥ n−2, we conclude n = 4 and Ā > B̄,
so CU1(A) = 1 and hence U1 is faithful on V g . But U1 centralizes the subspace
B of codimension 2 in V g ; this forces U1 to induces a group of transvections on
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V gi with fixed axis B ∩ V gi for i = 1 and 2. Thus as V1 is dual to V2, m(U1) ≤ 1,
contradicting m(U1) = n− 2 = 2.

This contradiction shows that m(Ā) ≥ n. Suppose n = 5. Then by lemma
H.9.2.3, we may take Ā ≤ Ā0, where Ā0 is the centralizer in T̄1 of a 3-subspace
X of V1. Let W be a hyperplane of V1 containing X . Then m(Ā/CĀ(W )) ≤
m(Ā0/CĀ0

(W )) = 3, so W ≤ CV (CĀ(W )) ≤ U by (*). As this holds for each such
hyperplane, we conclude V1 ≤ U . But then 1 6= [V1, A] ≤ V1 ∩ V g, contrary to
12.1.6.2.

Therefore n = 4. Then by lemma H.9.3.3, we may assume Ā is one of the
subgroups there denoted Āi for 0 ≤ i ≤ 2. Now U < V as V 6≤ NG(V

g), so
i 6= 0 in view of (*) and lemma H.9.3.4. Therefore by parts (5) and (6) of lemma
H.9.3, m(U) ≥ 6, and CU (A) is of rank 1 or 2 for i = 1 or 2, respectively. Next
as s(G, V ) = 2 by 12.1.2.2, CU (A) = CU (V

g) by E.3.6. Thus m(U/CU (V
g)) ≥ 5

or 4 in the respective cases; so as m2(M̄) = 4, we conclude that Ā = Ā2 and
m(U/CU (V

g)) = 4. But as r(G, V ) > m(V/U), CG(U) ≤ NG(V ); hence CA(V ) =
CV g (U) since NĀ(U) is faithful on U by H.9.3.6. Therefore as m(Ā) = 4, CA(V ) =
CV g (U) is of rank 3. This contradicts parts (4)–(6) of lemma H.9.3, which say that
m(CV g(U)) = 1, 2, or 4, since m(U/CU (V

g)) = 4. This completes the proof of
12.1.8. ¤

Having shown that w > 1, we turn to the other weak closure parameters of
section E.3; as usual we will obtain a contradiction from their interrelations.

Recall by 3.3.2 that we may apply the results of section B.6 to any H ∈
H∗(T,M).

Lemma 12.1.9. (1) If 1 6= X is of odd order in CM (V ), then NG(X) ≤M .
(2) If H ∈ H∗(T,M), then n(H) = 2.
(3) r(G, V ) ≥ n+ 2.

Proof. Assume X is as in (1); replacing X with Z(F (X)), we may assume
that X is abelian. Then [X,L] ≤ O2(L). By Remark 4.4.2, Hypothesis 4.4.1 is
satisfied. As V is not the sum of isomorphic natural modules for L/O2(L) ∼= Ln(2)
or Ω+

6 (2), NG(X) ≤M by Theorem 4.4.3.
Next suppose U ≤ V with GU := CG(U) 6≤ M . By 12.1.2.1, U is totally

singular. Conjugating in L, we may take TU := CT (U) Sylow in CM (U). Let H ∈
H∗(TU ,M) ∩ GU . By 12.1.8, Wi = Wi(T, V ) ≤ Q ≤ TU for i = 0, 1, so by E.3.15,
Wi = Wi(TU , V ) = Wi(Q, V ), and NG(TU ) ≤ NG(Wi). But M = !M(NG(Q)) by
1.4.1, so by E.3.34.2,

NG(W0(TU , V )) ≤M ≥ CG(Z(W1(TU , V ))) ≥ CG(C1(TU , V )).

In particular NGU (TU ) ≤ MU , and hence TU ∈ Syl2(GU ). Then as s(G, V ) = 2
by 12.1.2.2, n(H) > 1 by E.3.19, so we may apply E.2.2 to conclude that a Cartan
subgroup B of the Borel subgroup H ∩M is nontrivial. For each odd prime p and
1 6= X ∈ Sylp(B), H = 〈H ∩M,NH(X)〉, so NG(X) 6≤ M as H 6≤ M . If T = TU
and p > 3, then as XT = TX , X ≤M = NG(V ), while M̄ = L̄T̄ has no nontrival
p-subgroup permuting with T̄ , we conclude [X,V ] = 1. This contradicts (1); thus
if H ∈ H∗(T,M) then p = 3 so that n(H) = 2, establishing (2).

Indeed this argument shows more generally that X̄ 6= 1. As X is of odd order,
CV (X) is a nondegenerate subspace of V of codimension at least 4, so as U is a
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totally singular subspace of CV (X), dim(CV (X)) ≥ 2 dim(U). Thus

dim(V/U) ≥ dim(V/CV (X)) + dim(CV (X))/2

= 2n− dim(CV (X))/2 ≥ 2n− (2n− 4)/2 = n+ 2,

establishing (3). ¤

Lemma 12.1.10. W2(T, V ) centralizes V , so that w > 2.

Proof. Assume that W2(T, V ) 6≤ CT (V ). Then w = 2 by 12.1.8, so there is a
w-offender A := V g ∩M ≤ T with m(V g/A) = 2 and Ā 6= 1. Let U := NV (V

g);
then m(V/U) ≥ 2 as w = 2. By 12.1.9.3, m(Ā) ≥ n. Then by E.3.32,

Γ̌n−1,A(V ) = Γ̌n−1,Ā(V ) ≤ U < V. (∗)

Suppose first that n = 4. Then m(Ā) = 4 = m2(M̄), so by lemma H.9.3.3, we
may take Ā to be one of the subgroups there denoted by Āi for 0 ≤ i ≤ 2. Set
B̄i := Āi ∩ L̄. By (*) and H.9.3.4, i 6= 0. Then we conclude from the last two
parts of H.9.3 that Γ̌2,Ā(V ) is of rank 6. As m(V/U) ≥ 2, U = Γ̌2,Ā(V ) = Γ̌3,Ā(V ),

whereas CV (ā) 6≤ Γ̌2,Ā(V ) for ā ∈ Ā1 − B̄1, or for ā a transvection in B̄2.
This contradiction reduces us to the case n = 5. Then by lemma H.9.2.3, we

may take Ā ≤ Ā0 in the notation of that result. Now lemma H.9.2.5 contradicts
(*), completing the proof. ¤

We are now in a position to establish a contradiction. Pick H ∈ H∗(T,M). By
12.1.9.2, n(H) = 2. However by 12.1.10, w ≥ 3, while by 12.1.9.3, r(G, V ) ≥ 6.
Thus H 6≤M with n(H) < min{w, r(G, V )}, contrary to E.3.35.1.

This contradiction shows:

Theorem 12.1.11. Assume G is a simple QTKE-group, T ∈ Syl2(G), and
L ∈ L∗f (G, T ) with L/O2(L) ∼= L4(2) or L5(2). Let M := NG(L). Then there is

no V ∈ R2(M) such that M/CM (V )) ∼= Aut(L/O2(L)) and V is the sum of the
natural module and its dual for L/O2(L).

By Theorems 12.1.11, 3.2.5, 3.2.8, and 3.2.9, the subcase of the Fundamental
Setup with L/O2(L) ∼= L4(2) or L5(2) is reduced to the cases (i.e. cases (9), (10),
and (11) of 3.2.8) with V/CV (L) a natural module or its exterior square. These
cases will be treated along with the other cases where L/O2(L) is defined over F2;
in particular they are completed in section 12.6, and in the final three sections of
this chapter.

12.2. Groups over F2, and the case V a TI-set in G

We now begin a fairly unified treatment of those simple QTKE-groups G for
which there exists L ∈ L∗f (G, T ) such that the section L/O2(L) has not yet been
eliminated from the list of cases in section 3.2. Thus in section 12.2, and indeed in
many subsequent sections, we assume the following hypothesis:

Hypothesis 12.2.1. G is a simple QTKE-group, T ∈ Syl2(G), and L ∈
L∗f (G, T ) with L/O2(L) quasisimple.

We begin with a Theorem which summarizes much of what we have accom-
plished up to this point:
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Theorem 12.2.2. Assume Hypothesis 12.2.1. Then one of the following holds:

(1) G is a group of Lie type of Lie rank 2 over F2n , n > 1, but G ∼= U5(2
n)

only for n = 2.
(2) G ∼=M22, M23, or J4.
(3) T ≤M := NG(L), and there exists V ∈ Irr+(L,R2(LT ), T ). For each such

V , V E T , V ∈ R2(LT ), the pair L, V is in the Fundamental Setup (3.2.1), V
is a TI-set under M , and either V E M or CV (L) = 1. In addition, one of the
following holds:

(a) V is the natural module of rank n for L/O2(L) ∼= Ln(2), with n = 3,
4, or 5.

(b) m(V ) = 4 and V is indecomposable under L/O2(L) ∼= L3(2).
(c) L/O2(L) ∼= L5(2), and V is an irreducible of rank 10.
(d) V/CV (L) is the natural module for L/CL(V ) ∼= An, with 5 ≤ n ≤ 8.
(e) m(V ) = 4, and L/CL(V ) ∼= A7.
(f) V/CV (L) is the natural module of rank 6 for L/O2(L) ∼= G2(2)

′ ∼=
U3(3).

(g) V is a faithful irreducible of rank 6 for L/O2(L) ∼= Â6.

Proof. By Theorem 10.0.1, T ≤ NG(L). Hence 〈L, T 〉 = LT and by 3.2.3,
there exists V◦ ∈ Irr+(L,R2(LT ), T ) and for each such V◦, L and V := 〈V T◦ 〉 satisfy
the FSU. Therefore by Theorem 3.2.5, one of the following holds:

(i) V = V◦ E M .
(ii) V = V◦ E T , CV (L) = 1, and V is a TI-set under M .
(iii) Case (3) of Theorem 3.2.5 holds.

Case (iii) was eliminated in Theorem 7.0.1 and Theorem 12.1.11. Thus case (i)
or (ii) holds, so that V = V◦ ∈ Irr+(L,R2(LT )) and V E T . As O2(LT ) centralizes
R2(LT ) and L/O2(L) is quasisimple, O2(LT ) ≤ CLT (V ) ≤ O2(LT )O2,Z(L), so that
V ∈ R2(LT ). In case (i), V E M , and in case (ii), CV (L) = 1, so in either case V
is a TI-set under M . Thus it remains only to show either that G is described in (1)
or (2), or that L and its action on V are as described in one of the cases (a)–(g) of
part (3) of Theorem 12.2.2.

The possibilities for the pair (L, V ) when V is not an FF-module under the
action of AutGL(V )(L/CL(V )) are listed in 3.2.9. If the first case of 3.2.9 holds,

then V is the Ω−4 (2
n)-module for L2(2

2n) with n > 1, so by Theorem 6.2.20, either
G ∼= U4(2

n), or n = 2 and G ∼= U5(4). Thus conclusion (1) of Theorem 12.2.2 holds
in this case. The remaining cases of 3.2.9 were treated in Theorem 7.0.1, where it
was shown that G is isomorphic to J4, so that conclusion (2) of Theorem 12.2.2
holds.

Thus we have reduced to the case where V is an FF-module for AutGL(V )(L̄),

where L̄ := L/CL(V ). Therefore L̄ and its action on Ṽ := V/CV (L) are listed in
3.2.8. In the first case of 3.2.8, L̄ ∼= L2(2

n) and V is the natural module. Then
by Theorem 6.2.20, the only groups G arising are: the groups of Lie rank 2 and
characteristic 2 (arising in our Generic Case), so that conclusion (1) of 12.2.2 holds;
and M22 and M23, so that conclusion (2) of 12.2.2 holds. Indeed the only case of
the FSU with L̄ ∼= L2(2

n) left open by Theorem 6.2.20 is the case where n = 2 and
V is the A5-module; this case is one of the subcases of 3.2.8.5, and it appears as a
subcase of case (d) of conclusion (3) of 12.2.2. The cases with n > 1 in (2), (3), and
(4) of 3.2.8, were eliminated in Theorem 11.0.1. On the other hand when n = 1,
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one of the conclusions of Theorem 12.2.2 holds—namely (a), (b), the subcase of
(d) with Sp4(2)

′ ∼= A6, or (f). Thus Theorem 12.2.2 holds in the first four cases of
3.2.8. In the remaining cases of 3.2.8, one of the conclusions of part (3) of Theorem
12.2.2 holds; notice that 3.2.8.10 correponds to the subcase of case (d) of conclusion
(3) of 12.2.2 where L̄ ∼= L4(2) ∼= A8. So the proof is complete. ¤

Thus in the remainder of this section, and in many subsequent sections, we will
assume:

Hypothesis 12.2.3. Hypothesis 12.2.1 holds, and G is not one of the groups in
conclusions (1) and (2) of Theorem 12.2.2. Thus conclusion (3) of Theorem 12.2.2
holds. Set M := NG(L), and let V ∈ Irr+(L,R2(LT ), T ).

Since Hypothesis 12.2.3 implies that conclusion (3) of Theorem 12.2.2 holds,
the remainder of our treatment of the Fundamental Setup is devoted to the groups
and modules listed there.

Observe also that Hypothesis 12.2.3 imposes constraints on all members of
L∗f (G, T ):

Remark 12.2.4. Assume Hypothesis 12.2.3. Then for any K ∈ L∗f (G, T ) with
K/O2(K) quasisimple, Hypothesis 12.2.3 holds for K in the role of “L”. Thus
K is described in conclusion (3) of Theorem 12.2.2, T normalizes K, there exists
VK ∈ Irr+(K,R2(KT ), T ), and any such VK is described in conclusion (3) of
Theorem 12.2.2.

Indeed observe that anyKT -submodule of R2(KT ) which is irreducible module
K-fixed points must contain such a VK , and hence must itself be of the form VK .
However rather than introducing further notation for KT , we will continue to use
the existing notation of Irr+(K,R2(KT ), T ).

Usually when we assume Hypothesis 12.2.3, we adopt the following notational
conventions:

Notation 12.2.5. (1) Z := Ω1(Z(T )) and Q := O2(LT ).
(2) MV := NM (V ) = NG(V ) and M̄V :=MV /CMV (V ).
(3) For v ∈ V #, Gv := CG(v), Mv := CM (v), Lv := O2(CL(v)), and Tv :=

CT (v). We have the properties:

(a) Lv E Mv.
(b) Conjugating in L, we may choose v so that Tv ∈ Syl2(Mv).
(c) Mv ∈ He.
(d) C(Gv , Q) ≤Mv.
(e) Mv ≤MV .

(4) For z ∈ V ∩ Z#, set G̃z := Gz/〈z〉.

Proof. We establish the properties claimed in part (3): Part (a) follows since
L E M ; (b) follows since T ∈ Syl2(G), (c) follows from 1.1.3.2; (d) follows as
C(G,Q) ≤ M by 1.4.1.1; (e) is a special case of 12.2.6, established in the next
subsection. ¤

12.2.1. Preliminary results under Hypothesis 12.2.3. Recall that we are
assuming Hypothesis 12.2.3, so that in particular Theorem 12.2.2.3 holds. Our first
result follows from Theorem 12.2.2.3 and 3.1.4.1:
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Lemma 12.2.6. V is a TI-set in M , so if 1 6= U ≤ V and H ≤ NG(U), then
H ∩M = NH(V ).

Lemma 12.2.7. Assume CG(Z) ≤ M and H ∈ H∗(T,M). Let K := O2(H)
and VH := 〈ZH〉. Then

(1) VH ∈ R2(H) and CT (V ) = O2(H) ≤ CH (VH) ≤ kerNH(V )(H).

Assume further that H is not solvable. Then

(2) K/O2(K) ∼= L2(4).
(3) K ≤ Y ∈ L∗f (G, T ), and either

(i) Y = K and [VH ,K] is the sum of at most two A5-modules for K/O2(K),
or

(ii) Y/O2,Z(Y ) ∼= A7, Hypothesis 12.2.3 is satisfied with Y in the role of
“L”, and for each VY ∈ Irr+(Y,R2(Y T ), T ), VY is T -invariant and m(VY ) = 4 or
6.

Proof. First VH ∈ R2(H) by B.2.14, so O2(H) ≤ CH(VH ). Then as CG(Z) ≤
M but H 6≤M , K 6≤ CH(VH ). The remaining statements in (1) follow from B.6.8.6
and 12.2.6.

Now assume H is not solvable. By E.2.2, K = 〈XT 〉 for a suitable X ∈ C(H)
with X/O2(X) quasisimple and X 6≤ M . As [VH , X ] 6= 1 by (1), X ∈ Lf (G, T ).
We may embed X ≤ Y ∈ L∗(G, T ), and then by 1.2.9, Y ∈ L∗f (G, T ).

Suppose first that Y/O2(Y ) is quasisimple. Then by Remark 12.2.4, Hypothesis
12.2.3 is satisfied with Y in the role of “L”. In particular Y is T -invariant; and
for each VY ∈ Irr+(Y,R2(Y T ), T ), VY is T -invariant, and Y, VY satisfies one of the
conclusions of 12.2.2.3. Therefore T acts on X by 1.2.8.1, so that X = K with KT
described in E.2.2.2.

Assume first that K = Y . Comparing the lists of 12.2.2.3 and E.2.2.2, we
conclude that K/O2,Z(K) ∼= L2(4), L3(2), or A6. However if K/O2,Z(K) is L3(2)
or A6, then by E.2.2.2, T is nontrivial on the Dynkin diagram of K/O2(K), a
contradiction as 12.2.2.3 says VY /CVY (K) is a natural module. Thus K/O2(K) ∼=
L2(4). Hence by the exclusions in Hypothesis 12.2.3 and Theorem 6.2.20, [VH ,K]
is the sum of at most two A5-modules. Therefore (2) and (3i) hold in this case.

So we may assume that K < Y . Therefore by 1.2.4, the embedding of K in
Y is described in A.3.12. Searching for pairs K, Y with K appearing in E.2.2.2
and Y appearing in 12.2.2.3, we conclude that either K/O2,Z(K) ∼= L2(4), L3(2),
or A6, with Y/O2,Z(Y ) ∼= A7; or K/O2(K) ∼= L3(2), with Y/O2(Y ) ∼= L4(2) or
L5(2). But again when K/O2(K) is L3(2) or A6, T is nontrivial on the Dynkin
diagram of K/O2(K), whereas there is no such embedding of KT/O2(KT ) in S7
or Aut(L4(2)), so KT/O2(KT ) ∼= Aut(L3(2)) and Y T/O2(Y T ) ∼= Aut(L5(2)).
However this is also impossible as VY is a T -invariant natural module for Y/O2(Y )
by 12.2.2.3, so Y/O2(Y ) is self-normalizing in GL(VY ). Thus K/O2(K) ∼= A5 and
Y/O2,Z(Y ) ∼= A7, so that (2) holds. Also as Y, VY appears in 12.2.2.3, (3ii) holds.

Finally assume that Y/O2(Y ) is not quasisimple. Then by 1.2.1.4, Y/O2,2′(Y ) ∼=
SL2(p) for some prime p > 3. Now T acts on Y by 1.2.1.3, so again X = K is T -
invariant by 1.2.8.1, and hence appears in E.2.2.2; in particular as K/O2(K) is qua-
sisimple, K < Y . Again by 1.2.4, the embedding X < Y is described in A.3.12, so
by A.3.12, K/O2(K) ∼= L2(p) or L2(5). Now for some odd prime q, X0 := Ξq(Y ) ∈
Ξrad(G, T ), and as Y ∈ L∗(G, T ), by definition X0 ∈ Ξ∗rad(G, T ). Then by 1.3.8,
X0 ∈ Ξ∗(G, T ). By 3.2.14 applied to Y , [Z,X0] = 1, so X0T ≤ CG(Z) ≤M . Then
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M = NG(X0) since NG(X0) = !M(X0T ) by 1.3.7, so H ≤ Y T ≤ NG(X0) ≤ M ,
contradicting H 6≤M . ¤

Given a group A, write θ(A) for the subgroup of A generated by all elements
of order 3 in A.

Lemma 12.2.8. One of the following holds:

(1) O3′(M) = L.
(2) L/O2(L) ∼= A5 or L3(2).

(3) L/O2(L) ∼= Â6 or Â7 and L = θ(M) is the subgroup of M generated by all
elements of M of order 3.

Proof. First L is described in 12.2.2.3, so if m3(L) = 1, then (2) holds; thus
we may assume m3(L) = 2. Then (1) or (3) holds by 12.2.2 and A.3.18. ¤

Lemma 12.2.9. (1) If CZ(L) 6= 1, then CG(Z) ≤M .
(2) If CG(Z) ≤M , then L = [L, J(T )].

Proof. As M = !M(LT ), (1) holds. Theorem 3.1.8.3 implies (2). ¤

Lemma 12.2.10. (1) CM̄V
(L̄) = Z(L̄).

(2) L̄ = O2(M̄V ) and M̄V = L̄T̄ .

Proof. In each case listed in conclusion (3) of Theorem 12.2.2, Out(L/O2(L))
is a 2-group, so O2(M̄V ) ≤ L̄CM̄V

(L̄). Further in cases (a)–(f), the irreducible

module I := V/CV (L) satisfies E := EndL̄(I)
∼= F2, so that CM̄V

(L̄) = 1. Hence

(1) and (2) hold in these cases. In case (g), I = V and E ∼= F4, with Z(L̄) inducing
E#, so again (1) and (2) follow. ¤

Lemma 12.2.11. Assume H ∈ H∗(T,M) with H ≤ NG(U) for some 1 6= U ≤
V . Assume also that one of the following holds:

(a) L/O2(L) ∼= L5(2).

(b) L/O2(L) ∼= Â6, and V ≤ O2(CG(v)) for v ∈ CV (T )#.
(c) L/O2(L) ∼= G2(2)

′ and CG(V3) ≤ M , where V3 is the (T ∩ L)-invariant
subspace of V of rank 3.

Then

(1) n(H) ≤ 2, and
(2) if n(H) = 2, then a Hall 2′-subgroup of H ∩M is a nontrivial 3-group.

Proof. The lemma is vacuously true if n(H) ≤ 1, so we may assume that
n(H) ≥ 2. Then by E.2.2, H ∩M is the preimage of the normalizer of a Borel
subgroup of the group O2(H/O2(H)) of Lie type and characteristic 2. We take C
to be a Hall 2′-subgroup of H ∩M , so that C is abelian and CT = TC. We may
assume that either:

(I) n(H) = 2, but there is a prime p > 3 such that B := Op(C) 6= 1, or
(II) n(H) > 2, in which case p and B also must exist.

Then also A := Ω1(B) 6= 1, BT = TB, and AT = TA. As n(H) > 1 and
AT = TA, NH(A) 6≤M by 4.4.13.1.

Next as B ≤ H ∩ M ≤ NM (U) by hypothesis, B normalizes V by 12.2.6.
We claim in fact that B centralizes V : For otherwise 1 6= B̄ ≤ O2(M̄V ) = L̄ by
12.2.10.2. Thus B̄ is an abelian p-subgroup of L̄ with p > 3, and B̄T̄ = T̄ B̄, so we
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may apply A.3.15. However, the list of possibilities for L/O2(L) from A.3.15 does
not intersect the list from Theorem 12.2.2.3.

Therefore B ≤ CMV (V ) ≤ CMV (L̄), and hence B ≤ CMV (L/O2(L)). Visibly
Hypothesis 4.2.1 is satisfied, so Hypothesis 4.4.1 is satisfied by Remark 4.4.2. Thus
we can apply Theorem 4.4.3 to obtain a contradiction: Namely we showed that
NG(A) 6≤ M , so that one of the conclusions of 4.4.3.2 must hold, which is not the
case as we are assuming one of hypotheses (a)–(c). ¤

The statement of the following lemma makes use of Notation 12.2.5.

Lemma 12.2.12. Assume v ∈ V # with O2(L̄vT̄v) = 1, and choose Tv ∈
Syl2(Mv). Then

(1) Q = O2(LvTv), Q ∈ Syl2(CGv (Lv/O2(Lv))), and Hypothesis C.2.3 is sat-
isfied with Gv, Mv, Q in the roles of “H, MH , R”.

(2) Assume L̄v = L̄∞v and V = [V, L̄v]. Then Hypothesis C.2.8 is satisfied with
Gv, Mv, L

∞
v , Q in the roles of “H, MH , LH , R”.

Proof. Since V ∈ R2(LT ), Q ≤ Tv, so as O2(L̄vT̄v) = 1, Q = O2(LvTv) by
1.4.1.4. We chose Tv ∈ Syl2(Mv) while Lv E Mv and C(Gv , Q) ≤Mv by 12.2.5.3.
Therefore (1) follows from A.4.2.7.

Assume L̄v = L̄∞v and V = [V, L∞v ]. Then L∞v ∈ C(Mv), and as L̄v = L̄∞v ,
the argument in the previous paragraph shows that Q ∈ Syl2(CMv (L

∞
v /O2(L

∞
v ))).

AlsoMv ∈ He by (3c) of 12.2.5, and the verification of the remainder of Hypothesis
C.2.8 is straightforward. ¤

12.2.2. The treatment of V a TI-set in G. We now come to the main
result of this section, in which we treat the case where V is a TI-set in G.

Theorem 12.2.13. Assume Hypothesis 12.2.3. Then one of the following holds:

(1) CG(v) 6≤M for some v ∈ V #.
(2) L is an Ln(2)-block for n = 3 or 4, and G ∼= Ln+1(2).
(3) L is an L3(2)-block, and G ∼= A9.
(4) L is an L4(2)-block, and G ∼=M24.

Remark 12.2.14. The groupsM22 andM23 contain a pair (L, V ) failing 12.2.13.1,
with V of rank 4 and L/O2(L) ∼= A6 or A7, but these groups are explicitly excluded
by Hypothesis 12.2.3. Their shadows are eliminated via an appeal to 12.2.7.3, which
is violated in M22 and M23.

Remark 12.2.15. As the groups appearing in conclusions (2), (3), and (4) of
Theorem 12.2.13 appear as conclusions in our Main Theorem, we will sometimes
assume that G is not one of those groups. Then Theorem 12.2.13 tells us that
CG(v) 6≤M for some v ∈ V #.

Until the proof of Theorem 12.2.13 is complete, assume that CG(v) ≤ M for
each v ∈ V #. We must show that one of (2)–(4) holds. We begin a series of
reductions. Recall we have adopted Notation 12.2.5.

Lemma 12.2.16. V is a TI-set in G.

Proof. By 12.2.6, V is a TI-set in M . Thus if the lemma fails, there is
g ∈ G−M and v ∈ V # with u := vg ∈ V . As we are assuming that conclusion (1)
of 12.2.13 fails, Gw =Mw for w ∈ V #, so
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(1) Mv = Gv ∼= Gu =Mu.

Next if ux = v for some x ∈ M , then gx ∈ Gv ≤ M , so g ∈ Mx−1 = M , contrary
to the choice of g. Hence

(2) u /∈ vM .

By (1) and (2) there are u, v ∈ V # with Mu
∼= Mv but v /∈ uM . Inspecting the

list of Theorem 12.2.2.3, we first eliminate the cases where L is irreducible on V .
In the remaining cases, let z denote the generator of CV (L). We also eliminate
case (b), since there Z ∩ V = CV (L) by B.4.8.2, so that each v ∈ V − CV (L) is
T -conjugate to vz, and hence all members of V − CV (L) are M -conjugate. This
leaves the subcases of (d) where V is the core of the permutation module of degree
n for L̄ ∼= An, n = 6 or 8, and the subcase of (f) where V is the Weyl module of
dimension 7 for L̄ ∼= G2(2)

′. In the former, we may take v of weight 2, and u of
weight n−2; in the latter, we may take v singular and u nonsingular in V −CV (L).
Now conjugating in L, we may assume u = vz. As CV (L) 6= 1, V E M by 12.2.2.3,
so z ∈ Z(M) and hence M = Gz .

Without loss, Tv := CT (v) ∈ Syl2(Mv), so as Gv ≤ M , Tv ∈ Syl2(Gv). As
u = vz with z central in Mu = Gu, also Tv ∈ Syl2(Gu). Then replacing g by a
suitable member of gCG(u), we may assume g ∈ NG(Tv). However if L̄ ∼= A6 or
G2(2)

′, then v is 2-central in M so that T = Tv, so g ∈ NG(T ) ≤ M by Theorem
3.3.1, contrary to (2). Hence L̄ ∼= A8.

Let Zv := Ω1(Z(Tv)) and Vv := 〈ZLv 〉. As Q ≤ Tv, Q centralizes Zv and
hence Vv . On the other hand, Zv contains Z ∩ V 6≤ CV (L) by I.2.3.1i; so V ≤
Vv as V ∈ Irr+(L,R2(LT )), and hence CLT (Vv) ≤ CLT (V ) = Q. Therefore
Q = CLT (Vv), and hence Vv ∈ R2(LT ). If [Vv , J(T )] = 1, then as V ≤ Vv , also
[V, J(T )] = 1, and then 3.2.10.2 contradicts (2). Thus [Vv , J(T )] 6= 1, so by B.2.7,
Vv is an FF-module for LT/CLT (Vv). Then as V is the core of the permutation
module for A8, by Theorem B.5.1.1, V = [Vv , L], and hence Vv = V ZL by B.2.13,
where ZL := CZv (L). Thus Zv = 〈v〉ZL. Now T = Tv(T ∩ L) ≤ CG(ZL), so
ZL ∩ Z

g
L = 1 using (2), since M = !M(LT ) and M g = !M(LgT g). Hence as

g ∈ NG(Tv) ≤ NG(Zv) and ZL is a hyperplane of Zv, we conclude ZL is of order 2.
Therefore ZL = 〈z〉 and Zv = 〈z, v〉. Then as vg = u 6∈ zG by (1), z is weakly closed
in Zv. Therefore g ∈ Gz =M , contrary to (2), completing the proof of 12.2.16. ¤

Lemma 12.2.17. W0(T, V ) ≤ CT (V ) = Q, so that NG(W0(T, V )) ≤M .

Proof. Let V g ≤ T . By 12.2.16, V is a TI-set in G, so as V g = NV g (V ),
we conclude from I.6.2.1 that [V, V g ] = 1. Now the final statement follows from
E.3.34.2. ¤

During the remainder of the proof of Theorem 12.2.13, pick H ∈ H∗(T,M),
and set K := O2(H), VH := 〈ZH〉 = 〈ZK〉, and H∗ := H/CH(VH). Observe that
CG(Z) ≤ CG(Z ∩ V ) ≤ NG(V ) ≤ M by 12.2.16; thus we may apply 12.2.7 during
the course of the proof.

Lemma 12.2.18. V 6≤ O2(H), so that V ∗ 6= 1.

Proof. By 12.2.7.1, O2(H) = CT (VH). Thus V ≤ O2(H) iff V ∗ = 1, so we
may assume V ≤ O2(H), and it remains to derive a contradiction.

Similarly if W0 := W0(T, V ) ≤ O2(H), then H ≤ NG(W0) ≤ M by E.3.15
and 12.2.17, contrary to H 6≤ M . Thus there is A := V g ≤ T , with A∗ 6= 1, and
K ≤ 〈AH〉 by B.6.8.4.
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Suppose that A∩O2(H) = 1. Then A∗ ∼= A, som(A∗) = m(V ) ≥ 3 by 12.2.2.3.
But if H is solvable, then m2(H

∗) ≤ 2 as H = O2,p,2(H) for some odd prime p
by B.6.8.2, so that H/O2,p(H) is a subgroup of GL2(p). On the other hand if H
is nonsolvable, then by 12.2.7.2, K∗ ∼= L2(4), so that again m2(H

∗) ≤ 2. Thus in
either case, we have a contradiction to m(A∗) ≥ 3.

This contradiction shows that 1 6= A ∩ O2(H). Thus for each h ∈ H , 1 6=
Ah ∩ O2(H) ≤ NAh(V ) by 12.2.7.1. However as V ≤ O2(H), 〈V,Ah〉 is a 2-group,
so [V,Ah] = 1 by I.6.2.1. We saw K ≤ 〈AH 〉, so K ≤ CG(V ) ≤ M , contradicting
H 6≤M . This completes the proof of 12.2.18. ¤

Lemma 12.2.19. H is solvable.

Proof. Assume that H is not solvable. Then by 12.2.7, K/O2(K) ∼= K∗ ∼=
L2(4). By 12.2.18, V ∗ 6= 1. As V ≤ O2(M), V ∗ ≤ O2(M ∩ H)∗ = T ∗ ∩ K∗ ∈
Syl2(K

∗). Thus either V ∗ = T ∗ ∩ K∗ ∼= E4, or V
∗ ≤ K∗ is of order 2. Pick

h ∈ K −M , and let U := V ∩O2(H), I := 〈V, V h〉, and WI := O2(I). Then either
|V ∗| = 4 and I∗ = K∗ ∼= L2(4), or V

∗ is of order 2 and I∗ ∼= D2m, m = 3 or
5. As m(V ) ≥ 3 > m(V ∗), U 6= 1. Then as U ≤ O2(H) ≤ NH(V

h) by 12.2.7.1,
NV (V

h) 6= 1. It follows from (a) and (c) of I.6.2.2 that WI := U × Uh is a sum of
natural modules for I/WI

∼= I∗; in particular if I∗ ∼= D2m, an element of order m
is fixed point free on WI . If V ∗ is of order 2, pick x ∈ H ∩M of order 3 and let
KI := 〈V x, I〉 and W := UxWI ; if |V ∗| = 4 let KI := I and W := WI . Thus in
either case K∗ = K∗I .

We claim that KI acts on W , and W is elementary abelian: Suppose first that
|V ∗| = 2. We saw that U 6= 1 normalizes V x, and as 〈V ∗, V ∗x〉 is a 2-group by
our choice of x, 〈V, V x〉 is a 2-group. Therefore V centralizes V x by I.6.2.1. Now
by symmetry between I = 〈V, V h〉 and 〈V x, V h〉, 〈V x, V h〉 acts on Ux × Uh, so
KI = 〈V, V

x, V h〉 acts onW = UUxUh andW is elementary abelian. On the other
hand if |V ∗| = 4 then KI = I acts on W = U × Uh, completing the proof of the
claim.

Next by 12.2.7.1, O2(H) acts on V and V h, and also on V x when |V ∗| = 2,
so O2(H) acts on KI and W . Thus KO2(H) = KIO2(H) acts on KI and W .
Therefore asKIO2(H)/KI

∼= O2(H)/(O2(H)∩KI ) is a 2-group,K = O2(H) ≤ KI .
Now if |V ∗| = 4, then KI = I , so W = O2(I) is a sum of natural modules for

K∗ ∼= KI/W . Suppose on the other hand that V ∗ is of order 2. We saw earlier that
V centralizes V x; hence W = UxWI = CW (V )WI , so that W = CW (i)×WI for i
of order m in I , which is fixed point free on WI ; and CW (i) = CW (I) ≤ CW (V ) =
UUx = CW (V x). Thus CW (I) = CW (KI). As [W,V ] = U and [W,V x] = Ux with
V V x abelian, T ∗ ∩ K∗ = V ∗V ∗x is quadratic on W . Also i is fixed-point-free on
WI , so by G.1.5 and G.1.7, W/CW (I) is a sum of natural modules for K∗.

Now Z∩V 6= 1, so 1 6= VZ := 〈(Z∩V )K〉 ∈ R2(KT ) by B.2.14. As V is a TI-set
in G by 12.2.16 and K 6≤M ≥ NG(V ), CV (K) = 1. As Z ∩V ≤ O2(H)∩V = U ≤
W , VZ ≤ W , so by the previous paragraph 1 6= VZ/CVZ (K) is a sum of natural
modules for K∗.

By 12.2.7.3, K ≤ Y ∈ L∗f (G, T ), with Y described in case (i) or (ii) of that

result. Let VY := 〈(Z ∩ V )Y 〉 and Ŷ := Y/CY (VY ); then VZ ≤ VY . As VZ/CVZ (K)
is a sum of natural L2(4)-modules, case (i) of 12.2.7.3 cannot arise, since there
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the noncentral chief factors for K on VZ are A5-modules. 1 Therefore case (ii)

of 12.2.7.3 occurs, so Ŷ ∼= A7, and each J ∈ Irr+(Y, VY , T ) is T -invariant and of
rank 4 or 6. Again using the fact that the noncentral chief factors for K on VZ
are L2(4)-modules, we conclude that J is of rank 4 and the natural module for K̂.
Therefore [J, T ∩K] = [J,w] ∼= E4 for each w ∈ V − O2(K). Now [J,w] ≤ V , and
from the action of A7 on J ,

Y = 〈CY (v) : v ∈ V ∩ J
#〉 ≤M,

whereas K ≤ Y with K 6≤ M . This contradiction completes the proof of 12.2.19.
¤

By 12.2.19, H is solvable, so we may apply B.6.8.2 to conclude that

H = PT,

where P is a p-group for some odd prime p, P ∗ = F ∗(H∗), and Φ(P ) = P ∩M .
Thus [P ∗, V ∗] 6= 1 by 12.2.18, and hence P ∗ = [P ∗, V ∗], since V E T and T ∗ is
irreducible on P ∗/Φ(P ∗) by B.6.8.2. By Coprime Action, we may pick h ∈ P−Φ(P )
so that CV ∗(h

∗) is a hyperplane of V ∗. Let I := 〈V, V h〉 and U := O2(I). By I.6.2.2,
U = (V ∩ U)× (V h ∩ U) is a sum of natural modules of I/U ∼= D2p. Thus V

h ∩ U
is of rank m(V )− 1 ≥ 2, and induces the full group of transvections in GL(V ) with
axis V ∩ U . Therefore we may apply the dual of G.3.1 to the action of LT on V ,
to restrict the cases in 12.2.2.3 to:

Lemma 12.2.20. L̄ = GL(V ) ∼= Ln(2) for n = 3, 4, or 5, V is the natural mod-
ule for L̄, U ∩V is a hyperplane of V , and U induces the full group of transvections
with axis U ∩ V on V . In particular as T ≤ NG(V ), T ≤ LCT (V ).

Observe that we are beginnning to show that G has a 2-local structure similar
to that of one of the groups in conclusions (2)–(4) of Theorem 12.2.13.

Lemma 12.2.21. U ≤ O2(H), so V ∗ is of order 2 and inverts P ∗/Φ(P ∗).

Proof. We saw U = [U,O2(I)], so if U 6≤ O2(H), then U∗ = [U∗, O2(I∗)] 6= 1,
impossible as H∗ is 2-nilpotent. We also saw that P ∗ = [P ∗, V ∗], so as V ∩ U is a
hyperplane of U by 12.2.20, V ∗ is of order 2, and V ∗ inverts P ∗/Φ(P ∗). ¤

Next we obtain some restrictions on the structure of H and its action on 〈(U ∩
V )H 〉.

We observed earlier for each h ∈ P − Φ(P ) = P −M that I∗ ∼= D2p, so that
h has order p. Then by A.1.24, P ∼= Zp, Ep2 , or p

1+2. Let v ∈ V − U . By the
Baer-Suzuki Theorem, v inverts an element h′ of order p in K; replacing P by
a Sylow group containing h′, we may take h′ ∈ P . Then as V ∗ is of order 2 by
12.2.21, we may take h′ = h in the definition of I . Let W := 〈(U ∩ V )H 〉. Then
W ≤ O2(H) by 12.2.21, and U = (V ∩ U)(V h ∩ U) ≤ 〈(U ∩ V )P 〉 ≤ W . Indeed
as T acts on U ∩ V = O2(H) ∩ V , (U ∩ V )H = (U ∩ V )TP = (U ∩ V )P = UP , so
W = 〈UP 〉. In particular as U ≤ [W,O2(I)] ≤ [W,P ], W = 〈UP 〉 ≤ [W,P ], and
henceW = [W,P ]. Now 1 6= U∩V = O2(H)∩V E O2(H), so U∩V commutes with
its H-conjugates by I.6.2.2, and hence W is elementary abelian. From the action
of I on U in I.6.2.2a, [U, v] = [U ∩ V h, v] = U ∩ V . Also [W, v] ≤W ∩ V = U ∩ V ,
so W = (U ∩ V h)⊕CW (v). Similarly W = (U ∩ V )⊕CW (vh), so W = U ⊕CW (I)

1This is where Hypothesis 12.2.3 eliminatesM22 andM23 as possible conclusions in Theorem
12.2.13.
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with U = [W, I ] = [W,h]. Further [W,V ] = [U, V ] = V ∩ U = V ∩W is of rank
n− 1.

We next claim that we may choose P invariant under v; and when P is non-
abelian, that Φ(P ) ≤ NH∩M (V ). If P ∼= Zp, then v acts on P and we are done.

Suppose P ∼= Ep2 . Then 〈P, v〉 ≤ N := NH(〈h〉). Set Ṅ := N/〈h〉. As v∗ inverts

P ∗, v̇ 6∈ O2(Ṅ), so we may apply the Baer-Suzuki Theorem again in Ṅ , to conclude
that v inverts y of order p in CH(h) − 〈h〉. Thus 〈h, y〉 ∈ Sylp(H) is v-invariant,
and choosing P := 〈h, y〉, we are done in this case also. Finally, suppose P ∼= p1+2.
Then Φ(P ) = Z(P ) centralizes h and so acts on [W,h] = U . Further O2,Φ(H) =
O2(H)Φ(P ) and V centralizes O2,Φ(H)/O2(H), so that [Φ(P ), V ] ≤ O2(H). Thus
Φ(P ) acts on 1 6= CU (O2(H)V ) ≤ U ∩ V , and so since V is a TI-set in M by
12.2.6, Φ(P ) acts on V , establishing the final assertion of the claim. Next Φ(P )
centralizes V/(U ∩ V ) of rank 1, and hence centralizes some v0 ∈ V − U , which

we may take to be v. Set P1 := Φ(P )〈h〉, H1 := NH(P1), and Ḣ1 := H1/P1. We

apply the Baer-Suzuki Theorem one more time to Ḣ1: As v∗ inverts P ∗/Φ(P ∗),

v̇ 6∈ O2(Ḣ1), so v̇ inverts an element k̇ of order p in Ḣ1, and then the preimage of

〈k̇〉 is a v-invariant Sylow p-group P of H . This completes the proof of the claim.
So in any event we may assume v acts on P . Thus V PW = 〈v〉PW is a

subgroup of H . Further [O2(H), v] ≤ V ∩O2(H) = V ∩U ≤W , so that v centralizes
O2(H)/W . Then as P = [P, v], [O2(H), P ] ≤ W , and hence PW E O2(H)P .
Thus as K = O2(H) ≤ PO2(H), K ≤ PW . We saw earlier that W = [W,P ], so
W ≤ O2(PW ) ≤ O2(H) = K, and hence K = PW . Summarizing:

Lemma 12.2.22. P ∼= Zp, Ep2 , or p
1+2, and we may choose P so that P is

invariant under v ∈ V − U , W = 〈UP 〉 = [W,P ] is elementary abelian, [W,V ] =
V ∩W is of rank n− 1, K = PW , and Φ(P ) ≤ NH∩M (V ).

Lemma 12.2.23. P ∼= Zp.

Proof. Assume P is not Zp, and let HP := KV , Φ := Φ(P ), WP := CW (Φ),

and ĤP := HP /CHP (WP ).
SupposeWP 6= 1. By 12.2.22,W = [W,P ], so as T ∗ is irreducible on P ∗/Φ(P ∗),

Φ = CP (WP ) and P̂ ∼= Ep2 . Then by Generation by Centralizers of Hyperplanes
A.1.17, WP is generated by nontrivial subgroups Wi := CWP (Pi), where Pi runs
over a nonempty collection of subgroups of index p in P generating P . As v inverts
P/Φ, v acts on each subgroup Pi and hence on each Wi; further as W = [W,P ]
so that CW (P ) = 1, also Wi = [Wi, P ], so that v is nontrivial on Wi. Thus
1 6= [Wi, v] ≤Wi∩V . Therefore as V is a TI-set in G by 12.2.16, Pi ≤ CG(Wi∩V ) ≤
NG(V ) ≤M , so H = KT = PT ≤M , contrary to H 6≤M .

Therefore WP = 1, so P ∼= p1+2 and W = [W,Φ]. By 12.2.22, Φ ≤ NH∩M (V ),
so W ∩ V = [W ∩ V,Φ] is of rank n− 1 by 12.2.22, and then m([V,Φ]) = n− 1. In
particular, Φ is faithful on V . Now Φ̄ ≤ M̄V = L̄ = L/O2(L) = GL(V ) ∼= Ln(2)
by 12.2.20. Therefore as ΦT = TΦ, p = 3 and Φ̄T̄ is a rank one parabolic of L̄.
However for any X of order 3 in a rank one parabolic, [V,X ] is of rank 2; so as
m([V,Φ]) = n− 1 we conclude n = 3.

As n = 3, U ∩ V is of rank 2. Now KV =WPV = 〈V, V x, V y〉 for x, y chosen
so that P := 〈x, y〉. Thus

W = [W,KV ] = [W,V ][W,V x][W,V y] = (U ∩ V )(U ∩ V x)(U ∩ V y).
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Furthemore m(W ) ≤ 3m(U ∩ V ) = 6, so m(W ) = 6, since this is the minimal
dimension of a faithful module for P ∼= 31+2.

Let QL := O2(L) and TL := T ∩ L. Then T = QTL by 12.2.20, while Q =
CLT (V ) and LT ∼= L3(2). As Φ̄ is inverted in T̄L and Φ permutes with T , Φ is
inverted in NTL(X) so Φ ≤ L.

Now K = PW by 12.2.22, and W = [W,Φ], so Y := ΦW = O2(ΦT ). As
ΦW char PW E H , Y E H . Now as L̄ ∼= L3(2), O2(Ȳ ) = W̄ ∼= W/(W ∩ Q)
is of rank 2, as is W ∩ V ; so as W is of rank 6, (W ∩ Q)/(W ∩ V ) ∼= (W ∩
Q)V/V is of rank 2. Further (W ∩Q)V/V = [Q/V,Φ] since W = [W,Φ] = O2(Y ).
Therefore L has a unique noncentral chief factor [Q,L]/Q0 (for some suitable Q0

containing V ) on [Q,L]/V . Also since the unique noncentral chief factors for Φ on
[Q,L]/Q0 and V are in the centralizer of the unipotent radical W̄ , it follows from the
representation theory of L3(2) that [Q,L]/Q0 is isomorphic to V as an L-module.
Further W [Q,L]/[Q,L] ∼= E4, so L/[Q,L] is not SL2(7); and hence as L = O2(L),
[Q,L] = QL. As W is abelian by 12.2.22, W̄ centralizes (W ∩Q)V/V = [Q/V,X ],
so QL/V is not the 4-dimensional indecomposable of B.4.8.2. Thus V = Q0. Then
as V ≤ Z(Q), while L is transitive on (QL/V )#, and W ∩QL contains involutions
not in V , it follows that QL ∼= E64.

Let QH := O2(H). As H is irreducible on W , W ≤ Z(QH), so CQH (Y ) =
CQH (Φ). Each involution in CT (Φ) is in QHV , so from the action of L on QL,
CQL(Φ) = 〈q, v〉 with q ∈ CQH (Φ) = CQH (Y ) and QL = 〈qT 〉V . We saw Y E H ,
so CQH (Y ) E H , and hence 〈qT 〉 ≤ CT (Y ), contradicting QL = 〈qT 〉V . This
contradiction completes the proof of 12.2.23. ¤

By 12.2.22 and 12.2.23,

K = PW = O2(I), and U =W E H.

In particular as P 6≤M by construction,

I 6≤M.

As V E T , also

I = PWV = KV E KT = H.

Furthermore as T acts on U = O2(I) and Q = CT (V ),

[Q,U ] ≤ CU (V ) = U ∩ V ≤ V ;

and hence as L̄ = 〈Ū L̄〉, we have:

Lemma 12.2.24. L is an Ln(2)-block.

We remark that 12.2.24 establishes the first statement in each of conclusions
(2)–(4) of Theorem 12.2.13, so it only remains to identify G. Our next result shows
that M = L, and hence determines the structure of CG(z) as CG(z) ≤M .

By 12.2.20, U ∩ V is a hyperplane of V , and U induces on V the full group of
transvections with axis U ∩V on V . Let Y := O2(NL(U ∩V )), so that Y/O2(Y ) ∼=
Ln−1(2). Then Ū = O2(Ȳ T̄ ) = CT (U ∩ V ), so that CT (U ∩ V ) = UCT (V ) E Y T .

Lemma 12.2.25. (1) M = L and V = O2(L).
(2) n = 3 or 4, p = 3, U = CG(U), NG(U) = Y IT , Y IT/U ∼= Ln−1(2)×L2(2),

and U is the tensor product of the natural modules for the factors.
(3) |Z| = 2.
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Proof. Let R := CT (U). By a Frattini Argument, R = UNR(P ), and then
R = U × CT (PU). Also [CT (PU), v] ≤ CV (PU) = 1, so CT (PU) = CT (I) and
R = U × CT (I). Thus CT (UV ) = CR(V ) = (U ∩ V ) × CT (I). Next from the
structure of AutGL(U)(I/U), CT (U ∩ V ) = V CT (U), so CT (U ∩ V ) = UV ×CT (I).

Next Q ≤ CT (U∩V ), so by the previous paragraph,Q = CT (I)×V = V CQ(U).
By 12.2.24, L is an Ln(2)-block for 3 ≤ n ≤ 5, so by C.1.13, m(Q/V CT (L)) ≤
m(H1(L/O2(L), V )). If n 6= 3, then H1(L, V ) = 0, by (6) and (8) of I.1.6 so that
Q = V × CT (L) If n = 3, the same conclusion holds since Q = V CQ(U) and Ū is
of elementary abelian of order 4 in L̄, ruling out the indecomposable in B.4.8.2.

Now [CT (L), U ] ≤ CU (L) = 1, so CT (L) ≤ R. Thus CQ(U) = CT (L) ×
CV (U) = CT (L)× (U ∩ V ), so as CT (U ∩ V ) = UQ, we conclude R = CUQ(U) =
UCQ(U) = U × CT (L). We have shown:

R = CT (U) = U × CT (I) = U × CT (L). (∗)

Next LT and I act on T0 := CT (L) ∩ CT (I), so if T0 6= 1 then I ≤ NG(T0) ≤M =
!M(LT ), contrary to I 6≤ M . Therefore T0 = 1. But by (*), Φ(CT (L)) = Φ(R) =
Φ(CT (I)), so Φ(R) ≤ T0 = 1, and hence R is elementary abelian.

From 12.2.20, T = (T ∩L)Q, and we saw Q = V ×CT (L) with Φ(CT (L)) = 1,
so T = (T ∩ L) × CT (L) and Z = CV (T ) × CT (L). So as |CV (T )| = 2, CT (L)
is a hyperplane of Z. Next as CT (L) ≤ Z, from (*) we see that [CT (I), T ] ≤
[U, T ] ∩ CT (I) ≤ CU (I) = 1; thus CT (I) ≤ Z by (*) since R is elementary abelian.
Then CT (I) is also a hyperplane of Z, since |CT (L)| = |CT (I)| by (*). Hence as
T0 = 1, |CT (I)| = |CT (L)| ≤ 2. Thus |R : U | ≤ 2 in view of (*). Also we saw
CT (U ∩ V ) = UV × CT (I), with J(UV ) = U , so R = J(CT (U ∩ V )) E Y T , since
Y T acts on CT (U ∩ V ) by an observation just before 12.2.25; in particular,

Y ≤ NG(R).

We suppose for the moment that CT (L) = 1. Then Q = V , so O2(M) ≤ V
by A.1.6. Therefore as L E M , V = O2(M) = F ∗(M). Thus T ≤ L and
M = LCM (L/V ) by 12.2.20. Then as EndL(V ) = F2, CM (L/V ) = CM (V ) = V ,
so M = L. Thus (1) will hold once we show that CT (L) = 1. Also CT (L) = 1
implies U = CT (U) by (*). But NG(U) ∈ He by 1.1.4.6, so that CG(U) ∈ He

by 1.1.3.1, so that CG(U) = U . Thus U = CG(U) also follows once we establish
CT (L) = 1.

Assume first that n > 3. Then Y ∈ Lf (G, T ), so Y ≤ YR ∈ C(NG(R)) by
1.2.4, with YR ∈ L(G, T ). Then YR ≤ Y0 ∈ L∗f (G, T ) by 1.2.9. If Y0/O2(Y0)
is quasisimple, then applying Theorem 12.2.2.3 to restrict the list of A.3.12, we
conclude that either Y0/O2(Y0) ∼= Lm(2) for some n − 1 ≤ m ≤ 5, or n = 4 and
Y0/O2,3(Y0) ∼= A7. If Y0/O2(Y0) is not quasisimple, then from A.3.12, n = 4 and
Y0/O2(Y0) ∼= SL2(7)/E49. As Y ≤ YR ≤ Y0, we conclude that either YR/O2(YR) ∼=
Lk(2) with n − 1 ≤ k ≤ m ≤ 5; or n = 4 and either YR/O2,3(YR) ∼= A7, or
YR/O2(YR) ∼= SL2(7)/E49. However YR ≤ NG(R), so that Y R/R ∼= Ln−1(2) is a
T -invariant subgroup of YRR/R; so we conclude that either Y = YR E NG(R),
or n = 4 and YRR/R ∼= A7. Assume this last case holds. We showed |R : U | ≤ 2,
so m(R) ≤ 7. Then as Y has two isomorphic 3-dimensional composition factors
on U , we conclude that U = [R, YR] is the 6-dimensional permutation module for
YRR/R. This is impossible, as in the A7-module, U/V is dual to V as a Y -module.

This contradiction shows that Y = YR E NG(R). Then using (*), CT (L) =
CR(Y ) E NG(R). Now I normalizes R as R = CIT (U), so if CT (L) 6= 1 then
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I ≤ NG(R) ≤ NG(CT (L)) ≤ M = !M(LT ), contrary to I 6≤ M . Thus CT (L) = 1,
so that R = U by (*). Recall that this completes the proof of (1), and shows that
U = CG(U).

Set GU := NG(U) and ĠU := GU/U = AutG(U). We showed that Y E

NG(R) = GU , so as Ẏ centralizes V̇ , we conclude that İ = 〈V̇ I〉 centralizes Ẏ .

Now Ẏ ∼= Ln−1(2) has two chief factors on U , both isomorphic to the natural

module U ∩ V , while İ ∼= D2p; it follows that IY is irreducible on U . Then as

EndẎ (U∩V ) = F2, ĠU = Ẏ ×CĠU (Ẏ ) ∼= Ln−1(2)×L2(2), so İ = CĠU (Ẏ ) ∼= L2(2),
and U is the tensor product of the natural modules for the factors. In particular
p = 3. Then as m3(Y I) ≤ 2 as GU is an SQTK-group, it also follows that n < 5.
This completes the proof of (2), and hence of 12.2.25, under the assumption that
n > 3.

We turn to the case n = 3. This time let GR := NG(R), LR := NL(R),

MR := NM (R), and ĠR := GR/R. Since R = CT (U), R is Sylow in CG(R), while
GR ∈ He by 1.1.4.4.6; thus R = CG(R). As n = 3, U is of rank 4; so as |R : U | ≤ 2,

R is of rank k := 4 or 5. Thus ĠR ≤ GL(R) = GLk(2). Further İ ∼= D2p with
U = [R,P ] of rank 4, so p = 3 or 5. As H acts on R and I , as R = U × CR(I)

by (*), and as |CR(I)| ≤ 2, H centralizes CR(I). Thus Ḣ is faithfully embedded in

GL(U) ∼= GL4(2), with D2p
∼= İ E Ḣ. We conclude that Ḣ ∼= S3, Z2×S3, D10, or

Sz(2). Hence Ṫ is cyclic or a 4-group. On the other hand, L̇R ∼= V̇ ×S3, so that Ṫ is

noncyclic. Hence Ḣ ∼= Z2×S3, and in particular p = 3. Furthermore LR E MR, so
ṀR centralizes CR(L̇R) as |CR(LR)| ≤ 2; hence ṀR is faithful on the complement

[R,LR] to CR(L̇R) in R in (*). Next MR normalizes [R ∩ O2(L), LR] = V ∩ U ,

and hence normalizes V as V is a TI-set in G by 12.2.16. Therefore ṀR centralizes
V̇ as |V̇ | = 2. Thus O2(L̇R) = O2(ṀR) from the structure of the normalizer of

O2(L̇R) in GL([R,LR]) ∼= GL4(2), so that ṀR = L̇RṪ = L̇R. Next CĠR(V̇ ) acts

on [R, V ] = U ∩ V , so again as V is a TI-set in G, CĠR(V̇ ) ≤ ṀR, and hence

CĠR(V̇ ) = L̇R ∼= Z2 × S3.

Let i̇ ∈ Ṫ − V̇ ; then 1 6= [U ∩V, i] ≤ U ∩V . But if i̇ = v̇g for some g ∈ GR, then
[R, i̇] = [R, v̇]g = (U∩V )g , so as V a TI-set in G, we conclude V = V g , contradicting

v̇ 6= i̇. Therefore i̇G ∩ V̇ = ∅, so by Burnside’s Transfer Theorem 37.7 in [Asc86a],

Ġ is 2-nilpotent. As Ẏ = CO(ĠR)(V̇ ) ∼= Z3 and Ṗ ≤ O(ĠR), we conclude from the

structure of GL5(2) that ĠR ∼= S3 × S3 and CT (L) = CR(Y ) = CR(P ) = CT (I).
We saw earlier that T0 = CT (L) ∩ CT (I) = 1, so we conclude CT (L) = 1 and
R = U . As observed earlier, this establishes (1) and shows that U = CG(U). Along
the way we established the other assertions of (2), and (1) implies (3). Thus the
proof of 12.2.25 is complete. ¤

By 12.2.25.2, NY V (P ) is a complement to U in NL(U). Further U is a homo-
geneous CY T (P )-module, so there is a CY T (P )-complement U0 to V ∩U in U , and
hence U0CY T (P ) is a complement to V in NL(U). As NL(U) contains the Sylow
2-group T of L, we conclude from Gaschütz’s theorem A.1.39:

Lemma 12.2.26. L splits over V , and NG(U) ∩ NG(P ) ∼= Ln−1(2) × S3 is a
complement to U in NG(U).
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By 12.2.26, the structure of L, and hence also of CG(z), are determined, so we
can move toward the identification G using recognition theorems from our Back-
ground References.

Proposition 12.2.27. (1) If n = 4, then G ∼=M24 or L5(2).
(2) If n = 3 then G ∼= L4(2) or A9.

Proof. Let z ∈ V ∩ Z#. By assumption, CG(z) ≤ M , so we conclude from
12.2.25.1 that CG(z) = CM (z) = CL(z). By 12.2.26, L is determined up to iso-
morphism, so as Ln+1(2) satisfies the hypotheses on G, CG(z) is isomorphic to the
centralizer of a transvection in Ln+1(2). Hence if n = 4 then by Theorem 41.6 in
[Asc94], G ∼=M24 or L5(2). Similarly if n = 3 then G ∼= L4(2) or A9 by I.4.6. ¤

By 12.2.20, L/O2(L) ∼= Ln(2), and by 12.2.25.2, n = 3 or 4. Thus one of the
conclusions of Theorem 12.2.13 holds by 12.2.27. Therefore the proof of Theorem
12.2.13 is complete.

12.3. Eliminating A7

In section 12.3 we eliminate the cases where L ∈ L∗f (G, T ) with L/O2,Z(L) ∼=
A7; namely we prove:

Theorem 12.3.1. Assume Hypothesis 12.2.3. Then L/O2,Z(L) is not A7.

We adopt the conventions of Notation 12.2.5, including Z = Ω1(Z(T )).
After Theorem 12.3.1 is established, case (ii) of 12.2.7.3 cannot arise, so we

obtain:

Corollary 12.3.2. Assume Hypothesis 12.2.3, and further assume CG(Z) ≤
M . Let H ∈ H∗(T,M) and set K := O2(H) and VK := 〈ZK〉. Then either

(1) H is solvable, or
(2) K/O2(K) ∼= L2(4), K ∈ L∗f (G, T ), and [VK ,K] is the sum of at most two

A5-modules for K/O2(K).

We mention some shadows which the analysis must at least implicitly handle:
As we noted in Remark 12.2.14, in the QTKE-groupG =M23 there is L ∈ L∗f (G, T )
with L ∼= A7/E16. The case G = M23 is explicitly excluded by Hypothesis 12.2.3,
and its shadow is eliminated early in this section by an appeal to Theorem 12.2.13.

The group G = McL is quasithin but not of even characteristic, in view of
the involution centralizer isomorphic to Â8; this group has L ∈ L∗(G, T ) with
L ∼= A7/E16. Further G = Ω7(3) is not quasithin but has L ∈ L∗(G, T ) with
L ∼= A7/E64. The shadows of these two groups are eliminated by control of the
centralizer of a 2-central element of V whose centralizer in the shadow is not in He.

In the remainder of this section we assume G, L, M afford a counterexample to
Theorem 12.3.1. Choose a V ∈ Irr+(L,R2(LT ), T ); then V is described in 12.2.2.3.

We now begin a series of reductions.

Lemma 12.3.3. V is the natural permutation module of rank 6 for L̄ ∼= A7.

Proof. By 12.2.2.3, either V/CV (L) is the natural module for L̄ or m(V ) = 4.
In the first case since V = [V, L] and the 1-cohomology of the natural module is
trivial by I.1.6, the lemma holds.
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Thus we may assume that V is a 4-dimensional irreducible for A7, and it
remains to derive a contradiction. Then L is transitive on V #. As V is not invariant
under S7, L̄ = M̄V

∼= A7. Since the groups in conclusions (2)–(4) of Theorem
12.2.13 do not have a member L ∈ L∗f (G, T ) of this form, conclusion (1) of Theorem

12.2.13 must hold: 2 that is, Gv 6≤ M for each v ∈ V #. Now Z ∩ V = 〈z〉 is of
order 2, so that Gz 6≤ M . Recall from Notation 12.2.5 that Lz = O2(CMv (z));
set Kz := L∞z . From the structure of V as an L-module, L̄z = K̄z

∼= L3(2)
and V = [V, L̄z] is the indecomposable Lz-module of B.4.8.2 with V/〈z〉 a natural
module. Thus Q = O2(KzT ) ∈ Syl2(CGz (Kz/O2(Kz)) and Hypothesis C.2.8 is
satisfied with Gz , Mz, Kz, Q in the roles of “H , MH , LH , R” by 12.2.12. Now
Kz ∈ Lf (G, T ), so by 1.2.4, Kz ≤ K ∈ C(Gz), and then K ∈ Lf (G, T ) by 1.2.9.1.
3

We claim that Kz = K. Suppose that Kz < K. Then K 6≤ Mz by 12.2.5.3a.
If K/O2(K) is not quasisimple, then K/O2(K) ∼= SL2(7)/E49 by A.3.12. On
the other hand if K/O2(K) is quasisimple, then K/O2(K) ∼= L4(2) or L5(2) by
Theorem C.4.1. In either case V ≤ VK := [Ω1(Z(O2(KT ))),K] by 1.2.9.1. But
if K/O2(K) ∼= SL2(7)/E49, then by 3.2.14, Ξ7(K) ≤ CG(VK) ≤ CG(V ) ≤ M , so
K = Ξ7(K)Lz ≤ Mz, contrary to K 6≤ Mz. Thus K/O2(K) is Ln(2) for n = 4
or 5. As our tuple satisfies Hypothesis C.2.8, it also satisfies Hypothesis C.2.3.
Hence by C.2.7.2, J(Q) 6≤ O2(KQ) and VK is an FF-module for KT/O2(KT ).
Then VK is described in Theorem B.5.1. As z ∈ V ≤ VK , CVK (K) 6= 0, so by
Theorem B.5.1.2, n = 4, VK ∈ Irr+(K,VK), and VK/CVK (K) is the 6-dimensional
irreducible for K/O2(K) ∼= A8. Indeed as the 1-cohomology of that module is 1-
dimensional by I.1.6.1, VK is the 7-dimensional core of the permutation module for
A8. But then from the structure of that module, O2(NK(V )) induces the full group
of transvections with center 〈z〉 on V , contrary to O2(NK(V )) ≤ O2(KzT ) = Q ≤
CG(V ).

Therefore Kz = KE Gz, so V = [V,Kz] ≤ Kz = K. Let Y := CGz (K/O2(K))
and recall that Q ∈ Syl2(Y ). Then by a Frattini Argument, Gz = Y NGz(Q) =
YMz, and hence Y 6≤ M as Gz 6≤ M . Further m3(Gz) ≤ 2 as Gz is an SQTK-
group, and Lz contains a subgroup of order 3 intersecting Y trivially, som3(Y ) ≤ 1.
Notice Y ∈ He by 1.1.3.1. Then as Q ∈ Syl2(Y ), while C(G,Q) ≤ M by 1.4.1.1,
Hypothesis C.2.3 is satisfied now with Y , Y ∩M , Q in the roles of “H , MH , R”.
Therefore as m3(Y ) ≤ 1, we conclude from C.2.5 that Y = (Y ∩ M)X , where
X 6≤ M is a block of type A3, A5, or L2(2

n) for some n, and X is normal in Gz.
As [K,X ] ≤ O2(K), we conclude from C.1.10 that K centralizes X . Hence X ≤
CG(K) ≤ CG(V ) ≤M , a contradiction which completes the proof of 12.3.3. ¤

By 12.3.3, V is the 6-dimensional irreducible module for L̄ ∼= A7, so we now
adopt the notation of section B.3 in discussing the action ofMV on V . In particular:

Lemma 12.3.4. (1) L has three orbits Om, m = 2, 4, 6, on V #, where Om is
the set of vectors in V of weight m.

(2) (Z ∩ V )# = {e(m) : m = 2, 4, 6}, with e(m) := eθm of weight m, where
θ2 := {1, 2}, θ4 := {3, 4, 5, 6}, and θ6 := Ω− {7}.

2This application of 12.2.13 eliminates the “shadow” of M22 in Theorem 12.3.1.
3Notice this eliminates the shadow of G = McL, in which K ∼= Â8; thus O2(K) = 〈z〉, and

hence K 6∈ Lf (G, T ).
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(3) M̄V
∼= S7 or A7, and for m = 2, 4, 6, CM̄V

(e(m)) is isomorphic to Z2×S5
or S5; S4 × S3 or a subgroup of index 2 in S4 × S3; S6 or A6; respectively.

Lemma 12.3.5. L controls fusion of involutions in V .

Proof. Recall NG(T ) = NM (T ) by Theorem 3.3.1, and this subgroup controls
fusion of involutions in Z by Burnside’s Fusion Lemma A.1.35. We saw in 12.3.4.3
that the three involutions in Z ∩ V are not MV -conjugate; hence they are not M -
conjugate since V is a TI-set in M by 12.2.6. Further by 12.3.4, each member of V
is fused into Z ∩ V under L, so the lemma holds. ¤

Lemma 12.3.6. Ge(6) ≤M .

Proof. Let e := e(6). By 12.3.4, O2(L̄eT̄ ) = 1 and L̄e ∼= A6, so applying
12.2.12, Hypothesis C.2.3 is satisfied by Gv , Mv, Q. Also Le/O2(Le) ∼= A6 or

Â6 for L/O2(L) ∼= A7 or Â7, respectively, so Le ∈ L(G, T ) and hence Le ≤ K ∈
C(Ge) ⊆ L(G, T ).

4 As Le involves A6, K/O2(K) is quasisimple by 1.2.1.4; further
Ge ∈ He by 1.1.4.2, so that K ∈ He by 1.1.3.1. Then if Le < K, K and K ∩M are
described in the list of conclusion (3) of Theorem C.2.7; but we find no case where
K ∩M contains a T -invariant subgroup Le with Le/O2,Z(Le) ∼= A6.

Thus Le = K. Now θ(Ge) = Le by A.3.18, so θ(Ge) ≤ M . Set Y :=
CGe(K/O2(K)); then Q ∈ Syl2(Y ) by 12.2.12.1. Thus Ge = Y NGe(Q) = YMe

by a Frattini Argument. Further Hypothesis C.2.3 is satisfied with Y , Y ∩M , Q in
the roles of “H , MH , R”, so by C.2.5, Y is the product of Y ∩M with χ0-blocks.
Hence as each χ0-block is generated by elements of order 3, Ge = θ(Y )Me ≤ M ,
completing the proof. ¤

Lemma 12.3.7. (1) L = [L, J(T )], so M̄V
∼= S7 and Ω1(Z(O2(LT ))) = V ⊕

CZ(L).
(2) Let Ke := L∞e(2). Then Ke = [Ke, J(T )] and Ω1(Z(O2(KeT ))) = [V,Ke] ⊕

CZ(Ke).

Proof. By 12.3.6, CG(Z) ≤ M , so L = [L, J(T )] by 12.2.9.2. Hence by
B.3.2.4, M̄V

∼= S7, and if A ∈ A(T ) with Ā 6= 1, then Ā is generated by transvec-
tions and m(Ā) = m(V/CV (A)). In particular Ke = [Ke, A] for some such A. Let
ZX := Ω1(Z(O2(X)) for X := LT or KeT . As m(Ā) = m(V/CV (A)), ZLT =
V CZLT (A), so V = [ZLT , L]. Then as the 1-cohomology of V under L/O2(L) ∼= A7

is trivial by I.1.6.1, ZLT = V ⊕CZLT (LA). Hence as LT = LAO2(LT ), CZLT (L) ≤
CZLT (T ) ≤ Z, and (1) follows. Similarly ZKeT = [V,Ke] ⊕ CZ(Ke), so that (2)
holds. ¤

Lemma 12.3.8. Ge(2) ≤M .

Proof. Let e := e(2) and Ke := L∞e . Then Ke ≤ K ∈ C(Ge) ⊆ L(G, T ), and
K ≤ K0 ∈ L∗(G, T ). As Ke ∈ Lf (G, T ), K and K0 are also in Lf (G, T ) by 1.2.9.1,
and K0 ∈ L∗f (G, T ) by 1.2.9.2. Let V0 := Ω1(Z(O2(K0T )). Then e, e(6) ∈ Z ≤ V0
since F ∗(K0T ) = O2(K0T ) by 1.1.4.6, so [V,Ke] = [e(6),Ke] ≤ V0, and hence
[V0,K0] 6= 1. By 12.3.7.2, Ke = [Ke, J(T )], so K0 = [K0, J(T )].

Suppose K0/O2(K0) is not quasisimple. Then Ke < K0, so as Ke/O2(Ke) ∼=
A5, the embedding of Ke in K0 is described in cases (13) or (14) of A.3.14. As

4Just as for McL in 12.3.3, the shadow of Ω7(3) is now eliminated by the application of

1.2.9.1, as in that group K would be Ω−6 (3).
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K0 = [K0, J(T )] does not centralize V0, but O∞(K0) centralizes V0 by 3.2.14, we
conclude that K0/CK0(V0)

∼= L2(p) for p = 5 or p ≥ 11. But p ≥ 11 is ruled
out by Theorem B.4.2, so K0 = CK0(V0)Ke. However as e, e(6) ∈ V0, CK0(V0) ≤
Ge(6) ∩Ge ≤Me by 12.3.6, and then K0 acts on Ke, a contradiction.

Thus K0/O2(K0) is quasisimple, so by Remark 12.2.4, Hypothesis 12.2.3 is sat-
isfied withK0 in the role of “L”. ThusK0 and its action on any I ∈ Irr+(K0, V0, T )
are described in Theorem 12.2.2.3. Then comparing that list with the possible em-
beddings in A.3.14, we conclude that either Ke = K0 or K0/CK0(V0)

∼= A7.
Suppose first that Ke < K. Then as usual K 6≤M and K < K0 is eliminated,

since by A.3.14, there is no K ∈ L(G, T ) with Ke < K < K0 when K0/CK0(V0)
∼=

A7. Then K = K0 ∈ L∗f (G, T ), so that K satisfies our hypothesis in this section

that K/O2,Z(K) ∼= A7. Hence we may apply the results in this section to K. In
particular by 12.3.3 and 12.3.7, I := [V0,K0] is the A7-module, V0 = I ⊕ CZ(K),
and

[V,Ke] = [Ω1(Z(O2(KeT ))),Ke] = [V0,Ke].

Pick v ∈ [V,Ke] of weight 4. Then ev is of weight 6 in V , so CG(ev) ≤M by 12.3.6.
But CK(v) = CK(ev) as K ≤ Ge, so K = 〈Ke, CK(v)〉 ≤M , contrary to K 6≤M .

This contradiction shows that Ke = K E Ge. Then as Out(K/O2(K)) is a 2-
group, Ge = KTY , where Y := CGe(K/O2(K)), so it remains to show that Y ≤M .
Set U := 〈ZGe〉 and G∗e := Ge/CGe(U). Then U ∈ R2(Ge) by B.2.14. As K =
[K, J(T )], Theorems B.5.1 and B.5.6 imply [U,K] = [V,K]; so as EndK∗([V,K]) =
F2, Y ≤ CGe([V,K]) ≤ CGe(ev) ≤M , completing the proof of 12.3.8. ¤

Recall the weak closure parameters r := r(G, V ) and w := w(G, V ) from Defi-
nitions E.3.3 and E.3.23.

Lemma 12.3.9. (1) If g ∈ G−NG(V ), then V # ∩ V g ⊆ O4.
(2) r(G, V ) ≥ 4.

Proof. By 12.2.6, V is a TI-set in M ; so by 12.3.5 and A.1.7.3, if u ∈ V #

with Gu ≤ M , then u is in a unique conjugate of V . Thus (1) follows from 12.3.6
and 12.3.8. Up to conjugation, 〈e1,2,3,4, e(4)〉 is the unique maximal subspace U of
V with U# ⊆ O4, so (1) implies (2) since m(V ) = 6. ¤

Lemma 12.3.10. W1(T, V ) ≤ CT (V ), so w(G, V ) > 1.

Proof. Assume the lemma fails. Then we may choose A := V g ∩M ≤ T ≤
NG(V ) to be a w-offender in the sense of subsection E.3.3. Thus Ā 6= 1 and
w := m(V g/A) ≤ 1. Now from the action of S7 on V , for each ā ∈ Ā#, [V, a]# 6⊆ O4.
But if V ≤ NG(V

g), then [V, a] ≤ V ∩ V g, contrary to 12.3.9.1, so we conclude
V 6≤ NG(V

g). Therefore m(V g/CA(V )) ≥ r(G, V ) ≥ 4 by 12.3.9.2, so that m(Ā) ≥
3 = m2(L̄T̄ ). Thus these inequalities must be equalities, so m(Ā) = 3, w = 1, and
r(G, V ) = 4. Hence Ā is fused under L to

Ā1 := 〈(1, 2), (3, 4), (5, 6)〉 or Ā2 := 〈(1, 2), (3, 4)(5, 6), (3, 5)(4, 6)〉.

Now the Fundamental Weak Closure Inequality of Remark E.3.29 is an equality, so
by E.3.31.1:

VA := 〈CV (ā) : ā ∈ Ā
#〉 ≤ NG(V

g).

Therefore [A, VA] ≤ V ∩V g , and hence [A, VA]
# ⊆ O4 by 12.3.9.1. We compute that

this does not hold if Ā = Ā1. Similarly [VA, A] ≤ V g ≤ CG(A), so that [VA, A,A] =
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1, and we compute that this does not hold if Ā = Ā2. This contradiction completes
the proof of 12.3.10. ¤

Lemma 12.3.11. If H ∈ H(T ) with n(H) = 1, then H ≤M .

Proof. By 12.3.9.2 and 12.3.10, min{r, w} > 1, so the lemma follows from
E.3.35.1. ¤

Let e := e(4). Since L does not appear in conclusions (2)–(4) of Theorem
12.2.13, conclusion (1) of Theorem 12.2.13 holds: Gv 6≤ M for some v ∈ V #. By
12.3.4, 12.3.6, and 12.3.8, we may take v = e. Thus there is H ∈ H∗(T,M) with
H ≤ Ge. Set K := O2(H); as usual, K 6≤M .

Lemma 12.3.12. K E Ge, K/O2(K) ∼= A5, K = [K, J(T )], and [Z,K] is the
A5-module.

Proof. By 12.3.11 and E.1.13, H is not solvable. By 12.3.6, CG(Z) ≤ M ,
so we may apply 12.2.7.2 to conclude that K/O2(K) ∼= A5. By 1.2.4, we may
embed K ≤ Ke ∈ C(Ge) ⊆ L(G, T ), and Ke ≤ K0 ∈ L∗(G, T ). As [VH ,K] 6= 1
by 12.2.7.1, 1.2.9.1 says K0 ∈ L

∗
f (G, T ). Then by 12.2.7.3, either K = K0 or

K0/O2,Z(K0) ∼= A7.
Assume first that K < K0. Then by 12.2.7.3, Hypothesis 12.2.3 is satisfied

with K0 in the role of “L”. Hence as K0/O2,Z(K0) ∼= A7, the hypotheses of this
section hold with K0 in the role of L, so we may apply the results obtained so far to
K0. Set V0 := Ω1(Z(O2(K0T ))). By 12.3.7, V0 = VK⊕CZ(K0), with VK = [Z,K0],
[Z,K] is the A5-module, and K = [K, J(T )]. Thus the lemma holds in this case
if K = Ke. On the other hand if K < Ke, then Ke = K0 by A.3.14. Further by
12.2.8, K0 contains all elements of order 3 in Ge, so in particular Le ≤ K0. But
K is the unique member of L(K0T, T ) with K/O2(K) ∼= A5, so K = L∞e ≤ M ,
contrary to K 6≤M .

Thus we may assume that K = K0 = Ke ∈ L∗(G, T ). Therefore Ge ≤
NG(K) = !M(KT ) by 1.2.7.3. Then there is H1 ∈ H∗(T,NG(K)), and in par-
ticular H1 6≤ Ge. Thus [Z,H1] 6= 1, so K = [K, J(T )] and [Z,K] is an FF-module
by Theorem 3.1.8.3. By 12.2.7.3, [Z,K] the sum of A5-modules, and then by The-
orem B.5.1.1, [Z,K] is an A5-module, completing the proof of the lemma. ¤

Next by 12.3.4 and 12.3.7.1, CM̄V
(e) = M̄1 × M̄2, where M̄1

∼= S4 is the

pointwise stabilizer in M̄V of {1, 2, 7}, and M̄2
∼= S3 is the pointwise stabilizer

of {3, 4, 5, 6}. Let Li := O3′(Mi), so that Le = L1L2, and L1 = O3′(CL(Z ∩

V )) = O3′ (CL(Z)) using 12.3.7.1. Let P ∈ Syl3(Le). By 12.3.12, K E Ge, so
P = (P ∩K)× CP (K/O2(K)), and hence P 6∼= 31+2. Therefore O2,Z(L) = O2(L),
and appealing to 12.2.8:

Lemma 12.3.13. L/O2(L) ∼= A7 and L = O3′(M).

We are now in a position to complete the proof of Theorem 12.3.1. As L =
O3′(M) by 12.3.13 and CG(Z) ≤ M by 12.3.6, L1 = O3′(CL(Z)) = O3′(CG(Z)).
By 12.3.12, [Z,K] is the A5-module, so O2(K∩M) centralizes Z∩ [Z,K], and hence

O2(K ∩M) centralizes Z by B.2.14. Thus L1 = O3′(K ∩M). Then as L1 and L2

are the T -invariant subgroups X = O2(X) of Le with |X : O2(X)| = 3, it follows
that L2 = O2(CLe(K/O2(K)).
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Let Y := KL2T , U := 〈ZY 〉, and Y ∗ := Y/CY (U). As Le = L1L2, L1 ≤
CK(Z), and Z = CZ(L)(Z ∩ V ) by 12.3.7.1,

[Z,Le] = [Z ∩ V, L2] = 〈e1,7, e(2)〉.

Then CL2([Z,L2]) = O2(L2), and CK([Z,K]) = O2(K) by 12.3.12, so CY (U) =
O2(Y ). Thus Y ∗ ∼= S5 × S3 since M1M2/O2(M1M2) ∼= S3 × S3, and U ∈ R2(Y ).
Also K = [K, J(T )] by 12.3.12, and L2 = [L2, J(T )] using 12.3.7.1, so Y ∗ = J(Y )∗.
Therefore by Theorem B.5.6,

[U, Y ] = [U,K]⊕ [U,L2] = [Z,K]⊕ [Z,L2],

so in particular K ≤ CG([Z,L2]) ≤ CG(e(2)) ≤ M by 12.3.8, contrary to K 6≤ M .
This contradiction completes the proof of Theorem 12.3.1.

12.4. Some further reductions

We begin section 12.4 with a technical lemma 12.4.1, which we use in particular
to prove the main result 12.4.2 of the section.

As we will be assuming Hypothesis 12.2.3, as usual we adopt the conventions
of Notation 12.2.5, including Z = Ω1(Z(T )).

Lemma 12.4.1. Assume Hypothesis 12.2.3. In addition assume:

(i) CG(Z) ≤M , and
(ii) s(G, V ) > 1.

Then there exists g ∈ G with 1 6= [V, V g] ≤ V ∩ V g.

Proof. Assume the lemma is false. Let H ∈ H∗(T,M), K := O2(H), VH :=
〈ZH〉, and H∗ := H/CH(VH ). As CG(Z) ≤ M by (i), 12.3.2 says either H is
solvable, or [VH ,K] is the sum of at most two A5-modules for K∗ ∼= A5. Then
a(H∗, VH) = 1, by E.4.1 in the former case, or by an easy direct computation in
the latter.

Observe that the triple G1 := LT , G2 := H , V satisfies Hypothesis F.7.6.
Form the coset geometry Γ as in that section, with parameter b := b(Γ, V ). If
W0(T, V ) ≤ O2(H), then by F.7.14, b is even. Hence by F.7.11.2, there exists
g ∈ G with 1 6= [V, V g] ≤ V ∩ V g , contrary to our assumption that the lemma
fails. Therefore W0(T, V ) 6≤ O2(H). So there is A := V g with A∗ 6= 1. Now as
s(G, V ) > 1 by (ii), A∗ ∈ A2(H

∗, VH ) by E.3.10, contradicting a(H∗, VH ) = 1. ¤

The main result of this section is Theorem 12.4.2. It eliminates two of the four
cases in 12.2.2.3 where CV (L) 6= 1 (cases (b) and (f)), leaving only A6 and A8

in case (d). In particular when L̄ is L3(2) or G2(2)
′, the result reduces V to the

natural module. The analogous reduction will be carried out later for L4(2) and
L5(2) in Theorems 12.6.34 and 12.5.1. Theorem 12.4.2 also moves in the direction
(begun in 12.2.13) of showing that CG(V ∩ Z) 6≤M .

Theorem 12.4.2. Assume Hypothesis 12.2.3. Then

(1) If L/O2(L) ∼= L3(2) or G2(2)
′, then CV (L) = 1.

(2) If L/O2(L) ∼= L5(2) and dim(V ) = 10, then CG(Z ∩ V ) 6≤M .

Until the proof of Theorem 12.4.2 is complete, assume G, L, V affords a coun-
terexample. Let ZV := CV (L).

When L/O2(L) ∼= L3(2) or G2(2)
′, ZV 6= 1 as we are in a counterexample to

Theorem 12.4.2. Hence by Theorem 12.2.2.3, V is an indecomposable for L/O2(L),
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and V/ZV is a natural module for L/O2(L). Then as the 1-cohomology of the
dual of V/ZV in I.1.6 is 1-dimensional, ZV = 〈z〉 is of order 2. As M = !M(LT ),
Gz ≤M .

On the other hand, when L/O2(L) ∼= L5(2), we have m(V ) = 10 by hypothesis;
and as we are in a counterexample to the theorem, CG(Z ∩ V ) ≤M . As dim(V ) =
10, Z ∩V is of order 2, and in this case we take z to be a generator for Z ∩V . Thus
Gz ≤M in this case also.

We begin a series of reductions.

Lemma 12.4.3. (1) CG(Z) ≤M .
(2) L = [L, J(T )].

Proof. As Gz ≤M and z ∈ Z, (1) holds; then (2) follows from 12.2.9.2. ¤

We are already in a position to complete the proof of part (2) of Theorem
12.4.2:

Lemma 12.4.4. L/O2(L) is not L5(2).

Proof. Assume L/O2(L) is L5(2). Then L has two orbits on V #, represented
by z and some further involution t.

We claim that t 6∈ zG. First L = O3′(M) by 12.2.8. Next Lz/O2(Lz) ∼=
L3(2)× Z3, so as Gz ≤M , m3(G

∞
z ) = 1. However Lt/O2(Lt) ∼= A6 is of 3-rank 2,

so t /∈ zG, establishing the claim.
It follows from the claim that L is transitive on zG ∩ V , so as Gz ≤ M , while

V is a TI-set under M by 12.2.6, V is the unique member of V G containing z by
A.1.7.3.

Next m(M̄V ) = 3, so s(G, V ) ≥ 3 by Theorem E.6.3. By 12.4.3.1, CG(Z) ≤M ,
so by 12.4.1, there exists g ∈ G with 1 6= [V, V g ] ≤ V ∩ V g . Conjugating in MV if
necessary, we may assume V g ≤ T . Let A := V g. Interchanging the roles of A and
V if necessary, we may assume m(Ā) ≥ m(V/CV (A)). Then by B.1.4.4, Ā contains
a member of P(M̄V , V ). Therefore by B.4.2.11, CV (A) = [V,A] is a 6-dimensional
subspace of A, and Ā of rank 4 is the unipotent radical of the maximal parabolic
of L̄ over T̄ stabilizing [V,A]. In particular, [V,A] is T -invariant, so the generator
z of Z ∩ V is in [V,A] ≤ V ∩ V g. This contradicts our earlier observation that z is
in a unique conjugate of V , completing the proof. ¤

By 12.4.4, L/O2(L) ∼= L3(2) or G2(2)
′, so as we are in a counterexample to

the Theorem, ZV 6= 1. Hence V E M by Theorem 12.2.2.3. Then M normalizes
CV (L) = ZV = 〈z〉, so since M ∈M,

M = CG(z) = NG(V ).

When L̄ ∼= L3(2), let E be the T -invariant 4-subgroup of V , choose v ∈ E − ZV ,
and let L1 := O2(CL(E)) and R1 := CT (E).

Lemma 12.4.5. If L̄ ∼= L3(2), then

(1) [Z,L] = 1.
(2) ZQ := Ω1(Z(Q)) = ZV .
(3) R̄1 := Ā for each A ∈ A(R1) with A 6≤ Q.

Proof. Observe that (3) holds by B.4.8.2. By 1.4.1.4, ZQ = R2(LT ), so
V = [ZQ, L] by B.5.1.1. Then ZQ = CZ(L)V by B.4.8.4, so (2) holds. Again By
B.4.8.2, Z ∩ V = ZV , so (2) implies (1). ¤
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Lemma 12.4.6. If L̄ ∼= L3(2), then R1 ∈ Syl2(Gv) and |T : R1| = 2.

Proof. First R1 ∈ Syl2(Mv) and |T : R1| = 2. Thus the result holds if
NG(R1) ≤ M . So we assume that NG(R1) 6≤ M , and it remains to derive a
contradiction.

Let Z1 := Ω1(Z(R1)). Then by 12.4.5.2,

Z1 = CZQ(R1) = ZCV (R1) = Z〈v〉.

Now [Z,L] = 1 by 12.4.5.1, so Z ∩ Zg = 1 for g ∈ NG(R1) −M by 1.2.7.4. Hence
as Z is a hyperplane in Z1, we conclude Z is of order 2, so that Z = ZV and
E = Z1 = Ω1(Z(R1)). In particular,

NG(R1) ≤ NG(E).

Furthermore CG(E) ≤ CG(Z) ≤ Gz = M , and AutG(E) ∼= S3 with AutM (E) of
order 2; thus |NG(R1) : NM (R1)| = 3.

Next asNG(R1) 6≤M = !M(LT ), there is no nontrivial characteristic subgroup
of R1 normal in LT . Thus (LR1, R1) is an MS-pair as in Definition C.1.31, so that
C.1.34 applies. As V is indecomposable, conclusion (5) of C.1.34 holds; hence L is
a block with Q = V CT (L) and CR1(L1) = ECT (L).

Suppose that NG(R1) ≤ NG(L1). Then NG(R1) normalizes Φ(CR1(L1)) =
Φ(ECT (L)) = Φ(CT (L)), so Φ(CT (L)) = 1 since NG(R1) 6≤ M = !M(LT ). Thus
CT (L) is central in V CT (L) = Q and in Q(T ∩L) = T . We conclude CT (L) = Z =
ZV , so that Q = V CT (L) = V . Since the nontrivial characteristic subgroup J(R1)
of R1 is not normal in LT , J(R1) 6≤ O2(LT ) = CT (V ), so there is A ∈ A(R1) with
Ā 6= 1. By 12.4.5.3, Ā = R̄1. Thus A(R1) = {A, V } by B.2.21, since V is self-
centralizing in G and CV (A) = CV (a) for ā ∈ Ā# by B.4.8.2. Hence O2(NG(R1))
acts on V , so O2(NG(R1)) ≤M , contradicting |NG(R1) : NM (R1)| = 3.

Thus there is g ∈ NG(R1) − NG(L1). We have seen that NG(R1) ≤ NG(E)
and CG(E) ≤ M ; so as L1 E CM (E) while m3(CM (E)) ≤ 2, L1L

g
1 =: X =

θ(CG(E)) and X/O2(X) ∼= E9. Then X̄0 := CX(L̄) is of order 3, so by C.1.10,
X1 := O2(X0) centralizes L and X1/O2(X1) ∼= Z3. Next X1 is centralized by
t ∈ T ∩L−R1 inverting L1/O2(L1), so L1 and X1 are the two T -invariant members
of the set Y of subgroups Y of X such that Y = O2(Y ) and |Y : O2(Y )| = 3. Now
NG(R1) normalizes X and hence permutes Y . Since NG(R1) 6≤ NG(L1), while L1

is stabilized by NM (R1) of index 3 in NG(R1), the NG(R1)-orbit of L1 has length
3, and the fourth member of Y is fixed by NG(R1). Since T ≤ NG(R1) and X1

is the only T -invariant member of Y other than X1, we conclude X1 E NG(R1).
However X1 E XLT , so

NG(R1) ≤ NG(X1) ≤M = !M(LT ),

contrary to our earlier reduction. This completes the proof of 12.4.6. ¤

Lemma 12.4.7. L controls fusion of involutions in V .

Proof. Suppose first that L̄ ∼= L3(2). By 12.4.6, vG ∩ ZV = ∅. Thus as L is
transitive on V − ZV , the lemma holds in this case.

Next take L̄ ∼= G2(2)
′. Then Z ∩ V is a 4-group containing a representative

of each of the three orbits of M on V #. But NG(T ) ≤ M by Theorem 3.3.1, and
NG(T ) controls fusion in Z by Burnside’s Fusion Lemma A.1.35, so the lemma
holds in this case also. ¤
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Lemma 12.4.8. r(G, V ) > 1.

Proof. Assume that r(G, V ) = 1. Then there is a hyperplane U of V with
CG(U) 6≤ NG(V ). Let GU := CG(U), MU := CM (U), and LU := NL(U). Then
ZV 6≤ U as CG(ZV ) = CG(z) =M .

Now consider some hyperplane U0 of U , and set GU0 := CG(U0) and MU0 :=
CM (U0); then GU ≤ GU0 , so also GU0 6≤ M . As ZV 6≤ U and m(V/U) = 1,
also ZV 6≤ U0 and m(V/U0ZV ) = 1. For any involution t̄ ∈ M̄ , ZV ≤ CV (t̄) and
m(V/CV (t̄)) ≥ 2 (cf. B.4.8.2 and B.4.6), so t̄ does not centralize U or U0. Thus U
and U0 lie in the set Γ of Definition E.6.4, and we may apply appropriate results
from that section. In particular by E.6.5.1, Q is Sylow in GU0 and GU . Also MU0

centralizes the quotients of the series V > U0ZV > U0 > 1, so by Coprime Action,
M̄U0 is a 2-group. But we just observed that M̄U0 does not contain involutions, so
we conclude that MU0 = CM (V ), and hence also MU = CM (V ).

Now if L̄ ∼= L3(2), then T is regular on hyperplanes not containing ZV , so U
is determined up to conjugation under T , and L̄U ∼= Frob21. On the other hand, if
L̄ ∼= G2(2)

′, then by Theorem 2 in [Asc87], L has two orbits on hyperplanes not
containing ZV , exhibited by conclusions (3) and (4) of Theorem 3 in [Asc87], and
given by representatives U1 and U2, where L̄U1

∼= PSL2(7) and L̄U2
∼= Q8/3

1+2.
When L̄T̄ = G2(2), the stabilizers in L̄T̄ are twice as large. In each case NLT (U) is
maximal in LT , but not of index 2; further LU contains XU of order 3 faithful on U .
Thus if F ∗(GU ) = O2(GU ), then the hypotheses of lemma E.6.14 are satisfied with
U and LT in the roles of “W” and “M0”, so by that lemma, GU = CG(U) ≤ M ,
contrary to our assumption.

This contradiction shows that GU /∈ He. Suppose next that there is a com-
ponent K of GU . Then K is described in E.6.8, and in particular K 6≤ M . Now
K ∩M ≤ MU = CM (V ), so that [V,K ∩ M ] = 1. If case (1) of E.6.8 occurs,
this forces n = 1, so that K ∼= L3(2); we regard this group as L2(7), and treat it
with the groups L2(p) arising below. In particular K is not a Suzuki group. The
existence of XU of order 3 faithful on U and an appeal to A.3.18 eliminates all cases
of 3-rank 2—namely (2)–(4) of E.6.8, and all cases of E.6.8.5 except K ∼= L2(p), p a
Fermat or Mersenne prime. Notice now that the case U = U2 for L̄ ∼= G2(2)

′ cannot
arise: For in that case there is YU ∼= 31+2 faithful on U , so as m3(NG(U)) ≤ 2,
GU is a 3′-group, whereas K is not a Suzuki group. In the remaining two cases
choose l ∈ NL(XU ) − LU with l2 ∈ LU ∩ L

l
U , and choose the hyperlane U0 of U

to be U0 := U ∩ U l. As l acts on XU and XU is faithful on U , XU acts faithfully
on U0. We saw Q ∈ Syl2(GU0), so K ≤ K0 ∈ C(GU0) by 1.2.4. Since K ∼= L2(q)
rather than SL2(q), K centralizes O(GU0 ) by A.1.29. Now by I.3.1, K is contained
in the product of a U -orbit of 2-components of GU0 , so as K centralizes O(GU0 ),
we conclude those 2-components are ordinary components. Hence K ≤ E(GU0 ), so
K0 is a component of GU0 . As XU is faithful on U0, we may argue as before that
K0

∼= L2(q) for q a Fermat or Mersenne prime. But no proper embedding K < K0

of these groups appears in A.3.12, so we conclude K0 = K is also a component of
CG(U0). Indeed K = O3′ (E(GU0)) since m3(NG(U0)) ≤ 2 and XU is faithful on U0.

But l2 ∈ LU ∩L
l
U so that U0 = U l0. Hence K

l = O3′ (E(GU l0)) = O3′(E(GU0 )) = K.

Then as K ≤ GU , K centralizes UU l = V , contrary to K 6≤M .
Therefore F ∗(GU ) = F (GU ). As GU 6∈ He, we conclude OU := O(GU ) 6= 1.

Again let U0 denote a hyperplane of U . By 1.1.6, the hypotheses of 1.1.5 are
satisfied with GU0 , M = CG(z) in the roles of “H , M”. In particular by 1.1.5.2,
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z inverts OU0 := O(GU0 ). Similarly z inverts OU , as we may also apply 1.1.6 and
1.1.5 to U . Now OU is a nontrivial Q-invariant subgroup of O(CGU0 (U)).

Suppose first that OU acts nontrivially on K0, for some component K0 of GU0 .
Then 1 6= AutOU (K0) ≤ O(CAut(K0)(U)) is Q-invariant. Inspecting the list of
1.1.5.3 for such a centralizer, we conclude K0/Z(K0) ∼= A7, U induces a group of
inner automorphisms of order 2 on K0, and AutOU (K0) ∼= Z3. But by 1.1.5.3d, z
induces an involution of cycle type 23, so that V = ZV U is not normal in CK0ZV (z),
contradicting Gz = NG(V ).

Therefore OU centralizes E(GU0 ). As z inverts OU and OU0 , OU centralizes
OU0 . By 31.14.1 in [Asc86a], OU centralizesO2(GU0). ThusOU ≤ CGU0 (F

∗(GU0)) ≤
F (GU0), so in particular OU ≤ OU0 . Further OU0 abelian since it is inverted by z.

Now given any l ∈M −NM (U), we may choose U ∩U l as our hyperplane U0 of
U . Then 〈OU , OlU 〉 is contained in the abelian group OU∩U l , and in particular, OU
and OlU commute. Therefore 1 6= P := 〈OMU 〉 is abelian of odd order. Thus LT ≤
NG(P ) < G as G is simple; and NG(P ) is quasithin. As m2(NG(P )) ≥ m(V ) ≥ 4,
V cannot act faithfully on Op(P ) for any odd prime p by A.1.5, so mp(P ) ≤ 2 for
each odd prime p. Therefore V = [V, L] centralizes P by A.1.26, which is impossible
as z inverts OU and so acts nontrivially on P . This contradiction finally completes
the proof of 12.4.8. ¤

Lemma 12.4.9. If A := V g ≤ NG(V ) with [A, V ] 6= 1, then V 6≤ NG(A).

Proof. Assume otherwise. Interchanging the roles of A and V if necessary,
we may assume m(Ā) ≥ m(V/CV (A)), so that Ā contains a member of P(M̄, V )
by B.1.4.4. Then by B.4.6.13 or B.4.8.2, Ā is determined up to conjugacy in M̄ ,
and m(Ā) = m(V/CV (A)). In particular, we have symmetry between A and V .

Suppose L̄ ∼= L3(2). Then E = [A, V ], so by symmetry E = Eg. Then as
ZV is weakly closed in E by 12.4.7, g ∈ CG(ZV ) = M = NG(V ), contradicting
[V, V g ] 6= 1.

Therefore L̄ ∼= G2(2)
′ and ĀL̄ = M̄ ∼= G2(2). Thus by B.4.6.3, [V,A] = CV (A),

and again ZV ≤ CV (A) and by symmetry [V,A] = [V,A]g . Then again ZV is weakly
closed in [V,A] by 12.4.7, and we obtain the same contradiction. This completes
the proof of 12.4.9. ¤

We are now in a position to complete the proof of Theorem 12.4.2. Recall
m(M̄, V ) = 2, so by 12.4.8, s(G, V ) > 1. Then by 12.4.3.1, we may apply 12.4.1 to
conclude that there is g ∈ G with 1 6= [V, V g ] ≤ V ∩V g. In particular, V g ≤ NG(V )
and V ≤ NG(V

g), contrary to 12.4.9. This contradiction completes the proof of
Theorem 12.4.2.

12.5. Eliminating L5(2) on the 10-dimensional module

In this section we eliminate the exterior-square module in case (3c) of Theorem
12.2.2, hence reducing the treatment of L5(2) to the natural module in case (3a).
This is analogous to the reduction for L4(2) in Theorem 12.6.34 of the next section.
Specifically we prove:

Theorem 12.5.1. Assume Hypothesis 12.2.3 with L/O2(L) ∼= L5(2). Then V
is the natural module for L/O2(L).

Assume G, L, V afford a counterexample to Theorem 12.5.1. Then case (3c) of
Theorem 12.2.2 occurs, so V is one of the 10-dimensional irreducibles for L/O2(L).
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We mention that there is L ∈ L∗f (G, T ) with L ∼= L5(2)/E210 in the non-

quasithin groups Sp10(2), Ω
+
10(2), Ω

−
12(2), and O

+
12(2). These shadows cause little

trouble, as they are essentially eliminated immediately in 12.5.3 below.

The proof involves a series of reductions. As usual we adopt the conventions of
Notation 12.2.5. Observe that as T acts on V , T induces inner automorphisms on
L̄, so M̄V = L̄.

We next discuss the parabolic subgroups of L̄ over T̄ , and their action on the
module V . Let Γ be the natural 5-dimensional module for L̄ with a basis for Γ
denoted by {1, . . . , 5}, and let Γk := 〈1, . . . , k〉. Choose notation so that T acts on
Γk for each k. We regard V as the exterior square Λ2(Γ), so that V has basis i ∧ j
for 1 ≤ i < j ≤ 5. Then T acts on the subspaces Vk of dimension k defined by

V1 := Λ2(Γ2) = 〈1 ∧ 2〉, V3 := Λ2(Γ3) = 〈1 ∧ 2, 1 ∧ 3, 2 ∧ 3〉,

V4 := Γ1 ∧ Γ = 〈1 ∧ i : 1 < i ≤ 5〉,

V6 := Λ2(Γ4) = 〈i∧j : 1 ≤ i < j < 5〉, V7 := Γ2∧Γ = 〈1∧ i, 2∧j : i > 1, 3 ≤ j ≤ 5〉.

For i = 1, 3, 4, 6, set Gi := NG(Vi), Mi := NLT (Vi), Li := NL(Vi)
∞, and

Ri := O2(LiT ).
Notice that Li ∈ L(G, T ) for each i.

Lemma 12.5.2. (1) M̄1 = NL̄(Γ2), M̄1/O2(M̄1) ∼= L3(2) × L2(2), L̄1/R̄1
∼=

L3(2), and 0 < V1 < V7 < V is a chief series for M1.
(2) M̄3 = NL̄(Γ3), M̄3/O2(M̄3) ∼= L2(2) × L3(2), L̄3/R̄3

∼= L3(2), and V3 is a
natural module for L̄3/R̄3.

(3) M̄4 = L̄4 = NL̄(Γ1), and V4 is a natural module for L̄4/R̄4
∼= L4(2).

(4) M̄6 = L̄6 = NL̄(Γ4), V6 is the orthogonal module for L̄6/R̄6
∼= L4(2) ∼=

Ω+
6 (2), and V/V6 is a natural module isomorphic to R̄6.

Proof. These are easy calculations. ¤

Observe that from 12.5.2.1, M1 = PL1, where P is the minimal parabolic of
LT over T which is in M1, but not in L1T . Further O

2(P ) = O3′(P ) E M1 with
[O2(P ), L1] ≤ O2(M1). Similarly O2(P ) ≤ L3 ∩ L6, P is a minimal parabolic of
LiT for i = 3, 6, and M1 ∩ Mi is the product of P with the minimal parabolic
Pi :=Mi ∩ L1T .

Recall from chapter 1 the definition of Ξp(X) for X ∈ L(G, T ) with X/O2(X)
not quasisimple.

Lemma 12.5.3. For each i = 1, 3, 4, 6, Li ≤ Ki ∈ C(NG(Vi)) with Ki E NG(Vi),
and one of the following holds:

(1) Li = Ki.
(2) i = 1, K1/O2(K1) ∼= L5(2), M24, or J4, and O

2(P ) ≤ K1.
(3) i = 1, K1 = Ξ7(K1)L1 and K1/O2(K1) ∼= SL2(7)/E49.

Proof. The existence and normality of Ki follows from 1.2.4 and the fact that
T normalizes Li. By 12.5.2, Li/O2(Li) ∼= L3(2) if i = 1, 3 and L4(2) if i = 4, 6.

We first treat the case i = 1. We may assume that L1 < K1, so thatK1/O2(K1)
is described in the sublist of A.3.12 where B/O2(B) ∼= L3(2). If K1/O2(K1) ∼=
L5(2), M24, or J4, then K1 = O3′(G1) by A.3.18, so O2(P ) ≤ K1 and hence
(2) holds. Thus we may assume that K1/O2(K1) is not one of these groups, nor

SL2(7)/E49, so K1/O2(K1) is one of L4(2), A7, Â7, L2(49), (S)L
ε
3(7), M23, HS,
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He, or Ru. To rule out L2(49) or (S)Lε3(7), observe that in those groups, some
element of T induces an outer automorphism on L1/O2(L1) ∼= L3(2), while as
T̄ ≤ L̄, this is not the case in LT . In the remaining cases by A.3.18, K1 is the
characteristic subgroup θ(G1) of G1 generated by all elements of order 3. Hence

K1 contains I := O3′ (M1), since I/O2(I) ∼= Z3 × L3(2) by 12.5.2.1. Further
M1 = IT and M1/O2(M1) ∼= S3 × L3(2), whereas Aut(K1/O2(K1)) contains no
such overgroup of a Sylow 2-group. This completes the proof of the lemma when
i = 1, although we need some more information about K1 which we develop in the
next paragraph.

Set (K1T )
∗ := K1T/O2(K1T ). When K∗1

∼= M24, L5(2), or J4, the over-
groups of T ∗ are described by a 2-local diagram, cf. [RS80] or [Asc86b]; we now
describe the embedding of L∗1T

∗ and M∗
1 in K∗1 in terms of the minimal parabol-

ics in the sense of Definition B.6.1 indexed by the nodes of of this diagram: As
L∗1T

∗/O2(L
∗
1T
∗) ∼= L3(2) and M∗

1 /O2(M
∗
1 )
∼= L2(2) × L3(2), it follows that if

K∗1
∼= L5(2) then (up to a symmetry of the diagram) L∗1T

∗ is generated by the
third and fourth minimal parabolics of K∗1 , and the remaining parabolic P ∗ of
M∗

1 is the first parabolic of K∗1 . If K∗1
∼= M24 or J4, then L∗1T

∗ is generated by
the parabolics indexed by the “square node” and by the adjacent node in those
diagrams. Further in M24, P

∗ is the parabolic P ∗K indexed by the node which is
adjacent to neither of these nodes, while in J4, the corresponding parabolic PK sat-
isfies P ∗K/O2(P

∗
K) ∼= S5, and P

∗ is the Borel subgroup of that parabolic. Thus when
K∗1

∼= M24, M
∗
1 is the trio stabilizer in the language used in chapter H of Volume

I, while when K∗1
∼= J4, P

∗
KM

∗
1
∼= S5 ×L3(2)/2

3+12 and M∗
1
∼= (S4 ×L3(2))/2

3+12.
We next treat the cases i = 3 or 4. Here Li/CLi(Vi) = GL(Vi) by 12.5.2,

so that Ki = LiCKi(Vi). Hence if Ki/O2(Ki) is quasisimple, then Li = Ki, as
required. Therefore we may assume that Ki/O2(Ki) is not quasisimple, and it
remains to derive a contradiction. As Ki/O2(Ki) is not quasisimple and Li ≤ Ki,
we conclude from A.3.12 that i = 3, K3/O2(K3) ∼= SL2(7)/E49, and K3 = XL3

for X := Ξ7(K3). Set Y := O2(P ). Recall X char K3 / G3. and O2(X) 6= 1 using
1.1.3.1. Also X centralizes V3 ≥ V1, so X ≤ K1,3 := O2(CK3(V1)) ≤ G1 ∩ G3.
We saw earlier that Y = O2(P ) ≤ L3, so Y ≤ K1,3. Then K1,3T/O2(K1,3T ) ∼=
GL2(3)/E49 and K1,3 = Y X = 〈Y K1,3〉.

Suppose first that K∗1 is L5(2),M24, or J4. We saw earlier that Y ≤ K1. Hence
K1,3 = 〈Y K1,3〉 ≤ K1, so K

∗
1,3T

∗ is a subgroup of K∗1T
∗ containing T ∗. But from

the description of overgroups of a Sylow 2-group in terms of the 2-local diagrams
for L5(2), M24, and J4 mentioned earlier, no such group has a GL2(3)/E49-section.

So we may suppose instead that K1 = L1 or K∗1
∼= SL2(7)/E49. By an earlier

observation [L1, Y ] ≤ O2(L1). Thus ifK1 = L1, Y centralizesK∗1 , and we claim this
also holds when K∗1

∼= SL2(7)/E49: For K1 = Ξ7(K1)L1 and there is Y < Y0 ≤ P
with Y0/O2(Y ) ∼= L2(2) and [L1, Y0] ≤ O2(L1). Then as L∗1

∼= SL2(7) is centralized
in Aut(Ξ7(K1)

∗) by Z(GL2(7)) ∼= Z6 which is abelian, we conclude Y = [Y0, Y0]

centralizes Ξ7(K
∗
1 ). Hence Y = O7(Y ) centralizes K∗1 = O7′(K∗1 ), establishing the

claim.
By the claim, 〈Y K1,3〉 = K1,3 centralizes K∗1 , so as X ≤ K1,3, X centralizes

K∗1 . By construction X ∈ Ξ(G, T ), so by 1.3.4, either X E G1, or X < K0 ∈
C(G1) with m3(K0) = 2. In the latter case K0 = 〈XK0〉 centralizes K1/O2(K1),
so that m3(K0K1) > 2, contradicting G1 an SQTK-group. In the former case
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LT ≤ 〈G1, G3〉 ≤ NG(X), so as M = !M(LT ) and O2(X) 6= 1, G1 ≤ M , contrary
to 12.4.2.2. This completes the proof that Ki = Li if i = 3 or 4.

Finally we treat the case i = 6. Then either K6 = L6 as required, or as
L6/O2(L6) ∼= L4(2), we obtain K6/O2(K6) ∼= L5(2), M24, or J4 from A.3.12. The
latter three cases are impossible, since L6 acts as Ω+

6 (2) on V6, and this action
does not extend to any 6-dimensional module for L5(2), while M24 and J4 have no
nontrivial modules of dimension 6. This completes the proof of 12.5.3. ¤

Lemma 12.5.4. G3 ≤M ≥ G6.

Proof. Let i := 3 or 6. By 12.5.3, Li E Gi, so as NGL(Vi)(AutLi(Vi)) =
AutMi(Vi), Gi =MiCG(Vi). Thus to showGi ≤M , it suffices to show CG(Vi) ≤M .

If CG(Vi) acts on L1, it acts on 〈LLi1 〉 = L, so that CG(Vi) ≤ NG(L) = M . Thus
we may assume CG(Vi) 6≤ NG(L1).

SetG∗1 := G1/O2(G1). By 12.5.3, Out(K∗1 ) is a 2-group, soG1 = K1TCG1(K
∗
1 ).

Thus as CG(Vi) ≤ G1, and T and CG1(K
∗
1 )) act on O

2(L1O2(K1)) = L1, we may
assume the preimage Y in K1 of the projection of Gi ∩ K1 with respect to the
decomposition K∗1 × CG∗1 (K

∗
1 ) is not contained in M1. Therefore K1 6= L1. As

T ≤ Gi, [T ∩K1, Y ] ≤ [Gi ∩K1, Y ] ≤ Y ∩Gi.

Suppose that case (3) of 12.5.3 holds, and set Yi := O3′(NL1(Vi)). Then YiT
is a minimal parabolic of LiT , so as L1 6≤ Gi, YiT = Mi ∩ L1T = Pi. Then as
[Gi∩K1, Y ] ≤ Y ∩Gi and Yi acts irreducibly as SL2(3) on Ξ7(K1)

∗ ∼= E49, Y ≤ Gi
and Y = Pi ∩ K1 or Ξ7(K1)(Pi ∩ K1); as Y 6≤ M1, the latter case holds. Then
Ξ7(K1) ≤ 〈Y

Y
i 〉 ≤ Li as Y normalizes Li by 12.5.3, contrary to m7(Li) = 1.

Therefore K∗1
∼= L5(2), M24, or J4. Recall from the discussion before 12.5.3

that M1 ∩Mi = PPi is the product of the two minimal parabolics P and Pi, and
O2(P ) ≤ K1. Then Y

∗ is a proper overgroup of O2(P ∗)O2(P ∗i )(T
∗∩K∗) which does

not contain L∗1. Let Y0 := 〈O
2(P )Y 〉 and recall that the discussion during the proof

of 12.5.3 determined the embedding of M∗
1 in K∗1 . If K∗1

∼= M24, the conditions

above on Y ∗ force Y ∗/O2(Y
∗) ∼= Ŝ6 and Y = Y0. If K

∗ ∼= L5(2), then Y/O2(Y ) ∼=
L4(2) or L3(2)×L2(2), and Y0/O2(Y0) ∼= L4(2) or L3(2), respectively. If K

∗ ∼= J4,

then Y/O2(Y ) ∼= M̂22 or S3 × S5, and Y0/O2(Y0) ∼= M̂22 or S5, respectively. In
particular, in each case Y0 6≤ M , since M1 = PL1. Further as [Y,Gi ∩ Y ] ≤ Gi,
Y0 ≤ Gi. But as O2(P ) ≤ Li E Gi by 12.5.3, Y0 ≤ Li ≤ M , contrary to the
previous remark. This contradiction completes the proof of 12.5.4. ¤

Lemma 12.5.5. (1) L̄ has two classes of involutions with representatives j1 and
j2, where m([Γ, ji]) = i, m([V, j2]) = 4, and CV (j1) = V4 + V6 is of codimension 3
in V .

(2) L has two orbits on the points of V with representatives V1 and

V ′1 := 〈1 ∧ 2 + 3 ∧ 4〉.

(3) CL̄(V
′
1 ) is R̄6 extended by S6.

Proof. These are straightforward calculations. ¤

In the remainder of the section, we let V ′1 be defined as in 12.5.5.2

Lemma 12.5.6. r(G, V ) > 3 = m(MV , V ) = s(G, V ).

Proof. By 12.5.5.1, m(M̄V , V ) = 3, so r(G, V ) ≥ 3 by Theorem E.6.3. Fur-
ther if U ≤ V with m(V/U) = 3 and CG(U) 6≤ M , then U is conjugate to CV (j1)
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by E.6.12; then as U is normal in some Sylow 2-subgroup of LT , E.6.13 supplies a
contradiction. ¤

Lemma 12.5.7. W0 := W0(T, V ) centralizes V , so w := w(G, V ) > 0 and
NG(W0) ≤M .

Proof. Suppose A := V g ≤ T with [A, V ] 6= 1. By 12.5.6, s(G, V ) = 3, so
that Ā ∈ A3(T̄ , V ) by E.3.10. But AutM̄ (V3) ∼= L3(2) is of 2-rank 2, so we conclude
A centralizes V3. Next T acts on Γ1 and Γ4, and hence acts on V ′3 := Γ1 ∧ Γ4 =
〈1 ∧ 2, 1 ∧ 3, 1 ∧ 4〉, with AutM̄ (V3) ∼= L3(2), so the same argument shows A also
centralizes V ′3 . Similarly A acts on V6, so that A ≤ C := CM6(V3 + V ′3). By
12.5.2.4, V6 is the orthogonal module for L6/R6, so that m(C/R6) = 1; again as
Ā ∈ A3(T̄ , V ), we conclude A ≤ CLT (V6) = R6. By 12.5.5.1, V6 is a hyperplane

of CV (r̄) for each r̄ ∈ R̄#
6 , while by 12.5.2.4, V/V6 is a natural module for L6/R6

isomorphic to R̄6. It follows that V = W , where W := 〈CV (r̄) : r̄ ∈ R̄
#
6 〉, and no

hyperplane of R̄6 lies in A3(T̄ , V ). We conclude thatm(Ā) > 3, so that Ā = R̄6, and
hence W = 〈CV (B) : m(A/B) ≤ 3〉. Now r(G, V ) > 3 by 12.5.6, so W ≤ NG(A)
by E.3.32. Hence as V = W , we have symmetry between A and V . As Ā = R̄6,
V6 = [V,A]; then by symmetry between A and V , [A, V ] is conjugate to V g

6 in Lg.
Thus we may take g ∈ G6, so g ∈ NM (V6) by 12.5.4, and hence g ∈MV by 12.2.6,
contrary to [V, V g ] 6= 1. This contradiction shows W0 ≤ CT (V ) = O2(LT ), and so
NG(W0) ≤M by E.3.34.2. ¤

Let U := 〈V G1〉 and G̃1 := G1/V1.

Lemma 12.5.8. (1) V ≤ O2(G1).
(2) U is elementary abelian.

Proof. Let Y := O2(M1) and U1 := 〈V G1
7 〉. By 12.5.2.1, Y has chief series

0 < V1 < V7 < V . Thus Hypothesis G.2.1 is satisfied with Y , G1, G1, Y , V7 in the
roles of “L, G, H , L1, V ”, so by G.2.2, Ũ1 ∈ R2(G̃1) and Ũ1 ≤ Ω1(Z(O2(G̃1))). In
particular, V7 ≤ O2(G1).

Next V = [V, L1] ≤ [O2(L1), L1], so if K1 = L1 or K1/O2(K1) ∼= SL2(7)/E49,
then V ≤ O2(K1) ≤ O2(G1), and hence (1) hold in these cases. We assume that (1)
fails, so K∗1 := K1/O2(K1) ∼= L5(2), M24, or J4 by 12.5.3. Also V ∗ ∼= V/V7 is the
natural module for L∗1/O2(L

∗
1)
∼= L3(2). Then [V, U1] ≤ V ∩U1 = V ∩O2(G1) = V7.

Further V ∗ is invariant underM∗
1 by 12.2.6, and from the discussion in the proof of

12.5.3,M∗
1 /O2(M

∗
1 )
∼= L2(2)×L3(2), with the embedding ofM∗

1 in K∗1 determined.
When K∗1

∼= M24 or L5(2), this is contrary to the action of Y ∗ on O2(Y
∗) as

the tensor product module of rank 6. Finally suppose K∗
1
∼= J4. Our discussion

of the embedding of M∗
1 showed that M∗

1 < N∗, with O2(N
∗) special of order

23+12 and N∗/O2(N
∗) ∼= S5 × L3(2). It follows that V ∗ = Z(O2(N

∗)) E N∗.

Since L∗1 6≤ CG∗1 (Ṽ7), K
∗
1 = 〈L∗K1

1 〉 6≤ CG∗1 (Ũ1), and in particular V ∗ 6≤ CG∗1 (Ũ1);

as we saw [V, U1] ≤ V7 and Y ∗ is irreducible on Ṽ7, we conclude [U1, V ] = V7.

Therefore N∗ normalizes [Ũ1, V
∗] = Ṽ7. But this is impossible as Ṽ7 is the tensor

product module for Y ∗/O2(Y
∗) ∼= L2(2) × L3(2), and this action does not extend

to N∗/O2(N
∗) ∼= S5 × L3(2).

Thus (1) is established. By 12.5.7, V ≤ Ω1(Z(W0(O2(G1), V )))), so (2) follows
from (1). ¤
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Lemma 12.5.9. Let T1 := CT (V
′
1), and choose notation with T1 ∈ Syl2(CM (V ′1 )).

Then

(1) |T : T1| = 4, and T1 ∈ Syl2(CG(V ′1)).
(2) V ′1 /∈ V

G
1 .

(3) V G1 ∩ V = V L1 .
(4) If g ∈ G−NG(V ) with V1 ≤ V g, then V g ∈ V G1 and [V, V g] = 1.

Proof. The first part of (1) follows from 12.5.5.3. By 12.5.7,W0 :=W0(T, V ) =
W0(T1, V ) and NG(W0) ≤ M , so T1 ∈ Syl2(CG(V ′1 )). Thus (1) holds, and (1) im-
plies (2). Then (2) and 12.5.5.1 imply (3). Finally under the hypothesis of (4), (3)
and A.1.7.1 imply V g ∈ V G1 , and then 12.5.8.2 implies [V, V g ] = 1. ¤

Lemma 12.5.10. (1) Either W1 :=W1(T, V ) centralizes V , or W̄1 = R̄6.
(2) CG(C1(T, V )) ≤M .

Proof. Suppose A := V g ∩M ≤ T with [A, V ] 6= 1, and m(V g/A) ≤ 1. By
12.5.7, m(V g/A) = 1 and V > I := NV (V

g). We now argue much as in 12.5.7:
This time r(G, V ) > 3 = s(G, V ) by 12.5.6, so Ā ∈ A2(T̄ , V ) by E.3.10. Therefore
either A centralizes V3, or AutA(V3) ∈ A2(AutT (V3), V3), so that m(A/CA(V3)) =
m2(L3/O2(L3)) = 2, and hence V3 ≤ I as r(G, V ) > 3. But in the latter case,
V1 ≤ [V3, A] ≤ V g, contrary to 12.5.9.4. We conclude A centralizes V3, and similarly
that A centralizes the space V ′3 of 12.5.7; so again A ≤ C := CM6(V3 + V ′3) with
m(C/R6) = 1, and as Ā ∈ A2(T̄ , V ), A ≤ CLT (V6) = R6. Thus as L6 is irreducible
on R̄6, W̄1 = R̄6. Hence (1) holds.

By (1), V6 ≤ C1(T, V ), so (2) follows from 12.5.4. ¤

For the remainder of the section, let H ∈ H∗(T,M). Recall from 3.3.2.4 that
H is described in B.6.8 and E.2.2.

Lemma 12.5.11. (1) n(H) > 1.
(2) K1 = L1.

Proof. By 12.5.7 and 12.5.10,NG(W0) ≤M ≥ CG(C1(T, V )); so as s(G, V ) =
3, (1) follows from E.3.19 with i, j = 0, 1. Suppose L1 < K1, so that in particular
K1 6≤M . Then using the description of the embedding of M ∗

1 in K∗1 in 12.5.3 and
its proof, there is H ∈ H(T ) with H ≤ K1T , H 6≤ M , and either H/O2(H) ∼= S3,
or K1/O2(K1) ∼= SL2(7)/E49 and H := Ξ7(K1)T . Thus H ∈ H∗(T,M) with
n(H) = 1, contrary to (1). Thus (2) is also established. ¤

Lemma 12.5.12. If H ≤ G1, then n(H) = 2, and a Hall 2′-subgroup of H ∩M
is a nontrivial 3-group.

Proof. By 12.5.11.1, n(H) > 1. Then applying 12.2.11 to V1 in the role of
“U”, the lemma holds. ¤

We are now in a position to complete the proof of Theorem 12.5.1.
By Theorem 12.4.2.2, G1 6≤M , so we may choose H ∈ H∗(T,M) ∩G1. Hence

by 12.5.12, n(H) = 2 and a Hall 2′-subgroup of H ∩M is a nontrivial 3-group. Set
K := O2(H), so that K 6≤M , and X := CG1(L1/O2(L1)). Then as L1 = K1 E G1

by 12.5.11.2, and T̄ ≤ L̄, G1 = L1X . In particular, X 6≤M as G1 6≤M , so we may
chooseH ≤ XT . Asm3(L1) = 1 andm3(G1) ≤ 2, m3(X) ≤ 1. Thereforem3(X) =
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m3(H) = 1, so as n(H) = 2, and a Hall 2′-subgroup of H ∩M is a nontrivial 3-

group, K/O2(K) ∼= L2(4). Also O3′(H ∩M) ≤ O3′(X ∩M) = O3′(X ∩ L) using
12.2.8, so M1 = L1(H ∩M) by 12.5.2.1.

Now just as in the proof of 12.5.8, Hypothesis G.2.1 is satisfied withH1 := L1H ,
O2(M1), V7 in the roles of “H , L1, V ”. Let H̃1 := H1/V1, UH := 〈V H7 〉, and

QH := O2(H1). Then ŨH ≤ Z(Q̃H) by G.2.2.1, and UH ≤ U , so that UH is
elementary abelian by 12.5.8.2. If [UH ,K] = 1 then as V3 ≤ V7, K ≤ G3 ≤ M by
12.5.4, contrary to K 6≤M . Thus as H1 = KTL1 with KL1QH/QH ∼= A5×L3(2),

we conclude QH = CH (ŨH).
Let H∗1 := H1/QH . Now W0 := W0(T, V ) ≤ CT (V ) and NG(W0) ≤ M by

12.5.7. Hence as H 6≤ M , W0 6≤ O2(H) by E.3.15, so there is A := V g ≤ T with
A 6≤ O2(H). As A ≤ W0(T, V ) ≤ CT (V ) ≤ O2(M1) ≤ QH(T ∩K), A∗ ≤ K∗. Let

B := A ∩ QH = CA(ŨH). Then m(A/B) ≤ m2(K
∗) = 2. Further [UH , B] ≤ V1,

so for u ∈ UH , m(B/CB(u)) ≤ m2(V1) = 1, and hence m(A/CB(u)) ≤ 3. Now
r(G, V ) > 3 = s(G, V ) by 12.5.6, so u ∈ NG(A), and hence UH ≤ NG(A). Thus
if [UH , B] 6= 1 then V1 = [UH , B] ≤ A. But then 12.5.9.4 and 12.5.8.1 show
A ∈ V G1 ⊆ O2(G1), contrary to A 6≤ O2(H). Thus UH centralizes B, so as
m(A/B) < s(G, V ), A centralizes UH by E.3.6. But then [K,A] = K centralizes

UH , contrary to our earlier observation that QH = CH (ŨH).
This final contradiction completes the proof of Theorem 12.5.1.

12.6. Eliminating A8 on the permutation module

The main result of this section is Theorem 12.6.34, which eliminates the A8-
subcase in case (d) of Theorem 12.2.2.3, reducing the treatment of L/O2(L) ∼= L4(2)
to case (a) where V is a 4-dimensional natural module. This leaves only one case
of Theorem 12.2.2.3 where it is possible that CV (L) 6= 1: case (d) with L̄ ∼= A6.
That case will be treated in section 13.4 of the following chapter.

We mention that L4(2)/E64 arises as L ∈ L∗f (G, T ) in the non-quasithin shad-

ows G ∼= Ω+
8 (2), O+

10(2), Sp8(2), and PΩ+
8 (3). Also such a 6-dimensional in-

ternal module appears in a suitable non-maximal member of Lf (G, T ) in other
non-quasithin groups, such as larger orthogonal and symplectic groups, as well as
the sporadic groups J4 and F ′24. As a result, the analysis in this case is fairly long
and difficult. In particular, these shadows are not eliminated until 12.6.26.

So in section 12.6 we assume Hypothesis 12.2.3, and adopt the conventions
of Notation 12.2.5, including Z = Ω1(Z(T )). In addition set ZV := CV (L) and

V̂ := V/ZV .

Througout this section, we assume that L̄ ∼= A8 and that V̂ is the orthogonal
module for L̄ ∼= Ω+

6 (2). In particular notice O2(L) = O2,Z(L) = CL(V ) by 1.2.1.4,
since the Schur multiplier of A8 is of order 2 by I.1.3.1. Further M̄V = L̄T̄ ∼= A8

or S8 = Aut(A8).
We adopt the notational conventions of section B.3, and assume T preserves

the partition {{1, 2}, {3, 4}, {5, 6}, {7, 8}} of the set Ω of 8 points. In particular
by B.3.3, if ZV 6= 1, then V is the core of the permutation module for L̄ on Ω,
and ZV is generated by eΩ. In that case, V E M by Theorem 12.2.2.3; hence
ZV = CV (L) EM , and we concludeM = CG(ZV ) asM ∈M. In any case V̂ is the

quotient of the core of the permutation module, modulo 〈eΩ〉. We can also view V̂
as a 6-dimensional orthogonal space for L̄ ∼= Ω+

6 (2). Thus we can speak of singular
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vectors in V̂ , nondegenerate subspaces of V̂ , etc. For i = 1, 2, 5, let Vi denote the
preimage in V of the i-dimensional subspace of V̂ fixed by T . Let Gi := NG(Vi),
Mi := NM (Vi), Li := O2(NL(Vi)), and Ri the preimage in T of O2(L̄iT̄ ).

12.6.1. Preliminary results.

Lemma 12.6.1. (1) L has two orbits on V̂ #, consisting of the singular and

nonsingular vectors of V̂ .
(2) If ZV 6= 1, then Z2

∼= ZV = Z(T ) ∩ V .
(3) Either J(T ) = J(CT (V )), or |R2(LT ) : V CR2(LT )(L)| ≤ 2.
(4) J(R1) = J(CT (V )). Hence NG(R1) ≤M .

(5) O3′(M) = L.
(6) If L = [L, J(T )] and ZV 6= 1, then L centralizes Z.

Proof. Part (5) follows from 12.2.8. Recall that either

(a) ZV 6= 1, and V is the 7-dimensional core of the permutation module for L̄,
or

(b) ZV = 1, and V is the 6-dimensional quotient of that core, modulo 〈eΩ〉.

Hence (1) and (2) are well known, easy calculations. Also either case (5) or (6) of
B.3.2 holds, so if Ā ∈ P(T̄ , V ), then one of the following holds:

(i) Ā = 〈D〉, for some D ⊆ ∆ = {(1, 2), (3, 4), (5, 6), (7, 8)}.
(ii) Ā = 〈∆〉 ∩ L̄.
(iii) Ā is conjugate under L̄ to Ā0 := 〈(1, 2)(3, 4), (1, 3)(2, 4), (5, 6), (7, 8)〉, or to

a hyperplane in the group of (ii), given by either

〈(1, 2)(3, 4), (1, 2)(5, 6), (7, 8)〉, or 〈(1, 2)(3, 4), (5, 6), (7, 8)〉.

(iv) ZV = 1 and Ā ∼= E8 is the unipotent radical of an L3(2)/E8 parabolic of
L̄.

Now R̄1
∼= E16 is the unipotent radical of the stabilizer of the partition

{{1, 2, 3, 4}, {5, 6, 7, 8}},

so R̄1 contains no transpositions and hence contains no subgroup of type (i) or
(iii); nor does it contain a subgroup of type (ii) or (iv). Thus R̄1 contains no FF∗-
offenders, so that J(R1) = J(O2(LT )), and hence NG(R1) ≤ NG(J(O2(LT ))) ≤
M = !M(LT ), so that (4) holds.

Also if J(T ) 6≤ CT (V ), then V̂ is the unique noncentral chief factor for L on

R2(LT ) by Theorem B.5.1.1. Then (3) follows as H1(L, V̂ ) ∼= Z2 by I.1.6.1. If in
addition ZV 6= 1, then ZV = Z∩V by (2), and we’ve just seen that V = [R2(LT ), L],
so (6) follows as 〈ZL〉 = V CZ(L) by B.2.14. ¤

In the shadows mentioned earlier (such as Ω+
8 (2)), CG(v) ≤ M for each non-

singular v ∈ V , as in the first main reduction Theorem 12.6.2 below. However,
this result does eliminate the sporadic configurations in J4 and F ′24, since in those
groups CG(v) 6≤M .

Theorem 12.6.2. CG(v) ≤M for each v ∈ V with v̂ nonsingular.

Until the proof of Theorem 12.6.2 is complete, let v ∈ V with v̂ nonsingular
and set Rv := O2(CLT (v)). Conjugating in L, we may assume v̂ = ê1,2. Thus
L̄v ∼= A6, so as O2(L) = O2,Z(L) = CL(V ), Lv = CL(v)

∞, Lv/O2(Lv) ∼= A6, and
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either Rv = Q or R̄v = 〈(1, 2)〉. By choice of v, Tv := CT (v) ∈ Syl2(Mv) and
|T : Tv| = 4. As CLT (v) = LvTv, Rv = O2(LvTv).

Lemma 12.6.3. There exists Kv ∈ C(Gv) with Lv ≤ Kv = O3′(G∞v ) E Gv,
and Kv/O2(Kv) quasisimple.

Proof. By 1.2.1.1, Lv is contained in the product of the C-components of Gv,
so Lv projects nontrivally on Kv/O∞(Kv) for some Kv ∈ C(Gv). As Lv/O2(Lv) ∼=
A6, it follows from A.3.18 that m3(Kv) = 2 and Kv = O3′ (G∞v ). Thus Lv ≤
Kv E Gv , and as Lv/O2(Lv) ∼= A6, Kv/O2(Kv) is quasisimple by 1.2.1.4. ¤

Let Tv ≤ S ∈ Syl2(Gv), set (KvS)
∗ := KvS/O2(KvS), and choose S so that

NS(Lv) ∈ Syl2(NGv(Lv)). Hence R := CS(L
∗
v/O2(L

∗
v)) ∈ Syl2(CKvS(L

∗
v/O2(L

∗
v)))

and Rv = R ∩ Tv. Then:

Lemma 12.6.4. |S : Tv| ≤ |T : Tv| = 4 ≥ |R : Rv |. Further O2(KvS) ≤ R.

Lemma 12.6.5. R normalizes Lv, and therefore [Lv, R] ≤ O2(Lv) and R =
CS(Lv/O2(Lv)).

Proof. Let X be the preimage in KvS of O2(L
∗
v). As [R,Lv] ≤ X while

|R : Rv| ≤ 4, (LvX)∞ = Lv, so the lemma holds. ¤

Let Vv := [V, Lv]. Then Vv is the 5-dimensional core of the permutation module
for Lv/O2(Lv) ∼= A6. In particular Vv is generated by the Lv-conjugates of a
vector of weight 4 in that module, which is central in Tv ∈ Syl2(LvTv), so that
Vv ∈ R2(LvTv) and Vv ≤ Ω1(Z(Rv)) by B.2.14. Let v0 denote the generator of
CVv (Lv); thus v0 has weight 6 in V and Vv , even though v itself may have weight
2 rather than 6 in V .

Lemma 12.6.6. If J(T ) 6≤ Q then either

(1) Lv = [Lv, J(Tv)], or
(2) J(Tv) = J(Q).

Proof. By hypothesis there is some A ∈ A(T ) not in Q. Assume first that
A satisfies one of (i)–(iii) in the proof of 12.6.1. Then some L-conjugate of A
centralizes v and is nontrivial on Lv/O2(Lv), so that J(Tv) 6≤ CTv (Vv), Lv =
[Lv, J(Tv)], and LvTv/O2(LvTv) ∼= S6, and hence conclusion (1) holds. Thus if
J(Tv) ≤ CTv (Vv), then each Ā must satisfy (iv), so in particular ZV = 1 and Vv
is a hyperplane of V . But since Ā satisfies (iv), Ā centralizes no vector of weight
2, so Ā 6≤ T̄v and hence J(Tv) ≤ Q. As Q ≤ Tv, we conclude J(Tv) = J(Q) using
B.2.3.3, so that conclusion (2) holds. ¤

Lemma 12.6.7. (1) If J(T ) ≤ Q, then J(T ) = J(Q) = J(Tv).
(2) If Lv = [Lv, J(Tv)], then L = [L, J(T )].

Proof. As Q ≤ Tv ≤ T , (1) holds. Then (1) implies (2). ¤

Lemma 12.6.8. If J(Tv) ≤ Q, then

(1) S = Tv and R = Rv.
(2) J(Tv) = J(Rv) = J(Q).
(3) NG(J(S)) ≤M .
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Proof. Assume J(Tv) ≤ Q. Then J(Tv) = J(Q), so NG(Tv) ≤ NG(J(Tv)) =
NG(J(Q)) ≤ M = !M(LT ). Hence as Tv ∈ Syl2(Mv), (1) and (3) hold. Then as
Q ≤ O2(LvTv) = Rv, (2) holds. ¤

Lemma 12.6.9. If J(Tv) 6≤ Q, then J(T ) 6≤ Q and Lv = [Lv, J(Tv)].

Proof. Assume J(Tv) 6≤ Q. Then by 12.6.7.1, J(T ) 6≤ Q. So by 12.6.6,
Lv = [Lv, J(Tv)]. ¤

Lemma 12.6.10. Let ∆(v) be the set of vectors of weight 2 in Vv. Then

L(v) := 〈Lu : u ∈ ∆(v)〉 = L.

Proof. Straightforward. ¤

During the remainder of the proof of Theorem 12.6.2, we assume that Gv 6≤M .
In addition when ZV 6= 1 and Gu 6≤M for some u of weight 2 in V , we choose v to
be of weight 2 rather than 6.

Lemma 12.6.11. Lv < Kv, so Kv 6≤M .

Proof. Assume Lv = Kv. Then Lv = O3′(Gv) by A.3.18. Furthermore
CGv(Vv) permutes {Lu : u ∈ ∆(v)}, and hence CGv (Vv) ≤ NG(L(v)), so CGv(Vv) ≤
NG(L) = M by 12.6.10. We deduce several consequences of this fact: First,
Vv ≤ O2(Lv) ≤ O2(Gv), so O2(F ∗(Gv)) ≤ CGv (Vv) ≤ M ; then O2(F ∗(Gv)) ≤
O2(F ∗(Mv)) = 1 using 1.1.3.2—that is, Gv ∈ H

e. Second, suppose that Vv E Gv.
Then as Lv E Gv ,

AutGv(Vv) ≤ NGL(Vv)(AutLv(Vv))
∼= S6 ∼= AutLvTv (Vv),

so Gv = LvTvCGv (Vv) ≤ M , contrary to our choice of v with Gv 6≤ M . Therefore
Vv is not normal in Gv .

Suppose first that J(Tv) ≤ Q. Let Hv := CGv (Lv/O2(Lv)). By 12.6.8, S = Tv
and NG(J(S)) ≤ M . As Out(A6) is a 2-group, Gv = LvSHv, so Hv 6≤ M ; then
as Gv 6≤ NG(Vv), also Hv 6≤ NGv(Vv). Therefore Vv < 〈V Hv

v 〉 =: U . Recall that
the core Vv of the permutation module for A6 is generated by Lv-conjugates of a
vector of weight 4 in that module, which is central in Tv = S ∈ Syl2(Gv). Then as

Gv ∈ H
e, U ≤ Ω1(Z(O2(Gv))) by B.2.14. As Lv = O3′(Gv) and Z(Lv/O2(Lv)) = 1,

Hv is a 3′-group. Then we conclude from Theorem B.5.6 that U is not a failure of
factorization module for Hv/CHv (U), and hence J(S) ≤ CGv (U) by B.2.7. Now by
a Frattini Argument, Hv = CHv (U)NHv (J(S)) ≤ CG(Vv)NG(J(S)) ≤M , contrary
to our remark that Hv 6≤M .

Therefore J(Tv) 6≤ Q. Then by 12.6.9, Lv = [Lv, J(Tv)], so [R2(Gv), Lv] = Vv
by Theorems B.5.6 and B.5.1. Then Vv E Gv , contrary to an earlier reduction. ¤

Lemma 12.6.12. Kv is not quasisimple.

Proof. Assume Kv is quasisimple. Then m2(Kv) ≥ m(Vv) = 5, so Kv/Z(Kv)
is notM23; and ifKv/Z(Kv) ∼=M22, then 〈v0〉 = CVv (Lv) ≤ Z(Kv) and Lv is anA6-
block. Next as a 2-local ofKv/Z(Kv) contains a quotient of Lv, as Lv/O2(Lv) ∼= A6,
and as [O2(Lv), Lv] 6= 1, we eliminate most possibilities for Kv/Z(Kv) in the list
of Theorem C (A.2.3), reducing to Kv/Z(Kv) ∼= L5(2), M22, M24, or J4. As
|S : Tv| ≤ 4 by 12.6.4 with S∩Kv ∈ Syl2(Kv), we conclude that Kv/Z(Kv) ∼=M22.
However CV (Lv) is of corank 5 in V , so CV (Kv) ≤ CV (Lv) is of corank at least 5
in V . Hence V/CV (Kv) is of rank at least 5 in AutGv (Kv) and centralizes Vv/〈v0〉,
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whereas 〈v0〉 = CVv (Lv) = CVv (Kv) with Vv/〈v0〉 of rank 4 and self-centralizing in
Aut(Kv). This contradiction completes the proof. ¤

Set U := Ω1(Z(O2(KvS))). Recall (KvS)
∗ = KvS/O2(KvS).

Lemma 12.6.13. (1) F ∗(KvS) = O2(KvS) = CKvS(U).
(2) K∗v is simple.
(3) Vv ≤ [U,Kv].

Proof. By 12.6.12, Kv is not quasisimple, while by 12.6.3, K∗v is quasisimple.
Since Lv/O2(Lv) has trivial center and contains an E9-subgroup, if O2(Kv) <
O2,3(Kv) then m3(LvO2,3(Kv)) = 3, contrary to Gv an SQTK-group. Therefore
from the list of possibilities in 1.2.1.4b, K∗v is simple, so F ∗(KvS) = O2(KvS) as
Kv is not quasisimple. We showed Vv ∈ R2(Lv), so that Lv ∈ Xf by A.4.11. By
12.6.4 and 12.6.5, O2(KvS) ≤ R ≤ NS(Lv) ∈ Syl2(NGv(Lv)), so we may apply
A.4.10.3 with Lv, Kv, S in the roles of “X , Y , T” to conclude that Kv ∈ Xf ;
then [R2(KvS),Kv] 6= 1 by A.4.11. As K∗v is simple, U = R2(KvS) and CS(U) =
O2(KvS). Similarly by A.4.10.2, Vv ≤ [U,Kv]. ¤

Lemma 12.6.14. J(Tv) 6≤ Q.

Proof. Assume J(Tv) ≤ Q. By 12.6.8, S = Tv, R = Rv , and J(S) = J(R) =
J(Q), so that NG(R) ≤ NG(J(R)) ≤ M = !M(LT ). By 12.6.4, O2(KvS) ≤ R.
Thus NK∗v (R

∗) = NKv(R)
∗ ≤ M∗

v . Then as Kv 6≤ M by 12.6.11, it follows that
R∗ 6= 1. Since Tv ∈ Syl2(Gv), by 1.2.4 the embedding Lv < Kv is described in
in A.3.12; so as R∗ 6= 1, we conclude that K∗v

∼= M22 or M23. Then K∗v has no
FF-module by B.4.2, so that J(S) ≤ CS(U) by B.2.7. But CS(U) = O2(KvS)
by 12.6.13.1, so Kv ≤ NG(J(S)) ≤ M , contrary to Kv 6≤ M . This contradiction
completes the proof of 12.6.14. ¤

Lemma 12.6.15. U is an FF-module for K∗vS
∗.

Proof. By 12.6.14 and 12.6.9, Lv = [Lv, J(Tv))]. Thus Kv = [Kv, J(Tv)],
so rV,A∗ ≤ 1 for some A ∈ A(Tv) by B.2.4.1, and hence U is an FF-module for
K∗vS

∗. ¤

Lemma 12.6.16. Assume ZV 6= 1 and S ∈ Syl2(G). Then

(1) NG(Rv) 6≤M , and
(2) L is not a block.

Proof. By 12.6.14 and 12.6.9, L = [L, J(T )]; so as ZV 6= 1 by hypothesis, L
centralizes Z by 12.6.1.6. Therefore CG(z) ≤M = !M(LT ) for each z ∈ Z#.

As S ∈ Syl2(G) by hypothesis, v is 2-central in G, so there is g ∈ G with Sg = T

and hence vg ∈ Z. Further Lgv < Kg
v by 12.6.11, so as Ggv ≤M , Kg

v ≤ O3′(M) = L

by 12.6.1.5. Also L ≤ CG(Z) ≤ Ggv , and Kg
v = O3′(Gg∞v ) by 12.6.3, so Kg

v = L.
Thus Lgv ≤ L, and Lgv is normal in the preimage of L̄gv in L by 12.6.4. Hence as L̄
is transitive on its subgroups isomorphic to A6, L

g
v ∈ L

L
v ; then as L centralizes Z,

without loss Lgv = Lv. Then R
g
v ∈ R

NLT (Lv)
v , so we also take Rgv = Rv .

Thus if NG(Rv) ≤M , then g ∈ NG(Rv) ≤M = NG(L), so K
g
v = L = Lg, and

hence Kv = L ≤M , contrary to 12.6.11. Therefore (1) is established.
As NG(Rv) 6≤ M ≥ NG(Q), Q < Rv . Then as we saw at the start of the

proof of Theorem 12.6.2, R̄v = 〈(1, 2)〉, so that LRv = LT . As (KvS)
g = LT and

Lgv = Lv, R = O2(NLT (Lv)) = Rv , and hence Rg = Rgv = Rv = R. Since it only
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remains to establish (2), we may assume that L is a block. Let a := g−1 Notice
that V E R, so that also V a E R.

Suppose first that [V, V a] = 1. Then V a ≤ CR(V ) = Q, so as L is a block,
[V V a, L] ≤ [Q,L] ≤ V ≤ V V a. Similarly [V V a,Kv] ≤ V V a. Therefore as LR =
LT , Kv ≤M = !M(LT ), contrary to 12.6.11.

Thus [V a, V ] 6= 1, so as V a ≤ R = Rv, V̄
a = 〈(1, 2)〉, and hence [V, V a] = 〈e1,2〉.

Since ZV 6= 1 by hypothesis, v is chosen to have weight 2, so v = e1,2. By symmetry,

[V a, V ] = 〈va〉, so v = va = vg
−1

, and hence g ∈ Gv , impossible as vg centralizes
L. ¤

Lemma 12.6.17. NG(Rv) 6≤M .

Proof. Assume that NG(Rv) ≤ M . Then as Rv ∈ Syl2(CM (Lv/O2(Lv))),
Rv = R. Hence NK∗v (R

∗) = NKv(Rv)
∗ ≤ M∗

v , so R
∗ 6= 1 as Kv 6≤ M by 12.6.11.

In view of 12.6.15, K∗v appears in the list of Theorem B.4.2, so since K∗vS
∗ has a

nontrivial 2-subgroup R∗ such that L∗v E NK∗v (R
∗) ≥ T ∗v with L∗v/O2(L

∗
v)
∼= A6 and

|S∗ : T ∗v | ≤ 4, we conclude that K∗vS
∗ ∼= S8 and R∗ induces a transposition on K∗v .

Then |S∗ : T ∗v | = 4 = |T : Tv|, so S ∈ Syl2(G). By 12.6.13.3, Vv ≤ [U,Kv] =: Uv.
Then from Theorem B.5.1.1, Uv/CUv (Kv) is the 6-dimensional quotient of the core
of the permutation module for K∗v . Further [CVv (Lv),Kv] 6= 1, as v0 is of weight
6 in both Uv and V . But v is central in Gv , so that v /∈ CVv (Lv) = 〈v0〉, and
hence ZV 6= 1. Now 12.6.16.1 supplies a contradiction, completing the proof of the
lemma. ¤

Lemma 12.6.18. (1) L is an A8-block.
(2) Kv is an A7-block.
(3) ZV 6= 1.
(4) LT = LRv.

Proof. By 12.6.17, NG(Rv) 6≤ M . So as NG(Q) ≤ M , Q < Rv, and hence
R̄v = 〈(1, 2)〉, so (4) holds. Then R̄v ≤ X̄ ≤ M̄ for some X̄ ∼= S3—so either there
is 1 6= C char Rv with C E X , or we may apply C.1.29 to Rv ∈ Syl2(X), to
conclude that O2(X) is an A3-block. In the former case, C E 〈X,CLT (v)〉 = LT ,
so NG(Rv) ≤ NG(C) ≤ M = !M(LT ), contrary to 12.6.17. Thus X an A3-block,
so L that (1) holds and Lv is an A6-block. Further as Lv is trivial on R/Rv, Vv
is the unique non-central chief factor for Lv on R, so Vv is the unique noncentral
chief factor for Lv on O2(KvS). Thus Kv is also a block. By 12.6.15, U is an FF-
module for K∗vS

∗, so by Theorem B.4.2, K∗v is either of Lie type and characteristic

2, or A7. (The case of Â6 is ruled out as Lv/O2(Lv) ∼= A6). Indeed as SL3(2
n)

and G2(2
n) have no subgroup X with X/O2(X) ∼= A6, K

∗
v
∼= Sp4(2

n), A7, A8, or
L5(2). As T ∗v acts on L∗v and |S∗ : T ∗v | ≤ 4 = |T : Tv|, K

∗
v is A7, A8, or L5(2).

Furthermore in the latter two cases |S : Tv| = 4 = |T : Tv|, so that S ∈ Syl2(G),
and we calculate that R = Rv, and L

∗
v
∼= A6 or A6/E16, respectively. In particular

K∗v is not L5(2), since in that group [O2(L
∗
v), R

∗] 6= 1, whereas Lv has a unique
noncentral 2-chief factor. Then as Vv ≤ [U,Kv], Theorem B.5.1.1 says U/CU (Kv)
is the natural module for K∗v

∼= A7 or A8. Now we argue as in the proof of 12.6.17:
In either case [v0,Kv] 6= 1, so as v ∈ Z(Gv), v 6= v0 and hence (3) holds. Finally
if Kv is an A8-block, we showed S ∈ Syl2(G); then (1) contradicts 12.6.16.2. Thus
Kv is an A7-block, so (2) holds. ¤
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We are now in a position to complete the proof of Theorem 12.6.2. By 12.6.18.2,
Kv is an A7-block. Therefore S = Tv, since A6 is of odd index in A7. Hence
Rv = R = CS(Lv/O2(Lv)) = O2(KvS). Since the natural module for A7 has
trivial 1-cohomology by I.1.6.1, O2(KvS) = UCS(Kv) by C.1.13.b. Then from
the structure of the A7-module, CS(Lv) = CS(Kv) × 〈v0〉. By 12.6.18.4, LT =
LS, so T0 := CT (L) ∩ CS(Kv) E LT = LS, and hence T0 = 1 as Kv 6≤ M
by 12.6.11. Then as CT (L) ≤ CS(Lv), |CT (L)| ≤ |CS(Lv) : CS(Kv)| = 2, so
CT (L) = ZV as ZV 6= 1 by 12.6.18.3. Therefore as the 1-cohomology of the natural
module for A8 is 1-dimensional by I.1.6.1, we conclude from C.1.13.b that either
Q = V , or Q is isomorphic to the 8-dimensional permutation module P as an
L/V -module. In either case Rv = 〈r〉Q with r̄ = (1, 2) and [Rv, r] = [Q, r] = 〈v〉.
Also |Rv| = 2|Q| = 28 or 29. On the other hand as Rv = CS(Kv) × U with
U the 6-dimensional permutation module for Kv/O2(Kv) ∼= A7, r ∈ CRv (Lv) =
〈v0〉 ×CS(Kv). In particular r centralizes U , so as [Rv, r] = 〈v〉, [CS(Kv), r] = 〈v〉.
As Rv is nonabelian, but U is central in in Rv, we conclude CS(Kv) is nonabelian,
so |CS(Kv)| ≥ 8 and hence |Rv| ≥ 29. Then using our earlier bounds, |Rv | = 29,
with Q ∼= P ∼= E28 and Rv ∼= D8 × E64. As Rv = O2(KvS) and Kv = O2(Kv),
Kv acts on both E28 -subgroups of Rv, so that Kv ≤ NG(Q) ≤ M , for our usual
contradiction to 12.6.11.

This contradiction completes the proof of Theorem 12.6.2.

In the remainder of the subsection, we show ZV = 1.

Lemma 12.6.19. (1) L controls G-fusion in V .
(2) If ZV 6= 1 and v4 is of weight 4 in V , then |CG(v4) : CM (v4)| is odd.

Proof. Suppose ZV = 1. Then (2) is vacuous, and L has two orbits on V #,
consisting of the singular and nonsingular vectors, with the singular vectors 2-
central. By Theorem 12.6.2, the nonsingular vectors are not 2-central, so (1) holds
in this case.

Thus we may assume ZV 6= 1. In this case, L has four orbits on V #, with
representatives v2, v4, v6, v8, where vm is of weight m. By Theorem 12.6.2,
|CG(vm)|2 = |T |/4 for m = 2, 6. Notice v8 is 2-central, and |CM (v4)|2 = |T |/2.
Assume that (1) fails. Then it follows that vg4 = v8 for some g ∈ G. We
may choose v4 so that V1 = 〈v4, v8〉; thus T4 := CT (v4) ∈ Syl2(CM (v4)) and
O2(CL(v4)) = O2(NL(V1)) = L1. Then L

g
1 ≤ CG(v8) ≤M , so Lg1 ≤ L by 12.6.1.5,

and we may take T g4 ≤ T . As |T : T4| = 2 and L1T4/R1 is of index at most 2 in
S3×S3, we conclude L

g
1 ∈ L

L
1 ; thus as L centralizes v8, we may take Lg1 = L1. But

then Rg1 = O2(L1T4)
g = R1. Now using 12.6.1.4, g ∈ NG(R1) ≤ M , contrary to

v4 6∈ vM8 . Hence (1) is established.
Suppose finally that (2) fails. Then vg4 ∈ Z for some g ∈ G. If [V, J(T )] = 1,

then NG(J(T )) ≤ M by 3.2.10,1; and by Burnside’s Fusion Lemma, NG(J(T ))
controls fusion in Z(J(T )) ≥ V Z, contrary to v4 not 2-central in M . Thus we
may take L = [L, J(T )], so as ZV 6= 1, L centralizes Z by 12.6.1.6. Hence Lg1 ≤
CG(v

g
4) ≤ M = !M(LT ). We now repeat the argument of the previous paragraph

to obtain the same contradiction, completing the proof of (2). ¤

Lemma 12.6.20. Let S be the set of vectors in V of weight 4. If g ∈ G−NG(V )
with V ∩ V g 6= 1, then

(1) V ∩ V g ⊆ S, so m(V ∩ V g) ≤ 3.
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(2) V g ∈ V CG(v) for each v ∈ V ∩ V g.
(3) r(G, V ) ≥ 3, and r(G, V ) ≥ 4 if ZV 6= 1.
(4) If 1 6= [V, V g ] ≤ V ∩V g, then ZV = 1, V ∩V g is a totally singular 3-subspace

of V , and V̄ g is the unipotent radical of an L3(2)/E8 parabolic.

Proof. Part (2) follows from A.1.7.1 in view of 12.6.19.1. If v ∈ V is of weight
8 then Gv = M as we saw at the start of the section, while if v has weight 2 or
6, then Gv ≤M by Theorem 12.6.2. So by 12.6.19.1, we may apply A.1.7.2 to see
that each element of weight 2, 6, or 8 lies in a unique conjugate of V . Then (1)
follows, and (1) implies (3).

Assume the hypotheses of (4). Interchanging V and V g if necessary, we may as-
sumem(V̄ g) ≥ m(V/CV (V

g)). Then by B.1.4.4, V̄ g contains a member of P(T̄ , V ),
so the possibilities for V̄ g are described in the discussion near the beginning of the
proof of 12.6.1. As [V, V g] ≤ V ∩V g, (1) says [V, V g ]# ⊆ S, and the only possibility
satisfying this restriction is that given in (4). ¤

Lemma 12.6.21. CG(v) 6≤M for each v ∈ V # of weight 4.

Proof. As the groups in conclusions (2)–(4) of Theorem 12.2.13 do not have
a member L ∈ L∗f (G, T ) with L̄ ∼= A8 and V/CV (L) the permutation module,

conclusion (1) of 12.2.13 holds: Gv 6≤ M for some v ∈ V #. By 12.6.20, Gv ≤ M
for v of weight 2, 6, or 8, so the lemma holds. ¤

Lemma 12.6.22. If ZV 6= 1, then

(1) W0 :=W0(T, V ) centralizes V .
(2) If m(V g/V g ∩M) ≤ 1 for some g ∈ G, then V g ≤ NG(V ).
(3) w(G, V ) > 1.

Proof. Notice (1) and (2) imply (3), so it remains to prove (1) and (2). As-
sume ZV 6= 1. Then M = NG(V ) by 12.2.2.3. Suppose A := V g ∩M with Ā 6= 1.
Assume k := m(V g/A) ≤ 1, and if (1) fails, choose k = 0. Thus V 6≤ NG(V

g) if
k = 1: for otherwise by assumption (1) does not fail, so that V ≤ CG(V

g), contra-
dicting Ā 6= 1. Now by 12.6.20.3 and E.3.4, m(Ā) ≥ r(G, V )− k ≥ 4− k. Similarly
using 12.6.20.3 as in E.3.32,

U := 〈CV (B) : B ≤ A and m(V g/B) ≤ 3 〉 ≤ NG(V
g),

so [A,U ] ≤ V ∩ V g . Now L̄T̄ is A8 or S8, and the maximal elementary abelian
2-subgroups of S8 are

(i) D1
∼= E8 regular on Ω.

(ii) D2
∼= E16 with two orbits of length 4.

(iii) D3
∼= E16 with one orbit of length 4, and two of length 2.

(iv) D4
∼= E16 with four orbits of length 2.

If k = 0, then m(Ā) = 4, so Ā = Di for i = 2, 3, 4; while if k = 1, then
m(Ā) ≥ 3, so either Ā = Di for i = 1, 2, 3, 4 or Ā is of index 2 in Dj for j = 2, 3, 4.
In each case we find that [A,U ] contains a vector of weight 2 or 8. This contradicts
12.6.20.1, as [A,U ] ≤ V ∩ V g , so the proof is complete. ¤

Lemma 12.6.23. CV (L) = 1. Thus V is the 6-dimensional orthogonal module
for L̄.
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Proof. Assume ZV = CV (L) 6= 1. Let H ∈ H∗(T,M), K := O2(H), VH :=
〈ZH〉, andH∗ := H/CH(VH ). By 12.6.20.3 and 12.6.22.3, min{r(G, V ), w(G, V )} >
1, so each solvable member of H(T ) is contained in M by E.3.35.1 and E.1.13. In
particular H is not solvable. By 12.2.9.1, CG(Z) ≤ M , so by Corollary 12.3.2,
1 6= VK := [VH ,K] is the sum of at most two A5-modules for K∗ ∼= A5. As
H = KT , O2(H) = CH(VH ) = CT (VH ). Let H∗M be the Borel subgroup of H∗ over

T ∗; then HM = H ∩M by 3.3.2.4. Now O2(HM ) = O3′(HM ) ≤ O3′(M) = L by
12.6.1.5.

Next if W0 := W0(T, V ) ≤ CT (VH ), then H ≤ NG(W0) ≤M by 12.6.22.1 and
E.3.34.2, contrary to H 6≤ M . Therefore W0 6≤ CT (VH ), so there is A := V g ≤ T
with A∗ 6= 1. Now by 12.6.22.1, A ≤W0(T, V ) ≤ CT (V ) = Q. Thus as O2(HM ) ≤
L, HM ≤ LT , so that A ≤ O2(HM ).

Let B := A ∩ O2(H); then m(A/B) = m(A∗) =: k ≤ 2 = m2(H
∗). As k ≤ 2,

VH ≤ CG(B) ≤ NG(A) by 12.6.20.3, so [A, VH ] ≤ A ∩ VH . However O2(H
∗
M ) is

not quadratic on VH , so A∗ < O2(H
∗
M ). Therefore k = 1, so VH induces a group

of transvections with axis B on A. Thus |VH : CVH (A)| = 2 from the action of
L̄T̄ ∼= S8 on V . This is impossible, since as A∗ ≤ O2(H

∗
M ), m(VH/CVH (A)) > 1

from the action of involutions in A5 on its permutation module. This contradiction
completes the proof of 12.6.23. ¤

12.6.2. The amalgam setup, and the elimination of VH nonabelian.
With 12.6.23 in place, we can begin to use some of the techniques from section
F.9, which are more representative of the arguments for the F2-case in the three
chapters of this part.

By 12.6.23, Z ∩V = V1 is of order 2. Let z be the generator of V1. Recall from
Notation 12.2.5 that Gz = CG(z) and G̃z := Gz/V1. Now z is of weight 4 in V ,
so Gz 6≤ M by 12.6.21. Recall that L1 = O2(NL(V1)) = O2(CL(z)) = Lz, V5 is

the 5-subspace V ⊥1 of V , L̄1
∼= E9/E16, and L̄1T̄ /O2(L̄1T̄ ) acts on Ṽ5 as Ω+

4 (2) or
O+
4 (2) on its natural module.

We now make a definition which, will be repeated in many later sections of the
chapters on the F2 case: let

Hz := {H ∈ H(L1T ) : H 6≤M and H ≤ Gz}.

As Gz 6≤M , Gz ∈ Hz, and hence Hz 6= ∅.

For the remainder of the section, H will denote an element of Hz.

Set QH := O2(H), UH := 〈V H5 〉, VH := 〈V H〉, and H∗ := H/QH .

Lemma 12.6.24. (1) L1T is irreducible on Ṽ5.
(2) UH ≤ O2(H). In particular, V5 ≤ O2(G1).
(3) V ≤ O2(G2).
(4) G5 ≤ NG(V ) =MV .
(5) If g ∈ G with V1 < V ∩ V g, then 〈V, V g〉 is a 2-group.
(6) CG(Ṽ5) = CG(V )R1 = CM (V )R1 and CG(V5) = CG(V ) = CM (V ).
(7) Hypothesis F.9.1 is satisfied for each H ∈ Hz, with V5 in the role of “V+”.

(8) QH = CH (ŨH), so H
∗ = AutH(ŨH).

Proof. Part (1) is standard and an easy calculation. Since m(V5) = 5 > 3,

(4) follows from 12.6.20.1. By (4), CG(Ṽ5) ≤ M ; so as R̄1 = CM̄V
(Ṽ5) and M̄V

contains no transvection with axis V5, (6) holds.
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We next prove (7). Most parts of Hypothesis F.9.1 are easy to check: For
example, (4) implies hypothesis (c) of F.9.1, (1) implies (b), and (d) holds as
M = !M(LT ) but H 6≤M . Assume the hypothesis of (e); as the conclusion of (e)
holds trivially if [V, V g] = 1, we may assume 1 6= [V, V g ]. Then 12.6.20.4 says V̄ g is
the unipotent radical R̄ of the stabilizer of some 3-subspace of V , while (6) and the

hypothesis of (e) that V g centralizes Ṽ5 forces V̄ g ≤ R̄1. This contradicts R̄ 6≤ R̄1,
and completes the proof of (e). As H ∈ H(T ), H ∈ He by 1.1.4.6. If X is a normal

subgroup of H centralizing Ṽ5, then by (6) and Coprime Action, O2(X) centralizes
V , so [L,O2(X)] ≤ O2(L). Hence LT normalizes O2(XO2(L)) = O2(X). Then
if X is not a 2-group, H ≤ NG(O

2(X)) ≤ M = !M(LT ), contrary to H 6≤ M .
Therefore X ≤ O2(H) = QH , so that hypothesis (a) of F.9.1 holds. Thus we have
established (7).

Next (7) and parts (1) and (3) of F.9.2 imply (2) and (8), respectively. By (2),
V5 ≤ O2(G1) ∩ CG(V2), so as CG(V2) ≤ G1, V5 ≤ O2(CG(V2)) ≤ O2(G2). Then

V = 〈V L2
5 〉 ≤ O2(G2). Hence (3) holds. If g ∈ G −MV with V1 < V ∩ V g, then

by 12.6.20.1, V ∩ V g is totally singular; so without loss V2 ≤ V g , so that V g ≤ G2.
But then 〈V, V g〉 is a 2-group by (3). Hence (5) holds. ¤

Lemma 12.6.25. The following are equivalent:

(1) UH is abelian.
(2) V ≤ QH .
(3) V ≤ CG(UH).
(4) VH is abelian.

Proof. Parts (2) and (3) are equivalent by F.9.3, which applies by 12.6.24.7.
Similarly the hypotheses of F.9.4.3 are satisfied by 12.6.24.6, so (1), (2), and (4)
are equivalent by F.9.4.3. ¤

Observe since H ≤ Gz = G1, that if VH is nonabelian, then VG1 is also non-
abelian.

In the non-quasithin shadows mentioned earlier (such as Ω+
8 (2)), VH is non-

abelian. Hence these shadows are eliminated in the next result:

Lemma 12.6.26. VH is abelian.

Proof. Assume that VH is nonabelian. Then by 12.6.25, UH also is nonabelian
and V ∗ 6= 1. Notice the hypotheses of F.9.5 are now satisfied, so in particular V ∗

is of order 2 and [ŨH , V
∗] = Ṽ5 by parts (1) and (2) of F.9.5. By 12.6.24.5, the

hypothesis of part (5) of F.9.5 is satisfied. Also m(V ) = 6, and by 12.6.24.6,
CH(V5) = CH(V ), so the hypotheses of LL.5.6F.9.5.6ii are satisfied, and hence we
can appeal to that result also. For example if g∗ ∈ H∗ such that I∗ := 〈V ∗, V ∗g〉
is not a 2-group, then by F.9.5.5, I∗ is faithful on UI := V5V

g
5 ; and by F.9.5.6ii,

UI ∼= Q4
8 and I

∗ ∼= D6, D10, or D12. Therefore elements of odd order in H∗ inverted
by V ∗ are of order 3 or 5.

We show first that V ≤ O2(CH(L1/O2(L1))): Assume otherwise. Then by
the Baer-Suzuki Theorem, for some g ∈ CH(L1/O2(L1)), I

∗ := 〈V ∗, V ∗g〉 is not a
2-group. By the previous paragraph, I∗ is faithful on UI ∼= Q4

8 and I∗ is dihedral
of order 2m, m = 3, 5, or 6. Also as g ∈ CH(L1/O2(L1)), as V

∗ centralizes L∗1,

and as O2(L
∗
1) = CL∗1 (Ṽ5), we conclude that I∗ centralizes L∗1 and L1 acts on V g5

with O2(L
∗
1) = CL∗1 (Ṽ

g
5 ). Let ÎL1 := OutIL1(UI). Then L̂1

∼= E9 is faithful on Ṽ5
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and Ṽ g5 , so from the structure of Ô := Out(UI) ∼= O+
8 (2), Î ≤ CÔ(L̂1) ∼= S3 × S3.

But now m3(H) > 2, whereas H is an SQTK-group. This contradiction shows that
V ≤ O2(CH(L1/O2(L1))).

We next show that V ∗ centralizes F (H∗). Assume otherwise. Let P ∈ Syl3(L1)
and set C∗ := CO3(H∗)(P

∗). If [O3(H
∗), V ∗] 6= 1, then as V ∗ centralizes P ∗, V ∗

inverts a subgroup X∗ of C∗ of order 3 by the Thompson A × B Lemma; but
then m3(P

∗X∗) = 3, contrary to H an SQTK-group. Therefore V ∗ centralizes
O3(H

∗), so we may assume that [V ∗, Op(H
∗)] 6= 1 for some prime p > 3. We

saw that elements of odd order in H∗ inverted by V ∗ are of order 3 or 5, so
p = 5. Let Y ∗ be a supercritical subgroup of O5(H

∗). By the previous paragraph
V ≤ O2(CH(L1/O2(L1))), so O5(H

∗) 6≤ CH∗(L
∗
1). Therefore we conclude from

A.1.25 that Y ∗ is E25 or 51+2 and P is irreducible on Y ∗/Φ(Y ∗). Thus as V ∗

centralizes P ∗, V ∗ inverts Y ∗/Φ(Y ∗). If Y ∗ ∼= 51+2, then a faithful chief section

W for Y ∗V ∗ on ŨH is of dimension 20 over F2, and m([W,V ∗]) ≥ 8. If Y ∗ ∼= E25,
then a faithful Y ∗V ∗-chief section W for P ∗Y ∗ is of dimension 12 over F2 and
m([W,V ∗]) = 6. So in any case m([ŨH , V

∗]) ≥ 6, whereas we saw [ŨH , V
∗] = Ṽ5 is

of rank 4. This contradiction establishes the claim that V ∗ centralizes F (H∗).
So as O2(H

∗) = 1, [K∗, V ∗] 6= 1 for some K ∈ C(H) such that K∗ is a
component of H∗. Then K 6≤ M as V ≤ O2(M). As V ∗ ≤ Z(T ∗), V ∗ normalizes
K∗, so that K∗ = [K∗, V ∗]. Further L1 = O2(L1) normalizesK by 1.2.1.3. As V ≤
O2(CH (L1/O2(L1))), K

∗ 6≤ CH∗(L
∗
1), so that K∗ = [K∗, L∗1]. Set X := KL1V and

X̂ := X/CX(K
∗). By F.9.5.3, CH∗(V

∗) = NH(V )∗. Further NH(V ) ≤ H ∩M ≤

NH(L1) and CX(V̂ ) = CK(V̂ )L1V . Now CK(V̂ ) centralizes V ∗Z(K∗)/Z(K∗), so

as O2(K
∗) = 1, CK̂(V̂ ) = ĈK(V ∗) ≤ K̂ ∩M , and then

L̂1 ≤ O2,3(CX̂(V̂ )) with V̂ of order 2 in Z(T̂ ) and 3 ∈ π(L̂1). (∗)

Since all elements of odd order in K̂ inverted by V̂ are of order 3 or 5, we conclude
K̂ is not Sz(2n). Hence m3(K) = 1 or 2.

Suppose first that m3(K) = 2. Then as m3(P ) = 2 = m3(PK), either P is

faithful on K∗, or 1 6= P ∩ O2,Z(K), so that by 1.2.1.4b, K∗ ∼= SLε3(q), Â6, Â7, or

M̂22. Further in the latter case, K/O2(K) ∼= Â7 or M̂22 by (*).

Suppose that K∗ ∼= Â7. Then R̂1 = O2(L̂1T̂ ) ∼= E4, while NK(R1) ≤ M

by 12.6.1.4, so O3′(NK(R1)) ≤ O3′ (M) = L by 12.6.1.5. Thus O3′ (NK(R1)) ≤
O2(CL(z)) = L1. This is impossible, as NK(R1) has Sylow 3-group 31+2, while
E9
∼= P ∈ Syl2(L1).

Suppose next that K∗ ∼= M̂22. As H ≤ Gz , H ∩M = NH(V ) by 12.2.6, so
(M ∩K)∗ = NK(V )∗ = CK(V ∗), and hence (M ∩K)∗ ∼= (S3 ×Z2)/(Z3 ×Q2

8). We

saw Ṽ5 = [ŨH , V
∗] is of rank 4, so we conclude from H.12.1.3 that ŨK := [ŨH ,K]

is the 12-dimensional irreducible for K∗. Choose v2 of weight 2 in V5; by parts (5)
and (7) of H.12.1, CK̂(v2) ∼= S5/E16 or A5/E16. In particular CK(v2) involves A5,
so CK(v2) 6≤M , as we saw earlier that (M ∩K)∗ is solvable. But this contradicts
Theorem 12.6.2.

We have shown that if m3(K) = 2 then P is faithful on K∗, and hence also on

K̂. Then m3(P̂ ) = 2, so that m3(O2,3(CX̂ (V̂ )) = 2 by (*). But no simple group

K̂ of 3-rank 2 in the list of Theorem C satisfies this restriction. This contradiction
completes the treatment of the case m3(K) = 2.
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Thereforem3(K) = 1. Asm(P ) = 2 = m3(PK), we conclude that PK := P∩K
is of rank 1. Again inspecting the list of Theorem C, and using (*), we conclude

that K̂ is L2(p
e) for some odd prime p with pe ≡ ±1 mod 12. Recalling that

elements of odd order in K̂ inverted by V̂ are of order 3 or 5, we reduce to the case
K̂ ∼= L2(p

e), with p 6= 23 or 25, and V̂ inverts no element of order p if p > 5, so in
fact pe ≡ −1 mod 12.

Set H0 := 〈K,L1T 〉, so that H0 ∈ Hz as K 6≤ M . As K∗ = [K∗, V ∗], V 6≤
O2(H0), so UH0 is nonabelian by 12.6.25. Thus replacing H by H0, we may assume
H = 〈K,L1T 〉.

Next as K∗ ∼= L2(p
e), K∗V ∗ is generated by 3 conjugates of V ∗. Thus as

Ṽ5 = [ŨH , V
∗] is of rank 4, for each nontrivial chief section W for K∗ on ŨH ,

m([W,K∗]) ≤ 3m([W,V ∗]) ≤ 12. Thus pe divides |L12(2)|, so as pe 6= 23 or 25
and pe ≡ −1 mod 12, it follows that pe = 11. But as 11 does not divide |L9(2)|,
the smallest nontrivial irreducible for K∗ is of rank at least 10, so we conclude
ŨK := [ŨH ,K] ∈ Irr+(ŨH ,K), Ṽ5 = [ŨK , V

∗], and 10 ≤ m(ŨK). Thus if K 6= Kt

for some t ∈ T , then Kt centralizes ŨK . However as T acts on V5 and K does not
centralize Ṽ5, neither does K

∗t, a contradiction. Thus T normalizes K, so K E H
by 1.2.1.3, and so H = 〈K,L1T 〉 = KL1T = KPT .

Next P = PC × PK where PC := CP (K
∗) and PK = P ∩K are of order 3. As

H = KPT and O2(H
∗) = 1, H∗ = K∗P ∗CT

∗ and P ∗C = O2(CH∗(K
∗) E H∗. In

particular P ∗C is T -invariant, so Ṽ5 = [Ṽ5, PC ] since L1T is irreducible on Ṽ5. Then

as P ∗C and K∗ are normal in H∗, Ṽ5 ≤ ŨK , and UH = 〈V H5 〉, ŨK = ŨH = [ŨH , PC ].
As ICH∗ (V ∗)(P

∗, 2) ⊆ CH∗(P
∗) from the structure of Aut(L2(11)), O2(L

∗
1) = 1,

and so O2(L1) ≤ QH . Next [QH , V ] ≤ QH ∩ V = V5 ≤ UH , so as K = [K,V ],
[QH ,K] ≤ UH . As P ∗K is inverted by a conjugate of V ∗, it follows from the first
paragraph of the proof that [UH , PK ] ∼= Q4

8. Then as O2(L1) ≤ QH by the previous
paragraph, [O2(L1), PK ] ≤ [QH ,K] ≤ UH , so that [O2(L1), PK ] = [UH , PK ] ∼=
Q4

8 is of order 29. Therefore as [V, PK ] ∼= E16
∼= [R̄1, P̄K ], we conclude that L

is an A8-block and O2(L1) = [O2(L1), PK ] ∼= Q4
8. We saw ŨH = [ŨH , PC ], so

UH = [UH , PC ] ≤ O2(L1). Thus 211 ≤ |UH | ≤ |O2(L1)| = 29. This contradiction
completes the proof of 12.6.26. ¤

12.6.3. Restrictions on H, and the final contradiction. In this section,
we use machinery from section F.9 to handle the case VH abelian. The same
approach will be used many times in the remainder of our treatment of groups over
F2.

Lemma 12.6.27. If g ∈ G with V ∩ V g 6= 1, then [V, V g ] = 1.

Proof. By 12.6.20.1, we may assume z ∈ V ∩ V g. Then by 12.6.20.2, we may
take g ∈ Gz . Applying 12.6.26 to Gz in the role of “H”, we conclude VH = 〈V Gz〉
is abelian, so the lemma holds. ¤

Lemma 12.6.28. (1) A3(M̄V , V ) = ∅.
(2) If B̄ ∈ A2(M̄V , V ), then m(B̄) ≥ 3 and there exists D̄ of index 8 in B̄ with

|E(B̄, D̄)| > 2, where

E(B̄, D̄) := {Ē ≤ B̄ : m(Ē/D̄) = 1 and CV (Ē) > CV (B̄)}.

(3) W0 :=W0(T, V ) centralizes V , so NG(W0) ≤M .
(4) W1(T, V ) centralizes V , so w(G, V ) > 1.
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Proof. Recall M̄V acts as A8 or S8 on the set Ω of eight points. Thus if ī is
an involution in M̄V , the M̄V -conjugacy class of ī is determined by the number n(̄i)
cycles of ī of length 2 on Ω. Thus n(̄i) = 1, 2, 3, 4, and we check in the respective
cases that ī is of Suzuki type (cf. Definition E.2.6) b1, c2, b3, a2 on the orthogonal
6-space V . In particular,

CV (̄i) 6= CV (j̄) for involutions j̄ 6= ī. (∗)

We first prove (1) and (2), so we assume that either Ā ∈ A3(M̄V , V ) or B̄ ∈
A2(M̄V , V ). Then m(Ā) > 3 by (*), so that m(Ā) = 4 = m2(L̄T̄ ). Similarly
m(B̄) ≥ 3.

Now the possibilities for Ā of rank 4 are described in cases (ii)–(iv) in the
proof of 12.6.22. If Ā ≤ L̄, then Ā is in case (ii); thus Ā is conjugate to R̄1 =
J(L̄ ∩ T̄ ), whereas R̄1 /∈ A3(M̄V , V ). Therefore Ā 6≤ L̄, so we are in case (iii) or
(iv), and hence we may take ī = (1, 2) ∈ Ā. Let W := CV (̄i) and X̄ := CM̄V

(̄i).
Then 〈̄i〉 = CM̄V

(W ) and AutĀ(W ) ∈ A3(AutX̄(W ),W ). However W is the core
of the 6-dimensional permutation module for S6, and we compute directly that
a(S6,W ) ≤ 2. This contradiction completes the proof of (1).

Next Z(T̄ ) is generated by

t̄ := (1, 2)(3, 4)(5, 6)(7, 8);

and
J := CV (t̄) = I ⊕ 〈v〉,

where v := e1,3,5,7 and I := 〈e1,2, e3,4, e5,6, e7,8〉. Let I0 := [V, t̄] and Ȳ := CM̄V
(t̄).

Then I is isomorphic to the 3-dimensional quotient of the permutation module for
AutȲ (I)

∼= S4 or A4 on {e1,2, e3,4, e5,6, e7,8}, AutȲ (I) ≤ NGL(I)(I0), and CȲ (I) =
CM̄V

(I) is

X̄ := 〈(1, 2), (3, 4), (5, 6), (7, 8)〉,

when T̄ 6≤ L̄, or X̄ ∩ L̄, when T̄ ≤ L̄. In either case, CȲ (I)/〈t̄〉 acts faithfully as a
group of transvections on J with axis I .

Since t̄ is 2-central in M̄ , we may take B̄ ≤ CM̄V
(t̄) = Ȳ , and then either B̄

centralizes I or AutB̄(I) ∈ A2(AutȲ (I), I).
Suppose first that B̄ centralizes I . Then B̄ ≤ CȲ (I) ≤ X̄, so as m(B̄) ≥ 3, we

check that CV (B̄) = I . If m(B̄) = 3 then m(B̄ ∩ L̄) ≥ 2, and for each b̄ ∈ B̄# ∩ L̄,
m(CV (b̄)) = 4 > m(I), so 〈b̄〉 ∈ E(B̄, 1). Thus |E(B̄, 1)| > 2, and hence (2) holds
with D̄ = 1. On the other hand if m(B̄) = 4 then B̄ = X̄ and CV (B̄) = I . In this
case we take D̄ := 〈d̄〉 for d̄ := (1, 2). Then for each of the three other transpositions
d̄′ in B̄, m(CV (〈d, d

′〉)) = 4 > m(I), so that 〈d, d′〉 ∈ E(B̄,D), and again (2) holds.
So suppose instead that AutB̄(I) ∈ A2(AutȲ (I), I)). We saw that AutȲ (I) is

a subgroup of P := NGL(I)(I0) ∼= S4 containing A4, so from the action of GL(I) on
I , A2(P, I) = {O2(P )}, and hence AutB̄(I) = O2(P ) is of rank 2. Hence it is easy
to calculate that 〈t̄〉 = CX̄ (B̄), so as m(B̄) ≥ 3 and CB̄(I) ≤ CX̄(B̄), we conclude
that CB̄(I) = 〈t̄〉 and m(B̄) = 3. In particular each member of B̄# is regular on
Ω, of rank 3, and for each b̄ ∈ B̄#, CV (b̄) is of rank 4, so that 〈b̄〉 ∈ E(B̄, 1). Hence
|E(B̄, 1)| = 7, so that (2) holds with D̄ = 1.

It remains to prove (3) and (4), so we may assume that for some y ∈ G, A :=
V y ∩ T with [A, V ] 6= 1 and k := m(V y/A) ≤ 1. Hence [V y, V ] 6= 1, so by 12.6.27,
V ∩ V y = 1. Then [V ∩ NG(V y), A] = 1, so in particular V 6≤ NG(V

y). On the
other hand for each A0 ≤ A with m(V y/A0) ≤ 2, CG(A0) ≤ NG(V

y) by 12.6.20.3.
Thus for each A0 ≤ A with m(A/A0) < 3− k, CV (A0) ≤ V ∩NG(V

y) ≤ CV (A), so
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that CV (A0) = V ∩NG(V y) for all such A0. That is, Ā ∈ A3−k(M̄V , V ). Therefore
k 6= 0 by (1). The remaining statement in (3) holds in view of E.3.34.2.

Hence we have reduced to the case k = 1, so that m(A) = 5, and Ā ∈
A2(M̄V , V ). Now by (2), there exists D̄ of corank 3 in Ā satisfying |E(Ā, D̄)| > 2.
Consider any Ā1 ∈ E(Ā, D̄); thus the preimage A1 in V y has rank 3. Since
CV (Ā1) > CV (Ā) = V ∩NG(V y) from the previous paragraph, CV (A1) 6≤ NG(V

y).
We conclude from Theorem 12.6.2 that the 3-subspace A1 is totally singular in
V y; in particular, D is a totally singular 2-subspace of V y. But then D lies in
just two totally singular 3-subspaces of V y, whereas there are at least 3 choices for
Ā1 ∈ E(Ā, D̄). This contradiction shows that k 6= 1, and so completes the proof of
(4). ¤

Lemma 12.6.29. If H0 ∈ H(T ) with n(H0) = 1 or H0 solvable, then H0 ≤M .

Proof. Assume that n(H0) = 1. We may apply 12.6.20.3 and 12.6.28.4 to see
that min{r(G, V ), w(G, V )} > 1, so H0 ≤ M E.3.35.1. Recall also that if H0 is
solvable, then n(H0) = 1 by E.1.13 ¤

As H 6≤ M , n(H) > 1 and H is not solvable by 12.6.29. Thus H∞ 6= 1.
Suppose H∞ ≤M . Then as CL̄(z) is solvable, H

∞ ≤ CM (V ) ≤ CM (L/O2(L)), so
L normalizes (H∞O2(L))

∞ = H∞. But then H ≤ NG(H
∞) ≤ M = !M(LT ), a

contradiction. We conclude H∞ 6≤ M , so that by 1.2.1.1, there exists K ∈ C(H)
with K 6≤ M . As usual by 1.2.1.3, L1 = O2(L1) normalizes K. Let K0 := 〈KT 〉,
so that K0 E H by 1.2.1.3.

Notice that K0L1T ∈ Hz.

For the rest of the section, we assume H = K0L1T , where K ∈ C(H1) for some
H1 ∈ Hz with K 6≤M .

Let MH :=M ∩H . Notice that L∗1 ≤ O2,3(M
∗
H).

Lemma 12.6.30. (1) Hypothesis F.9.8 is satisfied for each H2 ∈ Hz with V5 in
the role of “V+”. In particular it holds for H = K0L1T .

(2) q(H∗, ŨH) ≤ 2.

(3) K/O2(K) is quasisimple, and K∗0 and its action on ŨH are described in (4)
or (5) of F.9.18.

Proof. By 12.6.24.7, Hypothesis F.9.1 is satisfied, while F.9.8.f holds by 12.6.27,
and case (i) of F.9.8.g holds by 12.6.24.6. Thus (1) holds. Then (1) and F.9.16.3
imply (2).

Suppose K/O2(K) is not quasisimple. Then K E H by 1.2.1.3, and by 1.2.1.4,
X := Ξp(K) 6= 1 for some prime p > 3. By 12.6.29, X ≤ M = NG(L). By 1.3.3,
X ∈ Ξ(G, T ); so X E LXT by 1.3.4 since L cannot play the role of “L” in that
result. Thus H ≤ NG(X) ≤ M = !M(LT ), a contradiction. Therefore K/O2(K)
is quasisimple, so as H = K0L1T , (3) follows from F.9.18. ¤

Lemma 12.6.31. One of the following holds:

(1) H∗ ∼= Aut(L3(4)) or SL3(4) extended by a 4-group. Further M ∗
H is the

product of T ∗ with a Borel subgroup of O2(H∗).
(2) H∗ is of index at most 2 in S5 wr Z2, and M

∗
H is the product of T ∗ with a

Borel subgroup of K∗0 .
(3) H∗ ∼= S5 × S3, |H :MH | = 5, and R∗1 = O2(M

∗
H)
∼= E4.
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Proof. By 12.6.30.3 we may apply F.9.18 to conclude that K∗/Z(K∗) is a
Bender group, L3(2

n), Sp4(2
n)′, G2(2

n)′, L4(2), L5(2), or A7, or K
∗
0 = K∗ ∼= M22

or M̂22. By 12.6.29, n(H) > 1 as H 6≤M , so by E.1.14 either

(i) K/O2,Z(K) is a Bender group over F2n , L3(2
n), Sp4(2

n), or G2(2
n), with

n := n(H) > 1, or

(ii) K∗0
∼=M22 or M̂22, and n(H) = 2.

Pick Ĩ ∈ Irr+(K
∗
0 , ŨH , T

∗), and adopt the notation of F.9.18; in particular IH :=
〈IH〉. Let LC := O2(CL1(K

∗
0 )) and LK := O2(L1 ∩ K0). In case (i), a Borel

subgroup of K0 over T ∩K0 is contained in M by 12.6.29.
Suppose first that m3(K0) = 0. Then K∗ ∼= Sz(2n). In particular, LK = 1 as

L1 = O3′(L1). By F.9.18.3, q(AutK0T (Ĩ), Ĩ) ≤ 2, so Ĩ is described in B.4.2 or B.4.5.

Hence Ĩ is the natural module for K∗, and either F.9.18.4i holds with K = K0 and
I = IH , or F.9.18.5iiia holds, with K < K0 and ĨH = Ĩ ⊕ Ĩt for t ∈ T −NT (K).
Now Sz(2n) has no FF-modules by B.4.2, so by F.9.18.7, IH = [UH ,K0]. As
L1 = [L1, T ], while Out(K

∗) is cyclic, either L1 = LC ; or K < K0, L
∗
C is of order

3, and an element of order 3 in L1−LC acts as a nontrivial field automorphism on
each component of K∗0 . As L

∗
C is L1T -invariant and nontrivial, Ṽ5 = [Ṽ5, LC ] since

L1T is irreducible on Ṽ5. Then as LC E H and UH = 〈V H5 〉, ŨH = [ŨH , LC ] and
L∗C is a 3-group, so CŨH (L

∗
C) = 1 by Coprime Action. However LC stabilizes K

and I , and EndK(Ĩ) ∼= F2n with n odd so that 3 does not divide 2n− 1. Therefore
[IH , LC ] = 1, contradicting CŨH (L

∗
C) = 1. Therefore m3(K0) > 0.

Suppose next that m3(K0) > 1. Then comparing A.3.18 to the list of groups in
(i) and (ii), either K0 = θ(K0), so that L1 ≤ K0, or L1K0/O2Z (K0) ∼= PGLε3(2

n)
or Lε,◦3 (2n).

Suppose first that K∗ ∼= M22 or M̂22. Then there is H0 ∈ H(T ) ∩ H with
O2(H∗0 /O2,Z(H

∗
0 ))

∼= A6. Therefore n(H0) = 1 by E.1.11, E.1.13, and E.1.14.1, so

H0 ≤ M by 12.6.29. But then O3′(H0) ≤ O3′(M) = L by 12.6.1.5. impossible as
L has no T -invariant A6-section.

Therefore as m3(K0) = 2, K∗0 is one of the Lie-type groups L2(2
n) × L2(2

n),
(S)Lε3(2

n), Sp4(2
n), or G2(2

n) determined earlier. As L∗1 ≤ O2,3(M
∗
H), and M

∗
HT

∗

is the normalizer of a parabolic subgroup while n > 1, it follows thatMK0 =M∩K0

is a Borel subgroup of K0, with n even; hence K∗ is not (S)U3(2
n) as m3(K) = 2.

Recall L1T/O2(L1T ) ∼= S3 × S3 or S3 wr Z2, so T/O2(L1T ) is noncyclic. Thus as
T ∩K0 ≤ O2(L1T ), T/O2(L1T ) projects on a noncyclic 2-subgroup of Out(K∗

0 ), so
K∗0

∼= (S)L3(2
n) or L2(2

n)× L2(2
n). We return to these cases in a moment.

We now consider the case m3(K0) = 1. Here K = K0, and K∗ ∼= L2(2
n),

L3(2
m), m odd, or U3(2

k), k even. As L1 = [L1, T ], and Out(K∗) is abelian, L1

induces inner automorphisms on K∗, so that L∗1 = L∗C × L∗K . Then L∗C 6= 1 as
m3(K) = 1, while L∗C < L∗1 as L∗1 has 3-rank 2. Now T normalizes K and L1, and
hence normalizes LK and LC ; hence for X ∈ {K,C}, LXT/O2(LXT ) ∼= S3. As
TLK = LKT , K

∗ is not L3(2
m) since m is odd, and if K∗ ∼= L2(2

n), then n is even.
We now handle together the remaining cases: K∗0

∼= (S)L3(2
n), L2(2

n)×L2(2
n),

L2(2
n), and U3(2

n), with n even. Let TL := T ∩ L; then L1 = [L1, TL] and TL
acts on LK , so LK = [LK , TL]. Moreover from the structure of Aut(K∗0 ), unless
K∗ ∼= (S)L3(4) or L2(4), there exists a prime p > 3 and a nontrivial p-subgroup X
of the Borel subgroup MK0 with XT = TX and X = [X,TL], so that

X = [X,TL] ≤ [X,L] ≤ L.
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This is a contradiction as T permutes with no nontrivial p-subgroups of L for p > 3
as L̄ ∼= L4(2).

Therefore K∗ ∼= (S)L3(4) or L2(4). If K
∗ ∼= SL3(4) and L1 6≤ K, then as M∗

H

contains a Borel subgroup of H∗, a Sylow 3-subgroup ofMH is of order 27, whereas
by 12.6.1.5, a Sylow 3-subgroup of M is of order 9. Therefore if K∗ is (S)L3(4),
then as T/O2(L1T ) projects on a noncyclic subgroup of Out(K∗), (1) holds. So
suppose K∗ ∼= L2(4). If K < K0 then as T/O2(L1T ) is noncyclic, (2) holds. If
K = K0 our earlier analysis shows L∗1 = L∗C × L∗K with L∗1T

∗ ∼= S3 × S4, so that
(3) holds. ¤

Lemma 12.6.32. K∗ ∼= L2(4).

Proof. Assume otherwise. Then case (1) of 12.6.31.1 holds, so K∗
0 = K∗ ∼=

(S)L3(4), and T
∗K∗/K∗ ∼= E4. We pick Ĩ ∈ Irr+(K, ŨH , T ), and by 12.6.30.3, we

may adopt the notation of F.9.18.4; in particular IH := 〈IH〉. As T is nontrivial
on the Dynkin diagram of K∗, it follows from B.5.1 and B.4.2.2 that K∗T ∗ has no
FF-modules. Thus by F.9.18.7, [ŨH ,K] = ĨH . If IH = I , then q(H∗, Ĩ) ≤ 2 by

F.9.18.2; so as K∗T ∗ has no FF-modules, Ĩ/CĨ(K) must appear in B.4.5. As the
tensor-product module for L3(4) in B.4.5 has q > 2, we have a contradiction. Thus

I < IH , so case (iii) of F.9.18.4 occurs; that is, K∗ ∼= SL3(4) and ĨH = Ũ1 ⊕ Ũ2,

where Ũ1 = Ĩ is a natural K∗-module, and Ũ2 = Ũ t1, for t ∈ T nontrivial on the

Dynkin diagram of K∗. As Ṽ5 = [Ṽ5, L1] ≤ ĨH , ŨH = 〈Ṽ H5 〉 ≤ ĨH , so ŨH = ĨH .
Next as M∗

H is the product of T ∗ with a Borel subgroup of K∗ by 12.6.31.1,

MH = L1T , so T
∗ ∩K∗ = O2(M

∗
H) = R∗1 is Sylow in K∗. As Ṽ5 is L1T -invariant

and centralized by R∗1, we conclude Ṽ5 = Ṽ5,1 ⊕ Ṽ5,2, with Ṽ5,i = CŨi(T ∩ K) an

F4-point in Ũi. In particular Ṽ5,i = CṼ5(Xi) for some Xi of order 3 in L1; so

V5,i contains a nonsingular vector ui of V . Now CK∗(ũi) is a maximal parabolic
of K∗, so in particular CK(ui)

∗ does not lie in the Borel group M∗
K0

. This is a
contradiction as CG(ui) ≤M by Theorem 12.6.2. This contradiction completes the
proof of 12.6.32. ¤

Lemma 12.6.33. H∗ ∼= S5 × S3.

Proof. Assume otherwise. As 12.6.32 eliminates case (1) of 12.6.31, we must
be in case (2), where H∗ of index at most 2 in S5 wr Z2. Thus there is t ∈
T −NT (K), and we let K1 := K and K2 := Kt. For X ∈ Syl3(L1), X = X1 ×X2

with Xi ∈ Syl3(Ki) and V5 = [V5, X ] ≤ [UH ,K0] = U1U2, where Ui := [UH ,Ki].
Thus UH = U1U2 = [UH ,K0].

Pick Ĩ ∈ Irr+(K0, ŨH , T ); by 12.6.30.3, we may adopt the notation of F.9.18.5.
We claim that either

(a) [UH/IH ,K1,K2] ≤ IH , and [IH ,K1,K2] = 1, or

(b) ŨH is the Ω+
4 (4)-module for K∗0 .

For notice by Theorems B.5.6 and B.4.2 thatH∗ has no strong FF-modules. Thus it
follows from F.9.18.6 that either ŨH = ĨH , or both ĨH and UH/IH are FF-modules

for H∗. Observe that only cases (i) and (iiia) of F.9.18.5 can arise. In case (i), ĨH
is not an FF-module for H∗, so ŨH = ĨH and (b) holds. Suppose case (iiia) holds.

Then (a) holds if ŨH = ĨH , so assume otherwise. Thus UH/IH is an FF-module
for H∗; then as UH = [UH ,K0], it follows from B.5.6 that [U1,K2] ≤ IH , so again
(a) holds. This completes the proof of the claim.
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Suppose now that [Ũ1,K2] = 1. Then Ṽ5 = Ṽ5,1⊕ Ṽ5,2, where Ṽ5,i := [Ṽ5, Xi] ∼=
E4. Then, as in the proof of 12.6.32, V5,i contains a nonsingular point ui, and
K3−i ≤ CG(ui) ≤M by Theorem 12.6.2, contrary to K0 6≤M .

This contradiction shows [Ũ1,K2] 6= 1. Suppose now that case (a) holds. Then
[U1,K2] = [UH ,K1,K2] ≤ [IH ,K1] ≤ CUH (K2). So [U1,K2] = [U1,K2,K2] = 1,

contrary to [Ũ1,K2] 6= 1.

Therefore case (b) holds. As in the proof of 12.6.32, R∗1 = T ∗ ∩K∗0 and Ṽ5 ≤
CŨH (R

∗
1). But as Ũ

∗
H is the Ω+

4 (4)-module, CŨH (R
∗
1) is an F4-point of ŨH , whereas

E16
∼= Ṽ5 ≤ CŨH (R

∗
1). This contradiction completes the proof of 12.6.33. ¤

We are at last in a position to obtain a contradiction under the hypotheses of
this section.

By 12.6.33, H∗ = H∗1 × H∗2 with H∗1
∼= S3 and H∗2

∼= S5. In particular
L1T/O2(L1T ) ∼= S3 × S3, so T̄ ≤ L̄ and M̄V = L̄ ∼= A8. Also X ∈ Syl3(L1)
is of the form X = X1 × X2 with Xi ∈ Syl3(Hi). As XiT = TXi, we conclude
each Xi moves 6 points of Ω; hence CV (Xi) is a nondegenerate space of dimension

2 and Ṽ5 = [Ṽ5, Xi]. In particular as X∗1 E H∗ and ŨH = 〈Ṽ H5 〉, ŨH = [ŨH , X
∗
1 ],

and then

ŨH = Ũ1 ⊕ Ũ2

is anH2-decomposition of ŨH , where Ũi := [ŨH , t
∗
i ] for t

∗
1 and t

∗
2 distinct involutions

in H∗1 . As the third involution t∗3 in H∗1 commutes with H∗2 while interchanging Ũ1

and Ũ2, and F
∗(H∗2 ) = K∗ is simple, H∗2 is faithful on Ũ1, and Ũ2 is isomorphic to

Ũ1 as an H2-module. Recalling that H∗2
∼= S5 has no strong FF-modules, we must

be in case (b) of F.9.18.6, so that U∗i is an FF-module for H∗2 . Hence either [Ũi, H
∗
2 ]

is the S5-module, or [Ûi, H
∗
2 ] is the L2(4)-module, where ÛH := ŨH/CŨH (K).

In particular, no member ofH∗ induces a transvection on ŨH . Thus by F.9.16.1,
Dγ < Uγ , in the notation of F.9.16. Hence by F.9.16.4, we can choose γ so that
0 < m := m(U∗γ ) ≥ m(UH/DH). Further by F.9.13.2, Uγ ≤ O2(Gγ1,γ2) = Rh1 for
suitable h ∈ H , so m ≤ 2 as H∗ ∼= S5 × S3. Next for b ∈ Uγ −Dγ , [DH , b] ≤ A1 by
F.9.13.6, where A1 is the conjugate of V1 defined in section F.9; thus m(A1) = 1
and

m([ŨH , b
∗]) ≤ m(UH/DH) +m([D̃H , b]) ≤ m+ 1 ≤ 3,

impossible as m([ŨH , b]) = m([Ũ1, b]) +m([Ũ2, b]) = 4, since b∗ ∈ U∗γ ≤ Rh∗1 ≤ K∗

and Ûi is the natural or A5-module for K∗.
This contradiction finally eliminates the A8-subcase of Theorem 12.2.2.3d, and

hence establishes:

Theorem 12.6.34. If Hypothesis 12.2.3 holds with L̄ ∼= L4(2), then V is the
natural module for L̄.

12.7. The treatment of Â6 on a 6-dimensional module

In this section we prove

Theorem 12.7.1. Assume Hypothesis 12.2.3 with L/CL(V ) ∼= Â6. Then G is
isomorphic to M24 or He.

We recall that M24 has already appeared in Theorem 12.2.13, in the case that
V is a TI-set in G. However in this section, our argument does not require Theorem
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12.2.13 until after both He and M24 have been independently identified; 12.2.13 is
only used when we are working toward the final contradiction.

We mention that the groups He and M24 will be identified via Theorem 44.4
in [Asc94] in our Background References.

12.7.1. Preliminary results. The proof of Theorem 12.7.1 involves a series
of reductions.

Assume L, V arise in a counterexample G. Then by Theorem 12.2.2, V is
a 6-dimensional module for L/CL(V ) ∼= Â6 and CL(V ) = O2(L). We adopt the
conventions of Notation 12.2.5. Let TL := T ∩ L, and P1 and P2 the two maximal
subgroups of LQ containing TLQ. Let Ri := O2(Pi) and X := O2(O2,Z(L)). We
can regard V as a 3-dimensional vector space FV over F := F4, with L̄ ≤ SL(FV )
and X̄ inducing F -scalars on FV .

Lemma 12.7.2. (1) Either M̄V = L̄ ∼= Â6 or M̄V = L̄T̄ ∼= Ŝ6.
(2) P1T is the stabilizer in LT of an F -point V1 of FV , and R̄1

∼= E4 is a group
of F -transvections on FV with center V1 and CV (R1) = V1.

(3) P1 is irreducible on V/V1 and V1.
(4) P2T is the stabilizer of an F -line V2 of FV , and R̄2

∼= E4 is a group of
F -transvections on FV with axis V2 and [V,R2] = V2.

(5) O2(Pi) = LiX, where {Li, X} are the unique T -invariant subgroups I =
O2(I) of Pi with |I : O2(I)| = 3.

(6) L = θ(M) is the characteristic subgroup of M generated by all elelements
of order 3 in M .

Proof. The calculations in (1)–(5) are well-known and easy. Notice in (1)
that automorphisms of A6 = Sp4(2)

′ nontrivial on the Dynkin diagram are ruled
out, as they do not preserve V . Part (6) follows from 12.2.8. ¤

In the remainder of the section, we adopt the notation of L1 and L2 as in
12.7.2.5.

Lemma 12.7.3. A2(T̄ , V ) = {R̄2} and a(M̄V , V ) = 2.

Proof. Let Ā ∈ A2(T̄ , V ). Then CV (Ā) = CV (B̄) for each hyperplane B̄ of
Ā, so as 1 6= Ā, m(Ā) > 1. If Ā 6≤ L̄, then B̄ := Ā ∩ L̄ is a hyperplane of Ā, and
CV (B̄) is an F -subspace of V , whereas ā ∈ Ā − L̄ is nontrival on each ā-invariant
F -point since ā inverts X̄. We conclude that Ā ≤ L̄, so as R̄i, i = 1, 2, are of
rank 2 and are the maximal elementary abelian subgroups of T̄L, Ā = R̄i for some
i. By 12.7.2.2, i 6= 1, and 12.7.2.4 shows that R̄2 ∈ A2(T̄ , V ), so Ā = R̄2. Since
m(R̄2) = 2, a(M̄V , V ) = 2. ¤

Lemma 12.7.4. (1) L has two orbits on V # with representatives z ∈ V1 and t.
(2) Let Vt be the F -point of FV containing t. Then NL̄(Vt)

∼= GL2(4), and V
is an indecomposable module for CL(Vt) with V/Vt the natural module.

(3) t ∈ V = [V, Lt] ≤ Lt and Lt = θ(Mt).
(4) V2 is partitioned by two conjugates of Vt and three conjugates of V1.

Proof. From 12.7.2, |V L1 | = |L : P1| = 15, leaving a set O of 6 F -points of FV
not in V L1 . As 6 is the minimal degree of a faithful permutation representation for
L̄/X̄ ∼= A6, it follows that L is transitive on O (so that (1) holds), and the stabilizer
in L̄ of Vt ∈ O is isomorphic to GL2(4). As V = [V,X ], V/Vt is the natural
module for NL̄(Vt)

∼= GL2(4), so a Sylow 2-subgroup S̄ of NL̄(Vt) centralizes an
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F -hyperplane of FV . Hence as R̄i, i = 1, 2, are representatives for the conjugacy
classes of 4-subgroups of L̄, we may take S̄ = R̄2 since R̄1 centralizes no hyperplane
by 12.7.2.2. Then as [V,R2] is not a point by 12.7.2.4, V does not split over Vt as
an NL(Vt)-module. This completes the proof of (2), and (2) and 12.7.2.6 imply (3).
Further V2/Vt is the 1-dimensional F -subspace centralized by S̄ = R̄2, so Vt ≤ V2
and P2 has two orbits on F -points of V2 of length 2 and 3, and then (4) follows as
T acts on V1. ¤

For the rest of the section, t and Vt have the meaning given in 12.7.4. Observe
that Lt/O2(Lt) ∼= A5 using 12.7.4.2, so that Lt = L∞t .

Lemma 12.7.5. Either

(1) Gt ≤M , or

(2) Kt := 〈L
Gt
t 〉 is a component of Gt with Vt = Z(Kt) and Kt/Vt ∼= L3(4).

Proof. Assume that (1) fails, and choose t so that Tt = CT (t) ∈ Syl2(Mt).
From 12.7.4, O2(L̄tT̄t) = 1 and V = [V, L̄t], and we saw Lt = L∞t , so we may apply
12.2.12.2 to conclude that Hypothesis C.2.8 is satisfied with Gt, Mt, Lt, Q in the
roles of “H , MH , LH , R”. By C.2.10.1, O(Gt) = 1. By Theorem C.4.8, Lt ≤ K ∈
C(Gt) with K/O2(K) quasisimple and K described in one of the conclusions of that
result. If conclusion (10) of C.4.8 holds, then for g ∈ Gt −Mt, Lt 6= Lgt ≤ Mt, so
Lgt ≤ θ(Mt) = Lt by 12.7.4.2, a contradiction. Thus by C.4.8, Lt < K, K/O2(K)
is quasisimple, and K is described in C.3.1 or C.4.1. By 12.7.4.3, Lt = θ(Mt) and
V = [V, Lt], so Lt = θ(K ∩M) and t ∈ Vt ≤ V ≤ Lt ≤ K, so t ∈ Z(K).

Suppose first that F ∗(K) = O2(K). Examining the list of C.4.1 for “M0” with
M0/O2(M0) ∼= L2(4) acting naturally on V/Vt, we see conclusion (2) of C.4.1 holds:
K is an Sp4(4)-block with Vt ≤ Z(K), and M ∩K is the parabolic stabilizing the
2-dimensional F -space V/Vt in U(K)/Vt. As U(K) is a quotient of the orthogonal
FK-module of dimension 5, V splits over Vt as an Lt-module—contrary to 12.7.4.2.

Thus as K/O2(K) is quasisimple, K is a component of Gt; and Z(K) is a 2-
group since O(Gt) = 1. This time examining the list of C.3.1 for “M0” given by Lt
acting as L2(4) on V/Vt, we see that one of cases (1), (3), or (4) must occur. Then
as Vt ≤ Z(Lt) and t ∈ Vt ∩ Z(K), we conclude that Vt ≤ Z(K). Now by I.1.3, the
only case with a multiplier of 2-rank 2 is K/Z(K) ∼= L3(4). As V is Lt-invariant
and elementary abelian, Vt = O2(K) from the structure of the covering group of
L3(4) in I.2.2.3b. Thus as Z(K) is a 2-group, (2) holds in this case, completing the
proof of 12.7.5. ¤

Lemma 12.7.6. Assume that L is a Â6-block. Then

(1) Q = O2(LT ) = V × CT (L).
(2) If CT (L) = 1 then O2(L) = V = O2(M) = CG(V ) and M = LT .

Proof. Since the 1-cohomology of V is trivial by I.1.6, (1) follows from C.1.13.b.
Assume CT (L) = 1. By (1), O2(LT ) = V . Now (2) follows from 3.2.11. ¤

12.7.2. The identification of He. In this subsection we prove:

Theorem 12.7.7. If Gt 6≤M , then G is isomorphic to He.

Proof. Assume Gt 6≤ M and let Kt := 〈LGtt 〉. By 12.7.5, Kt is quasisimple
with Vt = Z(Kt) and Kt/Vt ∼= L3(4). In particular by A.3.18, Kt is the unique
component of Gt of order divisible by 3. Therefore as X normalizes Vt, for each
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x ∈ X , Ktx = Kx
t ≤ CG(V

x
t ) = CG(Vt) ≤ Gt, so that Kt = Ktx . Hence X acts on

Kt and XKt/Z(Kt) ∼= PGL3(4).

From the structure of Kt, Lt is an L2(4)-block, so L is an Â6-block. Let

YX ∈ Syl3(X). As X = O2(O2,Z(L)) and L is an Â6-block, X = V YX . As

Kt E Gt and Ω1(O2(Kt)) = Vt, Gt ≤ NG(Vt). Then as X is transitive on V #
t , Vt

is a TI-set in G by I.6.1.1.
Next as V ≤ Lt by 12.7.4.2, CG(Lt) ≤ CGt(Lt) = CGt(Kt), so as CAut(Kt)(Lt) =

1, CG(Lt) = CGt(Kt). Similarly CG(Lt) ≤ CG(V ) = CM (V ), and [L,CM (X)] ≤
CL(X) = Z(L), so as L is perfect, CG(LtX) = CG(L) is LT -invariant. Further
[CG(Lt), X ] ≤ CX (Lt) = Vt, so by a Frattini Argument, CG(Lt) = VtCG(LtYX) =
CG(LtX). On the other hand, we saw that CG(Lt) = CGt(Kt), so if CG(LtX) 6= 1,
then Kt ≤ CG(CG(Lt)) ≤ M = !M(LT ), contrary to Kt 6≤ Mt. Therefore
CG(LtX) = CG(L) = 1, and CGt(Kt) = CG(Lt) = VtCG(LtX) = Vt. Thus
V = O2(M) and M = LT by 12.7.6.2. Then by 12.7.2.1, either M = L, or

|M : L| = 2 with M/V ∼= Ŝ6.
Choose t so that Tt := CT (t) ∈ Syl2(Mt). As Kt E Gt, Gt /∈ He, so t is not

2-central in G by 1.1.4.6. hence P = CY (P̃ ) since Inn(P ) induces CAut(P )(P̃ ) by
A.1.23. Therefore

Y/P ≤ Aut(P̃ ) ∼= O+
6 (2),

and D8
∼= T/P ∈ Syl2(Y/P ). Further α := (Mz/P, T/P,NGz(U)/P ) is a Gold-

schmidt triple as in Definition Aa.t:defnGldtrpl. As O2(Mz/P ) 6= O2(NGz(U)/P ),
case (i) of F.6.11.2 holds, and so the image in Y/O3′(Y ) of α is a Goldschmidt
amalgam; therefore as Y is an SQTK-group, Y/O3′(Y ) is described in Theorem
F.6.18. In view of (*), Y/O3′(Y ) appears in case (6) of Theorem F.6.18; that is,
Y/O3′(Y ) ∼= L2(q) for q ≡ ±7 mod 16. Then as Y/P ≤ O+

6 (2), we conclude
Y/P ∼= L3(2) or A6.

Next P̃+ is the sum of the natural module and its dual for Y +/P+ ∼= L3(2), so

M+
z and NG+

z
(U+) stabilize unique points of P̃+. Indeed Ṽ +

1 is the point stabilized

by M+
z , and we write Ũ+

1 for the point stabilized by NG+
z
(U+). Applying ϕ, Mz

stabilizes only Ṽ1 and NGz(U) stabilizes only Ũ1. As Ṽ +
1 6= Ũ+

1 , Ṽ1 6= Ũ1. But if

Y/P ∼= A6, then Y stabilizes a point of P̃ , so Ṽ1 = CP̃ (Y ) = Ũ1, contrary to the
previous remark. We conclude Y/P ∼= L3(2).

Now S4 ∼= Mz/P is the stabilizer in Y/P of Ṽ1, so P̃1 := 〈Ṽ Y1 〉 is a nontrivial

quotient of the 7-dimensional permutation module on Y/Mz , and similarly P̃2 :=

〈ŨY1 〉 is a nontrivial quotient of the permutation module on Y/NGz (U). Hence by

H.5.3, either P̃ = P̃i is the 6-dimensional core of the permutation module for i = 1
or 2, or else P̃ = P̃1 ⊕ P̃2 with dim(P̃i) = 3 for i = 1 and 2. Next ϕ : T+ → T

is an isomorphism, and for each 3-dimensional indecomposable W̃ for a rank one
parabolic Y +

0 of Y+ containing the fixed point of Y +
0 , P̃+ splits over W̃ as a T+-

module. However this is not the case when P̃ is the core of the permutation module,
and that module is indecomposable. Hence the former case is impossible, so the
latter holds.

Now Qz ≤ P is Y -invariant, so Qz = 〈z〉, Pi, or P . As F
∗(Gz) = Qz, the first

case is out. Next suppose Qz = Pi. Now Pi ∼= E16, and as T ∈ Syl2(G) normalizes
Pi, NG(Pi) ∈ He by 1.1.4.6, so CG(Pi) ∈ He by 1.1.3.1. Therefore as CT (Pi) = Pi,
we conclude CG(Pi) = Pi. Now GL(Pi) = Aut(Pi) with Y/Pi = CGL(Pi)(z),
so Gz = Y CG(Pi) = Y normalizes P , contrary to O2(Gz) = Qz = Pi < P . Thus
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Qz = P E Gz , and then as T/P ∼= D8 is Sylow in Gz/P ≤ O+
6 (2)

∼= S8, we conclude
from the list of maximal subgroups of S8 that either Y = Gz or Gz/P ∼= A7. From
the structure of Gt ∼= PΓL3(4)/E4, we see that Gt,z is of order 3 · 29, so that Y is
transitive on tG ∩ P of order 14. Thus if Gz/P is A7, Gt,z contains an A6-section,
contradicting Gz,t a {2, 3}-group.

Therefore Gz = Y . We have also seen that z is not weakly closed in P with
respect to z, so that Theorem 44.4 of [Asc94] applies. Since MV /V ∼= Ŝ6, G 6∼=
L5(2), and since Gt 6≤ M , G 6∼= M24. Therefore as G is simple, Theorem 44.4 in
[Asc94] shows G ∼= He. ¤

12.7.3. The case V 6≤ O2(Gz), including the identification of M24. Be-
cause of Theorem 12.7.7, we can assume in the remainder of this section that

Lemma 12.7.8. Gt ≤M .

Lemma 12.7.9. (1) M controls fusion of its involutions.
(2) Gv is transitive on {V g : v ∈ V g} for each v ∈ V .
(3) V is the unique conjugate of V containing t.

Proof. By 12.7.8 and 12.7.4.2, t is not 2-central in G, so t /∈ zG. Thus (1)
follows from 12.7.4.1. Then (1) and A.1.7.1 imply (2), and (2) and 12.7.8 imply (3)
using A.1.7.2. ¤

Lemma 12.7.10. (1) m(M̄V , V ) = 2.
(2) r(G, V ) > 2. Hence s(G, V ) = 2.
(3) If L̄ < M̄V then there are two classes Oj , j = 1, 2, of involutions in M̄V

not in L̄. Further īj ∈ Oj , where 〈̄ij〉 = Z(L̄j T̄ ), and m(CV (̄ij)) = 3. Finally ī2
acts on a conjugate of Vt, but ī1 does not.

(4) If U ≤ V with m(V/U) = 3, then one of the following holds:
(i) CM (U) = CM (V ).
(ii) Up to conjugation in L, U is a hyperplane of V2 and CM (U) = CM (V )R2.
(iii) U = CV (̄i) for some involution ī ∈ M̄V − L̄, and CM (U) = 〈i〉CM (V ).
(5) If U ≤ V with m(V/U) = 3 and CG(U) 6≤ M , then U = CV (̄i) for some

ī ∈ O1.

Proof. First L is transitive on the set O of involutions in L̄, and by 12.7.2.4,
V2 = CV (̄i) for ī ∈ O ∩ R̄2. Assume L̄ < M̄V . Then M̄V

∼= Ŝ6 by 12.7.2.1, so there
are two classes Oj , j = 1, 2, of involutions in M̄V −L̄, and we can choose notation so
that īj ∈ Oj , where īj is defined in (3). As īj inverts X̄ , m([V, īj ]) = 3, completing
the proof of (1). If we represent M̄V on the set Ω of 6 cosets of H̄ := NM̄V

(Vt),

then each involution ī ∈ H̄ − L̄ induces a transposition on Ω. Consequently the
members of the other class O1 have cycle type 23 on Ω. This completes the proof
of (3), and part (4) also follows since CM (U) is a 2-group for each U ≤ V with
m(V/U) < 4.

Next let U ≤ V . If U is a hyperplane of V , then 1 6= U ∩Vt, so CG(U) ≤M by
12.7.8. Thus r(G, V ) > 1. Assume U ≤ V with CG(U) 6≤M and k := m(V/U) < 4.
By E.6.12, CM (U) > CM (V ). Hence U is centralized by some involution ī ∈ M̄V

by (4). Thus if k = 2, we can take U = V2 by the previous paragraph; however
V2 = V1Vt, so CG(U) ≤ M by 12.7.8. We conclude k = 3, so r(G, V ) > 2, and
hence s(G, V ) = 2 using (1), so (2) holds. Indeed this argument shows U 6≤ V2,
as each hyperplane of V2 intersects Vt nontrivially. Thus U = CV (̄i) and ī /∈ L̄
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by (4). Finally if ī ∈ O2, we may take ī to act on Vt by (3), so 1 6= CVt (̄i) ≤ U ,
contradicting CG(U) 6≤ M in view of 12.7.8. This completes the proof of (5), and
hence of 12.7.10. ¤

Lemma 12.7.11. W0 :=W0(T, V ) ≤ CT (V ), so that w(G, V ) > 0 and NG(W0)
≤M .

Proof. Suppose A := V g ≤ T with Ā 6= 1. By 12.7.10.2, s(G, V ) > 1, so by
E.3.10, Ā ∈ A2(T̄ , V ), and hence Ā = R̄2 by 12.7.3. Now m(A/CA(V )) = 2, so
by 12.7.10.2, V ≤ CG(CA(V )) ≤ NG(A). Thus V2 = [V,A] ≤ A by 12.7.2.4. This
contradicts 12.7.9.3, as t ∈ V2. Hence W0 ≤ CT (V ) = O2(LT ), and NG(W0) ≤ M
by E.3.34.2. ¤

Lemma 12.7.12. CT (L) = 1.

Proof. If CT (L) 6= 1, also CZ(L) 6= 1; so by 12.2.9.1, CG(Z) ≤ M . But by
12.7.10.2, s(G, V ) > 1, so by 12.4.1 there is g ∈ G with V g ≤ T and [V, V g ] 6= 1,
contrary to 12.7.11. ¤

Lemma 12.7.13. (1) Hypothesis G.2.1 is satisfied for each H ∈ H(P1T ) ∩
NG(V1), with P1 in the role of “L1”.

(2) V ≤ O2(NG(V1)).

Proof. By 12.7.2.3, P1 is irreducible on V/V1, so (1) holds. Then (2) follows
from G.2.2.1. ¤

Much of the rest of the section is devoted to the proof of the following result,
which identifies the remaining group in the conclusion of Theorem 12.7.1.

Theorem 12.7.14. If V 6≤ O2(Gz), then as Gt ≤M , G is isomorphic to M24.

Until the proof of Theorem 12.7.14 is complete, assume V 6≤ O2(Gz). Recall

the subgroup L1 defined in 12.7.2.5. Set K := 〈V Gz〉, U := 〈V K1 〉, G̃z := Gz/〈z〉,
H := KL1T , Qz := O2(H), and H∗ := H/CH(Ũ). As V1 is L1T -invariant, U E H .
As V 6≤ O2(Gz), O

2(K) 6= 1 and V 6≤ O2(H), so K 6≤M by 12.2.6.

Lemma 12.7.15. (1) Φ(U) ≤ 〈z〉, and Ũ ∈ R2(H̃), so that O2(H
∗) = 1.

(2) Either

(a) Ū = R̄1, or

(b) M̄V
∼= Ŝ6 and Ū is either Z(L̄1T̄ ) of order 2 or O2(L̄1T̄ ) of order 8.

(3) If U is abelian, then Ū = R̄1.
(4) m(V ∗) = 2 or 4 and V ∗ = [V ∗, L∗1], so L

∗
1/O2(L

∗
1)
∼= Z3.

Proof. Observe that Hypothesis G.2.1 is satisfied with 〈z〉, V1, Gz, in the
roles of “V1, V , G1”; hence (1) holds by G.2.2. As

CH(Ũ) ≤ CH(Ṽ1) ≤ NG(V1),

and V 6≤ O2(H), V does not centralize Ũ by 12.7.13.2. Thus V ∗ 6= 1, so Ū 6= 1.
However U E H , so Ū E L̄1T̄ , and hence (2) follows. Further if U is abelian then
Ū ≤ CM̄ (V1), so (3) holds. As V/V1 = [V/V1, L1], V

∗ = [V ∗, L1], so as V ∗ 6= 1 and
L1/O2(L1) ∼= Z3, (4) holds. ¤

We now deal with the case leading to the remaining conclusion of Theorem
12.7.1:
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Lemma 12.7.16. If Ū = R̄1, then G ∼=M24.

Proof. Assume that Ū = R̄1. By 12.7.2.2, [Ũ , V ∗] = Ṽ1, so V
∗ induces a

group of transvections on Ũ with center Ṽ1. Also m(V ∗) = 2 or 4 by 12.7.15.4.

Thus if ∆1, . . . ,∆s are the orbits of K on Ṽ Gz1 , then by G.3.1, Ũ = Ũ1 ⊕ · · · ⊕ Ũs
and K∗ = K∗1 × · · · ×K

∗
s , where Ũi := 〈∆i〉 is of dimension n ≥ 3, K∗i is generated

by the transvections in K∗ with centers in ∆i, [Ki, Ũj ] = 0 for i 6= j, and (as

O2(K
∗
i ) = 1 by 12.7.15.1)K∗i acts faithfully as GL(Ũi) on Ũi. Observe in particular

that L∗1 ≤ K∗. Now each preimage Ki contains a member of C(H) by 1.2.1.1, so
by 1.2.1.3, s ≤ 2; and in case of equality, H∗ ∼= L3(2) wr Z2. Therefore s = 1,
as T ∗ acts on L∗1 and L∗1/O2(L

∗
1)
∼= Z3 by 12.7.15.4. Thus by Theorem C (A.2.3),

K∗ = GL(Ũ) ∼= Ln(2), n = 3, 4, or 5. Then K is transitive on Ũ#, so Φ(U) = 1.
By 12.7.15.4, L∗1T

∗ is a rank one parabolic of K∗.
If n = 5, then CK(V1)

∗ ∼= L4(2)/E16, so asX is faithful on V1,m3(NG(V1)) > 2,
contrary to NG(V1) an SQTK-group.

Thus n = 3 or 4. As we saw V ∗ ≤ CK∗(U/V1) ∼= E2n−1 and m(V ∗) = 2 or 4,
we conclude m(V ∗) = 2. Next

m(Q ∩ U) = m(U)−m(Ū) = n+ 1− 2 = n− 1.

As V1 ≤ V ∩U ≤ CV (U) = CV (R̄1) = V1, we conclude V1 = CV (U) = V ∩U . Thus

m((Q ∩ U)V/V ) = n− 1−m(V1) = n− 3 ≤ 1.

Now [Q,U ] ≤ Q ∩ U , so that m([W,U ]) ≤ 1 for W any noncentral chief factor
for L on Q/V . However Ū = R̄1 does not induce transvections on any nontrivial

irreducible for Â6; hence [U,Q] ≤ V , and L is an Â6-block. In particular, L1 has
exactly three noncentral 2-chief factors.

Suppose n = 4. Then as L∗1 = O2(P ∗) for some rank one parabolic P ∗ of K∗,

L1 has one noncentral chief factor W̃ on the natural module Ũ , and two such factors
on O2(L

∗
1). We conclude [Qz, L1] ≤ U , so that [Qz,K] ≤ U . Thus by the Thompson

A× B-Lemma, O2(K)/U is faithful on CU (O2(KT )/U), so as K is irreducible on

Ũ , O2(KT ) centralizes U . Then as H1(K∗, Ũ) = 0 by I.1.6, U = [U,K]⊕〈z〉. This
is impossible as z ∈ [V,R1] by 12.7.2.2, while UCT (V ) = R1 by hypothesis, so that
z ∈ [V, U ]

Therefore n = 3, so U ∼= E16. Assume M̄V = L̄. Then V1 ≤ Z(T ), so by B.2.14,

U ∈ R2(Gz), and hence CGz (U) = CGz (Ũ). However we saw that 4 = |V ∗| = |V :

CV (Ũ)| and CV (U) = V1 is of index 16 in V . Thus M̄V
∼= Ŝ6 and U /∈ R2(Gz), so

that CG(Ũ)/CG(U) 6= 1. Therefore from the action ofH∗ = GL(Ũ), CG(Ũ)/CG(U)
is the full group of transvections on U with center z, and affords the K∗-module
dual to Ũ . Recall that L is a Â6-block, while CT (L) = 1 by 12.7.12. Then by

12.7.6.2, V = O2(M) and M = LT , so that M/V ∼= Ŝ6. Therefore |T | = 210,

so as |T ∗| = 8 = |CT (Ũ)/CT (U)| and |U | = 16, CT (U) = U . As T normalizes
U , NG(U) ∈ He by 1.1.4.6, so U = CG(U). Hence as AutK(U) = CAut(U)(z),

H = NGz(U) = K with Qz = O2(K) of order 27. In particular, K has 2-chief series

1 < 〈z〉 < U < Qz.

As Qz/U is dual to Ũ , K is transitive on (Qz/U)# and Ũ#. As V ∩Qz 6≤ U , there

are involutions in Qz −U . It follows that Φ(Q̃z) = 1, so Qz ∼= 21+6 ∼= D3
8. Now Gz

normalizes K and hence normalizes O2(K) = Qz.
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Let G+ := M24. Arguing as in the proof of Theorem 12.7.7, M is determined
up to isomorphism, so as G+ satifies the hypotheses of this Theorem, there is an
isomorphism ϕ : M+ → M . As Q̃+

z = J(T̃+), ϕ(Q+
z ) = Qz. Now either Ũ is the

socle of K on Q̃z, or Q̃z is the sum of Ũ and its dual as a K-module. As in the final
three paragraphs of the proof of 12.7.7, any L+

1 T
+-submodule of Q̃+

z isomorphic

to Ũ+ splits over Ũ+, so applying ϕ the same holds in K, and hence again Ũ is
a semisimple K-module. Thus AutGL(Q̃z)(K

∗) ∼= Aut(L3(2)), so as K E Gz and

T ∗ ∼= D8, K
∗ = AutGz(Q̃z). Therefore K = Gz. As T+ splits over Q+

z , applying
ϕ, T splits over Qz; so K splits over Qz, and hence Gz = K is determined up to
isomorphism. We have seen that z is not weakly closed in Qz with respect to G, so
that we may apply Theorem 44.4 in [Asc94]. This time as Gt ≤ M by 12.7.8, we
conclude that G ∼=M24. ¤

By 12.7.16, to complete the proof of Theorem 12.7.14, we may assume that
Ū 6= R̄1, and it remains to derive a contradiction. In particular U is not abelian by

12.7.15.3, and Φ(U) = 〈z〉 by 12.7.15.1. Let Ū1 := Z(L̄1T̄ ). By 12.7.15.2, M̄V
∼= Ŝ6,

so O2(L̄1T̄ ) = Ū1 × R̄1
∼= E8, and either Ū = Ū1, or Ū = Ō2(L̄1T̄ ) contains Ū1.

In any case E8
∼= [V, U1] ≤ U ∩ V , and L1 is irreducible on V/V1[V, U1] ∼= E4, so

V ∩ U = V1[V, U1], and hence:

Lemma 12.7.17. V ∗ ∼= E4.

Lemma 12.7.18. Ū = O2(L̄1T̄ ) ∼= E8.

Proof. If not, by the discussion before 12.7.17, Ū = Ū1 is of order 2. Then

V ∗ induces a group of transvections on Ũ with axis Ũ ∩Q, so using the dual of
G.3.1 as in the proof of 12.7.16, L∗1 ≤ K∗ ∼= Ln(2) with n = 3, 4, or 5. This time

since we are arguing in the dual of Ũ , [Ũ ,K∗] is the natural module for K∗. Then

Ũ = [Ũ ,K∗] ⊕ CŨ (K
∗) as K∗ is genrated by m([Ũ ,K∗]) transvections. Next as

[V, U1] is of rank 3 and contains z,

[Ũ , V ∗] = [U1, V ]/〈z〉 = [U1, V, L1]〈z〉/〈z〉 = [Ũ , V ∗, L∗1]

is of rank 2. Thus in its action on the natural module [Ũ ,K∗], L∗1T
∗ is the rank

one parabolic stabilizing the line [Ũ , V ∗] and centralizing [Ũ ,K∗]/[Ũ , V ∗]. In par-

ticular L∗1T
∗ fixes no point in the natural module, so Ṽ1 ≤ CŨ (L

∗
1T
∗) = CŨ (K

∗),

contradicting Ũ = 〈Ṽ K1 〉. ¤

We may represent LT on Ω := {1, . . . , 6} so that P2T is the global stabilize
of {1, 2}. Then by 12.7.18, Ū = 〈(1, 2), (3, 4), (5, 6)〉. Pick g ∈ L with Ūg =
〈(1, 6), (2, 3), (4, 5)〉. Then

L̄ = 〈Ū , Ūg〉 = 〈Ū , x̄〉

for each 1 6= x̄ ∈ Ūg which is not a transposition. Let I := 〈U,U g〉. Arguing as in
the the proof of G.2.3, L ≤ I and

[O2(I), I ] =: P = (P ∩ U)(P ∩ U g)

with [I, U ∩ Ug] ≤ V , and setting I/(U ∩ U g)V =: I+,

P+ = (U ∩ P )+ ⊕ (Ug ∩ P )+

with CP+(U) = (U ∩P )+. Indeed if 1 6= x̄ ∈ Ūg such that x̄ is not a transposition,
then I = 〈U, x〉, so

C(P∩U)+(x) ≤ C(P∩U)+(I) = (U ∩ Ug)+ = 1,



846 12. LARGER GROUPS OVER F2 IN L∗f (G,T )

so (P ∩ Ug)+ = CP+(x).
Recall X = O2(O2,Z(L)), so X ≤ L ≤ I ≤ NG(P ).

Lemma 12.7.19. [P+, X ] = 1.

Proof. Assume otherwise. Take x̄ ∈ L̄∩Ūg, and take ȳ ∈ Ūg to be the product
of 3 transpositions. Then [C[P+,X̄](x̄), ȳ] 6= 1 as ȳ inverts X̄, so CP+(x̄) 6= CP+(ȳ),

whereas CP+(x̄) = (U g ∩ P )+ = CP+(ȳ) since neither x̄ nor ȳ is a transposition.
This contradiction establishes the lemma. ¤

Lemma 12.7.20. L is a Â6 block, V = O2(M), and M = LT .

Proof. As [P,X ] ≤ (U ∩ U g)V by 12.7.19 and I centralizes (U ∩ U g)V/V , it
follows by Coprime Action that [P,X ] = V . Thus X = V Y where Y has order 3,
so LT = V NLT (Y ) by a Frattini Argument.

If L is a Â6-block then as CT (L) = 1 by 12.7.12, O2(M) = V and M = LT

by 12.7.6.2. Thus we may assume that L is not a Â6-block. Then 1 6= ZY :=
Ω1(Z(NT (Y ))∩O2(LT ), and ZY is in the center of V NT (Y ) = T , so that ZY ≤ Z.
Let VY := 〈ZLY 〉; then VY ∈ R2(LT ) by B.2.14 and VY ≤ CG(Y ). As CT (L) = 1,
CVY (L) = 1. Let V0 := VY V , so that also V0 ∈ R2(LT ) by B.2.12. By B.4.2.8,
the unique FF∗-offender in L̄T̄ on V is R̄2 and m(V/CV (R̄2)) = m(R̄2). Then it
follows from B.4.2 and B.3.4 that q̂ := q̂(AutLT (V0), V0) ≥ 2, with equality only if
VY /CVY (L) is the A6-module (so that m(VY ) = 4 since we saw CVY (L) = 1) and
either

(i) R̄2 is an FF∗-offender on VY and hence L1 centralizes ZY , or
(ii) There is a strong FF∗-offender Ā in T̄ on V0 with m(V/CV (Ā)) = m(Ā)+1,

so that Ā = O2(L̄2T̄ ) and again L1 centralizes ZY .

However by 3.1.8.1, q̂ ≤ 2, so indeed q̂ = 2. Therefore VY is the 4-dimensional
A6-module in which L1T centralizes a point, so as Ū = O2(L̄1T̄ ) by 12.7.18, Ū is
not quadratic on VY , impossible as [VY , U, U ] ≤ [VY ∩ U,U ] ≤ VY ∩ 〈z〉 = 1 using
12.7.15.1. ¤

We are now ready to complete the proof of Theorem 12.7.14.

By 12.7.20, L is a Â6-block, V = O2(M), andM = LT . By 12.7.18, Ū ∼= E8, so

M/V ∼= Ŝ6. In particularM , and hence also T , are determined up to isomorphism,

so T is isomorphic to a Sylow 2-group of He. Thus J(T̃ ) ∼= E64. But by our remark
before 12.7.17, V ∩ U = V1[V, U1] is of rank 4, so as Ū ∼= E8,

|U | = |Ū ||U ∩ V | = 8 · 16 = 27,

so Ũ ∼= E64 and hence U is the preimage D3
8 of J(T̃ ) in T and L1T/U ∼= S4.

As T is Sylow in He, CT (U) ≤ U , so as U induces CAut(U))(Ũ ) by A.1.23,

U = CH (Ũ). Thus H∗ ≤ Out(U) ∼= O+
6 (2). Recall O2(H

∗) = 1 by 12.7.15.1. As
V ∗ = [V ∗, L1], [O(H

∗), V ∗] = 1 by A.1.26. Then since K = 〈V Gz〉, K∗ centralizes
O(H∗). Further H = KL1T and L∗1T

∗ ∼= S4 with V ∗ = O2(L
∗
1T
∗). Now examining

O+
6 (2) for subgroups satisfying these conditions, we conclude H∗ is L3(2), A6, A7,

S5, or ΓL2(4). Next ŨT := CŨ (T ) = C
Ũ∩V

(T ) ∼= E4 and CŨ (L1T ) = Ṽ1. Therefore

H∗ is not A6 or S5, since those groups fix a point of of Ũ , but K moves Ṽ1. If H
∗

is ΓL2(4), then [Ũ ,K] is the A5-module for K∗, impossible as V ∗ is quadratic on

Ũ .
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Next the preimage UT is isomorphic to E8 and contains V1, so by 12.7.10.5,
CH(UT ) ≤ Mz = L1T . Then CH(UT ) = CL1T (UT ) ≤ T , and hence CH∗(ŨT ) is a
2-group by Coprime Action, so that H∗ is not A7. Therefore H∗ ∼= L3(2). Then

arguing as in the proof of 12.7.7, Ũ = Ũ1 ⊕ Ũ2 is the sum of two nonisomorphic
natural modules for H∗. Therefore as Ṽ1 = CŨ (L

∗
1T
∗), Ṽ1 ≤ Ũi for some i, so

U = 〈V H1 〉 ≤ Ui < U . This contradiction finally completes the proof of Theorem
12.7.14.

12.7.4. The final contradiction. Because of Theorem 12.7.14, we can as-
sume in the remainder of the section that:

Lemma 12.7.21. V ≤ O2(Gz).

Lemma 12.7.22. (1) If g ∈ G with V ∩ V g 6= 1, then [V, V g ] = 1.
(2) Either W1 :=W1(T, V ) centralizes V , or W̄1 = R̄2 and r(G, V ) = 3.
(3) CG(C1(T, V )) ≤M .
(4) If r(G, V ) > 3, then CG(C2(T, V )) ≤M .
(5) If CV (V

g) 6= 1, then 〈V, V g〉 is a 2-group.

Proof. Under the hypotheses of (1), we may take z ∈ V g by 12.7.9.3 and
12.7.4.1. Then by 12.7.9.2, we may take g ∈ Gz . Now by 12.7.21, V g ≤ O2(Gz) ≤ T ,
so by 12.7.11, [V, V g ] = 1. That is, (1) holds.

We next prove (2), (3), and (4). Let A := V g ∩M ≤ T be a w-offender. Thus
Ā 6= 1 and w := m(V g/A). By 12.7.11, w > 0. If w > 1, then W1 centralizes V by
definition, so that (2) holds, and then CG(C1(T, V )) ≤M by E.3.34.2, so that (3)
holds. That result also shows that (4) holds if w > 2.

Next as 1 6= [A, V ] ≤ [V g , V ], V ∩ V g = 1 by (1). If B ≤ A with m(V g/B) <
r(G, V ) =: r, then CV (B) ≤ NG(V

g), so [CV (B), A] ≤ V ∩ V g = 1; thus CV (B) =
CV (A), so that Ā ∈ Ar−w(T̄ , V ) Then by 12.7.3, r−w ≤ 2; and in case of equality,

Ā = R̄2 = Ww(T, V ). Thus if r − w = 2, then V2 = CV (R2) ≤ Cw(T, V ), so that
CG(Cw(T, V )) ≤ Gt ≤M by 12.7.8.

By 12.7.10.2, r ≥ 3. Assume first that r > 3. Then by the previous paragraph:
first w > 1; and then either w > 2—or w = 2 and r = 4, so that (4) holds. Thus
the lemma holds when r > 3 by paragraph two, so we may assume that r = 3.
Then (4) is vacuous, and (2) and (3) hold by paragraph two when w > 1, so we
may assume that w = 1. Then r − w = 2, so that (2) and (3) hold by paragraph
three. This completes the proof of (2), (3) and (4).

Assume the hypotheses of (5). By 12.7.4.1, we may assume V g centralizes
v := t or z. We observe V ≤ O2(Gv): if v = t, this follows from 12.7.8, and if v = z
it follows from 12.7.21. Hence 〈V, V g〉 is a 2-group, proving (5). ¤

If Gz ≤ M , then by 12.7.4.1 and 12.7.8, we may apply Theorem 12.2.13 to
conclude that G ∼= M24; but then V 6≤ O2(Gz), contrary to 12.7.21. Therefore
Gz 6≤M , so we can choose H ∈ H∗(T,M) with H ≤ Gz. By 3.3.2.4, we may apply
the results of section B.6 to H .

Lemma 12.7.23. (1) n(H) = 2.
(2) O2(H/O2(H)) ∼= L2(4) or L3(4).
(3) L1T = H ∩M .

Proof. Let KH := O2(H). By 12.7.10.2, s(G, V ) > 1, and by 12.7.11,
NG(W0) ≤ M . As CG(C1(T, V )) ≤ M by 12.7.22.3, E.3.19 says that n(H) ≥
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2. Then H is not solvable by E.1.13, so H is described in E.2.2; in particular
(KH ∩ M)O2(H)/O2(H) is a Borel subgroup of H/O2(H). As V ≤ O2(Gz) by
12.7.21, 12.2.11.1 says n(H) ≤ 2, proving (1). By 12.2.11.2, (KH ∩M)/O2(H) is a
nontrivial 3-group. Next by 12.2.8,

θ(H ∩M) ≤ θ(M) = L,

where we recall that θ(Y ) is the characteristic subgroup generated by all elements
of order 3 in a group Y . Thus θ(H ∩M) ≤ O2(CL(z)) = L1, so as |L1|3 = 3, we
conclude that θ(H ∩M) = L1. Then inspecting the list of groups in E.2.2 with
n(H) = 2, H ∩M a {2, 3}-group, and θ(H ∩M)/O2(θ(H ∩M)) of order 3, we
conclude that (2) holds and O2(H ∩M) = θ(H ∩M), so that (3) holds. ¤

Lemma 12.7.24. r(G, V ) > 3.

Proof. Assume otherwise. Then r(G, V ) = 3 by 12.7.10.2, and then by
12.7.10.5, CG(U) 6≤ M where U := CV (̄i1). Now T acts on U , so we may choose
H ≤ CG(U)T , so that H = CH (U)T . Hence L1 ≤ O2(H) ≤ CH(U) by 12.7.23.3,
which is impossible as CLT (U) = Q〈i1〉 by 12.7.10.4. ¤

We are now in a position to obtain the final contradiction establishing Theorem
12.7.1.

By 12.7.11, NG(W0) ≤ M ; hence as H 6≤ M , W0 6≤ O2(H) by E.3.16, so
that there exists A := V g ≤ T with A 6≤ O2(H). Let KH := O2(H) and H+ :=
H/O2(H). In case K+

H
∼= L2(4), set H1 := H , K1 := KH , and T1 := T . Otherwise

by 12.7.23.2,K+
H
∼= L3(4). Here as A ≤ Q ≤ O2(L1T ) by 12.7.11 and L1T = H∩M

by 12.7.23.3, A ≤ O2(H ∩M). Therefore we have two subcases: either A+ ≤ K+
H ;

or A+ = 〈a+〉A+
K , where A+

K := A+ ∩K+
H , and a

+ induces a graph automorphism

on K+
H . In the former subcase, replacing A by a suitable conjugate if necessary,

A 6≤ O2(P ) for one of the two maximal parabolics P of KH . In this subcase, we let
H1 := NH(P ), K1 := O2(H1), and T1 := T ∩H1, and observe that as A 6≤ O2(P ),
CT+(A+) ≤ T+

1 . Finally in the latter subcase, CK+
H
(a+) ∼= L2(4). In this subcase,

let a+ 6= b+ ∈ a+(T+ ∩ K+ ∩ Z(CT+(a+))), H1 the preimage in H of CH+(b+),
K1 := O2(H1), and T1 := T ∩H1.

In each case,K1/O2(K1) ∼= L2(4), T1 ∈ Syl2(H1), A 6≤ O2(H1), and CT+(A+) ≤
T+
1 . Also in each case,K1 6≤M asH∩M = L1T . LetQ1 := O2(H1), H

∗
1 := H1/Q1,

B := A ∩ Q1, and D := C2(Q1, V ). As A ≤ O2(H ∩M), A∗ ≤ O2((H1 ∩M)∗) =
(T1 ∩ K1)

∗ ∈ Syl2(K
∗
1 ). As r(G, V ) > 3 by 12.7.24, and K1 6≤ M , we conclude

from 12.7.22.4 that K1 6≤ CG(C2(T, V )). As n(H) = 2, K1 ∈ E2(H,T,A) in the
sense of Definition E.1.5 by construction. So we apply E.3.17.1 with 0, 2, 2 in the
roles of “i, j, k”, to conclude C2(T, V ) ≤ D, so that K1 6≤ CG(D), and A 6≤ CG(D)
by E.1.4. But m(A/B) ≤ m2(H

∗
1 ) = 2, so D ≤ CG(B) ≤ NG(A) as r(G, V ) > 3.

Indeed as D centralizes B with m(A/B) ≤ 2, but does not centralize A, we con-
clude from 12.7.10 that m(A/B) = m(A∗) = 2, and we may take B = V g2 and
D ≤ Rg2 . As A

∗ ≤ (T1 ∩K1)
∗ and m(A∗) = 2, A∗ = (T1 ∩K1)

∗ ∈ Syl2(K∗1 ). Thus
m(D/CD(A)) ≥ 2, as m(W/CW (A∗)) ≥ 2 for any nontrivial chief sectionW for K∗

1

on D. So as m(R2/Q) = 2, we conclude Rg2 = DQg and |D : CD(A)| = 4. Then by
12.7.2.4,

B = V g2 = [Rg2 , A] = [D,A] ≤ D.

Let k ∈ K1 −M ; then K∗1 = 〈A∗, A∗k〉. Now [Bk, A] ≤ [D,A] = B, so A acts on
BBk, and by symmetry, so does Ak, so that I := 〈A,Ak〉 acts on U := BBk, and
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I∗ = K∗1
∼= L2(4). Indeed |D : CD(A)| = 4, so

|B : CB(I)| = |B : CB(A
k)| ≤ |D : CD(A

k)| = 4.

So asm(B) = 4, CB(I) 6= 1. But this contradicts 12.7.22.5, since I is not a 2-group.
This final contradiction completes the proof of Theorem 12.7.1.

12.8. General techniques for Ln(2) on the natural module

When Hypothesis 12.2.3 holds and L̄ ∼= Ln(2) for n = 3, 4, 5, Theorems 12.4.2.1,
12.6.34, and 12.5.1 tell us that V is the natural module for L̄. We will encounter
a similar setup involving L2(2) after completing our treatment of the Fundamental
Setup. Thus in this section we establish some general techniques for treating all
four case simultaneously.

The hypotheses below reflect one difference between the treatments for n = 2
and n > 2: For n > 2, we have already analyzed the case where V is a TI-set in
G in Theorem 12.2.13, so we simply exclude the groups appearing in conclusions
(2)–(4) of 12.2.13 as part of the operating hypothesis 12.8.1 of this section; then
by 12.2.13, CG(Z ∩ V ) 6≤ M as L is transitive on V #. However, the treatment of
the case where n = 2 and V is a TI-set in G does not appear until the end of the
analysis of that case, so for the moment we instead assume Z ≤ V and CG(Z) 6≤M
as part of our operating hypothesis when n = 2.

Thus in this section, we assume the following hypothesis:

Hypothesis 12.8.1. Either (1) or (2) holds:

(1) Hypothesis 12.2.3 holds, with L/O2(L) ∼= Ln(2), n = 3, 4, 5, and V the
natural module for L/O2(L). Further G is not Ln+1(2), A9, or M24.

(2) G is a simple QTKE-group, T ∈ Syl2(G), Z := Ω1(Z(T )), M ∈ M(T ),
V := 〈ZM 〉 is of rank 2, L = O2(L) E M with M = !M(LT ), CLT (V ) = O2(LT ),
and LT/O2(LT ) ∼= L2(2) ∼= S3. Furthermore assume CG(Z) 6≤M .

We adopt the following notation, which is consistent with that in Notation
12.2.5 when n > 2:

Notation 12.8.2. (1) Z := Ω1(Z(T )), M := NG(L), MV := NM (V ), and
M̄V :=MV /CM (V ).

(2) n := m2(V ), and for 1 ≤ i ≤ n, let Vi denote the i-dimensional subspace
of V invariant under T , Gi := NG(Vi), and Mi := NM (Vi). Let Li := O2(NL(Vi)),
unless n = 5 and i = 2 or 3, where Li := NL(Vi)

∞. Set Ri := O2(LiT ).

(3) Let z be the generator of V1 and G̃1 := G1/V1. Set

Hz := {H ∈ H(L1T ) : H ≤ G1 and H 6≤M}.

For H ∈ Hz, set UH := 〈V H〉, QH := O2(H), and H∗ := H/QH .

Note when n = 2 that V E M , so that Mi ≤MV , and L1 = 1. When n > 2,
V is a TI-subgroup in M and Mi ≤MV by 12.2.6.

12.8.1. General preliminary results.

Lemma 12.8.3. (1) M̄V = GL(V ), and either M̄V = L̄, or n = 2 and M̄V =
L̄T̄ .

(2) L is transitive on i-dimensional subspaces of V , for each i.
(3) Gi is transitive on {V g : Vi ≤ V g}.
(4) G1 6≤M .
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Proof. Part (1) is an immediate consequence of Hypothesis 12.8.1. Then (1)
implies (2), and (2) and A.1.7.1 imply (3).

Assume case (1) of Hypothesis 12.8.1 holds. Then Hypothesis 12.2.3 holds,
but conclusions (2)–(4) of Theorem 12.2.13 are excluded by that hypothesis. Thus
conclusion (1) of Theorem 12.2.13 holds, so that CG(v) 6≤M , and then (4) follows
from the transitivity of L on nonzero vectors of V in (2). Finally when case (2) of
Hypothesis 12.8.1 holds, (4) is a consequence of the assumption in that hypothesis
that CG(Z) 6≤M . ¤

By 12.8.3.4, G1 ∈ Hz, so Hz 6= ∅. Observe that Hz ⊆ He by 1.1.4.6.

Lemma 12.8.4. Let H ∈ Hz. Then

(1) Hypothesis G.2.1 is satisfied.

(2) ŨH ≤ Ω1(Z(Q̃H)) and ŨH ∈ R2(H̃).
(3) Φ(UH) ≤ V1.

(4) QH = CH(ŨH), so H
∗ is the image of H in GL(ŨH) under the represen-

tation of H on ŨH by conjugation.

Proof. As L1 is irreducible on Ṽ , (1) holds. Then G.2.2 implies (2) and (3).

If (4) fails, then Y := O2(CH(ŨH)) 6= 1. But by Coprime Action, Y ≤ CG(V ) ≤
MV , so [Y, L] ≤ CL(V ) = O2(L). Hence L normalizes O2(Y O2(L)) = Y , so that
H ≤ NG(Y ) ≤M = !M(LT ), contrary to the choice of H 6≤M . ¤

Lemma 12.8.5. Assume n > 2, so that L1 6= 1.

(1) If H ∈ Hz with L1 E H, then ŨH is the direct sum of copies of the natural

module Ṽ for L∗1
∼= Ln−1(2)

′.
(2) If L1 E G1, then for 1 < i < n, Gi ≤ M and V is the unique member of

V G containing Vi, so that m(V ∩ V g) ≤ 1 for g ∈ G−MV .

Proof. Observe Ṽ is the natural module for L1/O2(L1) ∼= Ln−1(2)
′, so (1)

holds as UH = 〈V H〉. Now assume L1 E G1. Then for 1 < i < n, NL(Vi) induces
GL(Vi) on Vi by 12.8.3.1, so that Gi = CG(Vi)NL(Vi) and CG(Vi) ≤ G1 ≤ NG(L1).
Hence Gi acts on

〈Lg1 : g ∈ Gi〉 = 〈L
g
1 : g ∈ NL(Vi)〉 = L.

So Gi ≤ NG(L) = M . Then Gi = Mi ≤ MV , so the remaining assertions of (2)
follow from 12.8.3.3. ¤

The next lemma 12.8.6 shows that the condition “UH is abelian for all H ∈ Hz”
is equivalent to “〈V G1〉 abelian”. Much of our remaining work on the F2-Case is
partitioned via the cases “UH abelian for all H ∈ Hz” versus “〈V G1〉 nonabelian”.
We will discuss this distinction further after 12.8.6.

Lemma 12.8.6. The following are equivalent:

(1) UH is abelian for each H ∈ Hz.
(2) 〈V G1〉 is abelian.
(3) If g ∈ G with V ∩ V g 6= 1, then [V, V g ] = 1.
(4) Hypothesis F.8.1 is satisfied for each H ∈ Hz.
(5) Hypothesis F.9.8 is satisfied for each H ∈ Hz, with V in the role of “V+”.

Proof. First (1) implies (2) trivially as G1 ∈ Hz . By 12.8.3.3 and the tran-
sitivity of L on V #, (2) implies (3). If (3) holds, then condition (a) of Hypothesis
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F.8.1 is satisfied for each H ∈ Hz , while the remaining conditions are easily ver-
ified; for example, 12.8.4.4 says kerCH(Ṽ )(H) = QH , giving (c). Thus (3) implies

(4). Finally (4) implies (1) by F.8.5.2, and (4) and (5) are equivalent by Remark
F.9.9. ¤

Remark 12.8.7. Notice that if one of the equivalent conditions in 12.8.6 holds,
then from condition (5), 〈V H〉 = 〈V H+ 〉. Thus the subgroups denoted by “UH” and
“VH” in section F.9 both coincide with the group denoted by UH in this section.

When UH is abelian for all H ∈ Hz , by parts (4) and (5) of 12.8.6, we can
apply lemmas from sections F.8 and F.9 to analyze the amalgam defined by LT
and H . Notice in particular by F.8.5 and F.9.11 that in this case the amalgam
parameter “b”of those sections is odd and at least 3. On the other hand when UH
is nonabelian, we normally specialize to the case H = G1, and apply methods from
the theory of large extraspecial 2-subgroups, which are developed further in the
following subsection.

12.8.2. 〈V G1〉 nonabelian almost extraspecial subgroups. In this sub-
section, we consider the case where 〈V G1〉 is nonabelian. The analysis in the sub-
section continues to develop the theory of almost extraspecial 2-subgroups U (i.e.,
U is nonabelian and |Φ(U)| = 2) begun in section G.2 of Volume I. The theory is
a variant of the theory of large extraspecial 2-subgroups appearing in the original
classification literature.

In the remainder of the section we take H := G1 and assume that U := UH =
〈V H〉 is nonabelian.

As U is nonabelian, 12.8.4.3 says that:

Φ(U) = V1.

Set Ĥ := H/Z(U) and Ḣ := H/CH(Û).

Lemma 12.8.8. (1) U = U0Z(U), with U0 an extraspecial 2-group and Φ(U0) =
V1.

(2) Regard V1 as F2. Then the map

(ũ1, ũ2) := [u1, u2]

defines a symmetric bilinear form on Ũ with radical Z̃(U) preserved by H∗, which

induces an H-invariant symplectic form on Û . If Φ(Z(U)) = 1, then

q(ũ) := u2

defines an H∗-invariant quadratic form on Ũ with bilinear form ( , ), which induces

an H∗-invariant orthogonal space structure on Û .
(3) V ∩ Z(U) = V1.
(4) Assume n ≤ 3, let I := 〈UL〉, and S := O2(I). Then L ≤ I and S has the

I-chief series

1 =: S0 ≤ S1 ≤ · · · ≤ Sn+1 := S

described in G.2.3 or G.2.5, for n = 2 or 3, respectively.
(5) If L1 E H then n ≤ 3, and when n = 3 the chief series in (3) becomes

1 =: S0 < S1 < S3 = S
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with

S1 := V = U ∩ Ug ∩ Uh, S = (U ∩ Ug ∩ S)(U ∩ Uh ∩ S)(Ug ∩ Uh ∩ S),

and S/V the sum of copies of the dual of Ṽ as an L∗1-module, for each g, h ∈ L
with V = V1 ⊕ V

g
1 ⊕ V

h
1 .

(6) U = 〈V H2 〉.

Proof. Recall Φ(U) = V1; then (1) and (2) follow from standard arguments

(cf. 23.10 in [Asc86a]). As L1 is irreducible on Ṽ , either (3) holds or V ≤ Z(U),
and the latter is impossible as U = 〈V H〉. By 12.8.4, Hypothesis G.2.1 is satisfied,
and we recall as in section G.2 that as U is nonabelian, the hypothesis in G.2.3 and
G.2.5 that U 6≤ CT (V ) = O2(LT ) is satisfied, so that (4) follows from those results.

Assume L1 E H . Then by 12.8.5.1, Ũ is the direct sum of copies of Ṽ as
a module for L∗1

∼= Ln−1(2)
′. By (2) and (3), the bilinear form ( , ) induces an

L1-equivariant isomorphism between U/CU (V ) and the dual space of Ṽ . But if

n > 3, then Ṽ is not isomorphic to its dual as an L∗1-module; so we conclude n ≤ 3.

Assume n = 3. Then L∗1
∼= Z3, Ũ = [Ũ , L∗1], and all chief factors for L1 on (S∩U)/V

are 2-dimensional. Therefore by (4) and G.2.5,

V =: S1 = S2 = U ∩ Ug ∩ Uh

since [I, S2] ≤ V by G.2.5.5. Similarly S = S3, as if S/S3 6= 1, then from G.2.5.7,
L1 has a 1-dimensional chief factor on (U ∩ S)S3/S3. This completes the proof of
(5).

Next

U = 〈V H〉 = 〈V L1H
2 〉 = 〈V H2 〉,

giving (6). This completes the proof of 12.8.8. ¤

We continue to establish analogues of results in the literature on large extraspe-
cial subgroups. In Hypotheses G.10.1 and G.11.1 in Volume I, we axiomatized some
of the properties that are satisfied by CG0(z0)/O2(G0) acting on O2(G0)/〈z0〉, when
O2(G0) is a large almost extraspecial 2-subgroup of a group G0. In 12.8.12, we ver-
ify these hypotheses in our setup, and after that we appeal to the results in sections
G.10 and G.11, particularly Theorem G.11.2.

Notice for example that G.10.2 is an analogue of 3.8 in Timmesfeld [Tim78].
If G is of Lie type, with the involution centralizer G1 a maximal parabolic, the
subgroup I2 below corresponds to the complementary minimal parabolic. In the
theory of large extraspecial 2-subgroups, the inequality in G.10.2 typically produced
a lower bound on the 2-rank ofH/CH(Û). But hereH is an SQTK-group over which

we have some control, so that G.10.2 serves as an upper bound on m(Û), which we
then use in 12.8.12 (via an appeal to Theorem G.11.2) in order to strongly restrict

the structure of Ḣ and its action on Û .

Let P be the minimal parabolic of LT acting nontrivially on V2; notice under
part (2) of Hypothesis 12.8.1 that P = LT . Set I2 := 〈UP 〉, W := CU (V2), and let
g ∈ P −H . Set E := W ∩W g , X := W g , and ZU := Z(U). Observe ZU ≤ W as
V2 ≤ U .

Lemma 12.8.9. (1) 〈UH〉 = O2(P )U = I2 = 〈U,Ug〉, CI2(V2) = O2(I2), and
O2(P ) and I2 are normal in G2.
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(2) O2(I2) = WX, [E, I2] = V2, and O2(I2)/E = W/E ⊕ X/E is the direct
sum of natural modules for I2/O2(I2) ∼= L2(2) ∼= S3.

(3) CO2(I2)/E(u) = [O2(I2)/E , u] = [X/E , u] =W/E for u ∈ U −W .

(4) For y ∈ X −W , CŨ (y) ≤ W̃ .

(5) CX (Û) = CX(Ũ) = E.
(6) For u ∈ U −W , CX (û) ≤ ZgUE.
(7) V g1 ∩ ZU = 1.

Proof. Observe (7) holds as g ∈ NL(V2)−G1, and V ∩ ZU = V1 by 12.8.8.3.
As V is the natural module for L̄T̄ and O2(LT ) = CLT (V ), P = O2(P )T with
CP (V2) = O2(P ) and P/O2(P ) = GL(V2) ∼= L2(2). As U is nonabelian, [V2, U ] 6= 1
by 12.8.8.6, so O2(P ) = [O2(P ), U ] and P = 〈U,Ug〉O2(P ). Thus I2 = O2(P )U .
As AutP (V2) = GL(V2), G2 = CG(V2)P , so as CG(V2) ≤ G1 ≤ NG(U), we conclude
I2 = 〈U,Ug〉 = 〈UG2〉 E G2, so O

2(P ) = O2(I2) E G2, completing the proof of
(1).

By 12.8.8.6, Hypothesis G.2.1 is satisfied with O2(P ), V2, 1 in the roles of “L,
V , L1”; further U = 〈V H2 〉 by 12.8.8.6, so (2) and (3) follow from G.2.3.

Pick u ∈ U −W ; by (3), [X,u] ≤ W , so we can define ϕ : X → W/E by

ϕ(x) := [x, u]E. Set D := ϕ−1(ZUE/E). By (3), CX(Û) ≤ D, and

m(X/D) = m(W/ZUE).

As O2(I2)/E is the sum of natural modules for I2/O2(I2) ∼= S3 by (2),

DZU = 〈ZI2U 〉E = ZUZ
g
UE,

so D = ZgUE. Thus if y /∈ ZgUE, then [y, u] /∈ ZUE, and in particular [y, u] 6∈ ZU ,
so (6) holds. Similarly for y ∈ X −W and u ∈ U −W , [y, u] /∈ E by (2) and in
particular [y, u] 6∈ V1, so [y, ũ] 6= 1. Thus (4) holds.

Of course E ≤ CX (Ũ) ≤ CX(Û). Let R := CT (Û) and Ṽ0 := CŨ (R). By

a Frattini Argument, H = CH(Û)NH(R); so as Ṽ2 ≤ Ṽ0, as Ṽ0 is normalized

by NH(R), and as Û = 〈V̂ H2 〉, we conclude that Ũ = Ṽ0Z̃U . In particular as

Z̃U ≤ W̃ < Ũ , R centralizes some ũ ∈ Ũ − W̃ , so by (4), X ∩ R ≤ X ∩W = E,
completing the proof of (5). ¤

Lemma 12.8.10. (1) ZU ∩ U
g = (ZU ∩ Z

g
U )V1.

(2) ZU ∩ Z
g
U = Z(I2).

(3) If ZU ∩ Ug > V1, then Z ∩ Z(I2) 6= 1.

(4) [W,ZgU ] ≤ ZUV2, so m([Û , x]) ≤ 2 for x ∈ ZgU .
(5) If ZgU ≤ U , then ZU = Z(I2)× V1 and [L,Z(I2)] = 1.

(6) CZgU (Û) = CZgU (Ũ) = ZgU ∩QH = ZgU ∩U = (ZgU ∩ZU )V
g
1 = Z(I2)V

g
1 ≤ U .

Proof. By 12.8.9.7, V g1 ∩ ZU = 1, and by 12.8.8.1, Z(W ) = V2ZU . Thus by
symmetry between U and U g, V1 ∩ Z

g
U = 1 and Z(X) = V2Z

g
U = V1Z

g
U .

By 12.8.4.2, [ZU ∩ Ug, X ] ≤ V g1 ∩ ZU = 1, so ZU ∩ Ug ≤ Z(X). Therefore
ZU ∩ Ug ≤ ZgUV1 by the previous paragraph, so as V1 ≤ ZU ∩ Ug, (1) holds by the
Dedekind Modular Law.

By 12.8.9, I2 = 〈U,Ug〉, so ZU ∩ Z
g
U ≤ Z(I2). To prove the reverse inclusion,

observe by 12.8.9.2 that Z(I2) ≤ W ∩ X , so Z(I2) = Z(I2) ∩ U ≤ Z(U), and
similarly Z(I2) ≤ Z(U g). Thus (2) holds. As T acts on V2, T acts on I2 by
12.8.9.1, and hence on Z(I2). Further if ZU ∩ Ug > V1 then Z(I2) 6= 1 by (1) and
(2), so CZ(I2)(T ) 6= 1 and hence (3) holds.
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Next [ZgU ,W ] ≤ ZgU∩U ≤ ZUV2 by (1) and symmetry between U and U g. Thus

any x ∈ ZgU either centralizes the hyperplane Ŵ of Û , or induces a transvection on

Ŵ with center V̂2, so (4) follows.
To prove (5), assume ZgU ≤ U . Then by (1) and symmetry between U and U g,

ZgU = (ZU ∩ Z
g
U )V

g
1 , so Z

g
U = Z(I2)× V

g
1 by (2). Then as U is conjugate to U g in

I2, the first assertion of (5) holds.
Next let P1, . . . , Pn−1 denote the minimal parabolics of L with the usual or-

dering so that NL(Vi) = 〈Pj : j 6= i〉. Define Hi := 〈O2(Pj) : j ≤ i〉. We argue by
induction on j that each Hj centralizes Z(I2); and then in particular Hn−1 = L
centralizes Z(I2), which will complete the proof of (5). First H1 = O2(P ) = O2(I2)
from 12.8.9.1, and henceH1 centralizes Z(I2). Now suppose that [Z(I2), Hj ] = 1 for
some 1 ≤ j < n− 1. Then HjT is a maximal parabolic subgroup of Hj+1T , and so
there is k ∈ Pj+1−HjT such that Hj+1 = 〈Hj , H

k
j 〉 centralizes F := Z(I2)∩Z(I2)k.

Now k ∈ Pj+1 ≤ NL(V1) ≤ H ≤ NG(U), so that Z(I2) and Z(I2)
k are hyperplanes

of ZU using the result of the previous paragraph. Hence FV1 is of codimension
at most 1 in ZU and is centralized by Hj+1, so Hj+1 = O2(Hj+1) centralizes
ZU ≥ Z(I2) by Coprime Action. This completes our inductive proof of the remain-
ing assertion of (5).

Finally by 12.8.9.5, CZgU (Û) = CZgU (Ũ) ≤ ZgU ∩ U , and the reverse inclusion is

immediate. Further CZgU (Ũ) = ZgU ∩ QH by 12.8.4.4, and the remaining equalities

in (6) follow from (1) and (2). ¤

Lemma 12.8.11. (1) [W,X ] ≤ E.

(2) Φ(E) = 1, so Ê is totally isotropic in the symplectic space Û .

(3) X induces the full group of transvections on Ê with center V̂2.

(4) CÊ(X) = V̂2.

(5) m(Ê) +m(Ẋ/ŻgU) = m(Û)− 1.

(6) If CÛ (X) > V̂2, then there exists 1 6= ẋ ∈ Ẋ such that m([Û , ẋ]) ≤ 2 and

V̂2 ≤ [Û , ẋ].

Proof. By 12.8.9.2, (1) holds. As E = W ∩X , [E,X ] ≤ V g
1 by 12.8.4.2. As

Φ(E) ≤ Φ(U) ∩ Φ(U g) = V1 ∩ V
g
1 = 1, (2) holds.

By 12.8.8.1, U = U0ZU with U0 extraspecial. Let E0 := EZgU ∩ U
g
0 and V0 :=

V1Z
g
U ∩ U

g
0 . Then EZgU = E0Z

g
U and V2Z

g
U = V1Z

g
U = V0Z

g
U . As V1Z

g
U = V0Z

g
U ,

X = W g = CUg (V1) = CUg (V0). As E is abelian and centralizes ZgU , E0 is also
abelian. Therefore as U0 is extraspecial, we conclude from these two remarks that:

(!) X induces the full group of transvections on E0 which have center V g1 , and
centralize V0.

Let ê ∈ Ê − V̂2. As EZgU = E0Z
g
U , eZ

g
U = e0Z

g
U for some e0 ∈ E0. Now by

12.8.10.1, ZU ∩E ≤ ZU ∩Ug = (ZU ∩Z
g
U )V1 ≤ ZU ∩E, so that all inequalities are

equalities. Hence E ∩ V2ZU = V2(ZU ∩ E) = V2(ZU ∩ Z
g
U ), and so by symmetry

between U and Ug , E ∩ V2ZU = E ∩ V2Z
g
U . Thus as ê /∈ V̂2, e /∈ V2Z

g
U , so as we

saw that V2Z
g
U = V0Z

g
U , e0 /∈ V0Z

g
U . Thus [e,X ] = [e0, X ] = V1 by (!). Hence (3)

holds, and of course (3) implies (4).
Next

m(Û) = m(Ê) +m(Ŵ/Ê) + 1 = m(Ê) +m(X/EZgU) + 1 = m(Ê) +m(Ẋ/ŻgU ) + 1,

as E = CX (Û) by 12.8.9.5. That is, (5) holds.
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Let F̂ := CÛ (X) and suppose F̂ > V̂2. Then by (4), F̂ 6≤ Ê, while by 12.8.9.5,
CU (U

g/ZgU ) = E, so F 6≤ CU (U
g/ZgU ). Now by 12.8.9.2, F ≤ O2(I2) ≤ NG(X),

so [X,F ] ≤ ZU ∩ W g ≤ ZgUV2 by 12.8.10.1. Hence conjugating in I2, Ẋ0 :=

CẊ(Ŵ/V̂2) 6= 1. If 1 6= ẋ ∈ Ẋ0 centralizes Ŵ , then ẋ is a transvection on Û with

axis Ŵ and center V̂2, so (6) holds. If ẋ does not centralize Ŵ , then V̂2 = [Ŵ , x] ≤

[Û , x] so as Ŵ is a hyerplane of Û , m([Û , x]) = 2 and again (6) holds. Thus (6) is
established. ¤

We are in a position to appeal to results in Volume I on centralizers with a
large almost extraspecial subgroup:

Lemma 12.8.12. (1) Hypothesis G.10.1 is satisfied with Ḣ, Û , V̂2, Ê, Ẋ, ŻgU
in the roles of “G, V , V1, W , X, X0”.

(2) Let H2 := H ∩ G2. Then Ẋ and ŻgU are normal in Ḣ2, so in particular

Ẋ E Ṫ .
(3) Hypothesis G.11.1 is satisfied.

(4) Ḣ and its action on Û satisfy one of the conclusions of Theorem G.11.2.

Proof. By 12.8.8.2, Û is a symplectic space and Ḣ ≤ Sp(Û), so Hypothesis

G.10.1.1 holds. By 12.8.11.2, Ê is totally isotropic. By 12.8.8.6, Û = 〈V̂ H2 〉. As

T acts on V2, Ṫ fixes the point V̂2 of Û , so part (a) of Hypothesis G.10.1.2 holds.

By 12.8.9.5, E is the kernel of the action of X on Û . Observe also that Ŵ = V̂ ⊥2 ;

thus if ẋ ∈ Ẋ − ŻgU , then x 6∈ ZgUE, so 12.8.9.6 shows that CÛ (x) ≤ Ŵ = V̂ ⊥2 ,
establishing hypothesis (d). Hypothesis (b) follows from 12.8.11.5, hypothesis (c)
from 12.8.11.1, and hypothesis (e) from 12.8.11.3. This completes the proof of (1).

Next as [V2, U ] = V1, H2 = CG(V2)U ; so to prove (2), it suffices to show that
X and ZgU are normal in CG(V2). But this follows as CG(V2) acts on U

g and V1.
Observe that part (4) of Hypothesis G.11.1 follows from (2), and hypothesis (3)

follows from 12.8.11.6. Thus (3) holds. Finally Ḣ is a quotient of the SQTK-group
H , so (3) and Theorem G.11.2 imply (4). ¤

Using Hypothesis 12.8.1, we can refine some of the results from sections G.10
and G.11:

Lemma 12.8.13. (1) V ≤ E.
(2) ZgU centralizes V .

(3) If n = 2, then ZU ∩ Z
g
U = Z(I2) = 1, so ŻgU

∼= Z̃U and [ZU , Z
g
U ] = 1.

(4) If ZU > V1 then Ż
g
U 6= 1.

(5) If Û is the 6-dimensional orthogonal module for F ∗(Ḣ) ∼= A8, then O
3′ (H) =:

K ∈ C(H) with K/O2(K) ∼= A8, ZD := Z ∩ Z(I2) 6= 1, VD := 〈ZKD 〉 ≤ ZU ,
VD ∈ R2(KT ), 1 6= [ZD,K], and K = [K,ZgU ] ∈ Lf (G, T ).

(6) Conclusion (4) of G.11.2 does not hold; that is, Û is not the natural module

for F ∗(Ḣ) ∼= A7.
(7) Conclusion (12) of G.11.2 does not hold.

(8) m3(CH (Ṽ2)) ≤ 1.

Proof. As V ≤ U and g ∈ NG(V ), V ≤ U g , so (1) and (2) hold.
If n = 2, then by Hypothesis 12.8.1, Z2

∼= Z ≤ V , so Z = V1 6≤ Z(I2), and
hence Z(I2) = 1. Therefore [ZU , Z

g
U ] ≤ ZU ∩ Z

g
U = Z(I2) = 1. It follows from
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12.8.10.6 that CZgU (Û) = V g1 , so that ŻgU
∼= ZU/V1 = Z̃U , completing the proof of

(3).

Suppose (4) fails; then Z̃U 6= 1 but ZgU centralizes Û . First n > 2 as there

ŻgU
∼= Z̃U by (3). Next by 12.8.10.6, ZgU = CZgU (Û) ≤ U ; so by 12.8.10.5, ZU =

V1 × Z(I2) with [L,Z(I2)] = 1. Then NG(Z(I2)) ≤ M = !M(LT ). Let J :=
〈LH1 〉 and suppose L1 < J . Now L1 ≤ CL(V1) = CL(V1Z(I2)) = CL(ZU ), so

J ≤ CH(ZU ) ≤ NH(Z(I2)) ≤ M1. If n > 3 then by 12.2.8, J ≤ O3′(H ∩M) = L1

contrary to assumption. Hence n = 3, so L1/O2(L1) ∼= Z3. Then since M is an
SQTK-group and J = 〈LH1 〉, J/O2(J) ∼= E9 and J = L1JC , where JC := O2(CJ (L̄).
As L1 = [L1, T ∩ L], L1 and JC are the only T -invariant subgroups Y1 of J with
|Y1 : O2(Y1)| = 3. Thus H is not transitive on the four subgroups Y of J with
|Y : O2(Y )| = 3, and we conclude |H : NH(L1)| = 3 and JC E H . But JC E LT ,
so H ≤ NG(JC) ≤M = !M(LT ), a contradiction. Therefore L1 = J E H . Thus

by 12.8.5.1, CŨ (L1) = 1. However by hypothesis Z̃U 6= 1, and we had seen that L1

centralizes ZU . This contradiction establishes (4).
By 12.8.9.1, I2 E G2, and a Sylow 3-subgroup of I2 is faithful on V2. Thus if

(8) fails, then CH(V2) contains Y ∼= E9 and m3(G2) ≥ m3(I2Y ) > 2, contradicting
G2 an SQTK-group. So (8) is established.

Define H2 := O3′(H ∩ G2) and observe that H2 = O3′ (CH(Ṽ2)). We see that

if m3(CḢ(V̂2)) > 1, then by (8), O3′(CH (V̂2)) < H2, so H2 does not centralize ZU
by Coprime Action. Hence ZU > V1, so Ż

g
U 6= 1 by (4) under this assumption.

Asume the hypotheses of (5). Then by 1.2.1.1, there is K ∈ C(H) with

K̇ = F ∗(Ḣ), so by 1.2.1.4, K/O2(K) ∼= A8. Then K = O3′(H) by A.3.18. Next

O3′(CḢ (V̂2)) ∼= E9/E16, so by the previous paragraph, [ZU ,K] 6= 1 and ŻgU 6= 1.

As ŻgU 6= 1, K = [K,ZgU ]; so as [ZU ,K] 6= 1, ZgU 6≤ CH(ZU ). Then 1 6= [ZU , Z
g
U ] ≤

ZU ∩ Z
g
U = Z(I2) by 12.8.10.2. Thus ZD := Z ∩ Z(I2) 6= 1 by 12.8.10.3. There-

fore n > 2 by (3), so L1 6= 1 and L1 ≤ O3′(H) = K. Thus if [ZD,K] = 1, then
LT = 〈I2, L1T 〉 centralizes ZD, so K ≤ CG(ZD) ≤M = !M(LT ). This is impossi-
ble as L1 E M1, but L1 is not normal in K as K/O2(K) ∼= A8. Thus [ZD,K] 6= 1.
As VD ∈ R2(KT ) by B.2.13, K ∈ Lf (G, T ), so (5) holds.

Assume that (7) fails; thus F ∗(Ḣ) = K̇×K̇x for x ∈ H−NH(K), Û = [Û , K̇]⊕

[Û , K̇x] with [Û , K̇] the A5-module for K̇ ∼= L2(4), and Ẋ = 〈ẋ〉(Ẋ ∩ K̇K̇x) ∼= E8.

Then O2(CḢ (V̂2)) is a Borel subgroup of E(Ḣ), and hence of 3-rank 2, so ŻgU 6= 1

by an earlier observation. On the other hand, in this case m(Ẋ) = 3 and m(Û) = 8

so that m(Ê) ≤ 4 as Ê is totally isotropic by 12.8.11.2. Therefore by 12.8.11.5,

m(Ê) = 4 and m(Ẇ g/ŻgU ) = 3, contradicting ŻgU 6= 1. So (7) is established.

Finally assume that (6) fails; that is, F ∗(Ḣ) ∼= A7 and Û the 6-dimensional

permutation module. Then Û is described in section B.3, and we adopt the notation
of that section. By 12.8.11.5:

m(Ê) = m(Û)−m(Ẋ/ŻgU )− 1 ≥ 5−m2(Ḣ) ≥ 2. (∗)

Thus Ê > V̂2 as m(V̂2) = 1, so we conclude from 12.8.11.3 that V̂2 = [Ê,X ] ≤

[V̂ ⊥2 , T ] ≤ V̂ ⊥2 ; it follows that a generator v̂ for V̂2 is not of weight 2 or 6, so that v̂
is of weight 4. Hence, in the notation of section B.3, we may choose v̂ = e1,2,3,4, so

V̂ ⊥2 = {eJ : |J | and |J ∩ {1, 2, 3, 4}| are even}.
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In particular Û+ := {0, e5,6, e5,7, e6,7} ≤ V̂ ⊥2 is T -invariant but does not contain V̂2,

so by 12.8.11.4, Û+ ∩ Ê = 1. Then by 12.8.11.1, [Û+, X ] ≤ Û+ ∩ Ê = 1.

Next O2(CḢ(V̂2))
∼= A4 × Z3, so by an earlier observation, ŻgU 6= 1. Thus

(*) implies m(Ê) ≥ 3, with equality only if m(Ẋ) = 3. By 12.8.11.2, Ê is totally

isotropic so that m(Ê) ≤ 3 = m(Ẋ). However we showed in the previous paragraph

that Ẋ ≤ CṪ (Û+), which is a contradiction as CṪ (Û+) ∼= D8.
This completes the proof of 12.8.13. ¤

12.9. The final treatment of Ln(2), n = 4,5, on the natural module

In this section we prove:

Theorem 12.9.1. Assume Hypothesis 12.2.1 with L/O2(L) ∼= Ln(2), n = 4 or
5. Then n = 4, and G is isomorphic to L5(2) or M24.

We recall that the QTKE-groups G ∼= L5(2) and M24 appear as conclusions in
Theorem 12.2.13. In proving Theorem 12.9.1 we verify that Hypothesis 12.8.1 holds
and apply Theorem 12.2.13 to establish 12.8.3.4. Two groups appear as shadows:
The sporadic group Co3 has a 2-local L ∈ L∗f (G, T ) with L

∼= L4(2)/E24 ; but Co3
is neither quasithin nor of even characteristic, in view of the involution centralizer
Sp6(2)/Z2, and is essentially eliminated in 12.9.3 below. Similarly the sporadic
Thompson group F3 contains L ∈ L∗f (G, T ) with L ∼= L5(2)/E25 , but F3 is not

quasithin in view of the involution centralizer A9/2
1+8, and is eliminated in 12.9.4.

Furthermore in many groups of large rank there is L ∈ Lf (G, T ) which is not
maximal, but satisfies the rest of the hypothesis of Theorem 12.9.1: namely in many
groups of Lie type over F2, as well as in the sporadic groups F3, the Baby Monster,
and the Monster. In addition the Conway group Co2 has a 2-local L not containing
a Sylow group with structure L4(2)/(E24 × 21+6). These groups are of course not
quasithin, and the configurations are also eliminated in 12.9.3 and 12.9.4.

The proof of Theorem 12.9.1 involves a series of reductions. Assume G, L afford
a counterexample to Theorem 12.9.1, and choose the counterexample so that n = 5
if that choice is possible. Neither A9 nor the groups appearing in conclusions (1)
and (2) of Theorem 12.2.2 contain L ∈ L∗f (G, T ) with L/O2(L) ∼= Ln(2) for n = 4
or 5. Thus Hypothesis 12.2.3 is satisfied, we can pick V as in Theorem 12.2.2.3, and
NG(L) =: M ∈ M(T ). Then Theorems 12.5.1 and 12.6.34 eliminate cases (c) and
(d) of Theorem 12.2.2.3, so we conclude that V is the natural module for L/O2(L).
As G, L affords a counterexample to Theorem 12.9.1, G is neither L5(2) nor M24.
Also G is not L6(2) as G is quasithin, and G is not A9 as we observed earlier. Thus
Hypothesis 12.8.1 is satisfied, so we can appeal to the results of section 12.8, and
adopt the conventions of Notation 12.8.2 of that section. Recall that G1 6≤ M by
12.8.3.4, so that G1 ∈ Hz.

Lemma 12.9.2. If n = 4, then there is no K ∈ L∗f (G, T ) with K/O2(K) ∼=
L5(2), M24, or J4.

Proof. Assume such a K exists. By Remark 12.2.4, Hypothesis 12.2.1 is
satisfied with K in the role of “L” and conclusion (3) of Theorem 12.2.2 holds, so
K/O2(K) ∼= L5(2). This is a contradiction as n = 4 by hypothesis, contrary to our
choice of n = 5 if such a choice is possible. ¤
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Lemma 12.9.3. Let 1 ≤ i < 5 when n = 5,, and i = 1 or 3 when n = 4. Then
Li ≤ Ki ∈ C(NG(Vi)) with Ki E NG(Vi), and one of the following holds:

(1) Li = Ki.
(2) i = 1, and K1/O2(K1) ∼= L5(2), M24, or J4.

(3) i = 1, n = 4, and Ki/O2(Ki) ∼= L4(2), A7, Â7, M23, HS, He, Ru, or
SL2(7)/E49.

Proof. The proof is of course similar to that of 12.5.3: First Li ∈ L(G, T ), so
the existence and normality of Ki follow from 1.2.4. If Ki > Li, the possibilities
for Ki/O2(Ki) are given by the sublist of A.3.12 for Li/O2(Li) ∼= Lk(2) for a
suitable choice of k := 3 or 4. When k = 4 we obtain the groups in conclusion (2).
When k = 3 we obtain the groups in conclusions (2) and (3), along with L2(49)
and (S)Lε3(7)—but these last cases are out, since there T acts nontrivially on the
Dynkin diagram of L1/O2(L1), which is not the case by 12.8.3.1.

Thus when i = 1 the lemma is established, so we may assume i > 1 and
Li < Ki, and it remains to derive a contradiction. Set K∗1T

∗ := K1T/O2(K1T ).
Assume first that i = 3 or 4. Then Li/CLi(Vi) = GL(Vi), so Ki = LiCKi(Vi).

Hence Ki = Li if Ki/O2(Ki) is quasisimple, contrary to our assumption, so that
Ki/O2(Ki) is not quasisimple. Then from the first paragraph, Ki/O2(Ki) ∼=
SL2(7)/E49, Ki = XLi, where X := Ξ7(Ki), and i = 3 since L4/O2(L4) ∼= L4(2)
is not involved in Ki. We argue much as in the proof of 12.5.3: Set K1,3 :=
O2(CK3(V1)). Then K1,3T/O2(K1,3T ) ∼= SL2(3)/E49, since X ≤ CK3(V3) ≤

CG(V1). Further K1,3 = Y X where Y := O3′(NL1∩L3(V1)) ≤ K1, so that K1,3 =
〈Y X〉 ≤ K1 since K1 E NG(V1). Now K∗1,3T

∗ is a subgroup of K∗1T
∗ contain-

ing T ∗. But from the structure of the overgroups of T ∗ in the groups listed
in (2) and (3), no subgroup of these groups containing a Sylow 2-subgroup has
a GL2(3)/E49-section, except when K∗1 is also SL2(7)/E49. In this last case,

X = O7′(K1,3) = Ξ7(K1) is normal in K3 and K1, so that L = 〈L1, L3〉 ≤ NG(X).
Hence X ≤ NG(X) ≤ M = !M(LT ), so that X = [X,L3] ≤ L, contrary to
m7(L) = 1. This contradiction completes the proof that Ki = Li if i = 3 or 4.

Finally take i = 2. Thus n = 5 by our choice of i in the hypothesis, so
L2/O2(L2) ∼= L3(2), and L2 ≤ L1 with L1/O2(L1) ∼= L4(2). In particularm3(L1) =

2, and L1 = O3′ (NG(L1)) by A.3.18. We conclude G2 6≤ NG(L1), since G2 contains
a subgroup X of order 3 faithful on V2, whereas if G2 ≤ NG(L1), then X ≤

O3′(NG(L1)) = L1 ≤ G1. Similarly when L1 < K1 we conclude that G2 6≤ NG(K1).
We now claim

L2T < K2T < K1T and K2T 6= L1T.

First as dim(V2) = 2, K2 = K∞2 ≤ CG(V2) ≤ CG(V1). Then as L2 < L1 ≤
K1 E NG(V1), K2 = [K2, L2] ≤ K1. As G2 does not act on L1 or K1, K2 < K1

and K2 6= L1. Finally by assumption, L2 < K2, so the claim holds.
Now if L1 = K1, then L2T is maximal in L1T = K1T , contrary to L2T <

K2T < K1T . Thus L1 < K1, so that K∗1 is in the list of (2). Observe in each
of those three groups that L∗1T

∗ is determined (up to outer automorphism when
K∗1 is L5(2)) as the unique overgroup of T ∗ in K∗1 with L∗1T

∗/O2(L
∗
1T
∗) ∼= L4(2).

Suppose first that K∗1
∼=M24. Then from the list of overgroups of T ∗, L∗2 is normal

in each overgroup of L∗2T
∗ other than L∗1T

∗, contradicting L2T < K2T < K1T
with L2 not normal in K2T 6= L1T . Therefore K∗1

∼= L5(2) or J4, and a similar
argument shows that K2/O2(K2) is isomorphic to L4(2) in the former case, and
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M24 in the latter. Now we can repeat our argument in the first paragraph of the
proof for the case i = 2: In each case K2 = O3′ (NG(K2)) by A.3.18. Also we saw
K2 ≤ CG(V2), while G2 contains a subgroup X of order 3 fixed-point-free on V2,

so X ≤ O3′(NG(K2)) = K2 ≤ G1, a contradiction. This completes the proof of
12.9.3. ¤

For the remainder of the section, let K1 be defined as in 12.9.3.

Lemma 12.9.4. 〈V G1〉 is abelian.

Proof. Assume otherwise; then we have the hypotheses of the latter part of
section 12.8, so we can appeal to the results there. Adopt the notation of the
second subsection of section 12.8; in particular take H := G1, U := UH = 〈V H〉,
and H∗ := H/CH(Ũ).

As n ≥ 4, we conclude from 12.8.8.5 that L1 is not normal in H , so that
L1 < K1 and in particular K1 6≤ M . Hence K1/O2(K1) is described in (2) or (3)

of 12.9.3. By 12.8.12.4, Ḣ and its action on Û are described in Theorem G.11.2.
As [V̂ , L1] 6= 1, L̇1 6= 1, so K̇1 is a nontrivial normal subgroup of Ḣ, and is also a
quotient of K∗1 .

If K∗1
∼= SL2(7)/E49 then either K̇1 = L̇1

∼= L3(2) or K̇1
∼= K∗1 . However by

inspection of the list in Theorem G.11.2, Ḣ has no such normal subgroup. Thus
one of the remaining cases holds, where K∗1 is quasisimple, and hence K̇1/Z(K̇1) ∼=
K∗1/Z(K

∗
1 ). Comparing the list in (2) and (3) of 12.9.3 to the normal subgroups of

groups listed in Theorem G.11.2, we conclude n = 4 and one of conclusions (4), (5),

or (8) of Theorem G.11.2 holds. Conclusion (8) does not occur, as there Ḣ ∼= S7,

so that there is no Ṫ -invariant subgroup L̇1 with L̇1/O2(L̇1) ∼= L3(2). Conclusion
(4) does not hold by 12.8.13.6.

Thus conclusion (5) of Theorem G.11.2 holds; that is Û is the 6-dimensional

natural module for K̇1 = F ∗(Ḣ) ∼= A8. Let D := ZgU , ZD := Z ∩ Z(I2), and

VD = 〈ZK1

D 〉. By 12.8.13.5, K1 ∈ Lf (G, T ), K1 acts nontrivially on the submodule
VD of ZU ∈ R2(KT ), and K1 = [K1, D].

As K1 ∈ Lf (G, T ), K1 ≤ K ∈ L∗f (G, T ) by 1.2.9.2. Then either K1 = K, or

K/O2(K) ∼= L5(2), M24, or J4 by A.3.12. Thus K1 = K ∈ L∗f (G, T ) by 12.9.2.

As F ∗(Ḣ) ∼= A8, Ḣ ∼= A8 or S8, so as T normalizes L1 with L1/O2(L1) ∼= L3(2),

we conclude Ḣ ∼= A8. Thus L̇1 is a maximal parabolic of Ḣ corresponding to an
end node. Next set L0 := O2(CL(V2)) = O2(CL1(V2). Then L∗0T

∗ is the minimal

parabolic of L∗1 centralizing Ṽ2. As V̂2 is a singular 1-space in the orthogonal space

Û , L̇0Ṫ is one of the two permuting minimal parabolics in the maximal parabolic

Ṗ0 := CḢ (V̂2) corresponding to the middle node of the Dynkin diagram for Ḣ ; in

particular P0 normalizesL0. Similarly L̇1 is the maximal parabolic of Ḣ normalizing

the totally singular 3-subspace V̂ of Û , and so corresponds to an end node of the
diagram for Ḣ , with L̇0 = Ṗ0 ∩ L̇1. Finally L̄0T̄ is the minimal parabolic of L̄
centralizing V2, with Ī2T̄ the other minimal parabolic in the maximal parabolic
NL̄(V2) for the middle node, so that I2 normalizes L0.

By 12.8.13.2, D ≤ CT (V ) = O2(LT ), and hence Ḋ ≤ O2(L̇1Ṫ ). By 12.8.12.2,

Ḋ E Ḣ2 := H ∩G2, so as L0T ≤ H2, Ḋ E L̇0Ṫ . By 12.8.10.4, [V̂ ⊥2 , D] = [Ŵ ,D] ≤

V̂2, so Ḋ ≤ O2(Ṗ0). Therefore

1 6= Ḋ ≤ Ḋ0 := O2(L̇1Ṫ ) ∩O2(Ṗ0) ∼= E4.
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Then as L̇0 is irreducible on Ḋ0, and 1 6= Ḋ E L̇0Ṫ , we conclude Ḋ = Ḋ0
∼= E4.

Next by 12.8.10.6, CD(Û) = (D ∩ ZU )V
g
1 , so using symmetry between U and

Ug,

2 = m(Ḋ) = m(D/CD(Û)) = m(D/(D ∩ ZU )V
g
1 ) = m(ZU/(D ∩ ZU )V1). (∗)

Recall g ∈ I2 ≤ NG(L0). Further Ḋ centralizes (D ∩ ZU )V1; but Ḋ 6= 1 does
not centralize ZU since K1 = [K1, D] and K1 is nontrivial on ZU . Therefore as

L̇0 is irreducible on Ḋ, and hence on its g−1-conjugate ZU/(D ∩ ZU )V1, while L̇0

normalizes CZU (Ḋ), we conclude from (*) that CZU (Ḋ) = (D ∩ ZU )V1 is of index
4 in ZU . Recall K1 ∈ L∗f (G, T ), and VD ∈ R2(K1T ). By Theorem 12.6.34, each

ID ∈ Irr+(K1, VD) is a natural 4-dimensional module for K∗1 . As L0 is irreducible

on ZU/CZU (Ḋ), m(ID/CID (D)) = 2, so ZU = CZU (D)ID and CID (D) = [ID , D] =:
DI is of order 4. As ZU ≤ CG(V

g
1 ) ≤ NG(D), DI ≤ D. Further asK1 = [K1, D],K1

centralizes ZU/ID, so ID = [ZU ,K1]. Therefore [V2, O
2(P0)] ≤ [V2ZU , O

2(P0)] =
V2ID , so P0 acts on CV2ID (L0) = V2CID (L0). Therefore if CID (L0) = 1, then P0
acts on V2, contrary to 12.8.13.8.

Thus CID (L0) 6= 1, so since AutL0(ID) is a minimal parabolic of GL(ID) and L̇0

normalizes Ḋ, CID (L0) = DI , and so P0 acts on V2DI and onDI . Finally I2 acts on
V2 and centralizes DI by 12.8.10.2, as DI ≤ ZU ∩Z

g
U , so Y := 〈P0, I2〉 acts on V2DI

and DI . Then AutI2T (V2DI) and AutP0(V2DI) are the two minimal parabolics
of GL(V2DI) ∼= L4(2) stabilizing the 2-subspace DI ; in particular, I2CY (V2DI) is
normal in Y . But now as I2 centralizesDI , P0 normalizes [V2DI , I2CY (V2DI)] = V2,
a case we eliminated in the previous paragraph. This contradiction completes the
proof of 12.9.4. ¤

By 12.9.4, 〈V G1〉 is abelian, and hence (cf. 12.8.6) so is UH = 〈V H〉 for each
H ∈ Hz.

Lemma 12.9.5. (1) CG1(K1/O2(K1)) ≤M , so K1T ∈ Hz.
(2) K1/O2(K1) ∼= A7, L4(2), or L5(2).
(3) If n = 4 and K1/O2(K1) ∼= L5(2), then L1O2(K1)/O2(K1) is the centralizer

of a transvection in K1/O2(K1).

Proof. Observe first that Out(K1/O2(K1)) is a 2-group for each possibility
in 12.9.3, including K1 = L1, so that G1 = K1TCG1(K1/O2(K1)).

We will combine the proofs of the three parts of the lemma, but in proving (2)
we will assume that (1) has already been proved. Thus when proving (2), L1 < K1

since G1 6≤M , so that K1 is described in 12.9.3. We consider three cases:

Case I. If (1) fails, pick H1 ∈ H∗(T,M) with O2(H1) ≤ CG1(K1/O2(K1)), and
let H := H1L1.

Case II. If (2) fails, then L1 < K1 but K1/O2(K1) is not A7, L4(2), or L5(2),
and we let H := K1T .

Case III. If (3) fails, then L1O2(K1)/O2(K1) is a parabolic determined by an
end node and the adjacent node in the Dynkin diagram for L5(2), and we pick
H1 ∈ H∗(T,M) to be the minimal parabolic of K1 determined by the remaining
end node, and let H := H1L1.

In each case H ∈ Hz. As 12.9.4 provides condition (2) of 12.8.6, the latter
result says that H satisfies Hypotheses F.8.1 and F.9.8 with V in the role of “V+”.
Thus we may apply the results in sections F.8 and F.9. In particular we adopt the
notation of sections F.7 and F.8 (or F.9) for the amalgam generated by H and LT .
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Suppose first that we are in Case II. Then by the choice made in the first
paragraph of the proof, K∗1 is one of the groups listed in 12.9.3 other than A7,
L4(2) or L5(2), and H = K1T . Then unless K∗1

∼= SL2(7)/E49, K1/O2(K1) is
quasisimple, so the hypotheses of F.9.18 are satisfied. But then F.9.18.4 supplies
a contradiction, as none of the groups other than A7, L4(2), and L5(2) appear in
both F.9.18.4 and 12.9.3. Thus we have reduced to K∗

1
∼= SL2(7)/E49. This case is

impossible, since by F.9.16.3, q(H∗, ŨH) ≤ 2, contrary to D.2.17 applied to K∗
1T

∗

in the role of “G”.
Thus Case I or III holds, and in either case, H = H1L1 with [L1, O

2(H1)] ≤
O2(L1), so CH (L1/O2(L1)) ≤ H1. As H1 ∈ H∗(T,M), 3.3.2 says H1 is a minimal
parabolic in the sense of Definition B.6.1. By F.8.5, the parameter b is odd and
b ≥ 3. Then by F.7.3.2, there is g ∈ 〈LT,H〉 = G0 mapping the edge γb−1, γ to
γ0, γ1, and h ∈ H with γ2h = γ0. Set β := γ1g, δ := γh, and let α ∈ {β, δ}; then
Uα ≤ O2(Gγ0,γ1) by F.8.7.2. Therefore as L1 E H ≥ Gγ0,γ1 , [L1, Uα] ≤ O2(L1),
and hence Uα ≤ CH(L1/O2(L1)) ≤ H1. Further as H1 is a minimal parabolic,

for each nontrivial H1-chief factor E1 on Ũ , m(Uα/CUα(E1)) ≤ m(E1/CE1(Uα))

by B.6.9.1. However by 12.8.5.1, each H-chief section E on Ũ is the sum of n − 1
chief sections under H1, so that (n− 1)m(Uα/CUα(E)) ≤ m(E/CE(Uα)). Hence as
n ≥ 4, if U∗α 6= 1 then

2m(U∗α) < (n− 1)m(U∗α) ≤ m(Ũ/CŨ (U
∗
α)). (∗)

Now take α = β. Then Uα = Ug and U = Ugγ , so (*) shows that UH does not
induce transvections on Uγ . Therefore by F.9.16.1, Dγ < Uγ , so by F.9.16.4, we

may choose γ so that U∗γ ∈ Q(H
∗, ŨH). Then taking α = δ, we have a contradiction

to (*), completing the proof of (1) and (3), and hence of 12.9.5. ¤

Lemma 12.9.6. (1) [V2, O2(K1)] 6= 1.
(2) I2 := 〈O2(G1)

G2〉 E G2, I2/O2(I2) ∼= S3, O2(I2) = CI2(V2), and I2T is a
minimal parabolic of LT .

(3) m3(CG(V2)) ≤ 1.

Proof. By 12.9.5.2, K1/O2(K1) ∼= A7, L4(2) or L5(2); and by 12.9.5.1, H :=
K1T ∈ Hz. Let Q := O2(LT ), Q1 := O2(K1), and H

∗ := H/Q1.
Assume that Q1 centralizes V2. Then Q1 centralizes 〈V H2 〉, and by 12.8.8.6,

UH = 〈V H2 〉, so that Q1 centralizes UH . Thus as K1/O2(K1) is simple, UH ∈
R2(K1Q). Next as Q1 centralizes V , Q1 ≤ Q < R1, with R1/Q the natural module
for L1/R1

∼= Ln−1(2). As H 6≤ M ≥ NG(Q), Q1 < Q, so Q∗ 6= 1. Therefore
1 6= Q∗ < R∗1 = O2(L

∗
1). As O2(L

∗
1) 6= 1, K∗1 is not A7, so that K∗1

∼= L4(2) or
L5(2). As 1 6= Q∗ < O2(L

∗
1), the parabolic L

∗
1T
∗ ofK∗1 is not irreducible on O2(L

∗
1),

so we conclude that n = 4 and K∗1
∼= L5(2). Then using 12.9.5.3, R∗1

∼= 21+6 and
Q∗ = O2(P

∗) ∼= E16 for some end-node maximal parabolic P ∗ of K∗1 . But then
P ≤ NG(Q) ≤M , contradicting L1 E M1. This completes the proof of (1).

Let P2 be the minimal parabolic of LT nontrivial on V2, and R := O2(G1).
Now as CG(V2) ≤ G1 and P2 induces GL(V2),

RG2 = RCG(V2)P2 = RP2 ⊆ P2,

so 〈RG2〉 = I2 ≤ P2. Further by (1), R does not centralize V2, so P2 = I2T and (2)
follows. Finally [I2, CG(V2)] ≤ CI2(V2) = O2(V2) by (2), so

2 ≥ m3(G2) = m3(I2) +m3(CG(V2)) = 1 +m3(CG(V2)),
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establishing (3). ¤

Lemma 12.9.7. Gi ≤MV for 1 < i < n.

Proof. RecallMi ≤MV as V is a TI-set in M by 12.2.6, so it suffices to show
Gi ≤ M . Let 1 < i < n. As GL(Vi) = AutM (Vi), Gi = MiCG(Vi), so it suffices
to show CG(Vi) ≤ M . As CG(Vi) ≤ CG(V2), it remains to show CG(V2) ≤ M .
Set (K1T )

∗ := K1T/O2(K1T ). As Out(K∗1 ) is a 2-group, G1 = DK1T , where
D := CG1(K

∗
1 ) and D ≤ M1 by 12.9.5.1. As [D,L∗1] = 1, [D, L̄1] ≤ O2(L̄1),

so D centralizes Ṽ2. Thus CG1(Ṽ2) = DCK1T (Ṽ2), so it suffices to show that

Y := CK1T (V2)T = CK1T (Ṽ2) ≤ L1T .
Now Y is an overgroup of T in K1T with I := O2(L1 ∩ G2) ≤ Y , and IT is a

parabolic of LT of Lie rank n− 3 contained in L1T . By 12.9.5.2, K∗1
∼= A7, L4(2),

or L5(2).
We assume that Y 6≤ L1T and derive a contradiction. Then IT < Y . If

K∗1
∼= L4(2) or L5(2), then Y is a parabolic in K1T of rank at least n − 2 ≥ 2,

so (Y ∩ K1)O2(Y )/O2(Y ) ∼= S3 × S3, L3(2), S3 × L3(2), or L4(2). If K∗1
∼= A7,

then examining overgroups of (T ∩K1)
∗, we conclude that (Y ∩K1)O2(Y )/O2(Y ) is

L3(2), A6, or a subgroup of index 2 in S4×S3. However by 12.9.6.3, m3(Y ) ≤ 1, so
(Y ∩K1)O2(Y )/O2(Y ) ∼= L3(2). Then as Y has Lie rank at least n−2, we conclude
that n = 4, so that L1/O2(L1) ∼= L3(2) and IT/O2(IT ) ∼= S3. As T induces inner
automorphisms on L1/O2(L1), T

∗ ≤ K∗1 , so Y
∗ ≤ K∗1 and Y/O2(Y ) ∼= L3(2).

Set H := 〈Y, L1〉, so that H ∈ Hz. Now Y and L1T are of Lie rank 2 and
intersect in IT of Lie rank 1, so we conclude from the lattice of overgroups of T
in K1T that H/O2(H) is A7 or L4(2). In either case as L∗1 does not centralize Ṽ2,

CH(Ṽ2) = Y ; so as Y/O2(Y ) ∼= L3(2), we conclude from B.4.12 that ŨH = 〈Ṽ H2 〉 is
a 4-dimensional module for H/O2(H) = A7 or L4(2). Thus O

2(Y ) is irreducible on

UH/V2, so UH = 〈V O
2(Y )〉. Define I2 as in 12.9.6.2. By that result, I2 normalizes

V , I2 / G2, and I2/O2(I2) ∼= S3; therefore as Y ≤ G2 with Y/O2(Y ) ∼= L3(2),
O2(Y ) centralizes I2/O2(I2), and hence I2 normalizes O2(O2(Y )O2(I)) = O2(Y ).

Hence I2 acts on 〈V O
2(Y )〉 = UH . But then LT = 〈I2, L1〉 ≤ NG(UH), so that

NG(UH) ≤ M = !M(LT ), contrary to H 6≤ M . This contradiction completes the
proof of 12.9.7. ¤

Lemma 12.9.8. (1) m(V ∩ V g) ≤ 1 for g ∈ G−M .
(2) If V ∩ V g 6= 1, then [V, V g] = 1.

Proof. We may assume V ∩ V g < V as NG(V ) ≤ M . Then if V ∩ V g 6= 1,
by 12.8.3.2 we may assume V ∩ V g = Vi for some 1 ≤ i < n, and take g ∈ Gi by
12.8.3.3. If i > 1, we have Gi ≤ M by 12.9.7, proving (1). Part (2) follows from
12.9.4 and 12.8.6. ¤

Lemma 12.9.9. (1) W0 :=W0(T, V ) centralizes V , so NG(W0) ≤M .
(2) If A := V g ∩M is a hyperplane of V g contained in T , then CA(V ) = 1.

Proof. Suppose A := V g ∩M ≤ T with [A, V ] 6= 1 and m(V g/A) ≤ 1. Let
I := NV (A). By 12.9.8.2, A ∩ V = 1, so [A, I ] ≤ A ∩ V = 1 and hence I < V .
By 12.9.7, for each noncyclic subgroup B of A, CV (B) ≤ NV (V

g) ≤ NV (A) = I =
CV (A) ≤ CV (B), so CV (B) = I . Thus m(CA(W )) ≤ 1 for each A-submodule W
of V not contained in I ; in particular as I < V , m(CA(V )) ≤ 1.
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Assume CA(V ) 6= 1. Conjugating in NG(V
g), we may assume that CA(V ) =

V g1 . Thus V ≤ Gg1 ≤ NG(U
g), where U := 〈V G1〉. Hence [V,A] ≤ U g ≤ CG(V

g) as
U is abelian by 12.9.4.

We now prove (2), so we may assume A < V g. Then [V,A] is cyclic: for
otherwise V g ≤ CG([V,A]) ≤ NG(V ) ≤ M by 12.9.7, contrary to A < V g . As
[V,A] is cyclic, A induces a group of transvections on V with center [V,A]; so as
CV (B) = I = CV (A) for each noncyclic subgroup B of A, |Ā| = 2. But now CA(V )
is noncyclic, contrary to paragraph one. This completes the proof of (2).

If W0 ≤ CT (V ) then NG(W0) ≤M by E.3.34.2. Thus we may assume A = V g,
and it remains to derive a contradiction. Suppose first that A acts nontrivially on
Vn−1. Then Vn−1 6≤ CV (A) = I and hence m(CA(Vn−1)) ≤ 1 by paragraph one.
Let M∗

n−1 :=Mn−1/CM (Vn−1)), and observe M∗
n−1

∼= Ln−1(2). Then

m2(M
∗
n−1) ≥ m(A∗) ≥ n− 1,

so we conclude n = 5 and A∗ = J(T ∗). But now CV4(A) = V2 < CV4 (B) for B a
4-subgroup of A with B∗ inducing transvections on V4 with a fixed axis, contrary
to an observation in the first paragraph.

Therefore A centralizes Vn−1, so A ≤ Rn−1. Then as m(CA(V )) ≤ 1,

m(Ā) ≥ m(A)− 1 = n− 1 = m(R̄n−1),

so that ACT (V ) = Rn−1. Thus L1 = [L1, A] and A1 := CA(V ) is of order 2, so by
paragraph two we may assume A1 = V g1 , V ≤ NG(U

g), and Vn−1 = [A, V ] ≤ U g.
Let Q := O2(G1). For y ∈ Q, [U, y] ≤ V1 by 12.8.4.2, so m(U/CU (y)) ≤ 1 and
hence as n ≥ 4, CVn−1(y

g) is noncyclic. Thus yg ∈ CG(CVn−1(y
g)) ≤ NG(V ) by

12.9.7, so [Qg, V ] ≤ Qg ∩ V = Vn−1 ≤ Ug. If [Kg
1 , V ] ≤ O2(K

g
1 ), then V ≤ NG(A)

by 12.9.5.1, contrary to I < V . Thus Kg
1 = [Kg

1 , V ], so Kg
1 centralizes Qg/Ug.

Then [K1, Q] ≤ U ≤ CQ(U) as U is abelian by 12.9.4. Therefore [K1, O2(K1)] ≤
CG(U) ≤ CG(V ).

Let P := O2(K1T ) and choose X of order 7 or 5 in L1 for n = 4 or 5, re-

spectively. Recall K1T ∈ Hz by 12.9.5.1, so that [Ṽ , P ] = 1 by 12.8.4.2. Further
V = V1 × [V,X ], and by Coprime Action, P = CP (X)[P,X ] = CP (X)[P,K1] =
CP (X)[O2(K1),K1]. Now P acts on V , and [O2(K1),K1] centralizes V by the pre-
vious paragraph; then CP (X) acts on [V,X ], and hence P acts on [V,X ]. Therefore
as X is irreducible on [V,X ] and normalizes P , P centralizes [V,X ], so as P ≤ G1,
P centralizes V . As O2(K1) ≤ P and V2 ≤ V , this is contrary to 12.9.6.1, so the
proof of 12.9.9 is complete. ¤

We are now in a position to complete the proof of Theorem 12.9.1.
By 12.9.5.2, K∗1

∼= A7, L4(2), or L5(2). In particular, there is an overgroup H
of T in K1T not contained in M with H/O2(H) ∼= S3. By 12.9.9.1, NG(W0) ≤M ,
so by E.3.15, W0 6≤ O2(H). Thus there is A := V g ≤ T with A 6≤ O2(H). If
V1 ≤ A, then by 12.8.3.3 and 12.9.4, A ∈ V G1 ∩H ⊆ O2(H), contrary to our choice
of A. Thus V1 ∩ A = 1.

Now H /∈ Hz since H does not contain L1, but we define some notation similar
to that in Notation 12.8.2: Let UH := 〈V H2 〉 and QH := O2(H). Then UH ≤ 〈V G1〉,
so UH is abelian by 12.9.4. Indeed Hypothesis G.2.1 is satisfied with H , V2, 1 in
the roles of “G, V , L”, so by G.2.2.1, ŨH ∈ Z(Q̃H). By 12.9.7, V2 < UH . As
H/QH ∼= S3 and A 6≤ QH , B := A ∩QH is of index 2 in A. Then [UH , B] ≤ V1, so
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for u ∈ UH , m(B/CB(u)) ≤ m(V1) = 1, so CB(u) is noncyclic, and hence by 12.9.7,
u ∈ NG(A). Thus UH ≤ NG(A), and so [UH , B] ≤ A ∩ V1 = 1.

As O2(H) ≤ 〈AH 〉 and V2 < UH , there is h ∈ H such that Ah does not act on
V2. But again using 12.9.7,

D := Bh ≤ CG(UH) ≤ CG(V2) ≤ NG(V ).

If [D,V ] = 1, then V ≤ CG(D) ≤ NG(A
h) by 12.9.7, so Ah ≤ CG(V ) ≤ CG(V2)

by 12.9.9.1, contrary to our choice of h. Thus D̄ 6= 1, so D = V gh ∩M by 12.9.9.2
However

1 6= [UH , A
h] ≤ UH ∩A

h ≤ CD(V ),

since UH is abelian. As D is a hyperplane of Ah with D = V gh ∩ M , 12.9.9.2
supplies a contradiction.

This final contradiction completes the proof of Theorem 12.9.1.



CHAPTER 13

Mid-size groups over F2

In this chapter we consider the cases remaining in the Fundamental Setup
(3.2.1) after the work of the previous chapter. We make more use of the generic
methods for the F2 case, such as results from sections F.7, F.8, and F.9.

In Hypothesis 13.1.1, we essentially extend Hypothesis 12.2.3 which began the
previous chapter, by adding the assumption that G is not one of the groups which
arose in the course of that chapter. Then after some reductions in the initial sections
13.1 and 13.2, in the remainder of the chapter we assume an additional refinement
in Hypothesis 13.3.1.

In particular in 13.1.2.3, we observe that the remaining possibilities for the
section L/O2(L), with L ∈ L∗f (G, T ) in the FSU, are A5, L3(2), A6, Â6, and

U3(3) ∼= G2(2)
′. The main goal of the chapter is to treat the latter three groups,

thus reducing the FSU to the case where L/O2(L) is L3(2) or A5.
In the natural logical sequence, the smallest simple group A5 is treated last;

thus at that point, all other groups are eliminated, so that K/O2(K) ∼= A5 for all
K ∈ L∗f (G, T ). However, to avoid repeating arguments common to both A5 and
A6, we prove such results simultaneously for both in sections 13.5 and 13.6. To do
so, we assume in part (4) of Hypothesis 13.3.1 (and similarly in the hypothesis of
13.2.7) thatK/O2(K) ∼= A5 for allK ∈ L∗f (G, T ), when the subgroup L ∈ L∗f (G, T )
we’ve chosen satisfies L/O2(L) ∼= A5. That is, we don’t make this choice until we
are forced to do so, after the treatment of the other groups.

13.1. Eliminating L ∈ L∗f (G,T) with L/O2(L) not quasisimple

We now state the initial hypothesis for the chapter, which excludes the groups
in the Main Theorem that have arisen so far under the FSU. Namely throughout
this section, we assume:

Hypothesis 13.1.1. (1) G is a simple QTKE-group and T ∈ Syl2(G).
(2) G is not a group of Lie type of Lie rank 2 over F2n , n > 1.
(3) G is not L4(2), L5(2), A9, M22, M23, M24, He, or J4.

As usual let Z := Ω1(Z(T )).
As mentioned earlier, Hypothesis 13.1.1 essentially contains Hypothesis 12.2.3,

aside from the assumption in Hypothesis 12.2.1 that there is some L ∈ L∗f (G, T )
with L/O2(L) quasisimple. In Theorem 13.1.7, we show for each K ∈ L∗f (G, T )
that K/O2(K) is quasisimple.

We record some elementary consequences of Hypothesis 13.1.1.

Lemma 13.1.2. Assume there is L ∈ L∗f (G, T ) with L/O2(L) quasisimple and

set M := NG(L). Then L is T -invariant, there exists a T -invariant member V of
Irr+(L,R2(LT )), and:

865
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(1) Hypothesis 12.2.3 holds.
(2) CG(v) 6≤M for some v ∈ V #.

(3) L/O2(L) ∼= A5, A6, Â6, L3(2), or G2(2)
′.

(4) If L/O2(L) ∼= Â6, then V/CV (L) is the natural module for A6.
(5) If L1 ∈ L(G, T ) and L1 ≤ L, then L1 = L ∈ L∗(G, T ).

Proof. As L ∈ L∗f (G, T ) with L/O2(L) quasisimple, part (1) of Hypothesis
13.1.1 implies that Hypothesis 12.2.1 holds, allowing us to apply Theorem 12.2.2.
Parts (2) and (3) of Hypothesis 13.1.1 exclude the groups in conclusions (1) and (2)
of Theorem 12.2.2, so that conclusion (3) of that result holds. Hence T normalizes L
and Hypothesis 12.2.3 holds, establishing (1). Part (3) of Hypothesis 13.1.1 excludes
the groups in conclusions (2)–(4) of Theorem 12.2.13, as well as the groups in the
conclusions of Theorems 12.3.1, 12.7.1, and 12.9.1. Hence those results eliminate
the corresponding cases from conclusion (3) in Theorem 12.2.2 and so establish
(2)–(4). Finally as the groups in (3) are of Lie type and either of Lie rank 2 over
F2, or A5 of Lie rank 1, each proper T -invariant subgroup of L is solvable. Then
(5) follows from 1.2.4. ¤

Define

L+(G, T ) := {L ∈ Lf (G, T ) : L/O2(L) is not quasisimple },

and suppose for the moment that L+(G, T ) is empty. If K ∈ Lf (G, T ) then by
1.2.9, K ≤ L ∈ L∗f (G, T ). As L+(G, T ) = ∅, L/O2(L) is quasisimple, so K = L ∈
L∗f (G, T ) by 13.1.2.5. That is, once we show that L+(G, T ) is empty, we will be

able to conclude that Lf (G, T ) = L∗f (G, T ).

Remark 13.1.3. Recall that non-quasisimple C-components are allowed by the
general quasithin hypothesis: they appear as cases (3) and (4) of A.3.6, and cases
(c) and (d) of 1.2.1.4. On the other hand, they do not actually arise in Lf (G, T ) in
any of the groups in our Main Theorem. Thus after Theorem 13.1.7, we will finally
be rid of this nuisance. In particular, if L∗f (G, T ) is nonempty, then by 3.2.3 there
will exist tuples in the Fundamental Setup. Furthermore, as we just observed, we
will also have Lf (G, T ) = L∗f (G, T ).

If L ∈ L+(G, T ) then L appears in case (c) or (d) of 1.2.1.4, so mp(L) = 2 for
some odd prime p dividing the order of O2,F (L), and T ≤ NG(L) by 1.2.1.3. Also
in the notation of chapter 1, 1 6= Ξp(L) ∈ Ξ(G, T ) by 1.3.3.

Recall the basic facts about Ξ(G, T ) from that chapter. Recall also from Defi-
nition 3.2.12 that Ξ−(G, T ) consists of those X ∈ Ξ(G, T ) such that either X is a
{2, 3}-group, or X/O2(X) is a 5-group and AutG(X/O2(X)) is a 2-group. Further
Ξ+(G, T ) is defined to be Ξ(G, T )− Ξ−(G, T ). Set

Ξ∗+(G, T ) := Ξ+(G, T ) ∩ Ξ∗(G, T ).

We will make repeated use of results from section A.4 such as A.4.11.

We next collect some useful properties of the members L of L+(G, T ). Although
the proof of the next lemma contains an appeal to 13.1.2.3, we could in fact have
stated and proved 13.1.4 much earlier, after chapter 11. On the other hand, many
arguments from now on (eg. the proof of 13.1.9.1) make strong use of 13.1.2.5—
which does depend on work done in chapters after chapter 11.
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Lemma 13.1.4. Assume L ∈ L+(G, T ). Then

(1) Either

(i) L ∈ L∗(G, T ), or
(ii) L/O2,F (L) ∼= SL2(5), and L+ ∈ L+(G, T ) for each L+ ∈ L(G, T ) with

L < L+.

(2) There is Mc ∈ M(T ) with Mc = !M(LT ). If L ∈ L∗(G, T ), then Mc =
NG(L).

(3) For some prime p > 3, X := Ξp(L) 6= 1, and for each such X, X ∈ Ξ(G, T )
and either

(i) X/O2(X) ∼= Ep2 and L/X ∼= SL2(p), or
(ii) L/O2,F (L) ∼= SL2(5).

(4) X ∈ Ξ∗+(G, T ), and Mc = !M(XT ) = NG(X).
(5) CL(R2(Mc)) = O∞(L). In particular, X centralizes R2(Mc).
(6) Mc = !M(CG(Z)).

Proof. Assume L ≤ L+ ∈ L(G, T ). As L ∈ L+(G, T ), L ∈ Lf (G, T ), so
L+ ∈ Lf (G, T ) by 1.2.9.1. Recall T acts on L, so T acts on L+ by 1.2.4.

As L ∈ L+(G, T ), X := Ξp(L) 6= 1 for some prime p > 3 by 1.2.1.4, and
X ∈ Ξ(G, T ) by 1.3.3. Indeed (3) holds by 1.2.1.4.

Suppose that X is not normal in L+. Then by 1.3.4, L+ appears on the list
of 1.3.4; in particular L+/O2(L+) is quasisimple in each case. As T acts on L+,
conclusion (1) of 1.3.4 does not hold, and as p > 3, conclusion (4) does not hold.
Thus L+/O2(L+) ∼= (S)L3(p) or Sp4(2

n), with n even. Furthermore L+ ∈ L∗f (G, T )
using 1.3.9.1. But this is contrary to the list of possibilities in 13.1.2.3.

This contradiction shows that X E L+, so L+/O2(L+) is not quasisimple and
hence L+ ∈ L+(G, T ) by definition. Further taking L+ maximal, L+ ∈ L∗(G, T ).
Therefore X ∈ Ξ∗(G, T ) by 1.3.8. If L = L+, then (1i) holds. Otherwise by 1.2.4,
the inclusion L < L+ is described in A.3.12 (see A.3.13 for further detail in this
case); so 1 6= O∞(L) ≤ O∞(L+) and (1ii) holds. This completes the proof of (1).

As X ∈ Ξ∗(G, T ), Mc := NG(X) = !M(XT ) by 1.3.7. As p > 3 and AutL(X)
is not a 2-group, X ∈ Ξ+(G, T ); thus X ∈ Ξ∗+(G, T ), completing the proof of (4).
Further as X ≤ L, it follows that also Mc = !M(LT ). If L ∈ L∗(G, T ), then
L ∈ C(Mc) by 1.2.7.1, and then L E Mc by 1.2.1.3, completing the proof of (2).

Recall L+ ∈ L∗(G, T ), so L+ EMc by (2). As L+ ∈ Lf (G, T ), CL+(R2(Mc)) <

L+ by A.4.11. We also saw earlier that O∞(L) ≤ O∞(L+). Let Y := O2(O2,F (L+)).
Then Y centralizes R2(L+T ) by 3.2.14, and Y E Mc, so Y centralizes R2(Mc) by
A.4.11. Then as L+ E Mc and R2(Mc) is 2-reduced, O2,F (L+) ≤ CL+(R2(Mc)),
and hence O∞(L+) = O2,F,2(L+) = CL+(R2(Mc)). So as O∞(L) = O∞(L+) ∩ L,
we conclude that (5) holds.

Finally as Mc ∈ He by 1.1.4.6, Z ≤ R2(Mc) by B.2.14, so (4) and (5) imply
(6). ¤

Let L∗+(G, T ) denote the maximal members of L+(G, T ); thus L∗+(G, T ) is
nonempty whenever L+(G, T ) is nonempty. By 13.1.4.1,

L∗+(G, T ) ⊆ L
∗
f (G, T ).

Lemma 13.1.5. Assume Ξ∗+(G, T ) 6= ∅. Then

(1) There is Mc ∈ M(T ) with Mc = !M(CG(Z)).
(2) Ξ∗+(G, T ) ⊆Mc, so Mc = NG(X) = !M(XT ) for each X ∈ Ξ∗+(G, T ).
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Proof. Assume X ∈ Ξ∗+(G, T ). Then X ∈ Ξ∗(G, T ), so Mc := NG(X) =
!M(XT ) by 1.3.7. Also X ∈ Ξ+(G, T ), so by 3.2.13, X 6∈ Ξf (G, T ). Then by
A.4.11, X centralizes R2(XT ), so R2(XT ) contains Z by B.2.14; hence Mc =
!M(XT ) = !M(CG(Z)), so that (1) holds. This also establishes (2), as we may
vary X ∈ Ξ∗+(G, T ) independently of Z. ¤

Lemma 13.1.6. Assume X ∈ Ξ∗+(G, T ), let Mc ∈ M(XT ), and assume M ∈
M(T )− {Mc}. Then either

(1) There exists an odd prime d and Y = O2(Y ) E M such that Y 6≤ Mc,
[Z, Y ] 6= 1, and Y/O2(Y ) is a d-group of exponent d and class at most 2, or

(2) There exists Y ∈ C(M) with Y 6≤ Mc. For each such Y , Y/O2(Y ) is
quasisimple, Y E M , [Z, Y ] 6= 1, and Y ∈ L∗f (G, T ).

Proof. By 13.1.5, NG(X) = !M(XT ) =Mc = !M(CG(Z)).
Suppose first that there is Y ∈ C(M) with Y 6≤Mc. Then asMc = !M(CG(Z)),

[Z, Y ] 6= 1, so that Y ∈ Lf (G, T ). Let Y ≤ Y1 ∈ L
∗(G, T ); by 1.2.9.2, Y1 ∈

L∗f (G, T ). If Y1 ∈ L+(G, T ), then by (2) and (6) of 13.1.4, NG(Y1) = !M(Y1T ) =

!M(CG(Z)), contrary to our assumption that Y 6≤ Mc. Thus Y1/O2(Y1) is qua-
sisimple, so that Y = Y1 E M by 13.1.2. Therefore (2) holds in this case.

We may assume that (2) fails, so 〈C(M)〉 ≤Mc by the previous paragraph. Let
M∗ :=M/O2(M), and for d an odd prime, let θd(M) be the preimage of the group
θd(M

∗) defined in G.8.9; recall that θd(M
∗) is of class at most 2 and of exponent

d using A.1.24. Let θ(M) be the product of the groups θd(M), for d ∈ π(F (M∗)).
Suppose that θ(M) ≤Mc. Then as 〈C(M)〉 ≤Mc, θ(M)O2,E(M) =: Y ≤Mc.

with M , Mc in the roles of “H , K”, R := O2(Mc ∩M) = O2(M) and C(Mc, R) ≤
Mc ∩M . Then Mc, R, Mc ∩M satisfy Hypothesis C.2.3 in the roles of “H , R,
MH”. As X ∈ Ξ+(G, T ), X is a {2, p}-group for some prime p > 3, so X contains
no A3-blocks. Thus by C.2.6.2, X ≤Mc ∩M , contrary to M 6=Mc = !M(XT ).

This contradiction shows that θ(M) 6≤ Mc; hence there is some d with Y :=
θd(M) 6≤ CG(Z) and Y = O2(Y ) E M ; so (1) holds. ¤

We are now prepared for the main result of the section:

Theorem 13.1.7. Assume Hypothesis 13.1.1. Then L+(G, T ) = ∅.

Until the proof of Theorem 13.1.7 is complete, assume G is a counterexample.
As L+(G, T ) is nonempty, we may choose L ∈ L∗+(G, T ), so L ∈ L

∗
f (G, T ) by an

earlier remark. Set Mc := NG(L); then Mc = !M(LT ) by 13.1.4.2. By Theorem
2.1.1, |M(T )| > 1, so H∗(T,Mc) is nonempty.

Let X consist of the groups Ξp(L), p ∈ π(F (L/O2(L))). By 13.1.4, each X ∈ X
is in Ξ∗+(G, T ) and

Mc = NG(X) = !M(XT ) = !M(CG(Z)). (+)

Set Vc := R2(Mc), M
∗
c :=Mc/CMc(Vc), and

U := [Vc, L].

Define

L1 := {L1 ∈ L(G, T ) : L = O∞(L)L1}.

Lemma 13.1.8. (1) L∗ ∼= L2(p) for some prime p > 3.
(2) 1 6= [Vc, L] = [Vc, L1] for each L1 ∈ L1.
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Proof. By 13.1.4.5, O∞(L) = CL(Vc). Hence (1) and the statement in (2)
that [Vc, L] 6= 1 follow from 13.1.4.3. If L1 ∈ L1, then L∗ = L∗1 by (1), so (2)
holds. ¤

We next establish an important technical result:

Lemma 13.1.9. (1) For each L1 ∈ L1, Mc = !M(L1T ).
(2) L = [L, J(T )].

Proof. We will show in the first few paragraphs that (1) implies (2).
Set R := CT (L/O∞(L)) and let L1 ∈ L1. Observe by 13.1.4.3 that R is Sylow in

O∞(LT ), with R/O2(LT ) cyclic and Ω1(R/O2(LT )) inverts O2,F (L)/O2,Φ(F )(L).
Also for X ∈ X , O2(X) ≤ R, so that R ∈ Syl2(XR). Set LR := NL(R)

∞; by
a Frattini Argument, L1 = O∞(L1)NL1(R) = O∞(L1)NL1(R)

∞. As R E T ,
T acts on LR, so LR ∈ L(G, T ). As Ω1(R/O2(LT )) inverts O2,F (L)/O2,Φ(F )(L),
O∞(LT ) ∩ LRT = R, so R = O2(LRT ) and LR/O2(LR) ∼= L∗ ∼= L2(p) for some
p > 3 by 13.1.8.1. As L ∈ Lf (G, T ), LR ∈ Lf (G, T ) by A.4.10.3. As NL1(R)

∞ is
an R-invariant subgroup of LR and LR/O2(LR) is simple, NL1(R)

∞ = LR.
Now we assume that (1) holds, but (2) fails. We saw at the outset of the proof of

Theorem 13.1.7 that we may choose some H ∈ H∗(T,Mc). We will appeal to 3.1.7
with M0 := LRT , so we begin to verify the hypotheses of that result: We’ve seen
that R = O2(M0). As we are assuming that (2) fails, J(T ) ≤ O∞(LT )∩LRT = R.
Thus it remains to verify Hypothesis 3.1.5.

Take V := R2(M0). As LR ∈ Lf (G, T ), [V,M0] 6= 1 by 1.2.10, so as M0/R
is simple, R = CT (V ). Finally we verify condition (I) of Hypothesis 3.1.5: Let
B := O2(H ∩Mc). As H 6≤Mc = !M(XT ) by (+), X 6≤ H , so as T is irreducible
on X/O2,Φ(X), B ∩X ≤ O2,Φ(X). As this holds for each X ∈ X , B ∩ O2,F (L) ≤
O2,Φ(F )(L), so H ∩ O∞(L) is 2-closed, and hence H ∩Mc acts on R ∩ L. Thus
H ∩Mc acts on LR = NL(R ∩ L). This completes the verification of Hypothesis
3.1.5.

Applying our assumption that (1) holds to LR ∈ L1, Mc = !M(LRT ). Then
O2(〈M0, H〉) = 1, which rules out conclusion (2) of 3.1.7. As Mc = !M(CG(Z))
by (+), Z 6≤ Z(H), which rules out the remaining conclusion (1) of 3.1.7. This
contradiction completes the proof that (1) implies (2).

So we may assume that L1 ∈ L1 and M ∈ M(L1T ) − {Mc}, and it remains
to derive a contradiction. By paragraph one, L1 = O∞(L1)LR, so LR ∈ L(M,T ).
Thus LR ≤ LM ∈ C(M) by 1.2.4, and as T normalizes LR, LM E M by 1.2.1.3.

We apply 13.1.6 to M and choose Y as in case (1) or (2) of that result. In
particular Y 6≤Mc, Y E M , and [Z, Y ] 6= 1. We claim that [Y, LM ] ≤ O2(Y ): In
case (2) of 13.1.6, Y ∈ C(M), so by 1.2.1.2, either Y = LM or [Y, LM ] ≤ O2(Y ). But
by 13.1.6, Y ∈ L∗f (G, T ) with Y/O2(Y ) quasisimple, so if Y = LM then Y = LR
by 13.1.2.5, contradicting Y 6≤Mc. Thus the claim holds in this case. Now assume
that case (1) of 13.1.6 holds and let Ṁ := M/O2(M). In this case Ẏ is of class

at most 2 and exponent d for an odd prime d, with md(Ẏ ) ≤ 2. Thus as both
Y and LM are normal in M , using 1.2.1.4, either [Y, LM ] ≤ O2(Y ) as claimed, or

1 6= D := [Od
′

(Y ∩ LM ), LM ] E LM , with Ḋ ∼= Ed2 or d1+2 and LM irreducible

on Ḋ/Φ(Ḋ). In the latter case Y = D by A.1.32.2 applied with D, Y in the roles
of “P , R”. Then as [Z, Y ] 6= 1, LM ∈ L+(G, T ), so Y ≤ O∞(LM ) ≤ CG(Z) by
13.1.4.5, contrary to Y 6≤ Mc = !M(CG(Z)). This contradiction completes the
proof of the claim.
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In particular by the claim, LR centralizes Y/O2(Y ), and hence Y normalizes
(LRO2(Y ))∞ = LR. As Y E M , O2(Y ) ≤ O2(LRT ) = R by a remark in the
first paragraph, so R ∈ Syl2(Y R). Now LR/O2(LR) ∼= L2(p) has 3-rank 1 and
centralizes Y/O2(Y ), so m3(Y ) ≤ 1 as LRY is an SQTK-group. In case (2) of
13.1.6, Y ∈ L∗f (G, T ), so by 13.1.2.3, Y/O2(Y ) ∼= A5 or L3(2). In case (2) of 13.1.6,

either d = 3 and Y/O2(Y ) ∼= Z3, or Y/O2(Y ) is a d-group for d > 3.
Recall X is a solvable 3′-group and R ∈ Syl2(XR), so we may apply a standard

Thompson factorization theorem 26.18 in [GLS96] to conclude that

XR = NXR(J(R))NXR(ER), where ER := Ω1(Z(J1(R))).

As X ∈ Ξ(G, T ), T is irreducible on the Frattini quotient of X/O2(X), so J(R) or
ER is normal in XR; set J := Jj(R) where j := 0 or 1 in the respective case, so in
either case J(R) ≤ J and NG(J) ≤Mc since Mc = !M(XT ) by (+).

Set K := [Y, J ]. If K ≤ O2(Y ) then Y normalizes R1 := JO2(Y ) ≤ R; but
J = Jj(R1) by B.2.3.3, and hence Y ≤ NG(J) ≤ Mc, contrary to our choice of
Y 6≤ Mc. This contradiction shows that K 6≤ O2(Y ). Thus K = Y in case (2)
of 13.1.6, since there Y ∈ C(M) with Y/O2(Y ) quasisimple. In case (1) of 13.1.6,
Y = KNY (J) by a Frattini Argument applied to KJ , and hence Y = K(Y ∩Mc).
Thus in either case K = [K, J ] and as Y 6≤Mc,

K 6≤Mc, and in particular [Z,K] 6= 1. (!)

As LRT normalizes Y and J , it also normalizes [Y, J ] = K and hence normalizers
KR. Further K ≤ Y ≤ CG(LR/O2(LR)) as we saw after the claim, so [LR,KR] ≤
O2(LR) ∩KR ≤ O2(KR).

AsK is subnormal inM ,K ∈ He by 1.1.3.1. As R ∈ Syl2(Y R), R ∈ Syl2(KR).
Thus if we set D := 〈Ω1(Z(R))

KR〉, then D ∈ R2(KR) by B.2.14, and D is LRT -

invariant as R and KR are LRT -invariant. Set H := LRKR and Ĥ := H/CH(D).
We saw that LR ∈ Lf (G, T ) and R = O2(LRT ), so [Ω1(Z(R)), LR] 6= 1 by A.4.8.5
with LR, LRT , R, T in the roles of “X , M , R, S”, and hence [D,LR] 6= 1, so

that L̂R 6= 1. As [Z,K] 6= 1 by (!), [D,K] 6= 1, so that K̂ 6= 1. We have seen

that [LR,KR] ≤ O2(LR) ∩ KR ≤ O2(KR), while O2(K̂R̂) = 1 as D ∈ R2(KR),

so [L̂R, K̂R̂] = 1. Further O2(LR) centralizes Ω1(Z(R)), so Ĥ = L̂R × K̂R̂. In

particular F ∗(Ĥ) = L̂R × K̂, so R̂ is faithful on K̂.
As T acts on D, 1 6= [D,LR] ∩ Z =: Z0 ≤ Z. Then as CG(Z0) ≤ Mc by (+),

K 6≤ CG(Z0) by (!), and hence [D,LR,K] 6= 1. As K = [K, J ] and K̂ 6= 1, Ĵ 6= 1,

so there is A ∈ Aj(R) with Â 6= 1. As R̂ is faithful on K̂, so is Â.

In a moment we will define a subgroup KB of K, with K̂B = [K̂B , Â] and K̂B

nontrivial on [D,LR]. Set H1 := LRKBA. As Ĥ = L̂R × K̂Â, Ĥ1 = L̂R × K̂BÂ.

As L̂R is simple, we can choose an H1-chief section W in [D,LR] with L̂R faithful

on W and K̂B nontrivial on W . Set H̄1 := H1/CH1(W ) and ε := m(Â) −m(Ā);
then H̄1 = L̄R × K̄BĀ, and we will see that ε = 0 or 1.

Assume K̂ is simple. Then as 1 6= Â is faithful on K̂, K̂ = [K̂, Â]; and as

[D,LR,K] 6= 1, K̂ is faithful on [D,LR]. In this case, we set KB := K. As Â is

faithful on K̂ and K̂ is faithful on W , Â is faithful on W , so that m(Ā) = m(Â)
and ε = 0 in this case.

So assume K̂ is not simple. Then K̂ is a d-group for d > 3, and as K̂ is of
class at most 2, exponent d, and d-rank at most 2, we conclude from A.1.24 that

K̂ ∼= Ed2 or d1+2. Therefore Â ≤ GL2(d), so m(Â) ≤ 2. Now as K = [K, J ] and
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K is nontrivial on [DL, R], we may choose A so that KA := [K,A] is nontrivial on

[DL, R]. Also by A.1.17, K̂A is generated by the fixed points of hyperplanes of Â;

so we may choose a hyperplane B̂ of Â and a subgroup K̂B = [K̂B , Â] of CK̂A
(B̂)

of order d, such that K̂B is nontrivial on [DL, R]. By the Thompson A×B-Lemma,

K̂B is nontrivial on C[D,LR](B). In this case as m(Â) ≤ 2, ε = 0 or 1.

Let I be an irreducible KBA-submodule of W . Then as H̄1 = L̄R × K̄BĀ,
Clifford’s Theorem says that W is the direct sum of r copies of I for some r, and
CGL(W )(K̄BĀ) ∼= GLr(F ), where F := EndK̄B

(I). As L̄R ≤ CGL(W )(K̄B) with L̄R
nonabelian, r > 1.

As A ∈ Aj(R), by B.2.4.1,

m(D/CD(A)) ≤ j +m(Â).

Then

r ·m(I/CI(Ā)) = m(W/CW (Ā)) ≤ m(D/CD(A)) ≤ j+m(Â) = j+ ε+m(Ā). (∗)

Thus as r > 1 ≥ ε, it follows from (*) that m(I/CI (Ā)) ≤ m(Ā), so that I is
an FF-module for K̄BĀ. Therefore by Theorem B.5.6, K̄B is not a d-group for a
prime d > 3. Therefore KB = K, ε = 0, and K̄ ∼= Z3, A5, or L3(2). Further if
I is the natural L2(4)-module, then m(Ā) ≤ m2(Aut(L2(4)) = 2 ≤ m(I/CI(Ā)),

contrary to (*). Thus if K̂ ∼= A5, then I is the A5-module by B.4.2. It follows
from B.4.2 that F = F2 for each of the possible irreducible FF-modules I for each
K̄, so L̄R ≤ GLr(F2). Since L̄R ∼= L2(p) for p ≥ 5, we conclude r ≥ 3, with
L̄R ∼= L2(7) ∼= L3(2) and each IR ∈ Irr+(LR,W ) of rank 3 in case of equality.
Now m(Ā) ≤ m2(Aut(K̄)) ≤ 2 and m(W/CW (Ā)) ≥ r ≥ 3, so all inequalities
in (*) must be an equalities, and in particular L̄R ∼= L3(2), m(IR) = r = 3,
m(I/CI(Ā)) = 1, j = 1, and m(Ā) = 2. As r = 3, K̄ ∼= L3(2) and m(I) = 3, so
NGL(W )(L̄R) ∼= L3(2)× L3(2); hence Ā ≤ K̄, L̄RK̄ ∼= L3(2)× L3(2), and W is the

tensor product of natural modules for the two factors. Furthermore as m(Ā) = 2
and m(I/CI(Ā)) = 1, Ā is the group of transvections in K̄ with a common axis
on I . In particular Ā is the unique such subgroup of T ∩K, so Ā = J̄ ∼= E4, and
hence J = J1(O2(H1)A). Then NK(Ā) ≤ NG(J) ≤ Mc by an earlier observation.

Now K̂ is simple, so Â is faithful on each nontrivial K̂-section of D. Since (*) is an

equality, we conclude that [D, K̂] =W ∈ Irr+(LRKT ). Now Z∩W is a 1-subspace

of W centralized by the parabolic of K̂ stabilizing the group of transvections on
I with a common center, and CG(Z ∩ W ) ≤ Mc = !M(CG(Z)) by (+). Thus
K = 〈CK(Z ∩W ), NK(Ā)〉 ≤Mc, contrary to (!). This contradiction completes the
proof of (1), and hence of 13.1.9. ¤

Lemma 13.1.10. One of the following holds:

(1) L∗ ∼= L2(4) and U/CU (L) is the L2(4)-module.
(2) L∗T ∗ ∼= S5 and U is the S5-module.
(3) L∗ ∼= L3(2) and U is the sum of at most two isomorphic natural modules.
(4) L∗ ∼= L3(2), m(U) = 4, and [Z,L] = 1.

Proof. By 13.1.9.2, Vc is an FF-module for M∗
c with L∗ ≤ J(M∗

c , Vc). By
13.1.8.1, L∗ ∼= L2(p) for a prime p ≥ 5. Thus L∗ is isomorphic to L2(5) or L2(7) by
B.5.5.1iv. Then cases (2) and (4) of Theorem B.5.6 do not hold; and in cases (3)
and (5) of B.5.6, we see that U = [Vc, L] satisfies one of conclusions (1)–(4). Finally
if case (1) of B.5.6 holds, then L∗ = F ∗(J(M∗

c , Vc)) and U is described in Theorem
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B.5.1. Now by Theorem B.5.1, either conclusion (3) holds or U ∈ Irr+(L, Vc), in
which case B.4.2 says U satisfies one of conclusions (1), (2), or (4), using I.1.6.4 in
the latter case. Furthermore in any case Z ≤ R2(Mc) = Vc, and 〈ZL〉 = UCZ(L)
by B.2.14. Thus in conclusion (4), since Z ∩ U = CU (L) by B.4.8.2, we conclude
that [Z,L] = 1. ¤

Lemma 13.1.11. For X ∈ X , if X ≤ X1 ≤ Mc and X1 acts irreducibly on
X/O2,Φ(X), then X1 is contained in a unique conjugate of Mc.

Proof. Suppose X1 ≤Mg
c and let p be the odd prime in π(X), P ∈ Sylp(X),

and M̂g
c := Mg

c /O2(M
g
c ). We apply A.1.32 with M̂g

c , X̂
g, P̂ , p, p in the roles of

“G, R ,P , r, p”. The second case of A.1.32.2 does not arise as X̂g is not of order
p. Thus X̂g = X̂, so X = O2(X) ≤ O2(Xg) = Xg, and hence g ∈ NG(X) = Mc,
so Mc =Mg

c . ¤

Lemma 13.1.12. Let u ∈ U#, Gu := CG(u), Mu := CMc(u), and pick u so that
Tu := CT (u) ∈ Syl2(Mu). Then

(1) Mu is irreducible on X/O2,Φ(X) for each X ∈ X .
(2) |T : Tu| ≤ 2.
(3) Gu ≤Mc.

Proof. Let

U := {u ∈ U# : |Tu| < |T |}.

If u ∈ Z then Tu = T is irreducible on X/O2,Φ(X) for each X ∈ X , while Gu ≤
Mc = !M(CG(Z)) by (+), so that (1)–(3) hold. Thus we may assume that U is
nonempty, and it suffices to establish (1)–(3) for u ∈ U . In particular Mc is not
transitive on U#, so CU (L) 6= 1 in case (1) of 13.1.10, and U is the sum of two
irreducibles for L∗ in case (3).

Let u ∈ U , and recall from 13.1.4.5 that X centralizes R2(Mc) = Vc and
U = [Vc, L], so that X ≤ Mu. As X ∈ Ξ+(G, T ), X ∼= Ep2 or p1+2 for some
prime p > 3. Set M+

u := Mu/CMu(X/O2,Φ(X)); thus M+
u ≤ GL2(p). To prove

(1), it will suffice to show that M+
u is nonabelian; as CG(X) ≤ O2,F (L) ≤ CG(U),

it also suffices to show CL(u)
∗ is nonabelian. Indeed L/O2,F (L) ∼= SL2(q) for

q = 5 or 7, so if CL(u)
∗ contains a 4-group, then the preimage of this 4-group in

CL(u)/O2,F (X) is the nonabelian group Q8, which again suffices. To prove (2), it
will suffice to show for each orbit O of LT on U that |O| ≡ 2 mod 4.

Assume case (1) of 13.1.10 holds. By I.2.3.1, U is a quotient of the rank-6
extension U0 of U/CU (L), so m(CU (L)) = 1 or 2. However if m(CU (L)) = 1 or
T ∗ ≤ L∗, then all members of U# are 2-central in Mc. Therefore m(CU (L)) = 2,
so U = U0 and hence U admits an F4-structure by I.2.3.1. Further T ∗ 6≤ L∗, so
L∗T ∗ ∼= S5. Then LT has two orbits on U : one of length 2 in CU (L), and one of
length 30 on U −CU (L). In either case, |uLT | ≡ 2 mod 4, so that (2) holds by the
previous paragraph. Also (Tu ∩ L)∗ ∈ Syl2(L∗), so (1) also holds by the previous
paragraph.

Assume case (3) of 13.1.10 holds. We saw U is the sum of two natural modules,
so L is transitive on

U1 := U −
⋃

I∈Irr+(L,U)

I
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of order 42 with CL(u1)
∗ ∼= E4 for u1 ∈ U1. Further either U = U1, or AutMc(U) ∼=

L3(2)× Z2 and U = U1 ∪ U2, where

U2 :=
⋃

I∈Irr+(L,U)

I − U1 is of order 14,

where U1 is the unique T -invariant member of Irr+(L,U), and CL(u)
∗ ∼= S4 for

u ∈ U2. In either case, (1) and (2) hold.
In case (2) of 13.1.10, U is the set of nonsingular vectors in the orthogonal space

U , so |U| = 10, and CL∗(u) ∼= S3 is nonabelian; thus (1) and (2) hold in this case.
Finally in case (4) of 13.1.10, L is transitive on U = U − CU (L) of order 14, so
CL∗(u) ∼= A4 is nonabelian, completing the proof of (1) and (2). Observe we also
showed in cases (1), (3), and (4) of 13.1.10 that (Tu ∩L)+ contains a Q8-subgroup.

It remains to prove (3), so we assume Gu 6≤Mc, and derive a contradiction.
We next claim that Tu ∈ Syl2(Gu): For if not, then by (2), ug ∈ Z for some

g ∈ G. Then Ggu = CG(u
g) ≤ Mc = !M(CG(Z)) by (+), and hence X ≤ Mu =

Mc ∩Gu ≤Mg−1

c . By (1), we may apply 13.1.11 to conclude that Mu is contained

in a unique conjugate of Mc, so that Mc = Mg−1

c . Then g ∈ Mc as Mc ∈ M, so u
is centralized by an Mc-conjugate of T , whereas u ∈ U so |Mc :Mu| is even. Hence
the claim is established.

Set RX := O2(XT ) and R := CRX (u). Observe that [L,RX ] ≤ O∞(L) =
CL(U), so L∗ centralizes R∗X . We claim that R = CRX (U). Since CRX (U) ≤ R,
it suffices to show that R centralizes U . If U ∈ Irr+(L,U), then as L∗ centralizes
R∗X , RX centralizes U by A.1.41, so that the claim holds. Therefore we may assume
that U /∈ Irr+(L,U), so case (3) of 13.1.10 holds. Then AutMc(U) ≤ L3(2) × S3,
so we may assume AutR(U) = CAutMc

(U) ∼= Z2. But then CU (R) is a T -invariant
member of Irr+(L,U), so as u ∈ CU (R), u is 2-central in Mc, contrary to u ∈ U .
This completes the proof of the claim.

By the claim, R E XT , so as Mc = !M(XT ) by (+),

C(Gu, R) ≤Mc ∩Gu =Mu.

Next, the hypotheses of A.4.2.7 are satisfied with Gu, Mu, Tu in the roles of “G,
M , T”: For NGu(R) ≤ Mu and X E Mu, with Tu Sylow in Mu and Gu, and
R = O2(XT ) = O2(XTu). Therefore R ∈ B2(Gu) and R ∈ Syl2(〈RMu〉) by
A.4.2.7. Thus the pushing up Hypothesis C.2.3 is satisfied with Gu, Mu in the role
of “H , MH”. However, before we apply pushing up results from section C.2, we
will establish a number of further preliminary results.

We claim next that O2,F (Gu) ≤ Mu: Set Ĝu := Gu/O2(Gu) and recall p is

the odd prime in π(X). Let R̂r denote a supercritical subgroup of Or(Ĝu). As Mu

is irreducible on X/O2,Φ(X) by (2), we may apply A.1.32 with Ĝu, R̂r, X̂ in the

roles of “G, R, P”. If r 6= p, then by part (1) of that result, X̂ centralizes R̂r,
and hence Op(O2,F (Gu)) normalizes X . If r = p, then by part (2) of A.1.32, either

X̂ = R̂p, or Zp ∼= R̂p = Z(X̂) and X̂ ∼= p1+2. In the former case, Op(Ĝu) normalizes

the characteristic subgroup R̂p = X̂, so the claim holds. In the latter case, since

the supercritical subgroup R̂p contains all elements of order p in COp(Ĝu)(R̂p),

we conclude that Op(Ĝu) is cyclic. Then as Mu is irreducible on X/O2,Φ(X), X̂

centralizes Op(Ĝu), completing the proof of the claim. We have also shown that X̂
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centralizes Op(F (Ĝu)) and either X̂ = R̂p ≤ Op(Ĝu), or X̂ centralizes Op(Ĝu) and

hence F (Ĝu).
Let z ∈ Z#. By 1.1.6, the hypotheses of 1.1.5 are satisfied with 〈u〉, Gu, Tu,

Mc in the roles of “B, H , S, M”. By the claim, O(F (Gu)) ≤ NGu(X) ≤ Mu,
so O(F (Gu)) ≤ CGu(z) for z ∈ Z ∩ O2(X)#. But by 1.1.5.2, z inverts O(Gu), so
O(Gu) = 1.

Assume that O2,F∗(Gu) ≤ NGu(X). Then X̂ centralizes E(Ĝu). We saw that

X̂ centralizes Op(F (Ĝu)) and either X̂ = R̂p or X̂ centralizes F (Ĝu). In the

latter case X̂ centralizes F ∗(Ĝu), so that X̂ ≤ Op(Ĝu), and then as mp(X̂) = 2 =

mp(Ω1(Op(Ĝu))), X̂ = Ω1(Op(Ĝu)). Hence in either case Gu ≤ NGu(X) = Mc,
contrary to assumption.

Therefore there existsK ∈ C(Gu) withK 6≤ NG(X) andK/O2(K) quasisimple.
Then X = O2(X) normalizes K by 1.2.1.3, and K = [K,X ] by A.3.3.7. Set
K0 := 〈K

Tu〉.

Suppose NMu(K) is irreducible on X/O2,Φ(X). Then CX (K̂) ≤ O2,Φ(X) and

as K̂ is described in Theorem C (A.2.3), mp(Out(K̂)) ≤ 1 since p > 3. Therefore

since NMu(K̂) is irreducible on X/O2,Φ(X), X induces inner automorphisms on K̂.

Then mp(K) > 1, so K = Op
′

(Gu) by A.3.18. Thus K0 = K and X ≤ K. Also

TuX = XTu with Tu ∈ Syl2(Gu), so K̂ and the embedding of X̂ in K̂ are described

in A.3.15. As mp(AutX(K̂)) > 1, and NMu(K) is irreducible on X/O2,Φ(X),
conclusion (3) of A.3.15 is eliminated, so conclusion (2) or (5) of A.3.15 holds.

Let P ∈ Sylp(X). During the proof of (1) and (2), we saw that Tu is reducible
on X/O2,Φ(X) in case (2) of 13.1.10, and in the remaining cases Tu is irreducible
and AutTu∩L(P ) is noncyclic. Suppose Tu is irreducible on X/O2,Φ(X). Then
X ∈ Ξ(Gu, Tu). We observe that the proof of 1.3.4 does not require the hypotheses
that H ∈ H(XT ), but only that H ∈ H(X), and NT∩H(X) is irreducible on
X/O2,Φ(X). Thus we may apply the analogue of that result with Gu, Tu, K in the

roles of “H , T , 〈LT 〉”, to conclude that K̂ is described in 1.3.4. Therefore if A.3.15.5

holds, then K̂ ∼= Sp4(2
n) with AutTu(P ) cyclic, contary to a remark earlier in the

paragraph. Thus Tu is reducible on X/O2,Φ(X), so we are in case (2) of 13.1.10,
where CL(u)

+ contains an S3-section. In case (2) of A.3.15, Tu is irreducible on
X/O2,Φ(X), so we are in case (5) of A.3.15. Then as P ≤ K with PTu = TuP and

p > 3, K̂ is of Lie type over F2n with 2n ≡ 1 mod p, and P is contained in the Borel
subgroup NK(Tu ∩ K). Hence the S3-section is induced by outer automorphisms

of K̂, so from the structure of Out(K0/O2(K0)), K̂ ∼= (S)L3(2
n) with n even.

Having discussed the case where NMu(K) is irreducible on X/O2,Φ(X), we now
turn to the remaining case where it is reducible. If Tu normalizes K, then so does
Mu by 1.2.1.3, and then (1) contradicts the assumption in this case. Therefore
K < K0. HoweverMu acts on K0 and is irreducible on X/O2,Φ(X) by (1). Further

by 1.2.1.3, Out(K̂) is cyclic. so as Out(K̂0) is Out(K̂) wr Z2, again X induces

inner automorphisms on K̂0. By 1.2.2.a, K0 = Op
′

(Gu), so a Sylow p-subgroup
P of X is containied in K0 and P = PK × P tK , where PK := P ∩ K ∼= Zp and

t ∈ Tu −NTu(K). As TuP = PTu, we conclude from 1.2.1.3 and A.3.15 that K̂ is
isomorphic to L2(2

n) or Sz(2n) with 2n ≡ 1 mod p, J1 with p = 7, or L2(r) for a
suitable odd prime r.

Summarizing our list of possibilities, X ≤ K0 and either
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(i) K = K0, with K̂ isomorphic to L3(p) or (S)L3(2
n) where 2n ≡ 1 mod p,

or
(ii) K0 = KKt for t ∈ Tu −NTu(K), and K̂ is isomorphic to Sz(2n) or L2(2

n)
with 2n ≡ 1 mod p, L2(r) for a suitable odd prime r, or J1 with p = 7.

Recall we saw earlier that Hypothesis C.2.3 holds. We are now ready to apply
pushing up results from section C.2.

Suppose first that F ∗(K) = O2(K). If R 6≤ NGu(K) then K < K0, and by
C.2.4.2, R∩K ∈ Syl2(K), so K is a χ0-block of Gu by C.2.4.1. Then from our list

of possibilities for K̂, K̂ ∼= L2(2
n). On the other hand if R ≤ NGu(K), then K is

described in C.2.7.3. We compare the list of C.2.7.3 with our list of possibilities for
K̂ in (i) and (ii): If K̂ ∼= (S)L3(2

n), then case (g) of C.2.7.3 occurs, so K ∩Mc is
a maximal parabolic of SL3(2

n), impossible as X E K ∩Mc. The only remaining

possibility in both lists is case (a) of C.2.7.3 with K a χ-block, so again K̂ ∼= L2(2
n)

and K < K0.
Thus in any case, K0 = KKt for t ∈ Tu −NTu(K), and [K,Kt] = 1 by C.1.9.

Let P be the set of subgroups P0 of P of order p such that [CO2(X)(P0), P ] 6= 1, and
set XK := X ∩K and PK := P ∩K. Then X = XKX

t
K and P = {PK , P tK}. But

Mc = NG(X), so NMc(P ) permutes P , contrary to the fact that NL(P ) induces
either SL2(p) or SL2(5) on P , and thus has no orbit of order 2 on the set of
subgroups of P of order p.

Therefore F ∗(K) 6= O2(K), so as O(Gu) = 1 and K/O2(K) is quasisimple, K
is quasisimple. Then as X ≤ K0, and F

∗(X) = O2(X), we conclude by comparing

the list in 1.1.5.3 with our list of possibilities for K̂ in (i) and (ii) that K0/Z(K0) ∼=
(S)L3(2

n), L2(2
n)×L2(2

n), or Sz(2n)×Sz(2n) for some n, or L2(r)×L2(r) for r
a Fermat or Mersenne prime. In the latter three cases the components commute,
so as in the previous paragraph we conclude that NMc(P ) permutes the subgroups
P ∩ K and P ∩ Kt, for the same contradiction. Furthermore a similar argument
works in the first case: Namely X lies in a Borel subgroup of K, so that O2(X)
is the full unipotent group A, which is special of order 23n with center of order
2n. Therefore NMc(P ) acts on CP (Z(A)) ∼= Zp, for the same contradiction. This
finally completes the proof of 13.1.12. ¤

Lemma 13.1.13. U is a TI-set in G.

Proof. Suppose 1 6= u ∈ U ∩ U g for some g ∈ G. Then by 13.1.12.3, Xg ≤
CMg

c
(u) ≤Mc for X ∈ X , and by 13.1.12.1, CMg

c
(u) is irreducible on Xg/O2,Φ(X

g),
so 13.1.11 says Mc = Mg

c . Thus g ∈ NG(Mc) = Mc as Mc ∈ M, so U = Ug,
completing the proof. ¤

Recall the weak-closure parameters w(G,U) and r(G,U) from Defintions E.3.23
and E.3.3.

Lemma 13.1.14. (1) Wi(T, U) centralizes U for i = 0, 1, so NG(W0(T, U)) ≤
Mc.

(2) w(G,U) > 1 < r(G,U).
(3) If H ∈ H(T ) with n(H) = 1, then H ≤Mc.

Proof. As U is a TI-set in G by 13.1.13, if NUg (U) 6= 1 and 〈U,Ug〉 is a
2-group, then [U,Ug] = 1 by I.7.6. Therefore as U E T , we conclude that W0 :=
W0(T, U) centralizes U . Hence W0 ≤ CT (U) =: R, so that W0 = W0(R,U). Now
by a Frattini Argument, L = O∞(L)NL(W0), so NG(W0) ≤Mc by 13.1.9.1.
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Next assumeW1(T, U) does not centralize U . Then by the previous paragraph,
there is g ∈ G with A := U g∩T a hyperplane of U g and A∗ 6= 1. As A∗ 6= 1, I.6.2.2a
says that A∗ is the full group of F2-transvections on U with axis U∩M g

c . Inspecting
the cases listed in 13.1.10, we conclude L∗ ∼= L3(2), m(U) = 3, and E4

∼= A ≤ L∗.
Hence A induces a faithful 4-group of inner automorphisms on L/Oinfy(L). This
is impossible as L/O2(L) ∼= SL2(7)/E49, so Aut(L/O2(L)) ∼= GL2(7)/E49. This
completes the proof of (1).

By (1), w(G,U) > 1, and by 13.1.13, r(G,U) = m(U) > 1. Thus (2) holds.
Finally the hypotheses of E.3.35 are satisfied with U , R, Mc in the roles of “V , Q,
M”, so (2) and E.3.35.1 imply (3). ¤

We are now in a position to complete the proof of Theorem 13.1.7.
We saw at that outset of the proof that |M(T )| > 1, so that there is some

M ∈ M(T ) with M 6= Mc. Thus we may choose Y as in 13.1.6. Then Y 6≤ Mc,
so n(Y T ) > 1 by 13.1.14.3. Thus Y is not solvable by E.1.13, so case (2) of 13.1.6
holds, and in particular Y ∈ L∗f (G, T ). Therefore Y/O2(Y ) is described in 13.1.2.3,

so as n(Y T ) > 1, Y/O2(Y ) ∼= A5 using E.1.14.
Next as Y 6≤ Mc, Y 6≤ NG(W0(T, U)) in view of 13.1.14.1. Thus by E.3.15,

there is A := Ug ≤ T for some g ∈ G with A 6≤ Q := O2(Y T ). Let AQ := A ∩ Q;
then m(A/AQ) ≤ m2(Y T/O2(Y T )) = 2, so as m(A) ≥ 3 by 13.1.10, it follows that
AQ 6= 1.

As A 6≤ O2(Y T ), O
2(〈AY 〉) = Y . As Y 6≤ Mc, there is h ∈ Y with Ah 6≤ Mc.

But Ah ≤ Y T , so if U ≤ O2(Y T ) = Q, then 〈Ah, U〉 is a 2-group with 1 6= AhQ =

Ah ∩ Q ≤ NG(U); then by I.7.6, Ah ≤ CG(U) ≤ NG(U) = Mc, contrary to our
choice of Ah. Thus U 6≤ Q, so we may take A = U .

Let I := 〈U,Uh〉. Then as m2(Y T/Q) ≤ 2 and Q = kerY T (NY T (U)), V :=
U ∩Mh

c and B := Uh∩Mc are of codimension at most 2 in U and Uh, respectively.
Therefore since I/O2(I) is a section of Y/O2(Y ) ∼= A5, (a) and (c) of I.6.2.2 say
that O2(I) = V × B, and I/O2(I) ∼= D6, D10, or L2(4), and O2(I) is a direct sum
of natural modules for I/O2(I). However in the first two cases, B is of index 2
in Uh, so by 13.1.14.1, [B,U ] = 1, and then [Uh, U ] = 1, a contradiction. Hence
I/O2(I) ∼= L2(4). Let D ∈ Syl3(NI (U)); then V = [V,D] since O2(I) is the sume
of natural modules for I/O2(I), and so U = [U,D]; thus U is the natural module
for L∗ ∼= L2(4) by 13.1.10. Hence B ∼= E4 and V = CU (b) for each b ∈ B#, so B
induces a faithful 4-group of inner automorphisms on L/O∞(L). As in the proof of
13.1.14, this is a contradiction. This completes the proof of Theorem 13.1.7.

13.2. Some preliminary results on A5 and A6

In this section we establish some technical results used in our treatment of
the cases L/O2,Z(L) ∼= A5 or A6 in the FSU. Thus in section 13.2, we assume
Hypothesis 12.2.3 from the previous chapter. In particular M = NG(L) for some
L ∈ L∗f (G, T ) with L/O2(L) quasisimple and V ∈ Irr+(L,R2(LT )) is T -invariant

and satisfies the Fundamental Setup (3.2.1).
As usual we adopt the conventions of Notation 12.2.5; e.g., Z = Ω1(Z(T )),

MV = NG(V ), and M̄V =MV /CG(V ). We also set

ZV := CV (L) and V̂ := V/ZV .

Throughout this short section we assume that L̄ ∼= An for n = 5 or 6. Then

we are in case (d) of 12.2.2.3, with V̂ the 4-dimensional chief factor in a rank-n
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permutation module for L̄. In particular if L/O2(L) = Â6, then O2,Z(L) ≤ CL(V ).
Therefore as Out(L̄) is a 2-group and V is T -invariant, M̄V = L̄T̄ ∼= An or Sn from
the structure of NAut(L̄)(V ). We also adopt the notational conventions of section

B.3; in particular, {1, 2, 3, 4} is an orbit under T .
By B.3.3, if ZV 6= 1 then n = 6, V is the core of the permutation module for L̄

on Ω := {1, . . . , n}, and ZV is generated by eΩ. In any event V̂ is the irreducible
quotient of the core of the permutation module modulo 〈eΩ〉.

When n = 6 we can also view V̂ as a 4-dimensional symplectic space over F2

for L̄ ∼= Sp4(2)
′. When n = 5, V̂ = V since V̂ is projective for L̄ ∼= A5 (cf. I.1.6.1),

and we can view V̂ as a 4-dimensional orthogonal space for L̄ ∼= Ω−4 (2). Thus we

can speak of isotropic or singular vectors in V̂ , nondegenerate subspaces of V̂ , etc.
We also adopt the following notational conventions:

Notation 13.2.1. For 1 ≤ i ≤ 4, let Vi be the preimage in V of an i-dimensional
subspace of V̂ stabilized by T . Set Mi := NLT (Vi), Li := O2(Mi), and let Ri be
the preimage in T of O2(M̄i). Notice for i < 4 that |Ri : O2(LiT )| ≤ 2, with

equality iff L/O2(L) ∼= Â6 and T̄ 6≤ L̄, in which case O2(LiT ) = O2(Li)O2(LT ).

When L/O2(L) ∼= Â6, define L0 := O2(O2,Z(L)), and for i = 1, 2, set Li,+ :=
O2([Li, T ∩ L]); observe |L0 : O2(L0)| = 3 = |Li,+ : O2(Li,+)|.

13.2.1. Results on A6. We collect a number of results on A6 into a single
lemma. The first few are easy calculations invoving only L and V , which do not
require Hypothesis 12.2.3.

Lemma 13.2.2. Assume n = 6 and set Q := O2(LT ). Then

(1) L is transitive on V̂ #.
(2) Each v ∈ V # is in the center of a Sylow 2-subgroup of LT .

(3) If L/O2(L) ∼= Â6, then Li = Li,+L0 for i = 1, 2.
(4) If L = [L, J(T )], then L̄1 = [L̄1, J(T )].
(5) LT controls G-fusion in V .
(6) m2(R1) = m2(Q), so V ≤ J(R1).
(7) Either there is a nontrivial characteristic subgroup of Baum(R1) normal in

LT (and hence NG(Baum(R1)) ≤M), or L is an A6-block.

(8) If L/O2(L) ∼= Â6, then J(O2(L1T )) = J(O2(LT )), so every nontrivial
characteristic subgroup of Baum(O2(L1T )) is normal in LT .

(9) If L/O2(L) ∼= Â6, then NG(L1) ≤M ≥ NG(L0).
(10) One of the following holds:

(I) Some nontrivial characteristic subgroup of Baum(T ) is normal in LT .
(II) L is an A6-block, and A(O2(LT )) ⊆ A(T ).
(III) L̄2 = [L̄2, J1(T )].

Proof. Parts (1) and (3) are easy calculations, and (2) follows from (1) since
the elements of V1 are central in T . If ZV = 1,, then (5) follows from (1). By
Burnside’s Fusion Lemma A.1.35, NG(T ) controls fusion in Z, while NG(T ) ≤ M
by Theorem 3.3.1. Therefore if ZV 6= 1, then M =MV controls fusion in V1, so as
M̄V = L̄T̄ , (5) follows from (1) in this case also.

Next we establish (4) and (6), which will follow fairly easily from B.3.4. First
R̄1 contains no strong FF∗-offenders by parts (1) and (2ii) of B.3.4, so by B.2.4.3,
m2(R1) = m2(Q) and A(Q) ⊆ A(R1). Then as V ≤ Ω1(Z(Q)), V ≤ J(Q) ≤ J(R1),
completing the proof of (6).
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If J(T ) ≤ CT (V ) = O2(LT ), then (4) is vacuously true. Thus we may suppose
that there is A ∈ A(T ) with Ā 6= 1; in particular L = [L, J(T )]. Now the hypotheses
of B.2.10.2 (and hence of B.2.10.1) are satisfied with LT , T in the roles of “G, R”,
so P := PT,LT is a nonempty stable subset of P(L̄T̄ , V ) by B.2.10.1. Similarly using
R1 in the role of “R”, J(R1) 6≤ Q iff Q := PR1,LT is a nonempty stable subset of

P(L̄T̄ , V ). Moreover by definition in B.2.5, J(T ) = JP(T̄ ) and J(R1) = JQ(R̄1).
If M̄V

∼= A6, then from B.3.4.1, JP(T̄ ) = R̄2, so L̄1 = [L̄1, JP(T̄ )], and hence
(4) holds. So assume instead that M̄V

∼= S6. If JQ(R̄1) = 1, then (4) follows from
B.3.4.2iv, while if JQ(R̄1) 6= 1, then (4) follows from B.3.4.2v. This completes the
proof of (4).

For part (7), we observe that the hypotheses of C.1.37 are satisfied with R1 in

the role of “R” and P := L1T , except when M̄V
∼= Ŝ6, when we take P := L1,+T .

Thus conclusion (1) or (2) of C.1.37 holds, giving the alternatives of conclusion (7)

of the present result. (Recall that L is not a Â6-block as O2,Z(L) = CL(V )).

Next we will prove (8) and (9), so we may assume L/O2(L) ∼= Â6. Set R :=
O2(L1T ). We claim first that J(R) = J(Q): If M̄V = A6 then R = R1 by 13.2.1,

and by B.3.4.1, J(R1) ≤ Q ≤ R1 so that J(R) = J(R1) = J(Q). If M̄V = Ŝ6, then

by 13.2.1, |R1 : R| = 2 and R = O2(L1)Q ≤ LQ. But by B.3.4.2v, if J(R) 6= 1

then J(R) 6≤ L̄, so again J(R) ≤ Q and J(R) = J(Q), completing the proof of the
claim. Then by B.2.3.5, Baum(R) = Baum(Q), establishing (8).

Recall L0 = O2(O2,Z(L)). Therefore L0 E LT , so that NG(L0) ≤ M =
!M(LT ). Finally NG(L1) = CG(L1/O2(L1))NG(R) by A.4.2 and a Frattini Argu-
ment, so as NG(R) ≤ NG(J(R)) ≤ M by (8), and CG(L1/O2(L1)) normalizes L0

with NG(L0) ≤M , we conclude NG(L1) ≤M , completing the proof of (9).
Finally we prove (10). Let S := Baum(T ). If J(T ) ≤ CT (V ) = O2(LT ), then

using B.2.3.3, J(T ) is a nontrivial characteristic subgroup of S normal in LT , so
(I) holds. Thus we may assume there is A ∈ A(T ) with 1 6= Ā ∈ P . If B is a
hyperplane of A with B̄L ∩ T̄ 6⊆ R̄2, then as B ∈ A1(T ), (III) holds. Thus we
may assume no such B exists. Therefore by B.3.4.2vi, |Ā| = 2 for each such A.

In particular, J(T ) lies in the subgroup R̄2 of T̄ generated by transvections, so
Baum(T ) = Baum(R2) by B.2.3.5. Observe that we now have the hypothesis of

C.1.37 with R2 in the role of “R” and P := L2T , unless LT/O2(LT ) ∼= Ŝ6, when
we take P := L2,+T . Further conclusion (5) of C.1.37 does not hold, as there are
no FF∗-offenders with image of order greater than 2, so only conclusions (1) or (2)
of that lemma can hold. In case (1), (I) holds, and in case (2), L is an A6-block

(Again L is not a Â6-block as CL(V ) = O2,Z(L)). Further FF
∗-offenders of order 2

are not strong by B.3.4.2i, so that A(Q) ⊆ A(T ) by B.2.4.3, and hence (II) holds.
This completes the proof of (10), and of 13.2.2. ¤

13.2.2. Results on A5. In this subsection we assume n = 5 and establish
a series of results culminating in an important reduction: Theorem 13.2.7. Notice
that as n = 5, we have Hypothesis 5.0.1, of section 5.1, so we can use results from
that section and the subsequent sections of chapters 5 and 6.

Lemma 13.2.3. If n = 5 then

(1) O2(LT ) = CLT (V ) = CLT (V3).
(2) NG(V3) ≤MV .
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Proof. Part (1) follows from the structure of the A5-module. Then by (1),
R := O2(LT ) ∈ Syl2(CM (V3)), so as C(G,R) ≤ M = !M(LT ), NG(R) ≤ M and
R ∈ Syl2(CG(V3)). Therefore by a Frattini Argument,

NG(V3) = CG(V3)(NG(R) ∩NG(V3)),

so it remains to show that CG(V3) ≤ M—since then NG(V3) ≤ MV by 12.2.6. So
assume CG(V3) 6≤ M . Then there is H ∈ H∗(T,M) with O2(H) ≤ CG(V3), and
hence R ∈ Syl2(O

2(H)R). Then by Theorem 3.1.1 there is 1 6= R0 ≤ R with
R0 E 〈LT,H〉, and so H ≤ NG(R0) ≤M = !M(LT ), contrary to assumption. ¤

Lemma 13.2.4. Assume n = 5. Then for any W ∈ R2(LT ) with [W,L] 6= 1:

(1) R1 = (T ∩ L)O2(LT ) = O2(CLT (Z ∩ [W,L]). Further J(R1) = J(CT (W ))
and Baum(R1) = Baum(CT (W )), so that C(G,Baum(R1)) ≤M .

(2) Let S := Baum(T ); then either:

(a) S ≤ CT (W ) so that J(T ) = J(CT (W )), C(G,S) ≤M , and H∗(T,M) ⊆
CG(Z), or

(b) L̄T̄ ∼= S5, S̄ = J(T ) ∼= E4 is generated by the two transvections in T̄ ,
〈ZL〉 = V ⊕ CZ(L), and CV (S) = V2.

Proof. Recall that Hypothesis 12.2.3 excludes the groups in conclusions (2)
and (3) of Theorem 6.2.20. Thus case (1) of Theorem 6.2.20 holds, so for any
W ∈ R2(LT ) with [W,L] 6= 1, [W,L] is a sum of at most two A5-modules. Further
O2(LT ) is the kernel of the action of L on both W and V . Thus NL̄T̄ (Z ∩ [W,L])
is the Borel subgroup over T̄ , so the first sentence in (1) holds. Next by B.3.2.4,
each member of P(T̄ , V ) is generated by transpositions, and hence none lie in R̄1.
Thus J(R1) ≤ CT (W ) = O2(LT ), so that J(R1) = J(CT (W )) and Baum(R1) =
Baum(CT (W )) by B.2.3.5; hence C(G,Baum(R1)) ≤M = !M(LT ), so (1) holds.

Part (2) is essentially 5.1.2 applied to W in the role of “V ”. When J(T ) ≤
CT (W ), the final statement in (a) follows from Theorem 3.1.8.3. When J(T ) 6≤
CT (W ), the statements about S̄ and V2 follow from E.2.3. ¤

Lemma 13.2.5. If n = 5 then NG(Baum(T )) ≤M .

Proof. The lemma follows from 5.1.7. ¤

Lemma 13.2.6. If n = 5 then

(1) CT (v) ∈ Syl2(CG(v)) for v ∈ V2 − V1.
(2) Singular vectors of V are not fused in G to nonsingular vectors of V , so

that L controls fusion of involutions in V .

Proof. Let v ∈ V2−V1. By 13.2.4.2, v ∈ V2 ≤ CV (J(T )), so S := Baum(T ) ≤
Tv := CT (v); then S = Baum(Tv) by B.2.3.5. Let Tv ≤ T0 ∈ Syl2(CG(v)). Then
NT0(Tv) ≤ NT0(S) ≤M by 13.2.5, so as Tv ∈ Syl2(CM (v)), Tv = T0 and hence (1)
holds. Then (1) implies that v /∈ zG, where z is a singular vector in V , so that (2)
holds. ¤

Most of the remainder of the subsection is devoted to Theorem 13.2.7. This re-
sult assumes the hypothesis (*) below, which appears later as part (4) of Hypothesis
13.3.1.
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Theorem 13.2.7. Assume n = 5 and

L+/O2(L+) ∼= A5 for each L+ ∈ Lf (G, T ). (∗)

Then H∗(T,M) ⊆ CG(Z).

In the remainder of the section, we assume G is a counterexample to Theorem
13.2.7; thus there is H ∈ H∗(T,M) with H 6≤ CG(Z). Hence:

Conclusion (b) of 13.2.4.2 holds.

In particular, L̄T̄ ∼= S5 rather than A5. Let UH := 〈ZH〉, VH := [UH , H ], LH :=
O2(H), and H∗ := H/CH(UH). As H 6≤ CG(Z), by 5.1.7.2:

LH = [LH , J(T )] and L = [L, J(T )].

As LH = [LH , J(T )], we conclude from B.6.8.6d that [UH , J(T )] 6= 1 Therefore
S := Baum(T ) does not centralize UH , and UH is an FF-module for H∗. Let
Q := O2(LT ).

Lemma 13.2.8. (1) H is solvable.
(2) UH = VH ⊕ CZ(H).
(3) Either

(i) H∗ ∼= S3 and m(VH) = 2, or
(ii) H∗ = (H∗1 ×H∗2 )〈t

∗〉 ∼= S3 wr Z2 and VH = U1 ⊕ U2, where t
∗ is an

involution with H∗t1 = H∗2 , H
∗
1
∼= S3, and U1 := [UH , H

∗
1 ]
∼= E4.

(4) S∗ ∈ Syl2(H∗) in (3i), and J(T )∗ = S∗ ∈ Syl2(H∗1H
∗
2 ) in (3ii).

(5) S ∈ Syl2(LHS).
(6) Let E := Ω1(Z(J(T ))); set s := 1 and U1 := VH in case (i), and set s := 2

in case (ii). Then E = CE(LH)⊕E1 ⊕ · · · ⊕Es, where

Ei := 〈ei〉 = CUi(S)
∼= Z2.

Proof. Assume H is not solvable. Then LH is the product of T -conjugates
of members of Lf (G, T ), so by hypothesis (*), L∗H

∼= A5; indeed it follows from (*)
that LH ∈ L∗f (G, T ). But then n(H) > 1, so that the hypothesis of Theorem 5.2.3 is

satisfied. Conclusions (2) and (3) of 5.2.3 are ruled out by Hypothesis 12.2.3, while
conclusion (1) of 5.2.3 does not hold as LH 6≤ CG(Z). This contradiction establishes
part (1) of 13.2.8. Then as UH is an FF-module for H∗, we conclude from Theorem
B.5.6 and B.2.14 that (2) holds, and from E.2.3.2 that (3)–(6) hold. ¤

We now adopt the notation of 13.2.8.6. Two cases appear in 13.2.8.3: s = 1
and s = 2. When s = 2, define H∗i as in case (ii) of 13.2.8.3, and let Hi be the
preimage in H of H∗i .

Lemma 13.2.9. O2(H) = CH(UH). Thus LH/O2(LH) ∼= E3s .

Proof. Set Ḣ := H/O2(H) and J := kerH∩M (H). By 13.2.8 and B.6.8.2, L̇H
is a 3-group, J̇ = Φ(L̇H), and T is irreducible on L̇H/J̇ . As Φ(L

∗
H) = 1 by 13.2.8.3,

J = CH (UH). Thus we may assume that X := O2(J) 6= 1, and it remains to derive
a contradiction.

First X ≤ M = NG(L). If X centralizes L/O2(L), then L normalizes X =
O2(XO2(L)), so H ≤ NG(X) ≤M = !M(LT ), contrary to H 6≤M . Therefore L =
[L,X ]. Let R := O2(XT ). As XT = TX , X acts on T ∩ L, so R ∈ Syl2(LR). As
L = [L,X ], R induces inner automorphisms on L/O2(L), and J(R) = J(O2(LR)) E
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LT by 13.2.4.1, so NG(J(R)) ≤M . To complete the proof we showH acts on J(R),
contrary to H 6≤M .

Assume H does not act on J(R). Then O2(H) < R, so by E.2.1, LH ∼= Z3, E9,

of 31+2, and as Ẋ 6= 1, the last case must hold. Then byt 13.2.8.3, H∗ ∼= S3 wr Z2,
and as Ṙ = CṪ (Ẋ), Ṙ ∼= Z4. But then from the action of H∗ on UH , J(R) =
J(O2(H)), contrary to assumption. ¤

Lemma 13.2.10. If s = 2, then LH ∈ Ξ∗f (G, T ).

Proof. Assume s = 2. Then by 13.2.8.3 and 13.2.9, T is irreducible on
LH/O2(LH) ∼= E9, so that LH ∈ Ξ(G, T ). As [Z,LH ] 6= 1, LH ∈ Ξf (G, T ). Further
if LH ≤ L0 for some L0 := 〈LT+〉 with L+ ∈ L(G, T ), then L+ ∈ Lf (G, T ). There-
fore by hypothesis (*), L+/O2(L+) ∼= A5 and L+ ∈ L∗f (G, T ), so L0 = L+ since

conclusion (3) of Theorem 12.2.2 holds by Hypothesis 12.2.3; but this contradicts
m3(LH) = 2. Thus no such L0 exists, so by definition LH ∈ Ξ∗f (G, T ). ¤

Lemma 13.2.11. Assume Z(H) = 1. Then

(1) CT (L) = CT (LH) = CE(L) = CE(LH) = 1.

(2) J(T ) = S̄ = 〈(1, 2), (3, 4)〉 ∼= E4.
(3) s = 2, E = 〈e1,2, e3,4〉 = 〈e1, e2〉 ∼= E4, and Z = 〈e1e2〉 is of order 2, and

(interchanging H1 and H2 if necessary) we may take e1 = e1,2 and e2 = e3,4.
(4) T0 := NT (H1) = NT (H2) = CT (e1) = CT (e2) = QS = O2(H)S.
(5) L is not an A5-block.
(6) O2(H2) is not an A3-block.

Proof. As T acts on CE(LH) and Z(H) = 1, CE(LH) = 1 = CT (LH), and
hence E ∼= E2s by 13.2.8.

Next as we saw that L = [L, J(T )], (2) follows from 13.2.4.2. Thus V ∩ E
contains 〈e1,2, e3,4〉 ∼= E4, so as E ∼= E2s , we conclude s = 2 and E = V ∩ E ≤ V .
As Z ≤ E ≤ V , Z = CV (T ) has order 2 and is generated by z := e1,2e3,4. As
Z ≤ V , CT (L) = 1, completing the proof of (1). Further E = 〈e1,2, e3,4〉 = E1E2.
Then Z = 〈z〉 = 〈e1e2〉, so (3) holds. Most of the equalities in (4) are clear; observe
T0 = O2(H)S by 13.2.8.4, and T0 = QS by (2) and (3).

If L is an A5-block, then by C.1.13.c, Q = O2(LT ) = V ×CT (L). Thus Q = V
by (1). Now T̄0 = 〈(1, 2), (3, 4)〉 by (2) and (4), so as Q = V , T0 ∼= D8 ×D8. Thus
LHT0 ∼= S4 × S4, so O2(H2) =: K2 is an A3-block.

Therefore if (5) fails, then so does (6); so to prove both parts of the lemma, we
may assume that K2 is an A3-block. Thus K1 = Kt

2 is also an A3-block; and again
by C.1.13.c, Ki

∼= A4 and O2(H) = CT (LH) × VH . Thus O2(H) = VH by (1), so
H ∼= S4 wr Z2.

By 13.2.10, LH ∈ Ξ∗(G, T ), soM1 := NG(LH) = !M(H) by 1.3.7. As O2(H) =
VH = O2(LH), O2(H) = O2(M1) using A.1.6. Then as F ∗(M1) = O2(M1),
CM1(VH) = VH so that M1/VH ≤ GL(VH). Then as H/VH ∼= O+

4 (2) is a maximal
subgroup of L4(2) with Sylow group T/VH ∼= D8, we conclude that M1 = H . But
now Theorem 13.9.1 contradicts the simplicity of G. ¤

Set H0 := 〈H,L1〉.

Lemma 13.2.12. O2(H0) 6= 1.

Proof. Assume that O2(H0) = 1. Since L1 = O2(NL(T ∩ L)), we conclude
from 5.1.7.2iii that Z(H) = 1. Thus we can appeal to 13.2.11. In particular, by
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that lemma s = 2 and E = 〈e1, e2〉, where e1 = e1,2 and e2 = e3,4 are nonsingular.
Further T0 = CT (V2) ∈ Syl2(CG(e2)) by 13.2.6.1. Set K1 := O2(H1), K2 :=
O2(CL(e2)), Gi := KiT0, and G0 := 〈G1, G2〉. Then G0 ≤ CG(e2), so in particular
T0 ∈ Syl2(G0) and G0 is an SQTK-group. Therefore (G0, G1, G2) is a Goldschmidt
triple of Definition F.6.1 in section F.6, so we can appeal to results in that section.

Let X := O3′(G0), Ġ0 := G0/X , α := (Ġ1, Ṫ0, Ġ2), and Qi := O2(Gi). Observe
that K̄2 = 〈(1, 2), (1, 5)〉 and Q̄2 = 〈(3, 4)〉. Further X is 2-closed by F.6.11.1.

Suppose first that Q1 = Q2. By Theorem 4.3.2,M = !M(L), so asK1 6≤M , no
nontrivial characteristic subgroup of Q2 is normal in LQ2. On the other hand the
hypotheses of C.1.24 are satisfied with Q2 in the role of “R”, so L is an A5-block
by C.1.24, contrary to 13.2.11.5.

Therefore Q1 6= Q2. In particular α̇ is a Goldschmidt amalgam by F.6.11, so as
G0 is an SQTK-group, Ġ0 is described in Theorem F.6.18. Further by the previous
paragraph, case (1) of F.6.18 does not arise.

Suppose next that e1 ∈ O2(G0). ThenW := 〈eG0
1 〉 ≤ O2(G0). As the generator

z := e1e2 of Z lies inW 〈e2〉, NG(W 〈e2〉) ∈ He by 1.1.4.3, and hence A := NG(W )∩
CG(e2) ∈ He by 1.1.3.2. Then as T0 ∈ Syl2(A) since T0 ∈ Syl2(CG(e2)) and
T0 ≤ G0 ≤ A, we conclude G0 ∈ He by 1.1.4.4. As [Ki, e1] 6= 1, CGi(W ) ≤ Qi for
i = 1, 2, so CG0(W ) is 2-closed and solvable by F.6.8. Further as T0 ∈ Syl2(G0)
and e1 ∈ Z(T0), W ∈ R2(G0) by B.2.13. As K̄2 = 〈(1, 2), (1, 5)〉, it follows from
13.2.11.2 that K2 = [K2, J(T )] and J(T ) = J(T0). By 13.2.8.4, K1 = [K1, J(T )].
Therefore W is an FF-module for G∗0 := G0/CG0(W ) with K∗i = [K∗i , J(T0)

∗] 6= 1.

Assume first that Ġ0 satisfies one of conclusions (3)–(13) of F.6.18, and let

L0 := G∞0 and W0 := [W,L0]. Then from F.6.18, L̇0 is quasisimple, so as X
is 2-closed, L0 ∈ C(G0) by A.3.3. As we saw G0 ∈ He, L0 ∈ He by 1.1.3.1,

so that L0T0 ∈ He. By F.6.18, L̇0 contains K̇1 or K̇2; so as Ki = [Ki, J(T )],
L0 = [L0, J(T0)]. Hence L∗0J(T )

∗ is described in Theorem B.5.1. Comparing that

list with the list in F.6.18, we conclude that L̇0
∼= L3(2), Sp4(2)

′, G2(2)
′, or A7, and

W0/CW0(L0) is a natural module for L∗0, a 4-dimensional module for L∗0
∼= A7, or

the sum of two isomorphic natural modules for L∗0
∼= L3(2). In each case F.6.18 says

L0 = O2(G0), so Ki ≤ L0. Then the condition that neither K1 nor K2 centralizes
e1 ∈ CW (T0) eliminates all cases except the one where W0 is the natural module
for G∗0

∼= S7 and (in the notation of section B.3) for i := 1 or 2, G∗i is the stabilizer
of a partition of type 22, 3, while G∗3−i is the stabilizer of a partition of type 23, 1.
This is impossible, as in that case J(T )∗ = O2(G

∗
3−i), contrary to K∗j = [K∗j , J(T )]

for each j.
This contradiction shows that Ġ0 satisfies none of conclusions (3)–(13) of

F.6.18; as case (1) of F.6.18 was eliminated earlier, we conclude that case (2)

of F.6.18 holds. Therefore Ġ0
∼= S3 × S3 or E4/3

1+2. As W is an FF-module
for G∗0 and Ki = [Ki, J(T )] for i = 1 and 2, it follows from Theorem B.5.6 that
K∗i E G∗0

∼= L2(2) × L2(2), and W = [W,K1] ⊕ [W,K2], with [W,Ki] ∼= E4. Re-

call that K̄2 = 〈(1, 2), (1, 5)〉, so that as e1 = e1,2, 〈e
K2
1 〉 = 〈e1,2, e1,5〉 = [W,K2]

is a proper G0-invariant subgroup of W , whereas by definition W = 〈eG0
1 〉. This

contradiction finally eliminates the subcase e1 ∈ O2(G0).
So we turn to the remaining subcase e1 /∈ O2(G0). First CG(z) ∈ He by

1.1.4.3, so that C := CG(z) ∩ CG(e2) ∈ He by 1.1.3.2. Then as T0 ∈ Syl2(C)
since T0 ∈ Syl2(CG(e2)), we conclude from 1.1.4.4 that CG0(z) ∈ He. Hence
CO(G0)(z) ≤ O(CG0(z)) = 1.
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Next z = e1e2 = e1,2e3,4 generates Z, and as K̄2 = 〈(1, 2), (1, 5)〉, 〈zK2〉 =: F ∼=
E8, with each coset fE2 of E2 = 〈e2〉 = 〈e3,4〉 in F distinct from E2 containing
a K2-conjugate zf of z. Therefore CO(G0)(f) = CO(G0)(zf ) = 1 using the previ-
ous paragraph. Thus no hyperplane of F centralizes an element of O(G0), so by
Generation by Centralizers of Hyperplanes A.1.17, O(G0) = 1.

Now e1 ∈ Z(T0), so e1 centralizes O2(G0), but e1 /∈ O2(G0) by assumption.

Hence as O(G0) = 1, L0 = [L0, e1] for some component L0 of G0. Thus L̇0 = E(Ġ0)
is described in one of cases (3)–(13) of Theorem F.6.18. As [Ki, e1] 6= 1 for i = 1, 2,

and ė1 ∈ Z(Q̇i), K̇i does not centralize Z(Q̇i). Therefore Ġ0 must satisfy conclusion
(6) or (8) of F.6.18. But then Ki

∼= A4, contrary to 13.2.11.6.
This contradiction finally completes the proof of 13.2.12. ¤

By 13.2.12, H0 ∈ H(H). Let U := 〈ZH0〉, so that 〈ZH〉 = UH ≤ U , and let
H∗0 := H0/CH0(U).

Lemma 13.2.13. O2(H0/O3′(H0)) is not a 3-group.

Proof. Assume that O2(H0/O3′(H0)) is a 3-group. Then

O2(LH) ≤ O3′,3(H0) ∩ T ≤ CT (L1/O2(L1)) = O2(L1T ) = R1,

so R1 ∈ Syl2(R1LH). By 13.2.4.1, B := Baum(R1) = Baum(Q). Thus as LH 6≤M ,
J(R1) is not normal in R1LH , so as [Z,LH ] 6= 1, B ∈ Syl2(BLH) by E.2.3.2. Thus
Q ∈ Syl2(QLH), so by Theorem 3.1.1 applied to LT , Q in the roles of “M0”, “R”,
O2(〈LT,H〉) 6= 1, and hence we obtain our usual contradiction to H 6≤M . ¤

Lemma 13.2.14. s = 1.

Proof. Assume that s = 2. By 13.2.10, LH ∈ Ξ∗f (G, T ), so LH E H0 by

1.3.5. Therefore H0 = LHL1T = L1H . Recall we are in case (b) of 13.2.4.2, so
that [Z,L1] = 1, and hence U = 〈ZH0〉 = 〈ZL1H〉 = 〈ZH〉 = UH . By 13.2.8.6,
UH = U1 ⊕ U2 ⊕ CZ(H). Now L1 = O2(L1) fixes the two subgroups O2(Hi) with
image of index 3 in LH/O2(LH) such that CUH (LH) < CUH (O

2(Hi)) < UH . Hence
L1 acts on U1, U2, and CZ(H). Therefore as [Z,L1] = 1 and Hi induces GL(Ui)
on Ui, we conclude [UH , L1] = 1. Therefore [L1, LH ] ≤ CLH (UH) = O2(LH), so as
H0 = L1H , H0/O3′(H0) is a 3-group, contrary to 13.2.13. ¤

We are now ready to complete the proof of Theorem 13.2.7.
As s = 1 by 13.2.14, H/O2(H) ∼= S3 by 13.2.9. Hence (H0, L1T,H) is a

Goldschmidt triple. As O2(H0) 6= 1 by 13.2.12, H0 is an SQTK-group. Let Ḣ0 :=

H0/O3′(H0) and α := (L̇1Ṫ , Ṫ , Ḣ). By 13.2.13 and F.6.11.2, α is a Goldschmidt

amalgam; hence as H0 is an SQTK-group, Ḣ0 is described in Theorem F.6.18.
Let L0 := H∞0 . By 13.2.13, neither conclusion (1) nor (2) of F.6.18 holds, so

L̇0 is quasisimple and described in one of cases (3)–(13) of F.6.18. By F.6.11.1,
O3′(H0) is 2-closed, so L0 ∈ C(H0) by A.3.3. Thus L0 ∈ L(G, T ); so if [Z,L0] 6= 1,

then L0/O2(L0) ∼= A5 by hypothesis (*) of Theorem 13.2.7. As L̇0 is not A5 in
any of the conclusions of F.6.18, we conclude [Z,L0] = 1. Thus LH 6≤ L0, so case

(3) of F.6.18 holds; that is, O2(Ḣ0) = Ḋ × L̇0, where L̇0
∼= L2(q), q ≡ 11 or 13

mod 24, and Ḋ ∼= Z3. Let D be a Sylow 3-subgroup of the preimage of Ḋ which
permutes with T . Then D does not centralize Z as O2(H) = LH does not. Further

L̇1 ≤ CO2(Ḣ)(Z) = L̇0, so L̇1Ṫ ∼= D24 and L1/O2(L1) is inverted in CT (D). Thus
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we may choose D to permute with L1. Then [D,O2(DT )] ≤ O3′(H0) ∩ T ≤ R1, so
R1 is Sylow in R1D.

We argue as in the proof of 13.2.13: Assume that D 6≤ M . Then as R1 ∈
Syl2(R1D), B := Baum(R1) ∈ Syl2(BD) by E.2.3.2. But B = Baum(Q) by
13.2.4.1, so Q ∈ Syl2(QD). Then by Theorem 3.1.1 applied with Q, LT , DT
in the roles of “R, M0, H”, O2(〈LT,DT 〉) 6= 1, so that D ≤ M = !M(LT ),
contrary to our assumption that D 6≤ M . Therefore D ≤ M = NG(L). Now
as L1/O2(L1) is inverted in CT (D), D centralizes L/O2(L), so L acts on Y :=
O2(DO2(LT )) = 〈DT 〉, and hence NG(Y ) ≤M = !M(L) by Theorem 4.3.2. Then
L0 ≤ NH0(Y ) ≤ H0 ∩M , so H ≤ H0 = DL0T ≤M , for our usual contradiction to
H 6≤M .

This contradiction completes the proof of Theorem 13.2.7.

13.3. Starting mid-sized groups over F2, and eliminating U3(3)

In this section, with the preliminary results from sections 13.1 and 13.2 in hand,
we begin to treat those pairs L, V in the Fundamental Setup (3.2.1) which constitute
the main topic of the chapter: the pairs such that L/O2(L) is an intermediate-sized

group A5, A6, Â6, or U3(3) over F2. As in the previous chapter, we begin by stating
our working hypothesis for this chapter, which excludes the groups in the Main
Theorem which have arisen in previous sections. In particular, Hypothesis 13.3.1
extends Hypotheses 12.2.3 and 13.1.1. Each section treats one or more pairs L, V
in the FSU; the treatment of a given case assumes the existence of L ∈ Lf (G, T )
with L/CL(V ) of the given type.

We also recall, as mentioned in the introduction to the chapter, that to avoid
repetition of arguments, we treat the case L/O2(L) ∼= A5 simultaneously with the
other cases. However in the actual logical sequence, that case is the final one in
our treatment of the FSU, so we actually consider it only when all other groups
have been eliminated. This necessitates the assumption in part (4) of Hypothesis
13.3.1; the effect of this part of Hypothesis 13.3.1 is that we choose L ∈ Lf (G, T )
with L/O2(L) ∼= A5 only when we are forced to do so, because no other choice
is possible. Thus for the purposes of the proof of the Main Theorem, Hypothesis
13.3.1.4 and the results in this chapter which depend on it, are actually invoked
only when we reach that final case.

Thus in section 13.3 and indeed for the remainder of the chapter, we assume
the following hypothesis:

Hypothesis 13.3.1. (1) G is a simple QTKE-group, T ∈ Syl2(G), and L ∈
Lf (G, T ).

(2) G is not a group of Lie type over F2n , with n > 1.
(3) G is not L4(2), L5(2), A9, M22, M23, M24, He, or J4.
(4) If L/O2(L) ∼= A5, then K/O2(K) ∼= A5 for each K ∈ Lf (G, T ).

The next result describes the membersK of Lf (G, T ) which can arise under Hy-
pothesis 13.3.1; as in Remark 12.2.4 of the previous chapter, we can usually replace
our chosen pair L, V in the FSU byK,VK for some suitable VK ∈ Irr+(K,R2(KT )).

Lemma 13.3.2. If K ∈ Lf (G, T ), then

(1) K/O2(K) ∼= A5, L3(2), A6, Â6, or U3(3).
(2) K EKT and K ∈ L∗f (G, T ). Hence NG(K) = !M(KT ).
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(3) There is a T -invariant VK ∈ Irr+(K,R2(KT )) and further each member of
Irr+(K,R2(KT ), T ) is T -invariant. The pair K,VK satisfies the FSU and either
VK is the natural module for K/CK(VK) ∼= A5, A6, L3(2), or U3(3), or VK is the
5-dimensional core of a 6-dimensional permutation module for K/CK(VK) ∼= A6.

(4) Hypotheses 13.1.1, 12.2.1, and 12.2.3 are satisfied with K in the role of
“L”.

(5) Hypothesis 13.3.1 is satisfied with K in the role of “L” unless K/O2(K) is
A5 but L/O2(L) is not A5.

Proof. The initial argument is similar to that in 13.1.2: First K ≤ I ∈
L∗(G, T ), and by 1.2.9, I ∈ L∗f (G, T ). By Theorem 13.1.7, I/O2(I) is quasisimple,
soK = I by 13.1.2.5. Therefore Hypothesis 12.2.3 holds withK in the role of “L” by
13.1.2.1. Hence (4) is established. Furthermore parts (1)–(3) of Hypothesis 13.3.1
are satisfied by K in the role of “L’, so (5) also follows as part (4) of Hypothesis
13.3.1.4 is satisfied by K unless K/O2(K) is A5, but L/O2(L) is not.

Part (1) follows from 13.1.2.3. Further 13.1.2 says that K is T -invariant and
the first sentence of (3) holds. Then NG(K) = !M(KT ) by 1.2.7.3, completing the
proof of (2).

It remains to show VK is one of the modules described in (3). Theorem 12.2.2.3
supplies an initial list of possibilities for VK , and by Remark 12.2.4 the list of
12.2.2.3 can be refined using results from the previous chapter. If CVK (K) 6= 1,
then Theorem 12.4.2 rules out the indecomposables in cases (b) and (f) of 12.2.2.3,
leaving only case (d) with VK the core of a 6-dimensional permutation module for
K/CK(VK) ∼= A6. Otherwise CVK (K) = 1, so either VK is one of the natural

modules listed in 13.3.2.3, or VK is the 6-dimensional faithful module for Â6. The
last case is out by Theorem 12.7.1 and the exclusions in Hypothesis 13.3.1.3. ¤

Of course we may apply 13.3.2 to L in the role of “K”, so V ∈ Irr+(L,R2(LT ))
is T -invariant and V is one of the modules listed in 13.3.2.3. By 13.3.2, L satisfies
Hypothesis 12.2.3, so we may appeal to the results from the previous chapter, and
when L/CL(V ) ∼= A5 or A6 we may appeal to results from section 13.2 of this
chapter. We adopt the conventions in Notation 12.2.5 from the previous chapter.

We will refer to a module V which is the core of a 6-dimensional permutation
module for L/CL(V ) ∼= A6 as a 5-dimensional module for A6. In addition we adopt:

Notation 13.3.3. If L̄ ∼= L3(2), A5, or A6, define the T -invariant subspaces
Vi of V for 1 ≤ i ≤ dim(V/CV (L)) as in Notations 12.8.2 and 13.2.1. When L̄
is U3(3), V is the 6-dimensional module for L̄ regarded as G2(2)

′, which is the
quotient of the Weyl module discussed in [Asc87]; see also B.4.6. In particular, V
admits a symplectic form preserved by M̄V , so we can speak of nondegenerate and
totally isotropic subspaces of V . In this case, define Vi to be the unique T -invariant
subspace of V of dimension i. Notice that if CV (L) = 1, then m(Vi) = i in each
case.

In each case define Gi := NG(Vi), Mi := NM (Vi), and Li := O2(NL(Vi)).

When L/O2(L) is not Â6, define Ri := O2(LiT ). When L/O2(L) ∼= Â6, define Ri
L0, and Li,+ as in Notation 13.2.1.

Lemma 13.3.4. (1) V1 = Z ∩ V .
(2) V = 〈(Z ∩ V )L〉.
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(3) The proper overgroups of T̄ in L̄T̄ = AutG(L̄) are L̄1T̄ and L̄2T—except
when L̄ ∼= A5, when only L̄1T̄ occurs. In particular, all proper overgroups of T in
LT are {2, 3}-groups.

(4) Statements analogous to (1)–(3) hold for any K ∈ Lf (G, T ) and VK ∈
Irr+(KT,R2(KT ), T ) in the roles of “L, V ”.

Proof. Part (1) follows from an inspection of the modules listed in 13.3.2.3.
Then (2) follows since V ∈ Irr+(LT,R2(LT )). Part (3) follows from the well-
known fact that the overgroups of T in an untwisted group of Lie type over F2

are parabolics, and as Out(L̄) is a 2-group. Finally (4) follows since 13.3.2.3 also
applies to each K and VK . ¤

As usual in the FSU, by 3.3.2.4, we may apply the results of section B.6 to
members H ∈ H∗(T,M). Recall that for v ∈ V #, Gv = CG(v) in Notation 12.2.5.3.

Lemma 13.3.5. (1) If L̄ ∼= L3(2) or U3(3) then Gv 6≤M for each v ∈ V #.
(2) If L̄ ∼= A5 then H∗(T,M) ⊆ CG(Z), so Gz 6≤M for z generating Z ∩ V =

V1.
(3) If L̄ ∼= A6, then Gv 6≤M for some v ∈ V1 − CV (L).

Proof. As Hypothesis 13.3.1 excludes the groups in conclusions (2)–(4) of
Theorem 12.2.13, conclusion (1) of that result holds: namely Gv 6≤ M for some
v ∈ V #. Next V is described in 13.3.2.3. In particular CV (L) = 1 unless V is a 5-
dimensional module for L̄ ∼= A6, and L is transitive on (V/CV (L))

# unless L̄ ∼= A5.
Therefore (1) holds, and if L̄ is A6, then Gv 6≤ M for some v ∈ V1. Further if
CV (L) 6= 1, then CV (L) ≤ Z(LT ), so as M = !M(LT ), (3) holds. Finally when
L̄ ∼= A5, H∗(T,M) ⊆ CG(Z) by 13.2.7. Then as Z ∩ V = V1 by 13.3.4.1, Gz 6≤ M
for z generating Z ∩ V , so (2) holds. ¤

By 13.3.5:

Lemma 13.3.6. Either G1 6≤ M , or CV (L) 6= 1 so that V is a 5-dimensional
module for L̄ ∼= A6.

As usual we let θ(X) denote the subgroup generated by all elements of order 3
in a group X .

Lemma 13.3.7. Assume L̄ ∼= A6. Then either

(1) CG(V ) is a 3′-group, or

(2) L/O2(L) ∼= Â6, m3(CG(V )) = 1, and L0 = θ(CG(V )).

Proof. Let D := θ(CG(V )) and P ∈ Syl3(CG(V )). Recall that we may apply

12.2.8; then θ(M) = L so that D ≤ L, and hence either D = 1, or L/O2(L) ∼= Â6

with D = θ(CL(V )) = L0. In the first case, conclusion (1) holds. In the second, as
Ω1(P ) ≤ D = L0, Ω1(P ) is of order 3, so conclusion (2) holds. Thus the lemma is
established. ¤

Lemma 13.3.8. Assume K ∈ Lf (G, T ), let MK := NG(K), and assume H ∈
H(T,MK) and Y = O2(Y ) E H with Y ≤MK . Then

(1) K 6≤ Y CMK (K/O2(K)).
(2) Y is a {2, 3}-group.
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Proof. As K ∈ Lf (G, T ), MK = !M(KT ) by 13.3.2.2,; then as H 6≤MK ,

O2(〈K,H〉) = 1. (∗)

Let M∗
K := MK/CMK (K/O2(K)). As K/O2(K) is quasisimple and T ≤ MK ,

K = [K,T ∩K]. Suppose (1) fails, so that K∗ ≤ Y ∗. Then K∗ = [K∗, (T ∩K)∗] =
[Y ∗, (T ∩ K)∗] = [Y, T ∩ K]∗, and as Y is T -invariant, [Y, T ∩ K] ≤ Y . Thus
K = (K∩Y )O2(K), so as T acts on Y , K ≤ Y ≤ H , contrary to (*) as O2(H) 6= 1.
Thus (1) holds.

Let Y0 := O{2,3}(Y ); then Y ∗0 < M∗
K by (1). But by 13.3.4, the proper over-

groups of T ∗ in M∗
K = AutG(K

∗) are {2, 3}-groups, so we conclude that Y ∗0 = 1.

Then Y0 ≤ CG(K/O2(K)), so K normalizes O{2,3}(Y0O2(K)) = Y0. However if
Y0 6= 1, then O2(Y0) 6= 1 by 1.1.3.1, contrary to (*). Thus (2) holds. ¤

Lemma 13.3.9. Assume L̄ ∼= A6, H ∈ H(T,M), and Y = O2(Y ) E H with
Y ≤ CM (v) for some v ∈ V1 − CV (L). Then either

(1) Y = 1, or

(2) Ȳ = L̄1. Further if L/O2(L) ∼= A6 then Y = L1, while if L/O2(L) ∼= Â6

then Y = L1,+.

Proof. As in the proof of the previous lemma, with L in the role of “K”,

O2(〈L,H〉) = 1. (∗)

By hypothesis Y = O2(Y ), and as Y centralizes v, Y ≤ MV by 12.2.6. Therefore
Ȳ ≤ O2(M̄V ) = L̄ by 12.2.10.2; and by 13.3.8.1, Ȳ < L̄. By 13.3.8.2, Y is a
{2, 3}-group. By 1.1.3.1, O2(Y ) 6= 1.

If Ȳ = 1, then L normalizes O2(Y O2(L)) = Y , and hence (1) holds by (*).
Thus we may assume that Ȳ 6= 1, so that Ȳ = L̄i for i = 1 or 2 by 13.3.4.3. Then
as Y centralizes v, i = 1. Further Y1 := θ(Y ) ≤ θ(M) = L by 12.2.8, so Y1 ≤ L1.

Suppose first that CY1(V ) 6≤ O2(Y1). Then by 13.3.7, L/O2(L) ∼= Â6 and
L0 ≤ Y1. Now L0 ≤ Y1 ≤ L1, so Y1 = L0 orL1, and in either caseH ≤ NG(Y1) ≤M
by 13.2.2.9, contrary to (*). Therefore CY1(V ) ≤ O2(Y1). So as Y is a {2, 3}-
group, CY (V ) ≤ O2(Y ), and hence Ȳ = Ȳ1 is of order 3. Therefore Y = Y1 and
|Y : O2(Y )| = 3, so (2) holds. ¤

Lemma 13.3.10. (1) If L̄ ∼= A5 then J(R1) = J(O2(LT )), B := Baum(R1) =
Baum(O2(LT )), and C(G,B) ≤M .

(2) If L̄ ∼= A6 or U3(3) then either there is a nontrivial characteristic subgroup
of B := Baum(R1) normal in LT (so that NG(B) ≤M), or L is an A6-block or a
G2(2)-block. Moreover if L is a G2(2)-block, then NG(B) ≤M .

(3) If L̄ ∼= A6 then either some nontrivial characteristic subgroup of B :=
Baum((T ∩ L)O2(LT )) is normal in LT (so that NG(B) ≤ M), or L is an A6-
block.

(4) If L̄ ∼= L3(2), then either some nontrivial characteristic subgroup of B :=
Baum(R1) is normal in LT (so that NG(B) ≤M), or L is an L3(2)-block.

Proof. Part (1) follows from 13.2.4.1, and part (3) follows from case (b) of

C.1.24; L is not a Â6-block since V/CV (L) is the A6-module by 13.3.2.3. Similarly
the first sentence in (2) follows from 13.2.2 when L̄ ∼= A6, and from C.1.37 when
L̄ ∼= U3(3). When L̄ ∼= L3(2), C.1.37 also establishes (4).

Thus it only remains to establish the final sentence of (2), so we assume that
L is a G2(2)-block, but that NG(B) 6≤M , and it remains to derive a contradiction.
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We check that Hypothesis C.6.2 is satisfied, with L, B, T , LT , NG(B) in the roles
of “L, R, TH , H , Λ”: For example C.6.2.3 holds, since M = !M(LT ). The only
part of Hypothesis C.6.2 which is not evident is that Q := O2(LB) ≤ B, and
this was established during the proof of C.1.37 using Baumann’s Argument B.2.18.
Thus we may apply C.6.3.1 to conclude that there exists x ∈ NG(B) with V x 6≤ Q.
Now reversing the roles of V and V x if necessary, we may assume that m(V̄ x) ≥
m(V/CV (V

x)). Further since T̄ contains no strong FF∗-offenders on V by B.4.6.13,
B.2.4.3 says V ≤ B, so that V x ≤ B ≤ R1. Also by B.1.4.6, V̄ x ∈ P(R̄1, V ); then by

parts (13) and (3) of B.4.6, we have the hypotheses of B.2.20, so V̄ x = J(R1) = B̄
is the unique member B̄ of P(R̄1, V ), and m(V/CV (V

x)) = m(B̄).
Next since CV (L) = 1 by 13.3.2.3,

m(V/CV (V
x)) = 3 = m(B̄) = m(B/CB(V )) = m(B/CB(V

x)) = m(V )/2.

Therefore as L̄ ≤ 〈B̄, B̄l〉 for suitable l ∈ L, L ≤ 〈V x, V xl, V 〉, and

m(Q/(CQ(V
x) ∩ CQ(V

xl)) ≤ 2m(B/CB(V
x)) = m(V ).

Hence Q = V × CB(〈V x, V xl〉) = V × CB(L), and in particular V x centralizes
CB(L). Also E8

∼= [V, V x] ≤ V ∩ V x, so as m(V̄ x) = 3, CV x(V ) = V ∩ V x. Then
|V xCB(L)| = |V CB(L)| = |CB(V )| and hence CB(V

x) = V x × CB(L). Therefore
as x ∈ NG(B),

Φ(CB(L)) = Φ(CB(V
x)) = Φ(CB(V ))x = Φ(CB(L))

x.

Thus if Φ(CB(L) 6= 1, then x ∈ NG(Φ(CB(L)) ≤ M = !M(LT ); but then as
M = NG(L), V

x ≤ O2(L) ≤ O2(LB) = Q, contrary to the choice of x. Therefore
Φ(CB(L)) = 1, so that CB(V ) = Q is elementary abelian; and then A(B) =
{Q,Qx} is of order 2 by B.2.21 using B.4.6.6. Hence O2(NG(B)) ≤ NG(Q) ≤
M , and then NG(B) = O2(NG(B))T ≤ M , contrary to our assumption. This
contradiction completes the proof of (2), and hence of 13.3.10. ¤

Lemma 13.3.11. Assume L̄ ∼= A5. Then

(1) For each v ∈ V #, {U ∈ V G : v ∈ U} = V Gv .
(2) V L2 = V G2 ∩ V and V L3 = V G3 ∩ V .
(3) V is the unique member of V G containing V3.
(4) V G2 = {U ∈ V G : V2 ≤ U}.
(5) If g ∈ G with [V3, V

g
3 ] = 1, then [V, V g] = 1.

Proof. Part (1) follows from 13.2.6.2 and A.1.7.1. As V L
k , k = 2, 3, are the

unique classes of subgroups of V of rank k containing a unique singular point,
13.2.6.2 also implies (2). Then (2) and A.1.7.1 imply (4), as well as the analogous
statement for V3 and G3. Thus as G3 ≤MV by 13.2.3.2, (3) holds. If [V3, V

g
3 ] = 1,

then by (3), V g3 acts on V . Therefore as CM̄V
(V3) = 1, V ≤ CG(V

g
3 ) ≤ NG(V

g)
again using (3), so that V ≤ CG(V

g) again using CM̄V
(V3) = 1. Thus (5) holds. ¤

Lemma 13.3.12. Assume L̄ ∼= U3(3). Then

(1) s(G, V ) > 1.
(2) If U ≤ V with CG(U) 6≤M , then U is totally isotropic. Hence r(G, V ) ≥ 3.
(3) If r(G, V ) = 3, then CG(V3) 6≤M .
(4) If g ∈ G with 1 6= [V, V g] ≤ V ∩V g, then V ∩V g = [V, V g ] = CV (V

g) ∈ V G3 ,
and we may take g ∈ CG(V ∩ V g), so that CG(V3) 6≤M .
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Proof. Recall V is a TI-set in M by 12.2.6, so Hypothesis E.6.1 is satisfied,
and for 1 6= U ≤ V , CM (U) ≤ MV . By parts (4)–(6) of B.4.6, m(M̄V , V ) > 1,
so CM (W ) = CM (V ) for each hyperplane W of V . Further the hyperplanes of V
are of the form v⊥ for v ∈ V #, so as L is transitive on V #, L is transitive on
hyperplanes. Hence each hyperplane is invariant under a Sylow 2-subgroup of LT ,
so that r(G, V ) > 1 by E.6.13. Hence (1) is established.

Next we establish some preliminary results, phrased in terms of the usual ge-
ometry of points and lines on V : From section 5 in [Asc87], we can identify the
points and lines of the generalized hexagon of Ḡ0 := NGL(V )(L̄) ∼= G2(2) with
the points and doubly singular lines of V (i.e., totally isotropic as well as singu-
lar in the Dickson trilinear form; see p. 194 of [Asc87]). By 5.1 in [Asc87],
Ḡ0 is transitive on nondegenerate lines of V , and each such line l is generated
by a pair u, v of points opposite (i.e., at maximal distance) in the hexagon. Now
NḠ0

(l) = H̄1 × H̄2, where H̄1 := CḠ0
(l) = CḠ0

(u) ∩ CḠ0
(v) ∼= S3 by F.4.5.5, and

H̄2 := CḠ0
(H̄1) ∼= S3 acts faithfully on l. Further H̄1H̄2 acts faithfully on the

4-space l⊥, with l⊥ = [l⊥, O2(Hi)]. Now NM̄V
(l) is of index 1 or 2 in NḠ0

(l) in the

cases M̄V = Ḡ0 or L̄, respectively. In particular Q := O2(LT ) is of index at most
2 in TH := CT (l), so J(TH) = J(Q) in view of B.4.6.13. Further Q = O2(K1TH),
where K1 := O2(H1), and K2 := O2(H2) induces Z3 on l. Set H := CG(l), so that
TH ∈ Syl2(H ∩M). As NG(Q) ≤ M = !M(LT ), C(H,Q) ≤ H ∩M =: MH . In
particular as J(TH) = J(Q), NT (TH) ≤MH , so that TH ∈ Syl2(H). It also follows
as K1 ≤MH that Q = O2(MH) = O2(NH(Q)). Thus Hypothesis C.2.3 is satisfied
with Q in the role of “R”.

We are now ready to establish our main preliminary result: we claim that
H = CG(l) ≤M . So we assume that H 6≤M , and derive a contradiction. Observe
first that as l contains 2-central involutions, H ∈ He by 1.1.4.3. Next Q is Sylow
in O2,F (H)Q by C.2.6.1, and as M = !M(LT ),

NH(W0(Q, V )) ≤MH ≥ CH(C1(Q, V )).

Hence as n(O2,F (H)) = 1 by E.1.13, O2,F (H) ≤M by (1) and E.3.19. On the other
hand, if O2,F∗(H) ≤ MH , then O2(H) = Q by A.4.4.1; thus H ≤ NG(Q) ≤ M ,
contrary to our assumption.

This contradiction shows that there is K ∈ C(H) with K/O2(K) quasisim-
ple, and K 6≤ M . By 1.1.3.1, K ∈ He. Suppose first that Q 6≤ NH(K). Then
C.2.4.2 shows that Q ∩ K ∈ Syl2(K), and as K 6≤ M , C.2.4.1 then shows that
K is a χ0-block. In particular m3(K) = 1 and hence m3(〈K

Q〉) = 2. But then
m3(K2〈KQ〉) ≥ 3, contrary to NG(l) an SQTK-group.

Therefore Q ≤ NG(K), so that K is described in C.2.7.3. Notice if case (g) of
C.2.7.3 occurs with n even, then we are in one of cases (1)–(4) of C.1.34, in which
Z(O2(K)) is the sum of at most two natural modules for K/O2(K) ∼= SL3(2

n);
this case is ruled out by A.3.19 as K2 6≤ K. The remaining cases of C.2.7.3 where
m3(K) = 2 are eliminated by A.3.18 as K2 6≤ K. Thus m3(K) = 1. Also K is not
an A5-block as MH contains the Sylow 2-group TH of H . Thus inspecting C.2.7.3,
one of the following holds:

(i) K is an L2(2
m)-block, Q is Sylow in KQ, and MK := MH ∩K is a Borel

subgroup of K.
(ii) K/O2(K) ∼= L3(2

n), n odd, MK is a maximal parabolic of K, and K is
described in C.1.34.
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FurthermoreO3′(H) = K, again using the fact thatm3(K2O
3′(H)) ≤ m3(NG(l)) =

2. ThusK1 ≤ K, so asK1 E MH , we conclude n = 1 in case (ii). NextK1 = [K1, t]
for some t ∈ NT∩L(l). Thus ifK is an L2(2

m)-block, t induces a field automorphism
on K/O2(K) and [MK , t] ≤ CL(l), so [MK , t] is a {2, 3}-group; we conclude in case
(i) that K is an L2(4)-block.

Next

E16
∼= l⊥ = [l⊥,K1] ≤ Z(Q) = Z(O2(K1TH)). (∗)

Assume K/O2(K) ∼= L3(2). Then by (*), case (2) of C.1.34 occurs, with O2(K) the
direct sum of two isomorphic natural modules for K/O2(K). Hence K1 has exactly
three noncentral 2-chief factors, two of which are in l⊥ ≤ V . Thus as O2(K̄1) = 1,
K1 has one noncentral chief factor on Q/V , impossible as K1 has more than one
noncentral chief factor on each nontrivial irreducible on Q/V under L̄ ∼= U3(3).

ThereforeK is an L2(4)-block, andQ is Sylow inQK. Now Z(Q) ≤ CKQ(O2(KQ)) =
Z(O2(KQ)) as KQ ∈ He. Hence

E16
∼= l⊥ = [l⊥,K1] ≤ [Z(Q),K1] ≤ Z(Q) ∩ U(K).

However this is impossible as K1 has at most one noncentral chief factor on Z(Q)∩
U(K), since Q ∈ Syl2(KQ) and K is an L2(4)-block. This contradiction finally
establishes the claim that H = CG(l) ≤M .

Now (2) follows directly from the claim. Further if r(G, V ) = 3, then there is
a totally isotropic 3-subspace U of V with CG(U) 6≤ M . By 7.3.3 in [Asc87], L
has two orbits on such subspaces, represented by V3 and Y where NM̄V

(Y ) ∼= L3(2)
is faithful on Y . Thus CM (Y ) = CM (V ), so as r(G, V ) > 1 by (1), we conclude
CG(Y ) ≤M by E.6.12. So U ∈ V L3 , and (3) follows.

Assume the hypotheses of (4). Then interchanging V and V g if necessary, we
may assume m(V̄ g) ≥ m(V/CV (V

g)). We apply B.4.6.13 much as in the proof
of 13.3.10: First T̄ contains no strong FF∗-offenders, so that V̄ g ∈ P(T̄ , V ) by
B.1.4.6; then there is a unique conjugacy class of FF∗-offenders in L̄T̄ represented
by the subgroup “A1” of that lemma, so we may assume that V̄ g = A1 and hence
CV (V

g) = [V, V g ] ∈ V G3 . Thus we may take V3 = [V, V g]. By hypothesis, [V, V g ] ≤
V ∩ V g , and V ∩ V g ≤ CV (V

g) = V3, so V3 = V ∩ V g . Also m(V/(V ∩ V g)) = 3 =

m(V g/(V ∩V g)), so we have symmetry between V and V g . We conclude V3 ∈ V
gLg

3 ,
and hence we may take g ∈ G3. Let U5 be the preimage in V g of V̄ g ∩ L̄. By (3)
and (4) of B.4.6,

U5 = {u ∈ V
g : CV (u) > V3}

and similarly

V5 = V ⊥1 = {v ∈ V : CV g (v) > V3},

so U5 ∈ V
gNLg (V3)
5 , and hence we may take V g5 = U5. Then as V1 = [U5, V5],

V g1 = V1, so g ∈ G1 ∩ G3. But AutLT (V3) is the stabilizer in GL(V3) of V1, so
G1 ∩ G3 = NLT (V3)CG(V3). Then as LT normalizes V , we may take g ∈ CG(V3),
and hence CG(V3) 6≤ M as CM (V3) ≤ MV by 12.2.6. This completes the proof of
(4). ¤

During the remainder of this subsection, we will assume the following hypoth-
esis:

Hypothesis 13.3.13. CV (L) = 1, so that V is not a 5-dimensional module

when L̂ ∼= A6. Set Q1 := O2(G1).



13.3. STARTING MID-SIZED GROUPS OVER F2, AND ELIMINATING U3(3) 891

We recall from Notation 13.3.3 that since CV (L) = 1 by Hypothesis 13.3.13,
we have m(Vi) = i. In particular by 13.3.4.1, V1 = Z ∩ V is of order 2, and from

13.3.2,3, V3 = [V3, L1] = 〈V
L1
2 〉. Also G1 = NG(V1) = CG(V1) and G1 ∈ He as G is

of even characteristic.

Lemma 13.3.14. Assume Hypothesis 13.3.13. Then Q1 does not centralize V2.

Proof. We assume that [V2, Q1] = 1 and derive a contradiction. The bulk of
the proof proceeds by a series of reductions labeled (a)–(g).

Set U := 〈V G1
3 〉 and G∗1 := G1/Q1. Set L+ := L1,+ if L/O2(L) ∼= Â6, and

L+ := L1 otherwise. Then O2(L+T ) = R1 is of index 2 in T , and as V3 = [V3, L1] =

〈V L1
2 〉, V3 = [V3, L+] = 〈V

L+

2 〉.
Observe that Hypothesis G.2.1 is satisfied with V3, G1, L+ in the roles of “V ,

H , L”. Therefore by G.2.2.1, U ≤ Q1. As V3 = 〈V
L+

2 〉, U = 〈V G1
2 〉. Then as

[V2, Q1] = 1:

(a) U ≤ Ω1(Z(Q1)).

Observe that as CV (L) = 1 by Hypothesis 13.3.13, G1 6≤ M by 13.3.6. Set
Y := O2(CG(U)). Then Y ≤ CG(V3) ≤ CG(V2) ≤ G1. Also Y E G1, and
Y ∩M ≤MV by 12.2.6.

(b) Y is solvable with mp(Y ) ≤ 1 for each odd prime p.

For if Y = 1 then certainly (b) holds, so we may assume Y 6= 1. Consider any T -
invariant subgroup Y0 = O2(Y0) of Y ∩M . As CM̄V

(V3) is a 2-group, Y0 centralizes
V . Then [L, Y0] ≤ CL(V ) = O2,Z(L), so L = L∞ centralizes Y0O2(L)/O2(L).
Hence as Y0 is T -invariant, L acts on O2(Y0O2(L)) = Y0. Therefore if Y0 6= 1, then
NG(Y0) ≤M = !M(LT ). In particular Y 6≤M , as otherwise G1 ≤ NG(Y ) ≤M .

Now if L̄ ∼= L3(2), then V = V3 ≤ U , so Y ≤ CG(U) ≤ CG(V3) = CG(V ) ≤M ,
contrary to the previous paragraph. Similarly if L̄ ∼= A5, then CG(V3) ≤ M by
13.2.3.2, for the same contradiction. Therefore we may assume that L̄ is A6 or
U3(3).

Let g ∈ L2 − G1 be of order 3. Then m(V3V
g
3 ) = 4, so V3V

g
3 = V if L̄ ∼= A6,

and V3V
g
3 is not totally isotropic if L̄ is U3(3). In the latter case CG(V3V

g
3 ) ≤ M

by 13.3.12.2, while if L̄ is A6, then CG(V3V
g
3 ) = CG(V ) ≤ M . So in either case,

CG(V3V
g
3 ) ≤M .

Set Y1 := O2(Y ∩ Y g) and YM := O2(Y ∩M). Then Y1 ≤ CG(V3V
g
3 ) ≤M , so

Y1 ≤ YM . Further Y centralizes V2, so Y ≤ Gg1 ≤ NG(Y
g), and hence Y1 E Y ;

then by symmetry, Y1 E Y g . Next T ≤ M1 ≤ NG(YM ), so using YM in the role
of “Y0” above, L acts on YM and NG(YM ) ≤ M ; hence YM = Y gM ≤ Y1 as g ∈ L2.
We conclude YM = Y1, so if Y1 6= 1, then Y ≤ NG(Y1) ≤ M , contrary to the first
paragraph. Therefore Y1 = 1, so that Y ∩ Y g is a 2-group.

Set Ĝ2 := G2/O2(G2). As Y E G1 while CG(V2) ≤ G1, Y E CG(V2), so that
O2(Y ) ≤ O2(G2), and hence Y+ := 〈Y, Y g〉 E CG(V2). Then as Y and Y g are

normal in Y+, and Y ∩ Y g is a 2-group normal in Y+, Ŷ+ = Ŷ × Ŷ g .
Therefore sinceG2 is an SQTK-group,mp(Y ) = 1 for each odd prime p. Further

if Y is not solvable, then by 1.2.1.1, there is K ∈ C(Y ), and as Y E G2, K ∈ C(G2).
Then as g is of order 3, g acts on K by 1.2.1.3, contradicting Y ∩ Y g a 2-group.
This contradiction completes the proof of (b).

(c) O2(L
∗
+) 6= 1.
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If O2(L
∗
+) = 1, then O2(L+) ≤ Q1 ≤ CG(V3) by (a), impossible as L+ induces

A4 on V3/V1.

(d) O2(L
∗
+) centralizes F (G

∗
1).

Assume O2(L
∗
+) is nontrivial on Op(G

∗
1) for some odd prime p. Then as

L+/O2(L+) has order 3, AutO2(L+)(Op(G
∗
1)) is noncyclic, so by A.1.21 and A.1.25,

there is a noncyclic supercritical subgroup P ∗ of Op(G
∗
1) such that P ∗ ∼= Ep2 or p

1+2

and Aut(P ∗)/Op(Aut(P
∗)) is a subgroup of GL2(p). Hence AutL+(P

∗) ∼= SL2(3).
Let P := O2(P+), where P+ is the preimage of P ∗ in G1. Then PL+T =: H ∈
H(T ) ∩G1. Further as L+ is normal in M1 but L+ is not P -invariant, P 6≤M .

As AutL+(P
∗) ∼= SL2(3), P ∈ Ξ(G, T ) with AutT∩L+(P

∗) ∼= Q8. Also [U, P ] 6=
1 as mp(Y ) = 1 by (b). Since U ≤ Ω1(Z(Q1)) by (a), P ∈ Ξf (G, T ) by an
application of A.4.9 to P , G1 in the roles of “X , M”. Assume P ≤ 〈KT 〉 for
some K ∈ C(G, T ) with K/O2(K) quasisimple. Then 〈KT 〉 is described in 1.3.4.
Further K ∈ Lf (G, T ) by 1.3.9.2, so K = 〈KT 〉 by 13.3.2.2, and K/O2(K) is
described in 13.3.2.1. As the lists in 1.3.4 and 13.3.2.1 do not intersect, there is no
such K, so P ∈ Ξ∗f (G, T ). Then by 3.2.13, P ∈ Ξ−(G, T ). Since AutG(P/O2(P ))

involves SL2(3) which is not a {2, 5}-group, we conclude from Definition 3.2.12
that P is a {2, 3}-group, so that p = 3. As m3(PL+) ≤ 2 with AutL+(P

∗) ∼=
SL2(3), we conclude P/O2(P ) ∼= P ∗ ∼= E9 rather than 31+2. Let W := R2(PT );
as AutT (P

∗) ∼= Q8, we conclude from D.2.17 that q̂(AutPT (W ),W ) > 2. However
NG(P ) = !M(PT ) by Theorem 1.3.7, so that we may apply Theorem 3.1.8.1 to P ,
W in the roles of “L0, V ” to obtain q̂(AutPT (W ),W ) ≤ 2, contrary to the previous
observation. This contradiction completes the proof of (d).

Since O2(G
∗
1) = 1, (c) and (d) say there is K ∈ C(G1) with K

∗ a component of
G∗1 and [K∗, O2(L

∗
+)] 6= 1. By 1.2.1.3, L+ = O2(L+) normalizes K. In particular,

K/O2(K) is quasisimple and K = [K,L+].

(e) K ∈ L∗f (G, T ), G1 ≤ NG(K) = !M(KT ), L 6≤ NG(K), and K 6≤M .

First [U,K] 6= 1 by (b), so using (a) and A.4.9 as in the proof of (d), K ∈
Lf (G, T ). Then by 13.3.2.2, K ∈ L∗f (G, T ), K E KT , and G1 ≤ NG(K) =

!M(KT ). As G1 6≤ M , NG(K) 6= M . So as M = !M(LT ), L 6≤ NG(K), and as
NG(K) = !M(KT ), K 6≤M , completing the proof of (e).

If L2 ≤ NG(K), then L = 〈L1, L2〉 ≤ NG(K), contrary to (e). So:

(f) L2 6≤ NG(K).

As L2 6≤ NG(K) ≥ CG(Z) by (e) and (f), L2T contains someH ∈ H∗(T,NG(K)),
and H 6≤ CG(Z). By (e), K ∈ L∗f (G, T ), and we saw K/O2(K) is quasisimple, so

O2(KT ) = CT (R2(KT )) by 1.4.1.4b. Then applying 3.1.8.3 to K, R2(KT ) in the
roles of “L, V ”, K = [K, J(T )]. Set J := KL+T , W := R2(J), J

+ := J/CJ (W ),
and WK := [W,K]. Then R2(KT ) ≤ W by A.1.11, so that Irr+(K,R2(KT )) ⊆
Irr+(K,WK). Now K/O2(K) is described in 13.3.2.1, and the members of the set
Irr+(KT,R2(KT ), T ) are described in 13.3.2.3. Thus applying Theorem B.5.6 to
the FF-module WK for J , we conclude that either WK ∈ Irr+(KT,R2(KT ), T ) or
K/O2(K) ∼= L3(2) and WK is the sum of two isomorphic natural modules.

(g) L+ 6≤ K.

Assume that that L+ ≤ K. Define V (K) as in Definition A.4.7, and set Ĵ :=
J/CJ(V (K)). By (a) and A.4.8.4, V3 = [V3, L+] ≤ [Ω1(Z(Q1)),K] ≤ V (K). Let X

be of order 3 in L+ and set QJ := O2(J). By A.4.8.1, Q̂J centralizes X̂. Thus by
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the Thompson A×B-Lemma, X is faithful on CV3(QJ), so QJ centralizes V3. Now
by A.4.8.4, V3 ≤ WK , so 1 6= V1 ≤ CWK (K). However we saw that either WK ∈
Irr+(KT,R2(KT ), T ) and so is described in 13.3.2.3, or WK is the sum of natural
modules for K/O2(K) ∼= L3(2). Thus as CWK (K) 6= 1, WK is a 5-dimensional

module for K+ ∼= A6. Therefore A4
∼= L+

+ ≤ K̂+ and V3/V1 is an L+-invariant line
in WK/V1, with [V3, O2(L+)] = V1, whereas in the 5-dimensional module WK , the
preimage of such a line is centralized by O2(L

+
+). This contradiction establishes

(g).

Now as L+ 6≤ K by (g), but m3(KL+) ≤ 2, A.3.18 eliminates the possibilities
for K/O2(K) of 3-rank 2 in 13.3.2.1. Thus m3(K) = 1, so that K+ ∼= A5 or L3(2).
As L+ 6≤ K = [K,L+], and Out(K

+) is a 2-group, L+ is diagonally embedded in
LKLC , where LC := CKL+(K/O2(K)) and LK = O2(LK) is the projection of L+

on K. But if K/O2(K) ∼= L3(2), then LK = [LK , T ∩ K], contrary to the fact
that L+ is T -invariant. Thus K/O2(K) ∼= A5, and from earlier discussion WK is
the A5-module. Then as L+

K 6= 1, LKT = (T ∩K)O2(KT ), so as R1 = O2(L+T )
is of index 2 in T , R1 = (T ∩ K)O2(KT ). Since K satisfies Hypothesis 12.2.3
by 13.3.2.4, we may apply 13.2.4.1 with K in the role of “L to conclude that
C(G,Baum(R1)) ≤ NG(K). It follows as K 6≤M by (e) that NG(Baum(R1)) 6≤M .
Therefore by 13.3.10, L is an L3(2)-block or an A6-block, and in either case L+ has
exactly two noncentral 2-chief factors.

As WK is the A5-module, EndK(WK) = F2, so [WK , LC ] = 0. Thus L+ has
at least one noncentral 2-chief factor on WK , as well as one on O2(L

+
K); so as L+

has just two noncentral 2-chief factors, [O2(J), L+] ≤WK . Hence as K = [K,L+],
K is an A5-block. Then as LC centralizes K+ and WK , [K,LC ] = 1 by Coprime
Action. By C.1.13.c, O2(J) = CO2(J)(K)×WK , so as J ∈ He, LC has a noncentral
2-chief factor in CO2(J)(K), contradicting [O2(J), L+] ≤ WK . This contradiction
finally completes the proof of 13.3.14. ¤

Lemma 13.3.15. Assume Hypothesis 13.3.13. and that L̄ 6∼= A5. Then

(1) I2 := 〈QG2
1 〉 E G2.

(2) I2 = XQ1, where X := L2,+ when L/O2(L) ∼= Â6 and X := L2 otherwise.
(3) CI2(V2) = O2(I2) and I2/O2(I2) ∼= S3, with O

2(I2) = X.
(4) CQ1(V2) ≤ O2(I2) ≤ O2(G2).
(5) m3(CG(V2)) ≤ 1.
(6) CG(V3) ≤MV . Hence [V,CG(V3)] ≤ V1.

Proof. Part (1) holds by construction. As L 6∼= A5, X/O2(X) is of order
3. Recall one consequence of Hypothesis 13.3.13 is that V2 is of rank 2. Then as

[Q1, V2] 6= 1 by 13.3.14, XQ1 induces GL(V2) on V2, with X transitive on V #
2 .

Hence G2 = CG(V2)Q1X , with CG(V2)Q1 ≤ G1, so

I2 = 〈Q
G2
1 〉 = 〈Q

X
1 〉 ≤ XQ1,

and X = [X,Q1] ≤ I2, so I2 = XQ1 and (2)–(4) hold. As X = O2(I2) E G2 by
(1) and (3),

[CG(V2), X ] ≤ CX(V2) = O2(X);

so as m3(G2) ≤ 2 and X/O2(X) is faithful on V2, (5) holds.
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Next CG(V3) ≤ G2 ≤ NG(X), so as NL(V3) normalizes CG(V3), CG(V3) acts
on XNL(V3). Then as L = 〈XNL(V3)〉, we conclude CG(V3) ≤ NG(L) = M . Hence
CG(V3) ≤ NG(V ) =MV as V is a TI-set in M by 12.2.6. This establishes (6). ¤

13.3.1. Eliminating U3(3). With the technical results from the earlier part
of the section in hand, we are now ready to embark on the main project in this
chapter: the treatment of the cases L̄ ∼= U3(3), A6, and A5.

In this subsection, we handle the easiest of these cases:

Theorem 13.3.16. Assume Hypothesis 13.3.1. Then L̄ is not U3(3).

In the remainder of this section, assume G, L is a counterexample to Theorem
13.3.16. By 13.3.2.3, CV (L) = 1 and m(V ) = 6. In particular Hypothesis 13.3.13
is satisfied, so we can appeal to 13.3.14 and 13.3.15. Let z be a generator for V1,
so that G1 := CG(z) = Gz , and G̃1 = G1/V1. As usual define

Hz = {H ∈ H(L1T ) : H ≤ G1 and H 6≤M}.

By 13.3.6, G1 6≤M , so G1 ∈ Hz and hence Hz 6= ∅.
We first observe:

Lemma 13.3.17. (1) G1 ∩G3 ≤MV ≥ CG(V3).
(2) r(G, V ) > 3.
(3) If [V, V g ] ≤ V ∩ V g, then [V, V g] = 1.
(4) [O2(G1), V2] 6= 1.

Proof. Part (4) holds by 13.3.14, and CG(V3) ≤ MV by 13.3.15.6. Further
AutM1(V3) is the full stabilizer in GL(V3) of V1, so G1 ∩G3 = CG(V3)NM1(V3). As
V is a TI-set in M by 12.2.6, this completes the proof of (1). Then (1) together
with parts (2) and (3) of 13.3.12 imply (2), while (1) and part (4) of 13.3.12 imply
(3). ¤

Lemma 13.3.18. (1) For each H ∈ Hz, Hypothesis F.9.1 is satisfied with V3 in
the roles of “V+”.

(2) 〈V G1〉 is abelian.

Proof. We check the various parts of Hypothesis F.9.1:
First hypothesis (c) of F.9.1 follows from 13.3.17.1, and by construction L1 is

irreducible on Ṽ3, so hypothesis (b) holds. As H ∈ H(T ), H ∈ He by 1.1.4.6.

Also by Coprime Action and 13.3.17.1, Y := O2(CH (Ṽ3)) ≤ CMV (V3)), so as

O2(CM̄V
(Ṽ3)) = 1, Y ≤ CM (V ) ≤ CM (L/O2(L)) and therefore L normalizes Y =

O2(Y O2(L)). Thus if Y 6= 1, then H ≤ NG(Y ) ≤ M = !M(LT ), contrary to

the definition of H ∈ Hz . Thus CH(Ṽ3) is a 2-group, so hypothesis (a) follows.
As M = !M(LT ) and H 6≤ M , hypothesis (d) holds. Finally 13.3.17.3 implies
hypothesis (e), completing the proof of (1).

Now let H := G1, and as in Hypothesis F.9.1, define UH := 〈V H3 〉, VH := 〈V H〉,
QH = O2(H) and H∗ := H/CH(ŨH). It remains to prove (2), so we may assume
VH is nonabelian.

Observe that O2(L̄1) ∼= Z2
4 and R̄1 = O2(L̄1) in case M̄V = L̄, while in case

M̄V
∼= G2(2), R̄1 is O2(L̄1) extended by an involution r̄ inverting O2(L̄1) and

centralizing a supplement to O2(L̄1) in L̄1. In particular, Ā0 := Ω1(O2(L̄1)) is the
unique nontrivial normal elementary abelian subgroup of M̄1 in case M̄V = L̄, while
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Ā1 := 〈r̄〉Ā0 and Ā0 are the only such subgroups in case M̄V
∼= G2(2). Further

CM̄V
(V3) is Ā0 or Ā1 in the respective case.

By F.9.2, ŨH ≤ Ω1(Z(Q̃H)), O2(H
∗) = 1, Φ(UH) ≤ V1, and QH = CH(ŨH).

Thus if V centralizes UH , then V ≤ QH ≤ kerH(NH(V )), and then for h ∈ H ,
[V, V h] ≤ V ∩ V h, so that [V, V h] = 1 by 13.3.17.3. But then VH is abelian,
contrary to our assumption. Therefore [UH , V ] 6= 1, so that V ∗ 6= 1, and as
Φ(UH) ≤ V1, 1 6= ŪH is a normal elementary abelian subgroup of M̄1, so by
the previous paragraph, ŪH = Ā0 or Ā1. In particular UH centralizes V3, so
V3 ≤ Z(UH) and thus UH = 〈V H3 〉 is elementary abelian.

Let ZH := Z(QH). By 13.3.17.4, [QH , V2] 6= 1, so as L1 is irreducible on Ṽ3,
V3 ∩ZH = V1. Furthermore as V2 ≤ UH , QC := CQH (UH) is properly contained in
QH .

For x ∈ QC , define ϕ(xQC) : UH/ZH → V1 by ϕ(xQC) : uZH 7→ [x, u] for
u ∈ UH . By F.9.7, ϕ is an H-equivariant isomorphism between QH/QC and the
F2-dual space of UH/ZH .

As [V, Ā0] = [V, Ā1] = V3, [V ∗, ŨH ] = Ṽ3. Then as V3 ∩ ZH = V1, V
∗ is

nontrivial on UH/ZH and hence also on QH/QC as ϕ is an equivariant isomorphism.
But QH ≤ T ≤ NG(V ), so [QH/QC , V ] ≤ QC(V ∩QH)/QC , and hence V ∩QH 6≤
QC .

Next V5 = V ⊥1 is a hyperplane of V , with [v,R1]V3/V3 = V5/V3 for each
v ∈ V − V5. Thus as L1 is irreducible on V5/V3 and V ∩ QH 6≤ QC ≥ V3, we
conclude that V5 = V ∩QH and V3 = V ∩QC = V ∩ UH . Also by 13.3.15.4,

V5 ≤ CQH (V2) ≤ O2(G2),

so V = 〈V L2
5 〉 ≤ O2(G2).

Now V ∗ is of order 2 and O2(H
∗) = 1, so by the Baer-Suzuki Theorem we

can pick h ∈ H so that for I := 〈V, V h〉, I∗ ∼= D2m with m > 1 odd. Then V ∗ is
conjugate to V ∗h in I , so we may assume h ∈ I .

Suppose [V3, V
h
5 ] 6= 1. Then as CM̄V

(Ṽ5) ≤ CM̄V
(V3), [V5, V

h
5 ] contains a

hyperplane of V3 containing V1. As all such hyperplanes are fused under L1, we may
take V2 ≤ [V5, V

h
5 ]. Now V5 = V ∩QH is normal in QH , and hence V h5 = V h ∩QH

is normal in QH , so that V2 ≤ V5 ∩ V h5 ≤ V ∩ V h ≤ Z(I). Thus I ≤ G2, impossible
as I is not a 2-group, while V ≤ O2(G2) and h ∈ I .

This contradiction shows that V h5 centralizes V3, and hence by symmetry, V5V
h
5

centralizes V3V
h
3 . In particular V̄ h5 ≤ Ā1. Therefore [V, V

h
5 ] ≤ V3, and by symmetry

I centralizes V5V
h
5 /V3V

h
3 . Hence as h ∈ I , V5V h3 = V5(V3V

h
3 ) = V h5 (V3V

h
3 ) = V h5 V3.

Therefore as V1 ≤ V h3 , V̄ h5 = V̄ h3 is of rank m(V̄ h3 ) ≤ m(V h3 /V1) ≤ 2. Therefore as
r(G, V ) > 3 by 13.3.17.2, V ≤ CG(CV h

5
(V )) ≤ NG(V

h), once again contradicting I

not a 2-group. This completes the proof of 13.3.18. ¤

Lemma 13.3.19. (1) If g ∈ G with V ∩ V g 6= 1, then [V, V g ] = 1.
(2) W2(T, V ) centralizes V .
(3) H ≤M for each H ∈ H(T ) with n(H) ≤ 2.

Proof. Suppose 1 6= V ∩ V g. As L is transitive on V #, we may take z ∈ V g

and g ∈ G1 by A.1.7.1. But then [V, V g ] = 1 by 13.3.18.2. Thus (1) is established.
Let A := V g ∩ M ≤ T with m(V g/A) =: k ≤ 2, and suppose Ā 6= 1. Let

U := NV (V
g). By (1), V ∩ V g = 1, so as [U,A] ≤ V ∩ V g, U ≤ CV (A). In

particular U < V as Ā 6= 1. On the other hand, if B ≤ A with m(A/B) < 4 − k,
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then as r(G, V ) > 3 by 13.3.17.2, CG(B) ≤ NG(V
g), so that CV (B) = U . Thus

Ā ∈ A4−k(T̄ , V ), so by B.4.6.9, k = 2 and Ā ∈ ĀL1 . Then without loss, Ā = Ā1, so
from the action of Ā1 on V ,

V5 = 〈CV (ā) : ā ∈ Ā
#
1 〉 ≤ U,

and hence V5 = U as U < V . As k = 2, W1(T, V ) centralizes V . Therefore
as m(V/U) = 1 and U = NV (V

g), U centralizes V g. Then since r(G, V ) > 3,
V g ≤ CG(U) ≤ NG(V ), so that V g = A, contrary to k = 2. This proves (2). Finally
by (2) and 13.3.17.2, min{w(G, V ), r(G, V )} ≥ 3, so E.3.35.1 implies (3). ¤

Lemma 13.3.20. n(H) ≤ 2 for each H ∈ H∗(T,M) ∩G1.

Proof. By 13.3.17.1, G1 ∩ G3 ≤ M , so hypothesis (c) of 12.2.11 is satisfied.
Therefore as H ≤ G1, we may apply 12.2.11 with V1 in the role of “U” to conclude
that n(H) ≤ 2. ¤

We can now complete the proof of Theorem 13.3.16: Recall T ≤ G1, and
G1 6≤M by 13.3.6, so there exists H ∈ H∗(T,M)∩G1. Then n(H) ≤ 2 by 13.3.20,
so that H ≤M by 13.3.19.3, for our final contradiction.

13.4. The treatment of the 5-dimensional module for A6

In section 13.4 we prove:

Theorem 13.4.1. Assume Hypothesis 13.3.1 with CV (L) 6= 1. Then G ∼=
Sp6(2).

Set ZV := CV (L). By hypothesis, ZV 6= 1, so by 13.3.2.3,

V is a 5-dimensional module for L/CL(V ) ∼= A6.

Recall this means that V is the core of the permutation module for A6 acting on
Ω := {1, . . . , 6}. Accordingly we adopt the notational conventions of section B.3.
We also adopt the conventions of Notations 12.2.5 and 13.2.1.

Of course the parabolic of the target group Sp6(2) stabilizing a point in the
natural module has this structure. Eventually we identify G with Sp6(2) during
the proof of Proposition 13.4.9. We begin that process by setting up some notation
to discuss Sp6(2).

Let Ġ = Sp6(2), Ṫ ∈ Syl2(Ġ), and Ṗi, 1 ≤ i ≤ 3, the maximal parabolics

of Ġ over Ṫ stabilizing an i-dimensional subspace of the natural module for Ġ.
The pair (Ġ, {Ṗ1, Ṗ2, Ṗ3}) is a C3-system in the sense of section I.5. Notice L̄ ∼=
A6
∼= Ṗ ′1/O2(Ṗ1). We will produce a corresponding C3-system for G, and then use

Theorem I.5.1 to conclude that G ∼= Sp6(2). To do so, we will need to study the
centralizer Gz of a suitable involution z ∈ V1 − ZV , and show Gz/O2(Gz) ∼= S3 ×
S3 ∼= Ṗ2/O2(Ṗ2). We must also construct a third 2-localH0 and showH0/O2(H0) ∼=
L3(2) ∼= Ṗ3/O2(Ṗ3). Then it is not difficult to construct our C3-system.

13.4.1. Preliminary results on the structure of certain 2-local sub-
groups. As usual Z = Ω1(Z(T )) from Notation 12.2.5. Notice ZV ≤ ZL := CZ(L).
Recall that ZV is of order 2 and is of index 2 in V1 = Z ∩ V by 13.3.4.1.

As usual we let θ(X) denote the subgroup generated by all elements of order 3
in a group X .
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Lemma 13.4.2. (1) M = NG(L) = NG(V ) = CG(ZV ).
(2) CG(Z) ≤ CG(ZL) ≤ CG(ZV ) =M , and M = !M(CG(ZL)).
(3) For each v ∈ V #, CG(v) is transitive on conjugates of V containing v. In

particular, V is the unique member of V G containing ZV .
(4) CM (V ) = CM (L/O2(L)) = CM (V/ZV ).

(5) L = θ(M), and if L/O2(L) ∼= A6, then L = O3′(M).

Proof. Theorem 12.2.2.3 shows that M = NG(L), and (since ZV 6= 1) that
V E M . Hence M ≤ CG(ZV ), and (1) follows as M ∈ M. As ZV ≤ ZL ≤ Z and
M = !M(LT ), (2) holds. Since LT controls fusion in V by 13.2.2.5, (3) follows from
A.1.7.1. Observe (5) follows from 12.2.8. Finally CM (L/O2(L)) = CM (V/ZV ) =
CM (V ) by A.1.41, estabilishing (4). ¤

As M = NG(V ) by 13.4.2.1, M̄ := M/CM (V ) from Notation 12.2.5.2. Recall
V1 = V ∩ Z, and by 13.3.5.3 there is z ∈ V1 − ZV with L1T ≤ Gz := CG(z) 6≤ M .
Fix a choice of z and observe z has weight 2 or 4 in V . Eventually we will see that
there is a unique z ∈ V1 with Gz 6≤M . As usual define

Hz := {H ∈ H(L1T ) : H ≤ Gz and H 6≤M}.

In particular Gz ∈ Hz so Hz 6= ∅. Recall that R1 is defined in Notation 13.2.1.

Lemma 13.4.3. (1) L = [L, J(T )].
(2) V Z = V ZL and |Z : ZL| = 2.
(3) Z = V1ZL, so L1 centralizes Z.

Proof. As 1 6= ZV ≤ ZL, (1) follows from 3.1.8.3. Then by (1) and Theorem
B.5.1, [V Z,L] = V , so V Z = V ZL by B.2.14. Then as |Z∩V : ZV | = 2 by 13.3.4.1,
(2) and (3) hold. ¤

Lemma 13.4.4. If H ∈ Hz and VH ∈ R2(H) with ZL ∩ VH〈z〉 6= 1, then

(1) CH(VH ) ≤M .

(2) Set L+ := L1 or L1,+, for L/O2(L) ∼= A6 or Â6, respectively. Then either:

(i) O2(CH (VH)) = 1 and CH(VH ) = O2(H) ≤ O2(L1T ) ≤ R1, or
(ii) L+ = O2(CH (VH)) E H, and H1 := CH(L+/O2(L+)) is of index 2

in H with R1 ∈ Syl2(H1).

(3) L2 6≤ H, and if L/O2(L) ∼= Â6, L2,+ 6≤ H.

Proof. As neither L2 nor L2,+ centralizes z, (3) holds. Next CH (VH) =
CH(VH 〈z〉) ≤ CG(ZL ∩ VH 〈z〉) ≤M = !M(LT ) by 13.4.2.2, so (1) holds.

Set Y := O2(CH (VH )). By (1), Y ≤ M , and as H ∈ Hz, Y centralizes z ∈
V1−ZV . Thus the hypotheses of 13.3.9 are satisfied, so we can appeal to that lemma.
If Y = 1, then CH (VH) is a 2-group; so as VH ∈ R2(H), CH(VH ) = O2(H). Further
L1T ≤ H , so O2(H) ≤ O2(L1T ) by A.1.6, and hence conclusion (i) of (2) holds.
Thus we may assume conclusion (2) of 13.3.9 holds. In particular L+ = Y E H ,
so conclusion (ii) of (2) holds. ¤

Lemma 13.4.5. Assume H ∈ H(T,M) is nonsolvable. Then

(1) There exists K ∈ C(H), and for each such K, K ∈ L∗f (G, T ), K E H, and

K/O2(K) ∼= A5, L3(2), A6, or Â6.
(2) K 6≤M , L 6≤ NG(K), and [ZV ,K] 6= 1.
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(3) Irr+(K,R2(KT )) ⊆ Irr+(KT,R2(H)), there is VK ∈ Irr+(K,R2(KT ), T ),
and for each such VK , VK E T , the pair K,VK satisifies the FSU, and VK =
〈(Z ∩ VK)K〉 is either a natural module for K/CK(VK) ∼= A5, L3(2), or A6, or a
5-dimensional module for K/CK(VK) ∼= A6.

(4) For VK as in (3), O2,Z(K) = CK(VK) = CK(R2(H)). In particular, R2(H)

contains no faithful 6-dimensional modules when K/O2(K) ∼= Â6.

Proof. As H is nonsolvable, there exists K ∈ C(H) by 1.2.1.1. If K ≤ M
then we obtain a contradiction by applying 13.3.8.2 with L, M , 〈KT 〉 in the roles
of “K, MK , Y ”. Thus K 6≤ M , so [ZV ,K] 6= 1 by 13.4.2.1. Thus as ZV ≤ Z,
[R2(H),K] 6= 1, so K ∈ Lf (G, T ) by 1.2.10. Therefore NG(K) = !M(KT ), and (1)
holds by parts (1) and (2) of 13.3.2, since Theorem 13.3.16 rules out K/O2(K) ∼=
U3(3). As K 6≤M and M = !M(LT ), L 6≤ NG(K) so (2) holds.

By 13.3.2.3, there is VK ∈ Irr+(K,R2(KT ), T ) and VK E T . As R2(KT ) ≤
R2(H) by A.1.11, VK ∈ Irr+(K,R2(H)). Further the action of K on VK described
in 13.3.2.3, and VK = 〈(Z ∩ VK)K〉 by 13.3.4.2, completing the proof of (3).

By (3), either CK(VK) = O2(K), or K/O2(K) ∼= Â6 with CK(VK) = O2,Z(K).
Therefore as O2(K) ≤ CK(R2(H)) ≤ CK(VK) = O2,Z(K), either (4) holds, or

K/O2(K) ∼= Â6 with CK(R2(H)) = O2(K). However in the latter case by A.1.42,

there is I ∈ Irr+(K,R2(H), T ) with K/CK(I) ∼= Â6, and I ∈ Irr+(K,R2(KT ), T )
by A.1.41, contrary to (3). Thus (4) holds. ¤

When G is Sp6(2), Gz is solvable; thus we must eventually eliminate the
case where Gz is nonsolvable. In that case by 13.4.5 there is K ∈ C(Gz) with
K ∈ L∗f (G, T ), so that we can use our knowledge of groups in L∗f (G, T ) to restrict
the structure of Gz. We begin with 13.4.6; notice in particular the very strong
restrictions in part (4).

Lemma 13.4.6. Assume H ∈ Hz is nonsolvable. Then

(1) There exists K ∈ C(H), and for each such K, K ∈ L∗f (G, T ) and K E H.

Further K 6≤M , L 6≤ NG(K), and [ZV ,K] 6= 1.
(2) K ≤ Gz ≤ NG(K).
(3) K = [K, J(T )].

(4) Either M = LT , or L/O2(L) ∼= Â6 and M = LXT , where X is a cyclic
Sylow 3-subgroup of CM (L/O2(L)) = CM (V ).

Proof. Part (1) is a restatement of parts (1) and (2) of 13.4.5. As KT ≤ H ≤
Gz and N := NG(K) = !M(KT ) by (1), Gz ≤ N , so (2) holds.

Let L− := L2 if L/O2(L) ∼= A6, and L− := L2,+ if L/O2(L) ∼= Â6. Then
L = 〈L1, L−〉, and by (1), L1 ≤ N but L 6≤ N ; thus L−T ∈ H∗(T,N). Now
[Z,L−] 6= 1 as L− does not centralize V1 = Z ∩V , so (3) follows by applying 3.1.8.3
with NG(K), R2(KT ) in the roles of “M , V ”.

Let Y := O2(CM (V )). As M̄ = L̄T̄ , M = LTY and Y E M . Further
Y ≤ Gz ≤ N by (2), so the hypotheses of 13.3.8 are satisfied with M , N in the
roles of “H , MK”. Therefore Y is a {2, 3}-group by 13.3.8.2. In particular if
m3(CM (V )) = 0, then CM (V ) is a 2-group, so that M = LT and (4) holds. So

assumem3(CM (V )) ≥ 1. Then by 13.3.7, L/O2(L) ∼= Â6 andm3(CM (V )) = 1 with
L0 = θ(CM (V )). Thus CM (V ) = CT (V )X , where X ∈ Syl3(CM (V )) is cyclic, and
once again (4) holds as CM (V ) = CM (L/O2(L)) by 13.4.2.4. ¤
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We will now begin to produce subgroups H0 of G which are generated by
subgroupsH1 andH2 in H(T ), such that (H0, H1, H2) is a Goldschmidt triple in the
sense of Definition F.6.1. Proposition 13.4.7.5 gives fairly strong information about
those pairs which also satisfy conditions (a)–(c) of the Proposition. In particular
subgroups satisfying (1i) and (1ii) of Proposition 13.4.7 will eventually be identified

as the parabolics Ṗ2 and Ṗ3 of Sp6(2).

Proposition 13.4.7. Assume Hi ∈ H(T ), i = 1, 2, are distinct with Hi/O2(Hi)
∼= S3. Let Ki := O2(Hi), H0 := 〈H1, H2〉, and V0 := 〈ZH0〉. Assume:

(a) Either K1 or K2 has at least two noncentral 2-chief factors,
(b) |Z : CZ(Hi)| = 2, for i = 1 and 2, and
(c) If H0 ∈ H(T ), then Ki E CH0(CZ(Ki)) for i = 1 and 2, and

Kj = O3′ (CH0(CZ(Kj)) for j := 1 or 2.

Then

(1) H0 ∈ H(T,M), Z = V1 = CZ(H1) × CZ(H2) with |CZ(Hi)| = 2, and one
of the following holds:

(i) H0 = H1H2, [K1,K2] ≤ O2(K1) ∩ O2(K2), H0/O2(H0) ∼= S3 × S3 or
Z2/E9, and V0 = V1 ⊕ V2, where Vi := [V0,Ki] = CV0(K3−i) is of rank 2.

(ii) H0 = K0T where K0 ∈ C(H0) such that K0 ∈ L∗f (G, T ), K0/O2(K0) ∼=
L3(2), J(T ) E H0, and V0 is either the sum of two nonisomorphic natural modules
for K0/O2(K0), or the core of the 7-dimensional permutation module.

(iii) O2(H0) = CH0(V0), H0/O2(H0) ∼= E4/3
1+2, m(V0) = 6, and J(T ) E

H0.
(iv) H0 = K0T , where K0 ∈ C(H0) with K0/O2(K0) ∼= A6, and Ji(T ) E

H0 for i = 0, 1.

(2) Assume conclusion (ii) holds, with Ki = [Ki, J1(T )] for some i, and X ∈
H(H0). Then V0 = 〈ZX〉 and X = H0CX (V0); so if CX(Z) = T , then X = H0.

(3) If K2 = L2, then conclusion (iii) does not hold.
(4) Assume K2 = L2. Then conclusion (iv) does not hold, and if conclusion

(ii) holds, then K2 = [K2, J1(T )].

Proof. Let Q0 := O2(H0) and H∗0 := H0/CH0(V0). Observe that the hy-
potheses say that (H0, H1, H2) is a Goldschmidt triple in the sense of Definition
F.6.1, so

(H1/Q0, T/Q0, H2/Q0)

is a Goldschmidt amalgam by F.6.5.1, and hence is listed in F.6.5.2.
Assume that Q0 = 1. By hypothesis (a), some Ki has at least two noncentral

2-chief factors, which eliminates cases (i)–(v) of F.6.5.2, and in case (vi) also elimi-
nates cases (1) and (2) of F.1.12. In cases (3), (8), (12), and (13) of F.1.12, Z ≤ Hi

for exactly one value of i, contrary to (b). Therefore Q0 6= 1, and hence H0 ∈ H(T ).
Then H0 ∈ He by 1.1.4.6, so V0 ∈ R2(H0) by B.2.14, and hence O2(H

∗
0 ) = 1.

By (b), [Z,Ki] 6= 1, so CKi(V0) ≤ O2(Ki) and K∗1 6= 1 6= K∗2 . Therefore
CT (V0) ≤ Q0 by F.6.8, so as V0 ∈ R2(H0), Q0 = CT (V0). By (c),

CH0(V0) ≤ CH0(Z) ≤ NG(K1) ∩NG(K2).

Also by (c), there exists an index j such that Kj = O3′(CH0 (CZ(Kj)). Then

O3′(CH0(V0)) ≤ Kj , so in fact O3′ (CH0(V0)) = 1 since CKj (V0) ≤ O2(Kj). That
is, CH0(V0) is a 3′-group.
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Let H+
0 := H0/O3′(H0). As CH0(V0) is a 3′-group, H+ is a quotient of H∗.

Observe thatH+ is described in F.6.11. By F.6.6, O2(H0) = 〈K1,K2〉, so O2(H0) =
θ(H0).

Suppose H0 ≤ M . Then O2(H0) ≤ θ(M) = L by 13.4.2.5, so as each Ki

is T -invariant, Ki ≤ Lk(i) for some k(i) := 1 or 2 by 13.3.4.3. By 13.4.3.3, L1

centralizes Z; and if L/O2(L) ∼= Â6 then L0 ≤ L1, so L0 centralizes Z. Therefore
as [Z,Ki] 6= 1 for each i by (b), it follows that K1 = K2 = L2 if L/O2(L) ∼= A6,

while K1 = K2 = L2,+ if L/O2(L) ∼= Â6. But K1 6= K2, as otherwise H1 = TK1 =
TK2 = H2, contrary to hypothesis. Hence H0 6≤M .

As H0 6≤ M , Hk 6≤ M for some k := 1 or 2. Therefore CZL(Hk) = 1, as
otherwise Hk ≤ CG(CZL(Hk) ≤ M = !M(LT ). But CZ(Hk) is a hyperplane of
Z by (b), while 1 6= ZV ≤ ZL and ZL is also a hyperplane of Z by 13.4.3.2. We
conclude that m(Z) = 2 and ZL = ZV and CZ(Hk) are of rank 1. As Kj =

O3′(CH0(CZ (Kj))) by (c) and K1 6= K2, CZ(H1) = CZ(K1) 6= CZ(K2) = CZ(H2).
Then we conclude from (b) that Z = CZ(H1) × CZ(H2) with m(CZ(Hi)) = 1 for
each i. As V1 = Z ∩ V is of rank 2, Z = V1 ≤ V . Thus we have established the
initial conclusions of (1), so it remains to show that one of conclusions (i)–(iv) of
(1) holds.

Suppose first that [K∗1 ,K
∗
2 ] = 1. Then O2(H∗0 ) = K∗1K

∗
2 , so KiCH0(V0) is

normal in H0 for i = 1, 2. Furthermore CH0(V0) normalizes Ki by (c), and we

saw CH0(V0) is a 3′-group, so Ki = O3′(KiCH0(V0)) E H0. It follows that H0 =
H1H2 and [K1,K2] ≤ O2(K1) ∩ O2(K2) ≤ O2(H0); hence H0/O2(H0) ∼= S3 × S3
or Z2/E9. Set Vi := [V0,Ki]. As Z = CZ(H1) × CZ(H2) with |CZ(Hi)| = 2,
Vi = 〈CZ(H3−i)

Hi〉 ∼= E4 is centralized by H3−i, so we conclude that case (i) of (1)
holds. Thus we may assume from now on that [K∗1 ,K

∗
2 ] 6= 1; under this assumption,

we will show that one of (ii)–(iv) holds.
We first consider the case whereH∗0 is not solvable, which will lead to (ii) or (iv).

By 1.2.1.1, there is K0 ∈ C(H0) with K
∗
0 6= 1. Then by 13.4.5.1, K0 E H0, K0 ∈

L∗f (G, T ), andK0/O2(K0) is listed in 13.4.5.1. In particularK0 is not a 3′-group, so

that K+
0 6= 1; hence H+

0 is described in F.6.18 by F.6.11.2. Also K+
0 is a quotient

of K0/O2(K0), so comparing the possibilities for K0/O2(K0) in 13.4.5 with the
possible quotients K+

0 in cases (3)–(13) of F.6.18, we conclude K+
0 must be L3(2),

A6, or Â6, with H
+
0 = K+

0 T
+ appearing in case (6) or (8) of F.6.18. Furthermore if

K0/O2(K0) ∼= Â6, then as CH0(V0) is a 3′-group, K∗0
∼= K0/O2(K0) ∼= Â6, contrary

to 13.4.5.4. Thus in any case CK0(V0) = O2(K0) = O3′(K0), so K0/O2(K0) ∼=
K∗0

∼= K+
0 , and K0/O2(K0) is not Â6.

As H+
0 = K+

0 T
+, H0 = K0TO3′(H0), so as K0 E H0, K0 = O3′(H0). Thus

Ki ≤ K0 for i = 1, 2, so K0 = O2(H) by F.6.6, and hence H0 = K0T . Since
K1 6= K2, H

∗
1 and H∗2 are the minimal parabolics of H∗ over T ∗.

By 13.4.5.3, we may choose a T -invariant I ∈ Irr+(K0, V0) in the FSU. By
13.4.5.4, CK0(I) = CK0(V0), so that K∗0 = K0/CK0(I). By 13.4.5.3, I is either a
natural module for K∗0 or a 5-dimensional module for K∗0

∼= A6. As H
∗
1 and H∗2 are

the minimal parabolics of H∗, some Ki (say K1) centralizes Z∩I , so as [Z,K1] 6= 1
by hypothesis (b), IZ > ICZ(K0). Thus K0 is nontrivial on V0/I . Hence if
J(T ) 6≤ O2(H0), then by Theorem B.5.1, [V0,K0] is the sum of two isomorphic
natural modules for K∗0

∼= L3(2); since m(Z) = 2, this contradicts [Z,K1] 6= 1.
Therefore J(T ) = J(O2(H0)) E H0.
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As Z = CZ(H1)×CZ(H2) with CZ(Hi) ∼= Z2, there is v ∈ CZ(H2)− CZ(H1);
set Vv := 〈vK0〉.

Assume first that K0/O2(K0) ∼= L3(2); we will show (ii) holds. As v centralizes
H2 but not H1, Vv is a quotient of the 7-dimensional permutation module for K∗

0

on the coset space K0/H2, with m(Vv) > 1. Thus by H.5.3, [Vv ,K0] is either the
3-dimensional dual of I or the 6-dimensional core of the permutation module. Thus
as m(Z) = 2, dim(V0) = 6, and so V0 = Vv ⊕ I or Vv, respectively. This completes
the verification of (ii).

So to complete the treatment of the case H∗0 not solvable, we may assume that
K∗0

∼= A6; then to establish (iv), it remains to show that J1(T ) E H0. As above, Vv
is a quotient of the 15-dimensional permutation module on H0/H2, so by G.5.3, Vv
has a K∗0 -irreducible quotient W2 isomorphic to the conjugate of W1 := I/CI(K0)
under a graph automorphism. Therefore K0 has chief factors isomorphic to W1

and W2 on V0. We may assume that J1(T ) 6≤ O2(H0) = CH0(V0), so that there is
A ∈ A1(T ) with A

∗ 6= 1. By B.2.4.1, m(V0/CV0(A)) ≤ m(A∗) + 1, so either

(I) m(A∗) = 1 and m(Wi/CWi(A)) = 1 for i = 1 and 2, or
(II) m(A∗) ≥ 2, so that m(Wi/CWi(A)) ≥ 2 for i = 1 and 2, and hence

m(A∗) = 3 and A∗ is a strong FF∗-offender on both W1 and W2.

These cases are impossible since by B.3.4, no involution induces a transvection
on both W1 and W2, nor does there exists a subgroup which is a strong FF∗-
offender on both W1 and W2. This contradiction completes the verification of (iv),
and establishes (1) when H∗0 is nonsolvable.

Thus we have reduced to the case where H∗0 is solvable, but [K∗1 ,K
∗
2 ] 6= 1. This

time let K0 := O2(H0) and let Qi := O2(Hi).
Suppose first that Q1 = Q2. Then Q0 = Q1, T

∗ = 〈t∗〉 is of order 2, and
K∗i

∼= S3. Thus m(V0) ≤ 2m(CV0(t)) = 2m(Z) = 4. Inspecting the solvable
subgroups H∗0 of GL4(2) with O2(H

∗
0 ) = 1 and generated by a pair of distinct

S3-subgroups with a common Sylow 2-subgroup, we conclude H∗0 is E9 extended
by Z2. But this contradicts the fact that [K∗1 ,K

∗
2 ] 6= 1. This contradiction shows

that Q1 6= Q2.
Suppose next that Ki does not centralize Op(H0/Q0), for some prime p > 3

and i = 1 or 2, say i = 1. Then by A.1.21 there is a supercritical subgroup P
of a Sylow p-subgroup of the preimage of Op(H0/Q0). By a Frattini Argument,

H0 = NH0(P )Q0 . Let Ḣ0 := H0/CH0(P/Φ(P ))Q0. By A.1.25, Ḣ0 = 〈Ḣ1, Ḣ2〉
is a subgroup of GL2(p); of course Ḣ0 is solvable and Ḣ1/O2(Ḣ1) ∼= S3. Thus P

is noncyclic. Further if K̇2 6= 1 then we conclude from Dickson’s Theorem A.1.3
that K̇0

∼= SL2(3) or K̇0 is cyclic, and in either case Q̇1 = Q̇2, so that Q1 = Q2,

contrary to the previous paragraph. Thus KP := 〈KH0
2 〉 centralizes PQ0/Q0. Let

1 6= P0 ≤ P1 ∈ Sylp(KP ) with P1 acting on P ; asmp(H0) = 2 = mp(P ), P contains
all elements of order p in P0, so AutKP (P0) is a p-group by A.1.21, and hence KP

is p-nilpotent by the Frobenius Normal p-Complement Theorem 39.4 in [Asc86a].
As KP is generated by 3-elements, KP is a p′-group, so as K1 is a {2, 3} group, we
conclude K0 = 〈K1,K2〉 = K1KP is a p′-group, contrary to P ≤ K0.

Therefore Ki centralizes O
3(F (H0/Q0)) for i = 1 and 2, so by F.6.9, H0 is

a {2, 3}-group. Then as CH0 (V0) is a 3′-group, we conclude that Q0 = CH0(V0).
Therefore H∗0 = H0/Q0 = H+

0 and H0 = K0T with K0 a {2, 3}-group. Further
(H∗1 , T

∗, H∗2 ) is a Goldschmidt amalgam by F.6.5.1. Since Q1 6= Q2 by an earlier
reduction, H∗0 = H+

0 is described in Theorem F.6.18 by F.6.11.2. As H is solvable
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and Q1 6= Q2, conclusion (2) of F.6.18 holds, and by earlier reduction [K∗
1 ,K

∗
2 ] 6= 1,

so that H∗0
∼= E4/3

1+2. Let X∗0 := Z(K∗0 ); then V0 = U0⊕U1, where U1 := CV0(X0)
and U0 := [V0, X0] is of rank 6k for some k ≥ 1. Now Z = Z0 ⊕ Z1 is of rank 2
where Zi := Z ∩ Ui; so either m(Zi) = 1 for i = 0 and 1, or U1 = 0 and Z = Z0.
As T ∗ has order 4, 6 ≤ 6k = m(U0) ≤ 4m(Z0) ≤ 8; hence k = 1 and Z = Z0 with
U1 = 0, so V0 = U0 is of rank 6. By Theorem B.5.6, J(T ) E H0. Now conclusion
(1iii) of the lemma holds. Hence the proof of (1) is at last complete.

We next prove (2). So assume that the hypotheses of (2) hold. As conclusion
(ii) of (1) holds, K0 E X by 13.4.5.1, so O2(K0) ≤ O2(X). Set VX := 〈ZX〉, so that
V0 ≤ VX ∈ R2(X) by B.2.14. We must show that V0 = VX andX = CX (V0)H0. Let

X̂ := X/CX(VX ); then CX (VX ) ≤ CX(V0), so H
∗
0 is a quotient of Ĥ0. Furthermore

as conclusion (ii) holds, CK0(V0) = O2(K0), so that CK0(V0) = CK0(VX ) since

O2(K0) ≤ O2(X), and hence K̂0
∼= K∗0 .

From the structure of V0 in either case of (ii), O2(NGL(V0)(K
∗
0 )) = K∗0 . Suppose

we have shown that V0 = VX . Then O2(X̂) = K̂0, so that X̂ = K̂0T̂ = Ĥ0. Hence
X = H0CX(V0), giving the remaining conclusion of (2). Thus it suffices to show
V0 = VX , or equivalently that VX ≤ V0.

By the hypotheses of (2), J1(T ) 6≤ O2(H0), so asH0 = K0T , there is A ∈ A1(T )
with K0 = [K0, A]. Thus by B.2.4.1,

m(A∗) ≥ m(V0/CV0(A))− 1 and m(Â) ≥ m(VX/CVX (A)) − 1.

However V0 is not an FF-module forK∗0T
∗ by Theorem B.5.1, som(A∗) <m(V0/CV0(A)),

and hence m(A∗) = m(V0/CV0(A)) − 1. Then by B.2.4.2, B := V0CA(V0) ∈ A(T );
recall CA(V0) = A ∩Q0, so as V0 ≤ CX(VX ),

B̂ ≤ Â ∩ Q̂0 ≤ CX̂(K̂0).

Suppose first that B̂ = 1, so that CA(V0) = CA(VX). Then

m(V0/CV0(A)) − 1 = m(A∗) = m(Â) ≥ m(VX/CVX (A)) − 1,

so VX = V0CVX (A) and hence [VX , A] ≤ V0. Therefore as K0 = [K0, A], V0 =
[V0,K0] = [VX ,K0] is X-invariant; then as Z ≤ V0, VX = 〈ZX〉 = V0, so we are
done.

Thus we may assume instead that B̂ 6= 1. Then as B ∈ A(T ) and B̂ centralizes

K̂0, J(CX(K̂0)) =: Y 6≤ CX (VX). Hence as m3(X) ≤ 2 with K̂0
∼= L3(2), m3(Ŷ ) ≤

1, so we conclude from Theorem B.5.6 that either Ŷ ∼= S3 (in which case we set

Y0 := Y ), or Ŷ = Ŷ0 for some Y0 ∈ C(X) with m3(Y0) = 1. In either case Ŷ0
is normal in X̂ . In the latter case since O2(Y0) ≤ O2(X) ≤ CX (VX), we obtain

Ŷ0 ∼= L3(2) or A5 from 13.4.5.1; then by Theorem B.5.1 and 13.4.5.1, [VX , Y0] is

either the natural module for Ŷ0 or the sum of two natural modules for Ŷ0 ∼= L3(2).
Then EndŶ0([VX , Y0]) is either a field or the ring of 2 × 2 matrices over F2, so

that [VX , Y0,K0] = 1. Hence [Z, Y0] ≤ [K0, VX , Y0] = 1 using the Three-Subgroup

Lemma. So as Ŷ0 E X̂, Y0 centralizes VX = 〈ZX〉, contrary to Ŷ0 6= 1. Thus the
proof of (2) is complete.

We next prove (4), so we assume that K2 = L2, and that either conclusion
(ii) or (iv) of (1) holds. Now J(T ) E H0 in either of those cases, so that S :=
Baum(T ) = Baum(O2(H0)) by B.2.3.4. Hence asH0 6≤M = !M(LT ), no nontrivial
characteristic subgroup of S is normal in LT . Thus conclusion (I) of 13.2.2.10 does
not hold. If conclusion (III) of 13.2.2.10 holds, then K2 = [K2, J1(T )], so we are not
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in case (iv), as there J1(T ) E H0. Hence we are in case (ii), so that (4) holds. Thus
we may assume that conclusion (II) of 13.2.2 holds, so that L is an A6-block with
A(O2(LT )) ⊆ A(T ). As L is an A6-block, L2 has exactly three noncentral 2-chief
factors. Let k := 2 in case (ii), and k := 3 in case (iv). As L2 = K2, L2 has at least k
chief factors on V0 and one on O2(L2)

∗, so (ii) holds and [O2(K0T ),K0] ≤ V0. Thus
as J(T ) E H0, each A ∈ A(T ) contains V0, so [A,K0] ≤ [O2(K0T ),K0] = V0 ≤ A,
and hence A E K0A. Further as A(O2(LT )) ⊆ A(T ), J(O2(LT )) = 〈A ∈ A(T ) :
A ≤ O2(LT )〉, so K0 ≤ NG(J(O2(LT ))) ≤M , contrary to H0 6≤M by (1).

It remains to prove (3), so we may assume that K2 = L2 and conclusion
(iii) holds, and we must produce a contradiction. As m3(L2) = m3(K2) = 1

by hypothesis, L/O2(L) is A6 rather than Â6. Let YZ be the preimage in H0 of
Z(O3(H

∗
0 )), and set Y2 := O2(YZ). Notice that as Y

∗
2 is fixed point free on V0 of rank

6, while Z = V1 is of rank 2, [Z, Y2] is of rank 4. In particular Y2 6≤ CG(ZV ) = M
by 13.4.2.1.

Set Y := 〈L1T, Y2T 〉, QY := O2(Y ), and VY := 〈ZY 〉. Observe (Y, L1T, Y2T ) is
a Goldschmidt triple, so (L1T/QY , T/QY ,K2T/QY ) is a Goldschmidt amalgam by
F.6.5.1, and hence is listed in F.6.5.2. Now K2 = L2 has at least three noncentral
2-chief factors in L; so as this does not hold in any case in F.6.5.2, we conclude
QY 6= 1, so that Y ∈ H(T ). Hence VY ∈ R2(Y ) by B.2.14.

We saw Y2 6≤ M , so Y 6≤ M . On the other hand, for z ∈ V1 − ZV , CY (VY ) ≤
CY (ZV ) ∩ CY (z) ≤ CM (z), so applying 13.3.9 with Y , O2(CY (VY )) in the roles of
“H , Y ”, and recalling that L/O2(L) ∼= A6, we conclude that O2(CY (VY )) = 1 or
L1.

In the latter case, Y2 acts on L1, and hence centralizes L1/O2(L1) so that
L1 normalizes O2(Y2O2(L1)) = Y2. Then as L2 = K2, L = 〈L1, L2〉 ≤ NG(Y2),
contrary to Y2 6≤ M = !M(LT ). Thus O2(CY (VY )) = 1 so that CY (VY ) = QY ≤
O3′(Y ). In addition this argument shows that [L1, Y2] 6≤ O2(L1).

Let Y ∗ := Y/CY (VY ) and Y
+ := Y/O3′(Y ), so that Y + is a quotient of Y ∗, and

is described in F.6.11.2. Now L = [L, J(T )] by 13.4.3.1, so that L1 = [L1, J(T )]
by 13.2.2.4; so as J(T )∗ centralizes O3(F ∗(Y ∗)) by Theorem B.5.6, so does L1.
In particular L1 centralizes F ∗(O3′(Y

∗)), so as L1 is generated by conjugates of
an element of order 3, we conclude from A.1.9 that L1 ≤ CY (O3′(Y

∗)). Thus

L1 = O3′ (L1O3′(Y )), so if [Y +
2 , L

+
1 ] ≤ O2(L

+
1 ), then [Y2, L1] ≤ O2(L1), which

we showed earlier is not the case. We conclude [Y +
2 , L

+
1 ] 6≤ O2(L

+
1 ). Now as

J(T ) E Y2T since we are in case (iii), but L1 = [L1, J(T )], O2(Y2T ) 6= O2(L1T ).
Thus case (i) of F.6.11.2 holds, so Y + is described in F.6.18, where F.6.18.1 is
similarly ruled out. As L1 = [L1, J(T )], Y

+ is not E4/3
1+2 by Theorem B.5.6,

while the condition [Y +
2 , L

+
1 ] 6≤ O2(L

+
1 ) rules out the other possibility in F.6.18.2.

In the remaining cases in Theorem F.6.18, Y is not solvable, so there is KY ∈ C(Y ),

and by 13.4.5, KY /O2(KY ) ∼= A5, L3(2), A6, or Â6. The A5 case is ruled out, as
A5 does not appear as a composition factor in the groups listed in Theorem F.6.18.
Similarly conclusion (3) of F.6.18 does not hold, so L1 ≤ KY .

As L1 = [L1, J(T )], KY = [KY , J(T )], so by Theorem B.5.1 and 13.4.5.3,
[VY ,KY ] is a natural module for K∗Y

∼= L3(2) or A6, a 5-dimensional module for
K∗Y

∼= A6, or the sum of two natural modules for K∗Y
∼= L3(2). As Z = V1 is of

rank 2, with 〈ZY2〉 ∼= E16, VY is the sum of two natural modules for K∗Y
∼= L3(2).

As L∗1T
∗ is the parabolic of K∗Y centralizing Z, J(R1) ≤ CY (VY ) = QY , and hence

Baum(R1) = Baum(QY ) by B.2.3.5. Then each nontrivial characteristic subgroup
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of Baum(R1) is normal in Y , and hence not normal in LT as Y 6≤ M = !M(LT ).
Therefore L is an A6-block by 13.2.2.7, and in particular L1 has two noncentral
chief factors. This is impossible, as L1 has two noncentral chief factors on VY and
one on O2(L

∗
1). So the proof of (3), and hence of Proposition 13.4.7, is finally

complete. ¤

13.4.2. The case Gz solvable, leading to Sp6(2). Recall the definitions
of z and Hz given before 13.4.3, and recall that Gz := CG(z). In the next lemma,

we begin to identify Gz and a suitable 2-local H0 with the parabolics Ṗ2 and Ṗ3 of
Ġ = Sp6(2).

Lemma 13.4.8. Assume H ∈ Hz is solvable, choose VH ∈ R2(H) with ZV ≤
VH , and let I := 〈J(R1)

H〉. Then

(1) L/O2(L) ∼= A6.
(2) I/O2(I) ∼= S3 with m([VH , I ]) = 2.
(3) H = L1IT and H/O2(H) ∼= S3×S3. In particular IT is the unique member

of H∗(T,M) in H.

Proof. Let H∗ := H/CH(VH). As usual, O2(H
∗) = 1 by B.2.14. As ZV ≤

VH , we may apply 13.4.4.2, to conclude that

CR1(VH) = O2(H).

For in case (i), CH (VH) = O2(H) ≤ R1; and in case (ii), R1 ∈ Syl2(CH (L+/O2(L+)),
where L+ = O2(CH(VH )).

We claim that [VH , J(R1)] 6= 1, so we assume that [VH , J(R1)] = 1 and derive
a contradiction. Then

B := Baum(R1) = Baum(CR1(VH )) = Baum(O2(H)), (∗)

by B.2.3.5 and the previous paragraph. Hence as H 6≤M = !M(LT ), no nontrivial
characteristic subgroup of B is normal in LT , so by 13.2.2.7, L is an A6-block. In
particular, L/O2(L) ∼= A6 rather than Â6.

Calculating in the core V of the permutation module:

V3 = [V, L1] = [V, T ∩ L1] = [V,O2(L1)] = {eJ : J ⊆ {1, 2, 3, 4} and |J | is even},

and [V3, O2(L1)] = 〈e1,2,3,4〉. Further if M̄ ∼= S6, then also ZV = 〈eΩ〉 ≤ [V,R1].
By 13.2.2.6, V ≤ J(R1), so by (*), V ≤ O2(H) ≤ NH(V ) and V centralizes

VH . Hence U := 〈V H〉 ≤ O2(H) and [V, V h] ≤ V ∩ V h for each h ∈ H . If
U ≤ CT (V ) =: Q, then L normalizes U because [Q,L] = V since L is a block. But
then H ≤ NG(U) ≤ M = !M(LT ), contrary to H 6≤ M . So we conclude instead
that [V, V h] 6= 1 for some h ∈ H .

Suppose that L1 E H . Then as V3 = [V3, L1], V
h
3 = [V h3 , L1] ≤ O2(L1). Thus

either V h3 = [CO2(L1)(V ), L1] = V3, or V
h
3 ∩ Q = V1, O2(L1) = V h3 CO2(L1)(V ) and

V̄ h = R̄1 6≤ L̄, since V3/V1 is the unique minimal L1-invariant subgroup of V/V1.
Assume the former case holds. Then V h centralizes V3, so V̄

h = 〈(5, 6)〉 and hence
[V, V h] = 〈e5,6〉. But then ZV ≤ V3〈e5,6〉 ≤ V ∩ V h, contrary to 13.4.2.3. In the
latter case, ZV ≤ [V,R1] = [V, V h], for the same contradiction.

This contradiction shows that L1 is not normal in H . Hence [VH , L1] 6= 1 by
13.4.4.2. We saw VH ≤ Q, so 1 6= [VH , L1] ≤ [Q,L] = V , and hence [VH , L1] =
[V, L1] = V3. By C.1.13.d, O2(L) ≤ CT (Q) ≤ CH(VH ), so L∗1 is a quotient of
L̄1
∼= A4. Then by A.1.26, O2(L

∗
1) centralizes F

∗(H∗) of odd order, so O2(L
∗
1) = 1,

and hence O2(L1) ≤ CH (VH) ≤ CH (V3), whereas we saw [V3, O2(L1)] 6= 1.
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This establishes the claim that [VH , J(R1)] 6= 1. By the first paragraph of the
proof, CR1(VH) = O2(H), so we may apply B.2.10.1 to conclude that

PR1,H = {A∗h 6= 1 : A ∈ A(R1), h ∈ H}

is a nonempty stable subset of P(H∗, VH). Hence by B.1.8.5, I∗ = 〈J(R1)
∗H〉 =

I∗1 × · · · × I∗s with I∗i
∼= S3, and [VH , I ] is the direct sum of the subgroups Ui :=

[VH , Ii] ∼= E4. Further s ≤ 2 by Theorem B.5.6.

Recall that L = θ(M), L1 = O3′ (CL(z)), and H ≤ Gz . Thus L1 = θ(CM (z)) =

θ(H ∩M). Similarly if L/O2(L) ∼= A6, then L1 = O3′ (H ∩M) using 13.4.2.5.
Next by B.1.8.5, J(R1)

∗ ∈ Syl2(I∗); thus J(R1)
∗ is self-normalizing in I∗. We

claim that O2(I∗)∩L∗1 = 1: If L/O2(L) ∼= A6, then L1 normalizes R1, so this follows

from the previous observation. So suppose L/O2(L) ∼= Â6. Then L1,+ normalizes
R1, so O

2(I∗) ∩ L∗1 is trivial or L∗0. Assume the latter case holds. Then as L0 is
T -invariant, L∗0 = O2(I∗i ) for some i, and then L∗0 E H∗ since s ≤ 2. In case (i)
of 13.4.4.2, CH(VH ) = O2(H) acts on L0, so L0 = O2(L0CH(VH )) E H . In case
(ii) of 13.4.4.2, L1,+ = O2(CH (VH)), so L1 = L1,+L0 = O2(L0CH (VH)) E H . In
either case H ≤M by 13.2.2.9, contrary to H 6≤M . This contradiction completes
the proof of the claim that O2(I∗) ∩ L∗1 = 1.

Since L1 = θ(H ∩M), it follows from the claim that I 6≤ M . Furthermore

O2(I∗) = O3′ (NGL([VH ,I])(I
∗)), so the claim says I∗L∗1 = I∗ × L∗1. Thus when

L∗1 6= 1, it follows from A.1.31.1 applied in the quotient I∗L∗1/O2(L
∗
1) that s = 1.

We first treat case (i) of 13.4.4.2, where CH(VH ) = O2(H). Then m3(L1) =
m3(L

∗
1) = 1, so s = 1 by the previous paragraph and L/O2(L) ∼= A6. Thus (1) and

(2) hold. By 13.4.3.2, |Z : ZL| = 2, so as z ∈ Z(H) does not lie in U1,

1 6= ZL ∩ 〈z〉(Z ∩ U1) =: Z1

and H = ICH(U1) = ICH(Z1) = I(H ∩ M), where the final equality holds as
CG(Z1) ≤ M = !M(LT ). As CH(VH ) ≤ M , |H : H ∩ M | = |I : O2(I)| = 3,
so O{2,3}(H) ≤ CM (z). Then applying 13.3.9 to O{2,3}(H) in the role of “Y ”, we

conclude that H is a {2, 3}-group. So as L1 = O3′ (H∩M), H = I(H∩M) = IL1T ,
with H/O2(H) ∼= S3 × S3, since R1 ≤ CH(L1/O2(L1)). Thus (3) holds.

We must treat case (ii) of 13.4.4.2, where O2(H) < CH(VH ) with O2(CH(VH ))

= L+ = L1 or L1,+, when L/O2(L) ∼= A6 or Â6, respectively, and R1 is Sylow in
the normal subgroup H1 := CH(L+/O2(L+)) of H . Thus I = 〈J(R1)

H〉 ≤ H1, and
hence R1 ∈ Syl2(IR1).

Assume that L/O2(L) ∼= Â6. As L1,+ = O2(CH (VH )), L∗1 = L∗0 is of order
3, and hence s = 1 and L1/O2(L1) ∼= E9

∼= O2(I∗) × L∗1 by an earlier remark.
Therefore as m3(H) ≤ 2, O2(I)L1/O2(O

2(I)L1) ∼= 31+2. Then O2(I) normalizes
O2(L1O2(O

2(I)L1)) = L1, so that I ≤ NG(L1) ≤ M by 13.2.2.9, contrary to
I 6≤M .

Therefore L/O2(L) ∼= A6, so (1) holds. If s = 1, then (2) holds, and an
argument above shows that (3) holds. Thus we may assume that s = 2. Then
as L1 = L+ = O2(CH (VH )) and m3(H) ≤ 2, I/O2(I) ∼= E4/3

1+2 with L1 =
O2(O2,Φ(I)). This is impossible, since R1 ∈ Syl2(IR1), and J(R1) centralizes
L1/O2(L1). This completes the proof of 13.4.8. ¤

Proposition 13.4.9. If Gz is solvable then G ∼= Sp6(2).
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Proof. Assume Gz is solvable. Then using B.2.14 as usual, the pair H := Gz,
VH := 〈ZGz〉 satisfy the hypotheses of 13.4.8. Therefore by 13.4.8.3, H = IL1T ,
where I := 〈J(R1)

H〉 and H/O2(H) ∼= S3×S3. AlsoM = LTCM(V ) = LCM (z) =
L(H ∩M) and H ∩M = L1T , so M = LT .

We next check next that the hypotheses of Proposition 13.4.7 are satisfied with
IT , L2T in the roles of “H1, H2”: For example, L2 has at least three noncentral
2-chief factors, two on V and one on O2(L̄2), giving (a). Further ZL = CZ(L2T )
is of index 2 in Z by 13.4.3.2; while CZ(IT ) is of index 2 in Z as m([VH , I ]) = 2
by 13.4.8.2, and VH = [VH , I ]CZ(I) by B.2.14, so that (b) holds. Suppose H0 :=
〈IT, L2T 〉 ∈ H(T ). As H = IL1T 6≤ M , I 6≤ M , so H0 6≤ M = !M(LT ) and

hence L 6≤ H0. But L2 ≤ H0 and L2T is maximal in LT = M , so L2 = O3′(H0 ∩

L) = O3′(H0 ∩M) since L/O2(L) ∼= A6 by 13.4.8.1. Hence L1 ∩ H0 = O2(L1).

Further ZL = CZ(L2) and CG(ZL) ≤ M , so L2 = O3′(CH0 (ZL))) E CH0(ZL).

As Gz = H = IL1T with L1 ∩ H0 = O2(L1), O
2(I) = O3′ (CH0(z)) E CH0 (z),

and CH0(CZ (I)) ≤ CH0(z). Hence (c) holds. This completes the verification of the
hypotheses of Proposition 13.4.7.

Now by 13.4.7.1, H0 ∈ H(T ) and m(Z) = 2. Therefore m(VH) = 3 as z 6∈
[VH , I ] ∼= E4. Furthermore one of the cases (i)–(iv) holds. As L2 = O2(H2),
conclusion (iii) is ruled out by 13.4.7.3, and conclusion (iv) is ruled out by 13.4.7.4.
If [O2(I), L2] ≤ O2(O

2(I)), then LT = 〈L1T, L2T 〉 ≤ NG(O
2(I)), contrary to

I 6≤ M = !M(LT ); this rules out conclusion (i). Thus H0 satisfies conclusion (ii),
and so H0/O2(H0) ∼= L3(2).

Let E0 :=M , E1 := H , E2 := H0, F := {E0, E1, E2}, and E := 〈F〉. We show
that (E,F) is a C3-system as defined in section I.5. First hypothesis (D5) holds as
ZV ≤ Z(E0). By 13.4.8.1, E0/O2(E0) ∼= A6 or S6, verifying hypothesis (D1). We
have already observed that hypothesis (D2) holds, and hypothesis (D3) holds by
construction. Finally as M ∈ M and H 6≤ M , kerT (E) = 1, so hypothesis (D4) is
satisfied.

As (E,F) is a C3-system, E ∼= Sp6(2) by Theorem I.5.1. Thus it remains to
show that E = G. To do so we appeal to a fairly deep result on groups disconnected
at the prime 2, which we used earlier in our appeal to Goldschmidt’s Theorem in
chapter 2. Let W := O2(E2); as E ∼= Sp6(2), W is the core of the permutation
module for E2/W and W = J(T ). Thus H.5.3.4 tells us that E2 has four orbits
β1, α2, γ2, β3 on W#, consisting of vectors of weights 6, 4, 2, 4, and the orbits
have length 7, 7, 21, 28, respectively. As W = J(T ), E2 controls G-fusion in W by
Burnside’s Fusion Lemma A.1.35. As E ∼= Sp6(2), it follows from [AS76a] that E
has four classes of involutions, determined by the Suzuki type of each on the natural
module—so these orbits contain representatives for the classes, namely the Suzuki
types b1, a2, c2, b3 suggested by the notation above. Hence E controls G-fusion of
its involutions. As M = CG(ZV ) ≤ E, it follows that E is the unique fixed point
on G/E of a generator d of ZV . For j /∈ β3, we may choose T ∈ Syl2(CE2(j)), so
that F ∗(CG(j)) = O2(CG(j)) by 1.1.4.6; hence d ∈ O2(CG(j)), so E is the unique
fixed point of O2(CG(j)) on G/E, and hence CG(j) ≤ E.

Set D := dG. We claim that D is product-disconnected in G with respect
to E, in the sense of Definition ZD on page 20 of [GLS99]; cf. the proof of
I.8.2. Condition (a) of that definition is trivial. Since E ∼= Sp6(2) we check that
dE ∩ T = b1 ∩ T = β1. Since E controls G-fusion of its involutions, D ∩ E = dE ,
while by the previous paragraph, CG(d) ≤ E. Thus condition (b) of the definition
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holds by A.1.7.2. Finally consider any e ∈ CD(d) − {d}. Then e ∈ CG(d) ≤ E, so
since E controls fusion of its involutions, by conjugating in E we may assume that
e ∈ β1. Then de ∈ γ2, so that CG(de) ≤ E by the previous paragraph, verifying
condition (c) of the definition and establishing the claim.

Therefore as G is simple, we may apply Corollary ZD on page 22 of [GLS99],
to conclude that G is a simple Bender group, and E is a Borel subgroup, which is
strongly embedded in G. This is impossible by 7.6 in [Asc94], as E has more than
one class of involutions. ¤

13.4.3. Eliminating the case Gz nonsolvable. If Gz is solvable then The-
orem 13.4.1 holds by Proposition 13.4.9. Thus we may assume for the remainder
of the proof of the Theorem that Gz is not solvable, and we will work to a contra-
diction.

In particular there exist nonsolvable members of Hz. Our first result is a
refinement of the information produced earlier in 13.4.6.

Lemma 13.4.10. Let H ∈ Hz be nonsolvable. Then

(1) There exists K ∈ C(H), K 6≤ M , K ∈ L∗f (G, T ), and K E H. Set

VH := 〈ZK〉 and (KT )∗ := KT/CKT (VH ); then K∗ ∼= L3(2) or A6.
(2) L1 ≤ K.
(3) L/O2(L) ∼= A6 and if K

∗ ∼= A6, then K/O2(K) ∼= A6.
(4) Let VK := [VH ,K]. Then VK = [R2(KT ),K] and either VK is the natural

module for K∗, or VK is a 5-dimensional module for K∗ ∼= A6 with 〈z〉 = CVK (K).
(5) |Z| = 4, so Z = Z ∩ V = V1, |ZL| = 2, and CZ(K) = 〈z〉.
(6) ZV = ZL.
(7) M = LT and H = KT = Gz. Thus Hz = {Gz} and VH = 〈ZH〉. Further-

more Gz contains a unique member of H∗(T,M): the minimal parabolic of H over
T distinct from L1T .

(8) Let H2 ∈ H(T ) be the minimal parabolic of H distinct from L1T , and set
H0 := 〈H2, L2T 〉. Then H0 ∈ H(T ), H2 is the unique member of H∗(T,M) in H0,
and either:

(i) Conclusion (i) of 13.4.7.1 holds, z is of weight 4 in V , and ZV ≤ VK .
Further if VK is a 5-dimensional module for K∗ ∼= A6, then ZV is of weight 4 in
VK .

(ii) Conclusion (ii) of 13.4.7.1 holds and H0 = NG(J(T )) ∈M(T ).

Proof. First by 13.4.6.1, there exists K ∈ C(H), K ∈ L∗f (G, T ), K E H , and

K 6≤M . By 13.4.5.1, K/O2(K) is A5, L3(2), A6, or Â6.
Set U := [R2(KT ),K]. By 13.4.5.3 with KT in the role of “H”, there is

WK ∈ Irr+(K,R2(KT ), T ), and for each such WK , WK = 〈(Z ∩ WK)K〉 ≤ U
and WK is either a natural module for K/O2,Z(K) or a 5-dimensional module for
K/O2,Z(K) ∼= A6.

Now K = [K, J(T )] by 13.4.6.3, so Theorem B.5.1 shows that either U ∈
Irr+(K,R2(KT )), or U is the sum of two isomorphic natural modules for K∗ ∼=
L3(2), which are T -invariant since then T ∗ ≤ K∗. In particular U is the A5-module
if K∗ ∼= A5, and U = 〈(Z ∩U)K〉 ≤ VH , so U = VK . By B.2.14, VH = UCZ(K), so
CKT (U) = CKT (VH).

As VH = UCZ(K), CKT (Z) = CK(Z ∩ U)T , so that CK(Z)∗T ∗ is a max-
imal parabolic of K∗T ∗ containing T ∗. Now CK(Z)T = LKT , where LK :=



908 13. MID-SIZE GROUPS OVER F2

O2(CK(Z)) ≤ M by 13.4.2.2. Then LK ≤ θ(M) = L by 13.4.2.5, so that LK ≤
O2(CL(Z)) ≤ O2(CL(z)) = L1. Let LC := O2(CL1(K/O2(K)); as LK ≤ L1 ≤
H ≤ NG(K) and Out(K∗) is a 2-group, it follows that L1 = LKLC . In each case
LK/O2(LK) is an elementary abelian 3-group of rank 1 or 2; similarly L1/O2(L1)

is of rank 1 or 2 for L/O2(L) isomorphic to A6 or Â6, respectively. In particular if
L/O2(L) ∼= A6, then 3 ≤ |LK : O2(LK)| ≤ |L1 : O2(L1)| = 3, so equality holds and
LK = L1.

Now set R := O2(L1T ), S := Baum(R), and TK := R(T ∩ K). Then TK ∈
Syl2(KTK). Further [T ∩K,LC ] ≤ O2(K) ≤ R, so as L1 = LKLC , O2(LKTK) =
O2(L1TK) = R. Also CKTK (Z) = LKTK , so R = O2(LKTK) = O2(CKTK (Z)).

We are now in a position to complete the proof of (1). We showed thatK∗ ∼= A5,
L3(2), or A6; thus it remains to assume K∗ ∼= A5, and derive a contradiction. In
this case we saw that U is the A5-module, and we also saw that R∗ = O2(L

∗
KT

∗),
so R∗ = T ∗K . Then R∗ contains no FF∗-offenders on U by B.3.2.4, so by B.2.10.1,

S = Baum(R) = Baum(O2(KTK)) E KTK .

If C is a nontrivial characteristic subgroup of S normal in LT , then K ≤ NG(C) ≤
M = !M(LT ), contrary to K 6≤ M ; hence no such C exists. This eliminates the

case L/O2(L) ∼= Â6, since there 13.2.2.8 shows that each C is indeed normal in LT .
Thus L/O2(L) ∼= A6, so by an earlier remark LK = L1, and hence R = R1. Now
13.2.2.7 shows that L is an A6-block. Therefore L1 has exactly two noncentral 2-
chief factors; so also K is an A5-block since L1 = LK . As S = Baum(O2(KTK)), S
centralizes O2(K) by C.1.13.c; so by B.2.3.7, each A ∈ A(S) contains O2(K). Then
[A,K] ≤ [O2(KS),K] = O2(K) ≤ A, so A E KA. However m2(O2(LT )) = m2(S)
by 13.2.2.6, so that A(O2(LT )) ⊆ A(S); hence J(O2(LT )) E KT , so that K ≤M
for our usual contradiction. Therefore K∗ is not A5, completing the proof of (1).

We next prove (2), so we suppose that L1 6≤ K, and derive a contradiction.
If K∗ is A6, then K = θ(H) by 12.2.8, and hence L1 ≤ K, contrary to our as-
sumption. Thus K∗ is L3(2) by (1). If L/O2(L) ∼= A6, then we saw earlier

that L1 = LK ≤ K, contrary to our assumption. Thus L/O2(L) ∼= Â6. As
L0 and L1,+ are the T -invariant subgroups with images of order 3 in L1/O2(L1),
we conclude that {LC , LK} = {L0, L1,+}. Indeed as K 6≤ M , while K acts on
O2(LCO2(K)) = LC and NG(L0) ≤M by 13.2.2.9, we conclude that LK = L0 and
L1,+ = LC .

As K∗ ∼= L3(2), R
∗ = O2(L

∗
KT

∗
K) is the unipotent radical of the maximal

parabolic L∗KT
∗
K of K∗ stabilizing Z ∩U . As L/O2(L) ∼= Â6, S E LT by 13.2.2.8,

so no nontrivial characteristic subgroup of S is normal in KT , since K 6≤ M .
Therefore we may apply C.1.37 to conclude that K is an L3(2)-block. But then LK
has just two noncentral 2-chief factors, whereas we saw earlier that LK = L0, and
L0 has at least three noncentral chief factors on an L-chief section of O2(L) not
centralized by L0. This contradiction shows that L1 ≤ K, completing the proof of
(2).

Recall that LK ≤ L1, while by (2), L1 ≤ LK , so L1 = LK . Thus L/O2(L) ∼= Â6

iff m3(L1) = 2 iff m3(LK) = 2 iff K/O2(K) ∼= Â6. But then by 13.2.2.8 applied to
both LT and KT ,

J(O2(LT )) = J(O2(L1T )) = J(O2(LKT )) = J(O2(KT )),

so that K ≤M for usual contradiction, establishing (3).
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As L/O2(L) ∼= A6 by (3), R = R1. Also either U ∈ Irr+(K,R2(KT )), or
K∗ ∼= L3(2) and U is a sum of two isomorphic natural modules. Suppose that the
latter case holds. Again R∗ is the unipotent radical of the parabolic CK∗(Z∩U)T ∗K
fixing a point in each summand of U , so we can finish much as in the proof of (1):
R∗ contains no FF∗-offenders on U , so S E KTK by B.2.10.1. Then no nontrivial
characteristic subgroup of S is normal in LT , so L is an A6-block by 13.2.2.7, and
L1 has exactly two noncentral 2-chief factors. This is a contradiction since L1 ≤ K
by (2), so that L1 has a noncentral chief factor on each summand of U , plus one
more on O2(L

∗
1).

This contradiction shows that U ∈ Irr+(K,R2(KT )). Thus from earlier re-
marks, VH = UCZ(K) and U is the natural module for K∗ or a 5-dimensional mod-
ule forK∗ ∼= A6. In particular, Z = (Z∩U)CZ(K). Next CZL(K) = 1, as otherwise
K ≤ CG(CZL(K) ≤M by 13.4.2.2. By 13.4.3.2, |Z : ZL| = 2, so |CZ(K)| ≤ 2, and
hence CZ(K) = 〈z〉. In particular if K∗ ∼= A6 and m(U) = 5, then CU (K) = 〈z〉,
establishing (4). Also |Z ∩ U : CZ∩U (K)| = 2, so as Z = (Z ∩ U)CZ(K) and
CZ(K) = 〈z〉, (5) and (6) hold.

Using (3) and 13.4.6.5, M = LT so CG(Z) = L1T . Let WH := 〈ZH〉 and
UH := [WH ,K]. By 13.4.5.4, O2,Z(K) = CK(WK) = CK(UH) = CK(WH ). As
K = [K, J(T )], Theorems B.5.1 and B.5.6 say that either UH ∈ Irr+(K,WH),
so that UH = U , or K∗ ∼= L3(2) and UH is the sum of two isomorphic natural
modules for K∗ ∼= L3(2). Assume the latter holds. Then as K is irreducible on
U and O2(H/CH(VH )) = 1 by B.2.14, AutH(UH) = L3(2) × L2(2) and UH is the
tensor product module. Then AutR(UH) contains no FF∗-offenders, so as in earlier
arguments we obtain a nontrivial characteristic subgroup of R normal in KT and
M , a contradiction. Thus UH = U .

By A.1.41, CH (K/O2(K)) ≤ CH(U), so as Z = (Z∩U)〈z〉 and Out(K/O2(K))
is a 2-group, H = KTCH(K/O2(K)) = KCH(U) = KCH(Z) = KL1T = KT since
L1 ≤ K by (2). SinceGz satisfies the hypotheses forH , we concludeGz = KT = H .
Thus (7) holds since K 6≤M .

Define H2 and H0 as in (8), and let H1 := L2T . Observe that the hypotheses
of Proposition 13.4.7 are satisfied: For example (5) establishes part (b), with ZV =
CZ(L2) and 〈z〉 = CZ(H2). Also if X ∈ H(H0), then L1 6≤ X : as otherwise
M = LT = 〈L1, L2T 〉 ≤ X whereas H2 ≤ X but H2 6≤ M by (7). Therefore as
L2T is maximal in M = CG(ZV ) and H2 is maximal in H = Gz , we conclude

that L2T = CX(ZV ), so L2 = O3′ (CH0(ZV )); and H2 = CX (z), so O2(H2) =

O3′(CH0(z)). Thus part (c) holds. Finally L2 has at least three noncentral 2-chief
factors, two on V and one on O2(L̄2), giving part (a). We conclude from 13.4.7.1
that H0 ∈ H(T ) and one of conclusions (i)—(iv) of that result holds. In applying
13.4.7, we interchange the roles of “H1” and “H2”, so the hypothesis “K2 = L2” in
parts (3) and (4) of 13.4.7 also holds; hence conclusions (iii) and (iv) do not hold
here.

Suppose conclusion (ii) holds. Then J(T ) E H0. Further for any X ∈ H(H0),

CX (Z) = CX(ZV ) ∩ CX (z) = L2T ∩H2 = T,

so we conclude from 13.4.7.2 that X = H0. Thus H0 ∈ M(T ), and in particular
H0 = NG(J(T )). That is, conclusion (ii) of (8) holds.

Finally suppose that conclusion (i) of 13.4.7.1 holds. Then V0 := 〈ZH0〉 is
of rank 4. Set K2 := O2(H2); then [L2,K2] ≤ O2(L2) ∩ O2(K2), so L2 and K2



910 13. MID-SIZE GROUPS OVER F2

normalize each other. Thus L2 centralizes U2 := 〈ZK2

V 〉, and K2 centralizes U1 :=
〈zL2〉. But as conclusion (i) of 13.4.7.1 holds, CV0(L2) =: U ′2

∼= E4, so that U2 =
U ′2
∼= E4; in particular, ZV ≤ U2 ≤ VK . Similarly U1

∼= E4, so it follows that z is
of weight 4 rather than 2 in V . Similarly ZV is of weight 4 in VK when VK is the
5-dimensional module for K∗ ∼= A6. Thus conclusion (i) of (8) holds, and the proof
of 13.4.10 is complete. ¤

Lemma 13.4.11. (1) L/O2(L) ∼= A6.
(2) M = LT .
(3) Hz = {Gz}.

Proof. Part (1) follows from 13.4.10.3, and (2) and (3) follow from 13.4.10.7.
¤

Lemma 13.4.12. (1) Z = V1 has rank 2, and there exists a unique z ∈ Z# such
that CG(z) 6≤M .

(2) There is a unique member H2 of H∗(T,M) contained in Gz.

Proof. By 13.4.10.5, Z = V1 is of rank 2. Recall z ∈ V #
1 with Gz 6≤ M , and

z has weight 2 or 4 in V while a generator of ZV is of weight 6. Let zk denote the
element of V1 of weight k and choose m with Gzm 6≤M . In this subsection Gzm is
not solvable, so by parts (1) and (7) of 13.4.10, Gzm = KzmT for Kzm ∈ C(Gzm),
and there is a unique Hm,2 ∈ H∗(T,M) contained in Gzm . Set Km,2 := O2(Hm,2).

As Hm,2 is the unique member of H∗(T,M) contained in Gzm , (2) holds. More-
over by 13.4.10.5, CZ(Hm,2) = 〈zm〉. As z2 6= z4, H2,2 6= H4,2.

It remains to prove the final statement in (1), so we assume that Gzm 6≤M for
both m = 2 and 4. Set Hm,0 := 〈L2T,Hm,2〉. Then by 13.4.10.8, Hm,0 ∈ H(T ),
and Hm,0 satisfies conclusion (i) or (ii) of both 13.4.7.1 and 13.4.10.8. As z2 has
weight 2 in V , H2,0 satisfies conclusion (ii) rather than (i) of 13.4.10.8, and hence

H2,0 = NG(J(T )) ∈ M(T ).

Suppose thatH4,0 also satisfies conclusion (ii) of both results. Then by 13.4.10.8,
H2,0 = NG(J(T )) = H4,0 and Hm,0 contains a unique member Hm,2 of H∗(T,M).
Therefore H2,2 = H4,2, contrary to an earlier observation. Hence H4,0 satisfies
conclusion (i) of both results.

Next let H0 := 〈H2,2, H4,2〉. We check that the hypotheses of Proposition
13.4.7 are satisfied: We already observed that m(Z) = 2 and 〈zk〉 = CZ(Hk,2),
establishing (b). We saw that Hk,2 does not centralize z6−k, so H0 6≤ Gzk and

hence O3′ (CH0(zk))T < Gzk . Now Gzk = KzkT for k = 2, 4, and in each case

Kk,2T is a maximal subgroup of Gzk , so we conclude Kk,2 = O3′(CH0 (zk)), giving
(c). Finally by 13.4.10.4, Kzk has at least two noncentral 2-chief factors, one in
VGzk and one in Kzk/CKzk

(VGzk ), giving (a).

So we may apply 13.4.7. Assume first that H0 satisfies one of conclusions (ii)–
(iv) of 13.4.7.1. Then H0 ≤ NG(J(T )) = H2,0. Recall however that H0 is generated
by distinct members Hk,2 of H∗(T,M), whereas H2,2 is the unique member of
H∗(T,M) contained in H2,0.

Therefore H0 satisfies conclusion (i) of 13.4.7.1. Thus K2,2 ≤ NG(K4,2) and
hence H2,0 = 〈K2,2, L2T 〉 ≤ NG(K4,2), since H4,0 also satisfies conclusion (i) of
13.4.7.1. Indeed we saw H2,0 ∈ M(T ), so H2,0 = NG(K4,2), and hence K4,2 ≤
O2,3(H2,0). However, we also saw that H2,0 satisfies conclusion (ii) of 13.4.7.1, so
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that H2,0/O2(H2,0) ∼= L3(2), and hence O2,3(H2,0) = O2(H2,0) is a 2-group. This
final contradiction completes the proof of 13.4.12. ¤

By 13.4.12, there is a unique z ∈ V #
1 = Z# with Gz 6≤ M . For the remainder

of the section, set H := Gz and VH := [〈ZH〉, O2(H)]. By 13.4.10.7 there is a
unique H2 ∈ H∗(T,M) contained in H . Let K2 := O2(H2), H0 := 〈L2T,H2〉, and
V0 := 〈ZH0〉.

Lemma 13.4.13. (1) H = KT with K ∈ L∗f (G, T ), K/O2(K) ∼= L3(2) or A6,

and VH is the natural module for K/O2(K) or a 5-dimensional module for A6.
(2) 〈ZH〉 = VH〈z〉, so VH ∈ R2(H).

Proof. By 13.4.10, (1) holds and Z = ZV 〈z〉 where 〈z〉 = CZ(K). So by
B.2.14, 〈ZH〉 = [Z,K]CZ(K) = VH〈z〉 and VH ∈ R2(H). ¤

Lemma 13.4.14. H0 satisfies conclusion (i) or (ii) of 13.4.7.1, and:

(1) If V0 is semisimple then z is of weight 4 in V and ZV ≤ [Z,K2] ≤ VH . If
further VH is the 5-dimensional module for A6, then ZV is of weight 4 in VH .

(2) If H0/O2(H0) ∼= L3(2) and V0 is the core of the permutation module, then
either:

(i) ZV 6≤ Soc(V0), z is of weight 4 in V , and either

(a) ZV 6≤ VH , or
(b) VH is a 5-dimensional module for A6 and ZV is of weight 2 in VH ;

or else

(ii) ZV ≤ Soc(V0), z is of weight 2 in V , ZV ≤ VH ; and if VH is a
5-dimensional module for A6 then ZV is of weight 4 in VH .

Proof. The initial statement follows from 13.4.10.8. In the remainder of the
proof, we extend arguments used in the last few lines of the proof of that result:
First z is of weight 4 in V iff z ∈ [Z,L2]. Further ZV ≤ [Z,K2] iff ZV ≤ VH with
ZV of weight 4 in VH when VH is of dimension 5. Thus the subcase of conclusion
(1) where H0 is solvable can be treated exactly like the subcase in the earlier proof
corresponding to 13.4.10.8i.

So assume H0/O2(H0) ∼= L3(2). Then ZV = CV0 (L2T ) and 〈z〉 = CV0(K2T ).
In case (1), where V0 is semisimple, CV0(L2T ) ≤ [Z,K2] and CV0 (K2T ) ≤ [Z,L2],
completing the proof of (1) in view of the equivalences in the previous paragraph.

It remains to prove (2), so we assume V0 is the core of the permutation module.
Suppose first that ZV 6≤ Soc(V0). Then L2 centralizes the generator for ZV , which
lies in V0−Soc(V0). Thus we may apply section H.5 with L2, K2 in the roles of “Lp,
Ll”: Then 〈z〉 = CV0(K2T ) ≤ Soc(V0) by H.5.2.5 and H.5.3.3, and z ∈ [Z,L2] by
H.5.4.2, so that z is of weight 4 in V . Further ZV = CV0(L2T ) 6≤ [Z,K2] by H.5.4.1.
Therefore if ZV ≤ VH , then z ∈ Z ≤ ZV [Z,K2] ≤ VH , so VH is a 5-dimensional
module for A6, and hence ZV is of weight 2 in VH by our earlier equivalences. Thus
either (a) or (b) of (2i) holds in this case.

On the other hand if ZV ≤ Soc(V0), then the roles of L2 and K2 are reversed
in the application of section H.5. Thus ZV = CV0(L2T ) ≤ [Z,K2] and z /∈ [Z,L2],
so that (2ii) holds. ¤

Recall since L/O2(L) ∼= A6 by 13.4.11 that R2 = O2(L2T ).

Lemma 13.4.15. Assume for some g ∈ G that V g
0 ≤ R2 and V ≤ Rg2. Then

1 = [V, V g0 ].
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Proof. Assume [V, V g0 ] 6= 1. By hypothesis V g0 ≤ R2 and V ≤ Rg2 , so V
g
0

and V normalize each other. Let Hg∗
0 := Hg

0 /O2(H
g
0 ). By 13.4.14, case (i) or (ii)

of 13.4.7.1 holds. Now 1 6= V ∗ ≤ Rg∗2 . But in case (i), as Rg∗2 centralizes Lg∗2 ,
Hg∗

0
∼= S3 × S3, V

∗ is of order 2, and [V g0 , V ] ≤ [V g0 ,K
g
2 ] = [Z,K2]

g . Similarly
in case (ii), V ∗ ≤ Rg∗2

∼= E4, so V
∗ = R∗g if |V ∗| > 2; further by 13.4.7.1, Hg∗

0

contains no transvections on V g0 .
Suppose first that |V ∗| = 2. Then V̄ g0 induces a nontrivial group of transvec-

tions on V with axis CV (V
g
0 ), so as V is a 5-dimensional module for L̄ ∼= A6, it

follows that [V, V g0 ] = 〈v〉 with v of weight 2 in V . Conjugating in L, we may assume
v ∈ V1. Further 2 = |V̄ g0 | = |V g0 /CV g0 (V )|. Hence V ∗ is a group of transvections

on V g0 with center 〈v〉, so Hg∗
0
∼= S3 × S3 and v ∈ [V g0 , V ] ≤ [Z,K2]

g by paragraph
one. But by 13.4.14.1, ZV ≤ [Z,K2], so 〈v〉 is conjugate in G to ZV of weight 6,
contradicting 13.2.2.5 since v has weight 2.

Therefore |V ∗| > 2, so by paragraph one, Hg∗
0
∼= L3(2) and V ∗ = Rg∗ is

of order 4. From the action of H0 on V0, [V, V g0 ] = CV g
0
(V ) and V g0 /CV g0 (V )

are of rank 3: this is clear if V0 is semisimple, and it follows from H.5.2 if V0
is the core of the permutation module. Hence V̄ g0 = R̄2 and m(R̄2) = 3. As
m(R̄2) = 3, ZV ≤ [V,R2] = [V, V g0 ] = CV (V

g
0 ). Then ZV is weakly closed in [V, V g0 ]

by 13.2.2.5. Also (L2T )
g acts on [Rg2, V

g
0 ] = [V, V g0 ], and then also on the subgroup

ZV weakly closed in [V, V g0 ], so (L2T )
g ≤M . Then T g is conjugate to T in M , so

as NG(T ) ≤ M by Theorem 3.3.1, g ∈ M . Now as R̄2 = V̄ g0 ≤ R̄g2 = O2(L̄
gT̄ g),

L2T = (L2T )
g. As M = LT by 13.4.11, L2T is maximal in M , so g ∈ L2T ≤ H0,

so H0 = Hg
0 . Thus V

g
0 = V0 E T , so as CV g

0
(V ) = [V, V g0 ] ≤ V ∩ V g0 ,

[O2(LT ), V0] ≤ CV0(V ) ≤ V.

Therefore [O2(LT ), L] = V and L is an A6-block. Set K0 := O2(H0); similarly
[O2(H0), V ] ≤ V0 and then [O2(H0),K0] = V0.

If V0 = U1⊕U2 is the sum of non-isomorphic 3-dimensional modules for K0, we
saw that ZV ≤ U := Ui for i := 1 or 2 during the proof of 13.4.14.1. If instead V0 is
the core of the permutation module and ZV ≤ Soc(V0), set U := Soc(V0). In either
of these two cases, since V ∗ = R∗2 and L2 centralizes ZV , [U, V ] = CU (L2) = ZV =
CU (V ), so U induces a 4-group of transvections on V with center ZV , impossible as
CM (V/ZV ) = CM (V ) by 13.4.2.4. Therefore we are in case (i) of 13.4.14.2, where
V0 is the core of the permutation module and ZV 6≤ Soc(V0); so by that result, z is
of weight 4 in V .

As L is an A6-block, L1 has two noncentral 2-chief factors, so K is an L3(2)-
block or an A6-block using 13.4.13.1. Further as z is of weight 4 in V , 〈z〉 = [V ∩
O2(L1), O2(L1)], so that z ∈ VH . Therefore since z ∈ Z(H), VH is the 5-dimensional
module for the A6-blockK. By 13.4.12.1, Z = ZV 〈z〉 is of order 4, and by symmetry
between L and K, Z ≤ VH and Z ∩ O2(L1) 6≤ Z(K) ∩ VH = 〈z〉; so as z ∈ L1,
Z ≤ L1. Calculating in the A6-block K, |Z(K)| ≤ 4 and O2(L1/Z(K)) ∼= Q2

8, so
|Z(O2(L1)/〈z〉)| ≤ 4. Therefore as [V ∩ O2(L1), O2(L1)] = 〈z〉 and |V ∩ O2(L1)| =
8|ZV ∩ O2(L1)| = 16, we have a contradiction. ¤

Lemma 13.4.16. If g ∈ G with V g0 ≤ R2 and V0 ≤ Rg2, then [V0, V
g
0 ] = 1.

Proof. Assume V g0 is a counterexample, and let H∗0 := H0/CH0(V0). Inter-
changing V0 and V g if necessary, we may assume that m(V g∗0 ) ≥ m(V0/CV0(V

g
0 )),

so V0 is an FF-module for H∗0 . The modules V0 in case (ii) of 13.4.7.1 are not
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FF-modules by Theorem B.5.1, so by 13.4.14, we are in case (i) of 13.4.7.1. Ar-
guing as in the proof of the previous lemma, m(R∗2) = 1 and then m(V g∗0 ) =
1 = m(V0/CV0(V

g
0 )) and [V0, V

g
0 ] = ZV . By symmetry between V0 and V g0 , Z

g
V =

[V0, V
g
0 ] = ZV , so g ∈ NG(ZV ) =M = NG(V ) by 13.4.2.1. Then V = V g ≤ Rg2, so

by 13.4.15, [V, V g0 ] = 1. Thus as V = V g, also [V, V0] = 1.
Let U0 := [Z,K2], so that U0 is a 4-group as case (i) of 13.4.7.1 holds. As

H0 is solvable, z is of weight 4 in V and ZV ≤ U0 ≤ VH by 13.4.14.1. Therefore
U0 = 〈ZK2

V 〉 and CK2T (U0) = O2(K2T ). By 13.4.12.1, CG(v) ≤ M = NG(V )
for each v ∈ V # not of weight 4, so by 13.4.2.3, V is the unique member of V G

containing v. But up to conjugation under L, 〈e1,2,3,4, e1,2,5,6〉 is the unique maximal
subspace U of V all of whose nontrivial vectors are of weight 4, so r(G, V ) ≥ 3.

Let W0 :=W0(T, V ). We claim [V,W0] = 1, so that NG(W0) ≤M by E.3.34.2:
For suppose A := V y ∩M with Ā 6= 1. Assume for the moment that also V ≤M y.
Then 1 6= [V,A] ≤ V ∩ V y, so by the previous paragraph, [V,A]# contains only
vectors of weight 4. We conclude that all involutions of Ā are of cycle type 23, and
hence |Ā| = 2 and |V : CV (V

y)| ≥ |V : CV (A)| = 4. Therefore A < V y when
V ≤ My—since if A = V y, then we have symmetry between V and V y, so that
2 = |Ā| = |V : CV (V

y)| = 4.
Now assume A = V y; then V 6≤ My by the previous paragraph. Therefore

m(Ā) ≥ r(G, V ) ≥ 3, and hence m(Ā) = 3 as m2(M̄) = 3. Further

U = 〈CV (B̄) : 1 6= B̄ ≤ Ā〉 = 〈CV (D) : m(A/D) < 3〉 ≤My.

Thus U < V , which is not the case if Ā is conjugate to R̄2. Therefore Ā is conjugate
to R̄1, and then m(V/U) = 1 so that U = V ∩My and m(U/CU (A)) = 2. But
applying the previous paragraph with U , A in the roles of “A, V ”, we conclude
that m(U/CU (A)) = 1. This contradiction establishes the claim that W0 ≤ CT (V )
and NG(W0) ≤M .

Thus W0 is not normal in K2T , as K2 6≤ M , and hence W0 6≤ O2(K2T ) =
CK2T (U0) by E.3.15. Therefore there is D := V x ≤ T for some x ∈ G with
[U0, D] 6= 1. But |D : CD(U0)| = 2 as |T : O2(K2T )| = 2, so U0 ≤ CG(CD(U0)) ≤
NG(V

x) as r(G, V ) ≥ 3. Then as D does not centralize U0, ZV = [U0, D] ≤ D.
By 13.4.2.3, V is the unique member of V G containing ZV , so D = V . But
now [D,U0] 6= 1, whereas U0 ≤ V0 and [V, V0] = 1 by the first paragraph. This
contradiction completes the proof of 13.4.16. ¤

Our final lemma shows that the 2-locals M and H0 resemble the parabolics Ṗ1
and Ṗ3 of Sp6(2), except that z is of weight 2 in V and ZV ≤ Soc(V0). Still with
this information we will be able to obtain a contradiction to our assumption that
Gz is not solvable, completing the proof of Theorem 13.4.1.

Lemma 13.4.17. (1) z is of weight 2 in V .
(2) There exists g ∈ H such that [V, V g ] = 〈z〉 ≤ V g.
(3) H0/O2(H0) ∼= L3(2), V0 is the core of the permutation module, ZV ≤

Soc(V0), ZV ≤ VH , and VH is not a 5-dimensional module if H/O2(H) ∼= A6.

(4) H is transitive on V #
H , and each subgroup of VH of order 2 is in ZGV .

(5) r(G, V ) ≥ 3.
(6) For each g ∈ G−M , V # ∩ V g consists of elements of weight 2.

Proof. Let G1 := LT = M and G2 := H0, and form the coset graph Γ with
respect to these groups as in section F.7. Adopt the notational conventions that
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section including Definition F.7.2, where in particular γ0, γ1 are the cosets G1, G2.
For γ = γ0g set Vγ := V g, while for γ = γ1g set Vγ := V g0 . Let

α := α0, . . . , αn =: β

be a geodesic in Γ, of minimal length n subject to Vα 6≤ G
(1)
β ; such an n exists

by F.7.3.8. As G
(1)
β = O2(Gβ) = CGβ (Vβ) for each β ∈ Γ, [Vα, Vβ ] 6= 1, and so

we have symmetry between α and β. This symmetry is fairly unusual among our
applications of section F.7, as we almost always consider only geodesics whose orgin
is conjugate to γ0; however the approach in this lemma is the one most commonly
used in the amalgam method in the literature. By minimality of n,

Vα ≤ G(1)
αn−1 ≤ Gβ ,

so Vα acts on Vβ , and by symmetry, Vβ acts on Vα. By F.7.9.1, Vα ≤ O2(G
(1)
α,αn−1),

and

O2(G
(1)
α,αn−1) = O2(H0 ∩M) = O2(L2T )

g = Rg2,

for g ∈ G with {γ0g, γ1g} = {αn−1, β} (∗)

using transitivity of 〈G1, G2〉 on the edges of the graph in F.7.3.2. Thus Vα ≤ Rg2.
Suppose first that β = γ1g; then Vβ = V g0 . If α is conjugate to γ1 then we

may take α = γ0 and α1 = γ1, so V0 ≤ Rg2, and by (*) and symmetry between
α and β, V g0 = Vβ ≤ R2. As 1 6= [Vα, Vβ ] = [V0, V

g
0 ], we have a contradiction to

13.4.16. Thus at most one of α and β is conjugate to γ1. Therefore if β /∈ γ0G,
then α ∈ γ0G, so reversing the roles of α and β, we may assume β ∈ γ0G. Then
conjugating in G, we may take β := γ0 and αn−1 := γ1. Thus Vα ≤ R2 by (*).
Similarly α = γig for i = 0 or 1, and by (*) we may take V ≤ Rg2 .

If α = γ1g then Vα = V g0 , contrary to 13.4.15. Hence α = γ0g and Vα = V g.
In particular 1 6= [V, V g] ≤ V ∩ V g .

Let v ∈ [V, V g]#. If CG(v) ≤ M , then by 13.4.2.3, V is the unique member of
V G containing v; hence CG(v) 6≤M . However for any t ∈ T−CT (V ), [V, t] contains
a vector of weight 2, so z is of weight 2 by the uniqueness of z in 13.4.12.1; thus (1)
holds. Indeed by (1) and that uniqueness, CG(w) ≤M for w ∈ V of weight 4, and
hence V is the unique member of V G containing w by 13.4.2.3. This establishes
(6).

By (6), all vectors in [V, V g ]# are of weight 2, so [V, V g ] is of rank 1—since up
to conjugacy, E := 〈e5,6, e4,6〉 is the unique maximal subspace of V with all nonzero
vectors of weight 2, and E 6= [V,A] for any elementary 2-subgroup of M̄ . Then
conjugating in L2 ≤ Gβ , we may assume [V, V g ] = 〈z〉. Now by 13.4.2.3, we may
take g ∈ H , so (2) is established.

As z is of weight 2 in V , we are in case (ii) of 13.4.14.2. Hence either (3) holds,
or else VH is a 5-dimensional module for H/O2(H) ∼= A6 and ZV of weight 4 in VH .
But in the latter case we have symmetry between L, V and K := O2(H), VH , so
as ZV is weight 4 in VH , we have a contradiction to (1) applied to K, VH . Hence
(3) is established. By (3), VH is not a 5-dimensional module for K/CK(VH ) ∼= A6,
and in the remaining two cases in 13.4.13, VH is the natural module for K/O2(K),
so H is transitive on the points of VH ; thus (4) is established as ZV ≤ VH by (3).

If U ≤ V with CG(U) 6≤M , then all vectors in U# are of weight 2 by (6). But
we saw that up to conjugation, the unique maximal subspace with this property is
〈e5,6, e4,6〉 of rank 2, so (5) holds. ¤



13.5. THE TREATMENT OF A5 AND A6 WHEN 〈V
G1
3 〉 IS NONABELIAN 915

We will now obtain a contradiction to our assumption that H is not solvable.
This contradiction will complete the proof of Theorem 13.4.1.

Pick g ∈ H as in 13.4.17.2. Then V̄ g = 〈(5, 6)〉, so there is l ∈ L with V̄ gl =
〈(3, 4)〉. Let y := gl. Then A := V y ≤ T with L1 = [L1, A]. Let K := O2(H),
so that K ∈ C(H) by 13.4.10 and our assumption that H is not solvable. As
L1 = [L1, A], K = [K,A], and hence [VH , A] 6= 1 as [VH ,K] 6= 1. Let U := VH ∩My

so that [U,A] ≤ U ∩ A, and set (KT )∗ := KT/CKT (VH ).

Suppose first that [A,U ] 6= 1. By 13.4.17.4, H is transitive on V #
H and ZV ≤

VH , so Z
h
V ≤ [A,U ] ≤ A ∩ U for some h ∈ H . Then as V h is the unique member

of V G containing ZhV by 13.4.2.3, V h = A = V y, and hence ZhV = ZyV as NG(V ) =
M = CG(ZV ). Indeed this argument shows ZyV is the unique point of VH ∩A, and
hence of [A,U ]; thus [A,U ] = ZyV , and hence U induces transvections on A with
center ZyV , whereas M̄ contains no such transvection, since CM (V ) = CM (V/ZV )
by 13.4.2.4.

This contradiction shows that [A,U ] = 1. In particular VH 6≤My, as [VH , A] 6=
1; hence as r(G, V ) ≥ 3 by 13.4.17.5,m2(K

∗T ∗) ≥ m(A∗) > 2, and then examining
the cases listed in 13.4.13, we conclude that H∗ ∼= S6 and m(A∗) = 3. Hence
for 1 6= b∗ ∈ A∗, 〈b∗〉 = B∗ for some B ≤ A with m(A/B) ≤ 2, so CVH (b

∗) =
CVH (B) ≤My as r(G, V ) ≥ 3, and therefore

〈CVH (b
∗) : 1 6= b∗ ∈ A∗〉 ≤ U ≤ CVH (A

∗),

so that A∗ ∈ A3(T
∗, VH). HoweverH

∗ has no such rank-3 subgroup, since each such
subgroup is the radical of some minimal parabolic and hence contains a transvection
whose axis is centralized only by that transvection.

This contradiction establishes Theorem 13.4.1.

13.5. The treatment of A5 and A6 when 〈VG1

3 〉 is nonabelian

In this section, we continue our treatment of the remaining alternating groups
A5 and A6, postponing treatment of the final group L3(2) of F2-type until the
following chapter. More specifically, this section begins the treatment of the case
where 〈V G1〉 is nonabelian, by handling in Theorem 13.5.12 the subcase 〈V G1

3 〉

nonabelian. In fact if L/O2(L) is A5 and 〈V G1
3 〉 is abelian, we will see that 〈V G1〉

is also abelian; thus in this section we also deal with the case where L/O2(L) ∼= A5

and 〈V G1〉 is nonabelian.

In this section, with Theorem 13.4.1 now established, we assume the following
hypothesis:

Hypothesis 13.5.1. Hypothesis 13.3.1 holds and G is not Sp6(2).

In addition we continue the notation established earlier in the chapter, and the
notational conventions of section B.3. In particular we adopt Notations 12.2.5 and
13.2.1.

Lemma 13.5.2. Assume Hypothesis 13.5.1. If K ∈ Lf (G, T ), then

(1) K/O2(K) ∼= A5, L3(2), A6, or Â6.
(2) K E KT and K ∈ L∗(G, T ).
(3) There is VK ∈ Irr+(K,R2(KT ), T ), and for each such VK , VK ≤ R2(KT ),

VK E T , the pair K,VK satisfies the FSU, CVK (K) = 1, and VK is the natural
module for K/CK(VK) ∼= A5, A6, or L3(2).
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Proof. As in the proof of 13.4.5, this follows from 13.3.2, once we observe that
by 13.3.2, we may apply various results to K in the role of “L”: Theorem 13.3.16
says K/O2(K) is not U3(3). Then since Hypothesis 13.5.1 excludes G ∼= Sp6(2),
we conclude from Theorem 13.4.1 that CVK (K) = 1 when K/O2,Z(K) ∼= A6. ¤

13.5.1. Setting up the case division on 〈VG1

3 〉 for A5 and A6.

Remark 13.5.3. In the remainder of this section (and indeed in the remainder
of the chapter), in addition to assuming Hypothesis 13.5.1, we also assume L/O2(L)
is not L3(2); that is, we restrict attention to the cases where L/O2(L) ∼= A5, A6,

or Â6.

Then by 13.5.2.3, CV (L) = 1 and V is the natural module for L/CL(V ) ∼= An,
n = 5 or 6.

As usual we adopt the notational conventions of section B.3 and Notation
13.2.1. We view V as the quotient of the core of the permutation module for
L/CL(V ) on Ω := {1, . . . , n}, modulo 〈eΩ〉. Recall from Notation 12.2.5.2 that
MV := NM (V ) and M̄V := MV /CM (V ). So there is an M̄V -invariant symplectic
form on V , and when n = 5, an invariant quadratic form. Thus we use terminology
(e.g., of isotropic or singular vectors) associated to those forms.

As in Notation 13.2.1, Vi is the T -invariant subspace of V of dimension i and
Gi := NG(Vi).

Lemma 13.5.4. When L/O2(L) ∼= A6 or Â6, set I2 := O2(G1)L2 or O2(G1)L2,+,
respectively. Then:

(1) I2 = 〈O2(G1)
G2〉 E G2.

(2) CI2(V2) = O2(I2) and I2/O2(I2) ∼= S3.
(3) m3(CG(V2)) ≤ 1.
(4) CG(V3) ≤MV . Hence [V,CG(V3)] ≤ V1.
(5) [O2(G1), V2] 6= 1.
(6) O2(I2) = L2 or O2(L2,+), respectively, O

2(Ī2) = L̄2, and O2(O
2(I2)) is

nonabelian.

Proof. The equalities in (6) follow from the definition of I2 and the fact that
L2 and L2,+ are T -invariant. Then as V = [V, L̄2] and O2(L̄2) 6= 1, the remaining
statement in (6) follows. Hypothesis 13.3.13 is satisfied by 13.5.2.3, so (5) follows
from 13.3.14. Then parts (1)–(4) of the lemma follow from 13.3.15. ¤

Lemma 13.5.5. G1 ∩G3 ≤MV .

Proof. When n = 5, G3 ≤ MV by 13.2.3.2. When n = 6, AutL1T (V3) =
CGL(V3)(V1), so as CG(V3) ≤ MV by 13.5.4.4, and as L1T ≤ MV , G1 ∩ G3 ≤
MV . ¤

As CV (L) = 1:
V1 = Z ∩ V is of order 2.

Let z be a generator for V1. By 13.3.6,

G1 = CG(z) 6≤M,

so G1 ∈ Hz 6= ∅, where as usual

Hz := {H ∈ H(L1T ) : H ≤ G1 and H 6≤M}

and G̃1 := G1/V1.
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Lemma 13.5.6. Assume n = 6; then

(1) V ≤ O2(G2).
(2) V G2 ∩ V = V L2 .
(3) If V2 ≤ V ∩ V g then either [V, V g] = 1 or [V, V g ] = V2, and in the latter

case V g ≤MV and V̄ g = O2(L̄2).

Proof. As L has two orbits on 4-subgroups of V , either (2) holds or for some
g ∈ G, V g2 is a nondegenerate 2-subspace of V .

Assume the latter holds. Then Q0 := CT (V
g
2 ) ∈ Syl2(CM (V g2 )), and either T̄ ≤

L̄ and Q0 = Q := O2(LT ) = CT (V ), or Q0 is the preimage in LT of the subgroup
generated by a transposition. Now if NG(Q0) ≤ M , then Q0 ∈ Syl2(CG(V

g
2 )),

contradicting |CG(V
g
2 )|2 = |T |/2 > |Q0|.

Thus NG(Q0) 6≤ M , so Q < Q0, and as M = !M(LT ), no nontrivial charac-
teristic subgroup of Q0 is normal in LT . Therefore L is an A6-block by case (c) of

C.1.24. Now Q = O2(CM (V g2 )), and O3′(NM (V g2 )) = X1 × X2 is the product of

A3-blocks, with V = O2′(X1X2). Let X := O2(I2), in the notation of 13.5.4. Now
X1X2 acts on Xg by 13.5.4.1, so [X1X2, X

g] ≤ O2(X
g) by 13.5.4.2. Therefore as

m3(G2) ≤ 2, Xg ≤ X1X2, impossible as O2′(X) is nonabelian by 13.5.4.6, while

V = O2′ (X1X2) is abelian.
This contradiction establishes (2); thus it remains to prove (1) and (3). Observe

that Hypothesis G.2.1 is satisfied with V2, V in the roles of “V1, V ” as L2 is
irreducible on V/V2. Let U := 〈V G2〉. By G.2.2, (1) holds and V2 ≥ Φ(U).

Finally suppose V2 ≤ V ∩ V g. By (2) and A.1.7.1 we may take g ∈ G2, so
V g ≤ U ≤ MV and [V, V g ] ≤ V ∩ V g as V E U . Further if U is abelian, then
[V, V g ] = 1 and (3) holds. Thus we may take U nonabelian. As X E G2 by 13.5.4.1
while V = [V,X ], U = [U,X ] ≤ O2(X). Therefore using 13.5.4.6, Ū = O2(L̄2) is
of rank 2. Thus V̄ g ≤ O2(L̄2), so [V, V g ] = V2 and m(V/CV (V

g)) = 2, so by
symmetry, m(V g/CV g(V )) = 2 and hence V̄ g = O2(L̄2), completing the proof of
(3). ¤

Lemma 13.5.7. For each H ∈ Hz, Hypothesis F.9.1 is satisfied with V3 in the
role of “V+”.

Proof. Most of this proof is exactly parallel to that of 13.3.18.1: namely
part (c) of F.9.1 follows, this time using 13.5.5 rather than 13.3.17.1 to obtain
G1 ∩ G3 ≤ MV ; parts (b) and (d) follow just as before; and part (a) is proved as
before. Thus it remains to verify F.9.1.e.

Assume 1 6= [V, V g] ≤ V ∩V g ; then V̄ g is quadratic on V . To verify hypothesis

F.9.1.3, we may assume that g ∈ G1 with [V g , Ṽ3] = 1 = [V, Ṽ g3 ]. Then V̄ g ≤
O2(L̄1T̄ ) = R̄1, so as V̄ g is quadratic on V , eitherm(V̄ g) = 1; or n = 6, m(V̄ g) = 2,
and conjugating in L1, we may assume that V2 = [V, V g]. But in the latter case
as [V, V g] ≤ V ∩ V g , V2 ≤ V ∩ V g; then by 13.5.6.3, V̄ g = O2(L̄2), contradicting
V̄ g ≤ R̄1.

Thereforem(V g/CV g (V )) = 1, and hence also 1 = m(V/CV (V
g)) by symmetry.

Suppose [V3, V
g ] = 1. Then as [V, V g ] 6= 1, n 6= 5, since in that case CM (V3) =

CM (V ). Thus n = 6 and V̄ g is generated by a transvection with center V1, so
[V, V g ] = V1. Thus V induces a transvection on V g with center V1, so CV g(V ) =
V ⊥1 = V g3 ; hence [V g3 , V ] = 1, and F.9.1.e holds.
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It remains to treat the case where [V3, V
g ] = V1 = [V g3 , V ]. Herem(V g/CV g (V ))

= 1, so V induces a transvection with center V1 on V g , and so again [V g3 , V ] = 1,
contrary to assumption. This contradiction completes the proof of 13.5.7. ¤

Notation 13.5.8. Recall G̃1 = G1/V1. By 13.5.7, we can appeal to the results
of section F.9 with V3 in the role of “V+” in F.9.1. Recall from Hypothesis F.9.1 that
for H ∈ Hz, UH := 〈V H3 〉, VH := 〈V H〉, and QH := O2(H). By F.9.2.1, UH ≤ QH ,

and by F.9.2.2, Φ(UH) ≤ V1. By F.9.2.3, QH = CH(ŨH); set H
∗ := H/QH .

Notice G1 ∩G3 ≤M by 13.5.5, and H 6≤M , so that:

Lemma 13.5.9. V3 < UH

We begin our treatment of the case 〈V G1〉 nonabelian by considering the sub-

case where 〈V G1
3 〉 is nonabelian; the next observation shows that if n = 5 and 〈V G1〉

is nonabelian, then 〈V G1

3 〉 is also nonabelian:

Lemma 13.5.10. If n = 5 and H ∈ Hz, then the following are equivalent:

(1) UH is abelian.
(2) VH is abelian.
(3) V ≤ QH .

Proof. When n = 5, CM (V3) = CM (V ), so the lemma follows from F.9.4.3.
¤

Lemma 13.5.11. If n = 5 and V2 ≤ V ∩ V g, then [V, V g ] = 1 or V2; in either
case, V g ≤MV .

Proof. We may assume [V, V g] 6= 1. By hypothesis V1 ≤ V ∩ V g , so by
13.3.11.1 we may take g ∈ G1. By 13.3.11.5, [V3, V

g
3 ] 6= 1, so by F.9.2.2, [V3, V

g
3 ] =

V1. Thus X := V3V
g
3
∼= D8 × Z2, and A(X) = {V3, V

g
3 }. Now V g3 acts on V3, and

also V g3 ≤ UG1 ≤ MV , so [V, V g3 ] ≤ V3 ≤ X , and hence V acts on X . Then as
A(X) = {V3, V

g
3 }, V ≤ NG1(V

g
3 ) ≤ NG(V

g) by 13.2.3.2. By symmetry V g acts on
V , so [V, V g ] ≤ V ∩V g ≤ CV (V

g). As [V3, V
g
3 ] = V1 is singular, V̄ g does not induce

a transvection on V , so m(CV (V
g)) ≤ 2 ≤ m([V, V g ]), and hence [V, V g] = V ∩ V g

is of rank 2. Then as V2 ≤ V ∩ V g by hypothesis, we conclude [V, V g ] = V2. This
completes the proof. ¤

13.5.2. The treatment of the subcase 〈VG1

3 〉 nonabelian. We come to

the main result of the section, which determines the groups where 〈V G1
3 〉 is non-

abelian:

Theorem 13.5.12. Assume Hypothesis 13.3.1 with L/CL(V ) ∼= An for n = 5

or 6, G 6∼= Sp6(2), and 〈V
G1
3 〉 nonabelian. Then either

(1) n = 5 and G ∼= U4(2) or L4(3).
(2) n = 6 and G ∼= U4(3).

The remainder of this section is devoted to the proof of Theorem 13.5.12.

Observe since G 6∼= Sp6(2) that Hypothesis 13.5.1 holds. Thus we may apply
results from earlier in the section; in particular by 13.5.7, we may apply results
from section F.9, and continue to use the conventions of Notation 13.5.8.

In the remainder of the section we assume 〈V G1
3 〉 is nonabelian. Thus as G1 ∈

Hz, there exists H ∈ Hz such that UH is nonabelian.
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In the remainder of the section, H will denote any member of Hz with UH
nonabelian.

Then Φ(UH) = V1 by F.9.2.2. By F.9.4.1, V 6≤ QH , while by F.9.2.1, V3 ≤ QH .

Thus as |V : V3| = 2, V3 = V ∩QH and V ∗ is of order 2. By F.9.2.1, ŨH ∈ R2(H̃).

Lemma 13.5.13. (1) If g ∈ H with V1 < V ∩ V g, then 〈V, V g〉 is a 2-group.
(2) The hypotheses of F.9.5.5 and F.9.5.6 hold.

Proof. As CH(ŨH) = QH is a 2-group, we may assume V ∗ 6= V g∗; so as V ∗

is of order 2, V ∩ V g ≤ V ∩ QH = V3. Then as L1 is transitive on Ṽ #
3 , we may

take V2 ≤ V ∩ V g . Now 13.5.11 and 13.5.6.3 show that V g normalizes V , and so
(1) follows.

By (1), we have the hypothesis of F.9.5.5. Further by 13.5.5, CH(V3) ≤ CM (V3).

Now if n = 5 then CM (V3) = CM (V ), while if n = 6 then CM (V3) is trivial or
induces transvections with center V1 on V . Thus we also have the hypotheses for
F.9.5.6. ¤

Lemma 13.5.14. If n = 6, assume ŨH = [ŨH , L1]. Let l ∈ L − L1T , and
if n = 6, choose l̄ to fix a point ω ∈ Ω fixed by L̄1. Set K := 〈UH , U lH〉 and
L− := O2(O2(LT )K). Then

(1) If ŨH = [ŨH , L1] then UH = [UH , L1] ≤ L1 ≤ L.
(2) ŪH = O2(L̄1) ∼= E4.
(3) If n = 5 then K̄ = L̄ and L = L−, while if n = 6, then K̄ ∼= A5 is the

stabilizer in L̄ of ω. Thus in any case L1 ≤ K.
(4) The hypotheses of G.2.4 are satisfied with V1, V3, V , L−, UH , K in the

roles of “V1, V , VL, L, U , I”, so K = L− and K is described in that lemma.

Proof. Suppose first that ŨH = [ŨH , L1]. Then as V1 ≤ [V3, L1], UH =

[UH , L1]. Thus (1) holds. Moreover if n = 6, then ŨH = [ŨH , L1] by hypothesis, so
UH ≤ L by (1).

As UH = 〈V H3 〉 is nonabelian, ŪH 6= 1, and as L1T ≤ H ≤ NH(UH), ŪH E L̄1T̄ .
Thus (2) holds if n = 5. Similarly if n = 6, then ŪH ≤ L̄ by the first paragraph, so
as ŪH E L̄1T̄ , (2) holds again. Part (3) is immediate from (2) and the choice of l.
Then (3) implies the first statement in (4). Finally L1 ≤ O2(K) = L− by (3) and
UH ≤ L1 by (1), so that K = L−UH = L− by G.2.4. ¤

13.5.2.1. Identifying the groups. In the branch of the argument that will lead
to the groups in Theorem 13.5.12, L1 E G1 and G1 is the unique member of Hz.
We begin by deriving some elementary consequences of the hypothesis that L1 is
normal in some member H of Hz with UH nonabelian.

Lemma 13.5.15. Assume L1 E H, UH is nonabelian, and L/O2(L) is not Â6.
Then

(1) UH = [UH , L1] ≤ L and L∗1
∼= Z3.

(2) ŪH = O2(L̄1) ∼= E4.

Choose l and K := 〈UH , U lH〉 as in 13.5.14. Then

(3) K is an A5-block contained in L.
(4) If n = 5 then L = K, so that L is an A5-block; if n = 6, then L is an

A6-block.
(5) O2(L1) = UH ∼= Q2

8.
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(6) H = G1 and G1 is the unique member of Hz.
(7) M = LT and V = O2(M).
(8) If n = 5 then QH = UH , H

∗ ≤ Ω+
4 (2), and either

(i) M = L with H∗ ∼= S3 × Z3, or
(ii) M/V ∼= S5 with H

∗ = Ω+
4 (2)

∼= S3 × S3.

(9) If n = 6 then H∗ = Ω+
4 (2)

∼= S3 × S3, and either

(i) M = L with QH = UH , or
(ii) M/V ∼= S6 with QH = UHCT (L1) and |CT (L1)| = 4.

Proof. We saw ŨH ∈ R2(H̃), so as L1 E H , O2(L
∗
1) = 1. Hence L∗1

∼= Z3.

Also Ṽ3 = [Ṽ3, L1], so as UH = 〈V H3 〉, ŨH = [ŨH , L1]. Then (1) follows from
13.5.14.1, and (2) from 13.5.14.2.

Choose l and K as in 13.5.14, and let Q := O2(LT ) and L− := O2(KQ). By
13.5.14.4, the hypotheses of G.2.4 are satisfied and K = L−. By (1), the hypotheses
of G.2.4.8 are satisfied. Therefore by G.2.4.8, K is an A5-block with V = O2(K)
and UH = O2(L1) ∼= Q2

8. Now if n = 5, then L = L− by construction. If n = 6,
then as Q acts on L− and L− = K, [K,Q] ≤ O2(K) = V , so L is an A6-block.
Thus (3), (4), and (5) are established.

We saw V ∗ is of order 2 and O2(H
∗) = 1, so by the Baer-Suzuki Theorem, there

is g ∈ H with I∗ not a 2-group, where I := 〈V, V g〉. Now by 13.5.13.2, we may
apply F.9.5.6 to conclude that O2(I) = UI := V3V

g
3
∼= Q2

8 and I/O2(I) ∼= I∗ ∼= S3.
Therefore since UI ≤ UH and UH ∼= Q2

8, we conclude O2(I) = UH , and hence
I∗ = IQH/QH ∼= I/UH ∼= S3.

Next as CH(ŨH) = QH , H
∗ = H/QH ≤ Out(UH) ∼= O+

4 (2). As L∗1
∼= Z3

is normal in H∗, and L∗1 centralizes V ∗, L∗1 centralizes I∗. But the centralizer
in Out(UH) ∼= O+

4 (2) of L∗1 is isomorphic to S3, so we conclude I∗ = CH∗(L
∗
1).

Therefore either H∗ ∼= S3 × S3, or H
∗ = I∗ × L∗1

∼= S3 × Z3 with T = O2(L1T ),
and the latter case can only occur when n = 5 and M̄V = L̄ ∼= A5. In either case
H = QHL1IT = L1IT . Further if we establish (7), then QH ∩Q = QH ∩ V = V3,
so |QH | = 8|Q̄H |, and then (8) and (9) follow using (5). So it remains to prove (6)
and (7).

As QH acts on V and V g , QH acts on I . Then as I∗ E H∗, H acts on
O2(IQH) = O2(I), and then L1T acts on O2(I)V = I . Thus I E L1IT = H .

As K is an A5-block by (3), Q = V × CT (K) by C.1.13.c. Further L1 ≤ K
by 13.5.14.3, and CT (L1) = V1CT (K). Thus as UH = [UH , L1] ≤ K, CT (L1) ≤
CT (UH), so [I, CT (L1)] ≤ CI (UH) = V1, and therefore [O2(I), CT (L1)] = 1 by
Coprime Action. In particular O2(I) centralizes CT (L). As O2(I) = [O2(I), V ]
and V ≤ O2(M), O2(I) 6≤M . Therefore asM = !M(LT ), we conclude CT (L) = 1.

We will show next that D := CT (K) = 1. If n = 5, then K = L, so D =
CT (L) = 1; thus we may assume n = 6. Then as L is an A6-block, we conclude
from C.1.13.b and I.1.6.5 that either D = CT (L) = 1 or |D| = 2 = |Q : V |. Assume
that the latter case holds and set GD := CG(D). We saw that O2(I) centralizes
CT (L1) ≥ D, so 〈O2(I),K〉 ≤ GD. Let G+

D := GD/D and T0 := CT (D) ∈
Syl2(CM (D)). Let T0 ≤ TD ∈ Syl2(GD); then |TD : T0| ≤ |T : T0| = 2, so as
K ∈ L(GD , T0), there exists a unique KD ∈ C(GD) containing K by 1.2.5, and
O2(I) normalizes KD by 1.2.1.3. As O2(I) = [O2(I), V ] and K is irreducible on
V , V ∩ O2(KDD) = 1. Let T1 := T0 ∩ KDD; thus T1 ∈ Syl2(M ∩KDD). Then
as NG(Q) ≤ M = !M(LT ), T1 ∈ Syl2(NKDD(Q)). Therefore as Q = O2(KT1) =
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V × D, we conclude Q ∈ B2(KDD), and in particular Q contains O2(KDD) by
C.2.1.2. Then as V ∩ O2(KDD) = 1, D = O2(KDD). As CCM (D)(Q) = Q,

KT0 = CM (D). Hence K+T+
1
∼= KT1/D is the 2-local NK+

D
(Q+) = NK+

D
(V +) in

the quasisimple group K+
D. But inspecting the groups in Theorem C (A.2.3), we

find no such 2-local. This contradiction establishes the claim that CT (K) = 1.
As CT (K) = 1, V = Q = O2(LT ), so O2(M) = V andM = LT by 3.2.11. Thus

(7) holds, and hence also (8) and (9) by an earlier observation. Thus it remains to
establish (6).

By A.1.6, Q1 := O2(G1) ≤ QH . Also Q1 ≤ O2(L1T ), and by (8) and (9),
either O2(L1T ) = O2(L1)V = UHV , or L/V ∼= S6 and O2(L1T ) = UHV CT (L1),
with CT (L1) of order 4. Next UHV ∩QH = UH and as H ≤ G1, UH ≤ UG1 ≤ Q1.
We conclude that Q1 = UH or UHCT (L1). In either case, Q1 = UHZ1 where
Z1 := Z(Q1) is of order at most 4, and Φ(Q1) = V1. Thus G1 preserves the usual

symplectic form on Q̂1 := Q1/Z1. Now m(Q̂1) = 4 as UH ∼= Q2
8, So G1/Q1 ≤

Sp(Q̂1) ∼= S6. Then as T ≤ H and H/Q1
∼= S3 × S3 or S3 × Z3, it follows that

G1 = H . Thus L1 E G1. Finally for any H1 ∈ Hz, as L1 ≤ H1 ≤ G1 and L1 E G1,
L1 E H1; so by symmetry between H and H1, H1 = G1. This completes the proof
of (6), and hence of the lemma. ¤

We can now proceed to the identification of the groups in Theorem 13.5.12,
under the assumption that L1 is normal in H .

Proposition 13.5.16. If L/O2(L) ∼= A6 and L1 E H, then G ∼= U4(3).

Proof. By 13.5.15.6, H := G1 is the unique member of Hz. Let U := UH and
y ∈ L2 − T , so that U ∼= Q2

8 by 13.5.15.5. We consider the two cases of 13.5.15.9.
Suppose first that M = L. Then O2(G1) = U by 13.5.15.9, and U ∩ Uy = V2.

Hence G is of type U4(3) in the sense of section 45 (page 244) of [Asc94], so by
45.11 in [Asc94], G ∼= U4(3).

Thus we may assume thatM/V ∼= S6; in this case we will obtain a contradiction
using transfer, eliminating shadows of extensions of U4(3). By 13.5.15.9, Z(QH) =
CT (L1) is of order 4.

Let TL := T ∩ L ∈ Syl2(L), and define I as in the proof of 13.5.15. From
the proof of 13.5.15, U = O2(L1) = O2(I), V U ∈ Syl2(I), and [L1, I ] ≤ U . Then
V U = V O2(L1) ≤ TL ∈ Syl2(L), so TL ∈ Syl2(TLIL1), Now L is transitive on V #,
while IL1 is transitive on the involutions in U − V1, and all involutions in L are
fused into U under L, so we conclude all involutions in TL are in zG.

Suppose that QH is not weakly closed in H with respect to G. Observe that
V1 = Φ(QH), so NG(QH) = H . Then by A.1.13 there is x ∈ G with QH 6= QxH
and [QH , Q

x
H ] ≤ QH ∩ QxH . In particular QH ≤ NG(Q

x
H) = CG(z

x), so that zx ∈
CH(QH) = Z(QH). As QH 6= QxH , x /∈ H , so zx 6= z; thus E4

∼= 〈z, zx〉 = Z(QH),
and then by symmetry between QH and QxH , also 〈z, z

x〉 = Z(QxH). Now 13.5.15
shows that H∗ acts as Ω+

4 (2) on U/V1, so that QH/Z(QH) = J(T/Z(QH)); hence
QH = QxH , contrary to the choice of QxH .

This contradiction shows that QH is weakly closed in H . Hence H controls
fusion in Z(QH) by Burnside’s Fusion Lemma A.1.35, so that z is weakly closed in
Z(QH) with respect to G. Now Z(QH) = 〈z, j〉 with j ∈ T − TL. Therefore if j is
an involution then j 6∈ zG, so as all involutions in TL are in zG, Thompson Transfer
gives j 6∈ O2(G), contrary to the simplicity of G. Hence Z(QH) = 〈j〉 ∼= Z4, so
Z(QH) ∩ Z(QH)

y = 1 as z 6= zy.
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Next as y ∈ L2 −H , z 6= zy ∈ V2 ≤ QH ≤ CG(j) so that j ∈ CG(z
y) = Hy,

and similarly jy ∈ H . Therefore [j, jy ] ≤ Z(QH) ∩Z(Q
y
H) = 1. Thus 〈jL2〉 =: B is

abelian with Φ(B) = V2; so as B̄ is the E8-subgroup generated by the transvections
in T̄ , B ∼= Z2

4 × Z2. Let A := Ω1(B). Then Ā is of order 2 and normal in L̄2T̄ ,
so Ā = 〈(1, 2)(3, 4)(5, 6)〉. Further for a ∈ A − V2, [a, V ] = V2, so V is transitive

on A − V2, and hence CM (a) = CM̄ (ā) ∼= Z2 × S4 for each such a. Therefore
B = O2(CM (a)) and X := O2(O

2(CM (a))) ∼= Z2
4 with V2 = Φ(X). As before by

Thompson Transfer, there is r ∈ G with ar = z. Then O2(CM (a))r ≤ O2(H), so
as UH is Sylow in O2(H) by 13.5.15, Xr ≤ UH . Then V

r
2 = Φ(X)r ≤ Φ(UH) = V1

of rank 1. This contradiction completes the proof. ¤

Proposition 13.5.17. If n = 5 and L1 E H, then G ∼= U4(2) or L4(3).

Proof. By 13.5.15.6, H := G1 is the unique member of Hz. By 13.5.15.7,
V = O2(M). By 13.5.15.8, QH = UH =: U ∼= Q2

8, and either M = L with
H∗ ∼= S3 × Z3, or M/V ∼= S5 and H∗ ∼= S3 × S3. Let TL := T ∩ L ∈ Syl2(L), so
that |T : TL| = 1 or 2. Define I as in the proof of 13.5.15. Observe that Hypothesis
F.1.1 is satisfied with I , L, T in the roles of “L1, L2, S”: In particular, recall
that during the proof of 13.5.15 we showed that I E H and H = L1IT , so that
O2(〈I, L, T 〉) = 1 as H 6≤M and M = !M(LT ).

Therefore γ := (H,L1T,M) is a weak BN-pair by F.1.9. As T ∩ I is self-
normalizing in I , the hypotheses of F.1.12 are satisfied; so as I/O2(I) ∼= S3, while
L/O2(L) ∼= A5 does not centralize Z, we conclude from F.1.12 that γ is of type
U4(2) when M = L, and γ is of type O−6 (2) when M/V ∼= S5.

Next we verify the hypotheses of Theorem F.4.31: Let G0 := 〈M,H〉. Then
the inclusion γ → G0 is a faithful completion of γ. As M ∈ M, M = NG(V ). We
saw H = G1 = CG(z). Thus hypotheses (a) and (b) of F.4.31 hold. Hypotheses (c)
and (d) are vacuously satisfied, and hypothesis (e) holds as G is simple.

We now appeal to Theorem F.4.31, and conclude as G is simple that either
M = L and G ∼= U4(2) or M/V ∼= S5 and G ∼= L4(3). ¤

We mention that the shadows of extensions of U4(2) and L4(3) were essentially
eliminated during the proof of Theorem F.4.31.

13.5.2.2. Obtaining a contradiction in the remaining cases. During the remain-
der of the section we assume that G is a counterexample to Theorem 13.5.12. Thus
appealing to 13.5.16 and 13.5.17, it follows that:

Lemma 13.5.18. Assume L/O2(L) is not Â6. Then L1 is not normal in any
H ∈ Hz such that UH is nonabelian.

Lemma 13.5.19. Let Y := L0 if L/O2(L) ∼= Â6, and Y := L1 otherwise. Let
H ∈ Hz and H1 := NH(Y ). Then

(1) H∗1 = NH∗(Y
∗), and

(2) V ≤ O2(H1).

Proof. Recall that QH = CH(ŨH); hence as Y = O2(Y QH), (1) holds. Notice

(2) holds when L/O2(L) ∼= Â6, since NG(L0) ≤ M by 13.2.2.9. Therefore we may
assume L/O2(L) is A5 or A6, and V 6≤ O2(H1). Hence H1 6≤M , so H1 ∈ Hz.

As V 6≤ O2(H1), by the Baer-Suzuki Theorem there is h ∈ H1 such that I∗ is
not a 2-group, where I := 〈V, V h〉. By 13.5.13.2, we may apply F.9.5.6 to conclude
that 〈V I3 〉 is nonabelian. Thus UH1 is nonabelian, contrary to 13.5.18. ¤
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Lemma 13.5.20. V ∗ centralizes F (H∗).

Proof. If [Op(H
∗), V ∗] 6= 1 for some prime p, then by 13.5.13.2, we may apply

F.9.5.6 to conclude that p = 3. Let P ∗ be a supercritical subgroup of O3(H
∗).

Then [P ∗, V ∗] 6= 1, and m(P ∗) ≤ 2 since H∗ = H/QH is an SQTK-group. Define
Y and H1 as in 13.5.19. By definition Y normalizes V , so as V ∗ is of order 2, Y ∗

centralizes V ∗. Suppose O2(Y
∗) centralizes P ∗. Then as Y ∗/O2(Y

∗) is of order 3,
the Thompson A×B Lemma shows that [CP∗(Y

∗), V ∗] 6= 1. This is a contradiction
as CP∗(Y

∗) ≤ H∗1 by 13.5.19.1, and V ≤ O2(H1) by 13.5.19.2.

Therefore O2(Y
∗) is nontrivial on P ∗; then as Y = O3′ (Y ), P ∗ is not cyclic,

so using A.1.25, P ∗ ∼= E9 or 31+2 and Y/CY (P
∗/Φ(P ∗)) ∼= SL2(3). In particular

Y is irreducible on P ∗/Φ(P ∗), so as [Y ∗, V ∗] = 1, V ∗ = Z(Y ∗) inverts P ∗/Φ(P ∗).

However by F.9.5.2, m([ŨH , V
∗]) = 2; since a faithful irreducible for SL2(3)/E9 is

of rank 8 and the commutator space of Z(SL2(3)) on such a module is of rank 4,
we conclude P ∗ ∼= 31+2. But now X of order 3 in Y centralizes an E9-subgroup of
P , contradicting m3(H) ≤ 2. ¤

By 13.5.20, [K∗, V ∗] 6= 1 for someK ∈ C(H) with K∗ ∼= K/O2(K) quasisimple.

Let K have this meaning for the remainder of the section.

Lemma 13.5.21. (1) K∗ = [K∗, V ∗] and L1 ≤ K.
(2) K∗V ∗ ∼= S6, A8, or G2(2)

′.

(3) ŨH = [ŨH ,K], and ŨH/CŨH (K
∗) is the natural module for K∗.

(4) If n = 6, then L/O2(L) ∼= A6 rather than Â6.

(5) K E H, L∗1T
∗ is the stabilizer in K∗T ∗ of the 2-subspace Ṽ3 = [ŨH , V

∗]

of ŨH , and UH = [QH ,K].

(6) ŨH = [ŨH , L1].

Proof. As V ∗ has order 2 and V E T , V ∗ ≤ Z(T ∗). Therefore V ∗ centralizes
(T ∩K)∗ ∈ Syl2(K

∗), and hence normalizes K∗ by 1.2.1.3, as does L1 = O2(L1)
by that result. Then as [K∗, V ∗] 6= 1 by choice of K, K∗ = [K∗, V ∗], establishing
the first part of (1).

Define Y ≤ L1 as in 13.5.19. As K∗ = [K∗, V ∗], K∗ 6≤ H∗1 by 13.5.19.2, so Y ∗

does not centralizeK∗ by 13.5.19.1. ThereforeK∗ = [K∗, Y ∗] as K∗ is quasisimple.
Then since Y ≤ L1, K

∗ = [K∗, L∗1].

Let TX := NT (K),X := KL1TX , and X̂ := X/CX(K
∗). As TX ∈ Syl2(NH(K))

by 1.2.1.3, TX ∈ Syl2(X). As K∗ is quasisimple, F ∗(X̂) = K̂ is simple. We claim:

(i) V̂ is generated by an involution in the center of the Sylow 2-subgroup T̂X
of X̂.

(ii) 1 6= Ŷ ≤ L̂1 ≤ O2,3(CX̂ (V̂ )).

(iii) [ŨH , V ] = Ṽ3 = [Ṽ3, L1] is of rank 2.

(iv) If 〈V̂ , V̂ x〉 is not a 2-group, then 〈V̂ , V̂ x〉 ∼= S3.

Part (i) follows as V ∗ ≤ Z(T ∗) and V ∗ is of order 2 and faithful on K∗. Part (iii)
follows from F.9.5.2, and (iv) is a consequence of F.9.5.6.2. As K∗ is quasisimple

with O2(K
∗) = 1, CK̂(V̂ ) = ̂CK∗(V ∗). Further by F.9.5.3, CK∗(V

∗) = NK(V )∗.

Then as L1 E H ∩MV = NH(V ), CK̂(V̂ ) acts on L̂1. Thus as L1T acts on L1

and CX̂(V̂ ) = CK̂(V̂ )L̂1T̂X , and as we saw earlier that K∗ = [K∗, Y ∗], we conclude
that (ii) holds.
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By (iii), m([ŨH , V ]) = 2, so as m(V ∗) = 1, q(K∗V ∗, ŨH) ≤ 2. Therefore B.4.2

and B.4.5 describeK∗ and the possible noncentral 2-chief factorsW forKV on ŨH .
As m(K∗V ∗, ŨH) = 2, K̂ is not one of the sporadic groups in B.4.5; cf. chapter H
of Volume I, and recall that the 12-dimensional module for J2 is the restriction of
the natural module for G2(4). If K̂ ∼= A7, then by (iv), V̂ induces a transposition

on K̂, contradicting (ii).

In the remaining cases in B.4.2 and B.4.5, K̂ is of Lie type over F2m for some
m. By (i), either V̂ is generated by a long-root involution, or K̂ ∼= Sp4(2

m)′. Then

by (iv), m = 1, and if K̂ is A6, then V̂ 6≤ K̂. Furthermore if K∗ ∼= Â6, then as
H ∈ He, for some choice of W , W is the faithful 6-dimensional module for K∗.
But then as V̂ 6≤ K̂, m([ŨH , V ]) ≥ 3, contrary to (iii). Thus K∗ is not Â6, so in

particular Z(K∗) = 1, and hence K∗ ∼= K̂ is simple. Similarly by (iii), W is never
the 10-dimensional module for K∗ ∼= L5(2).

The cases remaining appear in B.4.2. Further K̂V̂ ∼= Ll(2), 3 ≤ l ≤ 5, S6,

or G2(2)
′, (keeping in mind that V̂ 6≤ K̂ iff K̂ ∼= A6) and W is either the natural

module for K∗, or the 6-dimensional orthogonal module for K∗ ∼= L4(2). As V̂

centralizes Ŷ 6= 1 by (ii), K̂ is not L3(2). Therefore m3(K) = 2, so by A.3.18,

L1 ≤ O3′(H) = K, completing the proof of (1). Further in each case m3(CK̂(V̂ )) =

1, so as L̂1 ≤ CK̂(V̂ ), we conclude that m3(L1) = 1, and hence (4) holds. Next
W = U1/U2 for suitable submodules Ui of UH , and by (iii),

[W,V ] ≤ VW := (V3 ∩ U1)U2/U2,

and L1 is irreducible on Ṽ3, so VW = [VW , L1] is of rank 2 and VW = [W,V ]. This
eliminates the possibility thatW is a natural module for L4(2) or L5(2), since there

V̂ is a long-root involution, so V induces a transvection on W . Hence W is the
natural module for K∗V ∗ ∼= S6, A8, or G2(2)

′, establishing (2). Furthermore by

(iii), W is the unique noncentral chief factor for K on UH . As Ṽ3 = [Ṽ3, L1] ≤
[ŨH ,K], ŨH = 〈Ṽ H3 〉 = [ŨH ,K]. This completes the proof of (3).

Finally we verify (5) and (6). As L1 ≤ K and T acts on L1, T acts on K, so

K E H by 1.2.1.3. By (iii), [ŨH , V ] = Ṽ3 is of rank 2 and is L∗1T
∗-invariant, and

in each of the cases in (2), P ∗ := NK∗T∗([ŨH , V ]) is a minimal parabolic of K∗T ∗,
so |P ∗ : T ∗| = 3. Thus P ∗ = L∗1T

∗. Further [V,QH ] ≤ V ∩ QH = V3, so that

UH = [QH ,K]. This completes the proof of (5). From the action of P ∗ on Ũ , we
determine that (6) holds in each case. Thus the proof of the lemma is complete. ¤

By 13.5.21.6, the hypotheses of 13.5.14 are satisfied. Choose l as in 13.5.14, and
set L− := 〈UH , U lH〉. By 13.5.14, UH ≤ L1, and L− = O2(L−O2(LT )) is described
in G.2.4. Further if n = 5 then L− = L by 13.5.14.3. As in G.2.4, let S := O2(L−),
S2 = V (UH ∩ U

l
H) and let s denote the number of chief factors for L− on S/S2, as

in G.2.4.6. We maintain this notation throughout the remainder of the section.

Lemma 13.5.22. (1) |S| = 24(s+1)|S2 : V |.
(2) L1 has 2s+ 2 noncentral 2-chief factors.
(3) |UH | = 22s+5|S2 : V |.
(4) UH ≤ L1.

Proof. By G.2.4, L− has s natural chief factors on S/S2 and one A5-factor
on V , so (1) and (2) hold. We already observed that (4) holds, and (3) follows from
G.2.4.7. ¤
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Lemma 13.5.23. K∗ is not A8.

Proof. Assume K∗ ∼= A8. Then by 13.5.21.3 and I.1.6.1, ŨH is either the 7-
dimensional core of the permutation module forK∗, or its 6-dimensional irreducible
quotient, which we regard as an orthogonal space for K∗ ∼= Ω+

6 (2). By 13.5.21.5,

[ŨH , V
∗] = Ṽ3 is of rank 2, while if ŨH were 7-dimensional, then [ŨH , V

∗] would be

of rank 3. Therefore ŨH is 6-dimensional orthogonal space. Moreover CK(Ṽ2)
∗ is

of 3-rank 2, so n = 5 by 13.5.4.3.
By 13.5.21.5, UH = [QH ,K], and L∗1T

∗ is the minimal parabolic of K∗T ∗

stabilizing the 2-space Ṽ2. Thus L1 has exactly four noncentral 2-chief factors, two
on Q̃H and two on O2(L1)

∗ = O2(L
∗
1)
∼= Q2

8. Therefore by 13.5.22.2, the parameter
s of 13.5.22 is equal to 1. Thus by 13.5.22.3,

|UH | = 22s+5|S2 : V | = 27 · |S2 : V |. (∗)

Next as ŨH is the orthogonal module, UH ∼= D3
8 is of order 27. Thus S2 = V

by (*), and |S| = 28 by 13.5.22.1, so

|O2(L1)| ≤ |O2(L̄1)| · |S| = 22 · 28 = 210. (∗∗)

Further |O2(L1)
∗| = 25 using 13.5.21.5, and UH ≤ O2(L1) by 13.5.22.4, so that

|O2(L1)| ≥ 212 by (*), contrary to (**). This contradiction completes the proof of
13.5.23. ¤

Lemma 13.5.24. K∗ is not A6.

Proof. Assume K∗ ∼= A6. Then by 13.5.21.3 and I.1.6.1, ŨH is either the 5-
dimensional core of the permutation module forK∗, or its 4-dimensional irreducible
quotient. In either case by 13.5.21.5, UH = [QH ,K] and L∗1T

∗ is the maximal

parabolic stabilizing the line Ṽ3. Thus L1 has two noncentral chief factors on ŨH ,
and one on O2(L

∗
1), so L1 has exactly three noncentral 2-chief factors. This is a

contradiction, since by 13.5.22.2, the number of noncentral 2-chief factors of L1 is
even. This completes the proof of 13.5.24. ¤

Lemma 13.5.25. K∗ is not G2(2)
′.

Proof. Assume K∗ ∼= G2(2)
′. Then by 13.5.21.3 and I.1.6.5, ŨH is either

the 7-dimensional Weyl module for K∗ or its 6-dimensional irreducible quotient.
However UH = Z(UH)U0 where U0 is extraspecial, and if Φ(Z(UH)) = 1, then H
preserves a quadratic from on UH/Z(U). Therefore as G2(2)

′ does not preserve a

quadratic form on its 6-dimensional module, we conclude m(Ũ) = 7 and Z(UH) =
〈j〉 ∼= Z4.

Let X ∈ Syl3(L1); then 〈j〉 = CUH (X). But by 13.5.22.4, UH ≤ O2(L1), and
by G.2.4.6, S/S2 is the sum of natural modules for L−/S. So j ∈ CO2(L1)(X) ≤ S2.

However S2 = V (UH ∩U lH) with Φ(UH ∩U lH) ≤ Φ(UH)∩Φ(U lH) = V1 ∩ V l1 = 1, so

V1 = Φ(〈j〉) ≤ Φ(S2) = Φ(V )Φ(UH ∩ U
l
H) = 1,

a contradiction. ¤

By 13.5.21.2, K∗ is A6, A8, or G2(2)
′. But this contradicts 13.5.24, 13.5.23,

and 13.5.25. This contradiction completes the proof of Theorem 13.5.12.



926 13. MID-SIZE GROUPS OVER F2

13.6. Finishing the treatment of A5

In this section, we complete the treatment of the case in the Fundamental
Setup where L/O2(L) ∼= A5, using assumption (4) in Hypothesis 13.3.1 as discussed
earlier. To do so, we treat the only case remaining after the reduction in the previous
section 13.5. We adopt the notational conventions of section B.3 and Notations
12.2.5 and 13.2.1.

We will prove a result summarizing the work of both this section and the
previous section:

Theorem 13.6.1. Assume Hypothesis 13.3.1 with L/O2(L) ∼= A5. Then G is
isomorphic to U4(2) or L4(3).

The groups in Theorem 13.6.1 have already appeared as conclusions in Theorem
13.5.12.1, under the hypothesis that 〈V G1

3 〉 is nonabelian; we will prove that there
are no examples in the remaining case. (Indeed, as far as we can tell, there are not
even any shadows.) We assume throughout this section that G is a counterexample
to Theorem 13.6.1, and work toward a contradiction. The contribution from the
previous section 13.5 is:

Lemma 13.6.2. 〈V G1〉 is abelian, so VH is abelian for each H ∈ Hz.

Proof. By Theorem 13.5.12.1, 〈V G1
3 〉 is abelian; hence 〈V G1〉 is abelian by

13.5.10. ¤

Lemma 13.6.3. (1) CG(z) 6≤M .
(2) CZ(L) = 1.

Proof. This follows from 13.3.5.2 and the fact that M = !M(LT ). ¤

Set Q := O2(LT ), S := Baum(T ), let v ∈ V2 − V1, and let Gv := CG(v) and
Mv := CM (v). In the notation of section B.3, the generator z of V1 is e1,2,3,4, and

we may take v = e1,2. Set Qv := O2(Gv), Ǧv := Gv/〈v〉, Lv := O2(CL(v)) and

Vv := 〈zLv〉. Then Lv/O2(Lv) is of order 3, Vv = 〈v〉 × [V, Lv], and V̌v = [V̌ , Lv] is
a natural module for Lv/O2(Lv), of rank 2. By 13.2.6.1,

Tv := CT (v) ∈ Syl2(Gv).

By 13.2.4.2, S ≤ Tv, so it follows from B.2.3 that:

Lemma 13.6.4. S = Baum(Tv) and J(T ) = J(Tv).

Observe also that there is a ∈ zG ∩ CV (Lv) (e.g., a = e1,3,4,5) and ǎ ∈ Z(Ťv).

Lemma 13.6.5. NGv(S) ≤Mv = CMV (v).

Proof. First NG(S) ≤M by 13.2.5, and then Mv ≤MV by 12.2.6. ¤

Lemma 13.6.6. F ∗(Gv) = Qv.

Proof. Assume that Qv < F ∗(Gv). Then by 1.1.4.3, z /∈ Qv. By 1.1.6 we
can appeal to lemma 1.1.5 with Gv , Tv, G1, z in the roles of “H , S, M , z”. In
particular F ∗(CGv (z)) = O2(CGv (z)) and z inverts O(Gv). On the other hand,
z ∈ Vv = 〈v〉 × [V, Lv], and [V, Lv] centralizes O(Gv) by A.1.26.1, so z centralizes
O(Gv), and hence O(Gv) = 1. Thus there is a component K of Gv . By 1.1.5.3,
K = [K, z] and K is described in 1.1.5.3. Also Lv = O2(Lv) normalizes K by
1.2.1.3, so as z ∈ 〈v〉Lv , also K = [K,Lv].
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Notice cases (c) and (d) of 1.1.5.3 cannot arise: for in those cases z induces
an outer automorphism on K, whereas Lv induces inner automorphisms on K by
A.3.18, so that z ∈ 〈v〉Lv does too. In the remaining cases of 1.1.5.3, z induces an
inner automorphism of K.

Recall there is a ∈ zG ∩ CV (Lv) with ǎ ∈ Z(Ťv). As a ∈ zG, F ∗(CGv (a)) =
O2(CGv (a)) by 1.1.4.3 and 1.1.3.2. Therefore [K, a] 6= 1, and then as ǎ ∈ Z(Ťv),
a normalizes K and K = [K, a]. Set X := NGv(K), TX := Tv ∩ X , and X∗ :=
X/CX(K). Since L∗v centralizes a∗ but not z∗, a∗ 6= z∗. Then

E4
∼= E∗ := 〈a∗, z∗〉 ≤ Z(T ∗X),

so neither case (e) or (f) of 1.1.5.3 holds. Thus we have reduced to cases (a) or
(b) of 1.1.5.3, with K∗ of Lie type over F2m for some m. Again as E∗ ≤ Z(T ∗X),
either m > 1 and E∗ ≤ K∗, or X∗ ∼= S6. Suppose the latter case holds. Then
Lv ≤ O3′(Gv) = K by A.3.18, so Lv ∼= A4, and hence L is an A5-block. By
13.6.3.2, CT (L) = 1. Therefore V = O2(LT ) by C.1.13.c, so V = O2(M) = CG(V )
by 3.2.11. Thus as 〈V G1〉 is abelian by 13.6.2, G1 ≤ NG(V ) ≤ M , contrary to
13.6.3.1. This contradiction shows that m > 1 with E∗ ≤ K∗.

Next we conclude from A.3.18 that one of the following holds:

(i) Lv ≤ O3′(Gv) = K.
(ii) m3(K) ≤ 1.

(iii) K∗L∗v
∼= PGLε3(2

m) or Lε,◦3 (2m) and K = O3′(E(Gv)).

We claim that Tv normalizes K; assume otherwise and let K0 := 〈KTv〉 and
T0 := Tv ∩ K0. In (iii), K E Gv ; and in (i), Tv acts on K since Tv acts on
Lv. Therefore we may assume that (ii) holds. Comparing the groups in (a) or
(b) of 1.1.5.3 to those in 1.2.1.3, we conclude that K∗ ∼= L2(2

m) or Sz(2m). If

K∗ ∼= L2(2
m) then by 1.2.2.a, Lv ≤ O3′(Gv) = K0, so L

∗
v ≤ K∗0 = K∗ and L∗v

centralizes a∗, impossible as involutions of K∗ are centralized only by a Sylow 2-
subgroup. Therefore K∗ ∼= Sz(2m), so K0/Z(K0) ∼= Sz(2m) × Sz(2m). Let B
be the Borel subgroup of K0 containing T0, and set V0 := Ω1(T0). Then (using
I.2.2.4 when Z(K0) 6= 1 and in particular m = 3) J(Tv) centralizes V0, so by
B.2.3.5, Baum(Tv) E B. Then B ≤ CMV (v) by 13.6.4 and 13.6.5. Now O2(B) ≤
O2,3(CMV (v)) ≤ CM (V ). Hence [Lv, O

2(B)] ≤ O2(Lv), impossible as as subgroup
of order 3 in Lv induces field automorphisms on K. This contradiction completes
the proof of the claim that Tv normalizes K.

Hence Tv = TX . Also L∗v ≤ K∗ in cases (i) and (ii); this is clear in (i), and it
holds in (ii) as Lv = [Lv, Tv] while Out(K

∗) is abelian when m3(K
∗) ≤ 1.

Next as Tv acts on Lv, by inspection of the groups in (a) or (b) of 1.1.5.3, L∗v
is contained in a Borel subgroup B∗ of K∗L∗v. Hence as

[L∗v, z
∗] 6= 1 = [L∗v, a

∗]

and E∗ ≤ Z(T ∗X), we conclude K∗ ∼= Sp4(2
m), as otherwise Z(T ∗X ∩K

∗) =: R∗ is
a root subgroup of K∗, so CB∗(R

∗) = CB∗(z
∗).

As m > 1, K is simple by I.1.3, so J(Tv) = JK × J(TC), where TK := Tv ∩K
and TC := CTv (K). Thus ZJ := Ω1(Z(J(Tv))) = ZK × ZC , where ZK := Z(TK)
and ZC := Ω1(Z(J(TC))). Then using 13.6.4,

S = Baum(T ) = Baum(Tv) = TK × SC ,

where SC := Baum(TC). Therefore B ≤ NG(S), so as before B ≤ CMV (v) by
13.6.5. Let BC := O2(CB(V )). Since |B : O2(B)| > 3 and B̄ = L̄v with |L̄v :



928 13. MID-SIZE GROUPS OVER F2

O2(L̄v)| = 3, we conclude |B : BCO2(B)| = 3 and BC 6= 1. Then Lv/O2(Lv) is
inverted in Tv ∩ L ≤ CTv (BC/O2(BC)). This is impossible since each element in
Aut(Sp4(2

m)) acting on B and inverting an element of order 3 in B∗ induces a
field automorphism on K∗ inverting Ω1(O3(B

∗/O2(B
∗))) ∼= E9. This contradiction

completes the proof of 13.6.6. ¤

We come to the main technical result of the section, requiring the bulk of the
argument; afterwards the remainder of the proof of Theorem 13.6.1 is fairly brief.

Theorem 13.6.7. (1) Gv ≤MV . Hence Gv = CMV (v).
(2) NG(Vv) ≤M .

Until the proof of Theorem 13.6.7 is complete, assume G is a counterexample.
We begin a series of reductions.

Recall Vv = 〈v〉 × [V, Lv] with {v} ∪ [V, Lv]
# the set of nonsingular vectors in

Vv. Therefore by 13.2.6.2, NG(Vv) acts on the three singular vectors of Vv , and
hence preserves their product v—so that NG(Vv) ≤ Gv , and hence (1) implies (2).
On the other hand, if Vv E Gv , then Gv permutes

V := {Vu : u ∈ Vv and u is nonsingular},

so Gv acts on V = 〈V〉, and hence Gv ≤ NG(V ) =MV , so (1) holds. Thus we may
assume:

Lemma 13.6.8. Gv > Mv and Vv is not normal in Gv.

Set Uv := 〈zGv〉 and G∗v := Gv/CGv(Uv). Regard G
∗
v as a subgroup of GL(Uv)

and write ux
∗

for the image of u ∈ Uv under x∗ ∈ G∗v .
As Lv ≤ Gv, Vv ≤ Uv. As z ∈ Z(Tv), by 13.6.6 we may apply B.2.14 to

conclude Uv ∈ R2(Gv). In particular O2(G
∗
v) = 1 and Uv ≤ Z(Qv).

If [Uv , J(Tv)] = 1, then S = Baum(CTv (Uv)) by B.2.3.5 and 13.6.4, so by a
Frattini Argument and 13.6.5,

Gv = CGv(Uv)NGv(S) ≤ CG(Uv)CMV (v).

But then V Gvv = V Mv
v = {Vv}, contrary to 13.6.8. Hence

Lemma 13.6.9. J(Gv)
∗ 6= 1.

Thus Uv is an FF-module for G∗v .

Lemma 13.6.10. If L∗v = [L∗v, J(Tv)
∗], then L∗v is not subnormal in G

∗
v.

Proof. Suppose otherwise. Then O2(L
∗
v) ≤ O2(G

∗
v) = 1, so that L∗v has order

3. Further m([Uv , L
∗
v]) = 2 by Theorem B.5.6, so [Uv, Lv] = [V, Lv], and hence

Vv = 〈v〉× [V, Lv ] = 〈v〉[Uv , Lv]. Now Theorem B.5.6 also shows that |L
∗G∗v
v | ≤ 2, so

as Lv is Tv-invariant, L
∗
v is normal in G∗v , so that 〈v〉[Uv , Lv] = Vv is Gv-invariant,

contrary to 13.6.8. ¤

Let X0 be the set of L∗vT
∗
v -invariant subgroups X

∗ = O2(X∗) of G∗v such that
1 6= X∗ = [X∗, J(Tv)

∗]. Let X denote the set of all members of X0 normal in
G∗v, and Xz the set of those X∗ in X0 with [z,X∗] 6= 1. For X∗ ∈ X0, set UX :=
[〈zX

∗L∗v〉, X∗].

Lemma 13.6.11. For each X∗ ∈ Xz, [z,X∗, L∗v] 6= 1, so [UX , L
∗
v] 6= 1.
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Proof. Let U := [z,X∗] 6= 1 and suppose that [U,L∗v] = 1. Then [X∗, L∗v] ≤
CX∗(U) ≤ CX∗(z) by Coprime Action, so

1 = [X∗, L∗v, z] = [z,X∗, L∗v],

and hence by the Three-Subgroup Lemma, [L∗v, z,X
∗] = 1. Then X∗ centralizes

〈v〉[z, L∗v] which contains z, contrary to our choice of X∗. ¤

Lemma 13.6.12. X ⊆ Xz.

Proof. If X∗ ∈ X with [z,X∗] = 1, then as X∗ E G∗v , X
∗ centralizes

〈zG
∗
v〉 = Uv, contrary to X∗ 6= 1. ¤

Lemma 13.6.13. No member of X is solvable.

Proof. Suppose X∗ ∈ X is solvable, and choose X∗ minimal subject to this
constraint. By Theorem B.5.6, X∗ = O2(H∗) for some normal subgroup H∗ of
G∗v with H∗ = J(H)∗ = H∗1 × · · · × H∗s where H∗i

∼= S3 and s ≤ 2. Further
UH := [Uv, H ] = U1 ⊕ · · · ⊕ Us, where Ui := [UH , Hi] is of rank 2. By minimality
of X∗, T ∗v is transitive on the H∗i , so X

∗T ∗v is irreducible on UH . Now [z,X ] 6= 1
by 13.6.12, so UX = UH as X∗T ∗v is irreducible on UH . By 13.6.11 [UH , L

∗
v] 6= 1,

so the projection of L∗v on H∗ with respect to the decomposition H∗×CG∗v (UX) is
nontrivial. Then as Lv is Tv-invariant, it follows that L

∗
v = [L∗v, J(T )

∗] = O2(H∗i )
for some i, contrary to 13.6.10. ¤

We conclude from 13.6.13 that F (J(Gv)
∗) = Z(J(Gv)

∗). Then by 13.6.9 and
Theorem B.5.6, J(Gv)

∗ is a product of components of G∗v. By C.1.16, J(Tv)
∗

normalizes the components of G∗v. Thus there exists K+ ∈ C(Gv) such that K∗+ is a

component of G∗v and K∗+ = [K∗+, J(Tv)]. Thus 〈K
∗Tv
+ 〉 is normal in G∗v by 1.2.1.3,

and so lies in X . Hence 〈K∗Tv+ 〉 ∈ Xz by 13.6.12.
Let Yz consist of thoseK ∈ L(Gv , Tv) such that K∗/O2(K

∗) is quasisimple and

〈K
∗T∗v
v 〉 ∈ Xz. By the previous paragraph, K+ ∈ Yz , so Yz is nonempty. Observe

that if K ∈ Yz and K0 ∈ L(Gv , Tv) with K∗0 = K∗, then K0 ∈ Yz .
For K ∈ Yz , let K− := 〈KTv 〉, WK := 〈zK−Lv〉, and set (K−LvTv)

+ :=
K−LvTv/CK−LvTv (WK). Since F ∗(Gv) = O2(Gv), WK ∈ R2(K−LvTv) by B.2.14.

In the remainder of the proof of Theorem 13.6.7, let K ∈ Yz.

Then K+ is a quotient of K∗/O2(K
∗), so K+ is also quasisimple, and WK is an

FF-module forK+
−T

+
v . Also the action ofK+

−L
+
v T

+
v onWK is described in Theorem

B.5.6.

Lemma 13.6.14. K is Tv-invariant, K
∗ ∈ Xz, and UK = [WK ,K].

Proof. Assume 13.6.14 fails. By 1.2.1.3, K− = KKt for some t ∈ Tv −
NTv(K), and comparing the list of groups in 1.2.1.3 to that in Theorem B.5.6,
K+ ∼= L2(2

m) or L3(2). Then by 1.2.2, Lv ≤ K−. Since Lv is Tv-invariant with
Lv/O2(Lv) of order 3, L+

v is diagonally embedded in K+
− , K

+ is not L3(2), and

K+
−T

+
v is not S5 wr Z2. Therefore by Theorem B.5.6, UK− = UKU

t
K , where

UK := [WK ,K] and UK/CUK (K) is the natural module for K+ ∼= L2(2
m). Thus

by E.2.3.2, Baum(Tv) is normal in the preimage B of the Borel subgroup B+ of
K+
− normalizing (Tv ∩ K−)+. But S = Baum(Tv) by 13.6.4 and NB(S) ≤ MV

by 13.6.5, so B ≤ MV . As z ∈ Z(Tv), the projection of z on UK− is diagonally

embedded in UKU
t
K , so that CB(V ) ≤ CB(〈z

B〉) = O2(B). This is a contradiction
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as B/O2(B) is noncyclic of odd order, while O2(M̄V ) ∼= A5 had cyclic Sylow groups
for odd primes. This contradiction completes the proof. ¤

Lemma 13.6.15. If K+ ∼= A5, then no I ∈ Irr+(K, 〈zK〉) is the A5-module.

Proof. Assume K+/O2(K
+) ∼= A5 and some I ∈ Irr+(K, 〈zK〉) is the A5-

module. Then as K+ = [K+, J(Tv)
+], UK = I by Theorem B.5.6.

Further as there are no strong FF∗-offenders on I by B.4.2.5, by that result
and B.2.9.1, there is A ∈ A(T ) with A+ of order 2 inducing a transposition on K+

and K+ = [K+L+
v , A

+] = K+. By 13.6.11, [UK , Lv] 6= 1. Then as Tv acts on Lv,
the projection L+

K of L+
v on K+ is a Borel subgroup of K+ with L+

K = [L+
K , A].

Therefore L+
v = [L+

v , A
+] = L+

K as Lv is Tv-invariant and K+ = [K+L+
v , A

+].

As L+
v = L+

K and UK is the A5-module, the Lv-module [WK , Lv] = [UK , LK ] is
an indecomposable extension of the trivial module CUK (L

+
v ) by a natural module

for L+
v /O2(L

+
v )
∼= Z3. This is a contradiction, as [V, Lv] is an Lv-submodule of

[WK , Lv] of rank 2. ¤

Lemma 13.6.16. Assume K0 ∈ L(Gv , Tv) is Tv-invariant with [z,K0] 6= 1.
Then

(1) O2(〈K0, T 〉) = 1.
(2) If C is a nontrivial characteristic subgroup of Tv, then O∞(K0)NK0(C) <

K0.
(3) K0 = [K0, J(Tv)].

Proof. Let H := 〈K0, T 〉 and assume O2(H) 6= 1; then H ∈ H(T ). As
|T : Tv| = 2, by 1.2.5 there is K2 ∈ C(NG(O2(H))) containing K0. As [z,K0] 6=
1, K2 ∈ Lf (G, T ). By 13.3.2.2, K2 ∈ L∗f (G, T ). We now make a particularly

fundamental use of the special assumption in part (4) of Hypothesis 13.3.1 that we
have chosen L with L/O2(L) ∼= A5 only in the final case of the FSU when no other
choice was possible: namely by Hypothesis 13.3.1.4, K2/O2(K2) ∼= A5. Thus as
A5 is a minimal nonsolvable group, K2 = O2(K2)K0, and then as |T : Tv| = 2 and
K2 is perfect, K2 = K0. As v centralizes K0, 1 6= CT (K2), contrary to 13.6.3.2,
since by 13.3.2 K2 satisfies Hypothesis 13.3.1 in the role of “L”. This completes
the proof of (1).

Next assume thht C is a nontrivial characteristic subgroup of Tv with K0 =
O∞(K0)NK0(C). Then there is K1 ∈ L(NK0(C), Tv) with K0 = O∞(K0)K1. Re-
placing K0 by K1, we may assume K0 acts on C. Since Tv is of index 2 in T , C
is normal in T , and hence 1 6= C ≤ O2(〈K0, T 〉), contrary to (1). This establishes
(2).

Finally if J(Tv) ≤ O∞(K0), then K0 = O∞(K0)NK0(J(Tv)) by a Frattini
Argument, contrary to (2). Thus (3) holds. ¤

Lemma 13.6.17. Assume a := zg with ã ∈ Z(T̃v). Then [a,K] 6= 1.

Proof. Assume K ≤ Ga := CG(a). As a centralizes a subgroup of Tv of
index 2, |O2(Ga) : (O2(Ga) ∩ NG(K))| ≤ 4. Thus as K = K∞, K central-
izes O2(Ga)/(O2(Ga) ∩ NG(K)), and hence K E KO2(Ga). Since [z,K] 6= 1
with z ∈ Uv ∈ R2(Gv), V (K) 6= 1 in the language of Definition A.4.7. Then
[Z(O2(KO2(Ga))),K] 6= 1 by A.4.9 with K, KO2(Ga) in the roles of “X , M”.
Then as Ga ∈ He, K does not centralize Za := Z(O2(Ga)). By 1.2.1.1, 〈KT g 〉 =:
K0 ≤ 〈C(Ga)〉, so as [Za,K] 6= 1, some K1 ∈ C(K0) is in Lf (G, T

g) by A.4.9 with
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K1, Ga in the roles of “X , M”. Thus as a ∈ Z(T g) centralizes K1, 13.6.3.2 applied
to K1 in the role of “L” supplies a contradiction. ¤

We now begin to eliminate various cases for K+ from the list of possible qua-
sisimple groups in Theorem B.4.2.

Lemma 13.6.18. K+ is not L2(2
m).

Proof. Assume otherwise. Then by Theorem B.5.6 and 13.6.15, UK/CUK (K)
is the natural module forK+ ∼= L2(2

m). LetK0 be a minimal member of L(KTv, Tv).
Then K∗0 = K∗, so K0 ∈ Yz , and by minimality of K0, K0 is a minimal parabolic
in the sense of Definition B.6.1. Then by 13.6.16.2 and C.1.26, K0 is an L2(2

m)-
block. Hence replacing K by K0, we may assume K is a block. Then by E.2.3.2,
J(Tv) is normal in the Borel subgroup B of KTv over Tv, and S = Baum(Tv) by
13.6.4, so B acts on S in view of B.2.3.4. Hence B ≤ CMV (v) by 13.6.5. Thus
O2(B) ≤ O2(CMV (v)) ≤ LvCM (V ), so that [V,O2,3(B)] = 1. But if n > 2, then
z ∈ CWK (O

2,3(B)) ≤ CWK (K) as UK/CUK (K) is the natural module for L2(2
m),

contradicting [z,K] 6= 1. Thus n = 2 and BCM (V ) = LvCM (V ). Then B central-
izes the element a := zg ∈ CV (Lv) with ǎ ∈ Z(Ťv) described before 13.6.5. There-
fore as B contains a Borel subgroup of K, and K is an L2(4)-block, K ≤ CG(a).
This contradicts 13.6.17, completing the proof of the lemma. ¤

Lemma 13.6.19. K+ is not SL3(2
m), Sp4(2

m), or G2(2
m) with m > 1.

Proof. If the lemma fails, then for some maximal parabolic P ofK containing
Tv∩K, K1 := P∞ does not centralize z. ThenK1 ∈ L(Gv , Tv) withK

+
1 /O2(K

+
1 )
∼=

L2(2
m). As K1 is not a block, this contradicts 13.6.16.2 in view of C.1.26. ¤

By Theorem B.5.6, K+ is either a Chevalley group over a field of characteristic
2 in Theorem C (A.2.3), or Â6 or A7. Lemmas 13.6.18 and 13.6.19 say in the
former case that K+ is a group over F2. Therefore the list of B.5.6 is reduced to
K+ ∼= L3(2), Sp4(2)

′, G2(2)
′, Â6, A7, L4(2), or L5(2). We next show:

Lemma 13.6.20. Lv ≤ K.

Proof. If m3(K) = 2, then by A.3.18, Lv ≤ θ(KLv) = K. Thus we may
assume m3(K) = 1, so K+ ∼= L3(2). By Theorems B.5.1 and B.5.6, either
UK/CUK (K) is a natural module for K+, or UK is the sum of two isomorphic
natural modules for K+. By 13.6.11, [UK , Lv] 6= 1. So either K+ = [K+, L+

v ], or
[K+, L+

v ] = 1 and UK is the sum of two isomorphic natural modules for K+, with
L+
v ≤ AutK+(UK) ∼= L2(2).

Assume first that [K+, L+
v ] = 1. Then J(Tv)

+ is the unipotent radical O2(P
+)

of the maximal parabolic P+ of K+ stabilizing a line in each summand of UK , and
S+ = J(Tv)

+ by B.2.20. Therefore since S = Baum(Tv) by 13.6.4, P+ = NK(S)+

by a Frattini Argument, while NK(S) ≤ CMV (v) by 13.6.5. But as [K+, L+
v ] = 1,

O2(NK(S)) acts on O2(O2(K)Lv) = Lv, and hence as NK(S) ≤ Mv, O
2(NK(S))

also acts on [V, Lv] = [z, Lv] ∼= E4. But [z, Lv] contains a point of each summand of
UK , and so is generated by those two points; whereas we saw that P is the stabilizer
of a line in each summand, so that P+ = NP (S)

+ acts irreducibly on each such
line.

Therefore [K+, L+
v ] 6= 1. Hence the projection L+

K of L+
v on K+ is nontrivial.

So as L+
K is Tv-invariant, it is a maximal parabolic of K+ ∼= L3(2), and hence

LK = [LK , Tv ∩K]. Then as Lv is Tv-invariant, Lv = LK ≤ K, as desired. ¤
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Lemma 13.6.21. K 6≤M .

Proof. By 13.6.20, K∗ does not act on L∗v, so as Lv E Mv, 13.6.21 holds. ¤

Lemma 13.6.22. K+ is not L3(2), Sp4(2)
′, G2(2)

′, Â6, or A7.

Proof. Assume otherwise. Let K0 be minimal subject to K0 ∈ L(KTv, Tv)
and K∗0 = K∗. Then K0/O2(K0) is quasisimple by minimality of K0, and K0 ∈ Yz
as K∗0 = K∗, so replacing K by K0, we may assume K/O2(K) is quasisimple.

If K+ is not A7, then using 13.6.6 and 13.6.16.2, (KTv, Tv) is an MS-pair in

the sense of Definition C.1.31. So by C.1.32, either K is a block of type A6, Â6, or
G2(2), or K

+ is L3(2) and by C.1.32.5, K is described in C.1.34. Similarly if K+ is
A7, C.1.24 saysK is an A7-block or exceptional A7-block. Set U := [Z(O2(K)),K].
When K is a block, UK = U ∈ Irr+(K,WK). If K is not a block, then K/O2(K) ∼=
L3(2) and K is described in C.1.34, so U = UK is a sum of at most two isomorphic
natural modules for L3(2).

As Lv ≤ K by 13.6.20, L+
v is a T+

v -invariant {2, 3}-subgroup of K+ with Sylow
3-group of order 3. Set P := Lv(Tv ∩K). When K+ is L3(2), Sp4(2)

′, or G2(2)
′,

P+ is a minimal parabolic.
Suppose first that K is an A7-block. Then by B.3.2.4 and B.2.9.1, J(Tv)

+

is the subgroup of T+
v generated by its three transpositions, and S+ = J(Tv)

+

by B.2.20. Further NK+(S+) = NK(S)+ by a Frattini Argument, and NK(S) ≤
Mv by 13.6.5. From the structure of S7, NKTv (S) is maximal in KTv subject to
containing a normal subgroup {2, 3}-subgroup which is not a 2-group, so it follows
that NKTv(S) = (Tv∩K)Lv and Lv = O2(NK(S)). Now LvTv ≤ K1Tv ≤ KTv with
K1/O2(K1) ∼= A6, and as [z, Lv] 6= 1, [z,K1] 6= 1. Further K+

1 = [K+
1 , J(Tv)

+], so
K1 ∈ Yz ; thus replacing K by K1, we may assume K is not an ordinary A7-block.

Similarly if K is an Â6-block, then U has the structure of a 3-dimensional
F4K-module and J(Tv)

+ is the 4-subgroup of T+
v ∩K

+ centralizing an F4-line U2

of U , so S+ = J(Tv)
+, NK(S)+ = NK(U2)

+, and hence NK(U2) ≤MV by 13.6.5.
Let l := [V, Lv]. Then l is an LvTv-invariant line in [z, Lv] ≤ [z,K] ≤ U with

l = [l, Lv]. It follows that if K/O2(K) ∼= L3(2), then m(U) 6= 4, since in that
case no minimal parabolic of K+ acts on such a line (cf. B.4.8.2). If K is an

Â6-block, then from the previous paragraph, NK(U2) ≤MV , so NK(U2) acts on l,
a contradiction as NK(U2) acts on no E4-subgroup of U .

Let Û := U/CU (K). In the remaining cases, if K is irreducible on Û , then there

is a unique Tv-invariant line in U , so l̂ is that line. Then if K is not an exceptional

A7-block, P
+ is the parabolic stabilizing l̂, while if K is an exceptional A7-block,

then L+
v is one of the three Tv-invariant subgroups L0 = O2(L0) of NK(l̂) with

L0/O2(L0) ∼= Z3 and l̂ = [l̂, L0]. If K is not irreducible on Û , then U is the sum

of two isomorphic modules for K+ ∼= L3(2), l̂ is a Tv-invariant line in one of those
irreducibles, and P = NK(l). For our purposes the important fact is that in each
case CÛ (Lv) = 0, so CǓ (Lv) = CǓ (K).

Let ZK := Z(O2(K)) and Z0 the preimage in K of Z(O2(Ǩ)). If K is a block,
then by definition U = [ZK ,K] = [O2(K),K], so [Z0,K] = U . If K is not a block,
then from the description of K in C.1.34, again [Z0,K] = U . So in any event
[Z0,K] = U .
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Now recall there is a ∈ zG ∩ CV (Lv) with ǎ ∈ Z(Ťv) ≤ Z(O2(ǨŤv)) since
F ∗(ǨŤv) = O2(ǨŤv). Then

[ǎ,K] ≤ [Z(O2(Ǩ)),K] = Ǔ ,

by the previous paragraph, so K acts on F̌ := 〈ǎ〉Ǔ . Further by B.2.14, F̌ =
ǓCF̌ (K). Then as we saw earlier that CǓ (Lv) = CǓ (K), it follows that K central-
izes ǎ, and hence K centralizes a by Coprime Action, contrary to 13.6.17. ¤

Lemma 13.6.23. (1) K = O3′ (Gv).
(2) K+ ∼= L4(2) and T

+
v is nontrivial on the Dynkin diagram of K+.

(3) L+
v T

+
K is the middle-node minimal parabolic of K+T+

K , where TK := Tv∩K.

Proof. By 13.6.22 and the remarks before 13.6.20, we have reduced to the
cases where K+ ∼= Lm(2) for m = 4 or 5. Since Lv ≤ K by 13.6.20 we conclude as
in the proof of 13.6.22 that L+

v T
+
K is a minimal parabolic of K+.

If Tv is trivial on the Dynkin diagram of K+, then Tv acts on a parabolic
K+

1 of K+ containing L+
v with K+

1 /O2(K
+
1 ) ∼= L3(2). However as [z, Lv] 6= 1,

also [z,K1] 6= 1. By 13.6.16.3, K+
1 = [K+

1 , J(Tv)]
+ so that K∞1 ∈ Yz and 13.6.22

supplies a contradiction.
Hence Tv is nontrivial on the Dynkin diagram of K+. So as Tv acts on the

minimal parabolic LvTK , m = 4 and LvTK is the middle-node minimal parabolic
of K. Thus (2) and (3) hold.

By 1.2.4, K ≤ K+ ∈ C(Gv); then K+ ∈ Yz , so by symmetry between K+

and K, K/O2(K) ∼= L4(2) ∼= K+/O2(K+), and hence K = K+. Then by A.3.18,

K = O3′(Gv), so (1) is established. ¤

By 13.6.23, K+T+
v
∼= S8 with L+

v T
+
K the middle-node minimal parabolic of

K+. As [z, Lv] 6= 1 and UK is an FF-module for K+, we conclude from Theorem
B.5.1 that UK/CUK (K) is the 6-dimensional orthogonal module. Thus CK(z) is
the maximal parabolic determined by the end nodes, so using 13.6.23.1 we conclude
that

X := O3′(CK(z)) = O3′(CGv (z)) = O3′(CG(V2)),

and hence that X is T -invariant and XTv/Rv ∼= S3 wr Z2, where Rv := O2(XTv).
As UK/CUK (K) is the orthogonal module, J(Rv) = J(O2(KTv)) by B.3.2.4. But
as T acts on X and Tv, T acts on Rv , so that J(Rv) E 〈K,T 〉, contrary to 13.6.16.1.
This contradiction finally completes the proof of Theorem 13.6.7.

With Theorem 13.6.7 now in hand, we can now use elementary techniques such
as weak closure in a fairly short argument to complete the proof of Theorem 13.6.1.

Lemma 13.6.24. If g ∈ G−NG(V ) with V ∩ V g 6= 1, then

(1) V ∩ V g is a singular point of V , and
(2) [V, V g ] = 1.

Proof. By 13.3.11.1, Gv is transitive on {V x : v ∈ V x}, so as Gv ≤ MV by
Theorem 13.6.7.1, V is the unique member of V G containing v. Hence V ∩ V g is
totally singular, so that (1) holds. In particular conjugating in L we may assume
V ∩ V g = V1, and then take g ∈ CG(z) = G1 by 13.3.11.1. Hence (2) follows from
13.6.2. ¤
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Lemma 13.6.25. (1) Wi(T, V ) E LT for i = 0, 1.
(2) n(H1) > 1 for each H1 ∈ H(T,M).
(3) Each solvable member of H(T ) is contained in M .
(4) r(G, V ) = 3 and w(G, V ) > 1.

Proof. We first observe that by 13.6.3.1 and 13.6.24.1, r(G, V ) = 3. Let
g ∈ G−M with A := V g∩M ≤ T and B a hyperplane of A. Suppose m(V g/A) ≤ 1
but [V,A] 6= 1. Then m(V g/B) ≤ 2 < r(G, V ), so CV (B) ≤ NG(V

g) and hence
[CV (B), A] ≤ V ∩V g ; therefore [CV (B), A] = 1 by 13.6.24.2. Thus Ā ∈ A2(M̄V , V ),
whereas we compute directly that a(M̄V , V ) = 1. This contradiction shows that
Wi(T, V ) ≤ CT (V ) = O2(LT ) for i = 0, 1, establishing (1).

By (1), w(G, V ) > 1, where w(G, V ) appears in Definition E.3.23; this com-
pletes the proof of (4). By (4), min{r(G, V ), w(G, V )} > 1, so (2) and (3) follow
from E.3.35.1. ¤

Lemma 13.6.26. For H ∈ Hz:

(1) No member of C(H) is contained in M .
(2) O2,p(H) = QH for each prime p > 3.

Proof. Assume K ∈ C(H). Part (1) follows from 13.3.8.2 with L, M , 〈KT 〉

in the roles of “K, MK , Y ”. Let p > 3 be prime and set X := Op
′

(O2,p(H)). By
13.6.25.3, X ≤M , so as p > 3, X = 1 by 13.3.8.2. Hence (2) holds. ¤

Lemma 13.6.27. There exists K ∈ C(G1) such that one of the following holds:

(1) G1 = KT and K/O2(K) ∼= J2 or M23.
(2) K/O2(K) ∼= L3(4), T is nontrivial on the Dynkin diagram of K/O2(K),

G1 = O3′(G1)T , and either K = O3′ (G1) or O
3′(G1/O2(G1)) ∼= PGL3(4).

Proof. By 3.3.2 there exists H1 ∈ H∗(T,M). By 13.3.5.2, H1 ≤ G1, and by
13.6.25.2, n(H1) > 1. Now we apply Theorem 5.2.3: Hypothesis 13.3.1 rules out
conclusions (2) and (3) of that Theorem, so we are left with conclusion (1) of 5.2.3.
In particular K1 := O2(H1) lies in some K ∈ C(CG(Z)). As T normalizes K1, it
normalizes K, and as K1 6≤M , KT ∈ H(T,M). Thus n(KT ) > 1 by 13.6.25.2, so
in particular K/O2(K) 6∼= A7. So by Theorem 5.2.3.1, either

(a) K1/O2(K1) ∼= L2(4) and K/O2(K) ∼= J2 or M23, or
(b) K1 = K with K/O2(K) ∼= L3(4), and T nontrivial on the Dynkin diagram

of K/O2(K) by E.2.2.

Next as CG(Z) ≤ G1, K ∈ L(G1, T ), so K ≤ K+ ∈ C(G1) by 1.2.4. If K/O2(K) ∼=
J2 or M23, we conclude K = K+ from 1.2.8.4. If K/O2(K) ∼= L3(4), then either
K = K+ or K+/O2(K+) ∼= M23 by A.3.12, and the latter case is impossible as T
is nontrivial on the Dynkin diagram of K/O2(K). Thus K = K+ ∈ C(G1).

By A.3.18, either O3′ (G1) = K or O3′(G1/O2(G1)) ∼= PGL3(4). In particular
K is the unique member of C(G1) which is not a 3′-group, and O2,3(G1) = 1 so
that O2,F (G1) = O2(G1) using 13.6.26.2.

Suppose K0 ∈ C(G1) − {K}. By an earlier observation, K0 is a 3′-group, so
K0/O2(K0) is Sz(2

m). By 13.6.26.1,K0 6≤M , while by 13.6.25.3, a Borel subgroup
of K0 is contained in M . Therefore 〈K0, T 〉 ∈ H∗(T,M), which is contrary to
Theorem 5.2.3 as we saw above.

Let Ġ1 := G1/O2(G1); we have shown that K̇ = F ∗(Ġ1). But Out(K̇) is a

2-group if K̇ is J2 or M23, while Out(L3(4)) ∼= Z2 × S3. It follows that either
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G1 = KT , or G1 = O3′(G1)T with O3′(Ġ1) ∼= PGL3(4). Hence the proof of the
lemma is complete. ¤

Let H := G1 and K := G∞1 . Now H ∈ Hz , so by 13.5.7, Hypothesis F.9.1
is satisfied with V3 in the role of “V+”. Then by 13.6.24.2, Hypothesis F.9.8.f
is satisfied, while case (i) of Hypothesis F.9.8.g holds in view of 13.2.3.2. We now
adopt the standard conventions from section F.9 given in Notation 13.5.8, including
H∗ := H/QH , UH := 〈V H3 〉, and H̃ := H/V1. By 13.6.27, F ∗(H∗) = K∗ ∼=
L3(4), M23, or J2, and in the first case T ∗ is nontrivial on the Dynkin diagram

of K∗. Therefore q(H∗, ŨH) > 2 by B.4.2 and B.4.5, contrary to F.9.16.3. This
contradiction completes the proof of Theorem 13.6.1.

13.7. Finishing the treatment of A6 when 〈VG1 〉 is nonabelian

In this section, and also in the final section 13.8 of the chapter, we adopt a
hypothesis excluding the groups identified in previous sections:

Hypothesis 13.7.1. Hypothesis 13.3.1 holds, L/CL(V ) ∼= A6, and G is not
Sp6(2) or U4(3).

Thus since Hypothesis 13.7.1 includes Hypothesis 13.3.1 and Hypothesis 13.5.1,
we may appeal to results in sections 13.4 and 13.5.

Set Q := O2(LT ). We continue with the notation established in section 13.5:
Namely we adopt the notational conventions of section B.3 and Notations 12.2.5
and 13.2.1.

By 13.5.2.3, CV (L) = 1, so that V is the core of permutation module for
L̄ ∼= A6, given by the vectors eS for subsets S of even order in Ω := {1, 2, 3, 4, 5, 6},
modulo eΩ. In particular V1 = Z ∩ V is generated by z := e1,2,3,4 ≡ e5,6.

By 13.5.7, Hypothesis F.9.1 is satisfied with V3 in the role of “V+”, so we may
use results from section F.9. We also adopt the conventions from that section given
in Notation 13.5.8, including G̃1 := G1/V1. As usual define

Hz := {H ∈ H(L1T ) : H ≤ G1 and H 6≤M}.

By 13.3.6, G1 ∈ Hz, and so Hz is nonempty.

In the remainder of the section, H denotes a member of Hz.

From Notation 13.5.8 UH := 〈V H3 〉, VH := 〈V H〉, QH := O2(H), and H∗ := H/QH
so that O2(H

∗) = 1. By F.9.2.3, QH = CH (ŨH). Set HC := CH(UH); then
HC ≤ QH .

By Theorem 13.5.12:

Lemma 13.7.2. 〈V G1
3 〉 is abelian, so UH is abelian.

There are no quasithin examples satisfying 13.7.2, so in the remainder of this
section we will be working toward a contradiction. As far as we can tell, there are
not even any shadows.

13.7.1. Preliminary results. We begin with several consequences of Hy-
pothesis 13.7.1 and 13.7.2, which we can apply both in the next subsection where
〈V G1〉 is nonabelian, and in the final section 13.8 where 〈V G1〉 is abelian.
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Lemma 13.7.3. (1) VH ≤ QH .
(2) UH ≤ Z(VH ), so that VH ≤ HC .
(3) 〈ULH〉 ≤ O2(LT ) = Q.
(4) For h ∈ H, either [V, V h] = 1, or [V, V h] = [V, VH ] = V1 with V̄H = V̄ h =

〈(5, 6)〉.
(5) Either VH is abelian, or Φ(VH) = V1.
(6) O2(L̄1) ≤ Q̄H ≤ R̄1, V3 = [V,QH ], V1 = [V3, QH ] = [UH , QH ] = CV3(QH),

and [VH , QH ] = UH .
(7) Either

(i) HC ≤ Q, so HC = CH(VH ), or
(ii) |HC : Q ∩ HC | = 2, so H̄C = 〈(5, 6)〉, [VH , HC ] = V1, and HC ≤

CH(ṼH ).

(8) If L/O2(L) ∼= Â6, then VH is abelian.
(9) H ∩M = NH(V ) and L1 = θ(H ∩M).

Proof. As UH is abelian,

ŪH ≤ CT̄ (V3) = CT̄ (Ṽ ),

so V ≤ CH (ŨH) = QH and hence (1) holds. By (1) and F.9.3, V ≤ CQH (UH), so
(2) and (3) hold.

Let h ∈ H . Then by (2),

V h ≤ CQH (V3) = CQH (Ṽ ),

so (4) holds, since (5, 6) is the transvection in T̄ with center V1. Then (4) implies
(5).

If [L1, QH ] ≤ Q = CT (V ), then [L1, QH ] ≤ CL1(V3); so as L1/CL1(V3)
∼= A4

has trivial centralizer in GL(V3), [V3, QH ] = 1, contrary to 13.5.4.5 since O2(G1) ≤

QH . Thus [L1, QH ] 6≤ Q, so O2(L̄1) = [QH , L1] ≤ Q̄H ≤ R̄1, and hence V3 =
[V,O2(L̄1)] = [V,QH ]. Then as UH = 〈V H3 〉, (6) holds.

Observe H̄C ≤ CR̄1
(V3) = 1 or 〈(5, 6)〉. If H̄C = 1, then (7i) holds. Otherwise

H̄C = 〈(5, 6)〉, and then as [V, (5, 6)] = V1, [V,HC ] = V1, so that (7ii) holds.

If L/O2(L) ∼= Â6, then each t ∈ T inducing a transposition on L̄ inverts
L0/O2(L0) (see Notation 13.2.1), and hence t /∈ QH as L0 ≤ L1 ≤ H . We conclude
[V, V h] = 1 for all h ∈ H—since if not, some t ∈ V h induces a transposition on L̄
by (4), whereas V h ≤ QH by (1), contrary to t 6∈ QH . Thus (8) is established.

Finally as H ≤ Gz , H ∩M = NH(V ) by 12.2.6, so the remaining statement of
(9) follows using 13.3.7. ¤

By 13.7.2, UH ≤ HC .

Lemma 13.7.4. (1) If L/O2(L) ∼= A6, then H
∗ is faithful on UH/CUH (QH).

(2) There is an H-isomorphism ϕ from QH/HC to the dual of UH/CUH (QH),
defined by ϕ(xHC) : uCUH (QH) 7→ [x, u].

Proof. Part (2) holds by F.9.7, so it remains to establish (1). Set U0 :=

CUH (QH) and observe QH = CH(ŨH) ≤ C := CH(UH/U0). On the other hand

Ṽ3 = [Ṽ3, L1] with V1 = V ∩ U0 by 13.7.3.6, so that L1 6≤ C.
Assume that L/O2(L) ∼= A6, but that (1) fails. Then C

∗ 6= 1, so as O2(H
∗) = 1,

either E(C∗) 6= 1, or Op(C
∗) 6= 1 for some odd prime p. In the former case

there is K ∈ C(C) with K∗ ∼= K/O2(K) quasisimple. In the latter case we take
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K := O2(K1), where K
∗
1 is a minimal normal subgroup of H∗ contained in Op(C

∗);
thus K∗ ∼= K/O2(K) ∼= Epn , n := 1 or 2 since H is an SQTK-group. The subgroup
K satisfies one of these two hypotheses throughout the rest of the proof.

In either case, K = O2(K) is subnormal in H , so O2(K) ≤ QH and QH
normalizes K. As K ≤ C, [UH ,K] ≤ U0, so

1 6= [UH ,K] = [U0,K] ≤ O2(K) ≤ QH ≤ CH(U0). (!)

Then 1 6= [U0,K] ≤ [Ω1(Z(O2(K))),K], so that K ∈ Xf .
Consider for the moment the case where K ∈ C(H). Then K ∈ Lf (G, T ), so

thatK∗ ∼= K/O2(K) is described in the list of 13.5.2.1, andK E H by 13.3.2.2. We

saw L1 6≤ C, so L1 6≤ K. Thus K/O2(K) is not A6 or Â6 by A.3.18, so K∗ ∼= L3(2)
or A5 by 13.5.2.1. Then as L1 = [L1, T ], either [K,L1] ≤ O2(K), or K∗ ∼= A5 and
K = [K,L1]. Further if K∗ is A5, then by 13.3.2.3, each I ∈ Irr+(K,R2(KT ), T )
is a T -invariant A5-module.

We now return to consideration of both cases. By the previous paragraph we
have K E H . Since K∗ is either simple or a p-group for p odd, and CK(ŨH) =
O2(K) ≤ CK(U0) by (!), we conclude from Coprime Action that

CK(U0) = CK(ŨH) = O2(K). (∗)

Observe that ifK ≤M , thenK normalizes V by 13.7.3.9, so [V3,K] ≤ V ∩U0 =
V1, and hence K̄ 6= L̄1, contrary to 13.3.9 applied to K in the role of “Y ”. Thus
K 6≤M .

Suppose next that L is an A6-block. Then L1 has just two noncentral 2-chief
factors, while L1 is nontrivial on V3U0/U0 and hence also nontrivial on QH/HC

by (2). Therefore L1 centralizes U0, and hence [K,L1] ≤ CK(U0) = O2(K) using
(*), so K acts on O2(L1O2(K)) = L1. Then as V3 ≤ L1 and K ≤ C, [V3,K] ≤
O2(L1) ∩ U0 ≤ Z(L)V1, so K centralizes V3 by Coprime Action as |Z(L)| ≤ 2 by
C.1.13.b. Thus K ≤ G1 ∩G3 ≤MV by 13.5.5, whereas we saw K 6≤M .

Therefore L is not an A6-block. Then by 13.2.2.7, NG(B) ≤ M , where B :=
Baum(R1). In particular as K 6≤M , B is not normalized by K.

Assume next that K∗ ∼= A5 and K = [K,L1]. Then R1 = (K ∩ T )O2(KR1),
and we saw earlier that each I ∈ Irr+(K,R2(KT ), T ) is an A5-module, so J(R1)
centralizes I by B.4.2. Then B E KT by B.2.3.5, contrary to the previous para-
graph. This contradiction shows that [K,L1] ≤ O2(K) in the case that K ∈ C(H).

Next consider the case where K∗ is a p-group. As L1 acts on O2(K), O2(K) ≤
R1, soR1 ∈ Syl2(KR1). As CK(U0) = O2(K) by (*), CKR1(R2(KR1)) = O2(KR1)
by A.1.19. Thus if J(R1) centralizes R2(KR1), then B E KR1 using B.2.3.5,
whereas we saw B is not normalized by K. Thus KR1 satisfies case (2) of Solvable
Thompson Factorization B.2.16; so in particular p = 3. Since K∗ is a minimal nor-
mal subgroup ofH∗, T is irreducible onK∗, so by B.2.16.2, J(KR1)/O2(J(KR1)) ∼=
S3 or S3 × S3. As L1 6≤ C acts on J(KR1), the latter case is impossible as
m3(H) ≤ 2. Thus if K∗ is a p-group, we conclude K∗ ∼= Z3.

We have now shown that K∗ ∼= Z3, A5, or L3(2), and that L1 centralizes K∗.
In particular, K acts on O2(O2(K)L1) = L1. Let U ≤ U0 be minimal subject to
U E X := KL1T and [U,K] 6= 1. SetX+ := X/CX(U); we claim that O2(X

+) = 1:
For O2(K

+) = 1 as O2(K) centralizes U0, so K
+ centralizes O2(X

+), and hence
O2(X

+) = 1 by the Thompson A×B Lemma and mininality of U , as claimed. As
K∗ is simple, K∗ ∼= K+ and CKR1(U) = O2(KR1).
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As L1 centralizes K∗, L1 acts on T ∩ K, so R1 ∈ Syl2(KL1R1). Thus if
J(R1) ≤ CR1(U), then B = Baum(O2(KR1)) by B.2.3.5, whereas we saw K does
not normalize B. HenceK+ = [K+, J(R1)

+]. AlsoK acts on [CŨH (O2(L1)), L1] =:

Ũ1. If [U1,K] = 1 then K ≤ CG(V3) ≤ MV using 13.5.4.4, again contrary to
K 6≤M . Thus [U1,K] 6= 1, so as [U1,K] ≤ U0, U2 := [U0, L1,K] 6= 1. Thus we may
take U ≤ U2, so U = [U,L1]. Then as L1 centralizesK

∗, L+
1 EX+, so that L+

1
∼= Z3

as O2(X
+) = 1. Then since K+ = [K+, J(R1)

+], it follows from Theorem B.5.6
that U is the sum of two isomorphic natural modules for K+ ∼= L3(2). Therefore
by B.2.20, B+ = J(R1)

+ is the unipotent radical of a minimal parabolic K+
0 R

+
1

of K+R+
1 . Then by B.2.3.4, B = Baum(O2(K0R1)), so that K0 ≤ NG(B) ≤ M .

Then O2(K0) ≤ O2(H ∩M) = L1 by 13.7.3. But |L1|3 = 3 since we are assuming

that L/O2(L) is A6 rather than Â6, so O
2(K0) = L1, contradicting L1 6≤ K. Thus

the proof of (1) and hence of the lemma is at last complete. ¤

Lemma 13.7.5. Let X := L1 if L/O2(L) ∼= A6, and X := L1,+ if L/O2(L) ∼=

Â6. Assume K ∈ C(H) and X ≤ K. Then

(1) K E H.
(2) UH = [UH ,K].

(3) NH(Ṽ3) ≤M .

(4) If m3(NK(Ṽ3)) = 2, then L/O2(L) ∼= Â6 and L1 = θ(NK(Ṽ3)).

(5) If L1 ≤ K and m3(NK(Ṽ3)) = 1, then L/O2(L) ∼= A6.

(6) O3′(NK(Ṽ3)) is solvable.
(7) If L1 6≤ K, then AutL1(K/O2(K)) 6= AutX(K/O2(K)).

Proof. Since T normalizes X ≤ K, K E H by 1.2.1.3, proving (1). Further
V3 = [V3, X ] ≤ [UH ,K], so that UH = 〈V H3 〉 = [UH ,K], establishing (2). Part (3)
follows from 13.5.5. Then by (3) and 13.7.3, either θ(NK(V3)) = L1 or L/O2(L) ∼=
Â6 with θ(NK(V3)) = X . Nowm3(X) = 1, while m3(L1) = 1 when L/O2(L) ∼= A6,

and m3(L1) = 2 when L/O2(L) ∼= Â6; so it follows that (4) and (5) hold. As
θ(NK(V3)) ≤ L1 which is solvable, (6) holds.

Finally suppose that L1 6≤ K, but the conclusion of (7) fails. Since X ≤

K, X < L1, so L/O2(L) ∼= Â6; then as (7) fails, L1 = XLC, where LC =
O2(CL1(K/O2(K)). As X and L0 are the only proper nontrivial T -invariant sub-
groups Y of L1 with Y = O2(Y ), it follows that LC = L0. But then K normalizes
O2(O2(K)L0) = L0 and so lies in M by 13.2.2.9, contrary to 13.3.9. ¤

The next result eliminates various possibilities for H∗ and its action on ŨH .
As usual Theorem C (A.2.3) determines the possibilities for n in (1) and (3). The

lemma considers all cases where [ŨH ,K] ∈ Irr+(ŨH ,K) is an FF-module, except

the cases where the noncentral chief factor for K on ŨH is the natural module for
K/O2(K) ∼= L2(2

n) or Â6.

Lemma 13.7.6. Assume K ∈ C(H) and let UK := [UH ,K]. Then

(1) If K/O2(K) ∼= Ln(2) and ŨK/CŨK (K) is the natural K/O2(K)-module,

then n = 4, ŨH is the natural module for H∗ ∼= L4(2), and L/O2(L) ∼= Â6.

(2) If K/O2(K) ∼= L5(2), then ŨK/CŨK (K) is not a 10-dimensional irreducible

for K/O2(K).

(3) If K/O2(K) ∼= An and ŨK/CŨK (K) is the natural module, then UH = UK ,

L1 ≤ K, H = KT , and applying the notation of section B.3 to ŨH , either
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(a) n = 6, L/O2(L) ∼= A6, Ṽ2 = 〈e1,2,3,4〉, and L1 has two noncentral chief
factors on UH , or

(b) n = 7, L/O2(L) ∼= Â6, Ṽ2 = 〈e5,6〉, and Ṽ3 = 〈e5,6, e5,7〉.

(4) If K/O2(K) ∼= A7 then ŨK is not a 4-dimensional A7-module.

(5) If K/O2(K) ∼= (S)L3(2
n), Sp4(2

n)′, or G2(2
n)′ and ŨK/CŨK (K) is a

natural module for K∗, then n = 1.

Proof. AssumeK/O2(K), ŨK is one of the pairs considered in the lemma. We
obtain a contradiction in (2) and (4), and in (5) under the assumption that n > 1.
In (1) and (3), we establish the indicated restrictions. Observe that, except possibly
in (5) when K/O2(K) ∼= SL3(2

n), K/O2(K) is simple so that K∗ ∼= K/O2(K). In

that exceptional case ŨK is a natural module by hypothesis, so CK(ŨK) = O2(K)
and thus again K∗ ∼= K/O2(K).

The first part of the proof treats the case where L1 ≤ K. Here K E H by
13.7.5.1, and UH = UK by 13.7.5.2.

Next Ṽ3 = 〈Ṽ L1
2 〉 is a T -invariant line in ŨK , so:

(i) If K∗ ∼= L3(2) then CŨH (K) = 0 (cf. B.4.8.2).

(ii) Under the hypotheses of (3), n > 5.

Further

(iii) Ṽ2 is a T -invariant F2-point of ŨH . Set K0 := O2(CK(V2)), so that also

K0 = O2(CK(Ṽ2)).

By 13.5.4.3,m3(K0) ≤ 1, so we conclude from (iii) and the structure of CK∗(Ṽ2)

that: (2) holds; n < 5 in (1); in (3), n ≤ 7 and in case of equality Ṽ2 = 〈e5,6〉, when

ŨH is described in the notation of section B.3.
Assume the hypothesis of (3) with n = 7. As Ṽ2 = 〈e5,6〉 and Ṽ3 = 〈Ṽ L1

2 〉 is a

T -invariant line, Ṽ3 = 〈e5,6, e5,7〉. Hence NK(V3) has 3-rank 2, so L/O2(L) ∼= Â6

by 13.7.5.4. Since NGL(ŨK)(K
∗) ∼= S7, H = KT . Hence conclusion (b) of (3) holds.

Thus under the hypotheses of (3), we have reduced to the case n = 6. Then as

Ṽ3 = 〈Ṽ
L1
2 〉 is a T -invariant line, Ṽ2 = 〈e1,2,3,4〉, L1 has two noncentral chief factors

on ŨH , and m3(NK(Ṽ3)) = 1, so that L/O2(L) ∼= A6 by 13.7.5.5. Since EndK(ŨK)
is of order 2, we conclude that K∗ = F ∗(H∗). As T normalizes UK , it is trivial on
the Dynkin diagram of K∗, so as Out(K∗) is a 2-group, we conclude that H = KT .
This gives conclusion (a) of (3), and so completes the proof of (3).

Similarly when n = 4 in case (1), or in case (4), NK(V3) has 3-rank 2, so

that L/O2(L) ∼= Â6 and L1 = O2(NK(V3)) by 13.7.5.4. Thus L1T/O2(L1T ) ∼=
S3 × Z3 or S3 × S3 from the structure of L. Further as UH = UK and K∗ E H∗,
H∗ = NGL(ŨH)(K

∗) = K∗. Thus in case (4) where K∗ ∼= A7, L1T/O2(L1T ) is

E9 extended by an involution inverting the E9, so this case is eliminated. When
K∗ ∼= L4(2), the conclusions of (1) hold using I.1.6.6.

Assume the hypotheses of (5) with n > 1, and let U+
H := UH/CUH (K). By

(iii), V +
2 is contained in a T -invariant F2n-point W of U+

H . As L1 ≤ K and L1

is T -invariant, L1 is contained in the Borel subgroup of K containing T ∩ K. In
particular, n is even. Thus L1 acts on W , so V +

3 = [V +
2 , L1] ≤ W . But now

as O3′(CK(W )) is not solvable, 13.7.5.6 supplies a contradiction, establishing that
n = 1 under the hypotheses of (5).
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So to complete the treatment of the case L1 ≤ K, it remains only to eliminate
case (1) with n = 3. So suppose K∗ ∼= L3(2). Since L1 ≤ K which has 3-
rank 1, L/O2(L) ∼= A6 by 13.7.5.5, and L∗1T

∗ is a maximal parabolic of K∗T ∗.
Set F := (LT,K0L2T,KT ) and G0 := 〈F〉. Here K0T/O2(K0T ) ∼= S3, and by
13.5.4.1, [K0, L2] ≤ O2(L2). As M = !M(LT ), O2(G0) = 1. Thus if |Q| > 25, then
(G0,F) is a C3-system as defined in section I.5, so by Theorem I.5.1, G0

∼= Sp6(2).
Therefore Z(KT ) = 1, whereas z ∈ Z(KT ) as H ∈ Hz . Thus |Q| ≤ 25, so L
is an A6-block. But then L1 has just two noncentral 2-chief factors, whereas L1

has noncentral chief factors on each of O2(L
∗
1), ŨH , and QH/HC by 13.7.4.2. This

contradiction completes the proof of (1) and of the lemma in the case L1 ≤ K.

It remains to treat the case L1 6≤ K. When m3(K) = 2, K = O3′(H)
by A.3.18 and A.3.19, so K/O2(K) ∼= L3(2

n)), n odd, or A5. Let X := L1

if L/O2(L) ∼= A6, and X := L1,+ if L/O2(L) ∼= Â6. Suppose [K∗, X∗] = 1.

Then as EndK(ŨK/CŨK (K)) = F2n with n odd, X centralizes ŨK = [K, ŨH ].

But then by the Three-Subgroup Lemma, [ŨH , X,K] = 1; so as Ṽ3 = [Ṽ3, X ],
K = O2(K) ≤ CG(V3) ≤ MV by 13.5.4.4, and hence 〈KT 〉 ≤ M , contrary to
13.3.9. Therefore K = [K,X ]. So as X = [X,T ], we conclude that X induces inner
automorphisms on K/O2(K). Then again as X = [X,T ], K/O2(K) is not L3(2

m)
for m > 1, and either:

(a) X ≤ K, and hence X < L1 as L1 6≤ K, so that L/O2(L) ∼= Â6, or

(b) K∗ ∼= A5 and X∗ is diagonally embedded in K∗CK∗X∗(K
∗), with Ṽ3 pro-

jecting nontrivially on ŨK .

But now K∗ ∼= A5 is ruled out, since in both cases (a) and (b), Ṽ3 = [Ṽ3, X ], while
either X∗ or its projection on K∗ is a Borel subgroup of K∗, which has no such
T -invariant submodule of rank 2 on the A5-module ŨK . Therefore case (a) holds
and K∗ ∼= L3(2). Now 13.7.5.7 supplies a contradiction, completing the proof. ¤

Lemma 13.7.7. [VH , H ] 6≤ UH .

Proof. If [VH , H ] ≤ UH , then VH = 〈V H〉 = V UH . Then by 13.7.3.6,

UH = [VH , QH ] = [V,QH ][UH , QH ] = V3V1 = V3,

contrary to 13.5.9. ¤

13.7.2. The elimination of the case 〈VG1〉 nonabelian. We come to the
main result of this section, which reduces the treatment of Hypothesis 13.7.1 to the
case where 〈V G1〉 is abelian. Then in the following section 13.8, that remaining
case is also shown to lead to a contradiction.

Theorem 13.7.8. Assume Hypothesis 13.7.1. Then 〈V G1〉 is abelian.

Until the proof of Theorem 13.7.8 is complete, assume G is a counterexample.
Then the set H1 of those H ∈ Hz with VH nonabelian is nonempty, since G1 ∈ H1.

For the remainder of the section, let H denote a member of H1.

Then VH is nonabelian, though UH is abelian by 13.7.2.

Lemma 13.7.9. (1) Φ(VH) = V1, V̄H = 〈(5, 6)〉, and Q̄H = R̄1.

(2) L/O2(L) ∼= A6 rather than Â6. In particular |L1|3 = 3.
(3) H∗ is faithful on UH/CH(QH).
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Proof. Observe (1) follows from parts (4) and (6) of 13.7.3, and (2) follows
from part (8) of 13.7.3. Finally (3) follows from (2) and 13.7.4.1. ¤

Pick g ∈ L with ḡ2 = 1 and V g1 not orthogonal to V1. Set I := 〈VH , V
g
H〉 and

ZI := VH ∩ V
g
H . Observe Q normalizes VH , and also V gH since g ∈ NG(Q), so Q

normalizes I .
Recall that we can appeal to results in section F.9. In particular, as in F.9.6

define DH := UH ∩Q
g
H , DHg := UgH ∩QH , EH := VH ∩Q

g
H and EHg := V gH ∩QH .

Since we chose ḡ2 = 1, F.9.6.2 says that

(DH)
g = DHg and (EH )g = EHg .

Let A := V gH ∩ Q, U0 := CUH (QH), U
+
H := UH/U0, and recall HC = CH(UH).

By 13.7.9.3, H∗ is faithful on U+
H , and by 13.7.4.2, QH/HC is dual to U+

H as an
H-module.

Let UL := 〈ULH〉. By 13.7.3.3, UL ≤ Q. In particular U gH ≤ Q, so that
UgH ≤ V gH ∩Q = A.

Lemma 13.7.10. (1) V g1 6≤ UH .
(2) O2(I) = (VH ∩Q)(V gH ∩Q) and I/O2(I) ∼= S3.
(3) O2(I)/ZI is elementary abelian and the sum of natural modules for I/O2(I),

and ZI/V1V
g
1 is centralized by I.

(4) 〈U IH〉ZI = UHU
g
HZI and U

g
HZI = {x ∈ V

g
H : [VH , x] ≤ UHZI}.

(5) 〈DI
H〉 = DHDHg = V1V

g
1 (DH ∩DHg ) ≤ ZI .

(6) [DH , A] = 1 and [DHg , VH ] ≤ V1.
(7) EH = EHg = ZI ≤ Q ∩HC , so [EHg , VH ] ≤ V1.
(8) L1 has m(A∗) + 2 noncentral 2-chief factors.
(9) UgH ∩ V3 is a complement to V1 in V3, and V3 ≤ ZI .
(10) A ∩QH = EHg .

Proof. If V g1 ≤ UH , then V = V3V
g
1 ≤ UH , so VH ≤ UH is abelian, contrary

to the choice of G as a counterexample to Theorem 13.7.8. Thus (1) holds.
By 13.7.9.1 and the choice of g, Ī ∼= S3; e.g., if ḡ = (4, 5) then Ī = 〈(5, 6), (4, 6)〉.

Let P := (VH ∩ Q)(V gH ∩ Q). By 13.7.9.1, Φ(VH) = V1, so Φ(VH) ≤ V1V
g
1 E I ;

e.g., V1V
g
1 = 〈e5,6, e4,6〉. Arguing as in G.2.3 with I , V1V

g
1 in the roles of “L, V ”,

(2) and (3) hold. In particular ZI ≤ O2(I) ≤ Q, so that ZI ≤ A.

Let P̂ := P/ZI . For v ∈ VH∩Q−ZI , P̂v := 〈v̂I〉 ∼= E4 as P̂ is the sum of natural

modules for I/P . Thus if v ∈ UH , then P̂v ≤ ÛHÛ
g
H and hence 〈U IH〉ZI = UHU

g
HZI ,

proving (4).
By F.9.6.3, [DH , U

g
H ] ≤ V g1 ∩ UH = 1 using (1). Then by symmetry, DHg ≤

HC , so by 13.7.3.7, [DHg , VH ] ≤ V1 and [DH , A] ≤ V g1 ∩ DH = 1. Hence (6) is
established.

By 13.7.9.1 and (6), [I,DHDHg ] ≤ V1V
g
1 , so

〈DI
H〉 = DHV

g
1 = DHgV1

and hence (5) holds.
By 13.7.3.6, [EHg , VH ] ≤ UH , so for v ∈ VH − Q, [EHg , v] ≤ UH , and hence

EHg ≤ UgHZI by (4). Thus

EHg = EHg ∩ UgHZI = (EHg ∩ UHg )ZI = DHgZI
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and DHg ≤ ZI by (5), so that EHg ≤ ZI ≤ VH , and hence EHg ≤ Q ∩HC by (2)
and 13.7.3.2. But ZI ≤ EHg , so EHg = ZI , and then by symmetry EHg = ZI =
EH ≤ VH . Then [EHg , VH ] ≤ V1 by 13.7.3.5, completing the proof of (7).

Next there exists l ∈ L with L̄l1 = O2(Ī)O2(L̄
l
1)
∼= A4. We saw Q acts on I ,

so Ll1 has k + 1 noncentral 2-chief factors, where k is the number of noncentral
2-chief factors of I . One of those k factors is V1V

g
1 , and by (2) and (3) there are

k − 1 = m(O2(I)/ZI)/2 = m(A/ZI) factors on O2(I)/ZI . Now

m(A/ZI) = m(A/EHg ) = m(A/(A ∩QH)) = m(A∗)

by (7), so that (8) holds. As V3 ∩V
g
3 is a complement to V1 in V3, and V1 6≤ UgH by

(1), (9) holds.
Since EHg ≤ Q by (7), (10) is immediate from the definitions of A and EHg . ¤

Lemma 13.7.11. (1) DH < UH .
(2) 1 6= Ug∗H and UgH ≤ A.

Proof. Recall UgH ≤ A, UHg = (UH)
g , and DHg = (DH)

g . Therefore DH =

UH iff Dg
H = UHg iff UHg ≤ QH = CH(ŨH); and hence (1) and (2) are equivalent.

Thus we may assume that UH = DH , and it remains to derive a contradiction.
By 13.7.10.6, UH = DH centralizes A, so A ≤ QH . Thus by 13.7.10, A = A ∩
QH = EHg , while by 13.7.10.7, EHg = EH ≤ VH ; so using symmetry we conclude
V gH ∩ Q = VH ∩ Q. Let Λ be the graph on the points of V obtained by joining
non-orthogonal points. Then Λ is connected, so VH ∩ Q = V xH ∩ Q for all x ∈ L.
Therefore L acts on VH ∩ Q. Now Φ(VH) = V1 by 13.7.9.1, so as L does not act
on V1, Φ(VH ∩ Q) = 1. Also by 13.7.9.1, VH = Z(VH )V0 with V0 extraspecial and
|VH : VH ∩Q| = 2; so we conclude Φ(Z(VH )) = 1 and V0 ∼= D8. But now, VH has
just two maximal elementary abelian subgroups, one of which is Z(VH)V ; so both
are normal in O2(H)T = H , and hence 〈V H〉 = VH = Z(VH )V is abelian, contrary
to our choice of G as a counterexample to Theorem 13.7.8. ¤

Recall that U0 = CUH (QH), and from 13.7.4 and 13.7.9.2 that U+
H = UH/U0 is

H-dual to QH/HC and H∗ is faithful on U+
H .

Lemma 13.7.12. (1) A∗ centralizes (QH ∩Q)HC/HC of corank 2 in QH/HC.
(2) [U+

H , A
∗] ≤ V +

3 .
(3) For F ∈ {A∗, Ug∗H }, rF,ŨH ≤ 1 ≥ rF,U+

H
, so F contains FF∗-offenders on

each of these FF-modules.

Proof. As g ∈ NG(Q), Q acts on A, so by 13.7.10, [A,QH ∩Q] ≤ A ∩QH =
EHg , and EHg ≤ HC by 13.7.10.7. Further by 13.7.9.1, Q̄H = R̄1

∼= E8 and V̄H is of
order 2, so VH = HC by parts (2) and (7) of 13.7.3. Thus |QH : (QH ∩Q)HC | = 4,
completing the proof of (1). Then since V3 centralizes Q and CV3(QH) = V1 is of
index 4 in V3, V

+
3 corresponds to (QH ∩Q)HC/HC under the duality between U+

H

and QH/HC , so part (2) is the dual of (1). By 13.7.10.6, [DH , A] = 1, and

m(Ug∗H ) = m(UgH/DHg ) = m(UgH/D
g
H) = m(UH/DH),

so rF,ŨH ≤ 1 for F ∈ {A∗, Ug∗H }, keeping in mind that 1 6= U g∗H ≤ A∗ by 13.7.11.2.
Then rF,U+

H
≤ 1 also holds using 13.7.4.1. Thus both modules are FF-modules for

H∗, and B.1.4.4 shows that F contains FF∗-offenders on the modules. ¤

Lemma 13.7.13. If m(ŨH) = 4 then [ŨH , L1] < ŨH .
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Proof. Assume otherwise. Observe there is X1 ∈ Syl3(L1) with V1V
g
1 =

CV (X1), and we can take g ∈ NL(X1). Thus X1 ≤ H ∩ Hg, so X1 acts on DH ,

and as ŨH = [ŨH , L1] is of rank 4, X1 is irreducible on ŨH/Ṽ3. Thus X1 has two

nontrivial chief factors on ŨH = U+
H . By (7) and (9) of 13.7.10, V3 ≤ ZI = EH ,

so V3 ≤ UH ∩ EH = DH . Then as DH < UH by 13.7.11.1, we conclude DH = V3,
so that L1 is irreducible on UH/DH . Then X1 is also irreducible on U gH/D

g
H
∼=

Ug∗H ≤ O2(L
∗
1), so L1 has a noncentral 2-chief factor not in QH . Also L1 has two

noncentral chief factors on each of U+
H and QH/HC by 13.7.4.2, so L1 has at least

five noncentral 2-chief factors, with [HC , L1] ≤ UH in case of equality. Therefore by
13.7.10.8, m(A∗) ≥ 3, and [HC , L1] ≤ UH in case of equality. Then as m(U+

H ) = 4,
inspecting the subgroups H∗ of GL4(2) of 2-rank at least 3 with O2(H

∗) = 1, we
conclude H∗ ∼= L4(2) or S6, with m(A∗) = 3 in the second case. The first case is
impossible by 13.7.6.1 and 13.7.9.2. In the second, [HC , L1] ≤ UH , so [VH , H ] ≤ UH
in view of 13.7.3.2, contrary to 13.7.7. ¤

Lemma 13.7.14. F (H∗) is centralized by each minimal FF∗-offender B∗ on U+
H

contained in A∗.

Proof. Set P := {C∗ ∈ P∗(H∗, U+
H) : [F (H

∗), C∗] 6= 1} and suppose B∗ ∈ P
with B∗ ≤ A∗. Then by B.1.9, there is a normal subgroup N∗ of H∗ such that
N∗ = H∗1 × · · · × H∗s , H

∗
i
∼= L2(2), with s = 1 or 2 since m3(H) ≤ 2, U+

N :=

[U+
H , N

∗] = U+
1 ⊕· · ·⊕U

+
s with U+

i := [U+
H , H

∗
i ]
∼= E4 affording the natural module

for H∗i , and

P =
⋃

i

Syl2(H
∗
i ).

In particular we may take B∗ ∈ Syl2(H∗1 ). Then [U+
1 , B

∗] = [U+
H , B

∗] ≤ [U+
H , A

∗] ≤
V +
3 by 13.7.12.2. As s ≤ 2 and L1 = O2(L1), L1 acts on H∗i for each i, and hence

also on U+
i . Then V +

3 = [U+
1 , B

∗, L∗1] ≤ U+
1 , so V +

3 = U+
1 as both are of rank 2.

However as A ≤ Q, B∗ ≤ A∗ ≤ R∗1 E L∗1T
∗, so L∗1 acts on R∗1∩H

∗
1 = B∗ and hence

also on [U+
1 , B

∗] of rank 1. This is impossible as L∗1 is irreducible on V +
3 = U+

1 . ¤

Since O2(H
∗) = 1, by 13.7.14 some member B∗ of P∗(H∗, U+

H ) contained in
A∗ acts nontrivially on E(H∗). So there is K ∈ C(H) with K∗ quasisimple and
[K∗, B∗] 6= 1. Let K0 := 〈KT 〉 and UK := [UH ,K]. By B.1.5.4, B∗ acts on K∗, so
K∗ = [K∗, B∗].

Lemma 13.7.15. (1) K∗ ∼= Ln(2), An, SL3(4), or Sp4(4).
(2) U+

K ∈ Irr+(K
∗, U+

H).
(3) K0 = K.
(4) U+

H = U+
K.

Proof. By B.1.5.1, AutB(U
+
K) is an FF∗-offender on U+

K . Therefore by B.5.6

and B.5.1.1, either U+
K ∈ Irr+(K

∗, U+
H ), or one of conclusions (ii)–(iv) of B.5.1.1

holds.
In the first case, (2) holds, with K∗ and ÛK := U+

K/CU+
K
(K) described in B.4.2.

However by 13.7.12.2, m([ÛK , B
∗]) ≤ 2, so we conclude K∗ is one of the groups

listed in (1) in this case: Recall B.4.6.13 eliminates K∗ ∼= G2(2)
′, and K∗ is not Â6

since m([ÛK , B
∗]) = 4 for the unique FF∗-offender B∗ in B.4.2.8.

So assume that the second case holds. As m([U+
K , B

∗]) ≤ 2, U+
K has exactly two

chief factors U1 and U2, and B
∗ induces a group of transvections with fixed center
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on Ui; but this contradicts the structure of FF
∗-offenders in conclusions (ii)–(iv) of

B.5.1.1. This completes the proof of (1) and (2).
Suppose K < K0. Then by 1.2.1.3 and (1), K∗ ∼= L3(2) or A5, and by 1.2.2.1,

K0 = O3′(H), so L1 ≤ K0. Then as T acts on L1, we conclude K∗ ∼= A5 and L∗1 is
diagonally embedded in K∗0 . Since B∗ ≤ R∗1, B

∗ induces inner automorphisms on

K∗, so by B.4.2, ÛK is the natural module for K∗ rather than the A5-module, and
V +
3 = [U+

H , B
∗] ≤ U+

K . Now as T acts on V3, T acts on UK and hence also on K,
contrary to assumption. This establishes (3).

Next 1 6= [U+
K , B

∗] ≤ V +
3 ∩ U+

K by 13.7.12.2. Then as L1 acts on K, and acts

irreducibly on V +
3 ,

V +
3 = [V3 ∩ U

+
K , L1] ≤ U+

K ,

so U+
H = 〈V +H

3 〉 = U+
K since UK is H-invariant by (3), and hence (4) holds. ¤

Lemma 13.7.16. (1) T ∗ is faithful on K∗.
(2) [U0,K] = 1.

(3) ŨK ∈ Irr+(K∗, ŨH).

Proof. By parts (2) and (4) of 13.7.15 and A.1.41, CH∗(K
∗) is of odd order,

so (1) holds. Also (3) follows from 13.7.15.2 if (2) holds, so it remains to prove (2).
Assume (2) fails. Then as U0 ≤ Z(QH), K ∈ Lf (G, T ), so by 13.5.2.1, K∗

is A5, L3(2), A6, or Â6. Further K acts nontrivially on U0 and U+
H , so K has

at least two noncentral chief factors on ŨH . On the other hand by 13.7.12.3, U g∗H
contains an FF∗-offender D∗ on ŨH , and by (1), D∗ is faithful on K∗, so by B.1.5.1,

AutD(ŨK) is an FF∗-offender on the FF-module ŨK . Then by Theorems B.5.6 and

B.5.1.1, K∗ ∼= L3(2) and ŨK is the sum of two isomorphic natural modules for
K∗. Then as UgH ≤ Q ≤ O2(L1T ), L

∗
1(T ∩ K)∗ is the stabilizer of a line in each

irreducible and AutUgH (ŨK) = O2(AutL1(ŨK)).

By 13.5.2.3, U1 := [U0,K] is a natural module, so U1 is isomorphic to Ũ1, and so
CU1(L1) = 1. But Z1 := Z ∩U1 is of order 2, and as AutUgH (U1) = O2(AutL1(U1)),

Z1 ≤ [U0, U
g
H ]. Then as U1 ≤ UH ≤ NQ(U

g
H) by 13.7.3.3, Z1 ≤ UgH , so Z1 is

centralized by 〈VH , V
g
H 〉 = I and by T . Thus L ≤ 〈I, T 〉 ≤ CG(Z1), contrary to

CU1(L1) = 1. ¤

Lemma 13.7.17. (1) ZI ∩ U0 = V1.
(2) If U0 ≤ [UH , A]V3, then U0 = V1.

Proof. First QH and I = 〈VH , V
g
H centralize U0 ∩ UgH =: U1, so L0 :=

〈I,QH〉 ≤ CG(U1). However Q̄H = R̄1 by 13.7.9.1, and L̄T̄ ≤ 〈R̄1, Ī〉, so LT =
L0Q. Further Q and L0 act on U1, so LT = L0Q ≤ NG(U1).

If U1 6= 1 then NG(U1) ≤M = !M(LT ). But then by 13.7.16.2,K ≤ CG(U1) ≤
M , contrary to 13.3.9. Thus U1 = 1.

Next by 13.7.10.5, DH = (DH ∩DHg )V1, and by 13.7.10.7, EH = ZI , so

ZI ∩ U0 = EH ∩ U0 = DH ∩ U0 = (DH ∩DHg )V1 ∩ U0

= (DH ∩DHg ∩ U0)V1 = (UHg ∩ U0)V1 = U1V1 = V1,

establishing (1). By 13.7.3.2, UH ≤ Q ∩ VH , so [A,UH ] ≤ ZI by 13.7.10.3. By
13.7.10.9, V3 ≤ ZI . Thus if U0 ≤ [UH , A]V3 then U0 ≤ ZI , so (1) implies (2). ¤
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Lemma 13.7.18. Either

(1) K∗ ∼= L2(4) and ŨK/CŨK (K) is the natural module, or

(2) K∗ ∼= A6 and ŨH/CŨH (K) is a natural module on which L1 has two non-
central chief factors.

Proof. By 13.7.16.3,

ŨK/CŨK (K) ∼= U+
K/CU+

K
(K)

is an irreducible K-module. Also m([U+
H , A]) ≤ 2 by 13.7.12.2, while B∗ is an FF∗-

offender on the FF-module U+
H . Further K∗ appears in 13.7.15.1, so applying the

remark before 13.7.6 to the restricted list in 13.7.15.1: either U+
K/CU+

K
(K) is the

natural module for K∗ ∼= L2(4), or K
∗, U+

K/CU+
K
(K) is one of the pairs considered

in 13.7.6. In the former case (1) holds, so we may assume the latter. If K∗ ∼= A6,
then (2) holds by 13.7.6.3. Therefore we must eliminate the remaining cases in
13.7.15.1.

Observe that part (1) of 13.7.6 eliminates L3(2), parts (1) and (2) of that result
eliminate L5(2), and L4(2) ∼= A8 is eliminated by parts (1) and (3) of that result
and 13.7.9.2. The natural module for A5 is eliminated by part (3) of 13.7.6, and
A7 is eliminated by parts (3) and (4) and 13.7.9.2. Finally SL3(4) and Sp4(4) are
eliminated by part (5) of 13.7.6. ¤

Lemma 13.7.19. L1 ≤ K.

Proof. Assume L1 6≤ K. Then case (1) of 13.7.18 holds by 13.7.18 and A.3.18.
Then as L1 = [L1, T ], while |L1|3 = 3 by 13.7.9.2, we conclude H∗ ∼= ΓL2(4)
and either L∗1 = O3(H

∗), or L∗1 is diagonally embedded in O3(H
∗) ×K∗. Hence

R1 = (T ∩K)O2(KR1), so m3(NH(R1)) > 1. Therefore as L1 = O3′(H ∩M) by
13.7.3.9, and this group has 3-rank 1 by 13.7.9.2, NH(R1) 6≤ M . Thus L is an
A6-block by 13.2.2.7. Therefore L1 has just two noncentral 2-chief factors. But
if L∗1 = O3(H

∗), then L1 has two noncentral chief factors on U+
H , and hence also

two on QH/HC by the duality 13.7.4.2. Therefore L∗1 is diagonally embedded, so
L∗1 has one chief factor on O2(L

∗
1), plus one each on U+

H and QH/HC , again a
contradiction. ¤

Lemma 13.7.20. ŨK = ŨH .

Proof. This follows from 13.7.19 and 13.7.5.2. ¤

Lemma 13.7.21. K∗ is not L2(4).

Proof. Assume K∗ ∼= L2(4). By 13.7.18.1 and 13.7.20, ŨH/CŨH (K) is the

natural module, while by 13.7.19, L1 ≤ K, so Ṽ3 = [Ṽ3, L1] is a complement to

CŨH (K) in CŨH (T ∩K) =: W̃ . If CŨH (K) = 1, then ŨH = [ŨH , L1] is of rank 4,

contrary to 13.7.13. Thus CŨH (K) 6= 1.

By B.4.2.1, (T ∩K)∗ is the unique FF∗-offender in T ∗, so A∗ = (T ∩K)∗ by
13.7.12.3. But for each 1 6= a∗ ∈ A∗, [U+

H , a] = V +
3 , so CU+

H
(K) = 1 and hence

Ũ0 = CŨH (K). Thus V1 < U0 and U0 ≤ [UH , A]V3. This contradicts 13.7.17.2. ¤

By 13.7.18 and 13.7.21,K∗ ∼= A6 and ŨH/CŨH (K) is a natural module on which
L1 has two noncentral chief factors. Now L1 has two noncentral chief factors on each
of UH andQH/HC by 13.7.4.2, one on O2(L

∗
1), and at least one on VH/UH by 13.7.7;



946 13. MID-SIZE GROUPS OVER F2

so L1 has at least six noncentral 2-chief factors. Therefore m(A∗) ≥ 4 by 13.7.10.8.

On the other hand as EndK(ŨH/CŨH (K)) ∼= F2, we conclude K
∗ = F ∗(H∗); so A∗

acts faithfully on K∗, and hence m(A∗) ≤ m2(Aut(K
∗)) = 3. This contradiction

completes the proof of Theorem 13.7.8.

13.8. Finishing the treatment of A6

In this section, we complete the treatment of A6. We prove:

Theorem 13.8.1. Assume Hypothesis 13.3.1 with L/O2,Z(L) ∼= A6. Then G
is isomorphic to Sp6(2) or U4(3).

Throughout this section, we assume that G is a counterexample to Theorem
13.8.1.

Since L/O2,Z(L) ∼= A6, we continue with the notation established in section
13.5: Namely we adopt the notational conventions of section B.3 and Notations
12.2.5 and 13.2.1.

As G is a counterexample to Theorem 13.8.1, G is not isomorphic to U4(3)
or Sp6(2). Thus Hypotheses 13.5.1 and 13.7.1 hold, so we may apply results from
sections 13.5 and 13.7. In particular recall from 13.5.2.3 that V is the 4-dimensional
A6-module. The main result Theorem 13.7.8 of section 13.7 has reduced us to the
following situation (where Hz is defined below):

Lemma 13.8.2. 〈V G1〉 is abelian, so VH is abelian for each H ∈ Hz.

As in the previous section, there are no quasithin examples under this restric-
tion, so we are continuing to work toward a contradiction. Again as far as we can
tell, there are not even any shadows.

Lemma 13.8.3. If g ∈ G with 1 6= V ∩ V g, then [V, V g] = 1.

Proof. As L is transitive on V #, G1 is transitive on conjugates of V containing
V1 by A.1.7.1, so we may take g ∈ G1. Then 〈V, V g〉 ≤ 〈V G1〉, so the result follows
from 13.8.2. ¤

As usual z is a generator for V1, and as in Notation 13.5.8, G̃1 := G1/V1. By
13.3.6, G1 6≤M , so Hz 6= ∅, where

Hz := {H ∈ H(L1T ) : H ≤ G1 and H 6≤M}.

For the remainder of the section, let H denote some member of Hz.

By 13.5.7, Hypothesis F.9.1 is satisfied with V3 in the role of “V+”. From

Notation 13.5.8, UH := 〈V H3 〉, VH := 〈V H〉, QH := O2(H) = CH (ŨH), and H
∗ :=

H/QH so that O2(H
∗) = 1. Furthermore set HC := CH (UH); then HC ≤ QH .

Now condition (f) of Hypothesis F.9.8 is satisfied by 13.8.3, and condition
(g.i) of Hypothesis F.9.8 is satisfied since [V,CH(V3)] ≤ V1 by 13.5.4.4; indeed
CM̄V

(V3) ≤ 〈(5, 6)〉, with (5, 6) inducing the transvection on V with center V1.
Thus we can appeal to the results in sections F.7 and F.9. In particular, we

form the coset geometry Γ of Definition F.7.2 on the pair of subgroups LT and H ,

and let b := b(Γ, V ). Choose γ ∈ Γ with d(γ0, γ) = b and V 6≤ G
(1)
γ . By F.9.11.1, b

is odd and b ≥ 3. Without loss γ1 is on the geodesic

γ0, γ1, . . . , γb := γ

from γ0 to γ.
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Recall we may choose gb with (γ0, γ1)gb = (γb−1, γ). Then Uγ := UgbH , Vγ :=
V gbH , Qγ := QgbH , and A1 := V gb1 . Further DH := CUH (Uγ/A1), EH := CVH (Uγ/A1),

Dγ := CUγ (ŨH), and Eγ := CVγ (ŨH). We will appeal extensively to lemmas F.9.13
and F.9.16.

Set UL := 〈ULH〉, and Q := O2(LT ).

Lemma 13.8.4. (1) b ≥ 3 is odd.
(2) UL ≤ Q = O2(LT ).
(3) If b > 3, then UL is abelian.
(4) If b = 3, then A1 ≤ V h for some h ∈ H.
(5) V3 = V ∩ UH < UH , and VH/UH is a quotient of the F2H

∗-permutation
module on H∗/(H ∩M)∗ with [VH/UH , H ] 6= 0.

(6) V ∗γ is quadratic on VH/UH and ŨH .
(7) V < UL.

Proof. We have already observed that (1) holds. Part (2) follows from 13.7.3.3.
Parts (3) and (4) follow from parts (1) and (2) of F.9.14.

By 13.7.7, [VH , H ] 6≤ UH , so V 6≤ UH . Then as V3 ≤ V ∩UH with V3 of index 2
in V , V3 = V ∩UH . By 13.7.3,H∩M acts on V UH/UH ∼= V/(V ∩UH) = V/V3 ∼= Z2,
so as VH = 〈V H〉 and [VH , H ] 6≤ UH , (5) holds.

As Vγ is abelian and VH and Vγ normalize each other by F.9.13.2, (6) follows.
As V3 ≤ UH , V = 〈V L3 〉 ≤ UL, and as V 6≤ UH ≤ UL, V < UL. Thus (7) holds. ¤

Lemma 13.8.5. If some element of H∗ induces an F2-transvection on ŨH , then
(1) H = KT with K ∈ C(H).
(2) Either

(a) H∗ ∼= S6, L/O2(L) ∼= A6, and L1 has two noncentral chief factors on

ŨH , or
(b) H∗ ∼= S7 or L4(2), and L/O2(L) ∼= Â6.

(3) ŨH is a natural module for H∗ or the 5-dimensional cover of such a module
for H∗ ∼= S6.

Proof. Let t∗ ∈ T ∗ induce an F2-transvection on ŨH . If K∗ = [K∗, t∗] 6= 1
for some K ∈ C(H), then as t∗ is an F2-transvection, we conclude from G.6.4 that

K∗ is Ln(2) or An and ŨK/CŨK (K) is a natural module, where UK := [UH ,K].

Hence the lemma follows from parts (1) and (3) of 13.7.6, using I.1.6.1 in the latter
case.

So we may assume instead that K∗ := 〈t∗H〉 is solvable, and we derive a
contradiction. By B.1.8, K∗ = K∗1×· · ·K

∗
s , K

∗
i
∼= L2(2), with s ≤ 2 sincem3(H) ≤

2, and ŨK = [ŨH ,K
∗] = Ũ1 ⊕ · · · ⊕ Ũs, where Ũi := [ŨH ,Ki] ∼= E4. Then L1 acts

on each Ki. Thus if s = 2, then as m3(H) ≤ 2, L∗1 ≤ K∗. This is impossible as T
normalizes a subgroup of order 3 of L∗1, whereas T is irreducible on K∗ = 〈t∗H〉 by
construction.

Hence s = 1 andK∗ = K∗1 E H∗. This time we conclude from the T -invariance
of L1 that either

(a) L/O2(L) ∼= A6 so that |L1|3 = 3, and either L∗1 = O2(K∗) or [K∗, L∗1] = 1,
or

(b) L/O2(L) ∼= Â6 so that L1 has 3-rank 2, and hence O2(K) = L0 or L1,+.
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If O2(K) = L0, then H ≤ NG(O
2(K)) = NG(L0) ≤ M by 13.2.2.9, contrary to

H 6≤ M . If O2(K) = L1 or L1,+, then ŨK = Ṽ3, so H ≤ G1 ∩ G3 ≤ M by 13.5.5
for the same contradiction. Thus [K∗, L∗1] = 1, so

Ṽ3 = [Ṽ3, L1] ≤ [ŨH , L1] ≤ CŨH (K),

and then as K∗ E H∗, ŨH = 〈Ṽ H3 〉 ≤ CŨH (K), contrary to K∗ 6= 1. ¤

Lemma 13.8.6. Assume H = KT with K ∈ C(H), K∗ ∼= A6, and ŨH is a
natural module for K∗ or its 5-dimensional cover. Let K2 := O2(CH (V2)) and
U2 := 〈V K2〉. Then

(1) Ṽ2 is generated by a vector of weight 4 in ŨH and K2T/O2(K2T ) ∼= S3.
(2) [K2, L2] ≤ O2(K2) ∩O2(L2).
(3) U2 = [U2, L2] ≤ UL.

(4) If m(ŨH) = 4 and L̄T̄ ∼= S6, then m(U2) = 6 and UL/V has a quotient
isomorphic to the 16-dimensional Steinberg module for L̄T̄ .

(5) If m(ŨH) = 5 and U1 := CUH (K), then m(U2) = 8, U0 := 〈UL1 〉 ≤ UL, and
U0/V is a quotient of the 15-dimensional permutation module for L̄T̄ on L̄T̄ /L̄1T̄ .

(6) L/O2(L) ∼= A6.

Proof. Observe that (1) and (6) hold by 13.7.6.3. In particular, K∗
2T

∗ is the

parabolic of H∗ stabilizing the point Ṽ2 generated by a vector of weight 4, and Ṽ3
is a line with all vectors of weight 4.

By (6) and parts (1) and (6) of 13.5.4, L2 E G2, so [L2,K2] ≤ CL2(V2) =
O2(L2), and hence (2) holds. Now

U2 = 〈V
K2〉 = 〈V L2K2

3 〉 = 〈V K2L2
3 〉 ≤ 〈UL2

H 〉 ≤ UL,

and as L2 E L2K2 and V = [V, L2], U2 = [U2, L2], so (3) holds. Set Û2 := U2/V2;

it follows that m(Û2) = 2m(〈V̂ K2
3 〉). Thus m(U2) is 6 in case (4), and 8 in case (5).

Assume the hypotheses of (4), and recall V < UL by 13.8.4.7. Let V ≤W < UL
with LT irreducible on UL/W . By 13.8.5.2a, ŨH = [ŨH , L1], so that UH = [UH , L1]
since V1 = [V3, O2(L1)]; hence UHV/V = [UHV/V, L1] ∼= E4. As W < UL = 〈ULH〉,
UH 6≤ W , so that UHW/W is L1T -isomorphic to UHV/V . Similarly by (3), U2 =
[U2, L2] ≤ UL, and as we saw m(U2) = 6 in this case, U2/V = [U2/V, L2] ∼= E4, so
U2W/W is L2T -isomorphic to U2/V . Hence (4) holds by G.5.2.

Finally [U1, L1T ] ≤ V1 ≤ V , so (5) holds. ¤

Lemma 13.8.7. Assume H = G1. Then DH < UH iff Dγ < Uγ .

Proof. Assume the lemma fails. If DH = UH but Dγ < Uγ , then Uγ 6≤ QH ,
and in particular Vγ 6≤ QH . Thus there is some β ∈ Γ(γ) with Vβ 6≤ QH . By F.7.9.1,
d(β, γ1) = b. Thus we have symmetry (cf. the first part of Remark F.9.17) between
the edges γ0, γ1 and β, γ, so we may assume that DH < UH but Dγ = Uγ . Then
case (i) of F.9.16.1 holds, so that UH induces a nontrivial group of transvections
on Uγ with center V1. Recall there is g ∈ G0 := 〈LT,H〉 with γg = γ1, and setting
α := γ1g and Uα = UgH , U

∗
α 6= 1 but [UH , Uα] = V g1 =: A1. Then Uα induces a group

of transvections on ŨH with center Ã1, so by 13.8.5, H = KT for some K ∈ C(H),

and ŨH is a natural module for H∗ ∼= L4(2), S6, or S7, or the 5-dimensional cover
of a natural module for H∗ ∼= S6.



13.8. FINISHING THE TREATMENT OF A6 949

Suppose one of the first three cases holds, namely ŨH is an irreducible module.
To eliminate these cases, it will suffice to show:

V gh1 ≤ V2 for some h ∈ H. (∗)

For if (*) holds, then V gh1 = V l1 for l ∈ L2T with l2 ∈ H . As G1 = H , UH E G1,

so as V gh1 = V l1 , also U
h
α = UghH = U lH . Thus as l

2 ∈ H , l interchanges UH and Uhα ,
and also QH and Qhα, impossible as Uα 6≤ QH but UH ≤ Qα. This completes the
proof of the sufficiency of (*). Now we establish (*) in each of the first three cases:

If ŨH is the L4(2)-module or S6-module, then (*) holds as H is transitive on Ũ#
H .

If ŨH is the S7-module, then (*) follows from 13.7.6.3b, which says Ṽ2 is of weight

2, using the fact that the center Ṽ g1 of the transvection U∗α is of weight 2.

Thus we may assume that ŨH is a 5-dimensional module for H∗ ∼= S6. As U
∗
α

induces transvections on ŨH with center Ã1, U
∗
α has order 2, so Dα := Uα∩QH is a

hyperplane of Uα; and as Dγ = Uγ , [Dα, UH ] = 1 by F.9.13.7. As U∗α 6= 1, without
loss V g∗3 6= 1 and [V g3 , V3] 6= 1. Thus as we saw [Uα, UH ] = V g1 , [V

g
3 , V3] = V g1 ≤ V g3 ;

so V3 ≤ CG(V
g
1 ) ∩NG(V

g
3 ) ≤ Mg

V by 13.5.5. Then V3 lies in the unipotent radical
of the stabilizer in Mg

V of V g1 , and is nontrivial on the hyperplane V g3 orthogonal
to V g1 , so [V g , V3] > V g1 .

Define C to the preimage in UH of CŨH (V
g
3 ); then [Uα, C] ≤ V g1 ∩ V1 = 1,

so C ≤ Hg
C and hence [V g, C] ≤ V g1 by 13.7.3.7. Thus from the action of S6 on

the core of the permutation module, V g∗3 = V g∗ is the group of transvections with

center Ã1, so V
g = V g3 (V

g ∩ QH). Now [V g ∩ QH , V3] ≤ V g ∩ V1 = 1 by 13.8.3.
Thus [V g, V3] = [V g3 (V

g ∩ QH), V3] = [V g3 , V3] = V g1 , contrary to the previous
paragraph. ¤

Lemma 13.8.8. Either:

(1) Dγ = Uγ or DH = UH , and Uδ or Vδ induces a nontrivial group of transvec-

tions on ŨH , for δ := γg−1b or γ, respectively. Hence H = KT for some K ∈ C(H),

and H∗ and its action on ŨH are described in 13.8.5.
(2) Dγ < Uγ, DH < UH , and we may choose γ so that 0 < m(U ∗γ ) ≥

m(UH/DH), and U
∗
γ ∈ Q(H

∗, ŨH). Further there is h ∈ H with γ2h = γ0, and

setting α := γh, Vα = V hγ ≤ O2(L1T ) ≤ R1.

Proof. If Dγ = Uγ , then (1) holds by F.9.16.1. Similarly as in the proof
of the previous lemma, (1) holds if DH = UH . Thus we may assume Dγ < Uγ ,
so by F.9.16.4, we may choose γ as in conclusion (2); then the final statement of
conclusion (2) follows from parts (1) and (2) of F.9.13. ¤

Lemma 13.8.9. Assume some F ≤ UH is Vγ-invariant and Gγ = 〈FGγ 〉Gγ,γb−1 .
Then

(1) [F, Vγ ] 6≤ Uγ.

(2) If [F̃ , Uγ ] = [F̃ , Vγ ], then V1 6≤ Uγ and F induces a group of transvections
on Vγ/Uγ with center V1Uγ/Uγ.

Proof. Assume [F, Vγ ] ≤ Uγ . Then F centralizes Vγ/Uγ, so X := 〈FGγ 〉
does also. But by 13.8.4.5, Vγb−1Uγ/Uγ is of order 2, so the section is centralized

by Gγ,γb−1 , and hence also by Gγ = XGγ,γb−1 . But then as Vγ = 〈V
Gγ
γb−1 〉, Gγ

centralizes Vγ/Uγ , contrary to 13.7.7. Thus (1) is established.
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So assume that [F̃ , Uγ ] = [F̃ , Vγ ]. Then [F, Vγ ] ≤ [F,Uγ ]V1 ≤ UγV1 as UH acts
on Uγ . If V1 ≤ Uγ , then [F, Vγ ] ≤ Uγ , contrary to (1), so (2) holds. ¤

Lemma 13.8.10. If m(U∗γ ) = 1 and UH < DH , then

(1) m(UH/DH) = 1, so we have symmetry between γ1 and γ in the sense of
Remark F.9.17.

(2) Either V1 ≤ Uγ, or UH induces transvections on Uγ with axis Dγ.

Proof. Assume m(U∗γ ) = 1, so in particular case (2) of 13.8.8 holds. Then

1 = m(U∗γ ) = m(Uγ/Dγ) ≥ m(UH/DH)

and DH < UH by hypothesis, so we conclude that m(UH/DH) = 1, and we have
symmetry between γ1 and γ as discussed in Remark F.9.17. Now by F.9.13.6,
[Dγ , UH ] ≤ V1 ∩ Uγ , so (2) follows. ¤

Lemma 13.8.11. Assume U∗γ 6= 1 and Gγ = 〈U
Gγ
H 〉Gγ,γb−1 . Then

(1) If either V1 ≤ Uγ, or no element of H induces a transvection on VH/UH ,
then U∗γ < V ∗γ , so m(V ∗γ ) > 1.

(2) If UH does not induce a transvection on Uγ with axis Dγ , then m(V ∗γ ) > 1.

Proof. By hypothesis U∗γ 6= 1 and UH 6≤ Uγ , so that case (2) of 13.8.8 holds

and DH 6= UH . If U∗γ = V ∗γ , then [ŨH , Vγ ] = [ŨH , Uγ ], and so 13.8.9.2 supplies a
contradiction with UH in the role of “F”; hence U∗γ < V ∗γ so that (1) holds. Assume
the hypotheses of (2) but with m(V ∗γ ) = 1. Then as 1 6= U∗γ ≤ V ∗γ , U

∗
γ = V ∗γ is of

rank 1. Thus V1 ≤ Uγ by 13.8.10.2, contrary to (1); hence (2) holds. ¤

Lemma 13.8.12. (1) If K ∈ C(H), then K 6≤M and 〈K,T 〉L1 ∈ Hz.
(2) Let X := O2(O2,F (H) ∩M). Then one of the following holds:

(a) X = 1.
(b) L/O2(L) ∼= A6 and X = L1.

(c) L/O2(L) ∼= Â6 and X = L1,+.

Proof. First K 6≤M by 13.3.9 with 〈KT 〉 in the role of “Y ”, so (1) holds.
Now defineX as in (2), and assume none of (a)–(c) holds. Then O2(O2,F (H)) ≤

M by 13.3.9, so O2,F (H)T ∈ H(T,M). Let F denote a T -invariant subgroup
of O2,F (H) minimal subject to X ≤ F = O2(F ) and FT ∈ H(T,M). Then
XO2(F ) < F since F 6≤ M , so as F/O2(F ) is nilpotent, X < O2(NF (XO2(F ))).
But also F ∩ M = X , so O2(NF (XO2(F ))) = F by minimality of F . Then F
normalizes O2(XO2(F )) = X , again contrary to 13.3.9, now with X , FT in the
roles of “Y , H”. ¤

Lemma 13.8.13. Each solvable overgroup of L1T in G1 is contained in M .

Proof. If not, we may choose H solvable, and minimal subject to H ∈ Hz.
Then case (2) of 13.8.8 holds; in particular 1 6= U ∗γ ∈ Q(H

∗, ŨH) and 1 6= V ∗α ≤ R∗1.

By 13.8.12, O2(O2,F (H) ∩M) = 1 or X , where X := L1 if L/O2(L) ∼= A6 and

X := L1,+ if L/O2(L) ∼= Â6.
Now as O2(H

∗) = 1, there exists an odd prime p with [Op(H
∗), V ∗α ] 6= 1. So

by the Supercritical Subgroups Lemma A.1.21 and A.1.24, there exists a subgroup
P ∼= Zp, Ep2 , or p1+2 such that P ∗ E H∗, and V ∗α is nontrivial on P ∗. If
P ≤ M then P ≤ O2(O2,F (H) ∩M) ≤ X ≤ L1, so [V ∗α , P

∗] ≤ O2(L
∗
1) ∩ P

∗ = 1,
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a contradiction. Thus P 6≤ M , so by minimality of H , H = PL1T and L1T is
irreducible on P ∗/Φ(P ∗). As P 6≤M , X∗ 6= P ∗.

As U∗γ ∈ Q(H
∗, ŨH), p = 3 or 5 by D.2.13.1.

Suppose first that p = 3. If P ∗ is of order 3, then as m3(H) ≤ 2 and P 6≤ M ,
O3(H

∗) = P ∗×L∗1
∼= E9; hence H

∗ ∼= S3×S3 as V ∗α is nontrivial on P ∗. Therefore

V ∗α = O2(L
∗
1T
∗) ∼= Z2, so m(V ∗γ ) = m(U∗γ ) = 1. Also L1 E H , so ŨH = [ŨH , L1],

and hence m(ŨH) = 2m ≥ 4, where m := m([ŨH , U
∗
γ ]). Now by 13.8.10.1, we

have symmetry between γ and γ1, so UH does not induce transvections on Uγ/A1.
Hence V1 ≤ Uγ by 13.8.10.2. Further H = L1T 〈U

H
γ 〉, so by symmetry, Gγ =

Gγ,γb−1〈U
Gγ
H 〉, and hence m(V ∗γ ) > 1 by 13.8.11.1, contradicting |V ∗γ | = 2.

Therefore P ∗ ∼= E9 or 31+2. Suppose L∗1 6≤ P ∗. As L1T is irreducible on
P ∗/Φ(P ∗), H induces SL2(3) or GL2(3) on P ∗/Φ(P ∗). So in particular if P ∗ ∼=
E9, then m([ŨH , P ]) ≥ 8; as U∗γ ∈ Q(H

∗, ŨH), this contradicts D.2.17. Hence

P ∗ ∼= 31+2, so that m3(L1P ) > 2, contradicting H an SQTK-group. Therefore
L∗1 ≤ P ∗, so L∗1 < P ∗ as X∗ 6= P ∗. Then as L1T is irreducible on P ∗/Φ(P ∗),
P ∗ ∼= 31+2 and L∗1 = Z(P ∗), so that L/O2(L) ∼= A6. Then O2(L

∗
1T
∗) = CT∗(L

∗
1) is

of 2-rank at most 1, so m(V ∗γ ) = 1. As U∗γ ∈ Q(H
∗, ŨH), U

∗
γ inverts P ∗/Φ(P ∗) by

D.2.17.4. Now we obtain a contradiction as in the previous paragraph.
We have reduced to the case p = 5. As U ∗γ ∈ Q(H

∗, ŨH) and H is minimal, we

conclude from D.2.17 that P = P1×· · ·×Ps with s ≤ 2, and [P, ŨH ] = Ũ1⊕· · ·⊕ Ũs
with P ∗i

∼= Z5, where Ũi := [Pi, ŨH ] is of rank 4. If s = 1 then U∗γ
∼= Z2, while if

s = 2, then either U∗γ
∼= Z2 with [U∗γ , P

∗
2 ] = 1, or U∗γ = B∗1 × B∗2 with B∗i

∼= Z2

centralizing P ∗3−i. However if U
∗
γ is of order 4 thenm(ŨH/CŨH (Uγ)) = 4 = 2m(U∗γ ),

and so F.9.16.2 shows thatm(UH/DH) = 2 and U∗γ acts faithfully on D̃H as a group

of transvections with center Ã1. Then m([ŨH , U
∗
γ ]) ≤ 3, whereas this commutator

space has rank 4 since s = 2.
Therefore m(U∗γ ) = 1, so as before we have symmetry bewtween γ1 and γ by

13.8.10.1; and as L1T is irreducible on P ∗, Gγ = Gγ,γb−1〈U
Gγ
H 〉. As p = 5, no

element of H∗ induces a transvection on ŨH by G.6.4; hence we conclude from
13.8.11.2 that m(Vγ∗) > 1. In particular as V ∗γ is faithful on P ∗, P ∗ is not cyclic,
so s = 2 and V ∗γ = U∗γ ×B

∗
2 with B∗2

∼= Z2 centralizing P ∗1 .

Let CH := CUH (Uγ) and F̃H := CŨH (Uγ). By 13.8.10.1, m(UH/DH) = 1,

and by F.9.13.6, [Uγ , DH ] ≤ A1. Thus if FH 6≤ DH , then UH = DHFH , so

[ŨH , U
∗
γ ] ≤ Ã1, contrary to m([ŨH , U

∗
γ ]) = 2. Hence FH ≤ DH . Then by F.9.13.6,

[FH , Uγ ] ≤ V1 ∩ [DH , Uγ ] ≤ V1 ∩ A1 = 1

and hence U2 ≤ FH = CH . Then [U2, Vγ ] ≤ [CH , Vγ ] ≤ A1 by 13.7.3.7, with

Ã1 = [D̃H , Uγ ] ≤ Ũ1. On the other hand, 1 6= [Ũ2, B2] ≤ [Ũ2, Vγ ] ∩ Ũ2 ≤ Ã1 ∩ Ũ2,

contrary to Ũ1 ∩ Ũ2 = 0. ¤

By 13.8.13 and 13.8.12.2:

Lemma 13.8.14. Let X := O2(O2,F (H)); then one of the following holds:

(a) X = 1.
(b) L/O2(L) ∼= A6 and X = L1.

(c) L/O2(L) ∼= Â6 and X = L1,+.
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By 13.8.13, H is nonsolvable, so there exists K ∈ C(H). By 13.8.14, F (H∗) =
Z(O2(H∗)), so K∗ is quasisimple. Then by 13.8.12.1:

Lemma 13.8.15. K 6≤M , so 〈KT 〉L1T ∈ Hz. Further K∗ is quasisimple.

Lemma 13.8.16. (1) K E H, so KL1T ∈ Hz. In particular, F.9.18.4 applies.
(2) K/O2(K) is not Sz(2n).

Proof. Assume K0 = 〈KT 〉 > K. Then K0 = KKt for t ∈ T − NT (K) by
1.2.1.3. Let K1 := K and K2 := Kt. By 13.8.15, we may take H = K0L1T .
By F.9.18.5, K∗ ∼= L2(2

n), Sz(2n), or L3(2). Further unless K∗ ∼= Sz(2n), K0 =

O3′(H) by 1.2.2.a so L1 ≤ K0.
Suppose first that K∗ ∼= L3(2). Then L1 ≤ H1 ≤ H where H1/O2(H1) ∼=

S3 wr Z2, so L1 = θ(H ∩ M) = O2(H1) using 13.7.3.9. As m3(O
2(H1)) = 2,

L/O2(L) ∼= Â6, so that AutM (L1/O2(L1)) ∼= E4, whereas we have seen just above
that AutH∩M (L1/O2(L1)) ∼= D8.

ThereforeK∗ ∼= L2(2
n) or Sz(2n). LetB∗0 be a Borel subgroup ofK∗0 containing

T ∗0 := T ∗ ∩K∗0 , and set B := O2(B0). As L1T = TL1, L1 acts on B0. Therefore
B0 ≤M by 13.8.13.

Let W̃ denote an H-submodule of ŨH maximal subject to [ŨH ,K0] 6≤ W̃ ; thus

[ŨH ,K0]W̃/W̃ is an irreducible K0-module. As K∗0T
∗ has no strong FF-modules

by B.4.2, it follows from parts (5) and (6) of F.9.18 that either

(a) UH/W and W̃ are FF-modules for K∗0T
∗, or

(b) [ŨH ,K0] = ĨH = 〈ĨH〉 for some Ĩ ∈ Irr+(K0, ŨH , T ), and [W̃ ,K0] = 0.

Let U := UH/W or ĨH in case (a) or (b), respectively, and let VU denote the

projection of Ṽ3 on U .
Suppose for the moment that case (a) holds. Then by Theorems B.5.1 and

B.5.6,K∗ ∼= L2(2
n), and U = U1⊕U2, where Ui is the natural module or orthogonal

module for K∗i , and [Ki, U3−i] = 0. Further as UH = 〈V H3 〉, V3 6≤ W , so as L1 is

irreducible on Ṽ3, VU is isomorphic to Ṽ3.
Now suppose for the moment that case (b) holds. Then by F.9.18.5, either

(b1) U = U1+U2 with Ui := [U,Ki] and Ui/CUi(Ki) the natural or A5-module
for K∗, or

(b2) U is the natural orthogonal module for K∗0
∼= Ω+

4 (2
n).

Here if V3 ≤ U , then U = 〈V H3 〉 = UH . In particular this subcase holds when K∗ ∼=
L2(2

n), since there we saw that L1 ≤ K0, so that V3 ≤ [UH , L1] ≤ [UH ,K0] = U .
We first eliminate the case K∗ ∼= L2(2

n). Since L1 ≤ K0, L1 ≤ NK0(B0) = B0,

and hence n is even. Then m3(B0) = 2, so as B0 ≤M , L/O2(L) ∼= Â6 by 13.7.3.9.
As t ∈ T −NT (K) acts on L0 and L1,+, these groups are diagonally embedded in
K0. Let B := O2(B0). As L1,+/O2(L1,+) is inverted by s ∈ T ∩ L, and [B, s] ≤ L,
[B, s] is a {2, 3}-group. We conclude that n = 2 and L1 = B.

Assume that case (a) or (b1) holds. Then VU 6≤ Ui as VU is T -invariant.
Thus the projections V iU of VU on Ui are nontrivial. As VU = [VU , L1,+], also
V iU = [V iU , L1,+]. Similarly L0 centralizes V

i
U . This is impossible, as L0K2 = L1,+K2

since L0 and L1,+ are diagonally embedded in K0, and [U1,K2] = 0.

Therefore case (b2) holds, so U = ŨH is the orthogonal module. In par-
ticular H∗ contains no F2-transvections, so case (2) of 13.8.8 holds. Hence the
K0-conjugate V ∗α of V ∗γ defined in that case is contained in O2(L

∗
1). Further
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U∗α ∈ Q(H
∗, ŨH), so in particular U∗α acts quadratically on ŨH , and hence it fol-

lows from the facts that n = 2, U∗γ is a 4-group, and m(ŨH/CŨH (Uγ∗)) = 4. Now

by F.9.16.2, m(UH/DH) = 2, which is impossible as [D̃H , U
∗
γ ] = Ã1 by F.9.13.6,

whereas no 4-group in K∗0 induces a group of transvections on a subspace of codi-

mension 2 in ŨH of dimension 8.
It remains to eliminate the case K∗ ∼= Sz(2n). Since B ≤ M , [B,L1] ≤

L1 ∩ B ≤ O2(L1), so L
∗
1 centralizes K∗0 . However case (a) or (b1) holds, so that

U = U1 ⊕ U2 with Ui the natural module for K∗; then EndK∗(Ui) = F2n with n

odd, and hence [U,L1] = 1. This is a contradiction, since L1 E H and Ṽ3 = [Ṽ3, L1],

so ŨH = [ŨH , L1].
Essentially the same argument establishes (2): We conclude from parts (4)

and (7) of F.9.18 that [ŨH ,K]/C[ŨH ,K](K) is the natural module for K/O2(K) ∼=

Sz(2n). Again L∗1 centralizesK
∗ and then also [ŨH ,K], for the same contradiction.

¤

By 13.8.16 and F.9.18.4:

Lemma 13.8.17. K∗ ∼= L2(2
n), (S)L3(2

n)ε, Sp4(2
n)′, G2(2

n)′, L4(2), L5(2),

A7, Â6, M22, or M̂22.

In the remainder of the section, we successively eliminate the cases listed in
13.8.17.

Observe that the second case of 13.8.8 holds, unless K∗ is one of the groups
A6, A7, or L4(2) allowed by 13.8.5.2 in the first case.

Lemma 13.8.18. If H = KL1T , then

(1) Gγ = 〈FGγ 〉Gγ,γb−1 for each F ≤ UH with F 6≤ DH .
(2) In case (2) of 13.8.8, the hypotheses of 13.8.11 are satisfied.
(3) If case (2) of 13.8.8 holds and UH does not induce a transvection on Uγ,

then m(V ∗γ ) > 1.

(4) If no member of H∗ induces a transvection on ŨH , then m(V ∗γ ) > 1.

Proof. By F.9.13.2 UH ≤ O2(Gγ,γb−1), while as H = KL1T , for gb with
(γ0, γ1)gb = (γb−1, γ) we have Gγ = KgbGγ,γb−1 . Thus if F 6≤ DH , then Kgb =
[Kgb , F ], so (1) holds. In case (2) of 13.8.8, DH < UH , so (2) follows by an
application of (1) with UH in the role of “F”. Finally 13.8.11.2 and (2) imply (3),
and 13.8.8 and (3) imply (4). ¤

Lemma 13.8.19. H∗ is not L3(2).

Proof. Assume H∗ ∼= L3(2). Then L∗1T
∗ is a maximal parabolic of H∗; let

P ∗ be the remaining maximal parabolic of H∗ containing T ∗. Since ŨH = 〈Ṽ H3 〉
with L1T inducing S3 on Ṽ3, H.6.5 says ŨH is one of the following: the natural
module W in which P ∗ stabilizes a point, the core U2 of the permutation module
on H∗/P ∗, the Steinberg module S, W ⊕ S, or U2 ⊕ S. By 13.7.6.1, ŨH is not

natural. Then since U∗α ∈ Q(H
∗, ŨH) by 13.8.8, it follows using B.5.1 and B.4.5

that ŨH = U2. By 13.8.8, V ∗α ≤ R∗1, so as R∗1 is not quadratic on ŨH = U2, it
follows that m(V ∗α ) = 1. This contradicts 13.8.18.4 in view of G.6.4. ¤

Lemma 13.8.20. K∗ is not of Lie type over F2n for any n > 1.
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Proof. Assume otherwise. By 13.8.16, we may take H = KL1T . By 13.8.17,
K∗ ∼= L2(2

n), (S)Lε3(2
n), Sp4(2

n), or G2(2
n). By 13.8.5, case (2) of 13.8.8 holds,

so in particular U∗γ ∈ Q(H
∗, ŨH).

Let B∗0 be the Borel subgroup of K∗ containing T ∗0 := T ∗ ∩K∗, and let B :=
O2(B0). As K is defined over F2n with n > 1, and L1T = TL1, L1 acts on B; so
by 13.8.13, B ≤M . Then using 13.7.3.9, L1 = θ(BL1), and BL1 = BCL1, where

BC := O2(CBL1(L/O2(L))) ≤ CM (V ).

Let X := L1 if L/O2(L) ∼= A6, and X := L1,+ if L/O2(L) ∼= Â6. If L/O2(L) ∼= A6

then BC = O3(B), while if L/O2(L) ∼= Â6, then BC = O3(B)L0. In either case,
|BX : BCO2(B)| = 3.

Next X/O2(X) is inverted by some t ∈ T ∩ L, and [BC , t] ≤ O2(BC). Now
from the structure of Aut(K∗), one of the following holds:

(i) CT∗(O
3(B∗)O2(B

∗)/O2(B
∗)) = O2(B

∗
0).

(ii) n = 2 or 6, and K∗ is not U3(2
n).

(iii) K∗ ∼= (S)U3(8).

In case (i) as [t∗, O3(B∗)] ≤ O2(B
∗), t∗ ∈ O2(B

∗), a contradiction as t∗ in-
verts X∗/O2(X

∗). In case (ii) if t∗ induces an outer automorphism on K∗, then
|[B∗, t∗]/O2([B

∗, t∗])| > 3 unless K∗ is (S)L3(4) or L2(4). Therefore we conclude
that either:

(a) X 6≤ K, X∗ ≤ CH∗(K
∗) so that X E KL1T = H , and X∗ is inverted in

CH∗(K
∗), or

(b) K∗ ∼= L2(4), (S)U3(8), or (S)L3(4), and t
∗ induces an outer automorphism

on K∗.

Assume first that (a) holds. Then as H is an SQTK-group, m3(K) = 1, so
that K∗ ∼= L2(2

n), L3(2
n) for n > 1 odd, or U3(2

n) for n even. Further X E H

and Ṽ3 = [Ṽ3, X ], so ŨH = [ŨH , X ]. Hence as X∗ is inverted in CH∗(K
∗), each

noncentral chief factor for H on ŨH is the sum of a pair of isomorphic K∗-modules.
Then case (ii) of F.9.18.4 holds, so that each Ĩ ∈ Irr+(K, ŨH , T ) is a T -invariant

FF-module for KT . Therefore ĨH := 〈ĨH〉 is the sum of two X-conjugates of Ĩ ,
and K∗ is not (S)U3(2

n).
Suppose K∗ is L2(2

n). Observe that if n is even, then m3(XB) > 1, so we

conclude from 13.7.3.9 that L/O2(L) ∼= Â6. We saw earlier that BC = O3(B)L0,
with |BX : O2(B)BC | = 3; then since X 6≤ K as case (a) holds, we conclude that
B = BC centralizes V . On the other hand if n is odd, then B is a 3′-group, so
again B = BC centralizes V .

Next as K∗T ∗ has no strong FF-modules by B.4.2, applying F.9.18.6 to ĨH in
the role of “W̃”, we conclude [ŨH ,K] = ĨH . As Ĩ/CĨ(K) is an FF-module, by
B.4.2 it is either the natural L2(2

n)-module or the A5-module. In the first case as

B centralizes V , Ṽ3 ≤ CŨH (BT
∗
0 ) = CŨH (K), a contradiction since UH = 〈V H3 〉

and K∗ 6= 1. Thus Ĩ is the A5-module, so that J(H∗) ∼= S5 by B.4.2.5; hence

H∗ ∼= S5 × S3 and ŨH is the tensor product of the S5-module and S3-module.
Since case (2) of 13.8.8 holds, there is an H-conjugate α of γ such that V ∗α ≤
O2(L

∗
1T
∗) = T ∗0 ≤ K∗. Then as V ∗γ is quadratic on ŨH , |Ṽ ∗γ | = 2, contrary to

13.8.18.4.
This leaves the case K∗ ∼= L3(2

n), n > 1 odd. This time the FF-module Ĩ is

natural by B.4.2, so ĨH is the tensor product of natural modules for K∗ and S3.
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As n is odd, B = BC , so B centralizes Ṽ3. Therefore as CĨH (B) = 0, we conclude

V3 6≤ IH . If IH = [UH ,K], then V3IH is invariant underKL1T = H , so UH = V3IH .

Then as T0 centralizes Ṽ3, ŨH = ĨH ⊕CŨH (K) and CŨH (K) = CŨH (B) = Ṽ3. But

now UH = 〈V H3 〉 = V3, contrary to 13.5.9. Hence K∗ is faithful on UH/IH , so case

(b) or (c) of F.9.18.6 holds with ĨH in the role of “W̃”. Therefore [UH ,K]/IH is an
FF-module for K∗T ∗, and hence this quotient is also the tensor product of natural
modules for K∗ and S3. Then again B centralizes Ṽ3, but is fixed-point-free on
[ŨH ,K], so that V3 6≤ [UH ,K]. Now we obtain a contradiction as in the earlier
case, arguing on [UH ,K] in place of IH .

Therefore (b) holds. As q(H∗, ŨH) ≤ 2, K∗ is not L3(4) by B.4.5. Thus
K∗ ∼= L2(4), SL3(4), or (S)U3(8). We claim L1 ≤ K; so assume otherwise. As

1 6= O3′(B) ≤ L1 but L1 6≤ K, it follows that L/O2(L) ∼= Â6 and |B|3 = 3.
Hence K∗ ∼= U3(8) or L2(4). In the first case, A.3.18 supplies a contradiction
as L1/O2(L1) ∼= E9 and T acts on L1 but does not permute with the subgroup
generated by the element x∗ in A.3.18.b. Thus K∗ ∼= L2(4), and as L0 and L1,+

are the only proper T -invariant subgroups of L1 which are not 2-groups, K∗L∗1 =
K∗ × L∗C , where LC = L0 or L1,+. In the former case, K ≤ NG(L0) = M by
13.2.2.9, a contradiction. In the latter case, as [L0, t] ≤ O2(L0) and case (a) fails,
we have a contradiction. Thus the claim is established.

By the claim and 13.7.5.2, UH = [UH ,K]. We next observe that K∗ is not

(S)U3(8): For otherwise we may apply F.9.18.7 and B.4.5 to conclude that ŨH
is the natural module for K∗ ∼= SU3(8), defined over F8. But then there is no

B-invariant subspace Ṽ3 = [Ṽ3, L1] of 2-rank 2.

Suppose K∗ is SL3(4). By B.4.5, any I ∈ Irr+(K, ŨH , T ) is the natural mod-

ule. Further B = θ(B) ≤ L1 by 13.7.3.9, and B is of 3-rank 2, so L/O2(L) ∼= Â6.
Then as X = L1,+ is inverted by t ∈ CT (L0/O2(L0)), we conclude that either t
induces a graph-field automorphism on K∗ with L∗0 = CL∗1 (t

∗) = Z(K∗), or t in-
duces a graph automorphism on K∗ and X∗ = [L∗1, t

∗] = Z(K∗). In the first case,
H ≤ NG(L0) ≤M by 13.2.2.9, contrary to H 6≤M ; so the second case holds. Now

case (iii) of F.9.18.4 holds, with ĨH = Ĩ⊕ Ĩt, where Ĩ ∈ Irr+(ŨH ,K, T ) is a natural

module for K∗ and Ĩt is its dual. By F.9.18.7, ĨH = [ŨH ,K], so IH = UH by the

previous paragraph. Further Uγ∗ ∈ Q(H∗, ŨH) is either a root group of K∗ of rank

2 with m(ŨH/CŨH (Uγ)) = 4, or m(U∗γ ) ≥ 3 with m(ŨH/CŨH (Uγ)) = 6. In the

first case by F.9.16.2, U∗γ is faithful on D̃H of corank 2 in ŨH ; and in the second,

at least m(UH/DH) ≤ m(U∗γ ) ≤ m2(H
∗) = 4. In either case, no subspace D̃H of

this corank in ŨH satisfies the requirement [U∗γ , D̃H ] = Ã1 of F.9.13.6.
We are left with the case L1 ≤ K∗ ∼= L2(4). Thus L/O2(L) ∼= A6 by 13.7.5.5.

As L1 = [L1, T ] and H = KL1T = KT , H∗ ∼= S5. Then as case (2) of 13.8.8
holds, V ∗α ≤ R∗1 ∈ Syl2(K

∗), and m2(R
∗
1) = 2, so V ∗α = R∗1 by 13.8.18.4. Now by

13.8.4.5, VH/UH is a nontrivial quotient of the 5-dimensional permutation module
for H∗ ∼= S5. Then as V ∗α = R∗1, V

∗
γ is not quadratic on VH/UH , contrary to

13.8.4.6. ¤

Lemma 13.8.21. (1) L1 ≤ K.
(2) K/O2(K) is Ln(2), 3 ≤ n ≤ 5, A6, A7, or G2(2)

′.
(3) H = KT . In particular if K ∼= L3(2), then H

∗ ∼= Aut(L3(2)).
(4) UH = [UH ,K].
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Proof. We begin with the proof of (2); as usual, we may take H = KL1T .

By 13.8.17 and 13.8.20, K∗ ∼= L4(2), L5(2), A6, A7, G2(2)
′, Â6, M22, or M̂22. Thus

to establish (2) we may assume K/O2(K) ∼= Â6, M22, or M̂22, and it remains to
derive a contradiction.

By A.3.18, L1 ≤ θ(H) = K. Then L1 is solvable and normal in J := K∩M . It

follows when K/O2(K) ∼= Â6 that J/O2,Z(K) is a maximal parabolic subgroup of
K/O2,Z(K), and when K/O2,Z(K) ∼=M22 that J/O2,Z(K) is a maximal parabolic
of the subgroup K1/O2,Z(K) ∼= A6/E24 of K/O2,Z(K).

AssumeK/O2(K) ∼=M22. By the previous paragraph, |L1|3 = 3, so L/O2(L) ∼=
A6 rather than Â6. Further case (i) of F.9.18.4 holds with Ĩ ∈ Irr(K, ŨH ), and Ĩ is
the code module in view of F.9.18.2 and B.4.5. AsM22 has no FF-modules by B.4.2,
Ĩ = [ŨH ,K] by F.9.18.7, so that Ṽ3 = [Ṽ3, L1] ≤ Ĩ . By the previous paragraph,
CĨ(O2(L1T )) ≤ CĨ(O2(K1T )), while m(CĨ(O2(K1T ))) = 1 by H.16.2.1. This is

a contradiction, since L1T induces GL(Ṽ3) on Ṽ3 of rank 2 in Ĩ , so that O2(L1T )

centralizes Ṽ3.
Thus we may assume that K/O2(K) ∼= Â6 or M̂22. Then Y := O2(O2,Z(K)) 6=

1; by 13.8.13, Y ≤ M , so Y ≤ θ(H ∩M) = L1 by 13.7.3.9. Then if Y = L1, each
solvable overgroup of Y T in H is contained in M by 13.8.13. However there is
K1 ∈ L(KT, T ) with K1/O2,Z(K1) ∼= A6, so either K1 ∈ C(H ∩M) or K = K1

and T is nontrivial on the Dynkin diagram of K∗. In the former case K1 = L,
contradicting M = !M(LT ). As q(H∗, ŨH) ≤ 2, the latter is impossible by B.4.5.

Thus Y < L1, so L/O2(L) ∼= Â6. Then as NG(L0) =M using 13.2.2.9, Y 6= L0, so

Y = L1,+. Further if K/O2(K) ∼= M̂22, replacing K by K1, we reduce to the case

K/O2(K) ∼= Â6.
Now L1 = θ(H ∩M) by 13.7.3.9, and H ∩M is a maximal parabolic of H . As

Ṽ3 = [Ṽ , L1,+] and Y = L1,+ E H , ŨH = [ŨH , Y ].

Since K∗ is Â6, case (2) of 13.8.8 holds, so that U ∗γ ∈ Q(H
∗, ŨH). Let Ĩ ∈

Irr+(K, ŨH , T ); by B.4.5, Ĩ is a 6-dimensional module for H∗. Further as H∗ has

no faithful strong FF-modules by B.4.2.8, F.9.18.6 says that either Ĩ = ŨH or ŨH/Ĩ

is 6-dimensional. Set W := ŨH or ŨH/Ĩ in the respective cases. Now L1T acts on

Ṽ3 and hence also on its image in W , so L∗1T
∗ is the stabilizer of an F4-point in

W . Choose α as in case (2) of 13.8.8; then V ∗α ≤ O2(L
∗
1T
∗) ∼= E4, so by 13.8.18.4,

V ∗α = O2(L
∗
1T
∗). This is a contradiction as V ∗α is quadratic on UH by 13.8.4.6.

Thus (2) is established.
We next prove (1); we may continue to assume H = KL1T but L1 6≤ K.

Therefore m3(K) = 1 by (2) and A.3.18, so K∗ ∼= L3(2). Let X := L1,+ if

L/O2(L) ∼= Â6, and X := L1 if L/O2(L) ∼= A6. As X = [X,T ], either X ≤ K or
[X,K] ≤ O2(K).

Assume first that L/O2(L) ∼= A6. Then L
∗
1 = X∗ centralizesK∗ by the previous

paragraph, so that F ∗(H∗) = K∗ ×X∗. As Ṽ3 = [Ṽ3, X
∗] and X∗ E H∗, ŨH =

[ŨH , X ]. If H∗/CH∗(K
∗) is not Aut(L3(2)), then KX is generated by a pair of

solvable overgroups of X , so that KX ≤ M by 13.8.13, contrary to 13.8.12.1.
On the other hand if H∗/CH∗(K

∗) ∼= Aut(L3(2)), then since ŨH = [ŨH , X ], for

each chief factor W for H∗ on ŨH with [K∗,W ] 6= 1, W consists of either a pair
of Steinberg modules, or a pair of natural modules and a pair of duals for K∗,
contradicting q(H∗, ŨH) ≤ 2 by B.4.5.
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Thus L/O2(L) ∼= Â6, so that L0 and L1,+ = X are the two T -invariant sub-
groups of 3-rank 1 in L1. As usual K 6≤M by 13.8.12.1, so that K does not act on
L0 in view of 13.2.2.9. Then CL1(K

∗) = X rather than L0, so that L0 ≤ K. Now
X = [X, t] for t ∈ T ∩ L ≤ CT (L0/O2(L0)), so [K∗, t∗] = 1. Also T acts on L0,
and hence is trivial on the Dynkin diagram of K∗, so H∗ ∼= L3(2)×S3. As earlier,
ŨH = [ŨH , X ], so an H-chief factorW in ŨH is the tensor product of natural mod-

ules for the factors, as usual using B.4.5 and the fact that U ∗γ ∈ Q(H
∗, ŨH). As L0

centralizes Ṽ3, L
∗
0T
∗ is the stabilizer of a point in these natural modules. Then as

V ∗α ≤ O2(L
∗
1T
∗) and V ∗α is quadratic on UH , V

∗
α is of order 2, contrary to 13.8.18.4.

So (1) is established.
By (1), L1 is contained in each K ∈ C(H), so there is a unique K ∈ C(H).

Then by 13.8.14, K∗ = F ∗(H∗), so (3) holds as Out(K∗) is a 2-group for each of
the groups listed in (2); if K∗ ∼= L3(2) that H

∗ ∼= Aut(L3(2)) by 13.8.19. Part (4)
follows from (1) and 13.7.5.2. ¤

Let W̃ be a proper H-submodule of ŨH and set ÛH := ŨH/W̃ . As ŨH = 〈V H3 〉

and L1 is irreducible on Ṽ3 ∼= E4, it follows that V̂3 ∼= E4 is L1T -isomorphic to Ṽ3.
By 13.8.21, ÛH = [ÛH ,K] and K∗ = F ∗(H∗) is simple, so that H∗ is faithful on

ÛH .

Lemma 13.8.22. Assume K is nontrivial on W̃ . Then H∗ is faithful on W̃ ,
case (2) of 13.8.8 holds, and either

(1) A1 ≤ W , U∗γ contains an FF∗-offender on the FF-module ÛH , and either

U∗γ contains a strong FF∗-offender on ÛH , or W ≤ DH and [W̃ , U∗γ ] = Ã1.

(2) A1 6≤ W , U∗γ contains an FF∗-offender on the FF-module W̃ , and either

U∗γ contains a strong FF∗-offender on W̃ , or UH = WDH and [ÛH , Uγ ] = Â1, so
that A1 ≤ UH .

Proof. As K∗ is nontrivial on W̃ and K∗ = F ∗(H∗) is simple, H∗ is faithful

on W̃ . As H∗ is also faithful on ÛH , no member of H∗ induces a transvection on
ŨH , so case (2) of 13.8.8 holds.

Suppose A1 ≤W . Then using F.9.13.6, [D̂H , Uγ ] ≤ Â1 = 1, so D̂H < ÛH and

m(ÛH/CÛH (Uγ)) ≤ m(ÛH/D̂H) ≤ m(UH/DH) ≤ m(U∗γ ),

so by B.1.4.4, U∗γ contains an FF∗-offender on the FF-module ÛH . Indeed ei-
ther U∗γ contains a strong FF∗-offender, or all inequalities are equalities, so that

m(ÛH/D̂H) = m(UH/DH), and hence W ≤ DH . In the latter case, [W̃ , Uγ ] ≤

[D̃H , Uγ ] = Ã1, so that (1) holds.
So assume A1 6≤W . Then [DH ∩W,Uγ ] ≤W ∩A1 = 1, so

m(W/CW (Uγ)) ≤ m(W/(DH ∩W )) ≤ m(UH/DH) ≤ m(U∗γ )

since case (2) of 13.8.8 holds. So by B.1.4.4, U ∗γ contains an FF∗-offender on

the FF-module W̃ . Further if U∗γ does not contain a strong FF∗-offender, then
all inequalities are equalities, so that m(W/(DH ∩W )) = m(UH/DH) and hence
UH =WDH . But then

[ÛH , Uγ ] ≤ [D̂H , Uγ ] ≤ Â1,

so that (2) holds. ¤
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Lemma 13.8.23. Assume m(U∗γ ) = 1, and K is nontrivial on W̃ . Then

(1) Uγ induces transvections on W̃ and ÛH , DH is a hyperplane of UH , CH :=

CUH (Uγ) is a hyperplane of DH , and ĈH = CÛH (U
∗
γ ).

(2) U∗γ < V ∗γ .
(3) Either A1 6≤W and [CW̃ (U∗γ ), V

∗
γ ] = 1, or A1 ≤W and [CÛH (U

∗
γ ), V

∗
γ ] = 1.

(4) U∗γ < CH∗(CE(U
∗
γ )) for at least one of E := W̃ or ÛH .

Proof. By 13.8.22, H∗ is faithful on W̃ and case (2) of 13.8.8 holds, so U∗γ ∈

Q(H∗, ŨH). Therefore as m(U∗γ ) = 1 it follows that m(ŨH/CŨH (Uγ)) ≤ 2; then

since K is nontrivial on W̃ , equality holds and U∗γ induces transvections on both

W̃ and ÛH . Therefore by 13.8.10, DH is a hyperplane of UH .
Let CH := CUH (Uγ). By F.9.13.7, [Dγ , DH ] = 1, so as m(U∗γ ) = 1 and

[DH , Uγ ] ≤ A1 by F.9.13.6, CH is a hyperplane of DH . Therefore C̃H = CŨH (Uγ)

as both subgroups are of codimension 2 in ŨH . Hence (1) holds.

Part (2) follows from 13.8.18.4. Next [C̃H , Vγ ] ≤ Ã1 by 13.7.3.7. Further by

(1), U∗γ is not a strong FF∗-offender on ÛH or W̃ . Assume A1 ≤W . ThenW ≤ DH

by 13.8.22.1, so D̂H = CÛH (U
∗
γ ) = ĈH by (1). Thus if [CÛH (U

∗
γ ), V

∗
γ ] 6= 1, DH >

WCH , and hence W ≤ CH as |DH : CH | = 2 by (1). However this contradicts

[W̃ , Uγ ] 6= 1. So suppose instead A1 6≤ W . Then by F.9.13.6, [DH ∩ W,Uγ ] ≤
A1 ∩W = 1, so DH ∩W ≤ CH , and hence

[ ˜DH ∩W,Vγ ] ≤ [C̃H , Vγ ] ∩ W̃ ≤ Ã1 ∩ W̃ = 1.

Since CW̃ (U∗γ ) ≤ ˜DH ∩W , this establishes (3).
Finally (2) and (3) imply (4). ¤

Lemma 13.8.24. K∗ is not isomorphic to A7.

Proof. Assume K∗ ∼= A7. We adopt the notational conventions of section
B.3, and represent H∗ on Ω := {1, . . . , 7}, so that T ∗ has orbits {1, 2, 3, 4}, {5, 6},
and {7}. Let β := γg−1b for gb as defined earlier, and let δ ∈ {β, γ}. By (1) and (2)
of F.9.13, V ∗yδ ≤ O2(L

∗
1T
∗) for some y ∈ H .

Suppose first that case (1) of 13.8.8 holds, and pick δ as in that case. Then Vδ or

Uδ induces a nontrivial group of transvections on ŨH , so in particular K∗T ∗ ∼= S7.
But as case (2b) of 13.8.5 holds, L/O2(L) ∼= Â6 so |L1|3 = 32, and hence L∗1T

∗ ∼=
S4×S3 is the stabilizer of the partition {{1, 2, 3, 4}, {5, 6, 7}} of Ω. Thus O2(L

∗
1T
∗)

contains no transvections, whereas we showed V ∗yδ ≤ O2(L
∗
1T
∗) and Uδ ≤ Vδ.

Therefore case (2) of 13.8.8 holds. Define α as in that case; thus V ∗α ≤ O2(L
∗
1T
∗)

and U∗γ ∈ Q(H
∗, ŨH).

Pick W̃ maximal in ŨH , so that ÛH is an irreducible H∗-module. It will suffice
to show m(U∗γ ) = 1 and [W̃ ,K] 6= 1: for then 13.8.23.4 supplies a contradiction,
since for each faithful F2H

∗-module E on which some h∗ ∈ H∗ induces a transvec-
tion (that is, with [E,H ] the A7-module), 〈h∗〉 = CH∗(CE(h

∗)).
As L1T = TL1, L1T stabilizes either {1, 2, 3, 4} or a partition of type 23, 1.

Assume the first case holds. Then the stabilizer S in H of {1, 2, 3, 4} is solvable,
so S ≤M by 13.8.13. Thus S = H ∩M ; hence by 13.7.3.9, L1 = θ(S) is of 3-rank

2, so that L/O2(L) ∼= Â6. Next either L∗0 = 〈(5, 6, 7)〉 and L∗1,+ = O2(K∗5,6,7), or

vice versa. As L∗1,+ is inverted in T ∩ L ≤ CT (L
∗
0), H

∗ ∼= S7. As q(H∗, ÛH) ≤ 2
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and H∗ ∼= S7, B.4.2 and B.4.5 say that ÛH is either a natural module or the sum
of a 4-dimensional module and its dual. As V̂3 is of rank 2 and T -invariant, with
V̂3 = [V̂3, L1,+] ≤ CÛH (L0), we conclude that ÛH is natural, and L∗1,+ = 〈(5, 6, 7)〉.

Recall V ∗α ≤ O2(L
∗
1T
∗) = O2(L

∗
1,+). As V ∗α is quadratic on ÛH by 13.8.4.6, it

follows that m(V ∗α ) = 1, so UH induces transvections on Uγ by 13.8.18.3. But then

V ∗yβ induces transvections on ŨH , whereas V
∗y
β ≤ O2(L

∗
1T
∗), which contains no

transvections.
Thus L1T is the stabilizer of a partition of type 23, 1. In particularm3(L1) = 1,

so L/O2(L) ∼= A6 as L1 = θ(H ∩M) by 13.7.3.9. As U∗γ ∈ Q(H
∗, ÛH), B.4.2 and

B.4.5 say that ÛH is either of dimension 4 or 6, or else the sum 4 + 4′ of 4 and
its dual 4′. But L∗1 stabilizes the T ∗-invariant line V̂3 ≤ ÛH , so as L1T is the

stabilizer of a partition of type 23, 1, dim(ÛH) 6= 4 or 8, and hence dim(ÛH) = 6. If

[W̃ ,K] = 1, then [ŨH ,K] ∼= ÛH is the natural module for K∗, so as L/O2(L) ∼= A6,

13.7.6.3 supplies a contradiction. Thus [W̃ ,K] 6= 1, and so we may apply 13.8.22.
As H∗ has no strong FF-modules, we conclude from 13.8.22 that U ∗γ induces a

group of transvections on ÛH or W̃ . Therefore m(U∗γ ) = 1, and we saw this suffices
to complete the proof. ¤

Lemma 13.8.25. If K/O2(K) ∼= Ln(2) for 3 ≤ n ≤ 5, then n = 4 and

(1) L/O2(L) ∼= Â6, and ŨH is a 4-dimensional natural module for H∗ ∼= L4(2).
(2) H = G1.

Proof. Assume otherwise. If case (1) of 13.8.8 holds, then conclusion (1) holds
by 13.8.5. In particular n = 4, and we will see below that this implies conclusion
(2); so we may assume that case (2) of 13.8.8 holds.

Then U∗γ ∈ Q(H∗, ŨH). Let T ∗K := T ∗ ∩ K∗. As L1 ≤ K by 13.8.21.1,
L∗1T

∗
K is a T ∗-invariant parabolic of K∗. Indeed L∗1T

∗
K is a minimal parabolic when

L/O2(L) ∼= A6, since |L1|3 = 3 in that case, whereas L∗1T
∗/O2(L

∗
1T
∗) ∼= S3 × S3

when L/O2(L) ∼= Â6.
If L∗1T

∗
K is a minimal parabolic, then as L∗1T

∗
K is T ∗-invariant, either T ∗ = T ∗K ,

or n = 4 and L∗1T
∗
K is the middle-node parabolic of K∗. This allows us to eliminate

the case n = 3: For if n = 3, then m3(K) = 1, so L∗1T
∗
K is a minimal parabolic and

hence T ∗ = T ∗K . contrary to 13.8.21.3.

Further if n = 5, then L/O2(L) ∼= Â6: For otherwise we have seen that L∗1T
∗
K is

a minimal parabolic and T ∗ = T ∗K . Therefore L1T ≤ H1 ≤ H with H1/O2(H1) ∼=
S3×S3. But now H1 ≤M by 13.8.13, so L1 = θ(H ∩M) is of 3-rank 2 by 13.7.3.9,
contradicting L/O2(L) ∼= A6.

In the next few paragraphs, we assume L/O2(L) ∼= A6 and derive a contradic-
tion. Here the arguments above have reduced us to the case n = 4.

Suppose TK = T . Then L1 ≤ K1 ∈ L(K,T ) with K1/O2(K1) ∼= L3(2). But
now K1T ∈ Hz , a case already eliminated. Thus TK < T , so we have seen that
L∗1T

∗
K is the middle-node parabolic.

Let W̃ be a maximal H∗-submodule of ŨH , so that ÛH is irreducible. As
U∗γ ∈ Q(H

∗, ÛH) and T
∗
K < T ∗, B.4.2 and B.4.5 say that either m(ÛH) = 6, or Û is

the sum of a natural K∗-module and its dual. The latter is impossible, as L∗1T
∗
K is

a middle-node minimal parabolic and V̂3 = [V̂3, L1] is an L1T -invariant line in ÛH .
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Thus m(ÛH) = 6. Since the case with a single nontrivial 2-chief factor which is an

A8-module is excluded by 13.7.6.3, [W̃ ,K] 6= 1, so we can appeal to 13.8.22.

If U∗γ contains a strong FF∗-offender on ÛH , then B.3.2.6 says that U∗γ
∼= E16

is generated by the transpositions in T ∗ and m(ÛH/CÛH (Uγ)) = 3. Thus as U∗γ ∈

Q(H∗, ŨH),

m(W̃/CW̃ (Uγ)) ≤ 2m(U∗γ )− 3 = 5;

so as W̃ is a faithful module for H∗ ∼= S8, we conclude [W̃ ,H ] is the 6-dimensional

module or its 7-dimensional cover, and m(W̃ /CW̃ (Uγ)) = 3. Thus

m(ŨH/CŨH (U
∗
γ ) ≥ m(ÛH/CÛH (U

∗
γ )) +m(W̃/CW̃ (U∗γ )) = 6.

Now by 13.8.8, m(UH/DH) ≤ m(U∗γ ) = 4, so U∗γ does not centralize DH . Then
by F.9.13.6, A1 = [DH , Uγ ] ≤ UH . So as the transpositions in U∗γ induce transvec-

tions on ÛH with distinct centers, we conclude CU∗γ (DH) is a hyperplane of U∗γ , so

m(UH/CUH (Uγ)) ≤ 5, contrary to our previous calculation.

Therefore U∗γ contains no strong FF∗-offender on ÛH , so by 13.8.22 either

(i) U∗γ
∼= Z2 induces a transvection with center Ã1 on W̃ , or a transvection

with center Â1 on ÛH , or
(ii) A1 6≤W , and U∗γ contains a strong FF∗-offender on W̃ .

In case (ii), as in the previous paragraph, we conclude U ∗γ
∼= E16 and W̃ is the

orthogonal module, leading to the same contradiction.
So case (i) holds. Then m(U∗γ ) = 1 and [W̃ ,K] 6= 1, so 13.8.23.4 supplies a

contradiction, since CH∗(CE(h
∗)) = 〈h∗〉 for each faithful F2H

∗-module E (namely
with [E,K] of dimension 6 or 7) on which some h∗ ∈ H∗ induces a transvection.
This contradiction completes the elimination of the case L/O2(L) ∼= A6.

Therefore L/O2(L) ∼= Â6. We eliminated n = 3 earlier, so n = 4 or 5. As T
acts on the two minmal parabolics determined by L0 and L1,+, T

∗
K = T ∗. Further

as L1 E H ∩M , L1T = H ∩M . Observe that L∗1T
∗
K is a parabolic of rank 2

determined by two nodes not adjacent in the Dynkin diagram.
Suppose n = 5. By 13.2.2.9, NK(L0) ≤ K ∩ M ≤ NK(L1,+), the node β

determined by L0 is an interior node, and the node δ determined by L1,+ is the
unique node not adjacent to β. Thus we may take δ and β to be the first and third
nodes of the diagram for H∗. Then L1T ≤ H2 ≤ H with H2/O2(H2) ∼= S3×L3(2).
As L1T = H ∩M , H2 6≤M , so H2 ∈ Hz, contrary to 13.8.21.1.

Therefore we have established that n = 4 in each case of 13.8.8. As mentioned
earlier, we can now show that (2) holds: For H ≤ G1, so K ≤ K1 ∈ C(G1)
by 1.2.4. Now K1T ∈ Hz and we have shown K1/O2(K1) is not L5(2). Hence
K1 = K ∈ C(G1) by 13.8.21.2 and A.3.12. As G1 ∈ Hz, we conclude from 13.8.21.3
that H = KT = K1T = G1, so that (2) holds.

Thus (2) is established, and we’ve shown that L/O2(L) ∼= Â6 and H∗ ∼= L4(2).

We may assume (1) fails, so that ŨH is not the natural module for H∗. Now

U∗γ ∈ Q(H∗, ÛH), so ÛH is of dimension 4 or 6 by B.4.2 and B.4.5. Then as

the maximal parabolic L∗1T
∗ determined by the end nodes stabilizes the line V̂3,

dim(ÛH) = 4. As (1) fails, [W̃ ,K] 6= 1; hence we can appeal to 13.8.22 and 13.8.23.
Moreover m(V ∗γ ) > 1 by 13.8.18.4.
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We claim ŨH has a unique maximal submodule W̃ . Assume not; then (writing

J(ŨH) for the Jacobson radical of ŨH)

U̇H := ŨH/J(ŨH) = U̇1 ⊕ · · · ⊕ U̇s

is the sum of s > 1 four-dimensional irreducibles. Further the projection V̇ i3 of

Ṽ3 on U̇i is faithful for each i and centralized by L0, so the U̇i are isomorphic
natural modules. As CU̇i(T

∗) is a point, each L1T -invariant line is contained in

a member of Irr+(H, U̇H), so V̇3 ≤ U̇0 for some irreducible H-submodle U̇0. But

then U̇H = 〈V̇ H3 〉 = U̇0, contrary to s > 1. Thus the claim is established.
Define α as in case (2) of 13.8.8; thus V ∗α ≤ O2(L

∗
1T
∗) = O2(L

∗
1) and m(V ∗α ) =

m(V ∗γ ) > 1.

Let B be a noncentral chief factor for H on W̃ . We claim m(B) = 4. For

otherwise, as q(H∗, ŨH) ≤ 2, B is of rank 6 by B.4.2 and B.4.5. Thus as V ∗α
is a noncyclic subgroup of the unipotent radical O2(L

∗
1) of the parabolic L∗1T

∗

stabilizing a point of B and acting quadratically on B, it follows that m(V ∗α ) = 2
and V ∗α contains no FF∗-offender on B by B.3.2.6. Therefore case (1) of 13.8.22
holds, so A1 ≤ W . As T ∗ = T ∗K , no member of H∗ induces a transvection on B,

so [W̃ , U∗γ ] > Ã1 and hence W 6≤ DH by F.9.13.6. Thus we conclude from 13.8.22

that U∗γ contains a strong FF∗-offender on ÛH . As m(V ∗γ ) = 2 and U∗γ contains a
strong FF∗-offender, we conclude V ∗γ = U∗γ

∼= E4. Then m(UH/DH) ≤ m(U∗γ ) =

2, so as W 6≤ DH , m(ÛH/D̂H) ≤ 1, with m(UH/DH) = 2 in case of equality.

However U∗γ centralizes D̂H by F.9.13.6 as A1 ≤ W . Therefore m(ÛH/D̂H) = 1
and m(UH/DH) = 2 = m(U∗γ ). Thus we have symmetry between γ1 and γ. In
particular as A1 ≤ W ≤ UH , V1 ≤ Uγ ; further in view of 13.8.18.2, we may apply
13.8.11.1 to conclude U∗γ < V ∗γ , contrary to an earlier remark. This establishes the
latest claim that m(B) = 4.

Thus we have shown that all noncentral chief factors of ŨH are 4-dimensional.
Then as the 1-cohomology of 4-dimensional modules is trivial by I.1.6.6, and W̃ is
the unique maximal submodule of ŨH , all chief factors are 4-dimensional.

Observe next that no noncyclic subgroup of V ∗γ centralizes a hyperplane of ÛH :

For otherwise as V ∗γ is quadratic on ŨH by 13.8.4.6, the quotient module ŨH splits

over the submodule W̃ by B.4.9.1, contradicting W̃ the unique maximal submodule
of ŨH . So as V ∗α lies in the unipotent radical O2(L

∗
1) of the stabilizer of a line in

the natural module for L4(2), it follows that m(U∗γ ) ≤ m(V ∗γ ) ≤ 3.

Now let Ĩ denote any member of Irr+(H
∗, W̃ ), so that in particular Ĩ is 4-

dimensional. Applying the dual of B.4.9.1, we conclude similarly that no noncyclic
subgroup of V ∗γ acts as a group of transvections with a fixed center on Ĩ .

Suppose next that A1 ≤ I . Then CH(A1)
∗ is the maximal parabolic fixing Ã1.

Then as H = G1, Vγ E NG(A1)
∗, so V ∗γ = O2(CH (A1))

∗ as NG(A1)
∗ is irreducible

on O2(CH (A1))
∗. This is impossible as V ∗γ ≤ O2(L1)

∗ where L∗1T
∗ stabilizes a line

of Ĩ .
Therefore A1 6≤ I , so [I∩DH , Uγ ] ≤ I∩A1 = 1; then by 13.7.3.7, [I∩DH , Vγ ] ≤

A1 ∩ I = 1. In particular I 6≤ DH .
Suppose next that m(U∗γ ) = 1. We saw Vγ centralizes DH ∩ I , which is a

hyperplane of I by 13.8.23.1. Then as V ∗α ≤ O2(L
∗
1) and L∗1T

∗ is the parabolic
stabilizing a line in I , we conclude m(V ∗α ) ≤ 2, and hence m(V ∗α ) = 2 as m(V ∗γ ) > 1
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by 13.8.18.4. Also by 13.8.23.1, U ∗γ induces transvections on W̃ and ÛH , so H
∗ has

a unique noncentral chief factor on W , and hence W = I . Again by 13.8.23.1, DH

is a hyperplane of UH , so as W = I 6≤ DH , ÛH = D̂H and hence Â1 = [ÛH , Uγ ]

and Ã1[W̃ , U∗γ ] = [ŨH , U
∗
γ ] is of rank 2. Now U∗α = Z(T ∗), so T ∗ acts on [ŨH , U

∗
α]

and centralizes W̃1Ṽ2 where W̃1 := [W̃ , U∗α]. Thus

W̃1Ã
h
1 = [ŨH , U

∗
α] = W̃1Ṽ2,

where h ∈ H with γh = α. Thus the middle-node minimal parabolic H∗0 of H∗

containing T ∗ centralizes [ŨH , U
∗
α], and in particular Ãh1 , so H

∗
0 acts on V ∗α since

G1 = H by (2). This is impossible as H∗0
∼= S3/D

2
8 has no normal E4-subgroup.

So m(U∗γ ) > 1. Now V ∗α ≤ O2(L
∗
1), and we’ve seen that U∗γ is noncyclic and

U∗α does not induce a group of transvections with fixed center on Ĩ ; thus [Ĩ , U∗α]

is the line in Ĩ fixed by L∗1, and hence [Ĩ , U∗α] = [Ĩ , V ∗α ]. Therefore by 13.8.9.2
applied to I in the role of “F”, V1 6≤ Uγ . Also we saw Vγ centralizes DH ∩ I , so
m(I/DH ∩ I) ≥ 2.

Suppose m(U∗γ ) = m(UH/DH). Then we have symmetry between γ1 and γ,
so A1 6≤ UH , and hence [DH , Uγ ] ≤ A1 ∩ UH = 1. Further as U∗γ is noncyclic and

we saw earlier that U∗γ does not centralize any hyperplane of ÛH , m(ÛH/D̂H) ≥ 2.
Hence as m(I/I ∩ DH) ≥ 2, m(U∗γ ) = m(UH/DH) ≥ 4, contrary to our earlier
observation that m(U∗γ ) ≤ 3.

Therefore m(U∗γ ) > m(UH/DH). So as m(U∗γ ) ≤ 3, we conclude

3 ≥ m(U∗γ ) > m(UH/DH) ≥ 2,

where the final inequality holds since we saw m(I/DH ∩ I) ≥ 2. Thus m(U∗γ ) = 3

and m(UH/DH) = 2. Hence ÛH = D̂H since m(I/DH ∩ I) ≥ 2, so [ÛH , Uγ ] =

[D̂H , Uγ ] = Â1 by F.9.13.6. This is impossible as U∗α ≤ O2(L
∗
1) with m(Uα) = 3.

Thus the proof of 13.8.25 is at last complete. ¤

Lemma 13.8.26. If K∗ ∼= A6, then ŨH is the natural module for K∗ on which
L1 has two noncentral chief factors or its 5-dimensional cover.

Proof. In case (1) of 13.8.8, this holds by 13.8.5, so we may assume case (2)

of 13.8.8 holds. Then U∗γ ∈ Q(H
∗, ŨH), so each noncentral chief factor for K∗ on

ŨH is of rank 4 by B.4.2 and B.4.5. Suppose K has more than one such factor, and
pick W̃ as in 13.8.22.

First assume U∗γ contains a strong FF∗-offender on N := ÛH or W̃ . Then by
B.3.4.2i, U∗α = R∗1

∼= E8 is generated by the transvections on N in T ∗. But by
13.8.4.5, VH/UH has a quotient B which is the 4-dimensional H∗-module on which
L1T fixes a point. Then as U∗α = R∗1, U

∗
α is not quadratic on B, contrary to 13.8.4.6.

Thus U∗γ contains no strong FF∗-offender on either ÛH or W̃ , so by 13.8.22,

U∗γ induces transvections on E =: ÛH or W̃ , and hence m(U∗γ ) = 1. This is a
contradiction to 13.8.23.4, as U∗γ = CH∗(CE(U

∗
γ )) for any transvection.

Thus ŨH has a unique noncentral chief factor. Since UH = 〈V H3 〉 with Ṽ3 =

[Ṽ3, L1] a nontrivial irreducible for L1, ŨH/CŨH (K) is the 4-dimensional natural

module on which L1 has two noncentral chief factors. Then by I.1.6.1, ŨH is either
natural or a 5-dimensional cover, completing the proof. ¤

Lemma 13.8.27. (1) Either
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(a) L/O2(L) ∼= A6, H
∗ ∼= A6 or S6, and ŨH is the natural module for K∗

on which L1 has two noncentral chief factors or its 5-dimensional cover, or
(b) L/O2(L) ∼= Â6, H

∗ ∼= L4(2), and ŨH is a 4-dimensional natural module
for H∗.

(2) G1 = H = KT .
(3) If case (1) of 13.8.8 holds then DH = UH , Dγ = Uγ, V induces a group of

transvections on Uγ with center V1, and V1 ≤ Uγ. Further Vγ 6≤ QH , so we have
symmetry between γ and γ1.

Proof. By 13.8.24 and 13.8.25, the list of 13.8.21.2 has been reduced to
K∗ ∼= A6, L4(2), or G2(2)

′. Further K ≤ K1 ∈ C(G1) by 1.2.4, and as G1 ∈ Hz,
K1/O2(K1) ∼= A6, L4(2), or G2(2)

′. So as A.3.12 contains no inclusions between
any pair on this list, we conclude that K = K1. Thus G1 = K1T = KT = H by
13.8.21.3, so (2) holds.

By (2) and 13.8.7, DH = UH and Dγ = Uγ . Thus V induces a group of
transvections on Uγ with center V1 by F.9.16.1, so V1 ≤ Uγ . Thus to complete the
proof of (3), we assume Vγ ≤ QH and derive a contradiction. Then [UH , Vγ ] ≤ V1∩
A1 = 1. Thus V g ≤ CG(V3) ≤ MV , so that [V, V g3 ] = V1 = [V, V g ]. Then CV g (V )
is a hyperplane of V g and hence conjugate to V g3 , so V ≤ CG(CV g (V )) ≤ M g

V by
13.5.4.4. Then V1 = [V, V g ] ≤ V ∩ V g, contrary to 13.8.3.

It remains to prove (1). However if K∗ ∼= L4(2) or A6, then (1) holds by
13.8.25 or 13.8.26, so we may assume that K∗ ∼= G2(2)

′ and derive a contradiction.
Thus case (2) of 13.8.8 holds as G2(2)

′ does not appear in 13.8.5. As H∗ has no
strong FF-modules and no transvection modules by B.4.2, 13.8.22 and 13.8.21.4 say
ŨH ∈ Irr+(K, ŨH). So as U∗γ ∈ Q(H

∗, ŨH) by 13.8.8, B.4.2, B.4.5, and I.1.6.5 say

that ŨH is the 7-dimensional Weyl module or its 6-dimensional quotient module.
Thus m(UH) ≤ 8.

By 13.8.18.2 and 13.8.11.1, U∗γ < V ∗γ . Thus m(U∗γ ) < m2(H
∗) = 3, so by

B.4.6.13, rU∗γ ,ŨH > 1. But by the choice of γ in case (2) of 13.8.8, m(U ∗γ ) ≥

m(UH/DH), and [Uγ , DH ] ≤ A1 by F.9.13.6, so we conclude A1 ≤ UH . Thus

H∗1 := CH∗(Ã1) = CH(A1)
∗ is a maximal parabolic of H∗, and U∗γ is elementary

abelian and normal in CH (A1)
∗. Therefore as m(U∗γ ) < 3, U∗γ

∼= E4 (cf. B.4.6.3).
Thus m(Dγ ∩UH) ≥ m([Uγ , UH ]) ≥ 3. Next by 13.7.4.2, QH/HC is H∗-isomorphic
to UH/CUH (QH), so 1 6= [CQH (A1)/HC , Uγ ] ≤ DγHC/HC , so Dγ 6≤ HC . Finally
as VH is abelian, VH ≤ HC , and by (2) and 13.8.4.5, H∗ ∼= G2(2)

′ or G2(2) is
faithful on VH/UH ; so as U∗γ

∼= E4, m((Dγ ∩ VH)UH/UH) ≥ m([VH/UH , Uγ ]) ≥ 3.
Thus as rU∗γ ,ŨH

> 1,

m(Uγ) > m(U∗γ ) +m((Dγ ∩ VH )UH/UH) +m(Dγ ∩ UH) ≥ 2 + 3 + 3 = 8,

contrary to the previous paragraph. ¤

Theorem 13.8.28. K∗ ∼= A6.

Until the proof of Theorem 13.8.28 is complete, assume G is a counterexample.

Then H∗ ∼= L4(2), L/O2(L) ∼= Â6, and m(UH) = 5 by 13.8.27.1. Recall G2 =

NG(V2), and set K2 := O2(NH(V2)), Q2 := O2(G2), and Ġ2 := G2/Q2. Set

U0 := 〈U
G2

H 〉 and V0 := 〈V G2

H 〉.

Since L/O2(L) ∼= Â6, by 13.5.4, I2 = O2(G1)L2,+ E G2 with O2(I2) =

CI2(V2) = I2 ∩Q2 and İ2 ∼= S3. Let g ∈ L2,+ −H , so that Ṽ g1 = Ṽ2.
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Lemma 13.8.29. (1) K2 ∈ C(G2) with K2/O2(K2) ∼= L3(2).

(2) G2 = K2L2,+T and Ġ2 = K̇2 × İ2 ∼= L3(2)× S3.
(3) U0 = VH ∩ V

g
H = UHU

g
H and U0/V2 is the tensor product of the natural

modules V/V2 and UH/V2 for İ2 and K̇2.

(4) V0 = VHV
g
HV

g2

H , and V0/U0 is the tensor product of V/V2 or V/V2 ⊕ F2

with the dual of UH/V2.
(5) VH/UH is the 6-dimensional orthogonal module for H∗ ∼= L4(2).

Proof. As ŨH is the natural module for H∗ ∼= L4(2), NH(V2)
∗ = CH∗(Ṽ2) is

the parabolic subgroup L3(2)/E8 of H
∗ stabilizing the point Ṽ2, so K2 ∈ C(H∩G2)

with K2/O2(K2) ∼= L3(2). As I2 E G2, and I2 acts transitively on V #
2 , G2 =

I2(H ∩G2) with H ∩G2 = K2T and [K̇2, İ2] = 1. Thus (1) and (2) hold.

Next UH/V2 is the natural module for K̇2
∼= L3(2). Thus as K̇2 E Ġ2, U0/V2

is the direct sum of I2-conjugates of UH/V2. Further UH = 〈V K2
3 〉 with V/V2 the

natural module for İ2, so as I2 E G2, U0/V2 is the direct sum of conjugates of
V/V2. Thus U0/V2 = UHU

g
H/V2 is the tensor product of V/V2 and UH/V2. Further

UgH = 〈V gK2

3 〉 ≤ VH , so U0 = UHU
g
H ≤ VH and so U0 = Ug0 ≤ VH ∩ V

g
H .

Let V̂H := VH/UH . Then V̂H = 〈V̂ H〉 with the maximal parabolic L∗1T
∗ of H∗

centralizing the point V̂ , and 〈V̂ K2〉 ∼= UgH/V2
∼= UH/V2 as a K2-module, so we

conclude from B.4.13 that (5) holds. In particular K2 is irreducible on VH/U0, so
either U0 = VH ∩ V

g
H or VH = V gH . In the latter case, both LT = 〈L2,+, L1T 〉 and

H act on VH , contrary to H 6≤M = !M(LT ). This completes the proof of (3).
By (5), VH/U0 is isomorphic to the dual of U0/UH as a K2-module, and by (3),

VH < V0. Thus (4) holds. ¤

Lemma 13.8.30. L0 has at least 9 noncentral 2-chief factors.

Proof. Recall V < UL = 〈ULH〉 ≤ O2(LT ) = Q by (7) and (2) of 13.8.4.
Let W be a normal subgroup of L maximal subject to being proper in UL, and set
ÛL := UL/W . As UH/V3 is a 2-dimensional irreducible for L0 E L, and UL = 〈ULH〉,

ÛL = 〈ÛLH〉 = [ÛL, L0] is a faithful irreducible for L+ := L/O2(L) ∼= Â6, and so
may be regarded as an F4-module on which L+

0
∼= Z3 acts by scalar multiplication.

In particular from the 2-modular character table for Â6, dimF4(ÛL) = 3 or 9, so to

complete the proof, it suffices to show dimF4(ÛL) > 3.

From 13.8.29.3, Ŝ2 := 〈Û
L2

H 〉
∼= 〈UL2

H 〉/V is of F4-dimension 2. Let Ŝ3 := 〈Ŝ
L1
2 〉;

from 13.8.29.5, Ŝ3/ÛL ∼= 〈UL1
0 〉/UHV is of F4-dimension 2, so dimF4(Ŝ3) = 3.

Finally by 13.8.29.4, L2,+ does not act on 〈UL1
0 〉/U0, so ÛL > Ŝ3, completing the

proof. ¤

Lemma 13.8.31. (1) A1 6≤ UH .
(2) Case (2) of 13.8.8 holds.
(3) [HC ,K] 6≤ VH ; and if K has a unique noncentral chief factor on HC/VH ,

it is not a 4-dimensional module for H∗ ∼= L4(2).

Proof. In case (1) of 13.8.8, A1 ≤ UH by 13.8.27.3, so to prove (2), it will
suffice to establish (1).

Assume (1) fails, so that A1 ≤ UH . Then as H is transitive on Ũ#
H , there

is k ∈ H with Ãk1 = Ṽ2 = V g1 ; and since [V3, QH ] = V1 by 13.7.3.6, we may
assume Ak1 = V g1 . Then as G1 = H by 13.8.27.2, γk = γ1g, so that by 13.8.29.3,
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Ukγ = UgH ≤ VH . Thus as VH is abelian, VH centralizes Ukγ , and hence also Uγ .
Therefore [UH , Uγ ] = 1, and hence case (1) of 13.8.8 holds.

Next V ∗γ 6= 1, so 1 6= V ∗kγ = V g∗H . However as Ṽ g1 = Ṽ2, V
g∗
H E CH∗(Ṽ2) = K∗2 ,

so V gH/E
∼= V g∗H = O2(K

∗
2 )
∼= E8, where E := QH ∩ V

g
H . But U0 = VH ∩ V

g
H ≤ E,

so E = U0 as m(V gH/E) = 3 = m(V gH/U0) by parts (3) and (5) of 13.8.29. Also
HC ≤ CG(A

k
1) ≤ NG(V

g
H ), so [HC , V

g
H ] ≤ HC ∩ V

g
H ≤ E = U0 ≤ VH , and hence

K = [K,V gH ] centralizes HC/VH . Thus to complete the proof of (1) and hence of
(2), it will suffice to establish (3).

Appealing to 13.8.29.5 and the duality in 13.7.4.2, K has the following noncen-
tral 2-chief factors on QH/HC and VH : The natural module ŨH , its dual QH/HC ,
and the orthogonal module VH/UH . Therefore L0 has six noncentral 2-chief factors

not in HC/VH : two on O2(L
∗
0), one each on QH/HC and ŨH , and two on VH/UH .

Therefore by 13.8.30, L0 has at least three noncentral chief factors on HC/VH , so
(3) holds and the proof of the lemma is complete. ¤

Lemma 13.8.32. (1) m(U∗γ ) = 1.
(2) m(Uγ ∩ VH) ≥ 3.
(3) A1 ≤ VH .

Proof. By 13.8.31.2, U∗γ 6= 1; thus m(UH ∩ Uγ) ≥ m([UH , Uγ ]) > 0. Further
by 13.8.29.5, no member of H∗ induces a transvection on VH/UH , so

m((Uγ ∩ VH)/(Uγ ∩ UH)) = m((Uγ ∩ VH)UH/UH) ≥ m([VH/UH , Uγ ] ≥ 2, (∗)

with equality only if (1) holds. In particular this establishes (2), and moving on
to the proof of (1), we may assume that m(Uγ ∩ VH ) ≥ 4. But then as m(U∗γ ) =
m(Uγ/(Uγ ∩ QH)) ≤ m(Uγ/(Uγ ∩ VH )) and m(Uγ) = 5, it follows again that
m(U∗γ ) = 1, completing the proof of (1). Thus (1) and (2) are established.

By (1) and 13.8.10, m(UH/DH) = 1, and we have symmetry between γ1 and
γ in the sense of Remark F.9.17. By 13.8.31.1, A1 6≤ UH , so by symmetry and
13.8.10.2, V1 6≤ Uγ , and Uγ induces transvections on UH with axis DH .

Let β ∈ Γ(γ); by F.7.3.2 there is y ∈ G with γ1y = γ and V y = Vβ . By 13.5.4.4,
[CG(V

y
3 ), V

y] ≤ A1, so as A1 6≤ UH ,

[CUH (V
y
3 ), V

y] ≤ UH ∩ A1 = 1. (∗∗)

But V y3 ≤ Uγ ≤ CH(DH), so Vβ = V y centralizes DH by (**). As this holds for
each β ∈ Γ(γ), Vγ centralizes DH . Therefore V ∗γ induces a group of transvections

on ŨH with axis D̃H . We saw that no member of H∗ induces a transvection on
VH/UH , so we conclude from 13.8.18.2 and 13.8.11.1 that U ∗γ < V ∗γ . By parts (1)
and (2) of F.9.13, V ∗γ ≤ O2(L

∗
1T
∗)x for some x ∈ H . So as L∗1T

∗ is the parabolic

subgroup of H∗ stabilizing the 2-subspace Ṽ3 of the 4-dimensional module ŨH ,
while V ∗γ centralizes the hyperplane D̃H of ŨH , we conclude that m(V ∗γ ) = 2. By

symmetry, EH = VH ∩Q
y
H is of corank 2 in VH , so as |UH : DH | = 2, EHUH/UH

is a hyperplane of VH/UH . Thus 1 6= [EHUH/UH , Uγ ] ≤ A1UH/UH by F.9.13.6,
establishing (3). ¤

We are now in a position to obtain a contradiction, and hence establish Theorem
13.8.28. Recall H∗ ∼= L4(2), m(UH) = 5, and L/O2(L) ∼= Â6. Now |QH : (Q ∩

QH)| = |QHQ : Q| ≤ |O2(L1T ) : Q|, and as L/O2(L) ∼= Â6, |O2(L1T )| = 4.
Next by 13.7.4.2, |QH/HC : CQH (V3)/HC | = |V3/V1| = 4. So as Q ∩ QH ≤
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CQH (V3), we conclude that HC ≤ CQH (V3) = Q ∩ QH ≤ Q. Thus HC centralizes
V , and hence HC also centralizes 〈V H〉 = VH . Therefore as A1 ≤ VH by 13.8.32.3,
HC ≤ CG(A1) = Gγ , since H = G1 by 13.8.27.2; thus [HC , Uγ ] ≤ HC ∩ Uγ . But
m(Uγ ∩ QH) = 4 by 13.8.32.1, and by 13.8.32.2, m(Uγ ∩ VH) ≥ 3. So m((Uγ ∩
HC)VH/VH) ≤ 1. Thus as [HC , Uγ ] ≤ HC ∩Uγ , K has at most one noncentral chief
factor on HC/VH , and by G.6.4, that factor is 4-dimensional if it exists. But this
contradicts 13.8.31.3. This completes the proof of Theorem 13.8.28.

By Theorem 13.8.28, case (a) of 13.8.27.1 holds: Namely L/O2(L) ∼= A6, H
∗ ∼=

A6 or S6, and ŨH is the natural module for K∗ on which L1 has two noncentral
chief factors, or its 5-dimensional cover.

Lemma 13.8.33. Case (2) of 13.8.8 holds; that is, Dγ < Uγ.

Proof. Assume instead that case (1) of 13.8.8 holds. By 13.8.27.3, DH = UH ,
Dγ = Uγ , V induces a group of transvections with center V1 on Uγ , Vγ 6≤ QH ,
and we have symmetry between γ1 and γ, (cf. the first part of Remark F.9.17),

so V ∗γ induces a transvection on ŨH with center Ã1, and A1 ≤ UH . As usual
choose g := gb ∈ 〈LT,H〉 with γ1g = γ. By F.9.13.7, [UH , Uγ ] = 1. Therefore
Uγ ≤ CG(V3) ≤MV by 13.5.4.4. By 13.8.5, H = KT and H∗ ∼= S6. In particular,
we can appeal to 13.8.6 and adopt the notation of that lemma. As [V, Uγ ] 6= 1,
we may pick g so that [V g3 , V ] 6= 1. Thus as [V3, V

g
3 ] ≤ [UH , Uγ ] = 1, 13.5.4.4 says

V1 = [V, V g3 ] and V̄
g
3 = 〈(5, 6)〉, so that L̄T̄ ∼= S6.

Notice that if m(ŨH) = 4 then Ã1 ≤ Ṽ h3 for some h ∈ H . Assume instead for

the moment that m(ŨH) = 5. Then Ã1 is of weight 2, while by 13.8.6.1, Ṽ3 consists
of vectors of weight 4, so A1 is not contained in an H-conjugate of V3. Thus as
V3 = V ∩ UH by 13.8.4.5, we conclude from 13.8.4.4 that b > 3 when m(ŨH) = 5.

We claim that UL is abelian; the proof will require several paragraphs. Assume
UL is nonabelian. Then b = 3 by (1) and (3) of 13.8.4, so by the previous paragraph,

m(ŨH) = 4 and A1 ≤ V h3 for some h ∈ H . Thus V1 = V h1 is orthogonal to A1 in

V h, so V1 is orthogonal to Ah
−1

1 in V , and 1 = [UH , Uγ ] = [UH , U
g
H ] = [UH , U

gh−1

H ].

Now V gh
−1

1 = Ah
−1

1 = V y1 for some y ∈ L, so as H = G1 by 13.8.27.2, we conclude

that Ugh
−1

H = UyH . Finally L1T is transitive on the points of V distinct from V1
and orthogonal to V1, and T is transitive on the points of V not orthogonal to V1;
so since we are assuming UL is nonabelian, [UH , U

l
H ] 6= 1 for some l ∈ L with V l1

not orthogonal to V1, and hence for all such V l1 by transitivity of T on this set.
Therefore U l∗H 6= 1: for otherwise UL ≤ QH , and hence UL ≤ QlH , so that by 13.7.3,
[UH , U

l
H ] ≤ V1 ∩ V l1 = 1, contrary to our choice of l.

Choose l with l2 ∈ Q. Then as V3 = V ∩ UH , W2 := V ∩ UH ∩ U lH is a
complement to V1 in V3, and to V1V

l
1 in V . Further X1 := O2(CL1(V1V

l
1 )) acts on

UH and U lH , with W2 = [W2, X1]. By 13.8.27, L1 has two nontrivial chief factors
on UH , so [UHV/V,X1] = UHV/V ∼= E4, and hence [U lHV/V,X1] = U lHV/V

∼=
E4. Then X1 is irreducible on U lHV/V , so as U l∗H 6= 1, U l∗H = O2(L

∗
1)
∼= E4 and

U lH ∩QH = V l3 = U lH ∩ V .
Next by 13.7.3.7, |HC : (HC ∩H

l)| ≤ 2, and as UL ≤ Q ≤ NG(HC) by 13.7.3,

[U lH , HC ∩H
l] ≤ U lH ∩HC ≤ U lH ∩QH = U lH ∩ V ≤ VH .

Since U l∗H = O2(L
∗
1)
∼= E4 does not centralize a hyperplane in any nontrivial irre-

ducible for K∗, we conclude that [HC ,K] ≤ VH . Further VH ≤ HC by 13.7.3.2, so
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that |VH : VH ∩H l| ≤ 2, and [U lH , VH ∩H
l] ≤ U lH ∩QH = U lH ∩ V with V UH/UH

of rank 1 by 13.8.4.5. Thus O2(L
∗
1) induces transvections with a common center

on (VH ∩H l)UH/UH of index at most 2 in VH/UH . So we conclude that K has at
most one nontrivial chief factor on VH/UH , and such a factor must be the natural
module on which L1 has one noncentral chief factor. So since L1 has two noncentral
chief factors on UH , and QH/HC is H-isomorphic to ŨH of rank 4 by 13.7.4.2, we
conclude that L1 has at most six noncentral 2-chief factors. However by 13.8.6.4, L1

has at least six noncentral chief factors on UL/V , and hence at least eight noncen-
tral 2-chief factors including those on O2(L̄1) and V . This contradiction establishes
the claim that UL is abelian.

Since UL is abelian, UL ≤ HC . Also we saw A1 ≤ UH , so UL ≤ CG(A1) =
Hg ≤ NG(Uγ) as H = G1. But also Uγ ≤ M , so UL and Uγ act quadratically on

each other. In particular, U g
−1∗
L ≤ Qg

−1∗
H ≤ O2(CH∗ (Ṽ

g−1

1 )), so m(Ug
−1∗
L ) ≤ 2, as

O2(CH∗(Ṽ
g−1

1 )) ∼= E8 is not quadratic on ŨH . Indeed as V 6≤ QgH , 1 6= V g
−1∗ ≤

Ug
−1∗
L , so |UL : V (UL∩Q

g
H)| ≤ 2. Thus as [UL∩Q

g
H , V

g
3 ] ≤ A1, there is a subgroup

B/V of index at most 2 in UL/V such that [V g3 , B/V ] ≤ A1V/V . In particular,
CUL/V (V

g
3 ) is of codimension at most 2 in UL/V , so as m(H∗, S) = 8 for the

Steinberg module S for H∗, we conclude from 13.8.6.4 that m(ŨH) = 5.
Define U1 and U0 as in 13.8.6.5, and recall that V ≤ U0. Assume first that

U0 < UL. Then as L1 is irreducible on UH/V3U1, V3U1 = UH ∩U0, so the image of
UH in UL/U0 is a T -invariant 4-group. Similarly define U2 and K2 as in 13.8.6.5,

and set U2,1 := 〈V K2

3 〉. Then Ũ2,1 = Ṽ ⊥2 in the 5-dimensional orthogonal space

ŨH , so U2,1/V2 ∼= E8 with |U2,1 : U1V3| = 2 and UH = 〈UL1
2,1〉. By 13.8.6.3,

U2 = [U2, L2], and by 13.8.6.5, m(U2) = 8, so U2/V2 = U2,1/V2 ⊕ U l2,1/V2 for

l ∈ L2 − H and U1U
l
1V ≤ U0 ∩ U2 with L2 irreducible on U2/U1U

l
1V

∼= E4. As

UH = 〈UL1
2,1〉 and UL > U0, U2 6≤ U0; so U0 ∩U2 = U1U

l
1V , and hence U2/(U2 ∩U0)

is also a T -invariant 4-group. We conclude just as in 13.8.6.4 that UL/U0 has a
Steinberg module as a quotient, and then obtain a contradiction as in the previous
paragraph.

Therefore U0 = UL. As UH = [UH , L1], UL = [UL, L]. By 13.8.6.5, UL/V =
U0/V is a quotient of the 15-dimensional permutation module on L/L1T ; so as
UL/V = [UL/V, L], G.5.3.3 says that either UL/V is L-isomorphic to V , or UL/V
has a quotient UL/E isomorphic to the 5-dimensional cover of V . Indeed as V g

3

centralizes a subspace of UL/V of codimension at most 2, in the latter case G.5.3
implies that V = E.

So m(UL/V ) = 4 or 5, and hence m(UL) = 8 or 9. If m(UL) = 8, then UL = U2

by 13.8.6.5, so K2 ≤ NG(UL) ≤ M = !M(LT ), and then H = 〈K2, L1T 〉 ≤ M ,
contrary to H ∈ Hz. Therefore m(UL/V ) = 5.

Let u1 ∈ U1 − V . Suppose U1 ≤ Z(Q). Then UL = U0 ≤ Z(Q). Also
W1 := 〈uL1 〉 is a quotient of the 15-dimensional permutation module on L/L1(T ∩L)
with W1/(W1 ∩ V ) ∼= UL/V of rank 5, so we conclude from G.5.3 that W1 is the
5-dimensional cover of a copy of V . This is contrary to Theorem 13.4.1 and our
choice of G as a counterexample to Theorem 13.8.1.

Thus U1 6≤ Z(Q), so that |Q : CQ(u1)| = 2. Now UL is generated by V and a
set I of 5 conjugates of u1, so

CQ(UL) =
⋂

i∈I

CQ(i).
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Therefore as |Q : CQ(u1)| = 2, m(Q/CQ(UL)) ≤ 5. Also CL(u1V/V ) = L1T , so
CLT (u1) is of index 2 in L1T . We conclude from G.5.3.3 that Q/CQ(UL) is a copy
of V as a L̄-module, or its 5-dimensional cover. Therefore L1 has one noncentral
2-chief factor on each of O2(L̄1), Q/CQ(UL), UL/V , and V . Let k and j be the
number of noncentral chief factors of L1 on CQ(UL)/UL and HC/UH , respectively;
thus L1 has n := 4 + k noncentral 2-chief factors. Next CQ(UL) ≤ HC , while the
two noncentral chief factors for L1 on UL are the two contained in UH , so k ≤ j.
On the other hand, L1 has two noncentral 2-chief factors on UH , and hence also
two on QH/HC by 13.7.4.2, and one on O2(L

∗
1), so that 5 + j = n = 4 + k. But

now j + 1 = k ≤ j, a contradiction. This contradiction completes the proof of
13.8.33. ¤

Lemma 13.8.34. (1) A1 ≤ UH and V1 ≤ Uγ .
(2) m(U∗γ ) = 1.
(3) O2(L

∗
1) 6≤ V ∗α , so m(V ∗γ ) ≤ 2.

Proof. By 13.8.33, case (2) of 13.8.8 holds. Then 1 6= V ∗α ≤ R∗1
∼= E4 or

E8. By 13.8.4.5, VH/UH is a nontrivial quotient of the 15-dimensional F2H
∗-

permutation module on H∗/L∗1T
∗, and by 13.8.4.6, V ∗α is quadratic on VH/UH . So

O2(L
∗
1) 6≤ V ∗α , and hence (3) holds. Further R∗1 = CH∗(Ũ1Ṽ3), where Ũ1 := CŨH (H)

and m(UH/U1V3) = 2.

Suppose that m(U∗γ ) > 1. Then as O2(L
∗
1) 6≤ V ∗α , m(U∗α) = 2 and [ŨH , Uα] =

Ũ1Ṽ3, so as [UH , Uα] ≤ Uα, U1V3 ≤ UαV1. Thus UH ∩Uγ is of codimension at most
3 in UH , so

m(DγUH/UH) = m(Dγ/(Dγ ∩ UH)) = m(Dγ)−m(Uγ ∩ UH)

= m(UH)−m(U∗γ )−m(Uγ ∩ UH) ≤ 1.

But [VH , Uγ ] ≤ VH ∩Uγ ≤ Dγ , and hence m([VH/UH , Uγ ]) ≤ 1. However by 13.7.7,
H∗ is faithful on VH/UH , whereas by G.6.4, U∗γ does not induce transvections with
a common center on any faithful F2H

∗-module. This contradiction shows that
m(U∗γ ) = 1, so (2) holds.

Assume that (1) fails. By 13.8.10.1, m(UH/DH) = 1, and we have symmetry
between γ1 and γ in the sense of Remark F.9.17. Therefore interchanging γ and
γ1 if necessary, we may assume that A1 6≤ UH , and hence by 13.8.10.2 that Uγ
induces transvections on UH with axis DH . Then as A1 6≤ UH , 13.7.3.7 says
[Vγ , DH ] ≤ A1 ∩ UH = 1. Thus V ∗γ induces transvections on ŨH with axis D̃H ,
so V ∗γ is of rank 1, and hence V ∗γ = U∗γ . Then by 13.8.9.2, V1 6≤ Uγ and UH
induces transvections on Vγ/Uγ with center V1Uγ/Uγ . Since V1 6≤ Uγ , UH induces
transvections on Uγ/A1 by 13.8.10.2. However by 13.8.4.5, Vγ/Uγ is a nontrivial
quotient of the 15-dimensional F2H

g-permutation module for Gγ/Qγ ∼= A6 or S6
on Hg/Lg1T

g. Thus as Lg1T
g is not the stabilizer of a point in Uγ/A1, Vγ/Uγ has

a quotient which is the conjugate of Uγ/A1 by an outer automorphism of Gγ/Qγ.
Therefore as UH induces transvections on Uγ/A1, it does not induce a transvection
on Vγ/Uγ , a contradiction. This completes the proof of (1) and of the lemma. ¤

We are now ready to complete the proof of Theorem 13.8.1. As A1 ≤ UH by
13.8.34.1, Ã1 ≤ Z(T̃ h) for some h ∈ H , and CH∗(Ã1) is a maximal parabolic of H∗

stabilizing a point of ŨH . Next by 13.8.34.1 we may apply 13.8.11.1 to conclude
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that U∗γ < V ∗γ . Thus as V ∗γ and U∗γ are normal in CH(A1)
∗ = CH∗(Ã1), it follows

that O2(L
h∗
1 ) ≤ V ∗γ . But this contradicts 13.8.34.3.

This final contradiction establishes Theorem 13.8.1.
Observe in fact that Theorems 13.3.16, 13.6.1, and 13.8.1 complete the treat-

ment of Hypothesis 13.3.1 for all possibilities for L/O2(L) (cf. 13.3.2.1) except
L3(2).

13.9. Chapter appendix: Eliminating the A10-configuration

This section eliminates the shadow of the group A10, by ruling out the existence
of M ∈M with M ∼= S4 wr Z2. We prove:

Theorem 13.9.1. There is no simple QTKE-group G such that there exists
T ∈ Syl(G) and M ∈ M(T ) satisfying M ∼= S4 wr Z2.

Throughout the section, we assume G, T , M is a counterexample to Theorem
13.9.1. As usual we will begin with a number of preliminary lemmas describing the
structure of M .

Observe that J(M) =M1×M2 withMi
∼= S4, andM

s
1 =M2 for s an involution

in M − J(T ). Let Ti := T ∩Mi and 〈t〉 := Z(T1). Notice Z(T ) = 〈z〉 is of order 2
where z := tts. Let A := O2(M), so that A ∼= E16. For X ⊆ G, let GX := CG(X),

and set G̃z := Gz/〈z〉.

Let Ĝ := A10 be the alternating group on Ω := {1, . . . , 10}, and M̂ the subgroup

of Ĝ permuting
{{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10}}.

There is an isomorphism α : M → M̂ such that T̂ := α(T ) ∈ Syl2(Ĝ) and M̂ ∈

M(T̂ ). Let M̂i := α(Mi), ẑ := α(z), etc. We may choose our isomorphism α so

that M̂1 = Ĝ5,...,10 and ẑ = (1, 2)(3, 4)(5, 6)(7, 8).
We will show that the 2-local subgroups and 2-fusion in G are the same as

that of Ĝ; this is a contradiction since G is quasithin while Ĝ is not. From time to
time, we use the identification α of M with M̂ to compute facts about M and its
subgroup T .

Lemma 13.9.2. (1) A(T ) = {Ai : 1 ≤ i ≤ 4}, with A1 := A, and B := A2 both
normal in T , while As3 = A4. Further J(T ) = T1×T2 = AB and A∩B = Z(J(T )).

(2) NG(J(T )) = T .
(3) A and B are weakly closed in T with respect to G. Hence fusion in A is

controlled by M = NG(A), and in B by NG(B).
(4) M = NG(A), a

G ∩ A = aM for each a ∈ A, |zM | = 9, and |tM | = 6.
(5) t /∈ zG.
(6) J(T ) ∈ Syl2(Gt).

Proof. Part (1) is an easy calculation. As M ∈ M, M = NG(A). Let
X := NG(J(T )) and X

∗ := X/J(T ). Then X acts on A(T ), and as M = NG(A),
T = NM (J(T )) = NX(A), so J(T ) is the kernel of the action of X on A(T ). Thus
X∗ ≤ Sym(A(T )) ∼= S4 with Z2

∼= T ∗ ∈ Syl2(X∗), so either X = T , or X∗ ∼= S3.
The latter is impossible, as Aut(J(T )) is a 2-group. Thus (2) holds.

As J(T ) is weakly closed in T , and each member of A(T ) is normal in J(T ), we
may apply the Burnside Fusion Lemma A.1.35 to these normal subsets to conclude
for each D ∈ A(T ) that DG ∩ J(T ) = DNG(J(T )), and hence DG ∩ J(T ) = DT

by (2). In particular as A and B are normal in T , they are weakly closed in T .
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Hence (3) holds by application of the Burnside Fusion Lemma to the elements of
A and B. Next as M = NG(A), (4) follows from (3) and the identification α given
after the statement of Theorem 13.9.1, which says A is the orthogonal module for
M/A ∼= O+

4 (2) with zM the singular points and tM the nonsingular points. Now
(4) implies (5), and then as Z(T ) = 〈z〉 has order 2, t is not 2-central by (5), so (6)
holds. ¤

From now on let B be the group defined in 13.9.2.1, and set K := NG(B). As
B E T by that result, K ∈ H(T ) ⊆ He by 1.1.4.6.

In the following lemma, “diagonal involutions” in J(M) are those projecting
nontrivially on both factors of the decomposition J(M) =M1×M2. The next two
lemmas follow from straightforward calculations.

Lemma 13.9.3. M has 6 classes of involutions ∆i, 1 ≤ i ≤ 6, where

(1) ∆1 := zM consists of the diagonal involutions in A.
(2) ∆2 := tM = (A ∩ T1)# ∪ (A ∩ T2)#.
(3) ∆3 consists of the involutions in M1 −A and M2 −A.
(4) ∆4 consists of the diagonal involutions i1i2 with ik ∈Mk ∩∆3, k = 1, 2.
(5) ∆5 consists of the diagonal involutions ij with i ∈Mk∩∆3 and j ∈M3−k∩

∆2, k = 1, 2.
(6) ∆6 := sM consists of the involutions in M − J(M).

Lemma 13.9.4. B ∩∆1 = {z}, |B ∩∆2| = 2, and |B ∩∆i| = 4 for i = 3, 4, 5.
Further each set is an orbit under T .

Lemma 13.9.5. Gz > T , so Gz 6≤M .

Proof. Assume that Gz = T . We will obtain a contradiction using Thompson
Transfer A.1.36 on s, based on an analysis of fusion which will eventually include
the explicit identification of O2(Gt).

First CM (s) ∼= Z2 × S4 is not a 2-group, so s /∈ zG. Suppose that z is weakly
closed in B with respect to G. Then zG ∩M = ∆1 = zM by 13.9.4 and 13.9.3, and
CG(z) = T ≤ M by hypothesis. Therefore by 7.3.1 in [Asc94], M is the unique
fixed point of z on G/M . Hence by 7.4.2 in [Asc94], sG ∩M = sM . Therefore as
sM ⊆M − J(M), s /∈ O2(G) by Thompson Transfer, contradicting G simple.

Therefore z is not weakly closed in B with respect to G. On the other hand,
CM (i) is not a 2-group for i ∈ ∆2 ∪∆3, so

zG ∩M ⊆ ∆1 ∪∆4 ∪∆5 (∗)

by 13.9.3. Also by 13.9.2.3, zG ∩ B = zK . Thus by (*), and since the sets in
13.9.4 are T -orbits, zK is of order 5 or 9, so in particular, T < K. Set V := 〈zK〉
and K∗ := K/CK(V ). Then O2(K

∗) = 1 by B.2.14, so that O2(K) ≤ CK(V ).
Also CK(V ) is a 2-group as T = Gz , so CK(V ) = O2(K). On the other hand
if A ≤ O2(K), then J(T ) = AB ≤ O2(K), so K ≤ NG(J(T )) = T by 13.9.2.2,
contrary to T < K. Thus A 6≤ CK(V ), and hence by B.2.5, V is an FF-module for
K∗. Then 3 ∈ π(K∗) by Theorem B.5.6, while CK(z) = T is a 2-group, so

|K : T | = |zK | = 9

rather than 5. Hence the inclusion in (*) is an equality, and as B = 〈∆4∩B,∆5∩B〉,
V = B ∼= E16. Then as B = CT (B), we conclude that O2(K) = B. Inspecting the
subgroups of GL4(2) with Sylow group D8 and of order 72, we conclude B is the
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orthogonal module forK/B ∼= O+
4 (2) and |t

K | = 6. Therefore tG∩J(M) = ∆2∪∆3

in view of 13.9.4. Thus all involutions in J(T ) are fused to t or z. So writing I(S)
for the set of involutions in a subgroup S of G:

(!) tG ∩ J(T ) = I(T1) ∪ I(T2). So T1 and T2 are the subgroups S of J(T )
maximal subject to the property that I(S) ⊆ tG. In particular each 4-subgroup of
J(T ) consisting of members of tG contains either t or ts, and lies in either T1 or T2.

Set X1 := O2(CM (t)) = O2(M2), X2 := O2(CK(t)), X := O2(Gt), and Ḡt :=
Gt/〈t〉. Thus Xi ≤ X . We begin the explicit determination of X mentioned earlier.
Recall J(T ) ∈ Syl2(Gt) by 13.9.2.6.

For i = 1, 2, Ai is the orthogonal module for NG(Ai)/Ai, with t
NG(Ai) the set of

nonsingular vectors in Ai, soXi
∼= A4 with O2(Xi) = Ai∩Xi and t /∈ O2(Xi)

# ⊆ tG.
Thus we conclude from (!) that O2(Xi) ≤ T2, so that O2(Xi) = Ai ∩ T2 = Xi ∩ T2,
and hence T2 = O2(X1)O2(X2) ≤ X .

If U is a 4-subgroup of T1 and g ∈ Gt with Ug ≤ J(T ), then t ∈ U g , so Ug ≤ T1
by (!). Hence I(T1) is strongly closed in the Sylow group J(T ) with respect to Gt, so

as T̄1 ≤ Z(J(T )), NḠt(T̄1) controls fusion in J(T ) by the Burnside Fusion Lemma

A.1.35. Then as Aut(T1) is a 2-group and T̄1 is central in the Sylow group J(T ),

each element of T̄1 is strongly closed in J(T ) with respect to Ḡt; so by Thompson
Transfer, T̄1 ∩ X̄ = 1 as X = O2(X). Then 〈t〉T2 ∈ Syl2(〈t〉X), so by Thompson
Transfer, t /∈ X , and we conclude T1 ∩X = 1. Hence T2 ∈ Syl2(X) as T2 ≤ X and
J(T ) = T1T2 is Sylow in Gt. Further CX (tz) = CX (z) = T ∩ X = T2 ∼= D8, and
from the action of the Xi on the O2(Xi), X has one class of involutions represented
by tz. Thus by I.4.1, X ∼= L3(2) or A6. In particular the involutions in X = O2(Gt)
are in tG.

As G is simple, by Thompson Transfer, sG ∩ J(T ) 6= ∅. We showed that z, t
are representatives for the G-classes of involutions in J(T ), and that s /∈ zG. Thus
s ∈ tG. We also saw that O2(CM (s)) ∼= A4, with I(O2(CM (s))) ⊆ zG. This is
impossible, as we saw I(O2(Gt)) ⊆ tG. This contradiction completes the proof of
13.9.5. ¤

Recall Ĝ := A10 and set Q̂ := O2(O
2(Ĝẑ)). We may check directly from the

structure of A10 that Q̂ ∼= Q2
8 and J(Q̂/〈ẑ〉) = Q̂/〈ẑ〉 ∼= E16. Let Q := α−1(Q̂).

Since α :M → M̂ is an isomorphism:

Lemma 13.9.6. Q ∼= Q2
8 and Q̃ = J(T̃ ) ∼= E16.

Furthermore from the structure of A10, Ĝẑ/Q̂ ∼= S3×Z2. We wish to establish
analogous statements in G, starting with:

Lemma 13.9.7. Gz,t = J(T ).

Proof. First by 13.9.2.6, J(T ) ∈ Syl2(Gt). As z ∈ Z(T ), F ∗(Gz) = O2(Gz)
by 1.1.4.6, so F ∗(Gt,z) = O2(Gt,z) by 1.1.3.2; then setting G∗t,z := Gt,z/〈t, z〉, we
obtain F ∗(G∗t,z) = O2(G

∗
t,z) from A.1.8. As the Sylow group J(T )∗ of G∗t is abelian,

J(T )∗ ≤ CG∗t,z (O2(G
∗
t,z)) ≤ O2(G

∗
t,z),

so J(T ) = O2(Gt,z). Then the lemma follows from 13.9.2.2. ¤

Lemma 13.9.8. (1) Q E Gz and Gz/Q ∼= S3 × Z2.
(2) B E Gz, and hence Gz ≤ K.
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Proof. We claim first that Q E Gz . Let Qz := O2(Gz). By G.2.2 with 〈z〉,
〈t, z〉, 1 in the roles of “V1, V , L”, Ũ := 〈t̃Gz〉 ≤ Ω1(Z(Q̃z)) and Ũ ∈ R2(G̃z). Now

CGz(Ũ)/CGz,t(Ũ) is of order at most 2, so by 13.9.7, CG̃z (Ũ) is a 2-group, and

hence Q̃z = CG̃z(Ũ). Let G∗z := Gz/Qz, so that O2(G
∗
z) = 1 and G∗z ≤ GL(Ũ).

If Q ≤ Qz, then Q̃ = J(Q̃z) by 13.9.6, so thatQ E Gz, as claimed. Thus we may

assume Q 6≤ Qz, so in particularm(Ũ) < m(J(T̃ )) = 4 by 13.9.6. Further using the

identification α, no element of T̃ induces a transvection on Q̃; so if |Q : Q∩Qz| = 2,

then Ũ ≤ CT̃ (Q̃∩ Q̃z) ≤ CT̃ (Q̃), and then Q̃ ≤ CT̃ (Ũ) = Q̃z by the first paragraph,

contrary to assumption. Thus |Q∗| > 2, so m(Ũ) > 2 and hence m(Ũ) = 3. Then

G∗z ≤ GL(Ũ) = L3(2), with Sylow group T ∗ of order at least 4 and O2(G
∗
z) = 1, so

we conclude G∗z = GL(Ũ). Then Gt,z has order divisible by 3, contrary to 13.9.7,
completing the proof of the claim.

By the claim, Q E Gz. In particular as t ∈ Q, we have U ≤ Q ≤ Qz. Now
CG̃z(Q̃) ≤ CG̃z(Ũ) = Q̃z, so as Q̃ is self-centralizing in T̃ , we conclude CG̃z (Q̃) = Q̃.

Hence G′z := Gz/Q lies in the orthogonal group O(Q̃) ∼= O+
4 (2) with Sylow group

T ′ ∼= E4. As T < Gz by 13.9.5, we conclude that either (1) holds, or G∗z
∼= S3×S3.

In the latter case Gz is transitive on the involutions in Q− 〈z〉. This is impossible
as A ∩ Q ∼= E8 contains an element of ∆1, and hence t is fused into zG in Gz,
contrary to 13.9.2.5. This completes the proof of (1).

Let b ∈ B−Q. As B E T and m([Q̃, b]) = 2, [b,Q] = B∩Q ∼= E8. Similarly for
a ∈ A −Q, [Q, a] = A ∩ Q ∼= E8. Thus a and b interchange the two Q8-subgroups
Q1 and Q2 of Q. Now T/Q ∼= E4 has three subgroups Ei/Q, 1 ≤ i ≤ 3, of order
2, with E1 := NT (Q1). Then Qz 6= E1, since (1) shows that Qz/Q centralizes an
a-invariant subgroup of Gz/Q of order 3, whereas E1/Q does not. Furthermore
E1 is not AQ or BQ as we saw these subgroups interchange Q1 and Q2. Let
AQ =: E2; then CAQ([Q, a]) ∼= E16 and [Q, a] = [Q, i] for each i ∈ AQ − Q.
Therefore A = CAQ([Q, a]) and BQ 6= AQ. Thus BQ = E3. As M = NG(A) and
T = CM (z) < Gz by 13.9.5, A is not normal in Gz; therefore A 6≤ Qz as A is weakly
closed in T by 13.9.2.3. Thus BQ = E3 = Qz, and then B E Gz , as B is weakly
closed in T by 13.9.2.3. This completes the proof of 13.9.8. ¤

Lemma 13.9.9. (1) B is the natural module for K/B ∼= O−4 (2).
(2) zK and tK are of order 5 and 10, respectively, and afford the set of singular

and nonsingular points in the orthogonal space B.
(3) zG ∩M = ∆1 ∪∆3 ∪∆6.
(4) tG ∩M = ∆2 ∪∆4 ∪∆5.
(5) G has two classes of involutions with representatives z and t.

Proof. First Q = 〈s〉[J(T ), s] with [J(T ), s] = CJ(T )(s)〈t〉. This allows us to
calculate that T has four orbits Γi, 1 ≤ i ≤ 4, on the set Γ of 18 involutions in
Q − 〈z〉: Γ1 := {t, tz} ⊆ ∆2, Γ2 ⊆ ∆1 of order 4, Γ3 := sT of order 8 containing
s ∈ ∆6, and Γ4 := B ∩ ∆4 of order 4. On the other hand, from 13.9.8.1, Gz has
two orbits on Γ: Γ1 of length 6, and Γ2 of length 12, with t ∈ Γ1 as 〈t̃〉 = Z(T̃ ). As
t /∈ zG ⊇ ∆1 ⊇ Γ2, we conclude

Γ1 = Γ1 ∪ Γ4 = tG ∩Q and Γ2 = Γ2 ∪ Γ3 = zG ∩Q− {z}. (∗)

In particular ∆4 ⊆ tG. Next M/O2(M) ∼= D8; let M0 be the subgroup of M of
index 2 with M0/O

2(M) ∼= Z4. Then ∆1 ∪∆2 ∪∆4 is the set of involutions in M0,
so each is in zG ∪ tG. Hence (5) follows from Thompson Transfer.
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Next by 13.9.8 and (*), Gz ≤ K and B ∩ Q = 〈z, tGz〉. We conclude using
13.9.8.1 that the orbits of Gz on B# are Σ0 := {z}, Σ1 := Γ1 of length 6, and two
orbits Σi, i = 2, 3, on B −Q of length 4. Then since Γ4 = B ∩∆4 ⊆ Q, appealing
to 13.9.4, we may choose notation so that Σ2 = B ∩∆3 and Σ3 = B ∩∆5.

By 13.9.2.3, K controls fusion in B, so it follows from (5) that the Gz-orbit Σ3

is fused to z or t under K. In particular, Gz < K. Thus there are three possibilities
for zK : {z}∪Σ3, {z}∪Σ2, or {z}∪Σ2 ∪Σ3—of order 5, 5, or 9, respectively. Now
by 13.9.7, CG(B) = CJ(T )(B) = B, so K/B ≤ GL(B). As |GL4(2)| is not divisible

by 27, while 3 divides the order of CK(z) by 13.9.8, we conclude |zK | = 5 rather
than 9. Set K∗ := K/B; then CK(z)∗ = G∗z

∼= S4 by 13.9.8. Further B = 〈Σi〉
for i = 2, 3, so B is the kernel of the action of CK(z) on Σ2 and Σ3. We conclude
K∗ acts faithfully as S5 on zK . As K has orbits of length 5 and 10 on B#, it
follows that B is the natural module for K∗ ∼= O−4 (2), with z

K the singular points
of the orthogonal space B and tK the nonsingular points. This establishes (1) and
(2). Also if k ∈ K − Gz then zzk ∈ tK , while if zk ∈ ∆5, then zzk ∈ ∆5. Thus
Σ3 = B ∩∆5 6⊆ zK , so zK = {z} ∪ Σ2 = {z} ∪ (B ∩∆3), and ∆5 ∩ B = Σ3 ⊆ tK .
Now it follows using (*) that (3) and (4) hold. ¤

Lemma 13.9.10. Let E := T1 ∩A = O2(M1). Then E centralizes O2(CK(t)) ∼=
A4.

Proof. From the structure of K described in 13.9.9, and as J(T ) ∈ Syl2(Gt)
by 13.9.2.6, CK(t) = R1×X , where t ∈ R1

∼= D8, and X ∼= S4 with O2(X)# ⊆ tK .
Let R2 := T ∩X . Then T1 × T2 = J(T ) = R1 × R2 with 〈t〉 = [R1, R1] = [T1, T1],
〈ts〉 = [R2, R2] = [T2, T2], and z = tts. Now by the Krull-Schmidt Theorem A.1.15,
Ti〈z〉 = Ri〈z〉 for each i = 1, 2. Therefore E ≤ T1 ≤ R1〈z〉.

Suppose E 6≤ R1. Then there is e ∈ E − 〈t〉 with ez ∈ R1. As E ∩ B = 〈t〉,
e 6∈ B and hence ez 6∈ B. Further ez ∈ zM by 13.9.3.1, so ez = zg ∈ (R1 ∩ zG)−B
for some g ∈ G. Then as X centralizes zg, from the description of Gz in 13.9.8,
O2(X) = [O2(X), O2(X)] ≤ Qg . So as O2(X)# ⊆ tK , it follows from (*) in the
proof of 13.9.9.1 that

U := 〈tG ∩Qg〉 = 〈zg〉 ×O2(X).

By 13.9.8, 〈tGz ∩ Q〉 = B ∩ Q, while CG(B ∩ Q) ≤ Gz,t = J(T ) by 13.9.7, so
we conclude U = Bg ∩ Qg and CG(U) ≤ CJ(T )g (U) = Bg . Now CR1O2(X)(U) =
CR1O2(X)(z

g) ∼= E16
∼= CG(U), so Bg = CR1O2(X)(U) ≤ K = NG(B). Hence

Bg = B as B is weakly closed in T by 13.9.2.3, contradicting zg /∈ B.
This contradiction shows thatE ≤ R1. Hence E centralizesO2(X) =O2(CK(t)) ∼=

A4. ¤

We are now in a position to prove Theorem 13.9.1. The argument will be much
like that in the proof of 13.9.5.

Let E be as in 13.9.10, and recall GE = CG(E). As J(T ) ∈ Syl2(Gt) by
13.9.2.6 and t ∈ E E J(T ), E × T2 = CJ(T )(E) ∈ Syl2(GE). Let H := O2(GE),

H1 := O2(M2), and H2 := O2(CK(t)). Thus Hi
∼= A4 centralizes E, using 13.9.10

in the case of H2. Therefore Hi ≤ H . Furthermore O2(H1) = T2 ∩ A, while
O2(H2) = H2∩B, with O2(H1)∩O2(H2) = 〈tz〉. Therefore as tz ∈ O2(H2)

# ⊆ tG,
O2(H2) ≤ T2, so asH2∩B 6≤ A, O2(H2) normalizes but does not centralize, O2(H1),
and then TH := O2(H1)O2(H2) ∼= D8. As Hi ≤ H , TH ≤ H . As E ≤ Z(H), by
Thompson Transfer, E∩H = 1, so that TH ∈ Syl2(H). As all involutions in TH are
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fused under H1 and H2, H has one class of involutions. Further CGt(z) = J(T ) by
13.9.7, so CH(tz) = CH (z) = J(T )∩H = TH ∼= D8. Therefore by I.4.1, H ∼= L3(2)
or A6.

Now M1 ≤ NG(E) ≤ NG(H), and M1 centralizes O2(M2) = H1
∼= A4, so from

the structure of Aut(H), O2(M1) ≤ CG(H), and indeed M1 centralizes H if H ∼=
L3(2). Therefore asm3(M1H) ≤ 2 since NG(H) is an SQTK-group,H ∼= L3(2) and
M1H =M1×H . But by 13.9.9.3, there is zg ∈M1−O2(M1), so L3(2) ∼= H ≤ Ggz ,
contrary to 13.9.8.1. This contradiction completes the proof of Theorem 13.9.1.



CHAPTER 14

L3(2) in the FSU, and L2(2) when Lf (G,T) is empty

The previous chapter reduced the treatment of the Fundamental Setup (3.2.1)
to the case L̄ ∼= L3(2)—which we handle in this chapter. This in turn reduces the
proof of the Main Theorem to the case Lf (G, T ) = ∅.

Recall that the case in the FSU where L̄ ∼= A5 is actually treated last in the
natural logical order, but because of similarities with the case L̄ ∼= A6, those cases
were treated together in the previous chapter; this was accomplished by introducing
assumption (4) in Hypothesis 13.3.1.

In this chapter it will again be convenient to take advantage of some similarities
in the treatment of two small linear groups: namely between the case L̄ ∼= L3(2)
for L ∈ Lf (G, T ), and suitable L ∈ M(T ) such that LT/O2(LT ) ∼= L2(2) acts
naturally on some 2-dimensional member of R2(LT ). The latter situation is the
most difficult subcase of the case Lf (G, T ) = ∅, which of course remains after the
Fundamental Setup is treated. As a result, we begin this chapter with several
sections providing preliminary results on the case Lf (G, T ) = ∅, and in particular
on the subcase with L/CL(V ) ∼= L2(2).

14.1. Preliminary results for the case Lf (G,T) empty

As usual, T ∈ Syl2(G) and Z := Ω1(Z(T )).
This chapter includes the beginning of the treatment of the case Lf (G, T ) = ∅.

The first few results below are based only on that assumption, but afterwards we
will assume the stronger Hypothesis 14.1.5.

We use the following notation through the section:

Notation 14.1.1. Let E := Ω1(Z(J(T ))), M ∈ M(T ), V ∈ R2(M), and
M̄ :=M/CM (V ).

Recall from section A.5 of Volume I that for H ∈ H(T ), in this section we
deviate from our usual meaning of V (H) in definition A.4.7, instead using the
meaning in notation A.5.1, namely

V (H) := 〈ZH〉.

Recall the partial ordering on M(T ) given by M1
<
∼M2 whenever

M1 = CM1(V (M1))(M1 ∩M2).

Recall V (H) ∈ R2(H) by B.2.14.
The first result below does not even require the hypothesis Lf (G, T ) = ∅:

Lemma 14.1.2. Assume J(T ) ≤ CM (V ) and set S := Baum(T ). Then
(1) V ≤ E and S = Baum(CT (V )).
(2) Assume either

975
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(a) M is maximal in M(T ) under
<
∼ and V = V (M), or

(b) V = 〈(V ∩ Z)M 〉, and M is the unique maximal member of M(T )

under
<
∼.

Then M = !M(NM (S)) and C(G,S) ≤M .

Proof. Part (1) follows from B.2.3.5. Assume one of the hypotheses of (2).
Then M = !M(NM (CT (V )) = !M(NM (S)) by A.5.7.2, so that C(G,S) ≤M . ¤

The next two preliminary results do assume Lf (G, T ) = ∅:

Lemma 14.1.3. Assume Lf (G, T ) = ∅. Then H∞ ≤ CH (U) for each H ∈ H(T )
and U ∈ R2(H).

Proof. By 1.2.1.1,H∞ is the product of groups L ∈ C(H). Then L ∈ L(G, T ).
By hypothesis, L /∈ Lf (G, T ), so by 1.2.10, [U,L] = 1. ¤

Lemma 14.1.4. Assume Lf (G, T ) = ∅, M is maximal in M(T ) under
<
∼, and

J(T ) ≤ CM (V (M)). Then M is the unique maximal member of M(T ) under
<
∼.

Proof. Let S := Baum(T ). By 14.1.2.2, C(G,S) ≤M andM = !M(NM (S)).
In particular NG(J(T )) ≤M .

Let M1 ∈M(T )− {M}, and V := V (M1). If [V, J(T )] = 1, then by a Frattini

Argument, M1 = CM1 (V )NM1(J(T )), so we conclude M1
<
∼M as NG(J(T )) ≤M .

Hence we may assume [V, J(T )] 6= 1. Set M∗
1 :=M1/CM1(V ) and I := J(M1).

By a Frattini Argument, M1 = INM1(J(T )) = I(M1∩M), so it will suffice to show
that I = CM1(V )(I ∩M). By 14.1.3, M∗

1 is solvable, so by Solvable Thompson
Factorization B.2.16, I∗ = I∗1 × · · · × I∗s with I∗i

∼= S3, and s ≤ 2 by A.1.31.1.

Now I∗ ≤ O2′(I∗T ∗), and by B.6.5, O2′(IT ) is generated by minimal parabolics H
above T , so it will suffice to show that H ≤M for those H with H∗ 6= 1. We apply
Baumann’s Lemma B.6.10 to H to conclude S ∈ Syl2(O

2(H)S). Then we apply
Theorem 3.1.1 with NM (S), S in the roles of “M0, R”, and as M = !M(NM (S)),
we conclude that H ≤M as required. ¤

We next discuss the basic hypothesis which we will use during the bulk of our
treatment of the case Lf (G, T ) empty:

The final result in this chapter, Theorem D (14.8.2), determines the QTKE-
groups G in which Lf (G, T ) 6= ∅. Then in the following chapter we determine
those QTKE-groups G such that Lf (G, T ) = ∅. As in the previous chapters on the
Fundamental Setup (3.2.1), we may also assume that |M(T )| > 1, since Theorem
2.1.1 determined the groups for which that condition fails. Finally we divide our
analysis of groups G with Lf (G, T ) = ∅ into two subcases: the subcase where
|M(CG(Z))| = 1, and the subcase where |M(CG(Z))| > 1. The second subcase is
comparatively easy to handle, perhaps because all the examples other than L3(2)
and A6 occur in the first subcase.

Thus in this section, and indeed in most of those sections in this and the
following chapter which are devoted to the case Lf (G, T ) empty, we assume the
following hypothesis:

Hypothesis 14.1.5. G is a simple QTKE-group, T ∈ Syl2(G), and

(1) Lf (G, T ) = ∅.
(2) There is Mc ∈ M(T ) satisfying Mc = !M(CG(Z)).
(3) |M(T )| > 1.
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Lemma 14.1.6. (1) M∞ ≤ CM (V ).
(2) L∗(G, T ) = C(Mc), so that Mc = !M(〈K,T 〉) for each K ∈ C(Mc).
(3) For each H ∈ H(T ), H∞ ≤ CG(Z) ≤Mc.

Proof. Part (1) follows from 14.1.3, and (3) follows from 14.1.3 applied to
V (H), using Hypothesis 14.1.5.2.

Let L ∈ L(G, T ). Then 〈L, T 〉 ∈ H(T ), so L ≤ Mc by (3). Therefore if
L ∈ L∗(G, T ), then by 1.2.7.3, NG(〈LT 〉) = !M(〈L, T 〉) = Mc, and hence L ∈
C(Mc). Conversely let L ∈ C(Mc) and embed L ≤ K ∈ L∗(G, T ). We just showed
K ∈ C(Mc), so L = K and hence L ∈ L∗(G, T ). Thus (2) is established. ¤

Lemma 14.1.7. Assume J(T ) 6≤ CM (V ), and either M 6=Mc or |Z| = 2. Then
either

(1) m(V ) = 2, M̄ = GL(V ) ∼= L2(2), and E ∩ V = Z is of order 2, or
(2) m(V ) = 4 and M̄ ∼= O+

4 (V ). Thus M̄ = (Ȳ1× Ȳ2)〈t̄〉, where Ȳi ∼= L2(2), t̄ is
an involution interchanging Ȳ1 and Ȳ2, and V = V1 × V2, where Vi := [V, Yi] ∼= E4,
and E ∩ V of order 4 contains Z of order 2.

Proof. Set Y := J(M). By 14.1.6.1, M̄ is solvable; so by Solvable Thompson
Factorization B.2.16 Ȳ = Ȳ1×· · ·×Ȳr with Ȳi ∼= L2(2) and V = V1×· · ·×Vr×CV (Y ),
where Vi := [V, Yi] ∼= E4 for the preimage Yi of Ȳi. As M is an SQTK-group, r ≤ 2
by A.1.31.1. Thus either M̄ = Ȳ × CM̄ (Ȳ ), or r = 2 and M̄ = (Ȳ × CM̄ (Ȳ ))〈t̄〉,
where t interchanges Ȳ1 and Ȳ2. Then as EndȲ (Vi) = F2, CM (Ȳ ) centralizes [V, Y ].

Next Z ∩ [V, Y ] 6= 1 and [V, Y ] is T -invariant, so by 14.1.5.2,

CM (Ȳ ) ≤ CM ([V, Y ]) ≤ CM (Z ∩ [V, Y ]) ≤Mc.

Suppose that CV (Y ) 6= 1. Then CZ(Y ) 6= 1, so |Z| > 2, and Y ≤ CG(CZ(Y )) ≤
Mc. Therefore M = CM (Ȳ )Y T ≤ Mc, and hence M = Mc, contrary to our
hypothesis that M 6=Mc when |Z| > 2.

Therefore CV (Y ) = 1 so that [V, Y ] = V . Then CM̄ (Ȳ ) centralizes V , so that
CM̄ (Ȳ ) = 1. Hence if r = 1, then (1) holds, so we may assume r = 2. If Ȳ < M̄ ,
then (2) holds, so we may assume M̄ = Ȳ = Ȳ1 × Ȳ2. But then Zi := Z ∩ Vi 6= 1,
so |Z| = 4 and Y3−i ≤ CG(Zi) ≤ Mc, so that M = CM (V )Y1Y2 ≤ Mc, and thus
M =Mc, again contrary to our choice of M when |Z| > 2. ¤

Lemma 14.1.8. Assume M 6= Mc, X̄ ≤ M̄ is T -invariant of odd order, and
X 6≤Mc. Then V = [V,X ].

Proof. As X̄ is of odd order, V = [V,X ] × CV (X). Suppose CV (X) 6= 1.
As X̄ is T -invariant, CZ(X) 6= 1. But then by 14.1.5.2, X ≤ CG(CZ(X)) ≤ Mc,
contrary to hypothesis. ¤

Lemma 14.1.9. If M is the unique maximal member of M(T ) under
<
∼, then

M 6=Mc.

Proof. Assume M = Mc. By uniqueness of M and the definition of
<
∼, for

each M1 ∈ M(T ) we have

M1 = CM1 (V (M1))(M ∩M1) ≤M

since CG(V (M1)) ≤ CG(Z) ≤ Mc = M . This is impossible as |M(T )| > 1 by
14.1.5.3. ¤
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Lemma 14.1.10. AssumeM has a subnormal A3-block X, and O2(M) ≤ R ≤ T
such that X = [X, J(R)]. Then M =Mc and |Z| > 2.

Proof. Let X0 := 〈XM 〉. Thus as m3(M) ≤ 2, either X0 = X , or X0 =
X1 × X2 with X = X1 while X2 = Xt for t ∈ T − NM (X). Set K := CM (X0).
As X = [X, J(R)] and O2(M) ≤ R, AutX0T (X0) = Aut(X0), so as Z(X0) = 1 we
conclude

M = (K ×X0)T. (∗)

Since Z0 := Z ∩ [O2(X0), X0] 6= 1, K ≤ CG(Z0) ≤ Mc = !M(CG(Z)) by 14.1.5.2.
Now if CT (X0) 6= 1, then CZ(X0) 6= 1, so |Z| > 2 and X0 ≤ CG(CZ(X0)) ≤Mc =
!M(CG(Z)). Then M =Mc by (*), so the lemma holds.

Therefore we may assume that CT (X0) = 1. Then as F ∗(M) = O2(M), we
conclude from (*) that K = 1. Thus as AutX0T (X0) = Aut(X0), M = X0T ∼= S4
or S4 wr Z2. In the first case, T ∼= D8, so G ∼= L3(2) or A6 by I.4.3. But then
T = CG(Z), contrary to Hypothesis 14.1.5. In the second case, Theorem 13.9.1
supplies a contradiction. ¤

Lemma 14.1.11. There exists a nontrivial characteristic subgroup C2 := C2(T )
of Baum(T ), such that for each M ∈M(T ), either

(1) M = CM (V (M))NM (C2), or
(2) M =Mc and |Z| > 2.

Proof. Let V := V (M). By 14.1.5.2, Mc = !M(CG(Z)), so CM (V ) ≤
CM (Z) ≤ Mc. Let S := Baum(T ) and choose Ci := Ci(T ) for i = 1, 2 as
in the Glauberman-Niles/Campbell Theorem C.1.18. Thus 1 6= C2 char S and
1 6= C1 ≤ Z. In particular CG(C1) ≤Mc = !M(CG(Z)).

Suppose first that [V, J(T )] = 1. Then S = Baum(CT (V )) by 14.1.2.1, so (1)
holds by a Frattini Argument since C2 is characteristic in S.

Thus we may assume that [V, J(T )] 6= 1, and that (2) fails, so that one of
the conclusions of 14.1.7 holds. In either case |Z| = 2, so as 1 6= C1 ≤ Z
we conclude C1 = Z. Further from the structure of M̄ , CM (C1) = CM (Z) =
CM (V )T ≤ CM (V )NM (C2). Therefore as we also may assume that conclusion (1)
fails, 〈CM (C1), NM (C2)〉 < M . Thus conclusion (2) of C.1.28 holds; in particular,
there is a χ-block X of M with X = [X, J(T )] such that X does not centralize V .
Therefore as M̄ is solvable by 14.1.6.1, we conclude that each such X is an A3-block
of M , and then 14.1.10 contradicts our assumption that (2) fails. ¤

In the remainder of the section let C2 := C2(T ) be the subgroup defined as in
14.1.11 and its proof.

Lemma 14.1.12. Let Mf ∈M(NG(C2)) and V (Mf ) ≤ Vf ∈ R2(Mf ). Then

(1) Mf is maximal in M(T ) under
<
∼, Mf is the unique maximal member of

M(T )− {Mc} under
<
∼, and if |Z| = 2 then Mf is the unique maximal member of

M(T ) under
<
∼.

(2) Mf = !M(NMf
(CT (Vf ))).

(3) CMf
(Vf ) ≤M for each M ∈ M(T ).

(4) Mf 6=Mc.

Proof. If M ∈ M(T ) and either M 6= Mc or |Z| = 2, then by 14.1.11,

M = CM (V (M))NM (C2); so as NM (C2) ≤ M ∩Mf , M
<
∼ Mf . In particular if
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Mc = Mf , then Mc is the unique maximal member of M(T ) under
<
∼, contrary

to 14.1.9. Thus Mc 6= Mf , proving (4). So as CMf
(V (Mf )) ≤ Mc = !M(CG(Z)),

Mf 6
<
∼Mc, and then (1) follows from the first sentence of the proof.
As V (Mf ) ≤ Vf , CMf

(Vf ) ≤ CMf
(V (Mf )). By a Frattini Argument,

Mf = CMf
(Vf )NMf

(CT (Vf )) = CMf
(V (Mf ))NMf

(CT (Vf )),

so (2) follows from A.5.7.1 and (1).
Next CMf

(Vf ) ≤ CG(Z) ≤ Mc, while by (1) we may apply A.5.3.3 to each
M ∈ M(T )− {Mc} to conclude that

CMf
(Vf ) ≤ CMf

(V (Mf )) ≤ CM (V (M)),

so (3) holds. ¤

Lemma 14.1.13. Assume T ≤ H ≤ M with R := O2(H) 6= 1 and C(M,R) ≤
H. Then either

(1) O2,F∗(M) ≤ H and O2(H) = O2(M), or
(2) |Z| > 2, and M =Mc = !M(H).

Proof. Observe that the triple R, H ,M satisfies Hypothesis C.2.3 in the roles
of “R, MH , H”. Thus we can appeal to results in section C.2, and in particular we
conclude from C.2.1.2 that O2(M) ≤ R.

Suppose L ∈ C(M) with L/O2(L) quasisimple and L 6≤ H . By 14.1.5.1, L /∈
Lf (G, T ), so L is not a block. Thus R∩L /∈ Syl2(L) by C.2.4.1, so by C.2.4.2, R ≤
NM (L). Then by C.2.2.3, R ∈ B2(LR), so that O2(LR) ≤ R by C.2.1.2. Further
Z(R) ≤ O2(LR) as F ∗(LR) = O2(LR). Then as L /∈ Lf (G, T ), L centralizes
Ω1(Z(O2(LR))) ≥ Ω1(Z(R)) =: ZR, so

L ≤ CM (ZR) ≤ C(M,R) ≤ H.

Thus we conclude O2,E(M) ≤ H .
Next set F := O2,F (M). By C.2.6, R ∈ Syl2(FR) and either

(i) FR ≤ H , and hence also O2,F∗(M) ≤ H , or
(ii) FR = (FR ∩H)X0, where X0 is the product of A3-blocks X subnormal in

M with X = [X, J(R)].

If (i) holds, then O2(M) = O2(M ∩ H) = O2(H) by A.4.4.1, so that conclusion
(1) holds. Thus we may assume (ii) holds. Therefore M = Mc and |Z| > 2 by
14.1.10, so it remains to show that Mc = !M(H). Let K := CM (X0). Then from
(ii) and (*) in the proof of 14.1.10, we see that KT = CG(Z) and O2,F∗(K) =
O2,F∗(M) ∩H ≤ H , so that O2,F∗(KH) ≤ H .

We conclude from A.4.4.1 that O2(KH) = O2(H) = R. Thus CG(Z) = KT ≤
C(M,R) ≤ H , so that Mc = !M(H) by 14.1.5.2. This completes the proof that (2)
holds. ¤

Lemma 14.1.14. IfM1 ∈ M(T )−{M}, then O2(M) < O2(M1∩M) > O2(M1).

Proof. Let H := M ∩M1, R := O2(H), {M2,M3} = {M,M1}, and assume
that R = O2(M2). Then C(G,R) ≤ M2, so that C(M3, R) ≤ H . Thus by 14.1.13,
either R = O2(M3), or M3 = Mc = !M(H). In the first case, O2(M2) = R =
O2(M3), so M1 =M , contrary to the choice of M1. In the second case as H ≤M2,
M =M1 for the same contradiction. ¤

Lemma 14.1.15. M = !M(O2,F∗(M)T ).
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Proof. SupposeM1 ∈ M(O2,F∗(M)T ) and let H :=M∩M1. As O2,F∗(M) ≤
H , O2(M) = O2(H) by A.4.4.1. Thus M =M1 by 14.1.14. ¤

Lemma 14.1.16. If T ≤ H ≤M with 1 6= O2(H) and C(M,O2(H)) = H, then
M = !M(H).

Proof. Suppose M1 ∈ M(H)− {M}. Then |M(H)| > 1, so O2,F∗(M) ≤ H
by 14.1.13, contrary to 14.1.15. ¤

Lemma 14.1.17. Let M1 ∈ M(T )− {M} and assume either

(a) M1
<
∼M and V = V (M), or

(b) M1 =Mc.

Let R := O2(M1 ∩M), assume there is T -invariant subgroup Y0 of M with Ȳ0 of
odd order, and set Y := O2(〈RY0T 〉) and M∗ :=M/O2(M). Then

(1) R̄ 6= 1.
(2) Ȳ = [Ȳ0, R̄].
(3) [CM (V )∗, Y ∗R∗] = 1 and CY (V )∗ ≤ O(Z(CM (V )∗R∗)).
(4) If 1 6= r∗ ∈ R∗ is faithful on Op(M∗) for some odd prime p, then CM∗(r∗)

has cyclic Sylow p-groups, so mp(CM (V )) ≤ 1.

(5) R = O2(CM (V )R), so NM̄ (R̄) = NM (R).

Proof. In case (a), M1
<
∼M and V = V (M), so CM (V ) ≤M1 by A.5.3.3. In

case (b), M1 = Mc and CM (V ) ≤ CM (Z ∩ V ) ≤ Mc = !M(CG(Z)). So in either
case, CM (V ) ≤ M ∩M1 ≤ NM (R). Since V ∈ R2(M) by 14.1.1, it follows that
CR(V ) = O2(CM (V )) = O2(M). Then R = O2(CM (V )R), and hence (5) holds.
Further if R̄ = 1, then R = CR(V ) = O2(M), contrary to 14.1.14. Hence (1) is
established.

Next by Coprime Action, Ȳ0 = Ȳ+Ȳ−, where Ȳ+ := CȲ0(R̄) and Ȳ− := [Ȳ0, R̄]

are T -invariant since Y0 and R are T -invariant. By (5), Ȳ+ ≤ NM (R), so ȲR :=

〈R̄Y0T 〉 = 〈R̄Ȳ−〉 and ȲR = R̄Ȳ− with Ȳ− = Ȳ . In particular (2) holds.
Also [CM (V ), R] ≤ CR(V ) = O2(M), so [CM (V )∗, R∗] = 1, and hence Y ∗ =

[Y ∗, R∗] centralizes CM (V )∗, so that (3) holds. Part (4) follows from A.1.31.1
applied to the product of a Sylow p-subgroup of Op(M

∗)CM∗(r∗) with 〈r∗〉. ¤

Lemma 14.1.18. Let M := Mf as in 14.1.12, and assume V := V (M) is of
rank 2 with M̄ ∼= S3. Let Rc := O2(M ∩Mc), Y := O2(〈RMc 〉), R := CT (V ), and
M∗ :=M/O2(M). Then

(1) M is the unique maximal member of M(T ) under
<
∼.

(2) RcR = T and M ∩Mc = CM (V )Rc.
(3) Ȳ = O2(M̄) ∼= Z3 and O2(Y ) = CY (V ).
(4) M = !M(Y T ).
(5) M∗ = Y ∗R∗c × CM (V )∗ with Y ∗R∗c

∼= S3 and m3(CM (V )) ≤ 1.
(6) Z is of order 2 and Mc = CG(Z).
(7) M(T ) = {M,Mc}.

Proof. As V = V (M) is of rank 2 and M̄ ∼= S3, Z is of order 2, so (1)
follows from part (1) of 14.1.12. Further Mc 6= M by part (4) of that result, so
case (b) of the hypothesis of 14.1.17 holds. By 14.1.17.1, R̄c 6= 1, so as T̄ is of
order 2, R̄c = T̄ and hence T = RRc. As CM (V ) ≤ CG(Z) ≤ Mc = !M(CG(Z)),
but M 6≤ Mc, it follows that M ∩ Mc = CM (V )Rc, so that (2) holds. Further
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applying 14.1.17 to the preimage Y0 in M of O(M̄), we conclude Ȳ = Ȳ0 and
CY (V )∗ ≤ O(Z(CM (V )∗R∗c)). By the first remark, M̄ = Ȳ T̄ , so (4) holds by
A.5.7.1. By (2) there is r ∈ Rc inverting Ȳ , so as [CY (V )∗, R∗c ] = 1, r inverts y of
order 3 in Y − CY (V ), and Y ∗ = [Y ∗, R∗c ] = 〈y

∗〉. Therefore Y ∗ ∼= Z3, completing
the proof of (3). As [CM (V ), Y Rc] ≤ O2(M), the first two statements in (5) hold,
while the third follows from 14.1.17.4.

Let K ∈ M(T ). By (1) and A.5.3.1, V (K) ≤ V ; so as |V | = 4, it follows that
V (K) = Z or V . In the latter case K =M by A.5.4; in the former, K ≤ CG(Z) ≤
Mc so that K =Mc, completing the proof of (6) and (7). ¤

14.2. Starting the L2(2) case of Lf empty

We now state Hypothesis 14.2.1, which in effect is the special case of Hypoth-
esis 14.1.5 where V (Mf ) is of of rank 2, for Mf the member of M(T ) defined in
14.1.12. Namely Hypothesis 14.2.1 implies Hypothesis 14.1.5, and conversely when
Hypothesis 14.1.5 holds and V (Mf ) is of rank 2, then Hypothesis 14.2.1 is satisfied
with Mf in the role of “M” by 14.1.18. Indeed 14.1.18 supplies a normal subgroup
Y of M with Y T/O2(Y T ) ∼= L2(2) and M =!M(Y T ). Thus we view Y as a solv-
able analogue of L ∈ L∗f (L, T ), and then Hypothesis 14.2.1 allows us to treat the

case LT/O2(LT ) ∼= L2(2) in parallel with the final case in the Fundamental Setup
where L/O2(L) ∼= L3(2).

Thus in this section, and as appropriate in the later sections of this chapter,
we assume:

Hypothesis 14.2.1. G is a simple QTKE-group, T ∈ Syl2(G), Z := Ω1(Z(T )),
and

(1) Lf (G, T ) = ∅.
(2) Mc := CG(Z) ∈M(T ).

(3) There exists a unique maximal member M of M(T ) under
<
∼.

(4) V := V (M) = 〈ZM 〉 is of rank 2, and M̄ :=M/CM (V ) ∼= Aut(V ) ∼= L2(2).
(5) |M(T )| > 1.

We observe that by parts (1), (2), and (5) of Hypothesis 14.2.1, Hypothesis
14.1.5 is satisfied. Indeed by 14.2.1.3 and 14.1.12.1, M is the maximal 2-local Mf

containing NG(C2(T )) appearing in 14.1.12. Then by 14.2.1.4, the hypotheses of
14.1.18 are satisfied. As in 14.1.18, we set

Rc := O2(M ∩Mc) and Y := O2(〈RMc 〉).

Then applying 14.1.18 we conclude:

Lemma 14.2.2. (1) T = CT (V )Rc, and M ∩Mc = CM (V )Rc so that O
2(M ∩

Mc) ≤ CM (V ).
(2) Ȳ = O2(M̄) ∼= Z3 and O2(Y ) = CY (V ).
(3) M = !M(Y T ).
(4) M/O2(M) = Y Rc/O2(M) × CM (V )/O2(M) with Y Rc/O2(M) ∼= L2(2)

and m3(CM (V )) ≤ 1.
(5) M(T ) = {M,Mc}.
(6) |Z| = 2, and hence CT (Y ) = 1.
(7) NG(T ) ≤M ∩Mc.
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(8) For each H ∈ H∗(T,M), H ∩M is the unique maximal subgroup contain-
ing T , and H is a minimal parabolic described in B.6.8, and in E.2.2 when H is
nonsolvable.

Proof. Parts (1)–(6) follow from 14.1.18, so it remains to prove (7) and (8).

As Z = Ω1(Z(T )) is of order 2, NG(T ) ≤ CG(Z) = Mc. As NG(T ) preserves
<
∼,

NG(T ) ≤ M by 14.2.1.3, completing the proof of (7). Then (8) follows from (7)
just as in the proof of 3.3.2.4. ¤

For the remainder of the section, H will denote a member of H(T,M).

Set MH := M ∩ H , UH := 〈V H〉, QH := O2(H), and H∗ := H/QH . Let

M̃c :=Mc/Z. Since T ≤ H 6≤M , we conclude from 14.2.2.5 that:

Lemma 14.2.3. CG(Z) =Mc = !M(H).

In particular H̃ := H/Z makes sense. Next observe using 14.2.2 that:

Lemma 14.2.4. Case (2) of Hypothesis 12.8.1 is satisfied with Y in the role of
“L”.

In Notation 12.8.2, we have V2 = V , L2 = Y , V1 = Z, and L1 = 1. Defining
Hz as in Notation 12.8.2, 14.2.3 says:

Lemma 14.2.5. Hz = H(T,M).

By 14.2.5, results from section 12.8 apply to H . In particular recall from 12.8.4
that:

Lemma 14.2.6. (1) Hypothesis G.2.1 is satisfied.

(2) ŨH ≤ Ω1(Z(Q̃H)) and ŨH ∈ R2(H̃).
(3) Φ(UH) ≤ V1.

(4) QH = CH (ŨH).

Part (2) of Hypothesis 14.2.1 excludes the quasithin examples L3(2) and A6,
which will be treated in the final section of the next chapter. In the remainder of this
section, we will identify the other quasithin examples corresponding to L̄ ∼= L2(2),
which do satisfy Hypothesis 14.2.1. These examples arise in the cases where some
H ∈ H∗(T,M) has one of three possible structures: n(H) > 1; H/O2(H) ∼= D10 or
Sz(2) ∼= F20; or H/O2(H) ∼= L2(2). In each case we will show that G possesses a
weak BN-pair of rank 2, as discussed in section F.1; then we appeal to section F.1
and the subsequent sections in chapter F of Volume I, to identify G. Then in later
sections we show that no further quasithin groups arise under Hypothesis 14.2.1,
although certain shadows are eliminated in those sections.

14.2.1. The treatment of n(H) > 1. The first major result of this section
is:

Theorem 14.2.7. Either

(1) n(H) = 1 for each H ∈ H∗(T,M), or
(2) G is 3D4(2), J2, or J3.

Until the proof of Theorem 14.2.7 is complete, we assume H ∈ H∗(T,M) with
n(H) > 1. By 14.2.2.8 and E.1.13, the structure of H is described in E.2.2. As
n(H) > 1, only cases (1a), (2a), or (2b) of E.2.2 can hold. Set K := O2(H). In
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each case, we next define a Bender subgroup K1 of K which, together with Y , will
be used to construct our weak BN-pair:

Notation 14.2.8. One of the following holds:

(1) K/O2(K) is L2(2
n) or Sz(2n), and we set K1 := K.

(2) K/O2(K) is the product of two commuting Bender groups interchanged by
T , and we choose K1 ∈ C(H).

(3) K/O2(K) is (S)L3(2
n) or Sp4(2

n) for n ≥ 2, with T inducing an automor-
phism nontrivial on the Dynkin diagram of K/O2(K), and we set K1 := P∞1 , where
Pi/O2(K), i = 1, 2, are the maximal parabolics of K/O2(K) with T ∩K ≤ Pi.

Let S := NT (K1). In each case in 14.2.8, K1/O2(K1) is a Bender group with
K1 ∈ C(K1S) and K1 6≤ M . In case (1), K = K1 and S = T , while in cases (2)
and (3), K1 < K and |T : S| = 2.

By 14.2.3, H ≤Mc = CG(Z).

Lemma 14.2.9. Assume S < T . Then K1 is contained in some Kc ∈ C(Mc),
and one of the following holds:

(1) Case (3) of 14.2.8 holds, and K = Kc is of 3-rank 2, with K = 〈KR
1 〉 for

each R ∈ Syl2(Mc) with S ≤ R.
(2) Case (2) of 14.2.8 holds, K1 = Kc, K = 〈KT

1 〉, and either K has 3-rank 2,
or K1/O2(K1) ∼= Sz(2n).

(3) Case (2) of 14.2.8 holds, K1/O2(K1) ∼= L2(4), Kc/O2(Kc) ∼= J1 or L2(p)
for p an odd prime with p2 ≡ 1 mod 5, S = NT (Kc), and 〈KR

1 〉 is of 3-rank 2 for
each R ∈ Syl2(Mc) with S ≤ R.

Proof. The existence of Kc follows from 1.2.4. In case (3) of 14.2.8,K/O2(K)
∼= (S)L3(2

n) or Sp4(2
n), so thatK ∈ L∗(G, T ) by 1.2.8.4—except whenK/O2(K) ∼=

L3(4), where K ∈ L∗(G, T ) by 1.2.8.3, since T is nontrivial on the Dynkin diagram
of K/O2(K). Thus K ∈ C(Mc) by 14.1.6.2, so that K = Kc, and conclusion
(1) holds in this case. In case (2) of 14.2.8, K1 ∈ L(G, T ), so by 1.2.8.2, either
K1 ∈ L∗(G, T ) so that K1 = Kc and (2) holds; or else (3) holds. ¤

Lemma 14.2.10. If S < T , then Mc = !M(〈K1, T1〉) for each T1 ∈ Syl2(Mc)
containing S.

Proof. By Sylow’s Theorem, T1 = T g for some g ∈ Mc. If K1 = Kc, the
result follows from 14.1.6.2 applied to T1 in the role of “T”. Thus we may assume
K1 < Kc, so that conclusion (1) or (3) of 14.2.9 holds.

Let H1 := 〈K1, T1〉 and M1 ∈ M(H1). By 14.2.2.5, M1 = Mc or M
g, and we

may assume the latter. As case (1) or (3) of 14.2.9 holds, 〈KR
1 〉 is of 3-rank 2 for

each R ∈ Syl2(Mc) containing S, so in particular H1 = 〈K1, T1〉 is of 3-rank 2.
Then O2(H1) ≤ O2(Mc ∩Mg) ≤ CMg (V g) by 14.2.2.1, contrary to 14.2.2.4. ¤

Let B be a Hall 2′-subgroup of K ∩M , and set B1 := B ∩K1.

Lemma 14.2.11. B acts on K1, BT = TB, BS = SB, and B ≤ CM (V ).

Proof. As MH = BT , BT = TB. Then as B acts on K1, BS = SB. As
H ≤Mc, B ≤ O2(M ∩Mc) ≤ CG(V ) by 14.2.2.1. ¤

Lemma 14.2.12. Either O2(M) ≤ S, so that S ∈ Syl2(Y S), or the following
hold:
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(1) K/O2(K) ∼= L3(4), and some element of T induces a graph automorphism
on K/O2(K).

(2) B = B1 is of order 3 and B ≤ CM (V ).

(3) K = O3′ (M∞
c ).

Proof. Assume QM := O2(M) 6≤ S; in particular, S < T , so one of the cases
of 14.2.9 holds. Now QM = [QM , B]CQM (B) by Coprime Action, and using A.1.6,
[QM , B] ≤ [O2(BT ), B] ≤ S. Thus if CT (B) ≤ S, then QM ≤ S, contrary to
assumption; so CT (B) 6≤ S, and then of the cases in 14.2.9, only conclusion (1) of
the present result can hold.

As K/O2(K) ∼= L3(4) by (1), B = B1 is of order 3. By 14.2.11, B ≤ CM (V ), so
(2) holds. By 14.2.9, K = Kc ∈ C(Mc). By A.3.18, CMc(K/O2(K)) is a 3′-group,
so (3) holds. ¤

Lemma 14.2.13. O2(Y ) ≤ S.

Proof. Assume not. Then as O2(Y ) ≤ O2(M), O2(M) 6≤ S, so conclusions
(1)–(3) of 14.2.12 are satisfied. In particular K ∈ C(Mc) and K/O2(K) ∼= L3(4).
By 14.2.5, Mc ∈ Hz. Let U := 〈V Mc〉.

We first show that U is abelian. Suppose not. Let y ∈ Y be of order 3 and
set I := 〈UY 〉. We appeal to 12.8.9; recall V2 = V , and Y , I play the roles
of “O2(P ), I2”. Thus by 12.8.9.2, O2(I) = UIU

y
I , where UI := U ∩ O2(I). By

12.8.9.1, Y = O2(I) and T acts on I . Thus T acts on O2(I) = UIU
y
I , so that as

U ≤ QH by 14.2.6.2, Uy∗I is a normal elementary abelian subgroup of T ∗. Thus as
K∗T ∗ ≤ Aut(L3(4)), we conclude Uy∗I ≤ K∗. But then O2(Y ) ≤ O2(I) = UIU

y
I ≤

S, contrary to our hypothesis.
Therefore U is abelian. So by 12.8.6.5, Hypothesis F.9.8 is satisfied, for each

H ∈ Hz , with Z, V in the roles of “V1, V+”. As K∗ ∼= L3(4) and T
∗ is nontrivial

on the Dynkin diagram of K∗, H∗ has no FF-modules by Theorem B.4.2, so we
conclude from (3) and (4) of F.9.18 that there is Ĩ ∈ Irr+(K, ŨH) with I E H

and q(AutH(Ĩ), Ĩ) ≤ 2. This contradicts B.4.2 and B.4.5. ¤

Set S2 := O2(Y )(T ∩K). We begin to verify the hypotheses of F.1.1 with K1,
Y S2, S in the roles of “L1, L2, S”: By 14.2.13, O2(Y ) ≤ S, while T ∩ K ≤ S
by definition, so that S2 ≤ S and S1 := S ∩ K1 ∈ Syl2(K1). By construction
O2(Y ) ≤ S2, so that S ∩ Y S2 = S2 ∈ Syl2(Y S2). Thus hypothesis (b) of F.1.1
holds. By definition, S acts on K1. As S acts on K and Y , S acts on Y S2. Thus
hypothesis (a) of F.1.1 holds. Next K1/O2(K1) is a Bender group by construction,
and so satisfies (c) of F.1.1. Since Y/O2(Y ) ∼= Z3

∼= L2(2)
′, to verify (c) for Y S2

we must show:

Lemma 14.2.14. Y = [Y, S2].

Proof. If not, then S2 E Y T , so Theorem 3.1.1 applied to S2, Y T in the
roles of “R, M0” says O2(〈Y T,H〉) 6= 1, contrary to 14.2.2.3. ¤

Next NK1(S1) = S1B1 =: C1 lies in M and so normalizes Y , and hence nor-
malizes Y S2 by construction, and C2 := NY S2(S2) = S2 normalizes K1. Thus (d)
of F.1.1 holds with C1, C2 in the roles of “B1, B2” ; and (f) of F.1.1 also follows
by construction. Therefore it remains to establish hypothesis (e) of F.1.1.
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Let G1 := K1S, G2 := B1Y S, and G1,2 := G1 ∩ G2 = SB1. Consider the
amalgam α := (G1, G1,2, G2), and let G0 := 〈G1, G2〉. To establish hypothesis (e)
of F.1.1, we need to show:

Lemma 14.2.15. O2(G0) = 1.

Proof. Assume O2(G0) 6= 1, and let M1 ∈ M(G0). Then T 6≤ M1, since
otherwise by 14.2.2.3, M = !M(Y T ) = M1, contrary to 〈K1, T 〉 = H 6≤ M . Thus
S < T , and hence one of the cases of 14.2.9 holds.

Let ZS := Ω1(Z(S)). As T normalizes S, Z ≤ ZS . By 14.2.9, K1 ≤ Kc ∈
C(Mc). As O2(〈Kc, T 〉) ≤ NT (K1) = S, ZS ≤ Ω1(Z(O2(〈Kc, T 〉))). Thus as
Lf (G, T ) = ∅ by 14.2.1.1,

K ≤ 〈KT
c 〉 ≤ CG(ZS), (!)

so that ZS E 〈Kc, T 〉. Hence NG(ZS) ≤ Mc = !M(〈K1, T 〉) by 14.2.10. As |T :
S| = 2, S is normal in a Sylow 2-subgroup T1 of M1, and hence T1 ≤ NM1(ZS) ≤
Mc. If S < T1, then T1 ∈ Syl2(Mc), so Mc = !M(〈K1, T1〉) = M1 by 14.2.10, a
contradiction as Mc 6=M = !M(Y T ).

So S ∈ Syl2(M1). Therefore we can embed K1 in some L ∈ C(G0) by 1.2.4.
Now Y = O2(Y ) normalizes L by 1.2.1.3, and S ≤ NG(K1) ≤ NG(L), so G0 =
〈K1S, Y 〉 = LY S.

Suppose that L ≤ CG(Z). Then L centralizes V = 〈ZY 〉, so 〈L, T 〉 ≤ NG(V ) =
M , a contradiction as M 6=Mc = !M(〈K1, T 〉).

Therefore [L,Z] 6= 1. In particular, K1 < L, so as G0 = LY S, L = [L, Y ]. Let
R := O2(Y S). Then R E Y T , so C(G,R) ≤ M = !M(Y T ). Moreover if Y 6≤ L
then Y S ∩ L = S ∩ L is Y -invariant, so S ∩ L ≤ R and hence R ∈ Syl2(LR).

Next CT (O2(M1)) ≤ M1 as M1 ∈ M, and as S ∈ Syl2(M1) and S ≤ Mc,
O2(M1) ≤ O2(G0) ≤ O2(Mc ∩G0) ≤ S by A.1.6, so that

CO2(Mc)(O2(Mc ∩G0)) ≤ CT (O2(G0)) ≤ CT (O2(M1)) ≤ S ≤ G0, (∗)

and hence G0, Mc, S satisfy the hypotheses of 1.1.5 in the roles of “H , M , TH”.
By (*), hypothesis (b) of 1.2.11 is satisfied, and since a generator z for Z is in
V = [V, Y ], hypothesis (a) of 1.2.11 is also satisfied. Thus by 1.2.11, either G0 ∈ He,
or L is quasisimple.

Assume first that L is quasisimple. Then L is described in 1.1.5.3, and L =
[L, z]. AsK1/O2(K1) is a Bender group overF2n with n > 1, andK1 ∈ L(CL(z), S),
comparing the list of 1.1.5.3 with that of A.3.12, we conclude that either L/Z(L) is
Sp4(2

n), G2(2
n), 2F4(2

n), or 3D4(2
n/3), or else K1/O2(K1) ∼= L2(4) and L ∼= J2,

J4, HS, or Ru. Then by A.3.18, O3′ (G0) = L, so that G0 = LY S = LS.
Suppose first that L is of Lie type. As Y S = SY , either L ∼= 3D4(2), or n is

even and Y is contained in the Borel subgroup of L over S. But in the latter case,
Y lies in the parabolic P of L with K1 = P∞, so G0 = 〈K1S, Y 〉 ≤ P < L, contrary
to G0 = LS.

Therefore L ∼= 3D4(2) with K1/O2(K1) ∼= L2(8), or J2, J4, HS, or Ru with
K1/O2(K1) ∼= L2(4); note that case (2) of 14.2.8 holds. Now 1 6= O2(G0) ≤
CS(L), so 1 6= CZS (L) =: ZL is in the center of G0 = LS. Thus we may assume

M1 ∈ M(CG(ZL)). Then by (!), K ≤ CG(ZL) ≤ M1. Further K = O3′(K) since
K1/O2(K1) ∼= L2(2

m) for some m. By 1.2.4 and 1.2.8.4, L ∈ C(M1), and by A.3.18,

L = O3′(M1). Thus K ≤ L. However, when L is 3D4(2), J2, J4, HS, or Ru, CL(z)
has no subgroup isomorphic to K satisfying 14.2.9—namely containing the product
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of two conjugates of K1, since case (2) of 14.2.8 holds—see e.g. 16.1.4 and 16.1.5.
This contradiction completes the treatment of the case that L is quasisimple.

Therefore G0 ∈ He, so V0 := 〈ZG0〉 ∈ R2(G0) by B.2.14. Then [V0, L] 6= 1
since we saw [L,Z] 6= 1. If C is a nontrivial characteristic subgroup of S with
L ≤ NG(C), then H = KT ≤ 〈L, T 〉 ≤ NG(C), so L ≤ NG(C) ≤ Mc = !M(H)
by 14.2.3, contradicting [L,Z] 6= 1. Hence no such C exists, so as L/O2,F (L) is
quasisimple by 1.2.1.4, L = [L, J(S)]. Then appealing to Thompson Factorization
B.2.15, V0 is an FF-module for LS/CLS(V0), so by Theorems B.5.1 and B.5.6,

L/CL(V0) ∼= L2(2
n), SL3(2

n), Sp4(2
n), G2(2

n), Ln(2), Â6, or A7. As K1 < L and

S acts on K1 with n(K1) > 1, L/CL(V0) is not Ln(2) or a group over F2 or Â6,
and also L is not a χ0-block. Further L/O2(L) is not A7, since the FF-modules in
Theorem B.5.1 do not satisfy the condition [K1, ZS ] = 1 in (!). Therefore L/CL(V0)
is SL3(2

n), Sp4(2
n), or G2(2

n), and K1/O2(K1) ∼= L2(2
n) for n > 1. Recall

R = O2(Y S). If Y 6≤ L, then as we observed earlier, R ∈ Syl2(LR); while if Y ≤ L
then Y is contained in a Borel subgroup of L, and then once again, R is Sylow in
LR. We also saw C(G,R) ≤M , while L 6≤M as K1 6≤M ; thus L is a χ0-block by
C.1.29, contrary to an earlier observation. This contradiction completes the proof
of 14.2.15. ¤

Lemma 14.2.16. α is a weak BN-pair of rank 2, K = K1, T = S, Q :=
O2(K) = O2(Mc) is extraspecial, and either

(1) α is isomorphic to the 3D4(2)-amalgam, |Q| = 21+8, and K/Q ∼= L2(8), or
(2) α is parabolic isomomorphic to the J2-amalgam or Aut(J2)-amalgam, |Q| =

21+4, and K/Q ∼= L2(4).

Proof. Recall 14.2.15 completed the verification of Hypothesis F.1.1 with
K1, Y S2, S in the roles of “L1, L2, S”. Then by F.1.9, α is a weak BN-pair
of rank 2. Furthermore we saw B2 = S2, so α appears in the list of F.1.12. Since
G2/CG2(V ) ∼= S3, while K1 is nonsolvable and centralizes Z, we conclude that
α is either isomorphic to the 3D4(2)-amalgam, or is parabolic-isomorphic to the
J2-amalgam or the Aut(J2)-amalgam. In each case ZS ∼= Z2, 〈ZYS 〉

∼= E4, and
Q = O2(K1) = O2(K1S) is extraspecial of order 2

1+8 or 21+4, while K1/Q ∼= L2(8)
or L2(4).

As ZS is of order 2, Z = ZS . Also K1 is irreducible on Q/Z, so Q = O2(Mc)
using A.1.6. Further the action of K1 on Q/Z does not extend to (S)L3(2

n),
Sp4(2

n), or L2(2
n)×L2(2

n), so as K = 〈KT
1 〉, case (1) of 14.2.8 holds, so K = K1

and T = S. ¤

We say G is of type J3 or J2 if α is parabolic isomorphic to the J2-amalgam,
and G has 1 or 2 classes of involutions, respectively.

Lemma 14.2.17. Assume α is parabolic isomorphic to the J2-amalgam or the
Aut(J2)-amalgam. Then

(1) α is parabolic-isomorphic to the J2-amalgam, and G is of type J2 or J3.
(2) If G is of type J2, then G ∼= J2.
(3) If G is of type J3, then G ∼= J3.

Proof. By 14.2.16, Q = O2(Mc), so as Out(Q) ∼= S5, KT =Mc = CG(Z).
Assume first that α is parabolic isomorphic to the Aut(J2)-amalgam. Then by

46.1 and 46.11 in [Asc94], K has three orbits on involutions in K, with representa-
tives z ∈ Z, s ∈ V −Z, and t ∈ K−Q with CT (t) ∈ Syl2(CKT (t)). Then s ∈ z

Y , so
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as J2 has two classes of involutions, CT (t) is isomorphic to a Sylow 2-subgroup of
the centralizer in Aut(J2) of a non-2-central involution of J2. Hence CT (t) = A〈k〉,
where A := CT∩K(t) ∼= E16 and k is an involution acting freely on A. Next
as α is parabolic isomorphic to the amalgam of Aut(J2), there is j ∈ T −K with
Z2×D16

∼= CT (j) ∈ Syl2(CKT (j)). Now NG(CT (j)) normalizes Ω1(Φ(CT (j))) = Z
and hence lies in CG(z) = KT ; it follows that CT (j) is Sylow in CG(j)—for other-
wise CT (j) < X ∈ Syl2(CG(j)) so that CT (j) < NX(CT (j)) ≤ CKT (j), contrary
to CT (j) ∈ Syl2(CKT (j)). But CT (j) does not contain a copy of CT (t) or T , so
jG∩K = ∅. Therefore by Thompson Transfer, j /∈ O2(G), contrary to the simplicity
of G.

Therefore α is not parabolic isomorphic to the Aut(J2)-amalgam, so α is par-
abolic isomorphic to the J2-amalgam, and K = CG(z). G is of type J2 or J3,
completing the proof of (1). Then (2) and (3) follow from existing classification
theorems which we have stated in Volume I as I.4.7. ¤

In view of 14.2.17, to complete the proof of Theorem 14.2.7, it remains to treat
the 3D4(2)-case. So assume α is the 3D4(2) amalgam. Let Z = 〈z〉, Ĝ := 3D4(2),

and Ġ := Aut(Ĝ).

Lemma 14.2.18. Assume α is the 3D4(2)-amalgam. Then Mc = CG(z) and
either

(1) Mc = K, or
(2)Mc = KA, where A ≤Mc∩M is of order 3 and induces field automorphisms

on K/Q. Moreover α̇ := (Mc,Mc ∩M,M) is the Ġ-extension of α, in the sense of
Definition F.4.3.

Proof. By 14.2.1.2, Mc = CG(z). By 14.2.16, Q = O2(K) = O2(Mc), so

Mc/Q is faithful on Q̃ by A.1.8. Now K ∈ L(Mc, T ) with K/O2(K) ∼= L2(8),
and T/Q ∼= E8 is Sylow in Mc/Q, so we conclude from 1.2.4 and A.3.12 that
K ∈ C(Mc). Then K E Mc by 1.2.1.3 since T ≤ K. As the normalizer in

GL(Q̃) ofK/Q is isomorphic to Aut(K/Q), either (1) holds orMc/Q ∼= Aut(L2(8)),
and we may assume the latter. Thus Mc = KA where A ≤ NG(T ) is of order

3 and induces field automorphisms on K/Q. Then A acts on CQ̃(T ) = Ṽ , so

A ≤ NG(V ) = M . As Mc = KA, M ∩Mc = B1A, so M = Y (M ∩Mc) = Y TA.
Then α̇ := (Mc,M ∩Mc,M) satisfies Hypothesis F.1.1 just as α did, and hence by
F.1.9, α̇ is a weak BN-pair of rank 2. Then α̇ is an extension of its sub-amalgam
α, which we have already identified; so α̇ is the Ġ-extension of α. ¤

Lemma 14.2.19. If α is the 3D4(2) amalgam, then G ∼= 3D4(2).

Proof. Let γ := α in case (1) of 14.2.18, and γ := α̇ in case (2) of 14.2.18. In
either case, by 14.2.18, γ is an extension of the 3D4(2)-amalgam, with the role of
“G1” played by Mc = CG(z). Thus the hypotheses of Theorem F.4.31 are satisfied
since G = O2(G), so by that Theorem, G is an extension of 3D4(2) of odd degree,
and hence isomorphic to 3D4(2) since G is simple. ¤

Observe that 14.2.17 and 14.2.19 establish Theorem 14.2.7.

14.2.2. The treatment of certain cases where H is solvable. We next
analyze the case where for some H ∈ H∗(T,M), H/O2(H) is either a group of Lie
rank 1 over F2 isomorphic to L2(2) or Sz(2) ∼= F20, or H/O2(H) ∼= D10. We do
not treat the case where H/O2(H) is U3(2).
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We prove:

Theorem 14.2.20. Let H ∈ H∗(T,M). Then

(1) If H/O2(H) ∼= D10 or Sz(2), then H/O2(H) ∼= Sz(2) and G ∼= 2F 4(2)
′.

(2) If H/O2(H) ∼= L2(2) then G ∼=M12 or G2(2)
′.

Again we assume that H satisfies one of the hypotheses of Theorem 14.2.20,
and we begin a series of reductions.

Let G1 := H , G2 := Y T , and G0 := 〈G1, G2〉. Then G1 ∩ G2 = T . We check
easily that G1, G2, T satisfy Hypothesis F.1.1 in the roles of “L1, L2, S”: For
example since H 6≤ M , O2(G0) = 1 by 14.2.2.3. By F.1.9, α := (G1, T,G2) is a
weak BN-pair of rank 2. Set K := O2(H).

Lemma 14.2.21. H =Mc, M = Y T , and one of the following holds:

(1) α is the amalgam of 2F4(2) or of the Tits group
2F4(2)

′.
(2) α is the amalgam of M12 or of Aut(M12).
(3) α is the amalgam of G2(2)

′ or of G2(2).

Proof. Since T = NGi(T ), the hypothesis of F.1.12 holds. SinceG2/CG2(V ) ∼=
L2(2), while G1/O2(G1) is D10, Sz(2), or L2(2) with G1 centralizing Z, we con-
clude from the list of F.1.12 that either α appears in conclusions (1)–(3) of 14.2.21,
or α is the amalgam of Sp4(2). However in the latter case, |Z| = 4, contrary to
14.2.2.6.

Thus it remains to showMc = H andM = Y T . If Mc = H , then M ∩Mc = T ,
so CM (V ) = CT (V ), and then M = Y T by 14.2.2.1. So it suffices to showMc = H .

Let Kc := O2(Mc). If K = Kc, then H = KT = KcT =Mc, so we may assume
K < Kc, and it remains to derive a contradiction.

Let Q := O2(Mc). Then Q ≤ QH by A.1.6, and F ∗(M̃c) = Q̃ by A.1.8, so

Z(Q̃H) ≤ CM̃c
(Q̃) ≤ Q̃ ≤ Q̃H . (∗)

Suppose first that α is the amalgam of G2(2)
′, G2(2), or M12. Then Q̃H is

abelian, so QH = Q by (*). Hence if α is the G2(2)
′-amalgam, then Q ∼= Q8 ∗ Z4

is the central product of Q8 and Z4. Therefore O2(Aut(Q)) ∼= A4
∼= AutK(Q),

so K = Kc, contrary to our assumption. Hence α is the amalgam of G2(2) or
M12, so Q = QH ∼= Q2

8, and hence Out(Q) ∼= O+
4 (2). Then as K < Kc, Kc

∼=
SL2(3)∗SL2(3). Next Y T ∼= D12/Z

2
4, so V ≤ E ≤ Q, where E8

∼= E E Y T . Hence

NG(E) ≤ M by 14.2.2.3. But Ẽ is a maximal totally singular subspace of Q̃, so
from the structure ofKc, S4 ∼= AutMc(E) is the stabilizer in GL(E) of z. Then since
Y does not centralize Z, AutG(E) ∼= L3(2), contradicting NG(E) ≤M = NG(Y ).

Assume next that α is the Aut(M12)-amalgam. Then QK := [QH ,K] ∼= Q2
8

and Q̃H ∼= E4 wr Z2. Therefore we conclude from (*) that either Q is QH or QK ,

or else Q̃ ∼= E8 is the maximal abelian subgroup of Q̃H distinct from Q̃K .
Assume this last case holds. Then Q ∼= E16 and S4 ∼= H/Q ≤ Mc/Q, with

Mc/Q contained in the stabilizer L3(2)/E8 in GL(Q) of the point Z of Q. Further
T/Q ∼= D8 is Sylow in Mc/Q, so as K < Kc, we conclude Mc/Q ∼= L3(2) acts
indecomposably on Q. But then Mc ∈ Lf (G, T ), contrary to 14.2.1.1.

So Q = QH or QK , and therefore Q̃K = J(Q̃) E M̃c. In either case, Q2
8
∼=

QK E Mc. Then as above, K < Kc implies Kc
∼= SL2(3) ∗ SL2(3). Now from the

structure of Aut(M12), J(T ) ∼= E16 is normal in Y T , soNG(J(T )) ≤M = !M(Y T ).
But NKc(J(T )) does not act on V , a contradiction.
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Thus it remains to deal with the case where α is the 2F4(2)-amalgam or the
Tits amalgam. The subgroups G1 and G2 are described in section 3 of [Asc82b].

In particular E := [QH , QH ] ∼= E32, and Z(Q̃H) = F̃ , where F := CH(E). Further
F = E if α the Tits amalgam, while if α is the 2F4(2) amalgam, then F = 〈v5〉E
with 〈v5〉 := CQH (K) ∼= Z4. In particular F ≤ Q by (*). Next H is irreducible
on QH/F of rank 4, so Q = F or QH . In the former case, F and E = Ω1(F ) are
normal in M ; in the latter, E = [Q,Q] and F = CQ(E) are normal in M .

Now H/F ≤ Mc/F , with Mc/F contained in the stabilizer Λ ∼= L4(2)/E16 of
Z in GL(E), and H/F ∼= Sz(2)/E16 or D10/E16 contains a Sylow 2-group T/F of
Mc/F , with QH/F = O2(Λ). Thus QH E Mc, so Q = QH using (*). Further
the Sylow 2-group T/Q of Mc/Q is cyclic, so by Cyclic Sylow-2 Subgroups A.1.38,
Mc/Q is 2-nilpotent. Therefore Kc/Q = O(Mc/Q) is of odd order and contains
K/Q ∼= Z5; then as K < Kc, Kc/Q ∼= Z15 from the structure of L4(2). But by
3.2.11 in [Asc82b], H is transitive on the involutions in Q− F , so if j is such an
involution, thenMc = HCMc(j) by a Frattini Argument. In particular, j centralizes
an element of order 3 in Mc, impossible as Kc/Q of order 15 is regular on (Q/F )#.
This completes the proof of 14.2.21. ¤

By 14.2.21, α is isomorphic to the amalgam of Ĝ, where Ĝ is 2F4(2), the Tits

group 2F4(2)
′, G2(2), G2(2)

′ ∼= U3(3), M12, or Aut(M12). As G and Ĝ are both

faithful completions of the amalgam α, there exist injections βJ : ĜJ → GJ of the
parabolics ĜJ , GJ for each ∅ 6= J ⊆ {1, 2}, such that β1,2 is the restriction of βi to

Ĝ1,2 and βi(Ĝi) = Gi for i = 1, 2. We abuse notation and write β for each of the

maps βJ . Let T̂ := β−1(T ).

Lemma 14.2.22. (1) α is not the amalgam of 2F4(2), G2(2), or Aut(M12).

(2) If α is the amalgam of G2(2)
′, M12, or

2F4(2)
′, then G ∼= Ĝ.

Proof. First if α is of type 2F4(2)
′, 2F4(2), or G2(2), then G1 = H = Mc =

CG(Z) by 14.2.21, so that the hypotheses of Theorem F.4.31 are satisfied. Then

G ∼= Ĝ by F.4.31, and hence as G is simple, α is the amalgam of 2F4(2)
′ and

G ∼= 2F 4(2)
′, so that (2) holds.

Thus we may assume that α is of type G2(2)
′, M12, or Aut(M12).

Suppose first that α is of type Aut(M12). Let R := β(T̂ ∩ O2(Ĝ)). Then
J(T ) ∼= E16 is normal in Y T andM = Y T by 14.2.21, soM controls fusion in J(T )
by Burnside’s Fusion Lemma A.1.35. Thus for j ∈ J(T )− R, jG ∩ J(T ) ∩ R = ∅.
But each involution in R is fused into J(T )∩R under G1 ∪G2, so j

G ∩R = ∅, and
hence j /∈ O2(G) by Thompson Transfer, contrary to the simplicity of G.

In the remaining cases we appeal to existing classification theorems stated in
Volume I: If α is of type M12, then G ∼= M12 by I.4.6, and if α is of type G2(2)

′,
then G ∼= G2(2)

′ by I.4.4. ¤

Notice 14.2.21 and 14.2.22 establish Theorem 14.2.20.

14.3. First steps; reducing 〈VG1〉 nonabelian to extraspecial

As mentioned at the beginning of the chapter, the work of the previous two
sections allows us to treat the most important subcase of the case Lf (G, T ) = ∅
where Mf/CMf

(V (Mf )) ∼= L2(2) in parallel with the final case L/O2(L) ∼= L3(2)
in the Fundamental Setup (3.2.1). As usual we define an appropriate hypothesis,
which excludes the quasithin examples characterized in earlier sections.
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Thus in this section, and indeed for the remainder of the chapter, we assume:

Hypothesis 14.3.1. Either

(1) Hypothesis 13.3.1 holds with L/O2(L) ∼= L3(2), and G is not Sp6(2) or
U4(3); or

(2) Hypothesis 14.2.1 holds, and G is not J2, J3,
3D4(2), the Tits group

2F4(2)
′,

G2(2)
′ ∼= U3(3), or M12.

Observe that in case (1) of Hypothesis 14.3.1, parts (4) and (5) of 13.3.2 say
that Hypotheses 13.1.1, 12.2.1, and 12.2.3 are satisfied, and 13.3.1 is satisfied for
any K ∈ Lf (G, T ) with K/O2(K) ∼= L3(2). Thus we may make use of appropriate
results from the previous chapters 12 and 13, including (in view of the exclusions
in 14.3.1.1) results depending on Hypotheses 13.5.1 and 13.7.1. Similarly the ex-
clusions in case (2) allow us to make use of results from the previous section 14.2.

As usual, we let Z := Ω1(Z(T )), MV := NM (V ), and M̄V :=MV /CM (V ).

Notation 14.3.2. In case (1) of 14.3.1, L is the member of L∗f (G, T ) appearing

in Hypothesis 13.3.1, while in case (2), take L := O2(〈O2(M ∩Mc)
M 〉). (Thus L

plays the role of the group “Y ” in section 14.2.)

Observe:

Lemma 14.3.3. (1) L E M .
(2) M = !M(LT ).
(3) NG(T ) ≤ M , and each H ∈ H∗(T,M) is a minimal parabolic described in

B.6.8, and in E.2.2 when H is nonsolvable.
(4) V is a TI-set in M .
(5) NG(V ) =MV .
(6) If H ≤ NG(U) for some 1 6= U ≤ V , then H ∩M = NH(V ).

Proof. Part (1) follows from 13.3.2.2 in case (1) of 14.3.1, and by construction
in case (2). Part (2) follows from 1.2.7.3 or 14.2.2.3, and (3) follows either from
Theorem 3.3.1 together with 3.3.2.4, or from parts (7) and (8) of 14.2.2. Further
(5) follows from (2); and (4) follows by construction of M = NG(V ) in case (2) of
Hypothesis 14.3.1, and from 12.2.2.3 in case (1). Finally as in the proof of 12.2.6,
(6) follows from (4) using 3.1.4.1. ¤

We typically distinguish the two cases of Hypothesis 14.3.1 by writing L/O2(L) ∼=
L3(2) or L2(2)

′.

14.3.1. Preliminary results under Hypothesis 14.3.1.

Lemma 14.3.4. If there exists K ∈ Lf (G, T ), then

(1) K/O2(K) ∼= A5 or L3(2).
(2) K E KT and K ∈ L∗(G, T ).
(3) Each VK ∈ Irr+(K,R2(KT ), T ) is T -invariant, K, VK satisfies the FSU,

and VK is the natural module for K/O2(K) ∼= A5 or L3(2).
(4) Case (1) of 14.3.1 holds, so that L/O2(L) ∼= L3(2).

Proof. First case (1) of 14.3.1 must hold, since in case (2), Lf (G, T ) = ∅ by
Hypothesis 14.2.1.1. In particular, (4) holds. Further 14.3.1.1 excludes G ∼= Sp6(2)
or U4(3), so K/O2,Z(K) is not A6 by Theorem 13.8.1. Also we saw Hypothesis
13.5.1 holds, so (1)–(3) follow from 13.5.2. ¤



14.3. FIRST STEPS; REDUCING 〈VG1 〉 NONABELIAN TO EXTRASPECIAL 991

Lemma 14.3.5. Assume L/O2(L) ∼= L2(2)
′ and H ∈ H(T ) with |H : T | = 3 or

5. Then H ≤M .

Proof. Assume H 6≤ M . By 14.3.3.3, H 6≤ NG(T ) so that H/O2(H) ∼= S3,
D10, or Sz(2). But the groups G appearing as conclusions in Theorem 14.2.20 are
excluded by Hypothesis 14.3.1.2, so we conclude that the lemma holds. ¤

Lemma 14.3.6. Assume L/O2(L) ∼= L2(2)
′ and H ∈ H(T,M) such that K :=

O2(H) = 〈KT
1 〉 for some K1 ∈ L(G, T ). Then

(1) If K/O2(K) is of Lie type over F2n of Lie rank 1 or 2, then either

(i) n = 1, K/O2(K) ∼= L3(2) or A6, and T is nontrivial on the Dynkin
diagram of K/O2(K), or

(ii) M does not contain the Borel subgroup of K over T ∩K.

(2) If K/O2(K) is of Lie type over F2 of Lie rank 2, then K/O2(K) ∼= L3(2)
or A6, and T is nontrivial on the Dynkin diagram of K/O2(K).

(3) If K/O2(K) is of Lie type over F4, then KT/O2(KT ) ∼= Aut(Sp4(4)) or
S5 wr Z2.

(4) If K/O2(K) ∼= L4(2) or L5(2), then T is nontrivial on the Dynkin diagram
of K/O2(K).

(5) K/O2(K) is not A7.

(6) K/O2(K) is not M12, M22, or M̂22.

Proof. Assume that K either satisfies the hypotheses of one of (1)–(4) or
is a counterexample to (5) or (6). Then K/O2(K) is either quasisimple, or else
semisimple of Lie type in characteristic 2, and of Lie rank 1 or 2 using Theorem
C (A.2.3). Thus as K = 〈KT

1 〉 with K ∈ L(G, T ), using 1.2.1.3 we conclude that
either K/O2(K) is quasisimple, orK is the product of two T -conjugates of K1 < K
with K1/O2(K1) ∼= L2(2

n) or Sz(2n) and n > 1.
Assume the hypotheses of (1). We may assume that (ii) fails, so that M ∩K

contains the Borel subgroup B of K over T ∩K. Let H0 be the set of subgroups
〈P, T 〉, such that P is a rank one parabolic ofK overB. ThenH = 〈H0〉. So asH 6≤
M , there exists H0 ∈ H0 with H0 6≤ M . Then H0 = H2B where H2 ∈ H∗(T,M).
Since Hypothesis 14.3.1 excludes the groups in Theorem 14.2.7, we conclude that
n(H2) = 1. Hence K/O2(K) is defined over F2. Then from the first paragraph,
K/O2(K) is quasisimple. If T is trivial on the Dynkin diagram of K, then H0 is a
rank one parabolic, so asK/O2(K) is quasisimple and defined over F2, |H2 : T | = 3
or 5 from the list of such groups K/O2(K) in Theorem C, contrary to 14.3.5. Thus
T is nontrivial on the diagram, so again from that list, conclusion (i) of (1) holds.
This completes the proof of (1).

If (2) fails, then conclusion (ii) of (1) must hold, so B 6≤ M . In particular, a
Cartan subgroup of B is nontrivial, so as K/O2(K) is defined over F2, we conclude
from the list of Theorem C that K/O2(K) ∼= 3D4(2) and |B : T ∩ K| = 7. Now
B ≤ NG(T ) since Out(K/O2(K)) is of odd order, so B ≤M by 14.3.3.3, contrary
to the first sentence of this paragraph. Thus (2) is established.

Assume the hypotheses of (3); then by the first paragraph, K/O2(K) is either
quasisimple of Lie rank at most 2, or L2(4)×L2(4). Let B be the T -invariant Borel
subgroup of K. By (1), B 6≤ M , so there exists H2 ∈ H∗(T,M) with H2 ≤ BT .
Inspecting the groups in Theorem C defined overF4, either B/O2(B) ∼= Z3 orE9; or
K/O2(K) ∼= U3(4) with B/O2(B) ∼= Z15; or K/O2(K) ∼= 3D4(4) with B/O2(B) ∼=
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Z3×Z63. By 14.3.5, any subgroup of order 3 or 5 permuting with T is contained in
M , so as H2 ≤ BT but B 6≤M , we conclude that either K/O2(K) ∼= 3D4(4) with
(B ∩M)/O2(B ∩M) ∼= E9, or B/O2(B) ∼= E9 and T is irreducible on B/O2(B).
In the latter case, the irreducible action of T implies that (3) holds. In the former,
m3(K ∩ M) = 2. However by 14.2.2.5, K ≤ Mc, so O

2(K ∩ M) ≤ CM (V ) by
Coprime Action, whereas m3(CM (V )) ≤ 1 by 14.2.2.4. This completes the proof of
(3).

Finally suppose K/O2(K) is one of the groups in (4)–(6), and T is trivial on
the Dynkin diagram of K/O2(K) in (4). Then in each case H is generated by the
set H1 of T -invariant subgroups H2 with H2/O2(H2) ∼= L2(2). Thus H ≤ M by
14.3.5, completing the proof of 14.3.6. ¤

Next recall from our discussion at the beginning of the section that in case (1)
of Hypothesis 14.3.1, Hypotheses 12.2.3 and 13.3.1 hold, so case (1) of Hypothesis
12.8.1 holds. Further by 14.2.4, case (2) of Hypothesis 12.8.1 holds in case (2) of
Hypothesis 14.3.1. Thus we can appeal to the results in section 12.8, and we adopt
Notation 12.8.2 from that section. In particular Vi is the T -invariant subspace of
V of dimension i for i ≤ dim(V ), Gi := NG(Vi), Li := O2(NL(Vi)), Ri := O2(LiT ),
etc.

Notice V1 = Z ∩ V , and indeed in case (2) of 14.3.1, V1 = Z by 14.2.1.4, and

so G1 =Mc by 14.2.1.2. Recall G̃1 := G1/V1, and by 12.8.3.4,

G1 6≤M, so G1 ∈ H(T,M).

Observe since LT induces GL(V ) on V that:

Lemma 14.3.7. MV = LCM (V ) = L(M ∩G1). In particular if M ∩G1 = L1T
and V E M , then M = LT .

Lemma 14.3.8. Assume L/O2(L) ∼= L3(2). If H ≤ G1 with HLi = LiH for
i = 1, 2, then H ≤M .

Proof. First V L2H
1 = V HL2

1 = V L2
1 , so H acts on 〈V L2

1 〉 = V2. Similarly

V L1H
2 = V HL1

2 = V L1
2 , so H acts on 〈V L1

2 〉 = V , so H ≤ NG(V ) ≤M by 14.3.3.5.
¤

Lemma 14.3.9. Assume L/O2(L) ∼= L3(2). Then

(1) If J(R1) 6≤ O2(LT ) then there exists A ∈ A(R1) and gi ∈ L with Agi ≤ T
but Agi 6≤ Ri for i = 1, 2.

(2) If J(T ) ≤ R1 then J(T ) E LT .
(3) If J(T ) 6≤ O2(LT ) then J1(T ) 6≤ Ri for i = 1, 2.

Proof. Notice (1) implies (2): For if J(T ) ≤ R1, then J(T ) = J(R1) by
B.2.3.3, so J(R1) ≤ O2(LT ) assuming (1), and hence J(T ) = J(R1) = J(O2(LT ))E
LT .

Assume J(R1) 6≤ O2(LT ). Then there is A ∈ A(R1) with Ā 6= 1, and either
Ā has rank 1, or Ā = R̄1 has rank 2. Since R̄1 is not a strong FF∗-offender on V ,
in the latter case B.2.9.2 says we may make a new choice of A so that Ā has rank
1. Then there exists gi as claimed. Thus (1) and hence (2) are established, so it
remains to prove (3).

Assume the hypothesis of (3), so there is D ∈ A(T ) with D̄ 6= 1. Now as
m(D̄) ≤ 2, we may choose B of index at most 2 in D, with CD(V ) ≤ B and B̄ of
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rank 1. Thus for either choice of i = 1, 2, there exists gi ∈ L with Bgi ≤ T but
Bgi 6≤ Ri. Hence (3) holds. ¤

14.3.2. Preliminary results for the case 〈VG1〉 is nonabelian. When
〈V G1〉 is nonabelian, we will concentrate on G1, as opposed to an arbitrary member
of Hz; recall the latter set was defined in Notation 12.8.2.3. Thus in the remainder
of this section, and indeed in the subsequent section 14.4, we assume:

Hypothesis 14.3.10. Assume Hypothesis 14.3.1 with U := 〈V G1〉 nonabelian.
Take H := G1.

Observe that U plays the role of “UH” in Notation 12.8.2; in particular by
12.8.4.2, Ũ is elementary abelian.

Since U is nonabelian, we also adopt the notation of the second subsection
of section 12.8. Since H 6≤ M , V < U . Write Q := O2(H), rather than QH as

in section 12.8, set H∗ := H/Q, ZU := Z(U), Ĥ := H/ZU , Ḣ := H/CH(Û), pick

g ∈ NL(V2)−H , let I2 := 〈UL2〉, W := CU (V2), and E :=W ∩W g . Let d := m(Û).

By 12.8.8.1, U = U0ZU with U0 extraspecial and Φ(U0) = V1, and Ḣ preserves

a symplectic form on Û of dimension d. By 12.8.12, this action satisfies Hypothesis
G.10.1, with Ḣ , Û , V̂2, Ê, Ẇ g , ŻgU in the roles of “G, V , V1, W , X , X0”, and
Hypothesis G.11.1 is also satisfied. Thus we may make use of results from sections
G.10 and G.11. Recall also from G.10.2 that the bound (*) of sections G.7 and G.9
holds, so that we may apply the results of section G.9.

By 12.8.8.3:

Lemma 14.3.11. m(V̂ ) = m(Ṽ ).

Lemma 14.3.12. Assume m(Ẇ g) ≤ d/2− 1. Then

(1) m(Ẇ g) = d/2− 1.

(2) m(Ê) = d/2.

(3) ZU = V1, so U is extraspecial, Û = Ũ , and Ḣ = H∗.

(4) H preserves a quadratic form on Ũ of maximal Witt index in which Ê is
totally singular.

Proof. As m(Ẇ g) ≤ d/2−1, the first inequality in G.10.2 is an equality with

ŻgU = 1. Thus (1) holds. Then (1) and 12.8.11.5 imply (2). As ŻgU = 1, ZU = V1 by

12.8.13.4. Thus U is extraspecial by 12.8.8.1, so Û = Ũ . By 12.8.4.4, Q = CH(Ũ),

so H∗ = Ḣ . Thus (3) holds. Also Φ(ZU ) = Φ(V1) = 1, so by 12.8.8.2, H preserves a

quadratic form q(ũ) := u2 on Ũ . By 12.8.11.2, Φ(E) = 1, so Ẽ is a totally singular

subspace of the orthogonal space Ũ , of rank d/2 by (2). Thus Ũ is of maximal Witt
index, completing the proof of (4). ¤

Lemma 14.3.13. Ḣ and its action on Û satisfy one of the conclusions of The-
orem G.11.2, but not conclusion (1), (4), (5), or (12).

Proof. By 12.8.12.4, Ḣ and its action on Û satisfy one of the conclusions
of G.11.2. By (6) and (7) of 12.8.13, conclusions (4) and (12) are not satis-
fied. If conclusion (5) is satisfied, then by 12.8.13.5, there is K ∈ Lf (G, T ) with
K/O2(K) ∼= A8, contrary to 14.3.4.1.

Assume conclusion (1) is satisfied. Then d = 2 and Ḣ ∼= S3. By 14.3.11,

m(V̂ ) = m(Ṽ ), so if L/O2(L) ∼= L3(2), then m(Û) = 2 = m(V̂ ), and hence
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U = V ZU , contradicting U nonabelian. Thus L/O2(L) ∼= L2(2)
′. Here by 12.8.13.3,

m(Z̃U ) = m(ŻgU ) ≤ m2(Ḣ) = 1, so by Coprime Action, O2(CH (Û)) centralizes Ũ ,

and then by (2) and (4) of 12.8.4, CH(Û ) = CH(Ũ) = Q. Then H∗ ∼= Ḣ ∼= S3, so
that |H : T | = 3, and then 14.3.5 contradicts H 6≤M . ¤

Lemma 14.3.14. One of the following holds:

(1) m(Ẇ g) = d/2− 1, so that the conclusions of 14.3.12 hold.

(2) d = 4 and m(Ẇ g) ≥ 2. Further Ḣ contains A5 or S3 × S3.
(3) d = 6, Ḣ ∼= G2(2), and m(Ẇ g) = 3.

Proof. If m(Ẇ g) ≤ d/2− 1, then (1) holds by 14.3.12. Thus we may assume

m(Ẇ g) ≥ d/2. But by 14.3.13, Ḣ and Û appear in one of the cases of G.11.2 other

than (1), (4), (5), and (12). Thus as m2(Ḣ) ≥ d/2, case (2), (6), or (7) of G.11.2
holds. Case (6) of G.11.2 gives conclusion (3), and case (2) gives conclusion (2)

as m2(Ḣ) ≥ 2 and Ḣ is a subgroup of Sp4(2) whose order is divisible by 10 or

18. Finally in case (7) of G.11.2, Ẇ g 6≤ E(Ḣ), so m(Ẇ g) ≤ 3 < d/2, contrary to
assumption. ¤

Lemma 14.3.15. Assume L/O2(L) ∼= L2(2)
′. Then U ∼= Q2

8 and H
∗ ∼= O+

4 (2)

with Ẽ totally singular.

Proof. Suppose first that Ḣ is not solvable. Then appealing to 14.3.13, and
inspecting the list of G.11.2, there exists a component K̇1 of Ḣ isomorphic to
L2(4), A6, G2(2)

′, A7, L2(8), or M̂22. By 1.2.1.4 we may choose K ∈ L(G, T )
with K/O2(K) quasisimple and K̇ = K̇1, although K may not be in C(H); set
K0 := 〈KT 〉. From G.11.2, either K = K0, or conclusion (7) of G.11.2 holds and

K0/O2(K0) ∼= Ω+
4 (4). Further if K̇ ∼= A6, then from G.11.2, T is trivial on the

Dynkin diagram of K/O2(K). Finally if K̇0
∼= Ω+

4 (4), then K0T/O2(K0T ) is not

S5 wr Z2 since NSp(Û)(K̇0) is a proper subgroup of index 2 in S5 wr Z2. We

conclude using 14.3.6 that K = K0
∼= L2(8), and K ∩M = T . However Out(L2(8))

is of odd order, so NK(T ) is a Borel subgroup of K. Then as NG(T ) ≤ M by
14.3.3.3, K ∩M > T , contrary to the previous remark.

This contradiction shows that Ḣ is solvable. Thus in view of 14.3.13, Ḣ and
its action on Û are described in conclusion (2) or (3) of G.11.2. Indeed Ḣ and Û

are described in Theorem G.9.4 if H is irreducible on Û , and in G.10.5.2 if H is not
irreducible on Û .

Suppose first that V1 = ZU . Then arguing as in the proof of (3) and (4) of

14.3.12, U is extraspecial with Û = Ũ , and Ḣ = H∗ preserves the quadratic form on
Ũ in which Ẽ is totally singular. In particular if d = 4 and Ḣ has order divisible by
9, then as 9 does not divide |O−4 (2)|, U

∼= Q2
8 and so Ḣ = H∗ lies in O+

4 (2); further

by 12.8.9.2, W g/E is a natural L2(2)-module, so that Ẇ g = W ∗g has rank 2. So
since H 6≤ M , 14.3.5 reduces cases (1)–(4) of G.9.4 and G.10.5.2 to H∗ ∼= O+

4 (2),
so that the lemma holds. Otherwise we have case (5) of G.9.4, with H∗ a subgroup
of SD16/3

1+2 acting irreducibly on O3(H
∗)/Z(O3(H

∗)). Let X be the preimage in

H of Z(O3(H
∗)); again X ≤M by 14.3.5. This is impossible, since Ũ = [Ũ ,X ] in

G.9.4.5, so that X does not act on the subspace Ṽ of rank 1.
Thus V1 < ZU . Hence by 14.3.12.3, m(Ẇ g) ≥ d/2, so case (2) of 14.3.14 holds

as Ḣ is solvable; that is, d = 4, m(Ẇ g) ≥ 2, and Ḣ contains S3 × S3. It follows

that Ḣ ∼= S3 × S3 or O+
4 (2), and m(Ẇ g) = 2 = m2(O

+
4 (2)).
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Next by 12.8.13.3, ŻgU
∼= Z̃U , so Ż

g
U 6= 1. Let K := O2(〈ZgHU 〉). By 12.8.13.3,

ZgU centralizes ZU , so K centralizes ZU . Thus using Coprime Action, O2(CK(Û))

centralizes Ũ , and hence 1 6= K̇ ∼= K∗ by parts (2) and (4) of 12.8.4. So if Ḣ ∼=
S3 × S3 then K ≤ MV by 14.3.5 and 14.3.3.6, so K centralizes V̂ of order 2. But
then as K E H , K centralizes Û = 〈V̂ H〉, contrary to K̇ 6= 1.

Therefore Ḣ ∼= O+
4 (2). By 12.8.12.2, ŻgU E Ṫ , so O3(Ḣ) = [O3(Ḣ), ŻgU ],

and hence O3(Ḣ) ≤ K̇. Thus K∗ ∼= E9, so Û = [Û ,K]. Then as K centralizes

ZU , Ũ = [Ũ ,K] ⊕ Z̃U with Z̃U 6= 0. Further as ŻgU E Ṫ and W ≤ CG(V ) ≤
CG(Z

g
1 ), [Z

g
U ,W ] ≤ ZgU ∩W . As L/O2(L) ∼= L2(2)

′, Z(I2) = 1 by 12.8.13.3. Thus

ZgU ∩W = V g1 by 12.8.10.3, so as ŻgU acts nontrivially on the hyperplane Ŵ of Û

and centralizes Z̃U ,

Ṽ = Ṽ g1 ≤ [W̃ , ZgU ] ≤ [Ũ ,K],

so Ũ = 〈Ṽ H〉 ≤ [Ũ ,K], contradicting 0 6= Z̃U 6≤ [Ũ ,K]. Thus the proof of 14.3.15
is complete. ¤

14.3.3. Eliminating L2(2) when 〈VG1〉 is nonabelian. Recall that 〈V G1〉
is nonabelian in the quasithin examples for L/O2(L) ∼= L2(2)

′ characterized in
section 14.2; but of course those groups are now excluded in Hypothesis 14.3.1.

Thus in this subsection we prove:

Theorem 14.3.16. Assume Hypothesis 14.3.10. Then case (1) of Hypothesis
14.3.1 holds, namely L/O2(L) ∼= L3(2).

Remark 14.3.17. In proving Theorem 14.3.16, we will be dealing in effect only
with the shadows of extensions of U4(3) which interchange the two classes of 2-
locals isomorphic to A6/E16. These extensions satisfy our hypotheses except they
are not simple, and sometimes not quasithin. Thus we construct 2-local subgroups
which appear in those shadows, and eventually achieve a contradiction by showing
O2(G) < G using transfer.

Until the proof of Theorem 14.3.16 is complete, assume G is a counterexample.
Thus case (2) of 14.3.1 holds, so V1 = Z = 〈z〉, V = V2 and G2 = NG(V ) = M .

Recall Q = O2(H). By 14.3.15, U ∼= Q2
8, and Ũ has an orthogonal structure over

F2 preserved by H = G1, with H
∗ = H/Q = O(Ũ ) ∼= O+

4 (2) and Ẽ totally singular.
Thus H is a {2, 3}-group, so in particular, H is solvable.

Recall I2 = 〈UL2〉 = 〈UL〉, and by 12.8.9.1, I2 E G2 =M and L = O2(I2).

Lemma 14.3.18. (1) V = Q ∩ U g.
(2) I2 E M , R := O2(I2) = O2(L).
(3) R∗ is the 4-subgroup of T ∗ containing no transvections, and hence lying in

Ω+
4 (Ũ); so |T : RQ| = 2.
(4) R = AAt, where A ∼= E16 and At are the maximal elementary abelian

subgroups of R, |R| = 26, t ∈ T −RQ, V = A ∩At, and A E I2Q.
(5) U = O2(O

2(H)).
(6) NH(A)

∗ = CH∗(A
∗) ∼= Z2 × S3.

Proof. First I2 plays the role of “I” in 12.8.8; then by 12.8.8.4 we may apply
G.2.3.4 to conclude that E = W ∩ W g is T -invariant. But we saw Ẽ is totally
singular and H∗ = O(Ũ ) ∼= O+

4 (2), so T acts on no totally singular 2-subspace of
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Ũ ; hence Ẽ has rank 1, and so V = E. On the other hand, U g∩Q ≤ U g∩G1 =W g,
and Q ∩W g = E by 12.8.9.5. Thus (1) holds.

Recall I2 E G2 = M and L = O2(I2). As V = E by (1) and |Q| = 25,
12.8.9.2 says R/V =W/V ⊕W g/V is the sum of m(W/V ) = 2 natural modules for
I2/R ∼= L2(2). Therefore R

∗ = W g∗ ∼= E4 and R = [R,L] ≤ L, so that R = O2(L)
as L E I2. Thus (2) holds. Recall Hypothesis G.10.1 is satisfied; then (3) follows

from part (d) of G.10.1 and the fact that transvections in O(Ũ ) have nonsingular
centers.

As R/V is the sum of two natural modules for I2/R, R has order 26, and I2
has three irreducibles R(i)/V , 1 ≤ i ≤ 3, on R/V . As W/V = CR/V (U), each R(i)

contains some ri ∈ W − V . Since U ∼= Q2
8, W

∼= Z2 × D8. Thus we can choose
notation so that 〈ri〉V ∼= E8 for i = 1 and 2, and Z4 × Z2 for i = 3. Then as I2
is transitive on (R(i)/V )#, R(1) ∼= R(2) ∼= E16 and V = Ω1(R(3)). It follows that
A := R(1) ∼= E16 and A′ := R(2) are the maximal elementary abelian subgroups of

R, AA′ = R, and A∗ is of order 2 in T ∗, with CŨ (A
∗) = Ã ∩ U a totally singular

line. Thus A∗ 6= Z(T ∗), so At = A′ for t ∈ T − RQ. Therefore (4) holds as A is
I2-invariant by construction, and CH∗(A

∗) ∼= Z2 × S3.
Next [W g, Q] ≤ W g ∩ Q = V using (1), so O2(H) = [O2(H),W g ] centralizes

Q/U , and hence (5) holds. Thus if HA is the preimage of CH∗(A
∗), O2(HA) acts

on AU and hence on A = J(AU), completing the proof of (6). ¤

From now on, let A be defined as in 14.3.18.4. We will show next that A6/E16 ≤
NG(A) ≤ S6/E32. Set D := CQ(U).

Lemma 14.3.19. Let K := 〈O2(NH(A)), L〉. Then

(1) Q = UD.
(2) Either

(i) [A,D] = 1 with AutT (A) ∼= D8, or
(ii) D induces the transvection on A with axis A ∩ U and center V1.

(3) AutRQ(A) ∈ Syl2(AutG(A)), and AutRQ(A) ∼= D8 or Z2 ×D8.
(4) K is an A6-block and A = O2(K).
(5) CG(K) = 1.
(6) NG(K) = KD, and D is a subgroup of D8, with D ∼= D8 iff |NG(K) : K| =

4 and A < CG(A).
(7) NG(A) = NG(K).
(8) RU ∈ Syl2(K).
(9) K splits over A.
(10) Aut(K) = K〈α, β〉, with A〈α〉 = CAut(K)(A) ∼= E32 the quotient of the

permutation module for K/A modulo the fixed space of K/A, β is an involution in-
ducing a transposition on a complement to A in K, and D8

∼= 〈α, β〉 = CAut(K)(U).

Proof. By 12.8.4.2, Q centralizes Ũ , while as U ∼= Q2
8, Inn(U) = CAut(U)(Ũ)

by A.1.23, so (1) holds. Next D centralizes the hyperplane A∩U of A, and [A,D] ≤
CA(U) = V1, so (2) holds.

As A ∼= E16, AutK(A) ≤ AutG(A) ≤ GL(A) ∼= L4(2). As Z = V1 = CA(U)
and RQ ∈ Syl2(NH(A)), Z = CA(RQ), and hence NNG(A)(RQ) ≤ H , so that
RQ = NT (A) ∈ Syl2(NG(A)). From 14.3.18.6, AutRU (A) ∼= D8 and CH (A) is a
2-group, so (2) implies (3), and as Z ≤ A, CG(A) = CH(A) is a 2-group.
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By 14.3.18.4, A E I2Q, so that as L = O2(I2), K ≤ NG(A). Indeed from
14.3.18, AutI2(A)

∼= S4, A = [A,L], and setting YA := O2(NH(A)), AutRYA(A)
∼=

S4 is of index at most 2 in the stabilizer in AutG(A) of V1. We conclude from the
structure of L4(2) that AutK(A) is A6. Hence as CG(A) is a 2-group, and as K =
O2(K) and K is CG(A)-invariant by definition, it follows that K = O2(KCG(A))
and K/O2(K) ∼= A6. Then as [R,CG(A)] ≤ CR(A) = A, K = [K,R] centralizes
CG(A)/A, so K is an A6-block. Next R = [R,L] and U = [U, YA], so RU ≤ K.
Then as R/A ∼= E4 is elementary abelian, K/A does not involve the double cover of
A6, so A = O2(K), and NG(K) ≤ NG(A), completing the proof of (4). As RU ≤ K
and |RU | = 27 = |K|2, (8) is established. For u ∈ U − R an involution, u acts on
a complement B to V in At, so B〈u〉 is a complement to A in RU , and hence (9)
holds using Gaschütz’s Theorem A.1.39. Let K0 be a complement to A in K.

Let J := Aut(K) and A0 := CJ (A). By (9), with 17.2 and 17.6 in [Asc86a], A0

is elementary abelian with A0/A ∼= H1(K0, A). Hence A0
∼= E32 by I.1.6.1. Further

by 17.7 in [Asc86a] and a Frattini Argument, J = A0J0, where J0 := NJ(K0), and
of course J0 is the subgroup of Aut(K0) stabilizing the representation of K0 on A,
so J0 ∼= S6. Thus (10) holds.

Recall NT (A) ∈ Syl2(NG(A)), so NT (A) ∈ Syl2(NG(K)). As L = O2(P )
where P is the minimal parabolic of K with A = [A,P ], CT (K) = CT (L) from
the structure of Aut(K) described in (10). Further CT (L) = 1, since Z ∼= Z2 by
14.2.2.6, while Z is not centralized by L. Thus CT (K) = 1, so (5) holds since
CG(K) ≤ CH (A) and we saw CH(A) is a 2-group.

AsNG(K) ≤ NG(A) withK transitive onA#, by a Frattini Argument,NG(K) =
KNH(A) = KQR. Thus NG(K) = KD by (1) and (8). Now (6) follows from (10).

As NT (A) acts on K and is Sylow in NG(A), K ≤ K1 ∈ C(NG(A)). Then
we conclude from the structure of GL4(2) and A.3.12 that either K = K1 or
AutK1(A)

∼= A7, and the latter case is impossible as we saw AutH(A) is solvable.
Thus K E NG(A) by 1.2.1.3, so (7) holds as we saw NG(K) ≤ NG(A). ¤

Lemma 14.3.20. A = CG(A).

Proof. Let A1 := CG(A) and suppose A < A1. Let GA := NG(A). Then
GA ≤ Aut(K) by (5) and (7) of 14.3.19, so we conclude from the structure of
Aut(K) described in (10) of 14.3.19 that E32

∼= A1 = O2(GA). As the element
t defined in 14.3.18.4 acts on NT (A), A

t
1 ≤ GA. As [A,At] 6= 1, [A,At1] 6= 1.

By B.3.2.4, K/O2(K) ∼= A6 contains no FF∗-offenders on A1, so A1 = J(KA1).
Thus At1 6≤ KA1, so |GA : K| = 4, and hence GA = KA1A

t
1
∼= Aut(K) and

D = CQ(U) ∼= D8 using 14.3.19.6.
Next by 14.3.19.10, the action of GA/A1 on A1 is described in section B.3. In

the notation of that section, z = e5,6, so as UA/A = O2(CK(z)/A), D ∩ A1 =
CA1(U) = 〈e5, e6〉. In particular d := e6 ∈ A1 ∩D with Kd := CK(d) an A5-block,
and CGA(d)

∼= S5/E32. Further O
2(H) centralizes D as D ∼= D8. As [d,RQ] = V1,

RQ = DCRQ(d), so CRQO2(H)(d) = CRQ(d)O
2(H) ∼= (S3 × S3)/(Q

2
8 × Z2). Let

Td := CT (d) and Sd := RQ ∩ Td. As O2(H) centralizes d, Td ∈ Syl2(CH(d)).
Further Z(Td) = Z(Sd) = 〈z, d〉, and |Td : Sd| ≤ |T : RQ| = 2. As H is a 5′-
group by 14.3.15, d /∈ zG. Thus as dz ∈ dK , z is weakly closed in Z(Td), so that
NG(Td) ≤ G1 = H , and hence Td is Sylow in Gd := CG(d).

Now z 6∈ O2(Gd): for otherwise A = 〈zKd〉 ≤ O2(Gd), impossible as A 6≤
O2(CH (d)). Thus asKd is irreducible on A, A1∩O2(Gd) = 〈d〉. Now Td ∈ Syl2(Gd),
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O2(Gd) ≤ Sd, and A1 = O2(KdSd), so we conclude that 〈d〉 = O2(Gd). Let
Ǧd := Gd/〈d〉. Next Kd ∈ L(Gd, Sd) and |Td : Sd| ≤ 2, so Kd ≤ Ld ∈ C(Gd) by
1.2.5. As O2(Gd) = 〈d〉, Gd 6∈ He, so Ld is quasisimple by 1.2.11 applied with V ,
Gd in the roles of “U , H”. As the hypotheses of 1.1.6 are satisfied with Gd in the
role of “H”, Ld is described in 1.1.5.3. As CǦd(ž) has a subgroup of index at most

2 isomorphic to (S3 × S3)/Q
2
8, we have a contradiction to the 2-local structure of

the groups on that list. ¤

Lemma 14.3.21. (1) If |T : RU | = 2, then there exist involutions in T −RU .
(2) No involution in T −RQ is in zG.
(3) All involutions in RU are in zG.

Proof. First RU ∈ Syl2(K) by 14.3.19.8, and K is transitive on A#, while
all involutions in K −A are fused into At, so (3) holds.

Assume |T : RU | = 2. As I2 = LU by G.2.3.2 and I2/R ∼= S3, LT/R ∼= S3×Z2.
Further for X of order 3 in I2, CR(X) = 1. Thus CO2(LT )(X) = 〈tX 〉 with tX an
involution in T −RU , proving (1).

It remains to prove (2). So suppose some t ∈ T − RQ is of the form t = zy

for some y ∈ G. Let It := CI2 (t), Rt := R〈t〉, and R+
t := Rt/V . By 14.3.18,

A∩At = V , and A,At are the maximal elementary abelian subgroups of R, so that
V = Ω1([R, t]) ≥ Ω1(CR(t)) and R is transitive on [A+, t+]t+; hence

(*) Each coset of V in [R, t]〈t〉 not contained in [R, t] contains a conjugate of t.

We claim that z ∈ Qy. First consider the case where [V, t] = 1. Here Rt =
CI2Rt(V ) E I2Rt. Further by (*), each element of [R, t]t is an involution, so
that t inverts [R, t]; hence CR(t) = V and R is transitive on [R, t]t. Thus R is
transitive on the involutions in Rt, so that It/CR(t) ∼= S3. As CR(t) = V , we
conclude It ∼= S4. Therefore V = [V,O2(It)] ≤ Uy. In particular, z ∈ Qy, as
claimed. Now consider the case where [V, t] 6= 1. Then by Exercise 2.8 in [Asc94],
R is transitive on involutions in Rt and |CR(t)| = 8, so since Ω1(CR(t)) ≤ V , we
conclude CR(t) ∼= Q8. Then as H/Q has no Q8-subgroup, z ∈ Qy, completing the
proof of the claim.

By the claim, z ∈ Qy. Thus t ∈ Φ(CUy (z)). This is a contradiction as t /∈
RQO2(H) which is of index 2 in H . ¤

Lemma 14.3.22. D = Z, so U = Q.

Proof. Notice by 14.3.19.1 that U = Q if D = Z. So we assume Z < D, and
will derive a contradiction.

As A = CG(A) by 14.3.20, |D| ≤ 4 by 14.3.19.6. So |D| = 4, and we take
d ∈ D − Z. By 14.3.19.10, CAut(K)(U) ≤ 〈α, β〉 where 〈α〉A = CAut(K)(A) and

〈β〉At = CAut(K)(A
t). Thus d 6= α or β as A is self-centralizing in G, so d induces

αβ on K, and hence D = 〈d〉 ∼= Z4.
As D E H = CG(d

2), D is a TI-set in G. Then the standard result I.7.5 from
the theory of TI-sets says that X := 〈DG ∩ T 〉 is abelian. Now L is transitive on
V # and D ≤ CT (V ) = O2(LT ), so V ≤ Ω1(〈DL ∩ T 〉) ≤ X . Then X ≤ CT (V )
so X is weakly closed in O2(LT ), and hence X E LT . Then as M = !M(LT ),
NG(X) = NM (X) = LNH∩M (X) using 14.3.7. As X is abelian and weakly closed,
we may apply Burnside’s Fusion Lemma A.1.35 to conclude DG ∩ T = DNG(X) =
DL is of order 3.
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Let G+
A := GA/A. From the structure of Aut(K) in 14.3.19.10, since A =

CG(A), G
+
A
∼= S6 with d

+ = (5, 6). Recall g ∈ NL(V2)−H , so that w := ddgdg
2

is an
involution with w+ = (1, 2)(3, 4)(5, 6), and henceX ∼= Z2

4×Z2, with Ω1(X∩U) = V .
Now I2 acts on Ω1(X) = V × 〈w〉, so as [A,w] = V and A ≤ R, [R,w] = V .
Therefore R is transitive on V w, so by a Frattini Argument, I2 = RCI2(w), and
hence CI2 (w)/CR(w)

∼= S3. Further |CR(w)| = |R|/4 = |X ∩ R|, so CR(w) =

X ∩ R ∼= Z2
4. Also for u ∈ U − R, d+gd+g

2

= [d+g , u], so dgdg
2

≡ [dg , u] mod V
since V = X∩A. Then [dg, u] ∈ (X∩U)−V , so [dg , u] is of order 4 as Ω1(X∩U) = V .

Thus dgdg
2

∈ U has order 4 and hence as O2(H) centralizes d,

CO2(H)(w) = CO2(H)(d
gdg

2

) ∼= Z4 ∗ SL2(3).

Further choosing T so that Tw := CT (w) ∈ Syl2(CH (w)), Ω1(Z(Tw)) = 〈w, z〉 and
wz ∈ wU .

Set Gw := CG(w). As CR(w) ∼= Z2
4, O

2(CI2 (w))
∼= Z3/Z

2
4, while by (5) of

14.3.18, O2(O
2(H)) = U ∼= Q2

8 has no Z2
4-subgroup, so we conclude w /∈ zG.

Thus as Ω1(Z(Tw)) = 〈w, z〉 and wz ∈ wG, z is weakly closed in Z(Tw), so that
NG(Tw) ≤ H and hence Tw ∈ Syl2(Gw).

If z ∈ O2(Gw), then V = 〈zCI2(w)〉 ≤ Z(O2(Gw)), impossible since V 6≤
Z(〈V CH(w)〉). Thus z 6∈ O2(Gw); now Tw ∈ Syl2(Gw), O2(CH(w)) ≤ GA, and
z is contained in each nontrivial normal subgroup of Gw∩GA other than 〈w〉, so we
conclude that O2(G2) = 〈w〉. As in the the proof of 14.3.20, we appeal to 1.2.11,
1.1.6, and 1.1.5.3; this time from the structure of CH(w) = CGw(z) and CI2(w), we
conclude Gw/〈w〉 ∼= G2(2), so Gw ∼= Z2×G2(2) since G2(2) has trivial Schur multi-
plier by I.1.3. Set Lw := G∞w , and observe that Lw has one class zLw of involutions,
and so the set {w}∪(zw)Lw of involutions in wLw is contained in wG since we saw w
is conjugate to zw. Also Tw ∩ 〈w〉Lw = XCU (t) ≤ RQ, so Tw ∩ 〈w〉Lw = Tw ∩RQ.
By 14.3.21.2, no involution in T − RQ is in zG, so zG ∩ Gw = zGw , and hence
wG∩H = wH since G is transitive on commuting pairs from zG×wG. But then as
H/O2(H)R is of order 4 and w /∈ RU , it follows that w /∈ O2(G) from Generalized
Thompson Transfer A.1.37.2, contrary to the simplicity of G. ¤

We are now in a position to derive a contradiction, and hence establish Theorem
14.3.16. By 14.3.22, Q = U , so |T : RU | = 2. Thus by 14.3.21.1, there is an
involution t ∈ T − RU . By 14.3.21.2, t /∈ zG, while by 14.3.21.3, all involutions in
RU are in zG. Thus tG ∩ RU = ∅, so t /∈ O2(G) by Thompson Transfer, contrary
to the simplicity of G.

14.3.4. Characterizing HS by 〈VG1 〉 nonabelian but not extraspecial.
In this subsection we continue to assume Hypothesis 14.3.10. By Theorem 14.3.16,
case (1) of Hypothesis 14.3.1 holds. Thus in the remainder of our treatment of the
case U nonabelian in this section and the next, we have L/O2(L) ∼= L3(2).

In this final subsection, we first prove several more preliminary results, and
then reduce to the case where U is extraspecial, by showing HS is the only qua-
sithin example with V1 < ZU . The treatment of the extraspecial case occupies the
following section 14.4.

Lemma 14.3.23. d ≥ 4. If d = 4, then

(1) V̂ = Ê ∼= E4.
(2) One of the following holds:
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(i) Ḣ ∼= S3 × S3, with L̇1 E Ḣ. Further if ŻgU 6= 1 then ŻgU = CḢ (V̂ ) is

of order 2, and setting K := 〈ZgHU 〉, K̇ ∼= S3, Ḣ = K̇L̇1Ṫ , and K 6≤M .

(ii) Ḣ ∼= S5, Û is the L2(4)-module, and Z2
∼= ŻgU ≤ E(Ḣ).

(iii) Ḣ ∼= A6 or S6, and m(ŻgU ) = 1 or 2.

(iv) Ḣ is E9 extended by Z2, L̇1 E Ḣ, and U ∼= Q2
8.

(3) m(Ẇ g/ŻgU ) = 1 and ZgU centralizes V̂ .

(4) H > (H ∩M)CH(Û).

Proof. By 12.8.13.1, V ≤ E. By 14.3.11, m(V̂ ) = m(Ṽ ) = 2. But by

12.8.11.2, Ê is totally isotropic in the symplectic space V̂ , so 2 = m(V̂ ) ≤ m(Ê) ≤
d/2, and hence d ≥ 4. Further if d = 4, these inequalities are equalities, so (1)
holds.

Assume d = 4. By 12.8.11.5 and (1), m(Ẇ g/ŻgU) = 1, while by 12.8.13.2, ZgU
centralizes V , and then by 12.8.11.3, ZgU is the kernel of the action of W g on V̂ .

Thus (3) is established. By 14.3.3.6, H ∩M acts on V ; so if (4) fails, then Ḣ acts

on V̂ , contrary to Û = 〈V̂ H〉 and d = 4. Thus (4) holds.

Observe that if Ḣ ≤ O+
4 (2), then O2(Ḣ) is abelian, so L̇1 E O2(Ḣ). Thus

L̇1 E O2(Ḣ)Ṫ = Ḣ . If O2(Ḣ) is of order 3, then Ḣ = L̇1Ṫ , contrary to (4). Thus

O2(Ḣ) ∼= E9, so as L̇1 E Ḣ , we conclude Ḣ < O+
4 (2) in this case.

Suppose first that m2(Ḣ) = 1. Then by (3) and (4) of 14.3.12, U ∼= Q2
8, so

Ḣ ≤ O+
4 (2). Then by the previous paragraph, O2(Ḣ) ∼= E9, so as m2(Ḣ) = 1,

(2iv) holds.

Thus we may assume m2(Ḣ) ≥ 2. Suppose first that Ḣ ≤ O+
4 (2). Then

Ḣ ∼= S3 × S3 by remarks in paragraph three. Assume that ŻgU 6= 1. Then as ZgU
centralizes V̂ by (3), and as V̂ = [V̂ , L̇1], Ż

g
U is of order 2, L̇1 = CO2(Ḣ)(Ż

g
U ),

K̇ := 〈ŻgHU 〉 ∼= S3, and Ḣ = L̇1K̇Ṫ , and so K 6≤ M by (4). This completes the
proof that (2i) holds

Thus we may assume that Ḣ is not contained in O+
4 (2). But by 14.3.14.2, Ḣ

is a subgroup of Sp4(2) containing S3 × S3 or A5, so we conclude F ∗(Ḣ) ∼= L2(4)
or A6.

Suppose ZU = V1. Then U is extraspecial, so Ḣ ≤ Oε4(2), and by the assump-

tion in previous paragraph, ε = −1. This is impossible, as Ũ contains the totally
singular line Ṽ . We conclude ZU > V1, so Ż

g
U 6= 1 by 12.8.13.4.

Suppose F ∗(Ḣ) ∼= L2(4). As L̇1 E L̇1Ṫ and V̂ = [V̂ , L̇1] ∼= E4, it follows that

Û is the L2(4)-module, and V̂ is the F4-line invariant under T . As Ẇ
g is nontrivial

on V̂ by 12.8.11.3, Ḣ ∼= S5. Then as Ẇ g is elementary abelian and we saw that
1 6= ŻgU < Ẇ g and ŻgU centralizes V̂ , (2ii) holds. A similar argument shows (2iii)

holds if F ∗(Ḣ) ∼= A6. ¤

Lemma 14.3.24. Assume V1 < ZU , so that U is not extraspecial. Then either:

(1) d = 6 and Û is the natural module for Ḣ ∼= G2(2), or
(2) d = 4 and one of conclusions (i)—(iii) of 14.3.23.2 holds.

Proof. By 14.3.12.3, m(Ẇ g) ≥ d/2, so case (1) of 14.3.14 does not hold.
Case (3) of 14.3.14 is conclusion (1), and in case (2) of 14.3.14, d = 4 so one
of the conclusions of 14.3.23.2 holds, with conclusion (iv) ruled out as there U is
extraspecial. ¤
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Lemma 14.3.25. Z(LT ) ∩ U = 1.

Proof. Assume ZL := Z(LT ) ∩ U 6= 1. Set VH := 〈ZHL 〉; then VH ≤ ZU , and
as usual VH ∈ R2(H) by B.2.14. As ZL E LT and M = !M(LT ), CG(VH) ≤
CG(ZL) ≤ M . As ZL 6= 1, ZU > V1, so by 14.3.24, either d = 4 and one of

conclusions (i)–(iii) of 14.3.23.2 holds, or d = 6 and Û is the natural module for

Ḣ ∼= G2(2). In any case, ŻgU 6= 1 by 12.8.13.4.

Assume first that Ḣ is not solvable. Then from the previous paragraph, F ∗(Ḣ)

is quasisimple, so there is K ∈ C(H) with K̇ = F ∗(Ḣ). As K is irreducible on Û

and Û > V̂ in each case, K does not act on V̂ . Then as K ∩M ≤MV by 14.3.3.6,
K 6≤ M . Thus as CG(VH) ≤ M , [VH ,K] 6= 1. Therefore K ∈ Lf (G, T ) by 1.2.10,

and then as K̇ is not L3(2) from 14.3.24, K/O2(K) ∼= L2(4) by 14.3.4.1. Thus

case (ii) of 14.3.23.2 holds, so that Z2
∼= ŻgU ≤ K̇; in particular K = [K,ZgU ]. As

m(ŻgU ) = 1, CZgU (Û) is a hyperplane of ZgU , so Z0 := (ZgU ∩ ZU )V1 is a hyperplane

of ZU by 12.8.10.6. Thus ZgU induces transvections on VH with axis Z0 ∩ VH . This

is impossible, as ZgU induces inner automorphisms on K̇ and we saw K = [K,ZgU ].

Therefore Ḣ is solvable. Hence by the first paragraph, case (i) of 14.3.23.2

holds, so d = 4, Ḣ ∼= S3 × S3, L̇1 E Ḣ , and setting K := 〈ZgHU 〉, K̇ ∼= S3,

Ḣ = K̇L̇1Ṫ , and K 6≤M . Then K ∩M ≤ (K ∩ T )CK(Û), since the latter group is

maximal in KCH(Ũ). Set H+ := H/CH(VH ). As in the previous paragraph, ZgU
induces transvections on VH with axis Z0∩VH . By the first paragraph of the proof,
CK(VH ) ≤M , so that CK(VH ) ≤ (K ∩ T )CK(Û). Therefore K+ has the quotient

group K̇ ∼= S3 and CK(VH) ≤ CK(Û). Thus we conclude from the structure of
SQTK-groups generated by transvections (e.g., G.6.4) that K+ ∼= S3, and hence

CK(VH ) = CK(Û) and [VH ,K] is of rank 2. Indeed as Z0 is a hyperplane of ZU
centralized by ZgU , ZU = [VH ,K]×CZU (K) and CZU (K)EH . Set Ȟ := H/CZU (K)

and H ! := H/CH(Ǔ); observe that CH([VH ,K]) ≤ CH(ŽU ), and Ǔ is a quotient of

Ũ and so elementary abelian. As Ǔ = 〈V̌ H2 〉 and V̌2 ≤ Ω1(Z(Ť )), O2(H
!) = 1 by

B.2.13. As CK(Û) = CK(VH) ≤ CK([VH ,K]) ≤ CK(ŽU ), CK(Û)! ≤ O2(K
!) = 1.

Therefore CK(Ǔ) = CK(Û), so K ! ∼= K̇ ∼= S3. Next [CH(Û),K] ≤ CK(Û) =

CK(VH ), so that [CH(Û)+,K+] = 1. Then as EndK+([VH ,K]) ∼= F2, CH(Û) ≤

CH([VH ,K]) ≤ CH(ŽU ), so CH(Û)! ≤ O2(H
!) = 1. Therefore CH(Û) = CH(Ǔ),

and hence Ḣ ∼= H !. Next Ǔ = 〈V̌ H〉, while V̌ = [V̌ , L1] and L
!
1 E H ! as H ! ∼= Ḣ , so

we conclude Ǔ = [Ǔ , L1], contrary to 1 6= [V̌H ,K] ≤ CǓ (L1) since Ǔ is elementary
abelian. This contradiction completes the proof of 14.3.25. ¤

Theorem 14.3.26. Assume Hypothesis 14.3.10. Then either ZU = V1 so that
U is extraspecial, or G ∼= HS.

Remark 14.3.27. If Hypothesis 14.3.1 did not exclude the possibility that
K/O2(K) ∼= A6 for some K ∈ Lf (G, T ), then Sp6(2) would also appear as a
conclusion in Theorem 14.3.26. Its shadow will be eliminated during the proof of
lemma 14.3.31. Recall that the case leading to Sp6(2) was treated in Theorem
13.4.1.

Until the proof of Theorem 14.3.26 is complete, assume G is a counterexample.
Thus V1 < ZU . Then by 12.8.13.4, ŻgU 6= 1.

Recall V2 = V1V
g
1 . As L/O2(L) ∼= L3(2) by Theorem 14.3.16, we may choose

l ∈ CL(V
g
1 ) with V = V2V

l
1 . In particular V l2 = V g1 V

l
1 , so we may apply results
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from section 12.8 with V l2 in the role of “V2”. Similarly V1V
l
1 can play the role of

“V2”.

Lemma 14.3.28. (1) Z(I l2) = ZgU ∩ Z
l
U .

(2) ZU ∩ Z(I l2) = 1.

Proof. As (U,Ug)l = (U l, Ug), part (1) follows from 12.8.10.2. Then by (1)
and 12.8.10.2,

ZU ∩ Z(I
l
2) = ZU ∩ Z

g
U ∩ Z

l
U = Z(I2) ∩ Z(I

l
2) ≤ CU (L) = 1,

since L = 〈L2, L
l
2〉, and CU (L) = 1 by 14.3.25. ¤

Lemma 14.3.29. Assume there exists 1 6= e ∈ Z(I2) ∩ Z, and let Ve := 〈eL〉.
Then

(1) Ve is of dimension 3, 4, 6, or 7, and Ve has an quotient L-module isomorphic
to the dual of V .

(2) J(T ) E LT .

Proof. By 12.8.10.2, Z(I2) ≤ ZU , so by choice of e and 14.3.25, [L, e] 6= 1.
Thus I2T = CLT (e), so |eLT | = 7. Thus (1) follows from H.5.3. As usual V Ve ∈
R2(LT ) by B.2.14, so as there is a quotient of Ve isomorphic to the dual of V as
an LT -module, (2) follows from Theorem B.5.6. ¤

Lemma 14.3.30. (1) |Z(I2)| ≤ 2.

(2) If Z(I2) 6= 1, then the image of Z(I l2) in Ḣ is the subgroup of order 2

generated by an involution of type a2 in Sp(Û) with [Û , Z(I l2)] = V̂ .

Proof. We may assume Z(I2) 6= 1. By 14.3.28.1, Z(I l2) = ZgU ∩ Z
l
U , so by

12.8.10.4,

[Z(I l2),W ] ≤ [ZgU ,W ] ≤ ZUV2 = ZUV
g
1 and [Z(I l2), U ∩H

l] ≤ ZUV
l
1 .

By 12.8.4.1 and G.2.5.1, Ū = O2(L̄1), so from the action of L̄ on V , U = CU (V
g
1 )CU (V

l
1 ) =

W (U ∩H l), and hence [U,Z(I l2)] ≤ ZUV , with V̂ ∼= V ZU/ZU of rank 2. Thus the

image of Z(I l2) in Ḣ is either trivial, or is 〈ȧ〉 of order 2, where ȧ is the element of

Sp(Û) of type a2 with [Û , ȧ] = V̂ , and in the latter case (2) holds. We will show

that Z(I l2) is faithful on Û . This will prove (1), and complete the proof of (2).

So let A := CZ(Il2)(Û); we must show A = 1. Applying 12.8.10.6 with V2 =

V1V
g
1 and V1V

l
1 in the role of “V2”, A ≤ V g1 ZU ∩V

l
1ZU = ZU , so A ≤ ZU ∩Z(I l2) = 1

by 14.3.28.2, completing the proof. ¤

Lemma 14.3.31. Z(I2) = 1.

Proof. Assume Z(I2) 6= 1. Then by 14.3.30.1, Z(I2) = 〈e〉 is of order 2, and
e ∈ ZU by 12.8.10.2. Further as T normalizes I2, e ∈ Z. Let a := el. By 14.3.30.2,
ȧ is the involution in Sp(Û) of type a2 with [Û , ȧ] = V̂ .

Let K := 〈aH〉. Then [a, ZU ] ≤ ZU ∩Z(I l2) = 1 by 14.3.28.2. Thus a centralizes

ZU , so K does too. In particular 〈K, I2T 〉 ≤ CG(e) =: Ge. Also then CK(Û) =

CK(Ũ) = O2(K) using 12.8.4.4, so K/O2(K) ∼= K̇ ∼= K∗.

By 14.3.24, either Û is the natural module for Ḣ ∼= G2(2), or d = 4 and one of
conclusions (i)–(iii) of 14.3.23.2 holds.

Assume first that one of the cases other than case (i) of 14.3.23.2 holds. Then

F ∗(Ḣ) is simple, so F ∗(Ḣ) ≤ K̇ and K1 := K∞ ∈ C(H) with K̇1 = Ḟ ∗(Ḣ). If
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K̇1 is G2(2)
′ or A6, then K1 contains all elements of order 3 in H by A.3.18, so

L = 〈L1, L2〉 ≤ 〈K1, I2〉 ≤ Ge, contrary to 14.3.25. On the other hand if Ḣ ∼= S5,

then Ḣ contains no involution of type a2, contrary to 14.3.30.2.
Therefore case (i) of 14.3.23.2 holds. so Ḣ ∼= S3 × S3. Since ȧ has type

a2, Û = [Û ,K], and since [Û , ȧ] = V̂ , ȧ centralizes V̂ , so 〈ȧ〉 = ŻgU , K̇
∼= S3,

Ḣ = K̇L̇1Ṫ , and K 6≤M by 14.3.23.2.
We saw earlier thatKe := 〈KT, I2T 〉 ≤ Ge; set Ue := 〈V

Ke
1 〉,K+

e := Ke/CKe(Ue),
and Ǩe := K+

e /O3′(K
+
e ). Then O2(K

+
e ) = 1 by B.2.14, so α := (I+2 T

+, T+,K+T+)
is a Goldschmidt amalgam in the sense of Definition F.6.1. Observe that V2 =
〈V I21 〉 ≤ Ue, so U1 := 〈V K2 〉 ≤ Ue. Now K/O2(K) ∼= S3, Û = [Û ,K], and
[V2, U ] = V1; so F

∗(K/CK(U1)) = O2(K/CK(U1)) and hence F ∗(K+) = O2(K
+).

By 14.3.29.2, J(T ) E LT . Hence J(T ) ≤ O2(I2T ), and as K 6≤M = !M(LT ),
J(T ) 6≤ O2(KT ) in view of B.2.3.3, so O2(K) = [O2(K), J(T )]. Thus O2(K

+T+) 6=
O2(I

+
2 T

+), and Ue is an FF-module for K+
e . By F.6.11.1, O3′(K

+
e ) is of odd

order, so K+T+ ∼= ǨŤ and I+2 T
+ ∼= Ǐ2Ť , and hence F ∗(Ǩ) = O2(Ǩ). Then

as O2(K
+T+) 6= O2(I

+
2 T

+), F.6.11.2 says K+
e
∼= Ǩe is described in Theorem

F.6.18. As F ∗(Ǩ) = O2(Ǩ), cases (1) and (2) of F.6.18 are ruled out. In the
remaining cases, K+

e
∼= Ǩe is not solvable, so K0 := K∞e ∈ Lf (G, T ) by 1.2.10.

Then by 14.3.4.1, K0/O2(K0) ∼= L3(2) since A5 is not a composition factor of any
group in F.6.18. Then Ǩe appears in case (6) of F.6.18, so Ke = K0Y with Y
the preimage in Ke of O3′(K

+
e ). As O2(Ǩ) = [O2(Ǩ), T ∩ K0] and O2(K) is T -

invariant, O2(K) ≤ K0. Similarly O2(I2) ≤ K0, so K0 = O2(Ke) using F.6.6,

and hence Ke = K0T . Also V2 = 〈V I21 〉 and KT centralizes V1, so by H.5.5,

Ue = 〈V
Ke
1 〉 is a 3-dimensional natural module for K+

e
∼= L3(2). Thus Ue = 〈V K2 〉.

We saw earlier that Û = [Û ,K], K centralizes ZU , and CK(Û) = O2(K). Therefore

Ũ = [Ũ ,K]⊕ Z̃U . Now as Ḣ = K̇L̇1Ṫ , U = 〈V L1K
2 〉, so V2 6≤ [K,U ] and Ue = 〈V K2 〉

has rank greater than 3, contradicting m(Ue) = 3. ¤

Lemma 14.3.32. (1) Û is the L2(4)-module for Ḣ ∼= S5.
(2) U ∼= Q2

8 ∗ Z4.

(3) Q = CH (Û), so that Ḣ ∼= H∗.
(4) H = KT with K ∈ C(H), U = [O2(K),K], and K acts indecomposably on

Ũ .

Proof. By 14.3.31, Z(I2) = 1, so that by 12.8.10.6,

CZgU (Û) = V g1 , so ŻgU
∼= Z̃U 6= 1. (∗)

By 14.3.24, either case 14.3.14.3 holds with Ḣ ∼= G2(2), or Ḣ is described in one

of cases (i)–(iii) of 14.3.23.2. Then d = 6 or 4, respectively. By 12.8.11.2, m(Ê) ≤

d/2. Then we can use 12.8.11.5 to showm(Ê) = d/2 andm(Ẇ g/ŻgU ) = d/2−1: For

when d = 4, Ê = V̂ ∼= E4 by 14.3.23.1, and when d = 6, m(Ẇ g) = 3 by 14.3.14.3

and ŻgU 6= 1 by (*). This also shows m(ŻgU ) = 1 when Ḣ ∼= G2(2). When d = 4,

m(Ẇ g/ŻgU ) = 1 by 14.3.23.3, so as ŻgU 6= 1 by (*), either m2(Ḣ) = 2, m(Ẇ g) = 2,

and m(ŻgU ) = 1, or case (iii) of 14.3.23.2 holds with Ḣ ∼= S6, m(Ẇ g) = 3, and

m(ŻgU ) = 2.

Thus in view of (*), we have shown that either |Z̃U | = 2, or Ḣ ∼= S6 and

|Z̃U | = 4. In either case, H∞ centralizes ZU by Coprime Action, and in the former

H centralizes Z̃U . Thus as H = H∞T in the latter case, (3) holds by 12.8.4.4.
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Suppose next that case (i) of 14.3.23.2 does not hold; we will eliminate that
case at the end of the proof. Then there is K ∈ C(H) with K∗ = F ∗(H∗). As K

centralizes ZU and T acts on V2 with [V2, Q] = V1, CK(V̂2)
∗ = CK(V2)

∗ by Coprime

Action. Then as H∗ ∼= Ḣ by (3), CK(V̂2)
∗ acts on Zg∗U and W g∗ by 12.8.12.2. But

when H∗ ∼= G2(2), we saw ŻgU has order 2, whereas CK(V̂2)
∗ is the stabilizer of a

4-subgroup of T ∗, and in particular does not normalize Z(T ∗) of order 2.

Thus d = 4, so V̂ = Ê by 14.3.23.1. Further since I2 E G2 by 12.8.9.1,
CK(V̂2)

∗ = CK(V2)
∗ normalizes E = U ∩ U g. But in case (iii) of 14.3.23.2, the

maximal parabolic CK(V̂2)
∗ does not normalize V̂ .

Thus we have reduced to case (ii) of 14.3.23.2, so that (1) holds, and also

|ZU | = 4. If ZU ∼= E4 then Ḣ preserves a quadratic form on Û by 12.8.8.2, which

is not the case as here Û is a natural L2(4)-module. Thus (2) holds.
Next as Q normalizes V2 with [V2, U ] = V1, Q = UCQ(V

g
1 ). By 12.8.9.5,

W g ∩Q = E. Thus

[Q,W g ] = [U,W g][CQ(V
g
1 ),W

g ] ≤ U(W g ∩Q) = U.

Then as K = [K,W g ], [Q,K] ≤ U . If [U,K] < U , then [U,K] is extraspecial by

(2), impossible as Û is the L2(4)-module for K̇. Thus U = [U,K] = [O2(K),K], so

K is indecomposable on Ũ . By (1) and (3), H = KT , completing the proof of (4).

Finally we must eliminate case (i) of 14.3.23.2. Here L̇1 E Ḣ , so as Ḣ ∼= H∗

by (3), L1 E H , and hence Ũ = [Ũ , L1] by 12.8.5.1. This is a contradiction as we

saw H centralizes Z̃U . ¤

Lemma 14.3.33. (1) P := O2(L) = 〈ZLU 〉
∼= Z3

4, with P/V isomorphic to V as
an L-module.

(2) U = O2(K) and PU ∈ Syl2(K).
(3) M = L and H = KT with U = O2(H).

Proof. By 14.3.32.2, CU (V ) = V ZU , and ZU ∼= Z4 is centralized by L1. By

14.3.23.1, Ê = V̂ , so V ≤ U ∩ U g = E ≤ V ZU and hence E = V (ZU ∩ Ug). By
(*) in the proof of 14.3.32 and symmetry, ZU ∩ Ug = V1, so E = V . By 12.8.8.4,
O2(LU)/V is described in G.2.5; thus as E = V and m(W/V ) = 1, we conclude
that O2(LU)/V is isomorphic to V as an L-module, and hence O2(LU) = 〈ZLU 〉
and O2(LU) = [O2(LU), L] = O2(L) = P . As ZU is a cyclic normal subgroup of
H = CG(Ω1(ZU )), ZU is a TI-set in G. Further ZU ≤ CT (V ), so [ZU , Z

y
U ] = 1 for

y ∈ L by I.7.5, and hence (1) holds.
By (1), V = Ω1(O2(L)) E M . By 14.3.32, H = KT , with KQ/Q ∼= A5, so

H ∩M = L1T , and hence M = LT by 14.3.7.
From the structure of L, PU = O2(L1); so as L1 ≤ O2(H) = K, PU ≤ K.

By 14.3.32.4, U = [O2(K),K], so if U < O2(K), then K/U ∼= SL2(5); but this is
impossible, as the central 2-chief factors of L1 are in ZU by (1). Thus U = O2(K).
Then |PU | = |K|2, so (2) holds.

Now [K,CT (U)] ≤ CK(U) = ZU with ZU centralized by K, so K = O2(K)
centralizes CT (U) by Coprime Action. In particular CT (U) = CT (K) since U ≤ K.
Then by (2), CT (L) ≤ CT (PU) ≤ CT (U) = CT (K). But K 6≤ LT = M , while
if CT (L) 6= 1, then NG(CT (L)) ≤ M = !M(LT ); so we conclude CT (L) = 1. By
(2), CT (K) centralizes PU ; so as PU = O2(L1), from the structure of Aut(L),
CT (K) ≤ CT (PU) ≤ CT (L)ZU = ZU . Thus CT (U) = CT (K) = ZU .
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Let X1 be of order 3 in L1. Then Q = [Q,X1]CQ(X1) with [Q,X1] = [U,X1] ∼=

Q2
8 by 14.3.32. Now if Q1 is the preimage of an irreducibleX1-submodule of ˜[Q,X1],

then by 12.8.4.2, CQ(X1) normalizes Q1; further CQ1(CQ(X1)) > V1 = CQ1(X1) by

the Thompson A×B-Lemma, so CQ(X1) centralizes Q1 as X1 is irreducible on Q̃1.
Thus CQ(X1) centralizes [Q,X1] = [U,X1], so ZU = CT (U) = CQ(X1)∩CQ(ZU ) is
of index at most 2 in CQ(X1) as ZU ∼= Z4. Thus either CQ(X1) = ZU , or CQ(X1)
is dihedral or quaternion of order 8.

Suppose first that CQ(X1) = ZU . Then Q = U , so as H = KT , |H |2 = 29 by
14.3.32. Hence as we saw M = LT , M = L using (1), so (3) holds.

So we assume CQ(X1) is of order 8, and it remains to derive a contradiction.
1 Now CQ(X1) ≤ O2(LT ), so O2(LT ) = PCQ(X1). Then as M = LT , M =
LCQ(X1).

For r ∈ CQ(X1) − U , r centralizes the supplement [U,X1] to P in O2(L1), so
from the structure of Aut(L3(2)), r centralizes L/P . Then by Gaschütz’s Theorem
A.1.39, we may choose r so that [r, L] ≤ V . Now as L is irreducible on V , r is an
involution, and as CT (L) = 1, P induces the full group of transvections on V 〈r〉
with axis V . So L = PCL(r) by a Frattini Argument, and r inverts P .

Let TL := T ∩ L, so that TL is of index 2 in T . As G is simple, Thompson
Transfer says there is g ∈ G with rg ∈ TL. We show that any such rg is not extremal
in M ; then the standard transfer result Exercise 13.1 in [Asc86a] contradicts r ∈
O2(G).

As H contains no L3(2)-section, r
G ∩ V = ∅. Thus rg ∈ TL − P as V =

Ω1(P ), and conjugating in L, we may take rg ∈ O2(L1) = PU . By 14.3.32.2, each
nontrivial coset of ZU in U contains exactly two involutions fused under U , and
by 14.3.32.1, K is transitive on Û#, so K is transitive on involutions in U − V1.

Thus as rG ∩ V = ∅, rg /∈ U . Then as P ∗ ∈ Syl2(K
∗), V̂ = CÛ (r

g); so as
PU centralizes ZU , CU (r

g) = ZUCV (r
g) = ZUV2. Thus |U : CU (r

g)| = 23, so
|CT (r

g)| ≤ 27 as |T | = 210. Therefore if rg is extremal inM , then CT (r
g) = CT (r)

g .
As V is the natural module for CL(r)/V ∼= L3(2), V1 = Z(CT (r)) ∩ Φ(CT (r)).
Then as V1 ≤ Z(CT (r

g)) ∩ Φ(CT (r
g)), we conclude g ∈ H . This is impossible

as r ∈ Q = O2(H), while rg ∈ PU but rg /∈ U = Q ∩ PU . This contradiction
completes the proof of (3), and hence of 14.3.33. ¤

At this point, we can complete the identification of G as HS, and hence estab-
lish Theorem 14.3.26. Namely by 14.3.33 and 14.3.32, U = Q = O2(H) ∼= Z4 ∗Q2

8

with H/U ∼= S5. By 14.3.32.4, Ũ is an indecomposable module under the action of
H . Further by 14.3.33, F ∗(M) = P ∼= Z3

4, and M/P ∼= L3(2). Thus G is of type
HS in the sense of section I.4 of Volume I, so we quote the classification theorem
stated there as I.4.8 to conclude that G ∼= HS.

14.4. Finishing the treatment of 〈VG1〉 nonabelian

In this section, we assume Hypothesis 14.3.1 holds, and continue the notation
of section 14.3. In addition, we assume U := 〈V G1〉 is extraspecial. In particular,
Hypothesis 14.3.10 holds, and we can appeal to results in the later subsections of
section 14.3.

1Notice we are here eliminating the shadow of Aut(HS).
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Theorem 14.3.26 handled the case where U is nonabelian but not extraspecial,
so this section will complete the treatment of the case U nonabelian. Recall also
by Theorem 14.3.16 that L/O2(L) ∼= L3(2).

Recall that in Hypothesis 14.3.10, H := G1, U = 〈V G1〉, and we can appeal to
results in both subsections of section 12.8. Also g ∈ NL(V2)−H andW := CU (V2).

Let s be the generator of V g1 . As U is extraspecial, ZU = V1, so that Û = Ũ ,

ŻgU = 1, Ḣ = H∗, and d := m(Û) = m(Ũ). By 12.8.4.4, Q := O2(H) = CH(Ũ).

Let K := O2(H). By 12.8.8.2, H∗ preserves a quadratic form on Ũ , so H∗ ≤
O(Ũ) ∼= Oεd(2) for ε := ±1. Notice CH (Ṽ2) = NH(V2) ≤ G2, so since I2 E G2 by

12.8.9.1, CH∗(Ṽ2) acts onW
g∗ by 12.8.12.2, and on Ẽ since E =W ∩W g =W ∩W l,

where V l1 is the point of V2 distinct from V1 and V g1 .
As Zg∗U = 1, 12.8.11.5 becomes:

Lemma 14.4.1. m(Ẽ) +m(W g∗) = m(Ũ)− 1 = d− 1.

We next obtain a list of possiblities for H∗ and U from G.11.2; all but the
second case will eventually be eliminated, although several correspond to shadows
which are not quasithin.

Lemma 14.4.2. m(Ẽ) = d/2, so m(W g∗) = d/2− 1, U ∼= Q
d/2
8 , and one of the

following holds:

(1) d = 4 and H∗ ∼= S3 × S3.
(2) d = 4 and H∗ is E9 extended by Z2.

(3) d = 8, Ũ is the natural module for K∗ ∼= Ω+
4 (4), andW

g∗ = CT∗∩K∗(x
∗)〈x∗〉,

where x∗ ∈W g∗−K∗ interchanges the two components of K∗, and m([Ũ , x∗]) = 4.

(4) d = 8, H∗ ∼= S7, Ũ = Ũ1 ⊕ Ũ2, where Ũi is a totally singular K-module of
rank 4, and Ux1 = U2 for x ∈ W

g −NH(U1).

(5) d = 8, H∗ ∼= S3×S5 or S3×A5, and Ũ is the tensor product of the natural
module for S3 and the natural or A5-module for L2(4).

(6) d = 12 and H∗ ∼= Z2/M̂22.

Proof. Notice the assertion that m(W g∗) = d/2 − 1 will follow from 14.4.1

once we show m(Ẽ) = d/2, as will the assertion that U ∼= Q
d/2
8 .

By 14.3.13, H∗ and its action on Ũ satisfy one of the conclusions of G.11.2,
but not conclusion (1), (4), (5), or (12). Further by 14.3.23: d ≥ 4, and if d = 4

then Ẽ = Ṽ is of rank 2 = d/2, so that either (1) or (2) of 14.4.2 holds, since in
conclusions (ii) and (iii) of 14.3.23.2, 1 6= Zg∗U , contrary to an earlier remark.

Suppose d = 6. Then conclusion (3) or (6) of G.11.2 holds. In either case,
27 divides the order of H∗, so ε = −1 as 27 does not divide the order of O+

6 (2).

Therefore m(E) ≤ m2(U) = 3, so Ẽ = Ṽ is of rank 2 as V ≤ E by 12.8.13.1,
and hence m(W g∗) = 3 by 14.4.1. Thus conclusion (3) of G.11.2 does not hold, as

there m2(H
∗) = 2. In conclusion (6), CH∗(Ṽ2) acts on Ẽ of rank 2, impossible as

CH∗(Ṽ2) is the stabilizer in H∗ of a point of Ũ , and so acts on no line of Ũ .
In the remaining cases of G.11.2, we have d = 8 or 12. So m(W g∗) = d/2− 1

by 14.3.14, and thus m(Ẽ) = d/2 by 14.4.1, completing the proof of the initial
conclusions of the lemma as mentioned earlier.

If d = 12, then conclusion (13) of G.11.2 holds, and hence conclusion (6) of
14.4.2 holds. Thus we may assume one of conclusions (7)–(11) of G.11.2 holds,
where d = 8.
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Conclusion (10) of G.11.2 is impossible, as m3(H
∗) = m3(H) ≤ 2 since H is an

SQTK-group. As L∗1T
∗ ≤ H∗ with L∗1T

∗/O2(L
∗
1T
∗) ∼= S3, conclusion (11) of G.11.2

does not hold. Conclusions (8) and (9) of G.11.2 appear as conclusion (4) and (5)
of 14.4.2. So it remains to show that conclusion (7) of G.11.2 leads to conclusion

(3) of 14.4.2. In case (7) of G.11.2, W g∗ 6≤ K∗. Then as we saw W g∗ E CH∗(Ṽ2),
it follows that W g∗ = 〈x∗〉Y ∗, where x∗ is an involution interchanging the two

components of H∗, m([Ũ , x∗]) = 4, and Y ∗ = CT∗∩K∗(x
∗), as desired. ¤

14.4.1. Characterizing G2(3) when d = 4. The only quasithin example
satisfying Hypotheses 14.3.1 with U extraspecial is G2(3), occurring when d = 4,
so our first main result treats this case:

Theorem 14.4.3. Assume Hypothesis 14.3.10 with U extraspecial. If d = 4,
then G ∼= G2(3).

Until the proof of Theorem 14.4.3 is complete, assume G is a counterexample.

Lemma 14.4.4. (1) K∗ ∼= E9.
(2) V = E and W g∗ is of order 2, inverts K∗, and is generated by an involution

of type c2 on Ũ .
(3) Either H∗ = K∗W g∗, or H∗ ∼= S3 × S3.
(4) L is an L3(2)-block with V = O2(L).
(5) UW g ∈ Syl2(L) and U = O2(L1).
(6) L does not split over V , and m2(UW

g) = 3.
(7) H = KT and M = LT .

Proof. As d = 4, case (1) or (2) of 14.4.2 holds, establishing (1) and (3) since
m(W g∗) = 1 by 14.4.2. By 14.3.23.1, V = E. Thus the first two statements in (2)

are established. By (1), H is a {2, 3}-group. As L∗1 E H∗ by (1), Ũ = [Ũ , L1] by
12.8.5.1, so that U = [U,L1] ≤ L. By 12.8.8.4, O2(LU) = O2(L) is described in
G.2.5. Therefore since E = V and m(U/V ) = 2 = m2(O2(L̄1)), V = O2(L), giving
(4); and Ū = O2(L̄1) so U = O2(L1), and hence TL := T ∩ L = UW g , giving (5).

Let a ∈ W g − U . Then a inverts L∗1 with Ũ = [Ũ , L1], so using the structure
of O+

4 (2), either the remaining two statements of (2) hold, or a∗ is of type a2,
A := 〈a, [U, a]〉 ∼= E16, and H∗ = NH(A)

∗L∗1. In the latter case, a acts on a
complement to V in U , so that UW g splits over V ; then by Gaschütz’s Theorem
A.1.39, L splits over V . Conversely if L splits over V , then from the structure of
the split extension of E8 by L3(2), J(TL) ∼= E16, so a

∗ is of type a2 and A = J(TL).
Thus to complete the proof of (2) and (6), it remains to assume L splits over V ,
and obtain a contradiction. Set N+ := NG(A)/CG(A); then [O2(L2), L2] = A, so
that L+

2 T
+
L
∼= Z2 × S3 while NK(A)

+ ∼= A4. Then from the structure of Aut(A) ∼=
GL4(2), the subgroup ofN+ generated by L2T andNK(A) is isomorphic to A7. But
then the stabilizer of z in this subgroup is L3(2), contradicting H a {2, 3}-group.

For (7), observe V = O2(L) E M by (4). Then as H = KT and KQ/Q ∼= E9

by (1), H ∩M = L1T , so that M = LT by 14.3.7. ¤

Lemma 14.4.5. (1) L =M .
(2) U = O2(H) and H∗ ∼= Z2/E9.
(3) T = UW g.

Proof. Let K1 := 〈W gH 〉. By (1) and (2) of 14.4.4, K∗1 is K∗ ∼= E9 extended
byW g∗ ∼= Z2; so as V ≤W g , U = 〈V H〉 ≤ K1. Hence using 14.4.4.5, UW g of order
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26 is Sylow in both L and K1. Then [K1, CT (L)] ≤ [K1, CT (U)] ≤ CK1(U) = V1, so
K ≤ CG(CT (L)) by Coprime Action; therefore CT (L) = 1 as K 6≤ M = !M(LT ).
Let A := O2(M). As M = LT and L is an L3(2)-block with V = O2(L) by
parts (4) and (7) of 14.4.4, A is elementary abelian by C.1.13.1, while m(A/V ) ≤
dimH1(L/V, V ) = 1 by C.1.13.b and I.1.6.4. Thus either (1) holds, or A ∼= E16 and
T/A is regular on A−V from the structure in B.4.8.3 of the unique indecomposable
A with [A,L] = V . But in the latter case, A = J(T ) using 14.4.4.6, and all
involutions in T − L are in A. However as J(T ) = A, NG(A) = M controls fusion
in A by Burnside’s Fusion Lemma A.1.35, so aG ∩ L = ∅ for a ∈ A − L, and then
Thompson Transfer contradicts the simplicity of G. 2

Therefore (1) is established. Now (3) follows from (1) and 14.4.4.5. Then
H = KT = K1, and (2) holds. ¤

We are now in a position to complete the proof of Theorem 14.4.3. We will
show G is of G2(3)-type in the sense of section I.4, and then conclude G ∼= G2(3)
by the classification theorem stated in Volume I as I.4.5.

First by 14.4.4.4 and 14.4.5.1, F ∗(M) = V ∼= E8 and M/V ∼= L3(2). Second
U = O2(H) by 14.4.5.2, and as d = 4, U ∼= Q2

8 by 14.4.2. By 14.4.4.1, K∗ ∼= E9,
so K = K1K2, where Ki

∼= SL2(3), [K1,K2] = 1, and K1 ∩K2 = V1. By 14.4.5.2,
|H : K| = 2. Further by 14.4.4.2, W g∗ inverts K∗; so W g, and hence also H , acts
on Ki. Thus G is of G2(3)-type, completing the proof of Theorem 14.4.3.

14.4.2. Eliminating the case d > 4. Having established Theorem 14.4.3, we
may assume for the remainder of this section that d > 4; as no quasithin examples
arise, we are working toward a contradiction. In fact d = 8 or 12 since one of cases
(3)–(6) of 14.4.2 holds.

Lemma 14.4.6. If a∗ is an involution in H∗ then either

(1) m([Ũ , a∗]) > 2, or

(2) H∗ ∼= S3 × S5 or F ∗(H) ∼= Ω+
4 (4), and in either case Ṽ2 6≤ [Ũ , a∗] and

m([Ũ , a∗]) = 2.

Proof. Assume (1) fails. Then by inspection of cases (3)–(6) in 14.4.2, either:

(a) conclusion (5) of 14.4.2 holds, withH∗ = H∗1×H
∗
2 whereH∗1

∼= S3, H
∗
2
∼= S5,

Ũ is the tensor product of the natural module for H∗1 and the A5-module for H∗2 ,
and a∗ is a transposition in H∗2 , or

(b) conclusion (3) of 14.4.2 holds, with a∗ inducing an F4-transvection on Ũ .

In case (a), Ũ = Ũ1 ⊕ Ũ2 is the sum of two irreducible H∗2 -modules with

CŨi(T
∗ ∩ H∗2 ) = 〈ũi〉 and ũi singular in the orthogonal space Ũi. Therefore as

the generator s̃ of Ṽ2 centralizes T ∗, s̃ = ũ1 + ũ2. However [Ũi, a
∗] = 〈ṽi〉 with ṽi

nonsingular, so s̃ /∈ [Ũ , a∗], and hence (2) holds.

Similarly in case (b), Ṽ2 is contained in a singular F4-point of Ũ , while [Ũ , a∗]
is a nonsingular F4-point, so again (2) holds. ¤

Lemma 14.4.7. U = O2(H) = Q.

Proof. As U is extraspecial, O2(H
g) = UgD, where D := CHg (Ug). Now as

g ∈ NL(V2), V2 ≤ Ug , so [D,W ] ≤ CW (Ug). But CW (Ug) ≤ Ug by 12.8.9.5, so

that CW (Ug) = V g1 . Therefore if D
∗ 6= 1, either D induces transvections on Ũ with

2Notice here we are eliminating the shadow of Aut(G2(3)).
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axis W̃ , or [W̃ ,D] = Ṽ g1 = Ṽ2 with m([Ũ , d]) ≤ 2 for each d ∈ D. This contradicts

14.4.6, so D centralizes Ũ , and hence [D,W ] ≤ V1 ∩ V
g
1 = 1. Recall that W g∗ is

elementary abelian of rank d/2− 1 > 1 by 14.4.2, and this forces K∗ = [K∗,W g∗]
in each of cases (3)–(6) of 14.4.2. Thus by symmetry Kg = [Kg,W ] ≤ CG(D). But
Kg 6≤M and M = !M(LT g), so as T g acts on CD(L), it follows that CD(L) = 1.

Next we saw D centralizes Ũ so that [D,U ] ≤ V1 ≤ V , and hence by symmetry,
[D,Ux] ≤ V x1 ≤ V for each x ∈ L. Thus L ≤ 〈Ux : x ∈ L〉 =: I centralizes DV/V .
Further by 12.8.8.4, I is described by G.2.5, so S := U gWCU l(V ) is Sylow in LS, for
l ∈ L−L2T . AsW centralizesD, so does CU l(V ) by symmetry, so that S centralizes
D; then we conclude from Gaschütz’s Theorem A.1.39 that DV = V ×CD(L) with
CD(L) a complement to V g1 in D. Then as CD(L) = 1, D = V g1 . Then Qg = Ug,
so Q = U , completing the proof of the lemma. ¤

We now define certain {2, 3}-subgroupsX of H , which are analogous to L1: for
example, 14.4.8 will show that 〈X,L2〉 =: LX satisfies the hypotheses of L. Then
14.4.13 will show that 〈LT,LX〉 ∼= L4(2), leading to our final contradiction.

So let X consist of the set of T -invariant subgroups X = O2(X) of H such that
|X : O2(X)| = 3. Let Y consist of those X ∈ X such that VX := [V2, X ] is of rank
3 and contained in E, and set LX := 〈L2, X〉.

Lemma 14.4.8. (1) L1 ∈ Y, with VL1 = [V2, L1] = V and LL1 = L.
(2) If X ∈ Y then LX ∈ L

∗
f (G, T ), LX/O2(LX) ∼= L3(2), LXT induces GL(VX)

on VX with kernel O2(LXT ), and I2 and XT are the maximal parabolics of LXT
over T .

Proof. By construction, L1 ∈ X with V = [V2, L1], and V ≤ E by 12.8.13.1.
Thus (1) holds.

Assume X ∈ Y . Then V2 ≤ VX ≤ E ≤ U ∩ U g, so U and Ug act on VX , and
hence also I2 = 〈U,Ug〉 acts on VX . Then AutI2(VX ) is the maximal subgroup of
GL(VX) stabilizing the hyperplane V2 of VX , andX does not act on that hyperplane
as VX = [VX , X ], so LX/CLX (VX ) = GL(VX). Thus there is L+ ∈ C(LX) with
L+CLX (VX ) = LX , so L+ ∈ Lf (G, T ). Then by 14.3.4.1, L+ ∈ L∗f (G, T ) and

L+/O2(L+) ∼= L3(2). The projection P of L2 on L+ satisfies P = [P, T ∩ L+], so
as T acts on L2, L2 = [L2, T ∩L+] ≤ L+. Similarly X ≤ L+, so LX = L+, and (2)
holds. ¤

The shadow of the Harada-Norton group F5 is eliminated in the proof of the
next lemma. We obtain a contradiction in the 2-local which would correspond to
the local subgroup Ω−6 (2)/E26 in F5.

Lemma 14.4.9. Case (3) of 14.4.2 does not hold.

Proof. Assume case (3) of 14.4.2 holds. Then we can view Ũ as a 4-dimensional

orthogonal space over F4 preserved byK∗. In particular Ṽ2 = CŨ (W
g∗) lies in some

totally singular F4-point Ũ2 of Ũ . Further X = {X1, X2}, where a subgroup of or-
der 3 in each X∗i is diagonally embedded in K∗, and we may choose notation so

that [X2, Ũ2] = 1 and Ũ2 = [X1, Ũ2]. Thus L1 = X1 and V = U2 by 14.4.8.1.

Therefore the subspace Ṽ ⊥2 orthogonal to Ṽ in the F2-orthogonal space Ũ is
the same as the subspace V ⊥4 =: W̃1 orthogonal to Ṽ in F4-orthogonal space Ũ .
Choose k ∈ K so that Ṽ k 6≤ W̃1. As W̃1 is an F2-hyperplane of W̃ and L1 is
transitive on Ṽ #, we can choose k so that sk ∈W (recall s is the generator of V g1 ).
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As the preimage W1 of W̃1 satisfies W1 = CU (V ), W g∗
1 = CW g∗ (V ) = W g∗ ∩K∗

since CH∗(V ) ≤ K∗ ∼= L2(4) × L2(4) as case (3) of 14.4.2 holds. Therefore as
sk ∈ W −W1, for some x ∈ G there is i := zx ∈W g with i∗ /∈ K∗.

Then K = K1K
i
1, where K1 ∈ C(H) and K∗1

∼= L2(4). As case (3) of 14.4.2

holds, m([Ũ , i∗]) = 4. Thus by Exercise 2.8 in [Asc94], CH∗ (̃i) = CH∗(i
∗). Let

K0 := O2(CH (̃i)). Then K∗0
∼= L2(4) is diagonally embedded in K∗, and K0

centralizes 〈i, z〉, soK0 = O2(CH (i)). Of courseK0 acts on [Ũ , i], and since diagonal

subgroups of K∗ of order 3 centralize a subspace of Ũ of rank exactly 4, it follows
that [Ũ , i] is the A5-module for K∗0 .

Let D := [U, i]〈i, z〉. Then D ∼= E64 since K0 is irreducible on [Ũ , i] of rank 4.
Further as U is extraspecial, K0U acts on D with CD(u) ≤ [U, i]V1 for each u ∈
U − [U, i]V1, and U/[U, i]V1 induces the full group of transvections on [U, i]V1 with
center V1. In particular CD(U) = 〈z〉, D = CUD(D), and U/[U, i]V1 is also the A5-
module for K0U/U . Further as Q = U by 14.4.7, D = O2(CH (i)) = O2(CG(〈z, i〉))
and UD = O2(K0UD).

Next K0 = O2(CHx (z)), so we conclude that z interchanges the two members
of C(Hx). Thus we have symmetry between i and z, and so Ux acts on D with
CD(U

x) = 〈i〉. Therefore as D is an indecomposable K0U -module with chief series
1 < V1 < [U, i]V1 < D, it follows that Y := 〈K0U,U

x〉 is irreducible on D.
Now let TD := NT (D) ∈ Syl2(NH(D)), and GD := NG(D). As Y is irreducible

on D, D ≤ Z(O2(GD)), so as D = CUD(D), D = UD ∩ O2(GD). As CD(TD) ≤
CD(U) = 〈z〉, NG(TD) ≤ H so that TD ∈ Syl2(GD).

Next K0 ∈ L(GD , TD), so K0 ≤ K+ ∈ C(GD) by 1.2.4, and as D = DU ∩
O2(GD), K < K+. However A.3.14 contains no “B” with O2(B) the A5-module
UD/D for K0D/UD. This contradiction completes the proof of 14.4.9. ¤

The elimination of the A5-module in part (3) of the next lemma 14.4.10 rules
out the shadow of the non-quasithin group Ω−8 (2). Again we obtain a contradiction
working in the 2-local corresponding to the local Ω−6 (2)/E26 in the shadow.

Lemma 14.4.10. Assume case (5) of 14.4.2 holds. Then

(1) X = {X1, X2} where X1 := O2(O2,3(H)) and X2 := O2(B) for B a T -
invariant Borel subgroup of K0 := H∞.

(2) There is a unique T -invariant chief factor Ũ1 for K0, and Ṽ2 ≤ CŨ (T ) ≤

Ũ1.
(3) Ũ1 is the L2(4)-module for K

∗
0 .

(4) X = Y.
(5) H∗ ∼= S3 × S5 and X1X2T/O2(X1X2T ) ∼= S3 × S3.

Proof. Assume conclusion (5) of 14.4.2 holds. Let K0 := H∞. It is easy to

check that (1) and (2) hold, with Ũ1 := [Ũ , x] for x∗ ∈ CW g∗(K∗0 ); such an x∗ exists

since W g∗ is of rank 3 by 14.4.2. Also [Ũ ,X1] = Ũ , so VX1 is of rank 3, and there

is a K0-complement Ũ2 to Ũ1. Recall that [W g ,W ] ≤ E by 12.8.11.1, and that

W̃ = Ṽ ⊥2 . Then computing in either module for A5 in case (5) of 14.4.2, we obtain

ṼX1 ∩ Ũ2 ≤ [Ṽ ⊥2 ∩ Ũ2,W
g∗ ∩K∗0 ] ≤ Ẽ.

So as VX1 = 〈V2, VX1 ∩ U2〉, X1 ∈ Y .
Assume first that Ũ1 is the L2(4)-module for K∗0 . Then (3) holds, and ṼX2 =

[Ṽ2, X2] is the F4-point in Ũ1 containing Ṽ2. Now [Ũ , x] ≤ W̃ as x acts on the
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hyperplane W̃ of Ũ , so ṼX2 ≤ [Ũ1,W
g] ≤ Ẽ. Thus X2 ∈ Y , and hence (4) holds.

As X2 ∈ Y , X2T/O2(X2T ) ∼= S3 by 14.4.8.2, so (5) holds, completing the proof of
the lemma for the L2(4)-module.

Thus as conclusion (5) of 14.4.2 holds, we may assume instead that Ũ1 is the
A5-module, and it remains to derive a contradiction.

As Ũ1 is the A5-module, X2 centralizes Ṽ2, so that X2 6∈ Y . Hence we conclude
from (1) and 14.4.8.1 that L1 = X1 and V = VX1 . Then X2 centralizes 〈Ṽ X1

2 〉 = Ṽ .
ThusX2 ≤ CG(V ) ≤M using Coprime Action, and then [L,X2] ≤ CL(V ) = O2(L),
so that X2 acts on L2 and hence on 〈UL2〉 = I2. Let G0 := 〈I2,K0〉, V0 := 〈zG0〉,
and G+

0 := G0/CG0(V0).
Suppose O2(G0) = 1. Then Hypothesis F.1.1 is satisfied with K0, I2, T in

the roles of “L1, L2, S”; for example we just saw that B1 := NK0(T ∩ K0) =
X2(T ∩ K0) normalizes I2. Thus α := (K0T, TX2, I2X2) is a weak BN-pair by
F.1.9. Further B2 := NI2(K0) = T ∩ I2, so T E TB2, and hence the hypotheses of
F.1.12 are satisfied. Therefore α is described in F.1.12. This is a contradiction as
U = O2(K0) ∼= Q4

8 and K0/U ∼= L2(4), a configuration not appearing in F.1.12.
Thus O2(G0) 6= 1, so G0 ∈ H(T ), and V0 ∈ R2(G0) by B.2.14. By 1.2.4,

K0 ≤ J ∈ C(G0). Then 1 6= [V2,K0] ≤ [V0, J ], so that J ∈ Lf (G, T ) by 1.2.10. Then
J ∈ L∗f (G, T ) by 14.3.4, so that K0 = J by 13.1.2.5. Now I2 = O2(I2) normalizes

K0 by 1.2.1.3, and hence acts on Z(O2(K0)) = V1, contradicting I2 6≤ G1. ¤

Lemma 14.4.11. Assume case (4) of 14.4.2 holds. Then

(1) We can represent H∗ ∼= S7 on Ω := {1, . . . , 7} so that T preserves the
partition {{1, 2, 3, 4}, {5, 6}, {7}} of Ω.

(2) Y = {X1, X2}, where X1 := O2(H1,2,3,4) and X2 = O2(H5,6,7). In particu-
lar, X1X2T/O2(X1X2T ) ∼= S3 × S3.

Proof. Part (1) is trivial; cf. the convention in section B.3. Further X =
{X1, X2, X3}, where X1 and X2 are defined in (2), X3 := O2(P ) for P the stabilizer
of the partition {{1, 2}, {3, 4}, {5, 6}, {7}}, and X1X2T/O2(X1X2T ) ∼= S3 × S3.

Next Ũ = Ũ1⊕ Ũ2, where Ũ1 is a 4-dimensional irreducible for K, and Ũ2 = Ũx1
for x∗ ∈ W g∗ − K∗ is dual to Ũ1. Now CŨi(NT (U1)) = 〈ũi〉 for suitable ũi, so

s̃ = ũ1ũ2, with CH∗(s̃) = P ∗ = X∗3T
∗ from the structure of the sum of Ũ1 and

its dual. In particular, X3 6∈ Y . Recall W g∗ E CH∗(Ṽ2) = P ∗ and m(W g∗) = 3
by 14.4.2, so W g∗ = O2(P

∗) = 〈x∗i : 1 ≤ i ≤ 3〉, where x∗i := (2i − 1, 2i) on Ω.

Let [U, xi] =: Di. Then Di ≤ W and D̃i is of rank 4, so D̃i is the L2(4)-module

for Y ∗i := CK∗(x
∗
i )
∼= S5 since elements of order 3 in Y ∗i are fixed-point-free on Ũ .

As such elements lie in Xi for i = 1, 2, VXi is of rank 3. Further X∗2 ≤ Y ∗3 with
VX2 ≤ [D3, x

∗
1x
∗
2] ≤ [D3,W

g] ≤ E by 12.8.11.1, so X2 ∈ Y . Similarly a Sylow 3-

group B∗ of X∗1 is contained in Y ∗1 with ṼX1 = [Ṽ2, B] = [Ṽ2, x
∗
2x
∗
3] ≤ [D̃1,W

g ] ≤ Ẽ,
so X1 ∈ Y , completing the proof of (2). ¤

Lemma 14.4.12. Assume case (6) of 14.4.2 holds. Then Y = {X1, X2} where
X1 := O2(O2,3(H)) and X1X2T/O2(X1X2T ) ∼= S3 × S3.

Proof. First (cf. H.12.1.5) CŨ (T ) = Ṽ2 and CH∗(Ṽ2) ∼= S5/E32. We have

seen that W g∗ E CH∗(Ṽ2), and by 12.8.1, m(W g∗) = 5, so W g∗ = O2(CH∗(Ṽ2)).
Next we calculate that X = {X1, X2, X3}, where X1 := O2(O2,3(H)), X3 :=

O2(B) where B∗ is a Borel subgroup of CH∗(Ṽ2), and X2T is a minimal parabolic
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in the remaining maximal 2-local D∗ := 〈TX2, X3〉∗ ∼= S6/E16/Z3 of H∗ over T ∗,

which does not centralize Ṽ2. As X3 centralizes Ṽ2, X3 /∈ Y .
Let ŨD := 〈Ṽ D2 〉; then O2(D

∗) centralizes ŨD, and ŨD is the 6-dimensional ir-

reducible for D+ := D∗/O2(D
∗) ∼= Ŝ6. Now Ũ has the structure of a 6-dimensional

F4-space preserved by K∗, with the F4-points the irreducibles for X∗1 . This F4-

space structure restricts to ŨD of F4-dimension 3, and ṼX1 is the F4-point con-

taining Ṽ2, so that VX1
∼= E8. Further T ∗X∗1X

∗
2 is the stabilizer of an F4-line

Ũ0 of ŨD containing ṼX1 , with X1X2T/O2(X1X2T ) ∼= S3 × S3. In particular X2

is fixed-point-free on Ũ0, so VX2
∼= E8. Thus to complete the proof, it remains

to show that VXi ≤ E for i = 1, 2. Now ŨD is totally singular, since ŨD is not

self-dual as a D-module. Thus ŨD ≤ Ṽ ⊥2 = W̃ , so by 12.8.11.1 it suffices to

show ṼXi ≤ [ŨD,W
g ]. But there is x ∈ W g inverting X+

1 with x+ centralizing

X+
2 . As x+ inverts X+

1 , CŨD (x) = [ŨD, x] is of rank 3, and Ṽ2 ≤ CŨD (x). Then

ṼX2 = [Ṽ2, X2] ≤ [ŨD, x] ≤ [ŨD,W
g ], as required. As W g∗ ∩K∗ induces a group

of F4-transvections on ŨD with center ṼX1 , ṼX1 ≤ [ŨD,W
g∗ ∩ K∗] ≤ Ẽ. This

completes the proof. ¤

By 14.4.9–14.4.12, we have reduced to the situation where one of cases (4)–(6)

of of 14.4.2 holds, and in case (5) the chief factors for H∞ on Ũ are L2(4)-modules.
By 14.4.8.1, L1 ∈ Y ; hence 14.4.10–14.4.12 show that in each case Y = {L1, X} is
of order 2, with XL1T/O2(XL1T ) ∼= S3 × S3.

Let H1 := LT , H2 := L1XT , and H3 := LXT . Set F := {H1, H2, H3} and
G0 := 〈F〉.

Lemma 14.4.13. G0
∼= L4(2).

Proof. We show that (G0,F) is an A3-system as defined in section I.5. Then
the lemma follows from Theorem I.5.1. We just observed that H2/O2(H2) ∼= S3×S3
and Hi/O2(Hi) ∼= L3(2) for i = 1, 3 by 14.4.8.2, so (D1) and (D2) hold. As L2T is
maximal in H1 and H3 but X 6= L1, L2T = H1 ∩H3, so L2 = L ∩H3 E M ∩H3

and hence L2T = M ∩ H3. Thus as M = !M(LT ), O2(G0) = 1, 3 so hypothesis
(D4) holds. Similarly L1T = H1 ∩H2 and XT = H2 ∩H3, so (D3) holds. Finally
(D5) is vacuous for a system of type A3. ¤

We are now in a position to obtain a contradiction to our assumption that
d > 4. Namely as |T | ≥ |U | > 29, G0 is not L4(2), contrary to 14.4.13. This
contradiction shows:

Theorem 14.4.14. Assume Hypothesis 14.3.1 holds with 〈V G1〉 nonabelian.
Then L/O2(L) ∼= L3(2) and G is isomorphic to HS or G2(3).

Proof. By assumption, Hypothesis 14.3.10 holds. Thus L/O2(L) ∼= L3(2) by

Theorem 14.3.16. Then by Theorem 14.3.26, either U = 〈V G1
1 〉 is extraspecial or

G ∼= HS, and we may assume the former. Hence if d = m(Ũ) = 4, then G ∼= G2(3)
by Theorem 14.4.3. Finally we just obtained a contradiction under the assumption
that U is extraspecial and d > 4, so the proof of Theorem 14.4.14 is complete. ¤

3The group J4 has the involution centralizer appearing in case (6) of 14.4.2, and there is
L ∈ Lf (G, T ) with L/O2(L) ∼= L3(2), but the condition O2(G0) = 1 fails as L /∈ L∗f (G,T ).
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14.5. Starting the case 〈VG1〉 abelian for L3(2) and L2(2)

In this section, and indeed in the remainder of the chapter, we assume:

Hypothesis 14.5.1. Hypothesis 14.3.1 holds and U := 〈V G1〉 is abelian.

As U is abelian and Φ(V ) = 1, U is elementary abelian. Recall from the
discussion after 14.3.6 that Hypothesis 12.8.1 holds. In particular G1 6≤ M by
12.8.3.4, so that V < U . Recall also the definitions of Gi, Li, and Vi, for i ≤ dim(V ),
from Notation 12.8.2.

Lemma 14.5.2. If g ∈ G with 1 6= V ∩ V g, then [V, V g] = 1.

Proof. As 〈V G1〉 is abelian by Hypothesis 14.5.1, the results follows from the
equivalence of (2) and (3) in 12.8.6. ¤

14.5.1. A result on X ∈ H(T) with X/O2(X) = L2(2). Recall that under
case (2) of Hypothesis 14.3.1 where L/O2(L) ∼= L2(2)

′, 14.3.5 says there exists
no X ∈ H(T,M) such that X/O2(X) ∼= L2(2). In this subsection, we establish
a result providing some restrictions on such subgroups in case (1) of Hypothesis
14.3.1, where L/O2(L) ∼= L3(2). Namely we prove:

Theorem 14.5.3. Suppose Y = O2(Y ) ≤ G1 is T -invariant with Y T/O2(Y T )
∼= L2(2). Then

(1) Either Y ≤M , or case (1) of Hypothesis 14.3.1 holds and [V2, Y ] = 1.
(2) If Y L1 = L1Y , then Y ≤M .

(3) 〈Ṽ Y2 〉 is not isomorphic to E8.

Until the proof of Theorem 14.5.3 is complete, assume Y is a counterexample.

Lemma 14.5.4. (1) Y 6≤M .
(2) Case (1) of Hypothesis 14.3.1 holds, namely L/O2(L) ∼= L3(2).

Proof. Assume (1) fails, so that Y ≤ M . Then conclusions (1) and (2) of
Theorem 14.5.3 are satisfied. Further Y acts on V by 14.3.3.6. Thus as V2 ≤ V ,
m(〈Ṽ Y2 〉) ≤ m(Ṽ ) ≤ 2, so that conclusion (3) of 14.5.3 holds. This contradicts our
assumption that we are working in a counterexample.

Thus (1) is established. Then (1) and 14.3.5 imply (2). ¤

Set X := L2, and H := 〈X,Y, T 〉. Notice that H 6≤ G1 since X 6≤ G1. Set

VH := 〈V H1 〉, QH := O2(H), Ḣ := H/QH , and H
∗ := H/CH(VH). Observe that

(H,XT, Y T ) is a Goldschmidt triple (in the language of Definition F.6.1), so by

F.6.5.1, α := (ẊṪ , Ṫ , Ẏ Ṫ ) is a Goldschmidt amalgam, and so is described in F.6.5.2.

Lemma 14.5.5. QH 6= 1.

Proof. Assume QH = 1. By 1.1.4.6, XT and Y T are in He, and so satisfy
Hypothesis F.1.1 in the roles of “L1, L2”, with T in the role of “S”. Then α is a
weak BN-pair of rank 2 by F.1.9, and the hypothesis of F.1.12 is satisfied, so that
α is described in case (vi) of F.6.5.2. Then as X has at least two noncentral 2-chief
factors (from V and the image of O2(L2) in L/O2(L) ∼= L3(2)), by inspection of
that list, α is isomorphic to the amalgam of G2(2)

′, G2(2), M12, or Aut(M12),
and X has exactly two such factors. In each case, Z = Ω1(Z(T )) is of order 2, so
V1 = Z.
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Next we saw V < 〈V G1〉 = U E Y T , so m2(U) ≥ 4 since m(V ) = 3 by
14.5.4.2. As the 2-rank ofG2(2)

′, G2(2), andM12 is at most 3, it follows that α is the
Aut(M12)-amalgam andm(U) = 4. Thus A := Aut(M12) is a faithful completion of
α, so identifying Y T with its image under this completion, we may assume Y T ≤ A.
As m2(M12) = 3, there is an involution u ∈ U −M12. Thus CA(u) ∼= Z2/(E4 × J)
where J := CG(u)

∞ ∼= A5. Therefore U = J(CT (u)) = O2(CA(u))× (U ∩J). Then
from the structure of A, NA(U) = T (NA(U) ∩ CA(u)), and V1 = Z = CU (T ) ≤ J .
Thus |Y T | = 27 ·3 = |NA(U)|, so NA(U) = Y T as U E Y T . This is a contradiction
as Y T centralizes V1 but Z(NJ(U)) = 1. ¤

By 14.5.5 and 1.1.4.6, H ∈ H(T ) ⊆ He.

Lemma 14.5.6. Y ∗ does not act on X∗.

Proof. Assume otherwise. Then V X
∗Y ∗

1 = V Y
∗X∗

1 = V X
∗

1 as Y ≤ G1. There-
fore Y acts on 〈V X1 〉 = V2, and hence [Y, V2] = 1 by Coprime Action. Thus Y is
not a counterexample to conclusion (1) or (3) of 14.5.3, so Y must be a counterex-

ample to conclusion (2). Therefore Y L1 = L1Y , and hence Y acts on 〈V L1
2 〉 = V ,

contradicting 14.5.4.1. ¤

Set H+ := H/O3′(H).

Lemma 14.5.7. (1) CX(VH ) ≤ O2(X) and CY (VH ) ≤ O2(Y ).
(2) QH = CT (VH ).
(3) VH ≤ Z(QH) and O2(H

∗) = 1.
(4) QH ∈ Syl2(O3′(H)), so O3′(H) is 2-closed and in particular solvable.
(5) Either

(i) H+ is described in Theorem F.6.18, or
(ii) O2(XT ) = O2(Y T ) = QH , and H

+ ∼= S3.

Proof. We saw H ∈ He, so as V1 ≤ Z, part (3) follows from B.2.14. Next
CX(VH ) ≤ O2(X) as X 6≤ G1. Thus if Y ≤ CH(VH ), then Y ∗ = 1, so Y ∗ acts on
X∗, contrary to 14.5.6. Hence (1) holds. By (3), QH ≤ CT (VH), while by (1), we
may apply F.6.8 to CH(VH ) in the role of “X” to conclude that CT (VH ) ≤ QH ,
so (2) holds. Similarly F.6.11.1 implies (4), and F.6.11.2 implies (5) as H is an
SQTK-group. ¤

Lemma 14.5.8. H is solvable.

Proof. Assume H is nonsolvable. Then by 1.2.1.1 there is K ∈ C(H), and by
14.5.7.2, CH(VH ) is 2-closed and hence solvable, soK∗ 6= 1. Then K ∈ Lf (G, T ) by
1.2.10, so by 14.3.4.1, K/O2(K) ∼= A5 or L3(2). Now O2(K) = O3′(K) = CK(VH ),
so K+ ∼= K/O2(K) ∼= K∗. By 14.5.7.5, H+ is described in F.6.18, so we conclude

that case (6) of F.6.18 holds, with H+ = K+ ∼= L3(2). Hence K = O3′(H) =
〈X,Y 〉. Then K = O2(H) by F.6.6.3, so that H = KT . Now as [V1, Y ] = 1
and 〈V X1 〉 = V2 ∼= E4, VH is the natural module for K∗ by H.5.5. In particular
V2 = 〈V X1 〉 ≤ VH and VH = 〈V Y2 〉.

By 14.3.4.2, K ∈ L∗f (G, T ), so by our discussion after Hypothesis 14.3.1, part

(1) of that Hypothesis holds with K in the role of “L”. Thus by Theorem 14.4.14,

either 〈V G1

H 〉 is abelian, or G ∼= G2(3) or HS. However in the latter two cases, L
is the unique member of L∗f (G, T ), so K = L ≤M , contrary to 14.5.4.1. Therefore
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〈V G1

H 〉 is abelian, so we have symmetry between LT , V and H = KT , VH ; that is,
Hypothesis 14.5.1 holds with H , VH in the roles of “LT , V ”.

Now Y 6≤ M = !M(LT ), so that O2(〈LT,H〉) = 1. Hence Hypotheses F.7.1
and F.7.6 are satisfied with LT and H in the roles of “G1” and “G2”, so we can
form the coset geometry Γ of Definition F.7.2 with respect to this pair. Similarly
we can form the dual geometry Γ′ where the roles of LT and H are reversed. Let
γ0 := LT , γ1 := H , and for g, h ∈ 〈LT,H〉 let Vγ0g := V g and Vγ1h := V hH . Also for
σ ∈ Γ let Qσ := O2(Gσ). Observe Gγ0,γ1 = LT∩H = XT and kerXT (Gi) = O2(Gi)
for i = 1, 2, is the centralizer in Gi of V or VH , respectively, so

Qσ = G(1)
σ = CGσ (Vσ).

Next as usual choose a geodesic

α := α0, . . . , αb =: β

in Γ of minimal length b, subject to Vα 6≤ Qβ . Then b = min{b(Γ, V ), b(Γ′, VH )},
so by F.7.9.1, Vα ≤ Gβ and Vβ ≤ Gα, and hence

1 6= [Vα, Vβ ] ≤ Vα ∩ Vβ . (∗)

Thus by 14.5.2 and the corresponding result for VH , β is not conjugate to α, so b is
odd. Replacing Γ by Γ′ if necessary, we may assume Vα = V , and we may assume

z ∈ V ∩Vβ by transitivity of L on V #. As H is also transitive on V #
H , Vβ = V gH for

some g ∈ G1 by A.1.7.1, so

〈V G1

β 〉 = 〈V G1

H 〉 = 〈〈V Y2 〉
G1〉 = 〈V G1

2 〉 = 〈V G1〉

since V = 〈V L1
2 〉. Then as 〈V G1〉 is abelian, Vβ centralizes V = Vα, contrary to

(*). ¤

Lemma 14.5.9. [VH , J(T )] = 1 and J(T ) E H.

Proof. If J(T ) centralizes VH , then J(T ) = J(QH) by 14.5.7.2 and B.2.3.5,
so the lemma holds. Thus we assume [VH , J(T )] 6= 1, and derive a contradiction.
By 14.5.8, we may apply Solvable Thompson Factorization B.2.16 to conclude that
J(H)∗ = K∗1 × · · · ×K

∗
s , with K

∗
i
∼= S3 and Vi := [VH ,Ki] ∼= E4. Notice s ≤ 2 by

A.1.31.1. As X = [X,T ] either X∗ = O2(K∗i ) for some i, or [X∗, J(H)∗] = 1. The
same holds for Y as Y = [Y, T ]. Thus if X∗ = O2(K∗i ), then Y ∗ normalizes X∗,
contrary to 14.5.6. Therefore X∗ centralizes J(H)∗, so that J(H) ∩ X ≤ O2(X).
Similarly J(H)∩ Y ≤ O2(Y ). Then we may apply F.6.8 to J(H), to conclude that
J(T ) ≤ T ∩ J(H) ≤ QH ≤ CH(VH ), contrary to our assumption. ¤

Lemma 14.5.10. J(T ) = J(O2(XT )) 6≤ O2(LT ) and X = [X, J1(T )].

Proof. By 14.5.9 and 14.5.7.2, J(T ) ≤ CT (VH ) = QH ≤ O2(XT ), so J(T ) =
J(O2(XT )) by B.2.3.3. If J(T ) 6≤ O2(LT ), then J1(T ) 6≤ R2 by 14.3.9.3, and
hence the lemma holds. On the other hand if J(T ) = J(O2(LT )) then by 14.5.9,
H ≤ NG(J(T )) ≤M = !M(LT ), contradicting 14.5.4.1. ¤

Lemma 14.5.11. (1) H∗ is a {2, 3}-group.
(2) O3′(H)) ≤ CH (VH), so H

∗ is a quotient of H+.

Proof. Assume [O3′(H
∗), X∗] 6= 1. Then as O3′(H

∗) is solvable of odd order
by (2) and (4) of 14.5.7, [R∗, X∗] 6= 1 for some prime p > 3 and some supercritical
subgroup R∗ of Op(H

∗) by A.1.21. As X∗ = [X∗, T ∗], R∗ is not cyclic, so R∗ ∼= Ep2
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or p1+2 by A.1.25. As m2(Aut(R
∗)) ≤ 2 and X∗ = [X∗, J1(T )] by 14.5.10, the

hypothesis of D.2.17 is satisfied for each indecomposable pair in a decomposition
of (R∗X∗J1(T )

∗, VH). So as p > 3 and R∗ is not cyclic, we conclude from D.2.17
that p = 5, and that there are two indecomposable components: that is, R∗ =
R∗1 × R∗2 with R∗i

∼= Z5, [VH , R] = VH,1 ⊕ VH,2, and Vi := [VH , Ri] is of rank 4.
But by definition of the decomposition, X∗ acts on each component, contradicting
[R∗, X∗] 6= 1.

Therefore [O3′(H
∗), X∗] = 1, so (1) follows from F.6.9. Of course (1) implies

(2). ¤

Lemma 14.5.12. (1) H+ is described in Theorem F.6.18.
(2) O2(XT ) 6= O2(Y T ); in particular, case (2) of F.6.18 holds.

Proof. By 14.5.11, H∗ is a quotient of H+, and by 14.5.7.1, X∗ 6= 1 6= Y ∗.
Thus if H+ ∼= S3, then H∗ ∼= S3, so that Y ∗ = X∗, contrary to 14.5.6. Thus (1)
follows from 14.5.7.5. As H+ is solvable by 14.5.8, case (1) or (2) of F.6.18 holds.
As O3′(H

+) = 1 by definition, H+ is a {2, 3}-group by F.6.9.
Assume (2) fails; then O2(XT ) = O2(Y T ) = QH , so X

+T+ ∼= Y +T+ ∼= S3.
As T+ is of order 2, case (1) of F.6.18 holds, and we may apply Cyclic Sylow
2-Subgroups A.1.38 and F.6.6 to conclude that

〈X+, Y +〉 = O2(H+) = O(H+).

Then as H+ is a {2, 3}-group, O2(H+) =: P+ is a 3-group. Furthermore P+ is
noncyclic in case (1) of F.6.18, so that m3(P

+) = 2 as H is an SQTK-group.
We claim P+ ∼= 31+2; the proof will require several paragraphs. By 14.5.6,

P+ is nonabelian with X+ and Y + of order 3, so Ω1(P
+) is nonabelian. Thus as

we saw m3(P
+) = 2, if P+ is of symplectic type (cf. p. 109 in [Asc86a]), then

Ω1(P
+) ∼= 31+2 and the claim holds.

So assume P+ is not of symplectic type. Then P+ has a characteristic subgroup
E+ ∼= E9. If X+ or Y + is contained in E+, say X+, then P+ = 〈X+, Y +〉 =
E+Y + ∼= 31+2, and again the claim holds, so we may assume neither X+ nor Y +

is contained in E+. Now F+ := CP+(E+) is of index 3 in P+, and E+ = Ω1(F
+).

Let T+ = 〈t+〉. Then t+ inverts X+, so as X+E+ ∼= 31+2, B+ := CE+(t+) ∼=
Z3, and hence NE(T )

+ 6= 1. But NG(T ) ≤ M by 14.3.3.3, so either E =
〈NE(T )X〉 ≤ M , or B+ = Ω1(Z(P

+)). The former case is impossible, as X E

H ∩ M , whereas E+ does not normalize X+. Thus the latter case holds, and
we let B0 ∈ Syl3(B ∩ M), where B is the preimage of B+, and set BM :=
O2(B0QH). Observe that O2(BM ) 6= 1 since H ∈ He. By a Frattini Argument,
H = O3′(H)NH(B0), so H

+ = NH(BM )+. As X 6≤ BM , with X/O2(X) inverted
in T ∩ L and TBM = BMT , we conclude BM ≤ CM (L/O2(L)), so L normalizes
O2(BMO2(L)) = BM . Hence NG(BM ) ≤M = !M(LT ). As H+ = NH(BM )+ and
X E H ∩M but E+ 6≤ NH+(X+), this is a contradiction.

This establishes the claim that P+ ∼= 31+2. Thus t+ inverts P+/Z(P+) as t+

inverts X+ and Y +. Hence t+ centralizes Z(P+). Then we obtain a contradiction
as in the previous paragraph. ¤

Lemma 14.5.13. (1) 〈X∗, Y ∗〉 = P ∗ = O3(H
∗) ∼= 31+2 and H = PT , where

P ∈ Syl3(H).
(2) T ∗ ∼= E4.
(3) CH(VH ) = O3′(H).
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Proof. By 14.5.11.2, H∗ is a quotient of H+, while by 14.5.12.2, H+ is de-
scribed in case (2) of Theorem F.6.18. Thus 〈X+, Y +〉 = O3(H

+) ∼= 31+2 or E9,
and T+ ∼= E4. Then 14.5.6 completes the proof. ¤

We are now in a position to obtain a contradiction, and hence establish Theorem
14.5.3. Let B∗ := Z(P ∗). By 14.5.10, J1(H)∗ 6= 1, so as T ∗ ∼= E4, the hypothesis
of D.2.17 holds. Thus in view of 14.5.13, case (4) of D.2.17 holds, with [VH , P

∗] =
[VH , B

∗] of rank 6. Then V2 = [V2, X ] ≤ [VH , P
∗], so VH = 〈V H1 〉 ≤ [VH , P

∗] and
hence VH = [VH , P

∗].

In particular, VH = VX ⊕ V yX ⊕ V y
2

X , where 〈y∗〉 = Y ∗ and VX := CVH (X) is

of rank 2. Further CVH (T ) = 〈w, z〉 where 〈w〉 = CVX (T ) and z := wwywy
2

. Thus
〈z〉 = CVH (Y T ), so V1 = 〈z〉. On the other hand,

z ∈ V2 = [V2, X ] ≤ [VH , X ],

and X acts on V y
i

X , since V y
i

X = CVH (X
∗yi) and X∗y

i

is contained in the abelian

groupX∗B∗. Therefore [VH , X ] = V yX⊕V
y2

X . This is a contradiction as z /∈ V yX⊕V
y2

X

but we saw z ∈ [VH , X ].
This contradiction completes the proof of Theorem 14.5.3.

14.5.2. Further preliminaries for the case U abelian. Recall we have
adopted Notation 12.8.2, including: V1 = 〈z〉, and

Hz := {H ≤ G1 : L1T ≤ H and H 6≤M}.

In the remainder of this section, H denotes a member of Hz.

In contrast to the case where 〈V G1〉 was non-abelian, when 〈V G1〉 is abelian
we work with members H of Hz possibly smaller than G1.

Recall UH = 〈V H〉, QH = O2(H), and G̃1 = G1/V1.

Lemma 14.5.14. (1) Hypothesis F.8.1 is satisfied in H.
(2) Hypothesis F.9.8 is satisfied in H, with V in the role of “V+”.

Proof. In view of Hypothesis 14.5.1, this follows from the list of equivalences
in 12.8.6. ¤

By 14.5.14, we may appeal to the results of sections F.8 and F.9.

Lemma 14.5.15. (1) ŨH ≤ Z(Q̃H)), and ŨH ∈ R2(H̃).
(2) UH is elementary abelian.

(3) Assume L/O2(L) ∼= L3(2), and L1 E H. Then ŨH is the direct sum of
isomorphic natural modules for L1/O2(L1) = L1/CL1(UH)

∼= Z3.

(4) QH = CH (ŨH).

Proof. Parts (1) and (4) follow from 12.8.4, (2) follows from Hypothesis 14.5.1
and 12.8.6, and (3) follows from 12.8.5.1. ¤

Notation 14.5.16. By 14.5.14, Hypotheses F.8.1 and F.9.8 are satisfied in H ,
so we can form the coset geometry Γ with respect to LT and H . Let b := b(Γ, V ),
and choose a geodesic

γ0, γ1, . . . , γb =: γ

as in section F.9. Define UH , Uγ , DH , Dγ , etc., as in section F.9; in particular set
A1 := V gb1 , recalling b is odd by F.9.11.1.
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Since V plays the role of “V+” in 14.5.14.2 in the notation of section F.9,
UH = 〈V H〉 =: VH , and hence DH = EH . These identifications simplify the
statements of various results in section F.9. In particular:

Lemma 14.5.17. DH < UH .

Proof. By F.9.13.5, V 6≤ DH , so the remark follows as V ≤ VH = UH . ¤

Lemma 14.5.18. (1) If Uγ = Dγ, then UH induces a nontrivial group of
transvections with center V1 on Uγ.

(2) If m(U∗γ ) ≥ m(UH/DH), then U
∗
γ 6= 1 and U∗γ ∈ Q(H

∗, ŨH). In case

2m(U∗γ ) = m(ŨH/CŨH (U
∗
γ )),

then also m(U∗γ ) = m(UH/DH), and U∗γ acts faithfully on D̃H as a group of

transvections with center Ã1.
(3) q(H∗, ŨH) ≤ 2.
(4) If we can choose γ with Dγ < Uγ, then we can choose γ with

0 < m(U∗γ ) ≥ m(UH/DH),

in which case U∗γ ∈ Q(H
∗, ŨH).

(5) Let h ∈ H with γ0 = γ2h and set α := γh. Then Uα ≤ R1 and if Dγ < Uγ
then U∗α ∈ Q(H

∗, ŨH).

Proof. Part (3) holds by F.9.16.3, while (1), (2), and (4) follow from 14.5.17
and the corresponding parts of F.9.16. Assume the hypotheses of (5). By parts
(1) and (2) of F.9.13, Uα ≤ R1, and if U∗γ 6= 1, then since we can choose γ so that

U∗γ ∈ Q(H
∗, ŨH) in (4), also U∗α ∈ Q(H

∗, ŨH), completing the proof of (5). ¤

Lemma 14.5.19. If K ∈ C(H) then K 6≤ M , so K0L1T ∈ Hz, where K0 :=
〈KT 〉.

Proof. This follows from 13.3.8.2 applied to L, K0 in the roles of “K, Y ”. ¤

Lemma 14.5.20. Assume Y E H with Y/O2(Y ) a p-group of exponent p. Then
either

(1) Y ∩M = O2(Y ), or
(2) p = 3, L/O2(L) ∼= L3(2), L1 ≤ Y , and one of the following holds:

(i) L1 = Y E H.
(ii) Y/O2(Y ) ∼= 31+2, L1 = O2(O2,Z(Y )) = O2(Y ∩M), and T is irre-

ducible on Y/L1O2(Y ).
(iii) Y/O2(Y ) ∼= E9 and there exists Y0 ≤ H such that L1 ≤ Y0 E Y0T

with Y0/O2(Y0) ∼= Z9 and Y0 6≤M .

Proof. We may assume that (1) fails, so that YM := O2(Y ∩M) 6= 1.
Let X be the set of T -invariant subgroups X of H such that 1 6= X = O2(X) ≤

CM (L/O2(L)). Then using the T -invariance of X , L normalizes O2(XO2(L)) = X ,
so NG(X) ≤M = !M(LT ). In particular as H 6≤M :

For each X ∈ X , NG(X) ≤M, so X is not normal in H. (!)
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Set YZ := O2(O2,Z(Y )), and YC := O2(CYM (L/O2(L)). By (!), YZ /∈ X , so
YZ 6≤ YC . On the other hand if YC = YM then YM ∈ X , so YZ ≤ NG(YM ) ≤M by
(!); then YZ ≤ YM = YC , contrary to the previous remark, so:

YC < YM . (∗)

It follows that p = 3: For if p > 3 then T permutes with no p-subgroup
of L/O2(L), so that YM ≤ YC , contrary to (*). If L/O2(L) ∼= L2(2)

′, then YM
centralizes V/V1 and V1 of order 2, and hence centralizes V by Coprime Action, so
again YM centralizes L/O2(L), contrary to (*). Therefore L/O2(L) ∼= L3(2). Next
we claim:

L1 ≤ Y. (!!)

For if L1 6≤ Y , then

[YM , T ∩ L] ≤ CL(V1) ∩ YM = L1O2(L) ∩ YM ≤ O2(YM ),

so YM centralizes (T ∩ L)/O2(L) and hence also L/O2(L) by the structure of
Aut(L3(2)), again contrary to (*). We have established the first three statements
in (2), so it remains to show that one of cases (i)–(iii) holds.

If Y/O2(Y ) is cyclic then Y = L1 by (!!) since Y/O2(Y ) is of exponent 3, so
conclusion (i) of (2) holds. Therefore by A.1.25.1, we may assume Y/O2(Y ) ∼= E9

or 31+2. In the latter case, YZ satisfies the hypotheses of “Y ”, so we conclude
L1 = YZ from (!!). Thus in either case, L1 is normal in Y .

Let H∗ := H/QH . As M = LCM (L/O2(L)) and L1 6≤ YC :

Y ∗M = L∗1 × Y
∗
C . (∗∗)

In particular if Y ∗ ∼= 31+2 then Y 6≤M by (**).
Next we claim that if Y1 = O2(Y1) ≤ Y is T -invariant with Y1/O2(Y1) of order 3,

then Y1 ≤M : For if Y1 6≤M , then as NG(T ) ≤M by 14.3.3.3, Y1T/O2(Y1T ) ∼= S3.
Then as L1 is normal in Y , the claim follows from 14.5.3.2. It then follows from
the claim that if T acts reducibly on Y/O2,Φ(Y ), then Y ≤M . Now if Y ∗ ∼= 31+2

we saw Y 6≤ M and L1 = YZ , so T acts irreducibly on Y ∗/L∗1 and L1 = YM , so
that conclusion (ii) of (2) holds.

Thus we may assume that Y ∗ ∼= E9. Then L1 < Y so that T acts reducibly
on Y ∗, and hence Y ≤ M by an earlier remark. Then Y ∗ = L∗1 × Y ∗C by (**),
with Y ∗C of order 3. Then YC ∈ X , so YC is not normal in H by (!). Therefore
as Aut(Y ∗) ∼= GL2(3) with AutT (Y

∗) normalizing YC , there is some 3-element
y ∈ H − Y inducing an automorphism of order 3 on Y ∗ centralizing L∗1, with T
acting on Y+ := Y 〈y〉. As M = LCM (L/O2(L)), Y+ 6≤ M , so Y+T ∈ Hz, and
then we may assume H = Y+T . If y∗ has order 3, then Y ∗+

∼= 31+2. As T is not
irreducible on Y ∗+/L

∗
1, this is contrary to an earlier reduction. Hence y has order 9,

and we may choose y so that Y0 := 〈y, L1〉 E H with Y0/O2(Y0) ∼= Z9, and thus
conclusion (iii) of (2) holds. ¤

Lemma 14.5.21. (1) The map ϕ defined from QH/CQH (UH) to the dual space
of UH/CUH (QH) by ϕ : xCQH (UH) 7→ CUH (x)/CUH (QH) is an H-isomorphism.

(2) [UH , QH ] = V1.
(3) CH(V2) acts on L2, and m3(CH (V2)) ≤ 1.

Proof. Part (1) is F.9.7.
Assume case (1) of Hypothesis 14.3.1 holds. Then (2) follows from 13.3.14 and

14.5.15.1, while (3) follows from parts (1), (2), and (5) of 13.3.15.
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Assume case (2) of Hypothesis 14.3.1 holds. Then (3) follows from 14.2.2.4. As-
sume [UH , QH ] = 1. Then by 14.5.15.4,QH = CH(UH). By 14.5.15.1,O2(H/QH) =
1, so that UH ∈ R2(H). Suppose there exists K ∈ C(H). As QH = CH(UH),
K ∈ Lf (G, T ), contradicting 14.3.4.4. So H is solvable by 1.2.1.1, and hence
O(H∗) 6= 1. Then UH = [UH , O(H

∗)] ⊕ CUH (O(H
∗)) by Coprime Action. As

H > QH = CH (UH), [UH , O(H
∗)] 6= 0. Then Z ∩ [UH , O(H

∗)] 6= 0, contradicting
H ≤ CG(V1) since Z = V1 when L/O2(L) ∼= L2(2)

′. ¤

14.6. Eliminating L2(2) when 〈VG1 〉 is abelian

In this section we assume Hypothesis 14.5.1 holds with L/O2(L) ∼= L2(2)
′; in

particular, U := 〈V G1〉 is abelian. Also Hypotheses 14.3.1.2 and 14.2.1 are satisfied,
so we can appeal to results in sections 14.2 (with L in the role of “Y ”), 14.3, and
14.5.

We will see in Theorem 14.6.25 that no further quasithin examples arise beyond
those which we characterized earlier in Theorems 14.2.7 and 14.2.20, where U was
nonabelian. Thus in this section we will be working toward a contradiction. Indeed
as far as we can tell, there are no shadows.

As usual Z := Ω1(Z(T )) for T ∈ Syl2(G). Recall that by Hypothesis 14.2.1.4,
V is of rank 2 with V E M . Recall also that CT (L) = 1 by 14.2.2.2.

We also adopt Notation 12.8.2: Thus V1 := Z ∩ V = Z since Z is of order
2 by 14.2.2.6, and G1 = NG(V1) = CG(Z) = Mc ∈ M(T ). Recall also that
L1 := O2(CL(V1)) = 1; this simplifies the application of results from sections 14.3
and 14.5 involving L1. For example as L1 = 1, 14.2.5 says that:

H(T,M) = Hz .

For the remainder of this section, H denotes a member of H(T,M).

Recall G̃1 := G1/V1 and notice H̃ makes sense as H ≤ G1 by definition of
Hz. As U is elementary abelian and H ≤ G1, UH := 〈V H〉 ≤ U is also elementary
abelian (cf. 14.5.15.2).

Lemma 14.6.1. (1) G1 = !M(H).
(2) O2,p(H) ∩M = O2(H) for each odd prime p.
(3) If K ∈ C(H), then K 6≤M .
(4) If 1 6= X = O2(X) E H, then XT ∈ H(T,M).
(5) O2,F∗(H) centralizes Ω1(Z(O2(H))).
(6) If O2(H) ≤ T1 E T , then NG(T1) ≤ NG(Ω1(Z(T1))) ≤ G1.

Proof. Part (1) is 14.2.3, part (3) is 14.5.19, and part (2) follows as case (1)
of 14.5.20 holds because L/O2(L) 6∼= L3(2). Under the hypotheses of (4), O2(X) <
O2,F∗(X), and O2,F∗(X) 6≤M by (2) and (3), so (4) holds.

Let R := O2(H), W := Ω1(Z(R)), and Ĥ := H/CH(W ). Suppose there is
K ∈ C(H) with [W,K] 6= 1. Then as R centralizes W , K ∈ Lf (G, T ) by A.4.9,
contrary to 14.3.4.4. This contradiction shows that O2,E(H) centralizes W .

Suppose (5) fails. Then by the previous remark, for some odd prime p, X :=

O2(O2,p(H)) is nontrivial on W . As O2(X) ≤ R ≤ CH (W ), X̂ is of odd order, so
W = [W,X ]⊕CW (X) by Coprime Action. Then as [W,X ] 6= 0, Z ≤ [W,X ] since Z
has order 2. However X ≤ H ≤ G1 by (1), so also Z ≤ CW (X). This contradiction
establishes (5).
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Assume the hypotheses of (6), and let Z1 := Ω1(Z(T1)). As R ≤ T1 by hy-
pothesis, and H ∈ He, Z1 ≤ W , so that [O2,F∗(H), Z1] = 1 by (5). As T1 E T ,
T acts on Z1, so H1 := O2,F∗(H)T ≤ NG(Z1). Now H1 ∈ H(T,M) by (4), so
G1 = !M(H1) by (1), and then (6) follows. ¤

Lemma 14.6.2. If 1 6= X = O2(X) ≤ O2,F∗(H) with QH ≤ NH(X), then
Z ≤ [UH , X ].

Proof. As CH(ŨH) = QH while X = O2(X) 6= 1, UX := [UH , X ] 6= 1. As
QH acts on X , UX is normal in QH , but UX is not central in QH by 14.6.1.5.
Then 1 6= [UX , QH ] ≤ UX ∩ Z using 14.5.15.1, so as |Z| = 2 we conclude that
Z ≤ UX . ¤

14.6.1. Preliminary results on suitable involutions in UH. In the proof
of Theorem 14.6.18 and also at the end of the section, we will need to control
the centralizers of involutions in UH which satisfy certain special conditions (cf.
14.6.17.3 and 14.6.24.1). Thus we are led to define U(H) to consist of those u
satisfying

(U0) u ∈ UH ,
(U1) Tu := CT (u) ∈ Syl2(CH (u)), and T0 := CT (ũ) is of index 2 in T ,
(U2) [O2(G1), u] 6= 1 6= [O2(G1), uu

t] for t ∈ T − T0, and
(U3) T = NG1(T0).

Lemma 14.6.3. Assume u ∈ U(H). Then

(1) |T : Tu| = 4, |T0 : Tu| = 2, T0 = NT (Tu), and T0 = O2(G1)Tu = QHTu.
(2) NG(T0) = T .
(3) CQH (u) 6≤ CQH (V ) and L = [L,CO2(G1)(u)] = [L,CQH (u)].

(4) NG(Tu) = T0, Tu ∈ Syl2(CG(u)), and u /∈ zG.

Proof. Set Q1 := O2(G1). First [Q1, u] 6= 1 by (U2) and u ∈ UH ≤ U by
(U0), so [QH , u] = [Q1, u] = V1 is of order 2 by 14.5.15.1. Hence CQ1(u) = Q1 ∩ Tu
is of index 2 in Q1, Tu is of index 2 in T0, and T0 = Q1Tu = QHTu as CT (ũ) = T0
and CT (u) = Tu by (U1).

Pick t ∈ T − T0. If t normalizes CQ1(u), then

CQ1(u) = CQ1(u)
t = CQ1(u

t).

Therefore for x ∈ Q1 − CQ1(u), z = [x, u] = [x, ut], and hence Q1 = 〈x,CQ1 (u)〉
centralizes uut, contrary to (U2). Thus t does not normalize CQ1(u), so as NT (Tu)
normalizes Tu ∩ Q1 = CQ1(u), t /∈ NT (Tu). As |T0 : Tu| = 2 we conclude that
T0 = NT (Tu), and as |T : T0| = 2 by (U1), |T : Tu| = 4, completing the proof of
(1).

As QH ≤ T0 by (1), and T0 E T by (U1), we may apply 14.6.1.6 to conclude
that NG(T0) ≤ G1. Then as NG1(T0) = T by (U3), (2) holds. By (1), T0 = NT (Tu),
so T0 ∈ Syl2(NG(Tu)) by (2).

As [U,Q1] = V1 by 14.5.21.2, and U = 〈V G1〉, also [V,Q1] = V1, so that
CQ1(V ) is of index 2 in Q1 since m(V ) = 2. Suppose that CQ1(u) ≤ CQ1(V ). Then
CQ1(u) = CQ1 (V ), as both are of index 2 in Q1, so 〈u〉CU (Q1) = V CU (Q1) by
the duality in 14.5.21.1. Thus for t ∈ T − T0, 〈ut〉CU (Q1) = V CU (Q1), so that
uut ∈ CU (Q1). This is impossible since Q1 does not centralize uut by (U2), so
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CQ1(u) 6≤ CQ1 (V ). Since Q1 ≤ QH , CQH (u) 6≤ CQH (V ), and since L = O2(L)
induces Z3 on V , also

L = [L,CQ1(u)] = [L,CQH (u)],

completing the proof of (3).
Next NG1(Tu) normalizes TuQ1 = T0 using (1), so NG1(Tu) ≤ T by (2); hence

again using (1), NG1(Tu) = NT (Tu) = T0.
We now show that to prove (4) it will suffice to establish that I := NG(Tu) ≤

G1: For in that case I = T0 by the previous paragraph, establishing the first
assertion of (4). Next let Tu ≤ S ∈ Syl2(CG(u)). Then NS(Tu) ≤ I = T0 ≤ H , so
as Tu ∈ Syl2(CH (u)) by (U1), S = Tu. In particular u /∈ zG as |Tu| < |T |. This
completes the proof that (4) holds if I ≤ G1, so we may assume that I 6≤ G1, and
it remains to establish a contradiction. We saw earlier that T0 ∈ Syl2(I), so in
particular T0 < I as T0 ≤ G1.

We claim that NI(C) = T0 for each 1 6= C ≤ T0 with C E T , so we assume
that T0 < NI(C) and derive a contradiction. We saw that T0 = NG1(Tu), so
NI(C) 6≤ G1. Hence as M(T ) = {M,G1} by 14.2.2.5, we must have NG(C) ≤ M .
Therefore as |M :M ∩G1| = 3 by 14.2.2.1, and NI(C) 6≤ G1, M = (M ∩G1)NI(C);
hence as I normalizes Z(Tu),

V = 〈ZM 〉 = 〈ZNI(C)〉 ≤ Z(Tu).

But then CQH (u) = Tu∩QH ≤ CQH (V ), contrary to (3), so the claim is established.
In particular C(I, T0) = T0 as T0 E T .

We have seen that T0 ∈ Syl2(I), with |T0 : Tu| = 2, so that I/Tu and hence also
I is solvable by Cyclic Sylow 2-Subgroups A.1.38. Also F ∗(I) = O2(I) by 1.1.4.3
as Z ≤ Tu. So since C(I, T0) = T0 < I , we may apply the Local C(G, T )-Theorem
C.1.29 to conclude that I = T0B, where B is the product of s := 1 or 2 blocks of
type A3 which are not contained in G1. Further NI(J(T0)) = T0 as C(I, T0) = T0,
so Solvable Thompson Factorization B.2.16 says that I/O2(I) contains the direct
product of s copies of S3. Therefore if s = 2, then I/O2(I) contains S3 × S3,
contradicting Tu E I and |T0 : Tu| = 2. Thus s = 1, so B ∼= A4 by C.1.13.c.

Now the hypotheses of Theorem C.6.1 are satisfied with I , T , T0 in the roles
of “H , Λ, TH”; for example, part (iv) of that hypothesis follows from the claim
and the facts that T0 < I and |T : T0| = 2. Therefore case (a) or (b) of Theorem
C.6.1.6 holds since s = 1; thus I ∼= S4 or Z2 × S4, and in particular Tu = O2(I).
By C.6.1.1, T0 = J(T0) = O2(I)O2(I)

x for each x ∈ T − T0, and hence T0 = TuT
x
u .

However by (3), Tu is nontrivial on V , so that T = T0CT (V ) since |T : CT (V )| = 2;

thus we may take x ∈ CT (V ). Next as T0 = O2(I)O2(I)
x, CT̃0(x) = Z̃0〈b̃b̃x〉, where

Z0 := Z(T0) and O2(O
2(I)) =: 〈b, z〉. Further if I ∼= Z2 × S4, then Z0

∼= E4, and
hence [Z0, x] = Z as Z has order 2. However in either case, bbx is of order 4, so
that Ω1(CT0 (x)) = Z; this is a contradiction, as x ∈ CT (V ) and V ≤ Tu ≤ T0. This
contradiction completes the proof of (4), and hence of 14.6.3. ¤

For the remainder of this subsection, u denotes a member of U(H).

Define I := I(T, u) to be the set of I ∈ H(Tu) such that I is contained in
neither G1 nor M . We will see later (cf. 14.6.17.5 and 14.6.24.4) that for suitable
u ∈ U(H), CG(u) ∈ I, so that I is nonempty.

Let I∗ consist of those I ∈ I such that T ∩ I is not properly contained in T ∩J
for any J ∈ I. Finally let I∗ be the minimal members of I∗ under inclusion.
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For I ∈ I, set TI := T ∩ I and Iz := I ∩G1.

The next two observations are straightforward from the definitions:

Lemma 14.6.4. If I ∈ I∗ and TI ≤ J ∈ I, then J ∈ I∗ and TJ = TI .

Lemma 14.6.5. If I ∈ I and I ≤ J ∈ H, then J ∈ I. If further I ∈ I∗, then
J ∈ I∗ and TJ = TI .

Recall from Definition F.6.1 the discussion of Goldschmidt triples.

Lemma 14.6.6. Assume I ∈ I∗, and let LI := O2(L ∩ I). Then

(1) TI is either Tu or T0.
(2) TI ∈ Syl2(I).
(3) If I ∩M 6≤ G1 then L = LIO2(L) and LT = LITIO2(LT ).
(4) Either C(I, TI) ≤ Iz, or L = LIO2(L) and LT = LITIO2(LT ).
(5) If I ∈ I∗ then either Iz is the unique maximal subgroup of I containing TI ,

or L = LIO2(L) and LT = LITIO2(LT ).
(6) Assume |T | > 29 and L = LIO2(L). Assume further that there exists

H2 with T0 ≤ H2 ≤ CH(ũ), H2/O2(H2) ∼= S3, H2 6≤ M , and H2 has at least
two noncentral 2-chief factors. Then setting I2 := O2(H2)TI , I1 := LITI , and
I0 := 〈I1, I2〉, we have I0 ∈ I∗ and (I0, I1, I2) is a Goldschmidt triple.

(7) TI is not normal in I.

Proof. We first establish (1) and (2). Let TI ≤ S ∈ Syl2(I) and set Q1 :=
O2(G1). Now NG(Tu) = T0 by 14.6.3.4, so as Tu is of index 2 in T0 by 14.6.3.1,
NS(Tu) = Tu or T0. In the first case, S = Tu = TI , so that (1) and (2) hold.
In the second case I is not contained in M or G1, so that TI < T by 14.2.2.5,
and hence TI = T0 since |T : T0| = 2 by (U1). Then as NG(T0) = T by 14.6.3.2,
NS(TI) ≤ NT∩I(T0) = TI , so that S = TI = T0, and so (1) and (2) hold in this
case also.

Next we prove (3), so assume X := I ∩M 6≤ G1. As L is transitive on V #,
M = L(M∩G1) and |M :M∩G1| = 3 is prime, soM = X(M∩G1). Next Tu ≤ TI ,
so by 14.6.3.3, L = [L, a] for some a ∈ Q1 ∩ TI ≤ X . As LQ1 E L(M ∩G1) =M ,
〈aX〉 ≤ LQ1 ∩X . If aX ⊆ Q1, then as M = X(G1 ∩M) and Q1 E G1, a

M ⊆ Q1

so that 〈aM 〉 is a 2-group and hence a ∈ O2(M), contradicting L = [L, a]. Thus
aX 6⊆ Q1, so as Q1 is of index 3 in LQ1 and L = O2(LQ1), L ≤ 〈aX 〉O2(LQ1).
Then as L = O2(LQ1), O

2(〈aX 〉) ≤ L ∩X , so that L = (L ∩X)O2(L) = LIO2(L),
and as L = [L, a], LT = LITIO2(LT ). Hence (3) holds.

Next suppose there is 1 6= C char TI with NI(C) 6≤ Iz . As TI < T by (1), TI
is proper in NT (TI) ≤ NG(C). Then as I ∈ I∗, NG(C) 6∈ I by 14.6.4, and hence
NG(C) ≤M since NI(C) 6≤ Iz. Therefore I ∩M 6≤ G1, so (4) follows from (3).

Next assume I ∈ I∗ and let Y be a maximal subgroup of I containing TI .
Then by minimality of I , Y is contained in G1 or M , so that Y is Iz or I ∩M by
maximality of Y . Thus (5) also follows from (3).

Assume the hypotheses of (6), and set I1 := LITI . By (2), TI ∈ Syl2(I), so that
TI ∈ Syl2(I1). As L = LIO2(L), we conclude from 14.6.3.3 that I1/O2(I1) ∼= S3.

Next since TI ≤ T0 ≤ H2 using (1) and the hypothesis for (6), I2 := O2(H2)TI
is a subgroup of H2 with O2(I2) = O2(H2). Also O2(H2) centralizes ũ and hence
also u, so as Tu ∈ Syl2(CH(u)) by 14.6.3.4, Tu ∈ Syl2(O2(H2)Tu). Thus as Tu ≤
TI , TI ∈ Syl2(I2). By (U1), T0 ∈ Syl2(CH(ũ)) so that H2 = O2(H2)T0, while
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H2/O2(H2) ∼= S3 by the hypothesis of (6). Then since T0 = Q1Tu by 14.6.3.1, and
Q1 is normal in H , we conclude I2/O2(I2) ∼= S3.

Suppose first that O2(I0) 6= 1. Since L = LIO2(L), we have I1 6≤ G1, while
H2 6≤ M by hypothesis, so I2 6≤ M since we saw H2 = O2(H2)T0. Thus I0 ∈ I,
and indeed as TI ≤ I0, I0 ∈ I

∗ and TI0 = TI by 14.6.4, so that TI ∈ Syl2(I0) by
(2). We conclude that (I0, I1, I2) is a Goldschmidt triple in the sense of Definition
F.6.1, so that (6) holds in this case.

So we suppose instead that O2(I0) = 1, and it remains to derive a contradiction.
By construction, Hypothesis F.1.1 is satisfied with I1, I2, TI in the roles of “L1, L2,
S”. So by F.1.9, α := (I1, TI , I2) is a weak BN-pair of rank 2, and as TI plays the
role of “Bj” for j = 1, 2, α appears on the list of F.1.12. Since Ii/O2(Ii) ∼= S3, and
I2/O2(I2) has at least two noncentral chief factors by hypothesis, it follows that α
is of type G2(2)

′, G2(2), M12 or Aut(M12). But then |TI | ≤ 27, so as |T : TI | ≤ 4
by (1) and 14.6.3.1, |T | ≤ 29, contrary to the hypothesis for (6). This contradiction
completes the proof of (6).

Finally observe that as TI = Tu or T0 by (1), NG(TI) ≤ T by (2) or (4) of
14.6.3. Thus (7) holds since I 6≤M . This completes the proof of (7), and hence of
14.6.6. ¤

Lemma 14.6.7. Assume I ∈ I∗. Then

(1) The hypotheses of 1.1.5 are satisfied with I, G1 in the roles of “H, M”.
(2) F ∗(Iz) = O2(Iz).
(3) O(I) = 1.
(4) If K is a component of I, then K 6≤ Iz and 〈K,TI〉 ∈ I∗.

Proof. As u ∈ UH ≤ U ≤ O2(G1), u ∈ O2(I ∩G1). Therefore

CO2(G1)(O2(I ∩G1)) ≤ CO2(G1)(u) ≤ Tu ≤ I,

so (1) holds; hence we may apply 1.1.5. Then 1.1.5.1 implies (2). In view of
(2), to prove (3) it suffices to show that O(I) ≤ G1. But as L is transitive on
V #, V ≤ O2(CG(v)) for each v ∈ V # since V ≤ O2(G1) by 14.5.15.1. Therefore
[V,CO(I)(v)] ≤ O(I) ∩ O2(CG(v)) = 1. Then using Generation by Centralizers of
Hyperplanes A.1.17, O(I) ≤ CI (V ) ≤ G1, establishing (3).

Suppose K is a component of I . By 1.1.5.3, K 6≤ Iz . Further if K ≤ M , then
as m(V ) = 2 by 14.2.1.4, K ≤ CI (V ) ≤ Iz , contrary to the previous remark; so
also K 6≤ M . Thus 〈K,TI〉 ∈ I, so that 〈K,TI〉 ∈ I∗ by 14.6.4, completing the
proof of (4). ¤

Lemma 14.6.8. Assume I ∈ I∗ and F ∗(I) 6= O2(I). Then m2(I/O2(I)) ≥
m(UHO2(I)/O2(I)) ≥ m(UH/CUH (QH)).

Proof. By 14.6.7.3, O(I) = 1, so as F ∗(I) 6= O2(I) by hypothesis, we conclude
there is a component K of I . By 14.6.7.4, z does not centralize K, so that Z ∩
O2(I) = 1 as Z has order 2. Set P := CQH (u). By 14.5.15.1, [UH ∩ O2(I), P ] ≤
Z ∩O2(I) = 1. So since Z 6≤ O2(I), using the duality in 14.5.21.1 we obtain

UH ∩ O2(I) < CUH (P ) = 〈u〉CUH (QH).

Therefore

m2(I/O2(I)) ≥ m(UHO2(I)/O2(I)) = m(UH/(UH ∩ O2(I)))

> m(UH/CUH (P )) = m(UH/CUH (QH))− 1,
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so the lemma is established. ¤

Lemma 14.6.9. Assume I ∈ I∗, |T : QH | > 4, and m(UH/CUH (QH)) ≥ 4.
Then |T | > 211, and

LT = O2(L ∩ I)TIO2(LT ).

Proof. Observe first that by the duality in 14.5.21.1,

m(QH/CQH (UH)) = m(UH/CUH (QH)) =: m,

with Z ≤ CUH (QH), so that |QH | ≥ 22m+1 ≥ 29 since m ≥ 4 by hypothesis. As we
also assume |T : QH | > 4, |T | > 211, establishing the first conclusion of 14.6.9. By
14.6.6.1, TI = Tu or T0, so |T : TI | ≤ 4 by 14.6.3.1, and hence |TI | > 29.

Thus we may assume that LT > O2(L∩ I)TIO2(LT ), and it remains to derive
a contradiction. Then by 14.6.6.4, C(I, TI) ≤ Iz . As we are working toward
a contradiction, we may also assume that I is minimal under inclusion; that is,
I ∈ I∗. Then by 14.6.6.5, Iz is the unique maximal subgroup of I containing TI .
Since TI is not normal in I by 14.6.6.7, I is a minimal parabolic in the sense of
Definition B.6.1.

We first treat the lengthier case where F ∗(I) = O2(I). Here since TI ∈ Syl2(I)
by 14.6.6.2, and I is a minimal parabolic, we may apply C.1.26: Since C(I, TI) ≤
Iz < I , we conclude that I = TIK1 · · ·Ks, whereKi is a χ0-block of I not contained
in Iz , and TI is transitive on the Ki. Further s = 1 or 2 as I is an SQTK-group, and
the action of J(TI) on O2(K) is described in E.2.3. Also K1 is not an L2(2

n)-block
for n > 1, as Iz = CI(z) is the unique maximal overgroup of TI in I , whereas when
K1 is an L2(2

n)-block, the center of that overgroup is Z(I). Thus K1 is a block of
type A3 or A5.

Observe using 14.6.5 and 14.6.6.2 that:

(a) If 1 6= S ≤ TI with S E I , then NG(S) ∈ I∗ and NT (S) = TI ∈
Syl2(NG(S)).

Since TI < T by 14.6.6.1, we may choose r ∈ NT (TI) − TI with r2 ∈ TI . Then by
(a),

(b) r acts on no nontrivial subgroup S of TI normal in I .

Set K := K1 · · ·Ks, so that I = KTI . Assume first that K is not the product
of two A5-blocks. As F ∗(I) = O2(I), this assumption establishes part (i) of the
hypothesis of Theorem C.6.1, with I , TI〈r〉, TI in the roles of “H , Λ, TH”, while (a)
gives part (iv) of that hypothesis, and (ii) and (iii) are immediate. If K is an A3-
block then |TI | ≤ 16 since case (a) or (b) of C.6.1.6 must hold, contrary to |TI | > 29

in the first paragraph of the proof. Therefore K is an A5-block or a product of two
A3-blocks. In either case by C.1.13.c, O2(I) = D × O2(K), where D := CTI (K),
and by C.6.1.4, D is elementary abelian, so that D ≤ DI := Ω1(Z(J(TI)). Then we
conclude from the action of J(TI) on O2(K) described in E.2.3, that |DI : D| = 4.
As D ∩Dr is normalized by KTI = I and r, D ∩Dr = 1 by (b), so that |D| ≤ 4.
But now |TI | ≤ 4|Aut(K)|2 ≤ 29, again contrary to the first paragraph.

Therefore K = K1 ×K2 is the product of two A5-blocks. Set Kz := O2(Iz)
and Rz := O2(Iz). Then KzTI/Rz ∼= S3 wr Z2, and J(Rz) = J(O2(I)) us-
ing E.2.3.3 and B.2.3.3. So applying (a) to J(Rz) in the role of “S”, we ob-
tain TI ∈ Syl2(NG(J(Rz))); hence TI ∈ Syl2(NG1(Rz)). Thus as Rz = O2(Iz),
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Rz = O2(NG1(Rz)) by A.1.6—that is Rz ∈ B2(G1), so setting Q1 := O2(G1), we
conclude from C.2.1.2 that

(c) Q1 ≤ Rz.

But T0 = TuQ1 by 14.6.3.1, so as Rz ≤ TI , we conclude from (c) and 14.6.6.1 that

(d) TI = T0.

By (U1), |T : T0| = 2, so T = TI〈r〉 by (d). Further as G1 ∈ He, (c) says

(e) Zz := Ω1(Z(Rz)) ≤ Ω1(Z(Q1)) =: Z1.

By 14.6.1.5 and (e):

(f) Y := O2(O2,F∗(G1)) centralizes Z1 and Zz.

Next Kz = X1 ×X2 where Xi := Kz ∩Ki, Ri := O2(Xi) ∼= Q2
8, and |Xi : Ri| = 3.

Further as TI is of index 2 in T , Hypothesis C.5.1 is satisfied with I , TI , TI , T in
the roles of “H , TH , R, M0”. Similarly Hypothesis C.5.2 is satisfied using (b), as is
the hypothesis |T : TI | = 2 in C.5.6.7. So by C.5.6.7, D := CTI (K) ≤ Z(Baum(TI))
is elementary abelian, and O2(I) = DO2(K). Hence setting Z0 := Z(R1R2), we
have

(g) O2(I) = DO2(K) and Zz = DZ0.

Observe since |T : T0| = 2 = |Z| that z is diagonally embedded in Z(R1)×Z(R2) =
Z0.

We claim that D = 1. Suppose instead that D 6= 1. Then as D is normal in
KTI = I , (a) and (d) say that ID := NG(D) ∈ I∗, and TI = T0 ∈ Syl2(ID).

Assume first that LT = LDTIO2(LT ), where LD := O2(L ∩ ID). As TI = T0
and

|O2(L) : O2(L) ∩ T0| ≤ |T : T0| = 2,

LD centralizes O2(L)/(O2(L) ∩ T0), and hence L = O2(L) = LD. Next K ≤
CG(D) ≤ ID, and indeed K1 ∈ L(ID , T0), so that K1 ≤ K+

1 ∈ C(ID) with K
+
1 de-

scribed in 1.2.8.2. Then using 1.2.2.a, L ≤ O3′(ID) = 〈K
+T0
1 〉 ≤ CG(D). Therefore

CT (L) 6= 1, contrary to 14.2.2.6 as we mentioned at the start of the section.
This contradiction shows that LT > LDTIO2(LT ). Next assume F ∗(ID) 6=

O2(ID). Since O(ID) = 1 by 14.6.7.3, ID has a component KD. By 14.6.7.1, KD

appears in the list of 1.1.5.3. As that list does not contain the possible proper
overgroups of KTI in 1.2.8.2, we conclude K centralizes KD. But each component
in that list has order divisible by 3 or 5, so mp(KKD) > 2 for p = 3 or 5, contrary
to ID an SQTK-group. Thus F ∗(ID) = O2(ID).

Since LDTIO2(LT ) < LT , 14.6.6.4 says that C(ID , TI) ≤ ID,z := ID ∩ G1.
Thus as F ∗(ID) = O2(ID), we may apply the local C(G, T )-Theorem C.1.29 to
conclude that ID is the product of ID,z with one or two χ0-blocks. Since ID
contains I = KTI , where K is the product of two A5-blocks not in ID,z , and
no A5-block is contained in a larger χ0-block, we conclude that the blocks in K
are the blocks in ID , and K E ID = KID,z. By (e) and (f), Y Q1 centralizes
Zz, so Y Q1 ≤ ID,z by (g). Then by A.4.4.1 applied with G1, ID, ID,z, Q1Y in
the roles of “H , K, H ∩ K, X”, we conclude that Q1 = O2(ID,z). Using A.1.6,
O2(ID) ≤ O2(ID,z) = Q1 and O2(ID) ≤ O2(I). Further O2(I) = O2(K)D by (g),
and O2(K) ≤ O2(ID) as K E ID , so we conclude that O2(ID) = O2(I). Therefore
O2(I) = O2(ID) ≤ Q1 ≤ Rz by (c). As Ki is an A5-block, J(Rz) = J(O2(I)),
so J(O2(I)) = J(Q1) by B.2.3.3. Therefore I ≤ NG(J(Q1)) = G1 as G1 ∈ M by
14.6.1.1, contrary to I ∈ I.
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This contradiction establishes the claim that D = 1. Now by (e) and (g):

(h) O2(I) = O2(K) and Z0 = Zz ≤ Z1.

Thus I ∼= (S5/E16) wr Z2. It follows also that Iz = CI (z) ∼= (S4/E16) wr Z2, and:

(i)Kz = O2(Iz) ∼= Z3/Q
2
8×Z3/Q

2
8, CRz (O2(Kz)) = Z0, and CRz (O2(Kz)/Z0) =

O2(Kz).

Set G+
1 := G1/Z1 and C1 := CG(Z1). As C1 E G1 ∈ He, C1 ∈ He by 1.1.3.1,

so that Q1 = O2(C1) = F ∗(C1). Then Q+
1 = F ∗(C+

1 ) by A.1.8. Let X be the
preimage in G1 of F ∗(G+

1 ); as Y centralizes Z1 by (f), O2(X) ≤ Y ≤ C1; so as
Q+

1 = F ∗(C+
1 ), O2(X) = 1 and hence F ∗(G+

1 ) = Q+
1 . Thus using B.2.14:

(j) E+ := Ω1(Z(T
+)) ∩ R+

1 R
+
2 ≤ Ω1(Z(Q

+
1 )) =: F+.

Next O2(K) = U1 × U2, where Ui := O2(Ki), and Ei := Ui ∩ Ri is a hyperplane
of Ui. Let E0 := E1E2. Then as I ∼= S5/E16 wr Z2, Z(T0/Z0) ≤ E0/Z0 and Iz is
irreducible on E0/Z0; so as Z0 ≤ Z1 by (h), we conclude from (j) that

(k) E0 ≤ E ≤ F ≤ Q1 ≤ O2(KzTI),

where E and F are the preimages of E+ and F+ in G1.
Recall r ∈ T − TI , TI = T0, and case (iii) of C.5.6.7 holds. Hence by C.5.6.7,

A := O2(K) and Ar are the two T0-invariant members of A(T0), and A ∩ Ar =
[A,Ar] is of rank 4. Thus as E0 is of rank 6, E0 6≤ A∩Ar, so as Er0 ≤ Ar, Er0 6≤ A.
Now F is normal in G1, so E

r
0 ≤ F ≤ O2(KzTI) by (k). Then as Er0 6≤ A and KzT

is irreducible on O2(KzTI)/A:

(l) O2(Kz) = E0[E
r
0 ,Kz] ≤ F ≤ Q1 ≤ Rz.

It follows from (l) that Z1 = Ω1(Z(Q1)) ≤ CRz (O2(Kz)), so we conclude from (h)
and (i) that:

(m) Z1 = Z0.

Then as F+ = Ω1(Z(Q
+
1 )), (l) says Q1 ≤ CRz (O2(Kz)

+), while as Z1 = Z0 by (m),
CRz(O2(Kz)

+) = O2(Kz) by (i). So we conclude from (l) that:

(n) Q1 = O2(Kz).

From (i), Õ2(Kz) ∼= Q4
8, so by 14.5.15.1 and (n), Ṽ ≤ Z(Q̃1) = Z(Õ2(Kz)) = Z̃0.

Thus V = Z0 = Z1 E G1, contrary to G1 6≤ M = NG(V ). This contradiction
finally completes the treatment of the case F ∗(I) = O2(I).

Thus it remains to treat the case F ∗(I) 6= O2(I). As O(I) = 1 by 14.6.7.3,
there is a component K of I . As Iz is the unique maximal overgroup of TI in the
minimal parabolic I , I and Iz are described in E.2.2, and in particular I = K0TI ,
where K0 := 〈KTI 〉. On the other hand by 14.6.7.1, K is described in 1.1.5.3; in
particular K = [K, z] with z 2-central in I .

We consider the possibilities from the intersection of the lists of E.2.2 and
1.1.5.3: First supposeK/O2(K) is a Bender group. Then by E.2.2, Iz is the normal-
izer of a Borel subgroup B of K0, and centralizes no element of (O2(B)/O2(K0))

#,
whereas Iz centralizes the projection of z onO2(B)/O2(K0). Similarly ifK/O2(K) ∼=
Sp4(2

n)′ or L3(2
n), then NTI (K) is nontrivial on the Dynkin diagram of K/O2(K)

by E.2.2, so again Iz is the normalizer of a Borel subgroup B of K0, and hence
n = 1 since Iz centralizes the projection of z on O2(B)/O2(K0). Thus K/O2(K)
is L2(p) with p > 7 a Fermat or Mersenne prime, or K/O2(K) is L3(2) or A6 with
NTI (K) nontrivial on the Dynkin diagram of K/O2(K).
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Set I∗ := I/O2(I). Then U
∗
H E T ∗I , whilem(UH/CUH (QH)) ≥ 4 by hypothesis.

Therefore by 14.6.8, m2(I
∗) ≥ m(U∗H) ≥ 4, so from the previous paragraph, K0 >

K and K/O2(K) ∼= L2(p) for p ≥ 7 a Fermat or Mersenne prime, with AutI(K
∗) ∼=

PGL2(7) if p = 7. But in these groups T ∗I has no normal elementary abelian
subgroup of rank at least 4. This contradiction completes the proof of 14.6.9. ¤

This subsection culminates in the technical lemma 14.6.10. In each of the
subsequent two subsections, the final contradiction will be to part (5) of 14.6.10.

Lemma 14.6.10. Assume the hypotheses of 14.6.9 and let LI := O2(L ∩ I).
Assume that I = 〈I1, I2〉, where I1 := LITI and TI ≤ I2 ≤ H with I2/O2(I2) ∼= S3.
Set Ri := O2(Ii). Then

(1) C(G,R1) ≤M .
(2) R1 6= R2.
(3) If P is an I1-invariant subgroup of I, then either LI ≤ P or P ≤ CM (V ).
(4) F ∗(I) = O2(I).
(5) If TI = Tu, assume further that I ≤ CG(u). Then m(〈V I2〉) = 3.

Proof. As the hypotheses of 14.6.9 hold, by that result LT = LITIO2(LT ) =
I1O2(LT ). In particular LI 6≤ G1, I1/O2(I1) ∼= S3, LI/O2(LI) ∼= Z3, and R1 =
O2(LT )∩TI . By 14.6.6.1, TI < T , so TI < NT (TI) ≤ NT (R1) since R1 = O2(LT )∩
TI . Then as I ∈ I∗ and NLT (R1) contains I1 6≤ G1, we conclude from 14.6.4 that
M = !M(NLT (R1)), so (1) holds. Since I 6≤M but I1 ≤M , I2 6≤M , so (1) implies
(2).

Assume P is a counterexample to (3). If P ≤ G1, then as P is I1-invariant,
P centralizes 〈ZI1〉 = V , so that P ≤ CG(V ) = CM (V ), contrary to the choice of
P as a counterexample; thus P 6≤ G1. Set M+ := M/O2(M). By 14.2.2.4, M+ =
L+R+

c ×CM (V )+, where Rc := O2(M ∩G1). As LI 6= 1 while L = [L,CO2(G1)(u)]

by 14.6.3.3, L+R+
c = I+c , where Ic := I1 ∩ LRc. As we are assuming that P is

I1-invariant with LI 6≤ P , P ∩ LI ≤ O2(LI), so as O2(L ∩ P ) ≤ O2(L ∩ I) = LI ,
O2(L ∩ P ) = 1. If P ≤ M then [P, Ic] ≤ P ∩ LRc ≤ O2(L ∩ P )Rc = Rc, so
P+ ≤ CM+(O2(I+c )) ≤ CM (V )+, again contrary to the choice of P since O2(M) ≤
CM (V ). Therefore P is contained in neither M nor G1, and as PTI ≤ I , PTI ∈
H(Tu). Hence PTI ∈ I

∗ by 14.6.4. Thus we may apply 14.6.9 to PTI in the role
of “I”, to conclude that O2(L ∩ P ) 6= 1, contrary to an earlier observation. So (3)
is established.

Set I∗ := I/O3′(I). Observe as TI ∈ Syl2(I) by 14.6.6.2, that (I, I1, I2) is
a Goldschmidt triple in the sense of Definition F.6.1. In view of (2), case (i) of
F.6.11.2 holds, so I∗ is a Goldschmidt amalgam, and hence as I is an SQTK-group,
I∗ is described in Theorem F.6.18.

To prove (4), we assume F ∗(I) 6= O2(I), and derive a contradiction. By hypoth-
esis m(UH/CUH (QH)) ≥ 4, so since O2(I) ∈ Syl2(O3′(I)) by F.6.11.1, m(U∗H) ≥ 4
by 14.6.8. Now the only case of Theorem F.6.18 in which m2(I

∗) ≥ 4 is case (13),
where I∗ ∼= Aut(M12). Thus |I∗z : T ∗I | = 3 = |I∗2 : T ∗I |, so I

∗
2 = I∗z . Thus as I2 ≤ H ,

U∗H E I∗z with m(U∗H) ≥ 4, whereas in Aut(M12) (as we saw during the proof of
14.5.5), I∗z has no such normal subgroup. This contradiction establishes (4).

Assume the hypotheses of (5). By (2), conclusion (1) of Theorem F.6.18 does
not hold. If either case of conclusion (2) of F.6.18 holds, then there is a normal
subgroup P of I with I = PI1 and P ∩ L = O2(L). But then by (3), P ≤ CM (V ),
so I = I1P ≤M , contrary to I ∈ I.
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In the remaining conclusions of F.6.18, there is K ∈ C(I) with K E I , and
either I = KTI , or case (3) of F.6.18 holds with KTI of index 3 in I . Since O3′(I)
is 2-closed by F.6.11.1, K/O2(K) is quasisimple by 1.2.1.4. Next by (1), C(I, R1) ≤
MI := I∩M . Further LI E MI and R1 = TI∩O2(LITI) ∈ Syl2(CMI (LI/O2(LI))),
so R1 ∈ B2(MI) by C.1.2.4; then as NI(R1) ≤ MI , R1 ∈ B2(I). Now Hypothesis
C.2.3 is satisfied with I , R1, MI in the roles of “H , R, MH”. As K appears in
F.6.18, K/O2(K) is not L2(2

n), so that K is not a χ0-block. Now as K is TI -
invariant and K/O2(K) is quasisimple, we may apply C.2.7 to conclude that K is
described in C.2.7.3. Comparing the lists of C.2.7.3 and F.6.18, we conclude that
O2(I) = O3′(I), I

∗ = I/O2(I) ∼= L3(2), Â6, A7, S6, S7, or G2(2), and except
possibly in the first case, K is a block. In particular case (3) of F.6.18 is now
ruled out, so I = KTI . Then again using F.6.6, K = O2(I) = 〈K1,K2〉, where
Ki := O2(Ii). Thus LI = K1 ≤ K, so

V = [Z,LI ] ≤ [Ω1(Z(O2(K))),K] =:W.

To prove (5), we must show that V0 := 〈V I2〉 is of rank 3, so we assume
m(V0) 6= 3, and it remains to derive a contradiction.

Suppose first thatK∗ ∼= L3(2). Then case (g) of C.2.7.3 occurs, so we may apply
C.1.34 to conclude that W is either a natural module, the sum of two isomorphic
natural modules, or a 4-dimensional indecomposable module with a 1-dimensional
submodule. As V = [V, LI ] is a TI -invariant projective line in W , it follows that
m(W ) 6= 4, and that 〈V K〉 is an irreducible K-submodule of W of rank 3, so
V0 = 〈V I2〉 = 〈V K〉 is of rank 3, contrary to assumption. Therefore K is a block.

Suppose first that K is an Â6-block. Then since K = 〈K1,K2〉, K1 = LI 6≤
X := O2(O2,Z(K)), and of course X is normalized by K1 = I1. Thus X ≤ CM (V )

by (3), impossible as CW (X) = 1 in an Â6-block.
Next V = [V, LI ] is a TI-invariant line and I2 stabilizes the point Z on that

line. In particular if K is a G2(2)-block then V is a doubly singular line in the
language of [Asc87], and so V0 is of rank 3, contrary to assumption. Similarly
when m(W ) = 4 and K∗ ∼= A6 or A7, we compute that Z and V0 have ranks 1 and
3, respectively—again contrary to assumption.

Thus K is an An-block for n := 6 or 7, I∗ ∼= An or Sn, with m(W ) = 5
when n = 6, and we can represent I on Ω := {1, . . . , n} as in section B.3, so
that W is the core of the permutation module on Ω. Further MI is the stabilizer
in I of the TI -invariant line V . So when n = 6, M∗

I = I∗1 is the stabilizer of
the partition Λ := {{1, 2}, {3, 4}, {5, 6}}, V = 〈e1,2,3,4, e1,2,5,6〉, z = e1,2,3,4, and
V0 = {eJ : |J ∩ {1, 2, 3, 4}| ≡ 0 mod 2}, while I∗2 = I∗z is the stabilizer of the
partition {{1, 2, 3, 4}, {5, 6}}. Next assume for the moment that n = 7. Then I∗1
and I∗2 are (in some order) the stabilizers of the partitions Λ′ := Λ ∪ {7} and θ :=
{{1, 2}, {3, 4}, {5, 6, 7}}. However if I∗1 is the stabilizer of θ then V = 〈e5,6, e5,7〉 and
z = e5,6, impossible as I2 centralizes z but the stabilizer of Λ

′ does not. ThusM∗
I =

I∗1 is the stabilizer of Λ′, I∗2 is the stabilizer of θ, and as before V = 〈e1,2,3,4, e1,2,5,6〉
and z = e1,2,3,4, while now V0 = 〈V, e5,6, e5,7〉. Observe in this case that I∗2 is a
proper subgroup of the stabilizer I∗z of the partition {{1, 2, 3, 4}, {5, 6, 7}}.

Suppose first that TI = T0. We saw earlier that |LT : LITI | = |T : TI |, so
as |T : T0| = 2, LI = O2(LITI) = O2(LT ) = L. Further CT (L) = 1 by 14.2.2.6.
However by the previous paragraph, L = LI centralizes e1,2,3,4,5,6, contrary to
CT (L) = 1.
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Thus TI = Tu by 14.6.6.1. Therefore by the hypothesis of part (5), I ≤ CG(u).
Further as I2 ≤ H , V+ := V0〈u〉 ≤ UH , and then from the discussion above,
V− := CV+(Tu) = 〈z, e5,6, u〉.

Suppose that u /∈ W . Then W ∩ V− = 〈z, e5,6〉, so that m(V−) = 3. Therefore
as [UH , QH ] ≤ Z by 14.5.15.1, while T0 = QHTu > Tu by 14.6.3.1, we conclude
V# := CV−(QH) = CV−(T0) is a hyperplane of V− with u /∈ V#, so that V− = V#〈u〉.
Let v− be the projection on V# of e1,2,3,4,5,6, and set J := CK(v−); then v− 6= 1 as
u 6∈ W . Now J∗ ∼= A6, so J

∗ is contained in neither M∗
I nor I∗z which are solvable

from the discussion above, and hence J is contained in neitherM nor G1. But then
〈T0, J〉 ≤ CG(v−) ∈ I, contrary to 14.6.4 since T0 > Tu = TI .

Therefore u ∈ W . Since I ≤ CG(u), CW (K) 6= 1, and hence n = 6 and 〈u〉 =
CW (K), so that u = e1,2,3,4,5,6. Let QI := O2(I). Since Tu is nontrivial on V by
14.6.3.3, and |T : CT (V )| = 2, T0 = TuCT0(V ), so we may choose t ∈ CT0(V )− Tu.
Since t normalizes Tu and W E Tu, both B := W t and WW t = WB are normal
in Tu = TI . If B ≤ QI , then as [QI ,K] = W since K is a block, J := 〈K,TI , t〉
acts on WB, and J contains KTI = I and T0 ≥ TJ > TI , contradicting 14.6.5.
Thus B 6≤ QI , so that B∗ 6= 1. By (U1), T0 acts on 〈z, u〉, so as V E T , T0 acts
on Vu := V 〈u〉. Therefore as V ≤ W and 〈u〉 = CW (K), Vu ≤ W ∩ B. Similarly
ut ∈ Vu∩Z(Tu), and this latter group is generated by z = e1,2,3,4 and u = e1,2,3,4,5,6.
Therefore as ut /∈ zK by 14.6.3.4, we conclude that ut = e5,6.

Notice for v ∈ V # that Wv := 〈V CK(v)〉 is a hyperplane of W , and if V =
〈v, w〉, then W = WvWw. For example Wz = V0. Thus B∗ = W t∗ = W t∗

v W
t∗
w .

Now 〈V CG(v)〉 is abelian by Hypothesis 14.5.1 and the transitivity of L on V #,
and we chose t to centralize V , so W t

v ≤ 〈V CG(v)〉 ≤ CG(Wv). Therefore from
the action of S6 on its permutation module, W t∗

v = 〈(i, j)〉, where v := eΩ−{i,j}.

Then as W t∗
v W

t∗
w = B∗ E T ∗I , and the only normal subgroup of T ∗I containing

W t∗
z = 〈(5, 6)〉 generated by at most two transpositions is 〈(5, 6)〉, we conclude

that B∗ = W t∗
z = 〈(5, 6)〉. Thus [W,W t

z ] = 〈e5,6〉 = 〈ut〉. This is impossible, as
CI(W/〈u〉) = CI(W ), so that CIt(W

t
z/〈u

t〉) = CIt(W
t
z ).

This contradiction completes the proof of (5), and hence of 14.6.10. ¤

14.6.2. Showing O(H/O2(H)) = 1. Recall that H denotes a member of
H(T,M) = Hz, and we have adopted Notation 12.8.2. In the remaining two sub-
sections we adopt Notation 14.5.16 and use notation and results from section F.9.
For example Γ is the coset geometry determined by LT and H as in section F.7,
with the parameter b, the geodesic γ1, . . . , γ = γb, the element gb taking γ1 to γ,
and the subgroups UH , Uγ , DH , Dγ etc., as well as Zγ := Zgb defined in section
F.9—where Zγ was often denoted by A1.

This second subsection is devoted to the proof of a key intermediate result:

Theorem 14.6.11. O(H∗) = 1 for each H ∈ H(T,M).

Until Theorem 14.6.11 is established, assume H is a counterexample. Thus H
is a member of H(T,M) with O(H∗) 6= 1, and we must derive a contradiction from
the existence of such an H .

Let P ∗0 be a minimal normal subgroup of H∗ contained in O(H∗); then P ∗0 is an
elementary abelian p-group and P ∗0 = P ∗ for P ∈ Sylp(P0). Indeed PT ∈ H(T,M)
by 14.6.1.4; so replacing H by PT , we may assume H = PT with P ∗ a minimal
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normal subgroup of H∗. Thus T is maximal in PT = H , and P ∼= Zp or Ep2 , since
H is an SQTK-group.

Set K := O2(H), so that K∗ = P ∗.

Lemma 14.6.12. (1) p = 3 or 5.
(2) There is a subgroup H0 of index 2 in H such that H∗0 = H∗1×H

∗
2 , H

∗
i
∼= D2p,

H2 = Ht
1 for t ∈ T − NT (H1) and Hi the preimage of H∗i in H, and [ŨH , H ] =

ŨH,1 ⊕ ŨH,2, where ŨH,i := [ŨH , Hi] is of rank 4 when p = 5, and of rank 2 or 4
when p = 3.

(3) Z ≤ [UH , O
2(Hi)] for each i.

Proof. By 14.5.18.3, q(H∗, ŨH) ≤ 2. Let H∗0 := 〈Q∗(H∗, ŨH)〉; as T is

maximal in H , H = H0T . By D.2.17, H∗0 = H∗1 × · · · × H∗s and [ŨH , H0] =

ŨH,1⊕ · · · ⊕ ŨH,s, where (H∗i , ŨH,i) are indecomposables in the sense of D.2.17. In
particular p = 3 or 5 by D.2.17, so that (1) holds. Further Op(H0)

∗ is not of order
p by 14.3.5. Hence P ∗ ∼= Ep2 , and as T is irreducible on P ∗, our indecomposables
appear only in conclusions (1) or (2) of D.2.17, so that (2) holds. Finally (3) follows
from 14.6.2. ¤

During the remainder of the proof of Theorem 14.6.11, we adopt the notation
of 14.6.12.2, with UH,i the preimage in UH of ŨH,i. Also set UK := [UH , H ].

Lemma 14.6.13. Either

(1) p = 3, ŨK is a 4-dimensional orthogonal space over F2 for

H∗ = O(ŨK) ∼= O+
4 (2),

and [ŨH,1, U
g
H ] 6= 1 for some g ∈ G−G1 such that U

g
H ≤ NH(UH,1) and UH ≤ Hg,

or
(2) p = 3 or 5, m(ŨK) = 8, Dγ < Uγ , and we may choose γ so that U ∗γ ≤ H∗1 ,

Zγ ≤ UH,1, and Z ≤ U gH,1, for g ∈ G−G1 with γ1g = γ.

Proof. Suppose first that Dγ = Uγ . Then by 14.5.18.1, UH induces a non-
trivial group of transvections on Uγ with center Z, so by 14.6.12, p = 3, and H∗

acts as O+
4 (2) on ŨK of rank 4. Since b ≥ 3 is odd by F.9.11.1, in this case there

is g ∈ 〈LT,H〉 with γ1 = γg. Then UgH induces a nontrivial group of transvections
on UH with center Zg, so UgH ≤ NH(UH,1), and we may choose notation so that

[ŨH,1, U
g
H ] 6= 1. By F.9.13.2, Uγ ≤ H , so UH = Ugγ ≤ Hg . Thus (1) holds when

Dγ = Uγ .
Hence we may suppose instead that Dγ < Uγ . So by 14.5.18.4, we may choose γ

with m(U∗γ ) ≥ m(UH/DH) > 0 and U∗γ ∈ Q(H
∗, ŨH); in particular Uγ is quadratic

on UH , and hence either Uγ acts on UH,1, or else the quadratic action forces U ∗γ =
〈x∗〉 to be of order 2 with UxH,1 = UH,2. Let g ∈ 〈LT,H〉 with γ1g = γ.

Suppose first that U∗γ = 〈x∗〉 is of order 2 with UxH,1 = UH,2. As U∗γ ∈

Q(H∗, ŨH),

m(ŨH/CŨH (Uγ)) ≤ 2m(U∗γ ) = 2,

while CŨH (Uγ) = [ŨH , Uγ ] since x
∗ is an involution with UxH,1 = UH,2. Therefore

m(ŨH) = 4, and the inequality is an equality. Again by 14.6.12, p = 3, ŨK is a

4-dimensional orthogonal space over F2, and H
∗ = O(ŨK). Further Zγ = [Uγ , DH ]

by F.9.13.6, so z̃g is a singular vector in ŨK since Ũ#
H,1∪Ũ

#
H,2 is the set of nonsingular
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vectors of ŨK . Then S∗ := CS(z
g)∗ for some Sylow 2-subgroup S of H containing

Uγ . Now H ≤ G1 with UH = 〈V H〉 ≤ 〈V G1〉 = U ; thus Uγ = UgH ≤ Ug = 〈V gG
g
1 〉,

so since U is abelian by Hypothesis 14.5.1, [U g , CS(z
g)] ≤ Ug ≤ CG(Uγ). Now as

U∗γ ≤ S∗ ∼= D8 with UxH,1 = UH,2, [Uγ , CS(z
g)] contains s with s∗ = Z(S∗). Then

s ∈ [Ug, CS(z
g)] ≤ CG(Uγ), whereas s

∗ does not centralize [UK , x] ≤ Uγ .

Therefore Uγ acts on UH,1. Suppose first that m(ŨK) = 4. Then by 14.6.12.2,

p = 3 and ŨK is a 4-dimensional orthogonal space for H∗. This time choose g
so that Uγ = UgH , and choose notation so that [ŨH,1, U

g
H ] 6= 1; now UH ≤ Hg by

F.9.13.2, completing the verification that (1) holds.

Thus it remains to treat the case in 14.6.12 with m(ŨK) = 8. By the choice of
γ:

0 < m(UH/DH) ≤ m(U∗γ ) ≤ m2(H/CH(ŨK)) = 2. (∗)

As m(ŨK) = 8, if U∗γ 6≤ H∗i for i = 1 or 2, then m(ŨK/CŨK (u
∗
γ)) = 4 for suitable

1 6= u∗γ ∈ U
∗
γ ; this is a contradiction as [DH , Uγ ] ≤ Zγ by F.9.13.2, while m(Zγ) = 1

andm(UH/DH) ≤ 2 by (*). Therefore we may assume Uγ ≤ H1, so thatm(U∗γ ) = 1
from the structure of H∗ in 14.6.12, and hence m(UH/DH) = 1 by (*). Then since

[ŨH,1, Uγ ] has rank 2, 1 6= [DH ∩ UH,1, Uγ ], so that Zγ ≤ UH,1 by F.9.13.6. Also
m(Uγ/Dγ) = 1 = m(UH/DD), so our hypotheses are symmetric in γ and γ1, as
discussed in Remark F.9.17. Hence we may choose notation so that Z ≤ U g

H,1, so

that (2) holds, completing the proof of 14.6.13. ¤

Recall that G1 is a member of H(T,M), so that the notational conventions of
section 14.5 apply also to G1 in the role of “H”. Our convention in this subsection
is to define U := UG1 = 〈V G1〉, and set Q1 := O2(G1). Set Ĝ1 := G1/Q1 and
Kz := 〈KG1〉.

Now we further specify our choice of H ∈ H(T,M), so that the odd prime p ∈
π(H) is maximal over odd primes such that Op(H

∗
0 ) 6= 1 for some H0 ∈ H(T,M);

that is, in view of 14.6.12.1, we choose H with p := 5 if O5(H
∗
0 ) 6= 1 for some

H0 ∈ H(T,M), and otherwise p := 3.

Lemma 14.6.14. One of the following holds:

(1) Kz = K, and if p = 3 then G1 is a {2, 3}-group.

(2) p = 3, Kz ∈ C(G1), and Ĝ1
∼= Aut(Ln(2)) for n := 4 or 5.

(3) p = 3, Kz = K1K
s
1 for s ∈ T − NT (K1) with K1 ∈ C(G1), and Ĝ1

∼=
S5 wr Z2 or L3(2) wr Z2.

(4) p = 5, Kz = K1K
s
1 for s ∈ T − NT (K1) with K1 ∈ C(G1), and Ĝ1

∼=
Aut(L2(16)) wr Z2.

Proof. First suppose H+ is a solvable overgroup of H in G1. If X E H+ with
X/O2(X) a q-group for some odd prime q, then XT ∈ H(T,M) by 14.6.1.4, and so

q ≤ p ≤ 5 by 14.6.12 and our maximal choice of p. Thus setting Ḣ+ := H+/O2(H+),

F ∗(Ḣ+) =
∏

q≤p

Oq(Ḣ+),

with mq(Oq(Ḣ+)) ≤ 2 since H+ is an SQTK-group. Therefore using A.1.25 and
inspecting the order of GL2(q), we conclude H+ is a {2, 3}-group if p = 3, and a
{2, 3, 5}-group if p = 5.

We claim next that for J ∈ C(G1), Ĵ is not a Suzuki group: For if Ĵ ∼= Sz(2m)

for some odd m > 1, then the T -invariant Borel subgroup B of J0 := 〈ĴT 〉 has
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order divisible by each prime dividing 2m − 1, and one of these primes is larger
than 5. On the other hand H ∩J0 is a solvable overgroup of T ∩J0 in J0, and hence
is 2-closed, so H acts on NJ0(T ∩ J0) = B, contrary to the previous paragraph
applied to HB in the role of “H+”.

Now K ∈ Ξ(G, T ) by 14.6.12, so by 1.3.4, either K = Kz, or Kz = 〈KT
1 〉 for

some K1 ∈ C(G1) with K1/O2(K1) quasisimple, and Kz is described in 1.3.4.
Supose K = Kz. If p = 5 then (1) holds, so we may assume that p = 3.

Now K̂ contains all elements of order 3 in CĜ1
(K̂) since m3(K̂) = 2 and G1 is an

SQTK-group. Thus if J ∈ C(G1) then J is a 3′-group, which is impossible by the
claim, so we conclude from 1.2.1.1 that G1 is solvable. Then G1 is a {2, 3}-group
by the first paragraph applied to G1 in the role of “H”. Therefore (1) holds when
K = Kz.

Thus we may assume that K < Kz = 〈K
T
1 〉 with K1 ∈ C(G1). As K1/O2(K1)

is quasisimple, Kz is described in part (4) or (5) of F.9.18. Comparing the lists of
1.3.4 and F.9.18, we conclude that either:

(i) Kz = K1K2 with K2 := Ks
1 for s ∈ T −NT (K1), and either K∗1

∼= L2(2
m)

with 2m ≡ 1 mod p, or p = 3 and K∗1
∼= L3(2).

(ii) p = 3 and K1T/O2(K1T ) ∼= Aut(Ln(2)), n = 4 or 5.

Notice that the Sp4(2
n)-case in 1.3.4.3 is excluded, as here AutT (P ) is noncyclic

by 14.6.12.
Observe that Kz = Op

′

(G1): in case (i), this follows from 1.2.2, and in case

(ii) from A.3.18. Furthermore when p = 5 we have case (i) with K̂1
∼= L2(2

m) for

m divisible by 4, so that Kz = O3′(G1) by 1.2.2. Thus CĜ1
(K̂z) is a 3′-group, and

if p = 5, then CĜ1
(K̂z) is a {3, 5}′-group. Therefore applying the first paragraph

to HO2,F (G1) in the role of “H+”, we conclude F (Ĝ1) = 1, and by the second

paragraph, Ĝ1 has no Suzuki components. Therefore as CĜ1
(K̂z) is a 3′-group,

K̂z = F ∗(Ĝ1).

As F ∗(Ĝ1) = K̂z, conclusion (2) of the lemma holds in case (ii), so we may

assume case (i) holds. Similarly conclusion (3) holds if K̂1
∼= L3(2), since NT (K1) is

trivial on the Dynkin diagram of K̂1 because T acts onK. Thus we may assume that
K̂1

∼= L2(2
m). Applying the first paragraph to BT in the role of “H+”, where B is a

Borel subgroup of Kz over T ∩Kz, we conclude that m = 2 if p = 3, and that m = 4

if p = 5. If p = 3, then as T ∗ induces D8 on K∗, Ĝ1
∼= S5 wr Z2, so conclusion

(3) holds. Finally if p = 5 we showed BT ∈ H(T,M), so for B3 ∈ Syl3(B),
B3T ∈ H(T,M) by 14.6.1.4. Applying 14.6.12 to B3T in the role of “H”, we

conclude B3T/O2(B3T ) ∼= O+
4 (2). Therefore Ĝ1

∼= Aut(L2(16)) wr Z2, so that
conclusion (4) holds. This completes the proof of 14.6.14. ¤

Lemma 14.6.15. p = 3.

Proof. Assume otherwise. Then by 14.6.12.1 we may assume p = 5, and
it remains to derive a contradiction. As p = 5, conclusion (2) of 14.6.13 holds,
so we may choose γ as in 14.6.13.2; in particular Zγ ≤ UH,1. Also since p = 5,
case (1) or (4) of 14.6.14 holds. Let Uz := [U,Kz]. As UH ≤ U and K ≤ Kz,
UK = [UH ,K] ≤ Uz.

In the next several paragraphs we assume K < Kz and establish some pre-
liminary results in that case. First case (4) of 14.6.14 holds, so G1 = KzT and
Kz = K1K

s
1 for K1 ∈ C(G1) with K1/O2(K1) ∼= L2(16) and s ∈ T −NT (K1). We
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now apply F.9.18 toK1, G1 in the roles of “K,H”: As the O+
4 (16)-module in case (i)

of F.9.18.5 does not extend to Ĝ1
∼= Aut(L2(16)) wr Z2, case (iii) of F.9.18.5 holds.

Indeed as K̂1
∼= L2(16), subcase (a) of case (iii) holds, so for Ĩ ∈ Irr+(Kz, Ũ , T ),

I0 := 〈IT 〉 = IIs, and we may choose notation so that Ĩ/CĨ(K1) is the natural or

orthogonal module for K̂1 and [Ĩ , Ks
1 ] = 1.

We claim that Uz = I0. For if not, case (a) of F.9.18.6 does not hold and G∗1 has
no strong FF-modules, so that case (c) of F.9.18.6 does not hold. Thus case (b) of

F.9.18.6 holds, so that Wz := Uz/I0 and Ĩ0/CĨ0(Kz) are nontrivial FF-module for

G1, and hence Wz/CWz (Kz) and Ĩ0/CĨ0(Kz) are both natural modules for L2(16)

by Theorem B.4.2. Indeed since Dγ < Uγ in case (2) of 14.6.13, we may choose

α as in 14.5.18.5; then Ûα ∈ Q(Ĝ1, Ũ), so since Ĝ1 has no strong FF-modules by

Theorem B.4.2, Û∗α is an FF∗-offender on both Ĩ0 and Wz . Therefore either Ûα is

Sylow in K̂z, or interchanging K̂1 and K̂s
1 if necessary, we may assume that Ûα

is Sylow in K̂1. In either case, m(Ũ/CŨ (Ûα)) = 2 m(Ûα), so we conclude from

14.5.18.2 that m(U/D) = m(Ûα) where D := DG1 , and that Ûα acts faithfully on

D̃ as a group of F2-transvections with center Z̃α. As Ûα is Sylow in K̂1 or K̂z,
and Ĩ/CĨ(K̂1) is the natural K̂1-module, Ûα does not induce a nontrivial group

of F2-transvections on any subspace of Ĩ0, so D̃ ∩ Ĩ0 = CĨ0(Ûα) is of codimension

m(Ûα) in Ĩ0, and hence U = I0D. But this is impossible as Ûα does not induce a
nontrivial group of F2-transvections on Wz . Thus the claim is established.

Set K2 := Ks
1 . Since case (iii.a) of F.9.18.5 holds, with I0 = Uz by the claim,

Ũz = Ũ1 + Ũ2 with Ui := [U,Ki], and Ũi/CŨi(Ki) the 2-dimensional natural or

4-dimensional orthogonal module for Ki/O2(Ki). Then as UH ≤ Uz, we can choose
notation so that O2(Hi) ≤ Ki, and hence UH,i ≤ Ui.

This completes our preliminary treatment of the case K < Kz. In the case
where K = Kz we establish a similar setup: Namely in this case we set Ki :=
O2(Hi) and Ui := UH,i.

Thus in any case Zγ ≤ UH,1 ≤ U1, so that Zγ centralizes K2. Choose g as
in case (2) of 14.6.13, and for X ≤ G, let θ(X) be the subgroup generated by
the elements of order 5 in X . Then K2 ≤ θ(CG(Zγ)) = Kg

z , and by 14.6.13.2,
Z ≤ UgH,1 ≤ Ug1 , so K2 ≤ θ(CKg

z
(Z)) = Kg

2 . Therefore K2 = Kg
2 , so g ∈ NG(K2).

Set G2 := NG(K2); since g ∈ G−G1 in 14.6.13.2, G2 6≤ G1. Set T2 := NT (K2)
and G1,2 := G1 ∩ G2, so that |G1 : G1,2| = |T : T2| = 2, and in particular
G1,2 E G1. As Q1 = O2(KzT2), and KzT2 ≤ G1,2, we conclude Q1 = O2(G1,2).
Then as G1 ∈ M by 14.6.1.1, C(G2, Q1) ≤ G1,2 = NG2(Q1), so Q1 ∈ B2(G2). Thus
Hypothesis C.2.3 is satisfied with G2, Q1, G1,2 in the roles of “H , R, MH”. As
Z ≤ [U,K2] ≤ O2(K2) using 14.6.12.3, F ∗(G2) = O2(G2) by 1.1.4.3.

Suppose O2,F∗(G2) ≤ G1,2. Then O2(G2) = O2(G1,2) by A.4.4.1, and we saw
G1,2 E G1, so G2 ≤ NG(O2(G1,2)) = G1 as G1 ∈M, contrary to an earlier remark.
Thus O2,F∗(G2) 6≤ G1,2.

Next G1 = NG(Kz) as G1 ∈ M. If X is an A3-block of G2, then as G2 is an

SQTK-group, |XG2 | ≤ 2; hence Kz = O5′(Kz) normalizes X , and then centralizes
X as Aut(X) ∼= S4. Thus X ≤ CG2(Kz) ≤ G1,2. Therefore O2,F (G2) ≤ G1,2

by C.2.6, so there is J ∈ C(G2) with J/O2(J) quasisimple and J 6≤ G1,2. If Kz

centralizes J/O2(J), then J normalizes O2(KzO2(J)) = Kz, contrary to J 6≤ G1 =
NG(Kz), so we conclude J = [J,Kz]. Furthermore [J,K2] ≤ O2(J) by 1.2.1.2, so as
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Kz = K1K2, we obtain J = [J,K1]. As m5(G2) ≤ 2 and m5(K2) = 1, m5(J) ≤ 1,

with J = O5′ (CG2(K2)) E G2 in case of equality.
Now either Q1 does not normalize J , so that C.2.4.1 holds, or Q1 normalizes J ,

so that C.2.7.3 holds. Set J+ := 〈JQ1〉, and observe that B := J+∩G1,2 normalizes
K2 and hence also K1.

Suppose first that K1 6≤ J . Then an element k of K1 of order 5 induces
an outer automorphism of order 5 on J , since we saw that J = O5′(CG2(K2))
when 5 ∈ π(J). Inspecting C.2.4.1 and C.2.7.3 for cases where J/O2(J) admits an
outer automorphism of order 5, we conclude J/O2(J) is L2(2

n) or SL3(2
n) with 5

dividing n, k induces a field automorphism on J/O2(J), and B is a Borel subgroup
or a minimal parabolic of J+, respectively. But then B does not normalize K1,
contrary to the previous paragraph.

Thus K1 ≤ J , so that m5(J) = 1 and J E G2. Now we examine the list of

C.2.7.3 for those Ĵ of 5-rank 1 with a subgroup K̂1 normalized by B̂, such that
K̂1/O2(K̂1) ∼= Z5 or L2(16). We conclude that K1/O2(K1) ∼= Z5, J is an L2(2

m)-
block, and B is a Borel subgroup of J . But then as Z ≤ B ≤ G1,2 ≤ CG(Z),
Z ≤ Z(B) = Z(J) using the structure of an L2(2

m)-block; so J ≤ CG(Z) = G1,
contrary to J 6≤ G1,2. This contradiction completes the proof of 14.6.15. ¤

We will see shortly in 14.6.17 that the group T0 in the following result can play
the role of “T0” in (U1) in the first subsection.

Lemma 14.6.16. Let T0 := NT (H1). Then |T : T0| = 2 and NG1(T0) = T .

Proof. From 14.6.12, |T : T0| = 2 and T = NH(T0). Further p = 3 by 14.6.15,
and in particular case (4) of 14.6.14 does not hold.

Suppose case (2) or (3) of 14.6.14 holds. Then G1 = KzT and B̂ := NK̂z
(Q̂H)

is a parabolic subgroup of K̂z with unipotent radical Q̂H and Ĥ = B̂T̂ = NĜ1
(Q̂H).

ThusQH is weakly closed in T with respect toG1 by I.2.5, soNG1(T0) ≤ NG1(QH) =
H , and hence NG1(T0) = NH(T0) = T .

Finally assume case (1) of 14.6.14 holds. Then K̂ = K̂1 × K̂2 where Ki :=

O2(Hi) and K̂1 and K̂2 are the two T0-invariant subgroups of K̂ of order 3. Thus

X := O2(NG1(T0)) acts on K̂i and hence X centralizes K̂. Then as CK̂(T0) = 1

and m3(Ĝ1) = 2, X is a 3′-group. However as case (1) of 14.6.14 holds, G1 is a
{2, 3}-group, so again we conclude that NG1(T0) = T . ¤

We can now determine H∗, and show that the set U(H) of involutions discussed
in the first subsection is nonempty.

Lemma 14.6.17. (1) ŨK is a 4-dimensional orthogonal space over F2 for H
∗ =

O(ŨK) ∼= O+
4 (2).

(2) Zγ 6≤ UH,1.

(3) Let u ∈ UK with ũ nonsingular in the orthogonal space ŨK and centralized
by NT (H1). Then u ∈ U(H).

(4) CG(u) ∈ I, so I∗ is nonempty.

(5) m(〈V O
2(H2)〉) = 4.

Proof. Set T0 := NT (H1) and let u1 ∈ UH,1 − Z with ũ1 ∈ Z(T̃0). We first
show that u1 ∈ U(H) in the sense of Subsection 1. By choice of u1, (U0) and
(U1) are satisfied, and (U3) holds by 14.6.16. Next for t ∈ T − T0, u

t
1 ∈ UH,2, so
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[K,u1] 6= 1 6= [K,u1u
t
1]. Further in all cases of 14.6.14, K ≤ O2(O2,F∗(G1)) =: X ,

so [X,u1] 6= 1 6= [X,u1u
t
1]. Now by 14.6.1.5 applied to G1 in the role of “H”, X

centralizes Ω1(Z(Q1)), so as F ∗(G1) = Q1, Q1 does not centralize u1 or u1u
t
1. Thus

(U2) holds, completing the proof that u1 ∈ U(H).
Assume for the moment that Zγ ≤ UH,1, and if case (2) of 14.6.13 holds, assume

further that U∗γ ≤ H∗1 ; we will show that these assumptions lead to a contradiction.
Let Zγ = 〈uγ〉. We claim first that uγ ∈ U(H). Suppose that case (2) of 14.6.13
holds, so that U∗γ ≤ H∗1 by assumption. By 14.6.15, p = 3, so U ∗γ (T

∗ ∩H∗2 ) and T
∗
0

are Sylow in H∗0 , and therefore conjugating in H1, we may take T ∗0 = U∗γ (T
∗∩H∗2 ).

Then ũγ is centralized by T̃0, so by the previous paragraph, uγ ∈ U(H), establishing
the claim in this case. Suppose instead that case (1) of 14.6.13 holds. Then each

member of UH,1 − Z is conjugate to an element in Z(T̃0), so as before uγ ∈ U(H),
completing the proof of the claim. But then by by the claim, we may apply 14.6.3.4
to conclude that uγ /∈ zG, contrary to 〈uγ〉 = Zγ = Zgb . Thus the hypotheses of
the first sentence of this paragraph lead to a contradiction.

If case (2) of 14.6.13 holds, that result shows we may choose γ so that U ∗γ ≤ H∗1
and Zγ ≤ UH,1, contrary to the previous paragraph. Thus case (1) of 14.6.13 holds,
establishing (1). Then (2) follows from the previous paragraph.

Next by (1), H has two orbits on ŨK : the singular and nonsingular vectors,

with Ũ#
H,1 ∪ Ũ

#
H,2 the set of nonsingular vectors. Thus (3) follows from the first

paragraph.
Choose u as in (3). By 14.6.3.4, Tu ∈ Syl2(CG(u)), and by 14.6.3.1, |T : Tu| =

4. But if w ∈ UK with w̃ singular, then |CH (w)| = |T |/2 > |Tu|, so that w /∈ uG.
Therefore uG ∩ UK = uH , so using A.1.7.1:

CG(u) is transitive on the G-conjugates of UK containing u. (∗)

As case (1) of 14.6.13 holds, [ŨH,1, U
g
H ] 6= 1 for some g ∈ G with U gH ≤ NH(UH,1)

and UH ≤ Hg . In particular by (1) we may take u ∈ [UH,1, U
g
H ] ≤ UgK . By (*),

UgK = UhK for some h ∈ CG(u). Therefore as [UH,1, UhK ] 6= 1, while UK ≤ 〈V G1〉 and
〈V G1〉 is abelian, h /∈ G1. Thus CG(u) 6≤ G1. Finally as u ∈ UH,1, u is centralized
by K2, so CH (u) 6≤ M . Thus CG(u) is in the set I = I(T, u) defined in the first
subsection, so (4) holds.

As Ṽ =: 〈ṽ〉 ≤ Z(T̃ ), ṽ = ũ1ũ2c̃, where 〈ũi〉 = CŨH,i(T0) and c̃ ∈ CŨH (H).

Therefore 〈V O
2(H2)〉 = 〈u1c, UH,2〉 is of rank 4 since Z ≤ UH,2 by 14.6.12.3, so (5)

holds, completing the proof of 14.6.17. ¤

We are now in a position to derive a contradiction, and hence establish Theorem
14.6.11.

Let T0 and u be defined as in 14.6.17. By 14.6.17.4, CG(u) ∈ I, so I∗ is
nonempty, and if Tu = TI := T ∩ I for some I ∈ I∗, then also CG(u) ∈ I∗

by 14.6.4. By 14.6.17.1, |T : QH | > 4 and m(UH/CUH (QH)) = 4. Thus the
hypotheses of 14.6.9 are satisfied for any I ∈ I∗, so by that result |T | > 211,
and for any such I , setting LI := O2(L ∩ I) we have LT = LITIO2(LT ). Pick
I ∈ I∗, choosing I := CG(u) if TI = Tu for some I ∈ I∗. Set I2 := O2(H2)TI ,
I1 := LITI , and I0 := 〈I1, I2〉. Observe H2 has a noncentral 2-chief factor on UH
and on QH/CQH (UH) by the duality in 14.5.21.1. Therefore I0 ∈ I∗ by 14.6.6.6.
Further O2(H) centralizes u by Coprime Action; so if TI = Tu, then O

2(H2)Tu = I2
centralizes u, while I1 ≤ CG(u) by our choice of I , so that I0 ≤ CG(u). Thus I0
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satisfies the hypotheses of 14.6.10.5, so m(〈V I2〉) = 3 by that lemma, contrary to
14.6.17.5.

This contradiction completes the proof of Theorem 14.6.11.

As a corollaries to Theorem 14.6.11 we have:

Theorem 14.6.18. Each solvable member of H(T ) is contained in M .

Lemma 14.6.19. Let H ∈ H(T,M). Then

(1) O2,2′(H) = O2(H).
(2) If K ∈ C(H), then K/O2(K) is simple, and hence is described in F.9.18.

Proof. Part (1) follows from 14.6.1.4 in view of 14.6.18. Then (1) implies
(2). ¤

14.6.3. The final elimination of U abelian when L/O2(L) is L2(2).

Lemma 14.6.20. If H ∈ H(T,M) and K ∈ C(H), then K/O2(K) ∼= L3(2) or
A6, and NT (K) is nontrivial on the Dynkin diagram of K/O2(K).

Proof. Let K0 := 〈KT 〉. As L1 = 1, K0T ∈ H(T,M) by 14.5.19, so without
loss H = K0T . By 14.6.19.2, K/O2(K) is simple, and is described in (4) or (5)
of F.9.18, so K/O2(K) is a group of Lie type and characteristic 2, A7, or M22. If
K/O2(K) ∼= A7, then KT is generated by solvable overgroups of T , which lie in
M by 14.6.18, contrary to H 6≤ M . If K/O2(K) ∼= M22, solvable overgroups of T
generate a subgroup J of KT with O2(J)/O2(K) ∼= A6/E24 , so that J ≤ K ∩M ;
then J ≤ CM (V ), impossible as m3(CM (V )) ≤ 1 by 14.2.2.4. Thus K/O2(K) is of
Lie type and characteristic 2. Set B := NK(T ∩K); then B is a Borel subgroup of
K, so BT is solvable, and hence BT ≤M by Theorem 14.6.18.

Suppose first that K = K0. If K/O2(K) is of Lie rank at most 2, then as
B ≤M by the previous paragraph, the lemma follows from 14.3.6.1. Thus we may
assume K/O2(K) is of higher Lie rank, and hence K/O2(K) is L4(2) or L5(2) by
F.9.18. Let P be the product of the end-node minimal parabolics of K. Then
PT ≤ H ∩M by Theorem 14.6.18, so P ≤ CM (V ) by 14.2.2.1, contrary to 14.2.2.4.

Therefore we may assume K < K0. By F.9.18.5, K/O2(K) is either a Bender
group or L3(2). In the former case, since B ≤ M , we contradict 14.3.6.1.ii; so
K/O2(K) ∼= L3(2). Further by Theorem 14.6.18,K0 is not generated by T -invariant
solvable parabolics, so NT (K) is nontrivial on the Dynkin diagram of K/O2(K).
This completes the proof of the lemma. ¤

In the remainder of the section, we fix G1 as our choice for H ∈ H(T,M), and
use the symbol H to denote this group. As in the previous subsection, we adopt
the setup of Notation 14.5.16, including the notation reviewed in that subsection
involving the coset geometry Γ determined by LT and H , the vertex γ at distance
b from γ0, and the subgroups U = UH , D := DH , Uγ , etc. By Theorem 14.6.18,
G1 is not solvable, so there is K ∈ C(H). Then K is described in 14.6.20. Set
UK := [U,K]. Recall H∗ = H/QH ; as H = G1 in this subsection, we do not

require the convention Ĝ1 = G1/O2(G1) of the previous subsection.

Lemma 14.6.21. One of the following holds:

(1) H∞ = K, with K/O2(K) ∼= L3(2) or A6.
(2) H∞ = KKt for some t ∈ T −NG(K), with K/O2(K) ∼= L3(2).
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(3) H∞ = KK+ with K,K+ normal C-components of H, and K/O2(K) ∼=
K+/O2(K+) ∼= L3(2).

Proof. If H∞ = K then (1) holds by 14.6.20, so assume H∞ > K. Then
by 1.2.1.1, there is K+ ∈ C(H) − {K}, and K+ is also described in 14.6.20. As
m3(H) ≤ 2, we conclude from 14.6.20 that K/O2(K) ∼= K+/O2(K+) ∼= L3(2) and
H∞ = KK+. Then by 1.2.1.3, either (2) or (3) holds. ¤

Lemma 14.6.22. (1) ŨK = ŨK,1 + ŨK,2, where ŨK,1 is a natural module for
K/O2(K) or the 5-dimensional cover of a natural module for K/O2(K) ∼= A6,
and UK,2 = UsK,1 for s ∈ NT (K) acting nontrivially on the Dynkin diagram of

K/O2(K).
(2) If there exists K+ ∈ C(H)− {K}, then [UK ,K+] = 1.
(3) Z ≤ UK,i for i = 1, 2.

Proof. Let K0 := 〈KT 〉 and Ĩ ∈ Irr+(K0, Ũ). As TK := NT (K) is nontrivial
on the Dynkin diagram ofK/O2(K) by 14.6.20,KTK/O2(KTK) has no FF-modules

by Theorem B.5.1. By 14.6.19.2, we may apply F.9.18, so [Ũ ,K0] = 〈ĨH〉 by part
(7) of that result. Next as T is nontrivial on the Dynkin diagram of K/O2(K),

F.9.18 says [Ũ ,K0] is described in case (iii) of part (4) of F.9.18 if K = K0, and in

case (iii.b) of part (5) if K < K0. Next if CĨ(K) 6= 1, then Ĩ is described in I.1.6.1;

in particular Ĩ is 5-dimensional when K∗ ∼= A6. On the other hand if K∗ ∼= L3(2),

then Ĩ is the extension in B.4.8.2, and that result says q(H∗, ŨH) > 2, contrary to

part (2) of F.9.18. This completes the proof of (1). Also (2) follows, since ŨK,1 is

not K-isomorphic to ŨK,2 and EndK(UK,i/CUK,i(K)) is a field by A.1.41. Finally
(3) follows from 14.6.2. ¤

Lemma 14.6.23. (1) H∞ = O2(H), so H = H∞T .
(2) M = LT and T =M ∩H.
(3) We have

Ũ = (
⊕

K∈C(H)

ŨK ) + CŨ (H).

Proof. In view of 14.6.19.1, we obtain F ∗(H∗) = H∞∗ from 1.2.1.1. By
14.6.21, Out(H∞∗) is a 2-group, so (1) holds.

Let Ũ0 := [Ũ ,H∞]. By 14.6.21 and 14.6.22, Ũ0 =
⊕

K∈C(H) ŨK . Now T

centralizes Ṽ of order 2, and Ũ = 〈Ṽ H〉, while H = H∞T by (1), so (3) follows

using Gaschütz’s Theorem A.1.39. Further the projection ṼK of Ṽ on ŨK is of order
2 and centralized by NT (K) for eachK ∈ C(H). By 14.6.22.1, CK∗(ṼK) = T ∗∩K∗,
so T = CH (Ṽ ) by (1). Therefore T = M ∩ H , so M = LT by 14.3.7. Thus (2)
holds. ¤

We next choose an element u ∈ U , which we will show lies in the set U(G1)
of the first subsection. In cases (1) and (3) of 14.6.21, pick u ∈ UK,1 such that
[ũ,K] 6= 1 and NT (UK,1) centralizes ũ. (This choice is possible when UK,1 is the
5-dimensional cover of a natural module for K/O2(K) ∼= A6 by I.2.3.1ia). In case
(2) of 14.6.21, pick u ∈ UK − Z such that NT (K) centralizes ũ.

Lemma 14.6.24. (1) u ∈ U(H).
(2) K/O2(K) ∼= L3(2).
(3) K = H∞.
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(4) CG(u) ∈ I, so that I∗ is nonempty.

Proof. Set T0 := CT (ũ). To prove (1) we must verify (U1), (U2), and (U3).
By construction T0 is NT (UK,1) or NT (K), and so is of index 2 in T . Then as
T0 ∈ Syl2(CH (ũ)), (U1) holds. By 14.6.21,NH∞T0(T0) = T0, so asG1 = H = H∞T
by 14.6.23.1, NG1(T0) = T , establishing (U3). As u ∈ UK − Z, [K,u] 6= 1, and for
t ∈ T −T0, ut lies in either UK,2 or UKt , so 1 6= [K,uut]. By 14.6.1.5, K centralizes
Ω1(Z(O2(G1))), so as F ∗(G1) = QH , neither u nor uut centralizes QH , establishing
(U2). This completes the proof of (1).

In view of 14.6.22.1 and 14.6.23, we conclude from Theorem B.5.6 that for any
K ∈ C(H),

Ũ is not an FF-module for H∗ , and ŨK is not an FF-module for AutH(ŨK).
(a)

In particular, no member of H∗ induces a transvection on Ũ , so by 14.5.18.1,
Dγ < Uγ . Therefore by 14.5.18.4, we can choose γ as in 14.5.18.4; in particular

U∗γ ∈ Q(H
∗, Ũ), and from that choice and (a):

0 < m(U/D) ≤ m(U∗γ ) < m(Ũ/CŨ (U
∗
γ )). (b)

In view of (b), [D̃, U∗γ ] 6= 1 by (a), so Z̃γ = [D̃, U∗γ ] by F.9.13.6. Then Z̃γ ≤ [Ũ ,H∞]
by 14.6.23.3. Set g := gb, so that γ1g = γ and Zγ := Zg plays the role of “A1” of
section F.9.

Now we begin the proof of (3), which will be lengthier. Thus we assume that
K < H∞ and derive a contradiction. Observe that case (2) or (3) of 14.6.21 holds,
so that C(H) = {K,K+} with K/O2(K) ∼= K+/O2(K+) ∼= L3(2). By 14.6.22.1 and

14.6.23.3, Ũ = ŨK ⊕ Ũ+⊕CŨ (H), where U+ := [K+, U ]. By 14.6.22.1, ŨK and Ũ+

have rank 6.
Assume that some a∗ ∈ U∗γ does not normalizeK∗. Then CH∗(a

∗) ∼= Z2×L3(2),
and

m(Ũ/CŨ (Uγ)) ≥ m(Ũ/CŨ (a)) = m(ŨK) = 6 = 2m2(CH∗ (a
∗)),

with 〈a∗〉 the kernel of the action of CH∗(a
∗) on CŨ (a) of corank 6 in Ũ . Thus

m(U∗γ ) ≤ m2(CH∗(a
∗)) = 3, while Ũ/CŨ (Uγ) is of rank 6 if U∗γ = 〈a∗〉 is of rank 1,

and rank greater than 6 if m(Uγ) = 2 or 3, contrary to U∗γ ∈ Q(H
∗, Ũ).

Thus Uγ normalizesK and K+, and hence also UK and U+. So as U∗γ is faithful
on F ∗(H∗) = K∗K∗+ we may choose notation so that K∗ = [K∗, U∗γ ].

We claim that Z̃γ ≤ ŨK or Ũ+. Suppose otherwise. Then as [D,U ] ≤ Zγ by

F.9.13.6, Uγ centralizes D̃ ∩ ŨK and D̃ ∩ Ũ+. Then by (a),

m(ŨK/(ŨK ∩ D̃)) ≥ m(ŨK/CŨK (Uγ)) ≥ m2(AutUγ (K
∗)) + 1. (c)

Set U+ := Ũ/(ŨK + CŨ (H)). As U∗γ is faithful on K∗K∗+ and normalizes both
factors,

m(U∗γ ) ≤ m(AutUγ (K
∗)) +m(AutUγ (K

∗
+)), (d)

so using (b)–(d):

m := m(AutUγ (K
∗
+)) ≥ m(U∗γ )−m(AutUγ (K

∗)) ≥ m(U/D)−(m(ŨK/(ŨK∩D̃))−1 )

≥ m(U+/D+) + 1 ≥ m(U+/CU+(Uγ))−m+ 1, (e)
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where the last inequality follows from the fact that Uγ induces a group of transvec-
tions on D+ with center Z+

γ .
By (e),

2m ≥ m(U+/CU+(Uγ)) + 1. (f)

In particular m > 0, so that U∗γ is nontrivial on Ũ+, and hence also on K∗+. There-

fore m(U+/CU+(Uγ)) > 1 by (a), so that (f) now gives m > 1. Hence m = 2 as

m2(AutH(K
∗
+)) = 2. As m = 2, we conclude from (e) and the structure of Ũ+ that

U∗γ induces inner automorphisms on K∗+, and

m(U+/CU+(Uγ)) = m(Ũ+/CŨ+(Uγ)) = 3. (g)

Therefore (f) is an equality, and hence all inequalities in (c)–(f) are equalities. Then
(d) becomes:

m(U∗γ ) = m(AutUγ (K
∗)) +m(AutUγ (K

∗
+)). (h)

As the inequalities in (c) are equalities,

D̃ ∩ ŨK = CŨK (Uγ) is of codimension m2(AutUγ (K
∗)) + 1 in ŨK , (i)

and sincem = 2 and the inequalities in (e) are equalities,m(U+/D+) =m(U+/CU+(Uγ))−
2. Thus by (g):

D+ is a hyperplane of U+. (j)

We had chosen notation so that K∗ = [K∗, U∗γ ], but we also saw after (f) that
K∗+ = [K∗+, U

∗
γ ]. Thus we have symmetry between K and K+, so we conclude

m(AutUγ (K
∗)) = 2 and U∗γ induces inner automorphisms on K∗. Then by (h),

U∗γ = A∗×A∗+, where A
∗ and A∗+ are 4-subgroups ofK∗ andK∗+, respectively. Since

Uγ induces a group of transvections on D+ with center Z+
γ , and we are assuming

that Z̃γ is not contained in ŨK or Ũ+, it follows from (j) that Zγ is generated by

zg = z1z2, where 1 6= z̃1 ∈ ŨK,1 and 1 6= z̃2 ∈ ŨK+,1. Therefore from the structure
of UK in 14.6.22, CH(z

g) = CG(ZZγ) has a Sylow 3-subgroup P isomorphic to
E9. However by 14.5.21.2 and 14.5.15.1, QH and QgH induce transvections on ZZγ
with centers Z and Zγ , respectively, so that m3(CG(V )) ≤ 1 by A.1.14.4. This
contradiction finally completes the proof of the claim.

By the claim we may choose notation so that Z̃γ ≤ ŨK , and hence Zγ = Zg

centralizes K+. Set Ĥg := Hg/QgH ; then K+ ≤ CG(Z
g) = Hg = NG(Uγ) since

H = G1 ∈ M by 14.6.1.1. Therefore U∗γ centralizes K∗+, and hence m(U∗γ ) ≤

m2(CH∗(K
∗
+)) = 2. Also Hg = KgKg

+T
g by 14.6.23.1, so either K̂+ is K̂g or K̂g

+,

or else K̂+ is a full diagonal subgroup of K̂g × K̂g
+. Suppose this last case holds.

Then as K̂+ also acts on Û , Û = 〈ŵ〉 for ŵ an involution interchanging Kg and
Kg

+, and hence UgwK = Ug+. Then as [Dγ , U ] ≤ Z by F.9.13.6 and CUγ (w) is of

codimension 6 in Uγ , m(U∗γ ) = m(Uγ/Dγ) ≥ m(ŨK) − 1 = 5 > 2, contradicting

m(U∗γ ) ≤ 2. Thus K̂+ = Ĵ where J := Kg or Kg
+. Hence K+ ≤ JQgH , so that

K+ = K∞+ ≤ (JQgH)
∞ = J .

Suppose K+ = J . Then by 14.6.22.3, zg ∈ [Ug , J ] ≤ O2(J). Then UK =
〈zgNG(K)〉 ≤ O2(J) ≤ QgH , so by 14.5.15.1, [UK , Uγ ] ≤ 〈zg〉, contrary to (a). Hence
K+ < J , so in particular |K+| < |J |, and hence J = Kg. Further K and K+

have different orders and so are normal in H , so that case (3) of 14.6.21 holds.
As K+ < J = Kg with J/O2(J) ∼= L3(2) ∼= K/O2(K) by 14.6.21.3, K+ has a
noncentral chief factor on O2(J) not in O2(K+), and this factor has dimension at
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least 3. However K+ = CG(〈z, zg〉)∞ is invariant under S ∈ Syl2(CG(〈z, zg〉), so
S ∩ J /∈ Syl2(J) and hence z does not centralize J , and |QgHS : S| ≥ 8, so that
|CH(zg)|2 = |S| ≤ |T |/8.

Suppose first that m(U/D) = m(U∗γ ). Then, as in Remark F.9.17, we have
symmetry of hypotheses between γ1 and γ, so there exists a unique J1 ∈ C(Hg) such
that J1 = CJ1(z)O2(J1). Thus as z centralizes K+ ≤ J , J = J1, whereas we saw
[J, z] 6= 1. Therefore m(U/D) < m(U∗γ ), and we saw earlier that m(U∗γ ) ≤ 2, so we
conclude from (b) thatm(U∗γ ) = 2 andm(U/D) = 1. Thusm(UK,i/(D∩UK,i)) ≤ 1,
and as U∗γ is of rank 2, U∗γ does not centralize a hyperplane of both UK,1 and its
dual UK,2. Therefore as [D,Uγ ] ≤ Zγ by F.9.13.6, we may take zg ∈ UK,1. But
then as K E H , |CH (zg)|2 = |T |/4, contrary to the previous paragraph. This
contradiction finally completes the proof of (3).

Suppose next that (2) fails. Then K/O2(K) ∼= A6 by 14.6.21.1, and m(UK,i) =

4 or 5 by 14.6.22.1. Then for i∗ an involution in H∗, m([ŨK,1, i
∗]) ≥ 1, and in case

of equality, i∗ induces a transposition onK∗. But also by 14.6.22.1, ŨK,2 = UsK,1 for

s ∈ NT (K) nontrivial on the Dynkin diagram ofK∗, so if i∗ acts as a transvection on

ŨK,1, then m([ŨK,2, i
∗]) = 2. We conclude m(U∗γ ) > 1, since U∗γ ∈ Q(H

∗, Ũ). Next

as U∗γ is quadratic on ŨK,1, from the action of NH(UK,1) on UK,1, U
∗
γ is contained

in a 2-subgroup of H∗ generated by transpositions. Then again as ŨK,2 = UsK,1 and

U∗γ is quadratic on ŨK,2, U
∗
γ is a 4-group F ∗ generated by a transposition and the

product of three commuting transpositions. Then m(Ũ/CŨ (U
∗
γ )) = 4 = 2m(U∗γ ).

This contradicts 14.5.18.2, as F ∗ does not induce a group of transvections on any
subspace of ŨK of codimension 2. This establishes (2).

By (2) and (3), H∞ = K with H∗ ∼= Aut(L3(2)), so by 14.6.22.1, ŨK =

ŨK,1 ⊕ ŨK,2 with ŨK,1 natural and ŨK,2 its dual. Thus H has three orbits on

UK − Z: U
#
K,1 ∪ U

#
K,2 = uH plus two diagonal classes, one of which is 2-central in

H̃. Denote this latter 2-central class by C. Recall that u ∈ U(H) by (1), so that
u 6∈ zG by 14.6.3.4. As CK(u) is not a 2-group, CK(u) 6≤ M since H ∩M = T by
14.6.23.2. Thus to prove (4), we must also show that CG(u) 6≤ G1 = H .

Now U∗γ is of rank 1 or 2 as m2(H
∗) = 2. Suppose first that m(U∗γ ) = 1.

Then [ŨK , Uγ ] = 〈ũ1, ũ2〉 with ui ∈ UK,i and u1u2 ∈ C. Conjugating in H , we
may take u = u1. Recall Zγ ≤ [U,Uγ ] ≤ 〈u1, u2, z〉, with ui /∈ zG as u 6∈ zG,
so that Zγ is generated by u1u2 or u1u2z, and hence C ⊆ zG. Since m(U∗γ ) = 1,
m(U/D) = 1 by (b), and so our hypotheses are symmetric between γ and γ1. Thus
[U,Uγ] = 〈u′1, u

′
2, z

g〉, with u′i ∈ UgK,i and u′1u
′
2 ∈ C

g . As C ⊆ zG, Cg ⊆ zG, so

u /∈ Cg, and hence u ∈ UgK,1 or UgK,2. So since H is transitive on U#
K,1 ∪ U

#
K,2, we

may take g ∈ CG(u). Thus as Z 6= Zg, CG(u) 6≤ H . Hence CG(u) ∈ I, and so (4)
holds.

So suppose instead that m(U∗γ ) = 2. Then [ŨK , Uγ ] = 〈Ũ1, ũ2〉 where Ũ1 is a

hyperplane of ŨK,1 and u2 ∈ UK,2, with U#
1 u2 ⊆ C. If m(U/D) = 2, we again

have symmetry between γ and γ1, so the argument of the previous paragraph
establishes (4) in this case also. Thus by (b) we may take m(U/D) = 1. As U ∗γ is
of rank 2, U∗γ does not centralize a hyperplane of both UK,1 and its dual UK,2, so

Zγ = [Uγ , D ∩ UK,i] ≤ UK,i for i = 1 or 2, contrary to u 6∈ zG. This contradiction
completes the proof of (4), and of 14.6.24. ¤
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We now derive a contradiction, hence showing that no examples satisfy the
hypotheses of this section.

By 14.6.24.4, CG(u) ∈ I, so that I∗ 6= ∅, and if Tu = TI := T ∩ I for some I ∈
I∗, then also CG(u) ∈ I∗ by 14.6.4. By 14.6.20, |T : O2(H)| > 4, and by 14.6.22.1,
m(U/CU (QH)) ≥ 4. Thus the hypotheses of 14.6.9 are satisfied for any I ∈ I∗, and
that result shows that |T | > 211 and LT = LITIO2(LT ), where LI := O2(L ∩ I).
Set H2 := CH (ũ). By 14.6.24.2 and 14.6.22.1, H2/O2(H2) ∼= S3, with H2 6≤ M as
H ∩M = T by 14.6.23.2. By construction, T0 := CT (ũ) = NT (UK,1) ∈ Syl2(H2),

and H2 has nontrivial chief factors on each ŨK,i. Pick I ∈ I∗, choosing I := CG(u)
if TI = Tu for some I ∈ I∗, and let I2 := O2(H2)TI , I1 := LITI , and I0 := 〈I1, I2〉.
Then I0 ∈ I∗ by 14.6.6.6. Further O2(H2) centralizes u by Coprime Action, so if
TI = Tu, then I2 = O2(H2)Tu centralizes u, while I1 ≤ CG(u) by our choice of
I , so that I0 ≤ CG(u). Thus I0 satisfies the hypotheses of 14.6.10.5, and hence

m(〈V I2〉) = 3 by that result. However as Ṽ = 〈ṽ〉 ≤ Z(T̃ ), from the module
structure in 14.6.22.1, ṽ = ũũ2c̃, where ũ2 generates CŨK,2(T ) and c̃ ∈ CŨ (H).

Therefore 〈V I2〉 = 〈uc〉[UK,2, I2] is of rank 4, since Z ≤ [UK,2, O
2(H2)] by 14.6.2.

This contradiction completes our analysis of the L2(2)-case under Hypothesis
14.2.1; namely we have now proved:

Theorem 14.6.25. Assume Hypothesis 14.2.1. Then G is isomorphic to J2,
J3,

3D4(2), the Tits group
2F4(2)

′ , G2(2)
′ ∼= U3(3), or M12.

Proof. We may assume that the Theorem fails, so that case (2) of Hypoth-
esis 14.3.1.2 is satisfied. By Theorem 14.3.16, U = 〈V G1〉 is abelian, so that the
hypotheses of this section are satisfied. Finally, as we just saw, those hypotheses
lead to a contradiction, so the Theorem is established. ¤

14.7. Finishing L3(2) with 〈VG1〉 abelian

In this section we continue to assume Hypothesis 14.5.1, but now assume that
L/O2(L) ∼= L3(2); that is, we treat case (1) of Hypothesis 14.3.1, so in particular
Hypothesis 13.3.1 holds, with G 6∼= Sp6(2) or U4(3), and U := 〈V G1〉 is abelian. Fur-
ther by 13.3.2.4, Hypothesis 12.2.3 holds, and hence so does case (1) of Hypothesis
12.8.1. Thus we can appeal to results in sections 12.8, 13.3, 14.3, and 14.5.

We will see in Theorem 14.7.75 that the Rudvalis group Ru is the only quasithin
example which arises under the hypothesis of this section; as far as we can tell, there
are no shadows.

We adopt Notation 12.8.2, including the T -invariant subspaces Vi of V for
i = 1, 2, and the subgroups Gi := NG(Vi), Mi := NM (Vi), Li := O2(NL(Vi)), and
Ri := O2(LiT ). In particular V1 = V ∩ Z where as usual Z := Ω1(Z(T )), z is

the generator for V1, G̃1 := G1/V1, and Hz consists of the members of H(L1T,M)
which lie in G1.

In this section, H denotes a member of Hz.

By 14.5.14 we may adopt Notation 14.5.16; in particular, form the coset geom-
etry Γ of Hypothesis F.9.1 with respect to LT and H , set b := b(Γ, V ), choose a
geodesic

γ0, γ1, . . . , γb =: γ,

define UH , Uγ , DH , Dγ , etc. as in section F.9, and set A1 := V gb1 where γ1gb = γ,
using the fact from F.9.11 that b is odd.
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Often we can show that Dγ < Uγ , and in those situations we also adopt:

Notation 14.7.1. If Dγ < Uγ , choose γ as in 14.5.18.4, so that

m(U∗γ ) ≥ m(UH/DH) > 0,

and U∗γ ∈ Q(H
∗, ŨH), and (as in 14.5.18.5) choose h ∈ H with γ0 = γ2h, and set

α := γh and Qα := O2(Gα); then Uα ≤ R1 and U∗α ∈ Q(H
∗, ŨH).

Set Q := O2(LT ) = CT (V ) and

S := 〈ULH〉.

Since Out(L3(2)) is a 2-group and T induces inner automorphisms on L/O2(L)
(because T acts on V ):

M = LCM (L/O2(L)).

14.7.1. Preliminary reductions.

Lemma 14.7.2. Let Ĩ be a proper H-submodule of ŨH , and assume that Y =
O2(Y ) ≤ H with Y T/O2(Y T ) ∼= S3. Set ÛH := UH/I. Then

(1) V̂ is isomorphic to Ṽ as an L1T -module.

(2) 〈V̂ Y2 〉 is of rank 1 or 2.

(3) If [V̂2, Y ] = 1, then [V2, Y ] = 1.

Proof. Observe as I < UH that V 6≤ I since UH = 〈V H〉. Then as L1 is

irreducible on Ṽ , V ∩ I = V1, so part (1) follows. Next as Ṽ2 is centralized by T of

index 3 in Y T , Ẽ := 〈Ṽ Y2 〉 is of rank ẽ = 1, 2, or 3, with Ê := 〈V̂ Y2 〉 of rank ê ≤ ẽ.

By Theorem 14.5.3.3, ẽ < 3, so that (2) holds. If [V̂2, Y ] = 1, then ê = 1 so Ẽ has

the 1-dimensional quotient Ê, and therefore ẽ = 1 or 3. But we just saw ẽ < 3, so
ẽ = 1, and hence (3) holds. ¤

Lemma 14.7.3. (1) b ≥ 3 is odd.
(2) S ≤ Q.
(3) S is abelian iff b > 3.
(4) If H = G1 and A

h
1 ≤ V for some h ∈ H, then b = 3 and Uγh ∈ ULH .

Proof. Part (1) is F.9.11.1. As UH is abelian, UH ≤ CLT (V ) = Q, so (2)
holds. Part (3) is F.9.14.1, and part (4) follows from F.9.14.3 as L is transitive on
V # since L̄ = GL(V ). ¤

Lemma 14.7.4. (1) [V2, O2(G1)] = V1.
(2) I2 := 〈O2(G1)

G2〉 E G2, I2 = L2O2(G1), I2/O2(I2) ∼= S3, and L2 = O2(I2).
(3) m3(CG(V2)) ≤ 1.
(4) QQH = R1, so R

∗
1 = Q∗.

Proof. Part (1) follows from 14.5.21.2, and 13.3.15 implies (2) and (3). By
(1), 1 6= Q̄H ≤ R̄1, so as L1 is irreducible on R̄1, (4) holds. ¤

Lemma 14.7.5. Assume L∗1 E H∗. Then

(1) Dγ < Uγ, so we may adopt Notation 14.7.1.
(2) QQH = R1.
(3) L∗1

∼= Z3, and R
∗
1 = Q∗ = CT∗(L

∗
1) is of index 2 in T ∗.

(4) [U∗γ , L
∗
1] = 1.

(5) ŨH = [ŨH , L1].
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Proof. As L∗1 E H∗, H normalizes O2(L1QH) = L1. Then 14.5.15.3 says
that L∗1

∼= Z3 and (5) holds. As L1T/R1
∼= S3, it follows that |T ∗ : CT∗(L∗1)| = 2.

Further L1 E Gγ0,γ1 , so as γ2 is conjugate to γ0 in H ≤ G1, L1 E Gγ1,γ2 .
Then as L∗1

∼= Z3, L
∗
1 centralizes O2(G

∗
γ1,γ2). Thus (4) follows as Uγ ≤ O2(Gγ1,γ2)

by F.9.13.2, and similarly [UH , Lγ ] ≤ O2(Gγ), where Lγ := Lgb1 . Therefore as
Uγ/A1 = [Uγ/A1, Lγ ] by (5) where Lγ has action of order 3 commuting with that
of UH , m([Uγ/A1, u]) is even for each u ∈ UH , so u does not induce a transvection
on Uγ/A1. Thus Dγ < Uγ by 14.5.18.1, establishing (1).

Part (2) is contained in 14.7.4.4. Then by (2), Q∗ = CT∗(L
∗
1), completing the

proof of (3). ¤

Lemma 14.7.6. F (H∗) is a 3-group.

Proof. Suppose H is a minimal counterexample, let p > 3 be prime with
H∗1 := Ω1(Z(Op(H

∗)) 6= 1, and pick P ∈ Sylp(H1) where H1 is the preimage
of H∗1 . Since p > 3, H1 ∩M = QH by 14.5.20, so H = PL1T by minimality of

H . Similarly H∗ is irreducible on P ∗. By 14.5.18.3, q(H∗, ŨH) ≤ 2, so by D.2.17,

p = 5 and P ≤ K E H with K∗ = K∗1 × · · · ×K
∗
s , K

∗
i
∼= D10, and Ũi := [ŨH ,Ki]

of rank 4. As usual s = m5(H
∗) ≤ 2 as H is an SQTK-group, so L∗1 = O2(L∗1)

normalizes K∗i . Then [K∗i , L
∗
1] = 1, so that L1 E KL1T = H . Hence 14.7.5

says we may adopt Notation 14.7.1, Q∗ = CT∗(L
∗
1), U

∗
γ centralizes L∗1 of order 3,

and ŨH = [ŨH , L1]. In particular, U∗γ is faithful on P ∗ since F ∗(H∗) = L∗1P
∗.

Then since U∗γ ∈ Q(H
∗, Q̃H), either Z2

∼= U∗γ ≤ K∗i for some i, or s = 2 and

E4
∼= U∗γ ≤ K∗1K

∗
2 . In either case 2m(U∗γ ) = m(ŨH/CŨH (U

∗
γ )), so by 14.5.18.2,

U∗γ induces a faithful group of transvections with center Ã1 on a subspace D̃H of

ŨH of codimension m(U∗γ ). But if U∗γ is of rank 2, this is not the case, so we may
choose notation so that Z2

∼= U∗γ ≤ K∗1 . Therefore A := [UH , Uγ ] ≤ U1. Since L∗1
centralizes U∗γ , L

∗
1 normalizes Ã.

Now by the choice of γ in Notation 14.7.1, 1 = m(U ∗γ ) ≥ m(UH/DH) ≥ 1,
so m(U∗γ ) = 1 = m(UH/DH), and hence as discussed in Remark F.9.17, our hy-

potheses are symmetric between γ1 and γ. As Uγ centralizes no hyperplane of ŨH ,
A1 = [DH , Uγ ] ≤ A by F.9.13.6. Thus by the symmetry, V1 ≤ A, so that m(A) = 3

as m(Ã) = 2, and L1 acts on A as L∗1 acts on Ã.
Assume first that s = 2, and let T1 := NT (K1). Then T1 is of index 2 in a Sylow

2-subgroup of G, T1 ∈ Syl2(NH(A)), and by 14.5.21.1, L1T1 induces A4 or S4 on A
and centralizes V1. Again by the symmetry between γ and γ1, NGγ (A) induces A4

or S4 on A and centralizes A1 6= V1, so we conclude that NG(A) induces GL(A) ∼=
L3(2) on A. Therefore by 1.2.1.1, NG(A) = LACG(A) for some LA ∈ C(NG(A))
with LA/CLA(A)

∼= L3(2). By 1.2.1.4, LA/O2(LA) ∼= L3(2) or SL2(7)/E49, and

in either case Aut(LA/O2(LA)) is a 5′-group. Thus as K0 := O5′ (K2) acts on
A, [LA,K0] ≤ O2(LA). Also L1 is nontrivial on A, so either L1 ≤ LA or L1 is
diagonally embedded in LACG(A). As [L

∗
1,K

∗
2 ] = 1, L1 acts on K0.

Next [K0, T1 ∩ LA] ≤ K0 ∩ O2(LA) ≤ O2(K0) ≤ QH , so (T1 ∩ LA)∗ centralizes

K∗0 . Therefore as CGL(Ũ2)(K
∗
2 )
∼= Z15, T1 ∩ LA centralizes Ũ2, and hence also

centralizes L∗1 and L1/O2(L1).
Let L0 be the preimage in LA of AutL1(A). As AutL1(A)

∼= A4, NG(L0) ∩
NG(A) contains a Sylow 2-group of NG(A). Thus T1 ≤ TA ∈ Syl2(NG(A)) with TA
acting on L0. Further each t ∈ TA−O2(L0TA) inverts L0/O2(L0), so t /∈ T1 by the
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previous paragraph. Therefore as |TA : T1| ≤ |T : T1| = 2 = |TA : O2(L0TA)|, we
conclude TA ∈ Syl2(G). As A∩Z(TA) 6= 1, LA ∈ Lf (G, TA), so LA ∈ L∗f (G, TA) by
14.3.4.2 and T1∩LA = O2(L0TA)∩LA. In particular O2(LA) ≤ T1 ≤ NG(K0), so as
[LA,K0] ≤ O2(LA), LA normalizes O2(K0O2(LA)) = K0, as does T1(TA ∩ LA) =
TA. Then as NG(LA) = !M(NG(LATA)) by 1.2.7.3, K1 ≤ NG(K0) ≤ NG(LA).

Therefore as [V1,K1] = 1, K1 acts on A = 〈V LA1 〉, so as m(A) = 3, we conclude

K1 = O5′(K1) centralizes A, whereas K1/O2(K1) is fixed-point-free on Ũ1 ≥ Ã.
This contradiction shows that s = 1. Thus H = K1TL1, so K1 6≤ M . As

L1/O2(L1) is inverted in T , and involutions in GL(Ũ1) normalizing K∗1 centralize
L∗1, we conclude that T ∗ ∼= Z4. Thus Ω1(T ) ≤ QHQ using parts (2) and (3) of
14.7.5. Then as all involutions in LT/Q are fused to involutions in T/Q inverting
L1/O2(L1), Ω1(T ) ≤ Q. Therefore J(T ) ≤ J1(T ) ≤ Q, so using B.2.3.3 we conclude
that NG(J(T )) and NG(Z(J1(T ))) lie in M = !M(LT ). Therefore as K1 6≤ M ,
K1 = [K1, J(T )]. Then as p > 3, a standard result of Thompson (see 26.18.a in
[GLS96]) shows that K1 ≤ NG(J(T ))NG(Z(J1(T ))) ≤M , a contradiction. ¤

Lemma 14.7.7. If L∗1 E H∗, then O3′(H
∗) = 1.

Proof. Suppose H is a counterexample. Then O3′(E(H∗)) 6= 1 by 14.7.6, so
there is K ∈ C(H) with K∗ ∼= Sz(2n) for some odd n ≥ 3. Let K1 := 〈KT 〉; by
14.5.19, K1L1T ∈ Hz, so without loss H = K1L1T .

As L∗1 E H∗, 14.7.5 says that L∗1
∼= Z3 and ŨH = [ŨH , L1]. As Sz(2n) has

no FF-module by Theorem B.4.2, examining parts (4)–(6) of F.9.18 we conclude

thatW := [ŨH ,K]/C[UH ,K](K) is the natural module for K∗. This is impossible as

[ŨH , L1] = ŨH and [L∗1,K
∗] = 1, whereas EndF2K∗(W ) ∼= F2n has multiplicative

group of order coprime to 3 since n is odd. ¤

Lemma 14.7.8. There is no H ∈ Hz with O2(H∗) a cyclic 3-group.

Proof. Assume O2(H∗) is a cyclic 3-group. Then as L1 ≤ H , H = PT with
P ∼= Z3n , and L1 = O2(Ω1(P )O2(H)) E H . Furthermore n > 1 since H 6≤M . But
then QH = O2(L1T ) = R1, so Uγ ≤ QH by 14.7.5, whereas U∗γ 6= 1 by 14.7.5.1. ¤

Observe that 14.7.8 eliminates case (2.iii) of 14.5.20, so we may strengthen
14.5.20 to read:

Lemma 14.7.9. Assume Y = O2(Y ) E H with Y ∗ a p-group of exponent p,
and O2(Y ) < Y ∩M . Then p = 3, and either

(1) Y = L1, or
(2) Y ∗ ∼= 31+2, L∗1 = Z(Y ∗), T is irreducible on Y ∗/L∗1, and L1 = O2(Y ∩M).

Lemma 14.7.10. Either

(1) L1 has at most three noncentral 2-chief factors, or
(2) NG(Baum(R1)) ≤M .

Proof. Let S1 := Baum(R1). We apply the Baumann Argument C.1.37 to
the action of LT on V . If (1) fails, then by C.1.37 there is a nontrivial characteristic
subgroup C of S1 normal in LT . Thus as M = !M(LT ), NG(S1) ≤ NG(C) ≤ M ,
so (2) holds. ¤

Lemma 14.7.11. H∗ is not L3(2), A6, or S6.
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Proof. Assume otherwise and let H1 := L1T and H2 the minimal parabolic
of H over T distinct from H1. Set Y := O2(H2). Then H = 〈L1T, Y 〉 6≤ M , so
Y 6≤M . Thus [V2, Y ] = 1 by 14.5.3.2, so Y L2/O2(Y L2) ∼= E9 by 14.7.4.2.

Let D0 := H , D1 := H2L2, D2 := LT , F := (D0, D1, D2), and D := 〈F〉. We
will show (D,F) is an A3-system or C3-system in the sense of section I.5.

Set Pi := O2(Di) and Ḋ1 := D1/P1. We saw O2(Ḋ1) = L̇2 × Ẏ ∼= E9.

Further O2(G1) ≤ P0 by A.1.6, so L̇2 = [L̇2, Ṗ0] by 14.7.4.2. On the other hand,

Y ≤ H ≤ NG(P0), so Ṗ0 centralizes Ẏ , and hence Ṗ0 is of order 2. Next from the

structure of H∗ under our hypothesis, Y ∗ = [Y ∗, T ∗], so Ẏ = [Ẏ , Ṫ ], and hence

Ḋ1
∼= L2(2)× L2(2). Of course D2/Q2 = LT/O2(LT ) ∼= L3(2), so hypothesis (D2)

of section I.5 holds. By the hypotheses of this lemma, hypothesis (D1) holds, and
by construction hypothesis (D3) holds. By definition, D = 〈F〉. As H 6≤ M =
!M(LT ), kerT (D) = 1, so hypothesis (D4) is satisfied. As V1 ≤ Z(H), hypothesis
(D5) holds. This completes the verification that (D,F) is an A3-system or C3-
system.

As (D,F) is an A3-system or C3-system, D ∼= L4(2) or Sp6(2) by Theorem
I.5.1. But then O2(H) is abelian, contrary to 14.7.4.1 as O2(G1) ≤ QH . ¤

Recall that when Dγ < Uγ , we adopt Notation 14.7.1, and in particular we
obtain α with Uα ≤ R1.

Lemma 14.7.12. (1) L acts 2-transitively on the subgroups ULH generating S.
(2) Assume Dγ < Uγ and b = 3. Then ULH = {UH} ∪ UL1T

α .

Proof. As NL(UH) = H ∩ L is a maximal parabolic of L and L/O2(L) ∼=
L3(2), L is 2-transitive on L/NL(UH), so that (1) holds.

Assume the hypotheses of (2). As b = 3, γ ∈ Γ(γ2), so α = γh ∈ Γ(γ2h) =
Γ(γ0), and hence Uα ∈ U

L
H . Therefore (2) follows from (1). ¤

Lemma 14.7.13. (1) Set E := [UH , Q] and R := 〈EL〉. Then [S,Q] = R.

(2) Assume [Ẽ, Q] = Ṽ . Then [R,Q] = V .

Assume further that Dγ < Uγ and b = 3.
(3) If [E,Uα] = 1 then R ≤ Z(S).
(4) Set A := [UH , Uα] and B := 〈AL〉. Then Φ(S) = [S, S] = B.

Proof. Observe that (1) and (2) follow directly from the definitions of S =
〈ULH〉 and R = 〈EL〉. Now assume that Dγ < Uγ and b = 3, so that in particular
Notation 14.7.1 holds. Suppose E commutes with Uα. As E also commutes with
UH and E E L1T , E ≤ Z(S) by 14.7.12.2. Thus (3) holds. Similarly 14.7.12.1
implies (4). ¤

We close Subsection 1 with a brief overview of an argument used to analyze
the most difficult configurations in Subsections 2 and 5:

(a) Begin with a particular structure for H∗, and possibly ŨH .
(b) Determine the structure of QH , and hence of H—cf. 14.7.20 and 14.7.71.1.
(c) Determine the structure of S, and hence of LT—cf. 14.7.24, 14.7.25, and

14.7.71–14.7.72.

In Subsection 2 we will obtain a contradiction from this analysis, while in Subsection
5 we will determine G1 and M , and this information is sufficient to identify G as
Ru.
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14.7.2. Eliminating solvable members of Hz. As was the case in Theorem
14.6.18 where LT/O2(LT ) ∼= L2(2), in Theorem 14.7.29 of this subsection we will be
able to show that no member of Hz is solvable. The most complicated configuration
we must treat is that of case (2) of 14.7.9. We eliminate that case in the following
result:

Theorem 14.7.14. There exists no H ∈ Hz such that O
2(H∗) ∼= 31+2.

Until the proof of Theorem 14.7.14 is complete, assume H is a counterexample.
Let K := O2(H) and P := O2(K). By hypothesis, K∗ ∼= 31+2.

Lemma 14.7.15. (1) L1 E H with L∗1 = Z(K∗).
(2) R∗1 = Q∗ = CT∗(L

∗
1)
∼= Z4 or Q8.

(3) H = G1 = KT is the unique member of Hz.
(4) NG(K) = !M(KT ).
(5) Dγ < Uγ, so that U

∗
γ 6= 1.

Proof. Let KZ be the preimage of Z(K∗) in K, and K0 := O2(KZ). Then
L1 acts on K0, so if K0 = [K0, T ] then K0 ≤M by 14.5.3.2. If K0 > [K0, T ], then
K0 ≤ NG(T ) ≤M by Theorem 3.3.1.

Thus in any case, K0 ≤M , so we may apply 14.7.9 to K in the role of “Y ” to
conclude that L1 = K0, T is irreducible on K∗/L∗1, and L1 = O2(K ∩M). Thus
(1) holds, and by (1) we can apply 14.7.5. By 14.7.5.1, (5) holds. By 14.7.5.3,
R∗1 = Q∗ = CT∗(L

∗
1) is of index 2 in T ∗, while as T is irreducible on K∗/L∗1, the

remainder of (2) follows from the structure of Out(K∗) ∼= GL2(3); and we also
conclude that K ∈ Ξ(G, T ) in the sense of chapter 1. Then by 1.3.6, K ∈ Ξ∗(G, T ),
so (4) follows from 1.3.7. In particular K E G1, so also L1 E G1.

Let Ġ1 := G1/O2(G1), C1 := CG1(K̇), and Y1 ∈ Syl3(C1). As m3(G1) ≤ 2,

Ẏ1 is cyclic. Thus Ω1(Ẏ1) = L̇1 ≤ Z(Ċ1), and hence Ẏ1 ≤ Z(NĊ1
(Ẏ1)), so Ċ1 is

3-nilpotent by Burnside’s Normal p-complement Theorem 39.1 in [Asc86a]. As
L1 E G1, we may apply 14.7.7 with G1 in the role of “H” to conclude that
O3′(Ġ1) = 1, so that Ċ1 = Ẏ1 is a cyclic 3-group. Thus Y1 ≤ M by 14.7.8. Then
as M = LCM (L/O2(L)), Y1 = (Y1 ∩ L1)× CY1(L/O2(L)), so we conclude |Y1| = 3

as Y1 is cyclic. Then as Ẏ1 = Ċ1, K̇ = F ∗(Ġ1). Therefore as O2(Ġ1) ≤ GL3(4),

either G1 = KT , or O2(Ġ1) is the split extension of 31+2 by SL2(3) in view of (2).
In the latter case, m3(G1) = 3, contradicting G1 an SQTK-group, so the former
case holds with H = KT = G1, completing the proof of (3). ¤

By 14.7.15.3, G1 = H is the unique member of Hz , so UH = 〈V G1〉 = U .
Similarly set D := DH . Also in view of 14.7.15.5 and 14.7.5.1:

During the remainder of the proof of Theorem 14.7.14, we adopt Notation
14.7.1.

Lemma 14.7.16. (1) Ũ = [Ũ , L1] is a 6-dimensional faithful irreducible module
for K∗.

(2) U∗α = Z(T ∗) is of order 2.

(3) [U,Uα] = V and Ṽ = CŨ (Q
∗).

(4) UL = {U} ∪ UL1T
α .

(5) b = 3.
(6) m(U/D) = 1 = m(U∗α).
(7) NG(Baum(R1)) ≤M .
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Remark 14.7.17. Notice (6) shows that our hypotheses are symmetric between
γ1 and γ, in the sense discussed in Remark F.9.17; therefore if a result S(γ1, γ)
(proved under the choice m(U∗γ ) ≥ m(UH/DH) > 0 made in Notation 14.7.1)
holds, then S(γ, γ1) also holds. Similarly as α is an H-translate of γ, S(γ1, α) and
S(α, γ1) hold too.

Proof. (of 14.7.16) By 14.7.15.1, we may apply 14.7.5 to H , so 14.7.5.5 says

that Ũ = [Ũ , L1].
From Notation 14.7.1, Uα ≤ R1, so as U is elementary abelian, (2) follows from

14.7.15.2. Then from our choice of γ,

1 = m(U∗γ ) ≥ m(U/D) > 0,

and hence m(U/D) = 1. Thus we have established (6), and hence also the sym-

metry between γ1 and γ discussed in Remark 14.7.17. As Z2
∼= U∗α ∈ Q(H

∗, Ũ),

m(Ũ/CŨ (Uα)) ≤ 2. Then as Ũ = [Ũ , L], (1) holds by D.2.17.

From 14.7.15.2 and the action of Aut(K∗) on the module Ũ for K∗ in (1),

[Ũ , Uα] = CŨ (R1) is of rank 2; then as Ṽ is of rank 2 and centralizes R∗1 = Q∗, we

conclude that [Ũ , Uα] = Ṽ = CŨ (Q
∗). Therefore U∗γ does not induce transvections

on Ũ , so U∗γ does not centralize D, and hence A1 ≤ [U,Uγ ] by F.9.13.6. Thus by
symmetry between γ1 and α, V1 ≤ [U,Uα], so that [U,Uα] = V , completing the
proof of (3). In particular Ah1 ≤ V , so as H = G1, (5) follows from 14.7.3.4, and
(4) follows from (5) and 14.7.12.2.

By (1) and 14.5.21.1, L1 has at least six noncentral 2-chief factors, so (7) follows
from 14.7.10. ¤

Let E := [U,Q] and R := 〈EL〉. By 14.7.16.1, Ũ has the structure of a 3-
dimensional F4-module preserved by K∗Q∗, with the 1-dimensional F4-subspaces
the L1-irreducibles since L

∗
1 = Z(K∗). Thus Ṽ is a 1-dimensional F4-subspace, and

from the action of Q∗ on Ũ , Ẽ = CŨ (U
∗
α) is a 2-dimensional F4-subspace. Then

as V1 ≤ [U,Uα] by 14.7.16.3, m(E) = 5. Set EH := Eh
−1

, so that ẼH = CŨ (U
∗
γ ).

Define Eγ by Eγ/A1 = CUγ/A1
(U), and set Dα := Dh

γ and Eα := Ehγ . Observe
that these definitions of “EH , Eγ” differ from those in section F.9, but the latter
notation is unnecessary here, since U , D play the role of the groups “VH , EH” of
section F.9.

Lemma 14.7.18. EH = CU (Uγ) is of index 2 in D, Eγ = CUγ (U), E = CU (Uα),
and Eα = CUα(U) is of rank 5.

Proof. By F.9.13.7, [D,Dγ ] = 1, whilem(U/D) = 1 = m(Uγ/Dγ) by 14.7.16.6.
Also for x ∈ Uγ −Dγ , [x,D] ≤ A1 by F.9.13.6, so m(U/CU (Uγ)) ≤ m(D/CD(x)) +
1 ≤ 2. Thus as CU (Uγ) ≤ EH and m(U/EH) = m(U/E) = 2, these inequalities are
equalities, and so the first statement of the lemma follows. Then the second state-
ment follows from the symmetry between γ1 and γ in Remark 14.7.17, and then
the third and fourth statements follow from the first and second via conjugation by
h. ¤

Lemma 14.7.19. (1) [S,Q] = R.
(2) [R,Q] = V .
(3) R ≤ Z(S); in particular, R is abelian and R ≤ CH(U).
(4) Φ(S) = [S, S] = V .
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Proof. Recall E = [U,Q] by definition, while [Ẽ, Q] = Ṽ from the action of

Q∗ on the module Ũ . Then (1) and (2) follow from the corresponding parts of
14.7.13. Furthermore [E,Uα] = 1 by 14.7.18, and [U,Uα] = V by 14.7.16.3; then in
view of 14.7.15.5 and 14.7.16.5, (3) and (4) follow from the corresponding parts of
14.7.13. ¤

Recall that K = O2(H), P = O2(K), and CH(U) = CQH (U) as QH = CH(Ũ).

Lemma 14.7.20. (1) QH/CH(U) is isomorphic to P/CP (U) and to the dual of

Ũ as an H-module.
(2) Either

(i) [CH (U),K] ≤ U , or
(ii) H has a unique noncentral chief factor W on CH(U)/U , W is of rank

6, and H∗ is faithful on W .

(3) O2(L1) = O2(K) = P .
(4) |P : P ∩Q| = 4 and (P ∩Q)/CP (U) = [P/CP (U), Q].

Proof. By 14.7.4.1, [U,QH ] 6= 1, so as H is irreducible on Ũ by 14.7.16.1,

CU (QH) = V1. Next QH/CH(U) is dual to Ũ as an H-module by 14.5.21.1, so as

Ũ = [Ũ ,K], also QH/CH(U) = [QH/CH(U),K]. Thus QH = PCH(U), so that (1)

holds. As m(Ṽ ) = 2, the duality shows that CP (V ) = P ∩ Q is of corank 2 in P ,

and also that (4) holds, since Ṽ = CŨ (Q) by 14.7.16.3.
By 14.7.18, Eα = CUα(U) is of rank 5, and V ≤ Uα ∩ U ≤ Eα using 14.7.16.3,

so m(EαU/U) ≤ 2 as m(V ) = 3. By 14.7.16.4, Uα = Uy for some y ∈ L; thus V y1 ≤
V ≤ U . Then CH (U) ≤ CH (V y1 ) ≤ NH(Uα) since H = CG(V1), so [CH (U), Uα] ≤
CUα(U) = Eα. Hence ifW :=W1/W2 with U ≤W1 ≤W2 ≤ CH (U) is a noncentral
chief factor for H on CH(U)/U , then m([W,Uα]) ≤ 2 as we saw m(EαU/U) ≤ 2.

Therefore as U∗α has rank 1 by 14.7.16.2, Q̂(H∗,W ) is nonempty. Then by D.2.17,
W is a 6-dimensional faithful module, and [CH(U), Uα] ≤ W2, so W is the unique
noncentral chief factor for K∗ on CH (U)/U . Therefore conclusion (ii) of (2) holds
in this case, while conclusion (i) holds if no such chief factor exists; hence (2) is
established.

By (1) and (2), all noncentral chief factors X for K on P satisfy X = [X,L1],
so O2(L1) = O2(K) = P , establishing (3). ¤

Lemma 14.7.21. (1) H = CG(z) ∈M.
(2) Z(P ) ≤ Z(K).

Proof. By 14.7.15.4, HK := NG(K) = !M(H). By 14.7.15.1, L1 E HK . Set
CK := CHK (K/O2(K)), and YK := CHK (L1/O2(L1)), so that YK is of index 2 in
HK = YKT . Then as R1 = O2(L1T ), R1 is Sylow in YK , and hence in CKR1. As

CAut(K∗))(L
∗
1))/AutK(K∗) ∼= SL2(3) is 2-closed,

CKR1 E HK . Let B ∈ Syl3(HK), BK := B∩K, and BC := B∩CK . Asm3(HK) ≤
2 = m3(K), BC is cyclic with B1 := Ω1(BC) = BK ∩ BC Sylow in L1. Then as
R1 = O2(L1T ), [B1, R1] ≤ O2(L1) ∩ CK ≤ O2(CK); so as R1 is Sylow in CKR1,
BC is not inverted in its normalizer in CKR1. Therefore by Burnside’s Normal p-
complement Theorem 39.1 in [Asc86a], CKR1 has a normal 3-complement. Then
by a Frattini Argument, we may take B = BKBM , where BC ≤ BM := NB(R1),
and BM ≤ M by 14.7.16.7. Therefore as M = LCM (L/O2(L)), BM = B1 × B0
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where B0 := CBM (L/O2(L)). As B1 is Sylow in L1 and B1 ≤ BC ≤ BM with
BC cyclic, BC = B1. Further if B0 6= 1, then B0 centralizes some a of order 3 in
BK which is inverted by r ∈ R1 inverting BK/B1. But then m3(B0B1〈a〉) = 3,
contradicting m3(HK) = 2.

Thus B0 = 1, so B = BK ∼= K∗ ∼= 31+2 and HK = HO3′(HK) with CK =
L1O3′(HK). LetW := 〈zCK 〉, so thatW ∈ R2(CKR1) by B.2.14. As L1 centralizes
z and L1 E HK , L1 centralizes W , so that CK/CCK (W ) is a 3′-group. Since a
3′-group has no FF-modules by Theorem B.4.2, and R1 is Sylow in CKR1, J(R1)
centralizes W by Thompson Factorization B.2.15. Also as H = G1 = CG(z) by
14.7.15.3, CCK (W ) ≤ CK ∩ H ≤ L1O2(H), so CCK (W ) = L1O2(CK). Then
Baum(R1) = Baum(CR1 (W )) = Baum(O2(CKR1)) by B.2.3.5. Therefore CK ≤
NG(BaumR1) ≤M by 14.7.16.7. Then by 13.3.8 with L in the role of “K”, O2(CK)
is a {2, 3}-group; so as B1 is Sylow in CK , O2(CK) = L1. Thus H = HCK = HK ∈
M, and (1) is established.

Let Z0 := Ω1(Z(P )) and assume (2) fails, so that ZP := [Z0,K] 6= 1. Now Z0 ∈
R2(K), so Z0 = ZP ×CZ0(K) by Coprime Action. But U 6≤ Z0 by 14.7.20.1, so ZP
is a faithful irreducible of rank 6 for K∗ by 14.7.20.2. Hence ZP ∈ R2(KR1) is not
an FF-module for K∗R∗1 by Theorem B.5.6; so as R1 ∈ Syl2(KR1), Baum(R1) E
KR1 by Solvable Thompson Factorization B.2.16 and B.2.3.5. Thus Baum(R1) E
KT = H , contradicting 14.7.16.7. ¤

Lemma 14.7.22. (1) R/V is isomorphic as an LT/Q-module to one of: the
dual of V ; the 6-dimensional core of the permutation module on L/NL(V2), which
we will denote by Core; the direct sum of the 8-dimensional Steinberg module with
either Core or the dual of V ; or the Steinberg module.

(2) L1 has three noncentral chief factors on the Steinberg module, two on Core,
and one on the dual of V .

Proof. As E/V is the natural module for L1T/O2(L1T ) and R = 〈EL〉, (1)
follows from H.6.5. Part (2) follows from H.6.3.3 and H.5.2. ¤

Lemma 14.7.23. E = U ∩ R ≤ P , and either

(1) Case (i) of 14.7.20.2 holds, R/V is isomorphic to the dual of V as an
L-module, and E/V is the unique noncentral chief factor for L1 on R/V ; or

(2) Case (ii) of 14.7.20.2 holds, and R/V ∼= Core.

Proof. By (3) and (4) of 14.7.19, S is nonabelian while R ≤ Z(S); so U 6≤ R
as S = 〈UL〉. Then as L1 is irreducible on U/E and R = 〈EL〉, E = U ∩ R.
Further E = [E,L1] in view of 14.7.16.1, so E ≤ P . Thus the noncentral L1-chief
factors of R contained in U are the two in E, so E/V is the unique noncentral chief
factor on R/V contained in U/V . Therefore if case (i) of 14.7.20.2 holds, then as
R ≤ Z(S) ≤ CH(U), E/V is the unique noncentral L1-chief factor on R/V , and
hence R/V is dual to V by 14.7.22, so that (1) holds.

Thus we may assume instead that case (ii) of 14.7.20.2 holds. Then H has a
unique noncentral chief factor W on CH(U)/U , and H∗ is faithful and irreducible
on W of rank 6. Now [R,Q] = V ≤ U by 14.7.19.2, so that [R ∩ W,Q] = 1,
and hence m(R ∩ W ) ≤ 2 from the action of Q∗ on the 6-dimensional faithful
irreducibleW for K∗. As Uα ≤ S by 14.7.16.4, [Q,Uα] ≤ R by 14.7.19.1. Therefore
as CH(U) ≤ CT (V ) = Q, [W,Uα] ≤ R∩W . Thus as L1 acts nontrivially on [W,Uα]
in the 6-dimensional module W , we conclude that R ∩W has rank 2, and is the
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unique noncentral L1-chief factor on W contained in R/V . So as R ≤ CH(U) by
14.7.19.3, and the first paragraph showed that E/V is the unique noncentral L1-
chief factor on R/V contained in U/V , we conclude there are exactly two noncentral
L1-chief factors on R/V . Then it follows from 14.7.22 that (2) holds. ¤

Let PC := CP (U) and Ĥ := H/U .

Lemma 14.7.24. Assume case (1) of 14.7.23 holds. Then

(1) S/R ∼= Core.
(2) V1 < Z(K).

Proof. As we are case in (1) of 14.7.23, case (i) of 14.7.20.2 holds, so that K

centralizes P̂C . By 14.7.20.1, P+ := P/PC is a 6-dimensional irreducible for H∗.

Thus L1 has exactly six nontrivial 2-chief factors, three each from Ũ and P+. We
next locate these factors relative to the series Q > S > R > V . By 14.7.20.4, one
of the factors is P+/(P ∩Q)+, leaving five in P ∩Q. By 14.7.23, E = U ∩R ≤ P ,
and the two factors in E are the factors appearing in V and R/V since case (1) of
14.7.23 holds; this leaves three factors to be located in Q/R. Further UR/R ∼= U/E
is the natural module for L1T/O2(L1T ). Therefore applying H.6.5 as in the proof
of 14.7.22, S/R has one of the structures listed in 14.7.22.1. We will show that L1

has exactly two noncentral chief factors in S/R, so that (1) will hold by applying
14.7.22.2 to the possibilities in 14.7.22.1.

First U/E is the only factor in S/R contained in UR/R. This leaves just the
two factors from (P ∩Q)+ to be located in Q/R. Now using (1) and (3) of 14.7.19,
[Q,S ∩ P ] ≤ R ∩ P ≤ CP (U) = PC , so that (S ∩ P )+ ≤ CP+(Q∗) =: A+

0 . Observe

m(A+
0 ) = 2 by applying the duality in 14.7.19.1 to CŨ (Q

∗) = Ṽ in view of 14.7.16.3.
By 14.7.16.4, Uα ≤ S, and by 14.7.16.2, U∗α = Z(T ∗), so again applying 14.7.19.1,
[P+, Uα] = A+

0 ≤ (S ∩ P )+. Hence A+
0 = (S ∩ P )+ is of rank 2, so that L1 has

exactly two noncentral chief factors on S/R, given by A+
0 and UR/R. As indicated

earlier, this completes the proof of (1).
Define S1 as the preimage in S of Soc(S/R). Then S1/R ∼= V as S/R ∼= Core

by (1), so that S1/R = [S1/R,L1]. Observe U 6≤ S1 since S is generated by the
L-conjugates of U , so we conclude from the proof of (1) that the noncentral L1-
chief factor in S1/R comes from A+

0 rather than from UR/R. Thus S1 = P1R,
where P1 := P ∩ S1 and P+

1 = A+
0 is of rank 2. So setting C1 := PC ∩ S1,

C1R/R = CS1/R(L1) has rank 1. But CŨ (L1) = 1, so C1 6≤ U , and hence Ĉ1 6= 1.

Next as we are in case (i) of 14.7.20.2, P ≤ K ≤ CH(P̂C) ≤ CH (Ĉ1), so that
[C1, P ] ≤ U . Then as C1R/R = CS1/R(L1) and P ≤ L1 by 14.7.20.3, [C1, P ] ≤

U ∩R = E, so [C1U, P ] ≤ E. Since K centralizes Ĉ1, K normalizes C1U and hence

also [C1U, P ], so as K is irreducible on Ũ , we conclude [C1, P ] ≤ V1—that is, P

centralizes C̃1. Let D1 be the preimage of CC̃1Ũ
(L1). As P centralizes C̃1Ũ , by

Coprime Action we have an L1-module decomposition C̃1Ũ = D̃1 × Ũ , and then
L1 = O2(L1) centralizes D1. In particular D1 ≤ Z(P ), and hence D1 ≤ Z(K) by

14.7.21.2. As Ĉ1 6= 1, V1 < D1, so (2) is established. ¤

Lemma 14.7.25. V1 < Z(K).

Proof. In case (1) of 14.7.23 we obtained this result in 14.7.24, so we may
assume we are in case (2) of 14.7.23. The proof proceeds much as did the proof of
14.7.24.2, except we analyze P−/C− rather than P/PC , where P− := [PC , L1], and



1052 14. L3(2) IN THE FSU, AND L2(2) WHEN Lf (G,T) IS EMPTY

C− is the preimage in P− of CP̂−(L1). As case (ii) of 14.7.20.2 holds, P−/C− is

a 6-dimensional faithful irreducible module for H∗. This time we work modulo V
rather than modulo R, so we let R0 denote the preimage in R of Soc(R/V ). Since
we are in case (2) of 14.7.23, R0/V is isomorphic to V as an L-module, so that
R0/V = [R0/V, L1]. Since R is generated by the L-conjugates of E, E 6≤ R0, so
from the analysis of case (2) in the proof of 14.7.23, the noncentral L1-chief factor
in R0/V is (R0 ∩P−)/(R0 ∩C−). Thus R0 = P0V , where P0 := [P ∩R0, L1] ≤ P−.
This time we set C0 := P0 ∩ C−, so that C0V/V = CR0/V (L1) is of rank 1. Now

V ≤ C0, but as L1 is fixed-point-free on Ũ , C0 6≤ U and hence Ĉ0 6= 1. As K
is trivial on Ĉ−, K acts on C0U , and hence again K acts on [C0U, P ] = [C0, P ].

Now [C0, P ] ≤ V as C0V/V is T -invariant of rank 1, so as K is irreducible on Ũ ,

we conclude P centralizes C̃0. Let D0 denote the preimage in C0U of CC̃0Ṽ
(L1);

just as at the end of the proof of 14.7.24.2, D0 ≤ Z(K), so as Ĉ0 6= 1, V1 < D0,
completing the proof. ¤

As H = KT , by 14.7.25 there is a subgroup D of order 4 in Z(K) containing
V1 and normal in H .

Lemma 14.7.26. D is a TI-subgroup of G.

Proof. If D is cyclic, then V1 = Ω1(D), so as D E H = G1, the lemma
holds. Thus we may assume D ∼= E4. If D ≤ Z(T ) then D ≤ Z(H), so as
H ∈ M by 14.7.21.1, the lemma follows from I.6.1.2. Therefore we may assume
that [D,T ] = V1.

Let d ∈ D − V1, and set Gd := CG(d), and Hd := H ∩Gd. Then Td := T ∩Gd
is Sylow in Hd and of index 2 in T , so that Hd := KTd is of index 2 in KT = H ;
hence Hd E H , and so Hd ∈ H

e by 1.1.3.1. Then Z(Td) ≤ Z(O2(Hd)) =: Zd. As
P = O2(K) and K E Hd, P ≤ O2(Hd), so [Zd,K] ≤ Zd ∩ P ≤ Z(P ) ≤ Z(K) by
14.7.21.2. ThereforeK centralizes Zd by Coprime Action, and so Z(Td) EKT = H .
Thus NG(Td) ≤ NG(Z(Td)) = H as H ∈ M, so that Td ∈ Syl2(Gd). In particular
d /∈ zG, so that H controls fusion in D. So appealing to I.6.1.1, it suffices to show
that Gd ≤ H . Thus we assume Gd 6≤ H , and it remains to derive a contradiction.
As Gd 6≤ H ,

G0 := {G0 ≤ Gd : Hd < G0}

is nonempty. The bulk of the proof consists of an analysis of G0.
Let G0 ∈ G0; then G0 ∈ H(Td) as d ∈ O2(G0). As L1 E H ∈M, H = NG(L1),

so Hd = NGd(L1) and in particular L1 is not normal in G0.
Suppose first that Td is irreducible on K/L1. Then Hd ∈ Ξ(G0, Td), so the

conclusions of 1.3.2 hold with Td in the role of “T”, and we may apply the proof
of 1.3.4 to G0 in the role of “H” (as that argument uses only 1.3.2 and the fact
that G0 is an SQTK-group, and does not actually require T to be Sylow in G0)
to conclude since K/O2(K) is not elementary abelian that K E G0, and hence
L1 = O2(O2,Z(K)) E G0, contrary to the previous paragraph.

Thus Td is reducible on K/L1, so as R1 is irreducible on K/L1 by 14.7.15.2,
R∗1 6≤ T ∗d and hence R1 6≤ TdQH . So TdQH < T , and then as |T : Td| = 2,
QH ≤ Td. Therefore QH = O2(Hd). Further H = NG(QH) as H ∈ M, so
that Hd = NG0(QH), and hence C(G0, QH) = Hd. Therefore Hypothesis C.2.3 is
satisfied with G0, Hd, QH in the roles of “H , MH , R”.
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Let Y ∈ Syl3(K), set X := Y ∩ L1, and let I consist of the Y -invariant
subgroups I of G0 with 3 ∈ π(I). Then for I ∈ I, there is a Y -invariant Sylow 3-
subgroup YI of I , andXI := Ω1(Z(Y YI)∩I) = X sincem3(Y ) = 2 andm3(G0) ≤ 2.
Thus X ≤ Z(YI) for each I ∈ I.

Suppose next that O2(G0) < O2,3(G0). Then O2,3(G0) ∈ I, so X is in the
center of a Sylow 3-subgroup of O2,3(G0) by the previous paragraph. Then as
L1 = X [O2(G0), X ], O2,F∗(G0) ≤ NG0(L1) = Hd using an earlier observation.
Hence as H is a {2, 3}-group by 14.7.15.3, O2,F∗(G0) is a {2, 3}-group. Then using
A.1.25.3, G0 is a {2, 3}-group, so G0 ∈ I. Therefore X is in the center of a Sylow
3-group YI of G0 containing Y , so that YI acts on X [X,O2(G0)] = L1. Then
G0 = YITd ≤ NG0(L1) = Hd, contrary to G0 ∈ G0. This contradiction shows that
O2,3(G0) = O2(G0), so that O3(G0/O2(G0)) = 1.

Now suppose J is a subnormal subgroup of G0 contained in Hd. As Hd is a
{2, 3}-group, so is J , so as O2,3(J) ≤ O2,3(G0), J is a 2-group by the previous
paragraph. Hence O2(G0) is the largest subnormal subgroup of G0 contained in
Hd.

Suppose that L0 ∈ C(G0) with 3 ∈ π(L0). Then Y = O2(Y ) acts on L0 by
1.2.1.3, so L0 ∈ I, and hence L1 = X [X,O2(G0)] ≤ L0. Therefore L0 is the unique
member of C(G0) with 3 ∈ π(L0).

Suppose next that F ∗(G0) = O2(G0). Set J := O2,3′(G0). Then Td ∩ J ≤
O2,3′(Hd) = QH , so QH is Sylow in JQH . Therefore as Hypothesis C.2.3 holds in
G0, we conclude from C.2.5 that J ≤ Hd, so as J is normal in G0, J = O2(G0) by
an earlier reduction. Thus O3′(G0/O2(G0)) = 1 = O3(G0/O2(G0)), so O2,F∗(G0)
is a product of O2(G0) with members of C(G0) whose order is divisible by 3. Then
we conclude from the previous paragraph that O2(O2,F∗(G0)) =: L0 is the unique
member of C(G0) and L1 ≤ L0. In particular L0 E G0, so that L0 is described
in C.2.7.3. As L1 ≤ L0 and O3(G0/O2(G0)) = 1, Y acts faithfully on L0/O2(L0).
However no group K listed in C.2.7.3 has a group of automorphisms A containing
Inn(K) and a subgroup HA of odd index in A with O2(HA/O2(HA)) ∼= 31+2.
Therefore O2(G0) < F ∗(G0), so

Hd is maximal in {G+ ≤ Gd : F
∗(G+) = O2(G+)}. (∗)

Observe that by 1.1.6, Hypothesis 1.1.5 is satisfied with Gd, Td, H in the roles
of “H , S,M”. However U = [U,L1] by 14.7.16.1, so U centralizes O(Gd) by A.1.26.
Then as z ∈ U , O(Gd) = 1 by 1.1.5.2. Thus there is a component Ld of Gd, and
Ld 6≤ H by 1.1.5.3.

Suppose first that Ld is a Suzuki group and set L0 := 〈L
Hd

d 〉. As Hd is a {2, 3}-
group, Hd ∩L0 = Td ∩L0, so Hd acts on the Borel subgroup B := NL0(Td ∩L0) of
L0. Therefore as F ∗(BHd) = O2(BHd), B ≤ Hd by (*), impossible as B is not a
{2, 3}-group.

Thus 3 ∈ π(Ld), so by an earlier reduction, Ld is the unique component of Gd
and L1 ≤ Ld. Similarly O3(Gd/O2(Gd)) = 1 = O3′(Gd/O2(Gd)), so as before Y
acts faithfully on Ld. This time Ld is described in 1.1.5.3, and again no subgroup
A satisfying Inn(Ld) ≤ A ≤ Aut(Ld) contains a subgroup HA of odd index in A
with O2(HA/O2(HA)) ∼= 31+2. This contradiction finally completes the proof of
14.7.26. ¤

We are now in a position to obtain a contradiction, and thus establish Theorem
14.7.14. To obtain our contradiction, we will show that the weak closure X :=
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W0(R1, D) of D in R1 is normal in both LT and H , so that H ≤ NG(X) ≤ M =
!M(LT ), contrary to H 6≤M .

It suffices to show that X centralizes U : For then as V ≤ U , X ≤ CT (V ) = Q
and X ≤ CT (U) ≤ QH , so X = W0(Q,D) = W0(QH , D) is normal in LT and H
using E.3.15. Thus we may assume there is g ∈ G such that A := Dg ≤ R1, but A
does not centralize U . By 14.7.26, A is a TI-subgroup of G, so:

(!) [CU (a), A] ≤ A ∩ U for each a ∈ A#.

Suppose first that A ∩ U = 1. Then by (!),

(*) CU (a) = CU (A) for each a ∈ A#.

In particular if 1 6= a ∈ CA(U), then A centralizes U , contrary to our assumption,
so A is faithful on U . Thus A is not cyclic of order 4 by (*), so A ∼= E4. Now
as m2(R

∗
1) = 1 by 14.7.15.2, A ∩ QH 6= 1. Then as A is faithful on U , for each

b ∈ A∩Q#
H , CU (b) is a hyperplane of U in view of 14.7.4.1. However no element of

H −QH centralizes a hyperplane of Ũ , and elements of QH − bCQH (U) centralize
hyperplanes of U distinct from CU (b) by the duality in 14.5.21.1, so again using
(*), we conclude A# ⊆ bCQH (U), a contradiction as A is faithful on U .

Therefore A ∩ U 6= 1. Then as |A| = 4, |A ∩ U | = 2, and hence A induces a
group of transvections on U with center A ∩ U by (!). As no element of H − QH

centralizes a hyperplane of Ũ , A ≤ QH ; hence [A,U ] = V1 by 14.7.4.1, soA∩U = V1.
Therefore as D is a TI-subgroup of G by 14.7.26, A = D ≤ Z(K) ≤ CG(U) since
U = [U,K] ≤ K, contrary to our assumption that A does not centralize U .

Thus the proof of Theorem 14.7.14 is complete.

In the remainder of the subsection, H again denotes an arbitrary member of
Hz. We deduce various consequences of Theorem 14.7.14 for members of Hz.

Lemma 14.7.27. For each H ∈ Hz, either O3(H
∗) = 1 or O3(H

∗) = L∗1.

Proof. Suppose H is a minimal counterexample, and let P ∗ := O3(H
∗) with

P a Sylow 3-group of the preimage of P ∗. Let P0 be a supercritical subgroup of P ,
so that P0 ∼= Z3, E9, or 3

1+2 by A.1.25.1. Further by definition, P0 contains each
subgroup of order 3 in CP (P0), so if |P0| = 3, then P is cyclic.

Suppose first that P0 ≤M . Applying 14.7.9 with O2(P0QH) in the role of “Y ”
we conclude that L∗1 = P ∗0 is of order 3, so P is cyclic. But then P ≤M by 14.7.8,
so as M = LCM (L/O2(L)), P = CP (L/O2(L)) × (P ∩ L1); then as P is cyclic,
P ∗ = L∗1, contrary to the choice of H as a counterexample.

Thus P0 6≤M , so by minimality of H , H = P0L1T . Let B be of order 3 in L1;
we may assume B acts on P .

Assume first that B 6≤ P . Then L∗1 6≤ O3(H
∗), so since L1 is T -invariant

in H = P0L1T , we conclude that 1 6= O2(L
∗
1). Then by A.1.21.3, L∗1 is faithful

on P ∗0 /Φ(P
∗
0 ), so H

∗ is the split extension of P ∗0 , isomorphic to E9 or 31+2, by
L∗1T

∗ ∼= GL2(3). However if P ∗0 is 31+2, then this split extension is of 3-rank 3,

contradicting G quasithin. Therefore P ∗0
∼= E9. Now q(H∗, ŨH) ≤ 2 by 14.5.18.3,

and the normal subgroup J∗ := 〈Q(H∗, ŨH)〉 is either H∗ ∼= GL2(3) or O3,Z(H
∗).

But the first does not appear in D.2.17, and the second does not satisfy conclusion
(3) of D.2.17, since irreducibles for H∗ faithful on P ∗0 have dimension 8 rather than
4.

Therefore B ≤ P . If P0 ∩M 6= 1, we may apply 14.7.9 to O2(P0QH) in the
role of “Y ” to conclude that P ∗0

∼= 31+2. But now Theorem 14.7.14 supplies a
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contradiction. Hence P0 ∩M = 1, so in particular B 6≤ P0. Then as P0 contains
each subgroup of order 3 in CP (P0), P1 := CP0(B) < P0. Now TL1 acts on P ∗1 , so
as P1 < P0, P1 ≤M by minimality of H , contradicting P0∩M = 1. This completes
the proof of 14.7.27. ¤

Lemma 14.7.28. For each H ∈ Hz, either O(H∗) = 1 or O(H∗) = L∗1.

Proof. Suppose H is a counterexample. Then by 14.7.27, Op(H
∗) 6= 1 for

some prime p > 3. But this contradicts 14.7.6. ¤

As a corollary to 14.7.28 we have

Theorem 14.7.29. Each solvable subgroup of G1 containing L1T is contained
in M .

Proof. Assume L1T ≤ H 6≤ M is solvable. Then 1 6= O(H∗) = F ∗(H∗) =
L∗1
∼= Z3 by 14.7.28, and hence |H∗ : CH∗(F ∗(H∗))| ≤ 2. Then H = QHL1T ≤M ,

contrary to assumption. ¤

14.7.3. Reducing to O2(H∗) isomorphic to G2(2)
′ or A5. Let H ∈ Hz.

By Theorem 14.7.29 and 1.2.1.1, H contains C-components. In this subsection, we
establish restrictions on the C-components of H : For example, 14.7.48 will show
that H contains a unique C-component K, and that H = KT . Then Theorem
14.7.52 will reduce our analysis to the cases where K/O2(K) ∼= A5 or G2(2)

′.

Let K ∈ C(H). By 14.7.28, |O(K∗)| ≤ 3, soK/O2(K) is quasisimple by 1.2.1.4.
Also K 6≤M and 〈KT 〉L1T ∈ Hz by 14.5.19, and hence:

Lemma 14.7.30. For each K ∈ C(H), K/O2(K) is quasisimple, K 6≤ M ,
〈KT 〉L1T ∈ Hz, and K/O2(K) is described in F.9.18.

Lemma 14.7.31. Suppose CG(V2) ≤M . Then

(1) W0(R1, V ) E LT , so NG(W0(R1, V )) ≤M .
(2) Let U := 〈V G1〉 and assume there is Y ∈ He, TY ∈ Syl2(Y ), and VY ∈

R2(Y ) with Y/O2(Y ) ∼= S3, O2(Y ) = CY (VY ), and U
g ≤ CY (VY ) for each V

g
1 ≤

VY . Then W0(TY , V ) E Y .

Proof. Observe first that as CG(V2) ≤ M by hypothesis, CG(V2) ≤ MV by
14.3.3. Thus as L is transitive on hyperplanes of V :

(*) CG(A) ≤ NG(V
g) for each g ∈ G and each hyperplane A of V g .

Suppose V g ≤ R1 with V̄ g 6= 1. Then

V = 〈CV (A) : m(V g/A) = 1〉,

while for each hyperplane A of V g , [CV (A), V
g ] ≤ V ∩ V g = 1 by (*) and 14.5.2.

Thus [V, V g] = 1, contrary to assumption. We conclude W0(R1, V ) ≤ CT (V ) =
O2(LT ), so by E.3.15 and E.3.16, W0(R1, V ) = W0(O2(LT ), V ) E LT and also
NG(W0(R1, V )) ≤M = !M(LT ). Thus (1) holds.

Assume the hypotheses of (2), and suppose V g ≤ TY with [VY , V
g ] 6= 1. Then

A := V g ∩ O2(Y ) is a hyperplane of V g , so by (*), [VY , V
g] ≤ VY ∩ V g , and hence

by transitivity of L on V #, we may take V g1 ≤ VY . Then V g ≤ Ug ≤ CY (VY ) by
hypothesis, contrary to assumption. Thus W0(TY , V ) =W0(O2(Y ), V ) E Y using
E.3.15 just as in the proof of (1). ¤

Lemma 14.7.32. T normalizes each K ∈ C(H), so KL1T ∈ Hz.
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Proof. Let K0 := 〈KT 〉. By 14.7.30, K0L1T ∈ Hz, so without loss H =
K0L1T . We assume T does not act on K and derive a contradiction. By 1.2.1.3,
K0 = KKt for t ∈ T −NT (K). Then by 14.7.30 we may apply F.9.18.5 to conclude
that K/O2(K) is L2(2

n), Sz(2n), or L3(2).

Suppose first that K∗ ∼= L3(2). Then by 1.2.2, K0 = O3′ (H), and so L1 ≤ K0.
Therefore there is an overgroup H1 of L1T in H with H1/O2(H1) ∼= S3 wr Z2,
and hence by Theorem 14.7.29, H1 ≤M . But then O2(H1) = [L1, H1] ≤ L, so that
m3(H1 ∩ L) = 2, contrary to m3(L) = 1.

So K∗ is L2(2
n) or Sz(2n). Let B0 be the preimage of the Borel subgroup of

K∗0 containing T ∗0 := T ∗ ∩K∗0 , and B := O2(B0). Then B0 is the unique maximal
overgroup of L1T ∩K0 in K0, so L1T normalizes B. Hence as B is solvable, B ≤M
by Theorem 14.7.29, so B acts on L1. However if K∗ is Sz(2n), then B∗ acts on
no subgroup L∗1 of Aut(K∗) with |L∗1 : O2(L

∗
1)| = 3, so that [K∗0 , L

∗
1] = 1. Hence

L∗1 E H∗, contrary to 14.7.7.
We now interrupt the proof of 14.7.32 briefly, to observe that we can use the

previous argument to establish three further results:

Lemma 14.7.33. If H ∈ Hz and K ∈ C(H), then K/O2(K) is not Sz(2n).

Proof. By the reduction above, we may assume that T normalizes K, and
take H = KL1T using 14.7.30; then we repeat the argument for that reduction
essentially verbatim. ¤

Then using 14.7.33 and 1.2.1.4:

Lemma 14.7.34. If H ∈ Hz and K ∈ C(H), then m3(K) = 1 or 2.

By 14.7.28 and 14.7.34:

Lemma 14.7.35. For each H ∈ Hz, O3′ (H) = QH .

Now we return to the proof of 14.7.32. Recall we had reduced to the case
where K/O2(K) ∼= L2(2

n) and B0 = K0 ∩M . Then 3 divides the order of K∗, so

L1 ≤ O3′(H) = K0 by 1.2.2, and hence L1 ≤ O2(M ∩K0) = B, so n is even. As L1

is T -invariant, L1 is diagonally embedded in KKt. Also L1/O2(L1) is inverted by
a suitable tL ∈ T ∩ L, so either tL induces a field automorphism on both K∗ and
K∗t, or tL interchanges K∗ and K∗t.

By 1.2.4, K ≤ K1 ∈ C(G1); then as K < K0, 1.2.8.2 says that K1 is not
T -invariant and either K = K1, or n = 2 and K1/O2(K1) ∼= J1 or L2(p) for
p2 ≡ 1 mod 5. In the latter cases we replace H by H1 := 〈K1, L1T 〉 and obtain a
contradiction from the reductions above. Therefore K ∈ C(G1) and K∗ ∼= L2(2

n)

with n even. Again by 1.2.2, K0 = O3′ (G1), so C := CG1(K0/O2(K0)) = O2(G1)
by 14.7.35.

Next as M = LCM (L/O2(L)), B = L1BC , where BC := O2(CB(L/O2(L))) is
of index 3 in B. Further [BC , tL] ≤ O2(BC), so that n = 2 and tL does not induce
a field automorphism on both K∗ and K∗t; hence tL interchanges K∗ and K∗t.

As n = 2, Out(K∗0 ) is a 2-group, so as C = O2(G1) we conclude

G1 = K0T = H, (∗)

and hence UH = 〈V G1〉 = U . As before, our convention will be to also abbreviate
DH by D, but we continue to write H for G1.

As L1 is T -invariant and diagonally embedded in K0, no involution in H∗

induces an outer automorphism on K∗ centralizing Kt∗. Thus H∗ is A5 wr Z2 or
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A5 wr Z2 extended by an involution inducing a field automorphism on both K∗

and K∗t. In either case no element of H∗ induces a transvection on Ũ . Therefore
Dγ < Uγ by 14.5.18.1, so we may adopt Notation 14.7.1.

Let Ĩ be a maximal H-submodule, and set W := Ũ/Ĩ , so that W is H-
irreducible. Let VW denote the image of V in W . By 14.7.2.1 applied to L1 in
the role of “Y ”, VW is isomorphic to Ṽ as an L1-module. Next as H is irreducible
on W , either W is the tensor product W1 ⊗W2 of irreducibles Wi for K1 := K
and K2 := Kt, or W = W1 ⊕W2 with Wi := [W,Ki] a Ki-irreducible. But in
the latter case there is no BT -invariant line VW of W with VW = [VW , L1]. Thus
W = W1 ⊗W2, and a similar argument shows that each Wi is the L2(4)-module,
so that W is the orthogonal module for K∗0

∼= Ω+
4 (4), and VW is the T -invariant

singular F4-point. Let T0 := T ∩K0. By (*), H∗ = K∗0T
∗, so as K∗0 is faithful on

W , so is H∗; then as U∗γ ∈ Q(H
∗, Ũ), U∗γ ∈ Q(H

∗,W ). If a∗ is an involution in H∗

then either CŨ (a
∗) = [Ũ , a∗] or a∗ induces an F4-transvection. Thus as U

∗
γ is qua-

dratic on Ũ , CŨ (U
∗
γ ) = CŨ (a

∗) for each a∗ ∈ U∗#γ which is not an F4-transvection,
and in particular for each a∗ ∈ K∗0 . Then calculating in the orthogonal module, we
conclude that one of the following holds:

(i) U∗γ = 〈t∗〉, t∗ an F4-transvection, and [W, t] is a nonsingular F4-point of W .
(ii) U∗γ is a 4-group with [W,Uγ ] = CW (Uγ) of rank 4.
(iii) U∗γ = 〈t∗〉F ∗, where F ∗ := CT∗0 (t

∗) ∼= E4, and [W,Uγ ] = CW (Uγ) is of
rank 4.

Suppose case (iii) holds. Then 3 = m(U∗γ ) ≥ m(U/D) by choice of γ in Notation

14.7.1, while by F.9.13.6, [D̃, Uγ ] ≤ Ã1 with m(Ã1) = 1. But then the image DW

of D has corank at most 3 in W , so DW is not CW (Uγ), and we compute in
the orthogonal module W that [DW , Uγ ] has rank at least 2. This contradiction
eliminates case (iii).

Thus case (i) or (ii) holds. Then as U∗γ ∈ Q(H
∗, Ũ) with m(W/CW (Uγ)) =

2m(U∗γ ), we conclude that W is the unique noncentral H-chief factor on Ũ , and

W = [Ũ ,K0]. Further as L1 ≤ K0 with Ṽ = [Ṽ , L1], Ũ = 〈Ṽ H〉 =W . By 14.5.18.2,
m(U∗γ ) = m(U/D), so we have symmetry between γ1 and γ (cf. Remark 14.7.17),

and U∗γ acts faithfully as a group of F2-transvections on D̃ with center Ã1. This

eliminates case (ii), for there D has corank 2 in Ũ =W , while as U∗γ contains a free
involution, Uγ does not induce a 4-group of F2-transvections with fixed center on
any subspace of corank 2. It also shows A1 ≤ U , and hence by symmetry, V1 ≤ Uγ .

Thus case (i) holds. Recall that under Notation 14.7.1, we choose α and h so
that Uα ≤ R1, and as in Remark 14.7.17, we also have symmetry between γ1 and
α. Then U∗α = 〈t∗〉, where t∗ ∈ T ∗ induces an F4-transvection on Ũ = W , and

[Ũ , t] is a nonsingular F4-point. We also saw that m(U/D) = 1 and that t∗ induces

an F2-transvection on the F2-hyperplane D̃ of Ũ with [D̃, t] = Ãh1 .
To complete the proof, we will define subgroups Y , VY to which we apply

14.7.31.2, to construct a 2-local I , which we then use to derive a contradiction. We
saw that Ṽ is the T -invariant singular F4-point in Ũ containing Ṽ2, and H = G1,
so CG(V2) = CH(V2) ≤ NH(V ) ≤M .

Set VY := V1A
h
1
∼= E4. As H is irreducible on Ũ , [Ah1 , QH ] = V1 by 14.5.21.1,

and then by symmetry between γ1 and α, also [V1, Qα] = Ah1 . Thus QH and
O2(Gα) induce groups of transvections on VY with centers V1 and A

h
1 , so by A.1.14,
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Y0 := 〈QH , O2(Gα)〉 induces GL(VY ) with kernel O2(Y0) = CQH (VY )CO2(Gα)(VY ),
and

NG(VY ) ≤ NG(Y0). (∗∗)

Set TY := UαQHCT∩K0QH (U
∗
α) and Y := 〈TY , O2(Gα)〉. Then TY centralizes

U∗α and preserves the F4-structure on Ũ , so TY centralizes the F4-point [Ũ , U∗α]

containing Ãh1 , and hence acts on VY . Then by (**), Y0 E Y = Y0TY , and Y acts
on VY .

As Uα ≤ R1, from the structure of H∗:

〈t∗L
∗
1T
∗

〉 = 〈t∗T
∗

〉 = 〈t∗〉CO2(L∗1)
(t∗) = T ∗Y ;

that is, TY E L1T .
Recall that O2(Y0) = CY0(VY ), so O2(Y0) ≤ O2(CH (VY )) by (**), while

O2(CH∗(ṼY )) = U∗α from the action ofH∗ on the orthogonal module Ũ , so O2(Y0) ≤
QHUα ≤ TY . Thus TY ∈ Syl2(Y ), and as Y0 induces GL(VY ) on VY , CY (VY ) =
O2(Y ). Further VY ≤ U , so VY ≤ Uy for each y ∈ Y . This completes the verifi-
cation of the hypotheses for part (2) of 14.7.31, so we conclude from 14.7.31.2 that
W0(TY , V ) E Y .

Set I := 〈L1T, Y 〉. We saw earlier that L1T acts on TY , so I acts onW0(TY , V ).
Set VI := 〈V

I
1 〉 and I

+ := I/CI(VI); as usual VI ∈ R2(I) by B.2.14. Also VY ≤ VI
as Y ≤ I . We claim that L+

1 is not subnormal in I+: For otherwise O2(L1)
+ = 1,

so that O2(L1) centralizes VY . This is impossible, as O2(L1) does not act on VY
since O2(L

∗
1) ∈ Syl2(K

∗
0 ) and Ãh1 is nonsingular. This completes the proof of the

claim. By the claim, L+
1 6= 1 and also Y0 6≤ NG(L1).

Now L0 := CL1(VY ) ≤ NG(Y0) by (**), so [Y0, L0] ≤ CY0(VY ) = O2(Y0) ≤
TY ≤ NG(L0). Thus Y0 acts on O2(L0) =: LY . Also L∗1 = L∗0O2(L

∗
1) from the

action of H on Ũ , so L1 = LYO2(L1).
Suppose next that Y0 ≤M . Then as Y0 normalizes LY , we conclude from the

structure of Aut(L3(2)) that O2(Y0), and hence also O2(Y0)TY = Y , acts on L1,
whereas we saw that Y0 6≤ NG(L1).

Therefore Y0 6≤ M . We claim next that [VI , J(T )] 6= 1. For otherwise J(T ) ≤
CT (VI ) ≤ CT (VY ) ≤ R1 from the action of H∗ on Ũ . Then J(T ) = J(O2(Y )) by
B.2.3.3, so that Y0 ≤ NG(J(T )) ≤ M = !M(LT ) using 14.3.9.2, a contradiction
establishing the claim.

By the claim, J(I)+ 6= 1. If J(I)+ is solvable, then by Solvable Thompson
Factorization B.2.16, J(I)+ has a direct factor K+

I
∼= S3, and there are at most two

such factors by Theorem B.5.6, so that K+
I is normalized by O2(I+) and L+

1 . If

J(I)+ is nonsolvable, then there is KI ∈ C(J(I)) with K
+
I 6= 1, so KI ∈ Lf (G, T )

by 1.2.10—and then by parts (1) and (2) of 14.3.4, K+
I is A5 or L3(2), and KI E I .

We saw that LY = O2(L0) contains a Sylow 3-subgroup PL of L1, and that L0

acts on Y0. Since VY = [VY , Y0], PL ≤ P ∈ Syl3(Y0LY ) with P ∼= E9. As L+
1 6= 1,

P+
L 6= 1, and then as P+

L = CP+(VY ), P
+ ∼= E9. From the previous paragraph, P+

normalizes K+
I and Out(K+

I ) is a 2-group, so P = PK × PC , where PK := P ∩KI

and PC := CP (K
+
I ). Now PK has order at most 3 by the structure of K+

I , and PC
has order at most 3 by A.1.31.1, so we conclude both PK and PC are of order 3.
As Y = (P ∩ Y0)TY , I = 〈L1T, Y 〉 = 〈L1T, P 〉, so as L+

1 is not normal in I+, P+

does not act on L+
1 . Finally one of the following holds:

(a) L+
1 ≤ K+

I .
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(b) L+
1 centralizes K+

I .

(c) P+
L projects faithfully on both P+

K and P+
C .

In case (a), P+
K = P+

L ≤ L+
1 ≤ K+

I , and hence P+
C centralizes L+

1 , so that

P+ ≤ L+
1 P

+
C ≤ NI+(L

+
1 ), contrary to an earlier observation. In case (b), P+

C =

P+
L ≤ L+

1 , and P+
K centralizes L+

1 , so P+ ≤ P+
KL

+
1 ≤ NI+(L

+
1 ), for the same

contradiction. Therefore case (c) holds. We saw that either T normalizes K+
I or

〈K+T
I 〉 ∼= S3 × S3. However the latter case is impossible, as then by A.1.31.1,

P+ ≤ O3′(I+) = O(〈K+T
I 〉), contradicting L+

1 not subnormal in I+. Thus T

acts on KI , so as T acts on L1, it acts on the projections L+
K and L+

C of L+
1 on

K+
I and CI+(K

+
I ), respectively. Then as T acts on L1 = PLO2(L1), and P+

L ≤
L+
KL

+
C = O2(L

+
K)O2(L

+
C)P

+, P+ normalizes O2(L
+
K)O2(L

+
C)P

+
L = L+

1 , for the
same contradiction yet again. This finally completes the proof of 14.7.32. ¤

Lemma 14.7.36. If K ∈ C(H), then K/O2,Z(K) is not sporadic.

Proof. Assume K/O2,Z(K) is sporadic. By 14.7.32, KTL1 ∈ Hz, so without

loss H = KTL1. We conclude from 14.7.30 and F.9.18.4 that K∗ ∼= M22 or M̂22.
AsM22 and M̂22 have no FF-modules by B.4.2, Ĩ := [ŨH ,K] is irreducible under K

using F.9.18.7. As q(H∗, ŨH) ≤ 2 by 14.5.18.3, B.4.2 and B.4.5 say that Ĩ is either

the code module for M22 or the 12-dimensional irreducible for M̂22. In either case
Ṽ of rank 2 lies in Ĩ .

We first eliminate the case K∗ ∼= M22, as in the proof of 13.8.21: First L1 ≤
O3′(H) = K by A.3.18. Since L1 is solvable and normal in J := K ∩M , J/O2(K)
is a maximal parabolic of N/O2(K) ∼= A6/E24 . Then CV (O2(L1(T ∩ K))) ≤
CV (O2(NT )), with m(CV (O2(NT ))) = 1 by H.16.2.1. This is a contradiction,

since L1T induces GL(Ṽ ) on Ṽ of rank 2 in Ĩ , so that O2(L1T ) centralizes Ṽ .

Thus we may assume that K∗ ∼= M̂22. By 14.7.28, L∗1 = Z(K∗) E H∗, so

H = KT , and Ĩ = ŨH = [ŨH , L1] = [ŨH ,K] by 14.7.5.5. As L∗1 is inverted

in T ∗, H∗ = K∗T ∗ ∼= Aut(M̂22). By 14.7.5.3, Q∗ ∈ Syl2(K
∗). By H.12.1.9,

m(CŨH (T
∗)) = 1, so Ṽ2 = CŨH (T

∗), and then Ṽ = [Ṽ2, L1]. Now H ∩M = NH(V )
by 14.3.3.6, so using H.12.1.7,

(H ∩M)∗ = NH∗(Ṽ ) ∼= S5/E32/Z3.

However from the structure of Aut(M̂22), there is an overgroup H1 of L1T in
H (arising from the maximal parabolic of A6/E16/Z3 which is not contained in

S5/E32/Z3) with H1/O2(H1) ∼= S3 × S3 and H∗1 6≤ NH∗(Ṽ ) = (H ∩M)∗, contrary
to Theorem 14.7.29. ¤

Lemma 14.7.37. (1) ŨH > 〈Ṽ CH∗(Ṽ2)〉.
(2) ŨH is not the natural module for O2(H∗) ∼= Ln(2), with 3 ≤ n ≤ 5.

(3) ŨH is not the natural module for H∗ ∼= S7.

Proof. Set H0 := O2(CH (V2)); by Coprime Action, H∗0 = O2(CH∗ (Ṽ2)).
Assume that (1) fails; then UH = 〈V H0〉. By 14.7.4.2, H0 acts on L2, so [L2, H0] ≤
CL2(V2) = O2(L2), and then L2 acts on O2(H0O2(L2))) = H0. So as L2 also acts
on V , it acts on on 〈V H0〉 = UH . But then LT = 〈L1T, L2〉 acts on UH , so as
M = !M(LT ), H ≤ NG(UH)) ≤ M , contrary to H ∈ Hz. This contradiction
establishes (1).

If (2) fails, then CH∗(Ṽ2) is irreducible on UH/V2, contrary to (1); so (2) holds.
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Assume (3) fails, and adopt the notation of section B.3 to describe ŨH . Now

L1T induces L2(2) on Ṽ ∼= E4, so as we saw in the proof of 14.6.10, either

(i) L∗1T
∗ is the stabilizer in H∗ of the partition Λ := {{1, 2}, {3, 4}, {5, 6}, {7}},

Ṽ2 = 〈e1,2,3,4〉, and Ṽ = 〈e1,2,3,4, e1,2,5,6〉, or

(ii) L∗1T
∗ is the stabilizer of the partition θ := {{1, 2}, {3, 4}, {5, 6, 7}}, Ṽ2 =

〈e5,6〉, and Ṽ = 〈e5,6, e5,7〉.

However in case (i), m3(CH (V2)) = 2, contrary to 14.7.4.3, so case (ii) must hold.

Here H∗0
∼= A5 stabilizes {5, 6}, and ŨH = 〈Ṽ H0〉, contrary to (1). ¤

Lemma 14.7.38. Uγ > Dγ.

Proof. Assume Uγ = Dγ . By 14.5.18.1, UH induces a nontrivial group of
transvections on Uγ with center V1. Recall that b is odd by 14.7.3.1, so by edge-
transitivity in F.7.3.2, we may pick g = gb ∈ 〈LT,H〉 such that g : (γb−1, γ) 7→
(γ0, γ1). Let β := γ1g, so that Uβ induces a group of transvections with center
B1 := V g1 on UH . By (1) and (2) of F.9.13, Uβ ≤ O2(Gγ0,γ1) = R1. SetH1 := 〈U

H
β 〉.

If H∗1 is solvable then by G.6.4, H∗1 is a product of copies of S3, so by 14.7.28,
L∗1 = O2(H∗1 ) and hence H∗1 = L∗1U

∗
β
∼= S3, contradicting Uβ ≤ R1. Therefore

H∗1 is not solvable. Thus by 1.2.1.1, K∗ = [K∗, U∗β ] for some K ∈ C(H). Let

UK := [UH ,K]. As U∗β induces transvections on ŨH , G.6.4 says ŨK/CŨK (K) is a

natural module for K∗U∗β/CK∗U∗β (ŨK) ∼= Sn or Ln(2).

Suppose first that K∗ ∼= A5 or L3(2), and let L∗K be the projection of L∗1 in
K∗ with respect to the decomposition K∗ ×CH∗(K∗). As L1 is T -invariant, L∗K is
T ∗-invariant; so either L∗K

∼= A4, or L
∗
K = 1 so that [L∗1,K

∗] = 1. In case K∗ ∼= A5,
as U∗β induces a transposition onK∗ and Uβ ≤ R1, L

∗
K = 1, so [L∗1,K

∗] = 1. In case

K∗ ∼= L3(2), as L1 is T -invariant and L
∗
K = [L∗K , T

∗∩K∗], either L∗1 = L∗K ≤ K∗ or

[L∗1,K
∗] = 1. However if [L∗1,K

∗] = 1, then [ŨK , L1] = 1 since EndK∗(ŨK) ∼= F2,

so Ṽ = [Ṽ , L1] ≤ CŨH (K), and then ŨH = 〈Ṽ H〉 ≤ CŨH (K), contradictingK∗ 6= 1.

Therefore L∗1 ≤ K∗ ∼= L3(2). Further Ṽ = [Ṽ , L1] ≤ ŨK , so that ŨK =

ŨH . Then as EndK∗(ŨH) ∼= F2, CH∗(K
∗) = 1 as H∗ is faithful on ŨH , so that

H∗ = K∗T ∗. Then as the natural module ŨH is T -invariant, we conclude that
H∗ ∼= L3(2), contrary to 14.7.11.

Therefore K∗U∗β
∼= S6, S7, S8, L4(2), or L5(2). In particular by A.3.18, K =

O3′(H), so L1 ≤ K, and then as above, UK = UH and H∗ = K∗Uβ∗ . By 14.7.11,
H∗ is not S6, and by 14.7.37, H∗ is not Ln(2) or S7.

Thus it remains to eliminate the case H∗ ∼= S8. Here Ṽ projects on a singular
line in the orthogonal space ŨH/CŨH (H), so Ṽ2 projects on a singular point; hence

CH∗(Ṽ2)/O2(CH∗ (Ṽ2)) ∼= S3 wr Z2,

contrary to 14.7.4.3. ¤

In view of 14.7.38, we establish the following convention:

In the remainder of the section, we adopt Notation 14.7.1.

Remark 14.7.39. Whenever we can show that m(U ∗γ ) = m(UH/DH), our
hypotheses are symmetric in γ and γ1; see Remarks 14.7.17 and F.9.17 for a more
extended discussion of this point.
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Theorem 14.7.40. Assume H ∈ Hz such that H = KL1T for some K ∈
C(H) with K/O2,Z(K) of Lie type over F2n for some n > 1. Then H∗ ∼= S5 and

ŨH/CŨH (K) is the L2(4)-module.

Until the proof of Theorem 14.7.40 is complete, assume the hypotheses of the
Theorem. By 14.7.30, we may apply F.9.18.4 to conclude that

(*) K∗ is a Bender group, (S)L3(2
n), Sp4(2

n), or G2(2
n).

Let B∗0 be the Borel subgroup of K∗ containing T ∗0 := T ∗ ∩ K∗ and let B :=
O2(B0). As K is defined over F2n with n > 1, and L1T = TL1, L1 acts on B,
so by Theorem 14.7.29, B ≤ H ∩M ≤ NH(L1). Then as M = LCM (L/O2(L)),
BL1 = BCL1, where BC := O2(CBL1(L/O2(L))). Also L1/O2(L1) is inverted by
some t ∈ T ∩ L, and [t, BC ] ≤ O2(L) ∩ BC ≤ O2(BC), so BCO2(L1B)/O2(L1B)
is the unique t-invariant complement to L1O2(L1B)/O2(L1B) in L1B/O2(L1B).
Choose X1 ∈ Syl3(L1) with X1 inverted by t.

Lemma 14.7.41. Either

(1) L1 6≤ K, m3(K) = 1, BC = B, L1 E H, and L∗1 is inverted in CH∗(K
∗),

or
(2) L∗1 ≤ K∗ ∼= L2(4), U3(8), or (S)L3(4).

Proof. Suppose first that L1 6≤ K. Then B∗/O2(B
∗) is a t-invariant comple-

ment to X∗1 in X∗1B
∗/O2(B

∗), so as B∗CO2(B
∗)/O2(B

∗) is the unique such com-
plement, BC = B. Thus X1〈t〉 centralizes B∗/O2(B

∗), so from the structure of
Aut(K∗) for K∗ on the list in (*), either X1 induces inner automorphisms on K∗,

or K∗X∗1
∼= PGL3(4). As L1 6≤ K, K∗ is not GL3(4) by 14.7.28. As q(H∗, ŨH) ≤ 2

by Notation 14.7.1, Theorems B.4.2 and B.4.5 eliminate the caseK∗X∗1
∼= PGL3(4).

Thus L∗1 ≤ K∗CH∗(K
∗/O2(K

∗)) =: Y ∗, and as L1 6≤ K, θ(Y ) 6≤ K, where Y is
the preimage of Y ∗ in H . Therefore m3(K) < 2 by A.3.18, so that m3(K) = 1 by
14.7.34. Then as t centralizes B∗/O2(B

∗), t also induces an inner automorphism
on K∗, from the structure of Aut(K∗) for K∗ in (*) of 3-rank 1. Indeed the pro-
jection of t on K∗ then lies in O2(B

∗) ≤ R∗1, so we conclude L1 = [L1, tC ] for some
tC ∈ CT (K∗), and hence L1 centralizes K∗. Therefore L∗1 E H∗ as H = KL1T ,
so H normalizes O2(L1QH) = L1, and hence (1) holds.

So assume instead that L1 ≤ K. As T acts on L1, L1 ≤ B and B/O2(B) =
L1O2(B)/O2(B) × BCO2(B)/O2(B). Then as t inverts L1/O2(L1) but [t, BC ] ≤
O2(BC) with BC of index 3 in B, we conclude (2) holds from the structure of
Aut(K∗) for K∗ on the list of (*). ¤

Lemma 14.7.42. If L1 6≤ K then H∗ ∼= S5×S3, ŨH = [ŨH ,K]⊕CŨH (K), and

[ŨH ,K] is the tensor product of the S3-module and the S5-module.

Proof. Assume L1 6≤ K. Then by 14.7.41, L1 EH , L∗1 is inverted in CH∗(K
∗),

m3(K) = 1, and B = BC . Also B ≤ H ∩M = NH(V ) by 14.3.3.6, so B centralizes
V as EndL/O2(L)(V ) ∼= F2.

As L∗1 is inverted in CH∗(K
∗), each H-chief factor W on ŨH is the sum W =

W1 ⊕W2 of a pair of isomorphic K∗-modules Wi. Indeed since U∗α ∈ Q(H
∗, ŨH)

by Notation 14.7.1, arguing as in the proof of F.9.18.6, U ∗α is an FF∗-offender on
W1 and W2, so that K∗ is L2(2

n), SL3(2
n), Sp4(2

n), or G2(2
n) by Theorem B.4.2.

As m3(K) = 1, the last two cases are eliminated, and n is odd if K∗ ∼= SL3(2
n).
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Pick Ĩ to be an H-submodule of ŨH maximal subject to [ŨH ,K] 6≤ Ĩ , and let

ÛH := UH/I ; then we may takeW = [ÛH ,K]. As L1 E H , Q∗ is Sylow in CH∗(L
∗
1)

by 14.7.5.3, so as Q centralizes V , and ÛH = 〈V̂ CH∗ (L
∗
1)〉, ÛH = [ÛH ,K] = W by

Gaschütz’s Theorem A.1.39. Now by B.4.2, W is either the sum of two natural
modules for K∗, or the sum of two A5-modules for K∗ ∼= L2(4). In the first case,

as B centralizes V , V̂ ≤ CW (B∗) = 1, contradicting W = 〈V̂ H〉.
Thus the second case holds. As K∗ has no strong FF-modules by B.4.2, Ĩ =

CŨH (K) by 14.7.30 and F.9.18.6. Then ŨH = [ŨH ,K]⊕CŨH (K) as the A5-module
is K-projective, so the lemma holds. ¤

Lemma 14.7.43. K∗ is not U3(8).

Proof. Assume otherwise. By 14.7.42, L1 ≤ K. By Theorems B.5.1 and
B.4.2, H∗ has no FF-modules, so by 14.7.30 we may apply parts (7) and (4) of

F.9.18 to conclude that ŨH ∈ Irr+(K, ŨH). As q(H∗, ŨH) ≤ 2 by Notation 14.7.1,

we conclude from B.4.2 and B.4.5 that ŨH is the natural module for H∗. But then
there is no B-invariant 2-subspace over F2 satisfying Ṽ = [Ṽ , L1]. ¤

Lemma 14.7.44. K∗ is not (S)L3(4).

Proof. Assume otherwise. Again L1 ≤ K by 14.7.42.
Suppose first thatK∗ ∼= SL3(4). By 14.7.28, L∗1 = Z(K∗). Recall L∗1 is inverted

in CT∩L(B
∗
C/O2(B

∗
C)); thus from the structure of Aut(SL3(4)), there is t∗ ∈ T ∗

inducing a graph automorphism on K∗. Choose I and IH as in F.9.18.4; because
t induces a graph automorphism, H∗ has no FF-modules by Theorem B.5.1, so
UH = IH by F.9.18.7, and case (iii) of F.9.18.4 holds. Then as the 1-cohomology

of the natural module is zero by I.1.6.4, ŨH = Ĩ ⊕ Ĩt, where Ĩ is a natural module
for K∗ and Ĩt is its dual. Further as U∗α ∈ Q(H

∗, ŨH), either U
∗
α is a root group of

K∗ of rank 2 with m(ŨH/CŨH (Uα)) = 4, or m(U∗α) ≥ 3 and m(ŨH/CŨH (Uα)) = 6.

If m(U∗α) = 2 or 3, we get a contradiction from 14.5.18.2, since U ∗α does not induce

F2-transvections on a subspace of ŨH of codimension m(U∗α). If m(U∗α) = 4 at least

m(UH/DH) ≤ 4 by Notation 14.7.1, whereas no subspace of ŨH of corank at most

4 satisfies the requirement [U∗α, D̃H ] = Ãh1 of F.9.13.6.

Thus K∗ ∼= L3(4), and hence H∗ has no module ŨH with q(H∗, ŨH) ≤ 2 by
Theorems B.4.2 and B.4.5. This contradiction completes the proof. ¤

Lemma 14.7.45. (1) K∗ ∼= A5.
(2) Either

(a) K ∈ C(G1), or
(b) L1 ≤ K and K ≤ K1 ∈ C(G1) with K1/O2(K1) ∼= A7.

Proof. Conclusion (1) holds if L1 6≤ K by 14.7.42. If L1 ≤ K, it holds
since 14.7.43 and 14.7.44 eliminate the other possibilities in 14.7.41.2. Thus (1) is
established.

Next as K ∈ L(G1, T ), K ≤ K1 ∈ C(G1) by 1.2.4, so H1 := K1L1T ∈ Hz by
14.7.32. By 14.7.30, K1/O2(K1) is quasisimple. Applying 14.7.36 to G1 in the role
of “H”,K1/O2,Z(K1) is not sporadic. Applying F.9.18.4 toH1, eitherK1/O2,Z(K1)
is of Lie type in characteristic 2 or K1/O2(K1) ∼= A7. If K = K1 then (2a) holds,
so we may assume K < K1. Then from the list of possible proper overgroups of A5

in A.3.14 with K1/O2(K1) quasisimple, either K1/O2,Z(K1) is of Lie type over F4

of Lie rank 2, or K1/O2(K1) ∼= A7. In the first case since K1/O2(K1) is defined
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over F4, we may apply (1) to H1 to obtain a contradiction. In the second case

K1 = O3′(G1) by A.3.18, so L1 ≤ K1. Then as K = O2(NK1(K)), L1 ≤ K, and
(2b) holds. ¤

Lemma 14.7.46. L1 ≤ K.

Proof. Assume L1 6≤ K; then H and its action on UH are described in 14.7.42,
and K ∈ C(G1) by 14.7.45.2. Let B be the Borel subgroup of K containing T ∩K.

Then BT = CK(Ṽ2) from the module structure in 14.7.42, so B normalizes I2 by
14.7.4.2. Further L1 E H since case (1) of 14.7.41 holds, so B also centralizes

Ṽ = 〈Ṽ L1
2 〉. By 14.7.4.2, I2/O2(I2) ∼= S3. Set G0 := 〈I2,K, T 〉.

Suppose first that O2(G0) = 1. Then Hypothesis F.1.1 is satisfied with K, I2,
T in the roles of “L1, L2, S”, so β := (KT,BT, I2BT ) is a weak BN-pair of rank
2 by F.1.9. Further T E TNI2(T ∩ I2), so β is described in F.1.12. Then as KT
centralizes V1 with KT/O2(KT ) ∼= S5, and I2T/O2(I2T ) ∼= S3, it follows that β
is parabolic isomorphic to the Aut(J2)-amalgam. This is impossible, since in that
amalgam, O2(KT ) ∼= Q8D8 while UH ≤ O2(KT ) is of 2-rank 9 by 14.7.42.

Thus G0 ∈ H(T ), so K ≤ K0 ∈ C(G0) by 1.2.4. If K = K0, then L2 = O2(I2)
acts on K by 1.2.1.3, so LT = 〈L1T, L2〉 acts on K; then as M = !M(LT ),
K ≤ NG(K) ≤M , contrary to 14.7.30. Thus K < K0, so since L1 6≤ K, K0 6≤ G1

by 14.7.45.2. Then K0 ∈ Lf (G, T ), so that K0/O2(K0) ∼= A5 or L3(2) by 14.3.4.1,
contrary to A.3.14. ¤

We are now in a position to complete the proof of Theorem 14.7.40.
By 14.7.46, L1 ≤ K, so H = KL1T = KT . Further L1T/O2(L1T ) ∼= S3.

Therefore H∗ ∼= S5 by 14.7.45.1.
As L1 ≤ K, V = [V, L1] ≤ [UH ,K], so UH = [UH ,K]. Suppose ŨH ∈

Irr+(K, ŨH). As Ṽ is an L1T -invariant line in ŨH , ŨH is not the A5-module.

Then ŨH/CŨH (K) is the L2(4)-module, and hence Theorem 14.7.40 holds in this
case.

Thus we may assume ŨH /∈ Irr+(K, ŨH), and it remains to derive a contra-
diction. By Notation 14.7.1, U∗α ≤ R∗1 with R∗1 Sylow in K∗. Further m(U∗α) =:

k = 1 or 2, U∗α ∈ Q(H
∗, ŨH), and k ≥ m(UH/DH) by choice of γ in 14.7.1. As

U∗α ≤ R∗1 ≤ K∗, m(W/CW (U∗α)) ≥ 2 for each noncentral chief factor W for K on

ŨH , and as ŨH /∈ Irr+(K, ŨH), there are at least two such chief factors. On the

other hand, as U∗α ∈ Q(H
∗, ŨH), 2k ≥ m(ŨH/CŨH (Uα)), so we conclude k = 2,

and there are exactly two noncentral chief factors, both L2(4)-modules. Further

2m(U∗γ ) = m(Ũ/CŨH (Uα)) so by 14.5.18.2, m(UH/DH) = 2, and U∗γ acts as a

group of transvections on D̃H with center Ã1. This is impossible as ŨH has two
L2(4)-chief factors.

Thus Theorem 14.7.40 is at last established.

Lemma 14.7.47. Let K ∈ C(H). Then

(1) L1 ≤ K, and
(2) K/O2(K) ∼= Ln(2) or An for suitable n, or G2(2)

′.

Proof. As KTL1 ∈ Hz by 14.7.32, we may take H = KTL1. By 14.7.36,
K/O2,Z(K) is not sporadic, so by 14.7.30 we may apply F.9.18.4 to conclude that
either K/O2,Z(K) is of Lie type in characteristic 2, or K/O2(K) ∼= A7. Assume the
first case holds. If K/O2,Z(K) is not defined over F2, then H

∗ ∼= S5 by Theorem
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14.7.40, so the lemma holds. On the other hand, if K/O2,Z(K) is defined over

F2, then from F.9.18.4, either (2) holds, or K/O2(K) ∼= Â6, and T is trivial on
the Dynkin diagram of K/O2,Z(K) from the possible modules listed in that result.
However in the latter case, L∗1 = Z(K∗) by 14.7.28, so as T is trivial on the Dynkin
diagram of K/O2,Z(K), KT is generated by solvable overgroups of L1T , which lie
in M by Theorem 14.7.29, contrary to H 6≤ M . Thus (2) is established, and it
remains to establish (1) when K/O2(K) is not A5.

If m3(K) > 1, then K = O3′ (H) by A.3.18, so (1) holds. Thus we may as-
sume m3(K) = 1, so as K∗ is not A5, K

∗ ∼= L3(2) by (2). Assume L1 6≤ K.
Then L∗1 centralizes K∗ as Out(L3(2)) is of order 2 and L1 = [L1, T ]. Now if
H∗/CH∗(K

∗) 6∼= Aut(L3(2)), then H is generated by a pair of solvable subgroups
containing L1T which lie in M by Theorem 14.7.29, contrary to H 6≤ M . There-
fore H∗/CH∗(K

∗) ∼= Aut(L3(2)), so K
∗T ∗ has no FF-modules by Theorem B.4.2.

Therefore by parts (7) and (4) of F.9.18, either ŨH ∈ Irr+(K, ŨH) or ŨH = Ĩ + Ĩt

with Ĩ a naturalK∗-module and t inducing an outer automorphism of K∗. In either
case, CGL(ŨH)(K

∗) = 1, impossible as L∗1 centralizes K∗. ¤

Lemma 14.7.48. (1) There is a unique K ∈ C(H), and H = KT .
(2) UH = [UH ,K].

Proof. By Theorem 14.7.29, H is not solvable, so there exists K ∈ C(H).
By 14.7.47.1, L1 is contained in each K ∈ C(H), so K is unique. Then CH∗(K

∗)
is solvable by 1.2.1.1, and hence CH∗(K

∗) = 1 by 14.7.28, since L1 ≤ K but
L∗1 6≤ Z(K∗) by 14.7.47.2. So (1) holds as Out(K∗) is a 2-group in each case listed
in 14.7.47.2.

As L1 ≤ K, V = [V, L1] ≤ [UH ,K], so UH = 〈V H〉 = [UH ,K], and (2)
holds. ¤

Lemma 14.7.49. K∗ is not L3(2) or A6.

Proof. Assume otherwise. First H = KT by 14.7.48.1. By 14.7.11, H∗ is not
L3(2), A6, or S6. Thus T is nontrivial on the Dynkin diagram ofK∗, a contradiction
as H = KT and T acts on L1. ¤

Lemma 14.7.50. K∗ is not A7.

Proof. Let Ĩ be a maximal submodule of ŨH , and ÛH := ŨH/Ĩ . As UH =

[UH ,K] by 14.7.48.2, ÛH is a nontrivial irreducible for K. As U∗α ∈ Q(H
∗, ŨH) by

Notation 14.7.1, ÛH is of rank 4 or 6 by Theorems B.4.2 and B.4.5.
We first eliminate the case dim(ÛH) = 4. Notice H∗ ∼= A7 since ÛH is not

invariant under S7. By 14.7.2.1, V̂ is isomorphic to Ṽ as an L1T -module, so from
the action of H∗ on ÛH , NH∗(V̂ ) is the stabilizer H∗4,3 in H∗ ∼= A7 of a partition
of type 4, 3. Set HM := H ∩M ; by 14.3.3.6, HM = NH(V ). As H∗4,3 is solvable
and maximal in H∗, we conclude from Theorem 14.7.29 that H∗M = H∗4,3. Since
M = LCM (L/O2(L)), an element t ∈ T ∩ L inverts L1/O2(L1) and centralizes
O2(CHM (L/O2(L))) modulo O2(M). This is a contradiction as H∗ ∼= A7 rather
than S7, so elements of H∗4,3 −O

2(H∗4,3) invert O
2(H∗4,3)/O

2(O2(H
∗
4,3)).

Thus dim(ÛH) = 6, and if H∗M = H∗4,3 then H∗ ∼= S7. As usual, we use

the notation of section B.3 for the module ÛH . Since HM normalizes L1, H
∗
M

is a solvable overgroup of L∗1T
∗ in S7, rather than one of the overgroups of T ∗
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containing a subgroup isomorphic to A6 or L3(2). Thus either H
∗
M = H∗4,3, or H

∗
M

is the stabilizer H∗23,1 of a partition of type 23, 1.

Assume first that H∗M = H∗4,3, so that H
∗ ∼= S7. As V̂ = [V̂ , L1] is a T -invariant

line, L∗1
∼= Z3 fixes 4 points, and V̂2 = 〈e5,6〉. Set Y := O2(H23,1); then 〈V̂

Y
2 〉 is of

rank 3, contrary to 14.7.2.2.
Finally assume that H∗M = H∗23,1. This time as V̂ is a line, V̂2 = 〈e1,2,3,4〉,

so that [V̂2, O
2(H4,3)] = 1, and then [V2, O

2(H4,3)] = 1 by 14.7.2.3. But then
m3(CG(V2)) > 1, contrary to 14.7.4.3. ¤

Lemma 14.7.51. K∗ is not Ln(2).

Proof. Assume otherwise. In view of 14.7.49 and Theorem C (A.2.3), n = 4
or 5. Observe P ∗ := L∗1(T

∗ ∩K∗) is a T -invariant minimal parabolic of K∗.
Assume first that T ∗ is nontrivial on the Dynkin diagram of K∗. Then n = 4,

P ∗ is the middle-node parabolic, and H∗ ∼= S8. Define Ĩ and ÛH as in the proof
of 14.7.50. Again using Theorems B.4.2 and B.4.5, we conclude that m(UH) = 4

or 6, and since P ∗ acts on the T -invariant line V̂ , that ÛH is the 6-dimensional
orthogonal module for H∗, and V̂ is a totally singular line. Thus m3(CH∗ (V̂2)) = 2,
so m3(CH(V2)) = 2 by 14.7.2.3, again contrary to 14.7.4.3.

Thus T is trivial on the Dynkin diagram of K∗, so K∗ = H∗. Thus H∗

is generated by rank-2 parabolics H∗1 containing P ∗ which satisfy H1/O2(H1) ∼=
L3(2) or S3 × S3. Therefore H1 ≤ M by 14.7.49 or Theorem 14.7.29, contrary to
H 6≤M . ¤

Theorem 14.7.52. (1) H = KT = G1 is the unique member of Hz, and
UH = U .

(2) K∗ ∼= A5 or G2(2)
′.

Proof. Part (2) follows since 14.7.49–14.7.51 eliminate all other possibilities
from 14.7.47.2. As K ∈ L(G1, T ), K ≤ K1 ∈ C(G1, T ) by 1.2.4. But G1 ∈
Hz, so since K1/O2(K1) is quasisimple by 14.7.30, (2) shows there is no proper
containment K < K1 in A.3.12, and hence K = K1 ∈ C(G1). Then by 14.7.48.1
applied to both H and G1, H = KT = G1, so (1) holds. ¤

14.7.4. Eliminating the case O2(H∗) isomorphic to G2(2)
′. In the re-

mainder of this section, set M1 := H ∩ M . Thus M1 = CM (z) as H = G1 by
Theorem 14.7.52. Further M1 = NH(V ) by 14.3.3.6. Abbreviate UH by U . Since
in this subsection we use α in preference to γ, we will reserve the abbreviation D
not for DH = U ∩Qγ but instead for U ∩Qα.

In this subsection we show K∗ ∼= A5 by proving:

Theorem 14.7.53. K/O2(K) is not G2(2)
′.

Until the proof of Theorem 14.7.53 is complete, assume H is a counterexample.
Recall we are operating under Notation 14.7.1, so we choose γ as in 14.5.18.4 and
α as in 14.5.18.5, and in particular U∗α ∈ Q(H

∗, Ũ).

Lemma 14.7.54. Ũ is either the 7-dimensional indecomposable Weyl module
for K∗ ∼= G2(2)

′, or its 6-dimensional irreducible quotient.

Proof. By 14.7.48.2, U = [U,K]. By Theorems B.4.2 and B.4.5, the 6-
dimensional module for K∗ is the unique irreducible F2H

∗-module W satisfying
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q(H∗,W ) ≤ 2, and that module is not a strong FF-module. By B.4.6.1, the Weyl
module is the unique indecomposable extension of that irreducible by a module
centralized by K∗. By 14.7.30, we may apply parts (6) and (4) of F.9.18, so if
the lemma does not hold there are exactly two noncentral chief factors W1 and
W2 for H∗ on U , and each is of dimension 6. Indeed as in the proof of F.9.18.6,
m(Ũ/CŨ (Uγ) = 2m(U∗γ ) = 6 and U∗γ is an FF ∗-offender on bothW1 andW2. Then
14.5.18.2 supplies a contradiction, as U ∗γ does not act as a group of transvections

on any subspace of corank 3 in Ũ . ¤

In view of 14.7.54, we now appeal to B.4.6 and [Asc87] for the structure of

Ũ , and we use the terminology in [Asc87], such as “doubly singular line”. As

Ṽ = [Ṽ , L1] is T -invariant, we have:

Lemma 14.7.55. (1) Ṽ is a doubly singular line of Ũ .

(2) Ṽ2 is a singular point of Ũ .

(3) The set V(V1, V2) of doubly singular lines in Ũ through Ṽ2 is of order 3,

and generates a subspace Ũ(V1, V2) of rank 3.

(4) CK∗(Ũ(V1, V2)) =: B∗ = B∗(V1, V2) ∼= E4, [Ũ , b] ∈ V(V1, V2) for each
1 6= b∗ ∈ B∗, and

W̃ := W̃ (V1, V2) := 〈CŨ (b
∗) : 1 6= b∗ ∈ B∗〉 = Ṽ ⊥2

is a hyperplane of Ũ . If H∗ ∼= G2(2), then CH∗(Ũ(V1, V2)) =: A∗ = A∗(V1, V2) ∼=
E8, and Ũ(V1, V2)CŨ (H) = CŨ (a

∗) = CŨ (B
∗) = [Ũ , A∗] for each a∗ ∈ A∗ −B∗.

(5) If Ũ is an FF-module for H∗ then H∗ ∼= G2(2) and A
∗(V1, V2)

H is the set
of FF∗-offenders in H∗.

(6) Let Y := O2(CH(V2)). Then Y T/O2(Y T ) ∼= S3, Ũ(V1, V2) = [Ũ(V1, V2), Y ],
and Y is transitive on V(V1, V2).

(7) The geometry G(Ũ) of singular points and doubly singular lines in Ũ is the
generalized hexagon for G2(2). In particular, there is no cycle of length 4 in the

collinearity graph of G(Ũ).

(8) {[Ũ , b∗] : b∗ ∈ B∗} = {[w̃, A∗] : w̃ ∈ W̃}.

In the remainder of this subsection, we adopt the notation in 14.7.55.

Lemma 14.7.56. Let V(V2) be the set of preimages in U of members of V(V1, V2),
and U(V2) the preimage of Ũ(V1, V2). Then

(1) V(V2) = V Y is the set of G-conjugates of V containing V2.
(2) Y centralizes L2/O2(L2), and G2 = L2Y T acts on U(V2), with L2 fixing

V(V2) pointwise and G2/CG(U(V2)) the stabilizer in GL(U(V2)) of V2.

Proof. By parts (1) and (6) of 14.7.55, V Y = V(V2). Then U(V2) = 〈V Y 〉,
so as [V, L2] = V2, while [L2, Y ] ≤ CL2(V2) = O2(L2) by 14.7.4.2, we have
[U(V2), L2] = V2, and hence L2 fixes V Y pointwise. Further as H = G1, CG(V2) =
CH(V2) = Y CT (V2), so since L2T induces GL(V2) on V2, G2 = L2Y T . Then
V G2 = V Y , so as L is transitive on the hyperplanes of V , (1) follows from A.1.7.1.
Finally P0 := AutG2(U(V2)) ≤ NGL(U(V2))(V2) =: P with P = P0O2(P ) and
1 6= O2(AutY (U(V2))) ≤ O2(P0), so P = P0 as P is irreducible on O2(P ). This
completes the proof of (2). ¤

Lemma 14.7.57. (1) M1 = NH(V ) = L1T and L∗1T
∗ is the minimal parabolic

of H∗ over T ∗ other than Y ∗T ∗.
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(2) QQH = R1. Thus Q
∗ = R∗1 = O2(M

∗
1 ) is the unipotent radical of M

∗
1 .

(3) If H∗ ∼= G2(2) then M1 is transitive on the three conjugates in R∗1 of
A∗ := A∗(V1, V2) in 14.7.55.4.

Proof. RecallM1 = NH(V ), soM∗
1 is the minimal parabolicNH∗(Ṽ ) = L∗1T

∗

of H∗, and hence (1) holds. Next R1 = QQH by 14.7.4, so (2) follows from (1).
Finally (3) follows from (1) and B.4.6.13. ¤

Recall from Notation 14.7.1 that h ∈ H with γ0 = γ2h, α := γh, and Uα ≤ R1.
Set Zα := Ah1 , and let U0 denote the preimage in U of CŨ (H). Let D := U ∩Qα.

Lemma 14.7.58. Assume Zα ≤ V . Then

(1) There exists g ∈ G interchanging γ1 and α.
(2) V1 ≤ Uα and m(U∗α) = m(U/D).

Proof. Part (1) follows as L is 2-transitive on V #. Then (1) implies (2). ¤

Set Hα := CH(Zα) and U− := U(V1, V2)U0. As H = G1 by Theorem 14.7.52,
Hα acts on Uα and hence on U∗α, so that:

Lemma 14.7.59. O2(H
∗
α) 6= 1.

Lemma 14.7.60. Assume Zα ≤ U . Then
(1) Replacing α by a suitable conjugate under M1, we may assume ZαU0 =

V2U0.
(2) H∗α = CH∗(Ṽ2).
(3) Either
(a) U∗α = A∗ := A∗(V1, V2), D ≤ U−, and H

∗ ∼= G2(2)), or

(b) U∗α = B∗ := B∗(V1, V2), and either D ≤ U− or D̃Ũ− = Ṽ ⊥2 .

Proof. As Zα ≤ U , Hα is a subgroup of index at most 2 in CH(Z̃α), so that

O2(CH∗(Z̃α)) 6= 1 by 14.7.59. Therefore as O2(H
∗) = 1, Zα 6≤ U0. It follows

that there is a ∈ H with ZαU0 = V a2 U0. Indeed by 14.5.21.2, [QH , Zα] = V1, so

H∗α = CH∗(Z̃α) is the parabolic subgroup of H∗ centralizing Z̃α. Thus U∗α E H∗α
with Φ(U∗α) = 1, so it follows from the structure of the parabolic H∗α that U∗α is
one of the two subgroups B∗(V1, V

a
2 ) or A

∗(V1, V
a
2 ) described in 14.7.55. In either

case, 14.7.55.4 says that CŨ (U
∗
α) = Ũ(V1, V

a
2 )Ũ0 =: Ũa−. But U∗α ≤ R∗1 = CH∗(Ṽ )

using 14.7.57, so the doubly singular line Ṽ is contained in Ũa−. Therefore V
a
2 ≤ V

by 14.7.56.1 and the fact that the generalized hexagon G(Ũ) contains no cycle of

length 3. Then as M1 = NH(V ) is transitive on Ṽ #, conjugating in M1, we may
take V a2 = V2, and maintain the constraint Uα ≤ R1. Hence (1) holds. We saw
[QH , Zα] = V1, so (2) holds. Further Hα acts on U ∩ Qα = D, so from the action

of H∗α on Ũ , D̃Ũ− is U−, Ṽ
⊥
2 , or Ũ . As [D̃, Uα] ≤ Z̃α by F.9.13.6, the third case

is impossible as H∗ induces no transvections on the module ŨH in 14.7.54. In the
second U∗α = B∗(V1, V2) by 14.7.55.4. Thus (3) is established. ¤

Lemma 14.7.61. (1) H∗ ∼= G2(2), and replacing α by a suitable M1-conjugate,
we may assume U∗α = A∗ := A∗(V1, V2).

(2) [Ũ , Uα] = Ũ ∩ Uα = CŨ (A
∗) = Ũ−.

(3) D = U−.
(4) m(U∗α) = 3 = m(U/D).
(5) We have symmetry between γ1 and α, as discussed in Remark 14.7.39.
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Proof. Suppose first that Ũ∗α is not an FF∗-offender on ŨH . As m(U∗α) ≥
m(U/D), Uα does not centralize D, so that Zα = [D,Uα] ≤ U using F.9.13.6.
Therefore by 14.7.60.1, we may take ZαU0 = V2U0, and by 14.7.60.3, U∗α is B∗ :=

B∗(V1, V2) or A∗ := A∗(V1, V2). As U∗α is not an FF∗-offender on Ũ , U∗α = B∗, so

[Uα, Ũ ] = Ũ(V1, V2) by 14.7.55.4. Also by 14.7.60.3, either D̃ ≤ Ũ− or D̃Ũ− = Ṽ ⊥2 .

The first case is impossible, as m(U/D) ≤ m(U ∗α) = 2, whereas m(Ũ/Ũ−) = 3.

Thus D̃Ũ− = Ṽ ⊥2 , and hence Z̃α = [D̃, Uα] = [Ṽ ⊥2 , B
∗] = Ṽ2, so that Zα ≤ V2 ≤ V .

Therefore V1 ≤ Uα and m(U∗α) = 2 = m(U/D) by 14.7.58.2. Then as D̃ lies in

the hyperplane D̃Ũ− = Ṽ ⊥2 of Ũ , while m(Ũ/Ũ−) = 3, we obtain m(D̃Ũ−/D̃) = 1,

and in particular Ũ− 6≤ D̃. Since U− = [U,Uα]U0 and [U,Uα] ≤ U ∩ Qα = D,
we conclude there is u0 ∈ U0 − D. But this is impossible, as then [Uα, u0] ≤ V1,
whereas no nontrivial element of Gα/Qα induces a transvection on Uα/Zα.

Thus U∗α is an FF∗-offender on Ũ , so H∗ ∼= G2(2) by 14.7.55.5. As U∗α ≤ R∗1
by Notation 14.7.1, (1) follows from 14.7.57.3. Then (2) follows from 14.7.55.4.

Suppose D 6≤ U−. Then as C̃U (Uα) = CŨ (A
∗) = Ũ−, 1 6= [D,Uα], so as in the

previous paragraph, Zα ≤ U by F.9.13.6. However this contradicts 14.7.60.3a since
U∗α = A∗. Therefore D ≤ U−, so as 3 = m(U∗α) ≥ m(U/D) ≥ m(U/U−) = 3, we
conclude (3) and (4) hold. Then (4) implies (5), completing the proof. ¤

Set H+
α := Hα/Qα and let W denote the preimage of W̃ (V1, V2) = Ṽ ⊥2 in U .

Lemma 14.7.62. (1) V1 6≤ Uα and Zα 6≤ U .
(2) U+ = A∗(Zα, V2,α) for a suitable conjugate V2,α of V2 in Uα containing Zα.
(3) W+ = B∗(Zα, V2,α).

Proof. Recall that U ≤ Gγ ≤ CG(A1), so that A1 ≤ CUγ (U) ≤ QH and
hence also Zα ≤ QH .

Suppose first that V1 ≤ Uα. Then by 14.7.61.2, U ∩Uα = U− is of codimension
3 in Uα, so as m(U∗α) = 3, QH ∩ Uα = U ∩ Uα. Thus Zα ≤ QH ∩ Uα ≤ U . Then
CQH (Zα) is of index 2 in QH by 14.5.21.1, with [CQH (Zα), Uα] ≤ QH ∩Uα ≤ U , so
U∗α centralizes a hyperplane ofQH/CH(U). But this is impossible since by 14.5.21.1,

QH/CH(U) is H∗-dual to Ũ , and no member of H∗ acts as a transvection on Ũ .
Therefore V1 6≤ Uα. Then by the symmetry in 14.7.61.5, Zα 6≤ U , so (1) holds.

By 14.7.61.1, U∗α is an FF∗-offender on Ũ , so by symmetry U/D is also an
FF∗-offender on Uα/Zα. In particular (2) holds.

As V1 6≤ Uα, CŨ (a) = C̃U (a) for each a ∈ Uα, so as each w ∈ W is centralized
by some 1 6= b∗ ∈ B∗ by 14.7.55.4, m(Uα/CUα(w)) ≤ 2. Thus W+ is a hyperplane
of U+ such thatm(Uα/CUα(w

+)) ≤ 2 for each w ∈W , so (3) follows from 14.7.55.4.
¤

We now enter the last stages of our proof of Theorem 14.7.53.
From 14.7.62, in the symmetry between γ1 and α appearing in 14.7.61.5, the

tuple H , U , V1, V2, W , U∗α, B
∗, γ1 corresponds to the tuple Gα, Uα, Zα, V2,α, B,

U+, W+, α, where B is the preimage in Uα of B∗.
Now since V1 6≤ Uα, using 14.7.55.4 we see that

F := {[U, b] : 1 6= b∗ ∈ B∗}

consists of three 4-subgroups, with

(a) V(V2) = {FV1 : F ∈ F}.
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Pick F0 ∈ F . As V2 and F0 are distinct hyperplanes of F0V1 ∼= E8, V2 ∩ F0 = V l1
for a suitable l ∈ L2T interchanging V1 and V l1 . Set β := γ0l. Then Zβ ≤ F0 ≤
[U,Uα] ≤ Uα, and as V1 6≤ Uα:

(b) For each F ∈ F , Zβ = V2 ∩ Uα = V2 ∩ F is a complement to V1 in V2.

Set Ûβ := Uβ/Zβ and consider the generalized hexagon G(Ûβ). Since Ṽ2 = Z̃β
is a singular point of Ũ , conjugating by l it follows that V̂1 is a singular point of
Ûβ.

Next F̃ is the set of lines in G(Ũ ) through Ṽ2 = Z̃β, while by 14.7.56.2, L2 fixes
V(V2) = {FV1 : F ∈ F} pointwise. Therefore conjugating by l, we conclude:

(c) {F̂ V̂1 : F ∈ F} is the set of lines through V̂1 in G(Ûβ).

Now by 14.7.55.8,
F̃ = {[w̃, Uα] : 1 6= w̃ ∈ W̃}.

Therefore as [Uα, w] ≤ Uα and F = Uα ∩ FV1 for each F ∈ F ,

(d) {[Uα, w] : w ∈W} = F = {[U, b] : b ∈ B}.

Applying symmetry to (a), and using (d) to conclude that F is invariant when
interchanging γ1 and α, it follows that

(a′) V(Zα, V2,α) = {FZα : F ∈ F},

and then from (a′) and (c) that:

(c′) {F̂ Ẑα : F ∈ F} is the set of lines through Ẑα in G(Ûβ).

But now choosing F1 and F2 to be distinct members of F , it follows from (c)

and (c′) that Ẑα, F̂1, V̂1, F̂2, Ẑα is a 4-cycle in the collinearity graph of G(Ûβ),
contrary to 14.7.55.7.

This contradiction completes the proof of Theorem 14.7.53.

14.7.5. Identifying Ru when O2(H∗) = A5. We summarize the major re-
ductions achieved so far in this section:

Theorem 14.7.63. H = CG(z) is the unique member of Hz, H = KT where

K := O2(H) ∈ C(H), H/O2(H) ∼= S5, Ũ is an indecomposable K-module, and

Ũ/CŨ (K) is the L2(4)-module for K/O2(K).

Proof. By Theorem 14.7.52.1, CG(z) = H is the unique member H of Hz . By
14.7.48.1, H = KT for some K ∈ C(H); thus K = O2(H). By Theorem 14.7.52.2
and Theorem 14.7.53, K/O2(K) is A5. Then Theorem 14.7.40 says H∗ ∼= S5
and U/U0 is the L2(4)-module. Thus Ũ is indecomposable as UH = [UH ,K] by
14.7.48.2. ¤

Remark 14.7.64. We will be working with the following special case of I.1.6.1:
Let Ǔ be the largest F2H

∗-module such that Ǔ = [Ǔ ,H∗] and Ǔ/CǓ (H
∗) ∼= N :=

Ũ/CŨ (K
∗). (cf. 17.12 in [Asc86a]) As N is the natural module for K∗ ∼= L2(4), Ǔ

has the structure of an F4K
∗-module, and as dimF4(H

1(K∗, N)) = 1, dimF4(Ǔ) =
3. Set Ǔ0 := CǓ (K

∗). There exists a 4-dimensional orthogonal space Ǔ1 over F4

with H∗ ≤ ΓO(Ǔ1) such that Ǔ0 is a nonsingular point of Ǔ1 and Ǔ = Ǔ⊥0 . This

facilitates later calculations in the image Ũ of Ǔ .

Observe that by Theorem 14.7.63 and 14.3.3.6,M1 = H ∩M = NH(V ) = L1T ,
and R∗1 = O2(L

∗
1) ∈ Syl2(K

∗). Let U0 be the preimage in U of CŨ (K). As

Ṽ = [Ṽ , L1] ∼= E4 and Ũ is a quotient of the module Ǔ in Remark 14.7.64:
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Lemma 14.7.65. Ṽ Ũ0 = CŨ (R1) and Ṽ = [CŨ (R1), L1].

In Notation 14.7.1 we chose h ∈ H with γ0 = γ2h, α := γh, and Uα ≤ R1. Let
Zα := Ah1 .

Lemma 14.7.66. U∗α ≤ Q∗ ∈ Syl2(K∗).

Proof. By 14.7.4.4, Q∗ = R∗1, so Q
∗ ∈ Syl2(K

∗), and the lemma follows as
Uα ≤ R1. ¤

Lemma 14.7.67. (1) G2 ≤M .
(2) If F is a hyperplane of V , then V is the unique member of V G containing

F .
(3) K ∈ L∗(G, T ).
(4) NG(K) = H ∈ M.
(5) LT = NG(V ).

Proof. First as H = CG(z), CG(V2) = CH(V2) ≤ T from the action of H
on U , so (1) holds since L2T induces GL(V2) on V2. Then as L is transitive on
hyperplanes of V , (1) and A.1.7.1 imply (2). Similarly AutLT (V ) = GL(V ), so
NG(V ) = LTCG(V ) with CG(V ) = CH(V ) ≤ CH(V2) ≤ T , so (5) holds.

SupposeK < I ∈ L(G, T ). AsK = O2(CG(z)), [z, I ] 6= 1, so I ∈ Lf (G, T ), and
hence I/O2(I) is A5 or L3(2) by 14.3.4.1. But then A.3.14 supplies a contradiction,
establishing (3).

Let MK := NG(K); by (3) and 1.2.7.3, MK = !M(H). It remains only to
prove (4), so we may assume H < MK , and we must derive a contradiction. Let
D := CMK (K/O2(K)); then MK = KDT so O2(D) 6= 1.

Set D1 := O2(D ∩M). Then KT normalizes O2(D1O2(K)) = D1, and D1

normalizes O2(L1O2(K)) = L1. Thus D1 centralizes L1/O2(L1), and D ∩ L1 ≤
O2(L1) as L1 ≤ K, so as D1 is T -invariant and L1 = [L1, T ∩ L], we conclude that
D1 centralizes L/O2(L). Thus LT normalizes O2(D1O2(L)) = D1, so if D1 6= 1
then K ≤ NG(D1) ≤M = !M(LT ), a contradiction.

Therefore D1 = 1, so that D ∩M ≤ T . Also D ∩ H ≤ CH(K/O2(K)) ≤ T
as H = KT . As [D,L1] ≤ O2(L1), D ∩ T ≤ R1, and hence R1 ∈ Syl2(DR1). Let

S1 := Baum(R1). Now L1 has two noncentral chief factors on Ũ , and hence also
two on QH/CH(U) by the duality in 14.5.21.1. Thus L1 has at least four noncentral
2-chief factors, so NG(S1) ≤M by 14.7.10.

Let E := 〈V D1 〉; then E ∈ R2(DR1) by B.2.14, sinceD ∈ He by 1.1.3.1. Further
CD(E) ≤ D∩H ≤ T , so CDR1(E) = O2(DR1) = CR1(E). Thus if J(R1) centralizes
E, then S1 = Baum(O2(DR1)) by B.2.3.5, and then 1 6= O2(D) ≤ NG(S1) ≤ M ,
contrary to D ∩M ≤ T . Therefore J(R1) does not centralize E, so by Thompson
Factorization B.2.15, E is an FF-module for (DR1)

+ := DR1/O2(DR1).
Suppose there exists KD ∈ C(J(DR1)). Then as [E,KD] 6= 1, KD ∈ Lf (G, T )

by 1.2.10, so we conclude from 14.3.4.1 thatKD/O2(KD) ∼= L3(2) orA5,KD EMK ,
and for each VK ∈ Irr+(KD, E, T ), VK is the L3(2)-module or A5-module and is
T -invariant. As KD = [KD, J(R1)], we conclude using Theorem B.5.1 and B.2.14
that E = [E,KD] ⊕ CE(KDR1), and [E,KD] is the A5-module or the sum of
at most two isomorphic L3(2)-modules. Thus O2(CKD (V1)) 6= 1, impossible as
O2(CKD (V1)) ≤ D ∩H ≤ T .

Thus J := J(DR1) is solvable by 1.2.1.1. As D centralizes K/O2(K) and
m3(MK) ≤ 2, m3(J) = 1 and hence J/O2(J) ∼= S3 by Solvable Thompson Fac-
torization B.2.16. Let W0 := W0(R1, V ). By (1) and 14.7.31.1, NG(W0) ≤ M .
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Next suppose g ∈ G with V g1 ≤ E. As K centralizes V1 and D normalizes K, K
centralizes 〈V D1 〉 = E, so K ≤ O2(CG(V

g
1 )) = Kg, and hence g ∈ NG(K) = MK .

Thus as U ≤ O2(K), Ug ≤ O2(K) ≤ O2(JR1). Also using an earlier remark,
CJR1(E) = JR1 ∩ CDR1(E) = CR1(E) = O2(JR1). Therefore we may apply
14.7.31.2 with JR1, E in the roles of “Y , VY ”, to conclude that W0 E JR1. But
then O2(J) ≤ ND(W0) ≤ D ∩M ≤ T , a contradiction which completes the proof
of (4), and hence of 14.7.67. ¤

Lemma 14.7.68. (1) zG ∩ U0 = {z}.

(2) If u ∈ U#
0 with [ũ, T ] = 1, then CG(u) ≤ H, and U0 is the unique member

of UG0 containing u.

Proof. Assume u satisfies the hypotheses of (2) and set Gu := CG(u). Notice
Tu := CT (u) is of index at most 2 in T and K ≤ Gu by Coprime Action.

Suppose first that Gu ≤ H holds; we will show that (1) and the remaining
statement in (2) follow. Assume that u lies in some conjugate U g0 . Then Kg ≤
O2(Gu) ≤ O2(H) = K, so that Kg = K. Thus g ∈ NG(K) = H by 14.7.67.4, so in
particular g normalizes U0, completing the proof of (2) in this case. Further as z
satisfies these hypotheses in the role of “u”, z is in a unique G-conjugate of U0, so
zG ∩ U0 = zNG(U0) by A.1.7.1. But then as H ∈ M by 14.7.67.4, NG(U0) = H =
CG(z) so that (1) also holds.

So to complete the proof of the lemma, we assume Gu 6≤ H , and it remains
to derive a contradiction. As K has more than one noncentral 2-chief factor by
14.5.21.1, KTu is not a block, so by C.1.26 there is 1 6= C char Tu with C E KTu.
But then as Tu is of index at most 2 in T , H = KT ≤ NG(C) so that NG(C) = H
since H ∈ M. Thus if Tu ≤ T0 ∈ Syl2(Gu), then NT0(Tu) ≤ NG(C) = H , so
that Tu = NT0(Tu) and hence Tu = T0. Therefore K ≤ Lu ∈ C(Gu) by 1.2.4, and
Lu E Gu by 1.2.1.3 since T normalizes K. Thus K < Lu as Gu 6≤ H = NG(K).
In particular Lu 6≤ H since K E H , so as H = CG(z), [z, Lu] 6= 1. Observe further
as Uα is elementary abelian and contained in R1 with R∗1 = Q∗ ∈ Syl2(K

∗) that
Lu/O2(Lu) does not involve SL2(5) on a group of odd order, and so is quasisimple
by 1.2.1.4.

Observe that the hypotheses of 1.1.6 are satisfied with Gu, H in the roles
of “H , M”, so that we may apply 1.1.5. Suppose first that Lu is quasisimple,
and hence a component of Gu. As u ∈ [U,K] ≤ Lu ≤ Gu, Z(Lu) is of even
order. On the other hand z is in the center of the Sylow 2-subgroup Tu of Gu, and
KTu = CGu(z). Inspecting the list of possiblities for Lu in 1.1.5.3, we conclude
from this structure of KTu (in particular from the two noncentral 2-chief factors)
that Lu is the covering group of Ru. Next V is the unique L1-invariant complement
to 〈u〉 in 〈u〉V , so as Lu/〈u〉 ∼= Ru, NLu(V ) =: L0 satisfies L0/O2(L0) ∼= L3(2).
Thus L0 ≤ O2(NG(V )) = L by 14.7.67.5, so as |T : Tu| = 2 and L = O2(L), we
conclude L = L0. Then as Z(L0) is of order 2 by I.1.3, 〈u〉 = Z(L) ∩ Tu, so 〈u〉 is
T -invariant, contrary to Tu ∈ Syl2(Gu).

Therefore Lu is not quasisimple, so F ∗(Lu) = O2(Lu) by 1.2.11. Let Ru :=
O2(KTu). As KTu E H , Ru = O2(H)∩KTu E H , so since H ∈ M, C(Gu, Ru) ≤
Hu := H ∩Gu and Ru = O2(Hu). Thus Hypothesis C.2.3 is satisfied with Gu, Ru,
Hu in the roles of “H , R, MH”. Then as Lu E Gu, while Lu 6≤ H and Lu/O2(Lu)
is quasisimple, Lu is described in C.2.7.3; and comparing the list in C.2.7.3 to the
embeddings in A.3.14, we conclude that either Lu is a block with Lu/O2(Lu) ∼= A7
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or Sp4(4), or else Lu/O2(Lu) ∼= SL3(4). The first case is impossible as K has two
noncentral 2-chief factors. In the remaining two cases, there is Y of order 3 in
CLu(K/O2(K)), so Y ≤ NG(K) = H , a contradiction as CH(K/O2(K)) = QH by
Theorem 14.7.63. ¤

Lemma 14.7.69. U∗α is of order 2.

Proof. Assume otherwise. Then as U∗α ≤ Q∗ ∼= E4 by 14.7.66, U∗α = Q∗.
Therefore using Remark 14.7.64,

CŨ (Uα) = [Ũ , Uα] = Ũ0Ṽ , (a)

so as
[U,Uα] ≤ U ∩ Uα =: F ≤ CU (Uα), (b)

we conclude

[U,Uα]V1 = (U ∩ Uα)V1 = FV1 = CU (Uα) = U0V. (c)

From the action of H∗ on Ũ , for u ∈ U −U0V we have m([u, Uα]) ≥ 2, so [u, Uα] 6≤
Zα. Thus we conclude from 14.7.4.1 and (c) that

U ∩Qα = U0V = CU (Uα). (d)

Thenm(U∗α) = 2 = m(U/U0V ) = m(U/U∩Qα), so that we have symmetry between
γ1 and α as discussed in Remark 14.7.39. As U ≤ Gα = CG(Zα) and CG(U) ≤ QH :

Zα ≤ QH ∩ Uα. (e)

Suppose first that V1 ≤ Uα. Then V1 ≤ U ∩Uα = F , so F = U0V by (c). Hence
m(U∗α) = 2 = m(U/F ) = m(Uα/F ), so

QH ∩ Uα = F ≤ U.

Then using (e), Zα ≤ U . It now follows from 14.7.4.1 that m(QH/CQH (Zα)) ≤ 1.
But CQH (Zα) ≤ NG(Uα) sinceH = CG(z), so [CQH (Zα), Uα] ≤ QH∩Uα ≤ U . This
is impossible, since by 14.5.21.1, QH/CH(U) is dual to U/CU (QH) as an H-module,
so Uα centralizes no hyperplane of QH/CH(U).

Therefore V1 6≤ Uα. Hence V1 6≤ F , so we can now refine (b)–(d) to:

[U,Uα] = U ∩ Uα = F and F × V1 = U0V = CU (Uα) = U ∩Qα. (f)

Suppose that U0 = V1. Then by (f), F is a hyperplane of V = CU (Uα), and
by symmetry between γ1 and α, F is a hyperplane of CUα(U) and CUα(U) ∈ V G.
Hence by 14.7.67.2, CU (Uα) = V = CUα(U), so that V1 ≤ Uα, contrary to our
assumption.

Therefore U0 > V1. By I.1.6.2, m(Ũ0) ≤ 2, so that m(U0) = 2 or 3.

Suppose first that m(U0) = 3. Then Ũ is the module Ǔ discussed in Remark

14.7.64. In particular the 2-dimensional F4-subspace F̃ = C̃U (Uα) is partitioned
4

by Ṽ , Ũ0, and the three 1-dimensional F4-spaces spanned by the various [ũ, s∗] for

s∗ ∈ U#
α and ũ ∈ Ũ − Ũ0Ṽ . So as CU (Uα) = F × V1 by (f), F has the partition

F = F0 ∪ F1 ∪ FV ,

where FV := F ∩ V , F0 := F ∩ U0, and

F1 := {[x, y] : x ∈ Uα −QH , y ∈ U − U0V }.

4Following Suzuki, a partition of a vector space is a collection of subspaces such that each
nonzero element is contained in a unique subspace.
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Now F1 is invariant under the symmetry interchanging γ1 and α, so by this sym-
metry there is a similar partition of F given by

F = (F ∩ V g) ∪ (F ∩ Ug0 ) ∪ F1,

for g ∈ 〈LT,H〉 with V g1 = Zα. By 14.7.68.1, zG ∩ Ug0 = {zg}, so as zg 6∈ F and

F#
V ⊆ zG, FV = F ∩ V g ≤ V g . Then as FV is a hyperplane of V , V = V g by

14.7.67.2, contrary to our earlier reduction V1 6≤ Uα.
Therefore m(U0) = 2. This time F̃ is partitioned by Ũ0 and F̃1, so F has the

partition F = F0 ∪ F1, and again using the symmetry between γ1 and α as above,
we conclude that F = (F ∩ U g0 ) ∪ F1 is also a partition, and then that F0 ≤ Ug0 .

Further F̃0 = Ũ0 ≤ Z(H̃), so U0 = Ug0 by 14.7.68.2, and hence g ∈ NG(U0) = H as
H ∈ M by 14.7.67.4, contrary to V g1 = Zα 6= V1. This contradiction completes the
proof of 14.7.69. ¤

By choice of γ in Notation 14.7.1, m(U ∗α) ≥ m(U/D) > 0, where D := U ∩Qα;
so as m(U∗α) = 1 by 14.7.69, also m(U/D) = 1. Thus again we have symmetry
between α and γ1, as discussed in Remark 14.7.39.

Lemma 14.7.70. (1) We may choose α so that Zα ≤ V2.
(2) m(U0) ≤ 2.
(3) U ∩ Uα = U0V = [U,Uα]V = [U,Uα]U0.
(4) b = 3 and Uα ∈ U

L.

Proof. Observe that if (1) holds, then so does (4) by 14.7.3.4. Thus it suffices
to establish (1)–(3).

Let F := [U,Uα]. By 14.7.66 and 14.7.69, U∗α is a subgroup of Q∗ ∈ Syl2(K∗)
of order 2. Then using Remark 14.7.64, FU0 = V U0, Ṽ Ũ0 = F̃ × Ũ0, and Uα
centralizes no F2-hyperplane of Ũ ; so 1 6= [D,Uα], and hence Zα = [D,Uα] ≤
F ≤ U using F.9.13.6. By the symmetry between γ1 and α discussed above, also
V1 = [Dα, U ] ≤ F . By 14.7.68.1, Zα 6≤ U0.

By Remark 14.7.64, m(Ũ0) ≤ 2, so that m(U0) ≤ 3. We now make some
choices: We may conjugate in NH(R1) = L1T and preserve the condition Uα ≤ R1.
As U∗α is of order 2 in Q∗, conjugating in L1, we may assume that U∗α ≤ Z(T ∗);
when m(U0) = 3, we make this choice. When m(U0) ≤ 2, we make a more careful
choice: As Zα ≤ F ≤ U0V , conjugating in L1 we may assume that ZαU0 = V2U0.
As m(U0) ≤ 2, T centralizes Ṽ2Ũ0 and hence also Z̃α. Further [Zα, QH ] = V1
by 14.7.4.1, so by a Frattini Argument, T ∗ = CT (Zα)

∗. Now as H = CG(z),
CT (Zα) ≤ NG(Uα), so again U∗α ≤ Z(T ∗). Thus in either case our choice implies
U∗α ≤ Z(T ∗).

As U∗α ≤ Z(T ∗), T acts on [Ũ , U∗α] = F̃ ; hence as V1 = [Dα, U ] ≤ F , T also
acts on F . Recall also that Zα ≤ F , so

V1Zα ≤ F ≤ U ∩ Uα ≤ CU (Uα) ≤ FU0 = V U0 = FV. (∗)

Suppose first that V1 = U0. Then (2) holds, and by our choice under this
assumption, Zα ≤ V2U0 = V2, so that (1) holds. Further (3) follows from (*),
completing the proof of the lemma in this case.

Thus we may suppose that V1 < U0. Recall F̃ is a complement to Ũ0 in Ṽ Ũ0.
Further if m(U0) = 3, then from Remark 14.7.64, F̃ ∩ Ṽ = 1, while if m(U0) = 2

then m(F̃ ∩ Ṽ ) = 1.
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Suppose first that m(U0) = 2. Again (2) holds. Also T acts on V , V2, and F ,

and T centralizes Z̃α by our choice when m(U0) ≤ 2; in particular, T ∗ centralizes

F̃ ∩ Ṽ of rank 1. As H∗ ∼= S5 by Theorem 14.7.63, m(CṼ (T )) = 1 = m(CF̃ (T )), so

as Zα ≤ F , we conclude that Ṽ2 = CṼ (T ) = Ṽ ∩ F̃ = CF̃ (T ) = Z̃α, since all these
subspaces are of rank 1, and each successive pair is related by inclusion. Thus (1)
holds. Then we saw that (4) also holds, so that Uα ∈ UL, and hence as V ≤ U , also
V ≤ Uα, so that FV ≤ U ∩Uα. Then (3) follows from (*), completing the proof of
the lemma in this case.

Therefore we may assume m(U0) = 3, and it remains to derive a contradiction.

This time as F̃ ∩ Ṽ = 1 and Zα ≤ F , we have Zα 6≤ V . Let E := V1Zα, YE :=
〈QH , Qα〉, and Y := O2(YE). As H is irreducible on Ũ/Ũ0 and Z̃α 6≤ Ũ0, it
follows from 14.5.15.1 that [Zα, QH ] = V1. By the symmetry between γ1 and α,
[V1, Qα] = Zα. Then by A.1.14, YE induces GL(E) on E, NG(E) = YECG(E), and
YE E NG(E). As Zα 6≤ U0 and H = CG(z), CG(E) = CH(Zα) is a 2-group.

As R∗1 centralizes Ũ0Ṽ by 14.7.65, R1 acts on E. We claim T ≤ NG(E),
so suppose otherwise. Then for t ∈ T − R1, F0 := V1ZαZ

t
α is of rank 3, so as

T acts on F with E = V1Zα ≤ F ≤ U ∩ Uα, F0 is contained in U ∩ Uα ∩ U tα.
Therefore Y0 := 〈YE , Y tE〉 induces GL(F0) on F0, since AutYE (F0) is the stabilizer
of E in GL(F0). But then there is an element of order 3 in CY0(z), impossible as
NH(F0) ≤ T .

Thus T ≤ NG(E) as claimed, so T acts on O2(YE) = Y , and further Z̃αCŨ0 (T ) =

CŨ (T ) = Ṽ2CŨ0(T ). Therefore 〈Z
L1
α 〉 = V Zα is of rank 4, as we saw Zα 6≤ V .

Let I := 〈L1T, Y 〉, VI := 〈V I1 〉, QI := O2(I), and I+ := I/QI . Then
(I, L1T, Y T ) is a Goldschmidt triple in the sense of Definition F.6.1, so α :=
(L+

1 T
+, T+, Y +T+) is a Goldschmidt amalgam by F.6.5.1, and hence is described

in F.6.5.2. Next L1 has at least five noncentral 2-chief factors, one on O2(L
∗
1) and

two each on Ũ and QH/CH(U) using 14.5.21.1. Thus we conclude from F.6.5.2
that QI 6= 1. In particular I is an SQTK-group and I ∈ H(T ) ⊆ He by 1.1.4.6, so
that VI ∈ R2(I) by B.2.14. As E ≤ VI and CG(E) is a 2-group, QI = CI (VI ).

We finish much as at the end of the proof of 14.7.32: If Y + acts on L+
1 , then

as T acts on Y , I+ = L+
1 T

+Y +, so VI = 〈V
L+
1 T

+Y +

1 〉 = 〈V Y
+

1 〉 = E, impossible as
L1 does not act on E. Therefore Y + does not act on L+

1 , so in particular L+
1 is not

normal in I+, and so L+
1 6= 1.

Suppose Y ≤ M . As Y does not act on L1 but T acts on Y , the projection
of Y on L/O2(L) in M/O2(L) = L/O2(L)× CM (L/O2(L))/O2(L) is the maximal
parabolic L2O2(L)/O2(L). Then Y = [Y, T ∩ L] ≤ L, so E = 〈V Y1 〉 ≤ V , whereas
we saw earlier that Zα 6≤ V . Thus Y 6≤M .

Assume next that J(T ) ≤ QI . Then J(T ) = J(QI) by B.2.3.3, so that I ≤
NG(J(T )). Then since M = !M(LT ) and Y 6≤M , we conclude again using B.2.3.3
that J(T ) 6≤ O2(LT ). Thus L1 = [L1, J(T )] by 14.3.9.2, contradicting J(T ) ≤ QI
and L+

1 6= 1.
Therefore J(I)+ 6= 1, so by Theorem B.5.6, either J(I)+ is solvable and the

direct product of copies of S3, or there is KI ∈ C(J(I)) with K
+
I 6= 1. In the latter

case, KI ∈ Lf (G, T ), so by 14.3.4.1, K+
I is L3(2) or A5.

Let I ! := I/O3′(I). By F.6.11.2, either I ! is described in Theorem F.6.18, or
I ! ∼= S3. But in the latter case, and in case (1) of F.6.18, T+ is of order 2, so that

T+ = J(T )+, and I+ = 〈T+I+〉 = J(I+) ∼= S3, contrary to L+
1 not normal in I+.
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Therefore I ! appears in one of the cases (2)–(13) of F.6.18. Further the subcase
of case (2) of F.6.18 with O2(I+) ∼= 31+2 is eliminated, since in that case there is
no subnormal subgroup of I+ isomorphic to S3. Thus if I+ is solvable, then by
F.6.18, I ! ∼= S3 × S3, so there is a normal subgroup K+

I of I+ contained in J(I)+

isomorphic to S3. Then as Y = [Y, T ], either Y + = O2(KI)
+ or Y + centralizesK+

I .

Similarly either L+
1 = O2(KI)

+ or L+
1 centralizes K+

I . Therefore as Y + does not

act on L+
1 , we conclude using F.6.6 that O2(I) = 〈Y, L1〉 centralizesK

+
I , impossible

as O2(K+
I ) 6≤ Z(K+

I ).
Therefore I ! is nonsolvable, so as I+ has a subnormal subgroup isomorphic to

S3, L3(2) or A5, it follows from F.6.18 that I ! ∼= L3(2). Thus KI = O2(I) = 〈Y, L1〉
and I = KIT . But now E4

∼= E = [E, Y ] ≤ [VI ,KI ], so as L1T centralizes V1 and

KI = O2(I), VI = [VI ,KI ] = 〈V
KI
1 〉 is of rank 3 by H.5.5. This is impossible, since

we saw earlier that 〈ZL1
α 〉 is of rank 4. ¤

Lemma 14.7.71. (1) H has two noncentral 2-chief factors, both isomorphic to

Ũ , one on U and one on QH/CH(U).
(2) L1 has five noncentral 2-chief factors, one in O2(L̄1), and four in S.
(3) [Q,L] ≤ S.

Proof. The proof is similar to some of the analysis in the second subsection,
but is substantially easier. First L1 has one noncentral chief factor on O2(L

∗
1), two

on Ũ , and hence also two on QH/CH(U) by the duality in 14.5.21.1. Thus L1 has
at least five noncentral 2-chief factors.

Next as Uα ≤ S by 14.7.70.4, using 14.7.66 we have

O2(L
∗
1) = 〈U

∗L1
α 〉 ≤ S∗. (∗)

Set QK := [QH ,K]CH(U). As [QK/CH(U), S] = [QK/CK(U), O2(L
∗
1)] is of corank

2 in QK , with [S,QK ] ≤ S, and as m(QK/CQK (V )) = 2 by the duality in 14.5.21.1,
we conclude

CQK (V ) = QK ∩Q = (S ∩QK)CH (U). (∗∗)

Thus one noncentral 2-chief factor for L1 in Q lies in S∗, two lie in U ≤ S, and by
(**) a fourth factor also lies in S. Now if (1) holds, then L1 has four noncentral
2-chief factors in QH , so L1 has exactly five noncentral 2-chief factors by (*). Then
as L1 has at least four noncentral chief factors on S, (2) holds, and of course (3)
follows from (2).

Thus it remains to prove (1), so we must show that [CH(U),K] ≤ U . But
K = [K,Uα], so it suffices to show [CH(Uα), Uα] ≤ U .

Now CH(U) ≤ CH(Zα) ≤ NG(Uα), so [Uα, CH(U)] ≤ CUα(U). We will show
that m(CUα(U)/U ∩ Uα) ≤ 1; then as m([W,Uα]) ≥ 2 for any nontrivial H-chief
factor W on CH (U)/U since U∗α ≤ K∗ by 14.7.66, our proof will be complete.

By 14.7.69, m(U∗α) = 1, and by 14.7.70.3, m(Uα/U ∩ Uα) = 2. So indeed
m(CUα(U)/U ∩ Uα) ≤ 1, as desired. ¤

Lemma 14.7.72. (1) S = O2(L) = [O2(L), L].
(2) S/V is the Steinberg module for L/S.
(3) U0 = V1.
(4) V = Z(S) = Φ(S) = [S, S].

Proof. By 14.7.70.4, b = 3. Set R := 〈UL0 〉, so that V ≤ R ≤ S, and
〈(U0V )L〉 = RV = R. From Theorem 14.7.63 and 14.7.66, [U,Q] = V U0, and from
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14.7.70.3, V U0 = U ∩ Uα = [U,Uα]V . Thus Uα centralizes [U,Q], so R ≤ Z(S) by
14.7.13.3. Also Φ(S) = [S, S] = R by 14.7.13.4. In particular U 6≤ R as S = 〈UL〉,
so as L1 is irreducible on U/U0V , U0V = R∩U . Therefore as R ≤ Z(S) ≤ CH(U),
we conclude from 14.7.71.1 that [R,L1] ≤ R∩U = U0V , so [R,L1] = [U0V, L1] = V
in view of 14.7.65. Thus [R,L] ≤ V , so R = U0V . Further UR/R = [UR/R,L1] ∼=
E4, so by H.6.5:

(*) S/R is one of: the Steinberg module, the dual of V , the core (denoted Core)
of the permutation module for LT on LT/L2T , or the sum of the Steinberg module
with either the dual of V or Core.

Suppose first that U0 = V1, so that R = V . Then by 14.7.71.2, L1 has three
noncentral chief factors on S/V , so that S/R = S/V must be the Steinberg module,
since by 14.7.22.2, the Steinberg module is the only module listed in (*) with
this property. It follows that V = Z(S), and then the rest of the lemma holds:
For example, S = [Q,L] by 14.7.71.3, and then as QH ∩ O2(L1) − Q contains an
involution H-conjugate to an involution in Uα, the double cover of L3(2) is not
involved in L/S, so that S = [O2(L), L] = O2(L).

Thus we assume that V1 < U0, and it remains to derive a contradiction. By
14.7.70.2,m(U0) = 2, so as R = U0V , m(R/V ) = 1. Therefore as L is irreducible on
V , either R ≤ Z(Q) or [R,Q] = V , and the latter is impossible as |T : CT (U0)| ≤ 2.
Thus R ≤ Z(Q) and m(R/V ) = 1, but |T : CT (U0)| ≤ 2 so R is not the extension
in B.4.8.3; thus R = V ⊕ CR(L) where CR(L) = R ∩ Z(L) is of rank 1. Hence
CR(L)V1 = CR(T ) = CR(L1), so as U0 ≤ CR(L1), there exists u ∈ CU0(LT )− V1.
But now by 14.7.68.2, L ≤ CG(u) ≤ H , contrary to H 6≤M = !M(LT ). ¤

Recall M1 = H ∩M = L1T = NH(V ).

Lemma 14.7.73. (1) SO2(K) = O2(L1) ∈ Syl2(K).
(2) |T ∩ L : T ∩K| = 2.
(3) Let k ∈ K−M1. Then K = 〈S, Sk〉, O2(K) = (S∩O2(K))(Sk∩O2(K)) is of

order 211, S∩Sk = CO2(K)(U), and O2(K)/U is the 6-dimensional indecomposable

for K/O2(K) with CO2(K)/U (K) = (S ∩ Sk)/U ∼= E4 and O2(K)/(S ∩ Sk) the
L2(4)-module.

Proof. By 14.7.72.2 and H.6.3.5, S/V = [S/V, L1]. Then as V = [V, L1],
S = [S,L1] ≤ O2(L1) ≤ K. We saw in (*) in the proof of 14.7.71 that O2(L

∗
1) ≤ S∗,

so we conclude that O2(L
∗
1) = S∗ ∈ Syl2(K∗).

We can now argue much as in the proof of G.2.3: Let k ∈ K−M1 and set K0 :=
〈S, Sk〉. Now K∗ = K∗0 , so K ≤ K0QH ; therefore as QH ≤ NG(S), S

K = SK0 , so
K ≤ 〈SK0〉 = K0. Then as S ≤ K E H , K = K0. Let P := (S ∩QH)(Sk ∩QH).
Then [P, S] ≤ S ∩ QH ≤ P and similarly [P, Sk ] ≤ P , so P E K; then as
PS/P ∼= S/S ∩ P ∼= S∗ ∈ Syl2(K∗), P = O2(K).

Next U ≤ S ∩ Sk, and [S, S] = Φ(S) = V ≤ U by 14.7.72.4, so (S ∩ Sk)/U ≤
Z(K/U). Further setting P+ := P/S ∩ Sk,

P+ = (S ∩ P )+ ⊕ (Sk ∩ P )+.

For each s ∈ S − P , [P+, s] ≤ (S ∩ P )+ ≤ CP+(s) again since [S, S] = V ≤ S ∩ Sk

using 14.7.72.4. So by G.1.5.3 and Theorem G.1.3, P+ is the sum of natural modules
forK/O2(K). Hence as U ≤ S∩Sk, we conclude from 14.7.71.1 that P+ is a natural
module and S ∩ Sk = CP (U). Therefore P/(S ∩ P ) = [P/(S ∩ P ), L1]. Thus as
S ≤ O2(L1) ≤ SP , P = [P,L1](S ∩ P ) ≤ O2(L1) and SO2(K) = SP = O2(L1) ∈
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Syl2(K). That is, (1) holds. Further as S ≤ O2(L1) and |T̄ : O2(L̄1)| = 2, (2)
holds.

Let B ∈ Syl3(L1). By 14.7.72.2 and H.6.3.3, |CS(B)| = 8, so as P/CP (U) =
[P/CP (U), B] and CU (B) = V1 using 14.7.72.3, (S∩Sk)/U = CS(B)U/U is of order
4. As S = [S,L1], L1 is indecomposable on P/U , so we conclude (3) holds. ¤

Lemma 14.7.74. (1) M = L and S = O2(M).
(2) H = KT and O2(H) = O2(K).

Proof. By 14.7.72.2, S/V is the Steinberg module which is a projective L-
module, so Q/V = QC/V ⊕ S/V , where QC/V = CQ/V (L). Now [QC , L1] ≤ V
and L∗1 contains the Sylow 2-subgroup O2(L

∗
1) of K∗, so by Gaschütz’s Theorem

A.1.39, [QC ,K] ≤ U . Then as QCU centralizes V , QCU centralizes 〈V K〉 = U , so
QC centralizes 〈UL〉 = S.

Let QL := CQ(L), so that QL ≤ QC . Then [QL,K] ≤ [QC ,K] ≤ U . Further
in the unique nonsplit L-module extension W of V in I.1.6 whose quotient is a
trivial L-module, O2(L1) does not centralize a vector in W − V (cf. B.4.8.3),
so QLV1 = CQCU (L1). Therefore since L1 contains a Sylow 2-subgroup of K,

Q̃LŨ = Q̃L × Ũ with K centralizing Q̃L again using Gaschütz’s Theorem A.1.39.
Then K centralizes QL by Coprime Action. So since K 6≤ M = !M(LT ), we
conclude QL = 1.

Let B ∈ Syl3(L1), and set QB := CQC (B). Then QC = V QB , so Φ(QB) =
Φ(QC) E LT . But L is irreducible on V , and QB ∩ V = V1, so Φ(QC) ∩ V =
1. Then [Φ(QC), L] ≤ Φ(QC) ∩ V = 1, so that Φ(QC) ≤ CQ(L) = 1 by the
previous paragraph. Since also CQC (L) = 1, m(QC/V ) ≤ dimH1(L̄, V ) = 1, with
[QC , O2(L1)] = V in case of equality (again cf. B.4.8.3).

Suppose V < QC . By 14.7.73.1, O2(L1) = SO2(K), so as we saw that S
centralizes QC , [QC , O2(K)] = [QC , O2(L1)] = V . Then as V1 = [U,O2(K)],
[QCU,O2(K)] = [QC , O2(K)]V1 = V . However, K normalizes QCU , and hence
also normalizes [QCU,O2(K)] = V , so H = KT ≤ NG(V ) ≤ M , contrary to
H ∈ Hz.

This contradiction shows that QC = V . Hence Q = S = O2(L) ≤ O2(M) by
14.7.72.1, so O2(L) = O2(M) by A.1.6. By 14.7.72.4, V char S, so that V E M .
Thus M = LT by 14.7.67.5, so as LT = LO2(LT ), O2(LT ) = O2(M) = O2(L),
and hence (1) holds.

Finally using (1) and 14.7.72.2, 4|QH | = |R1| = 4|S| = 213, so |QH | = 211 =
|O2(K)| by 14.7.73.3, and hence (2) holds. ¤

Under the hypotheses of this section, we can now identify G as Ru.

Theorem 14.7.75. Assume Hypothesis 14.3.1 holds with L/O2(L) ∼= L3(2) and
〈V G1〉 abelian. Then G ∼= Ru.

Proof. We verify that G is of type Ru as defined in section J.1. Then the
Theorem follows from Theorem J.1.1.

By 14.7.74.1, M = L and S = O2(L). Thus as L acts on V and M ∈ M,
L = NG(V ) with L/S ∼= L3(2). By 14.7.72.4, S is special with center V . Of course
V is the natural module for L/S, and by 14.7.72.2, S/V is the Steinberg module.
Thus hypothesis (Ru1) is satisfied.

As F ∗(L) = O2(L) = S and V = Z(S) by 14.7.72.4, Z = CV (T ) = V1. By
Theorem 14.7.63, H = CG(Z) with H∗ ∼= S5. By 14.7.72.3, CŨ (H) = 1, so by
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Theorem 14.7.63, Ũ is the L2(4)-module for H∗. By 14.7.74.2, QH = O2(K), so by
14.7.73.3, QH/U is a 6-dimensional indecomposable for H∗. Thus hypothesis (Ru2)
is satisfied. Therefore G is of type Ru, completing the proof of the Theorem. ¤

14.8. The QTKE-groups with Lf (G,T) 6= ∅

We now come to a major watershed in this work: We complete the treatment
of the case where Lf (G, T ) is nonempty. We begin with the following preliminary
result:

Theorem 14.8.1. Assume Hypothesis 13.3.1. Then one of the following holds:

(1) L/O2(L) ∼= A6 and G ∼= Sp6(2) or U4(3).
(2) L/O2(L) ∼= A5 and G ∼= U4(2) or L4(3).
(3) L/O2(L) ∼= L3(2) and G ∼= Sp6(2), G2(3), HS, or Ru.

Proof. First by 13.3.2.1, L/O2(L) ∼= A5, L3(2), A6, Â6, or G2(2)
′. By Theo-

rem 13.3.16, L/O2(L) is not G2(2)
′. If L/O2(L) ∼= A5, then (2) holds by Theorem

13.6.1. If L/O2(L) is A6 or Â6, then G is Sp6(2) or U4(3) by Theorem 13.8.1, so
(1) holds. This leaves the case where L/O2(L) ∼= L3(2). Then G is not U4(3), as in
that case there is no L ∈ L(G, T ) with L/O2(L) ∼= L3(2). Further if G ∼= Sp6(2),
then (3) holds, so we may assume G is not Sp6(2). Therefore Hypothesis 14.3.1.1

is satisfied. Let U := 〈V G1
1 〉. If U is nonabelian then G is G2(3) or HS by Theo-

rem 14.4.14, so that (3) holds. Thus we may assume U is abelian. Then Theorem
14.7.75 shows that G ∼= Ru, so that (3) holds, completing the proof. ¤

We can now easily deduce our main result Theorem D (14.8.2) below from Theo-
rem 14.8.1. Theorem 14.8.1 assumes Hypothesis 13.3.1, and some major reductions
are concealed in Hypothesis 13.3.1, so we briefly recapitulate those reductions; they
take place in the proof of 13.3.2. In Hypothesis 13.3.1 we assume that Lf (G, T ) 6= ∅.
This rules out the groups in Theorem 2.1.1, so that |M(T )| > 1, and allows us to
appeal to the theory based on Theorem 2.1.1. The groups excluded in Hypothesis
13.1.1 are also excluded in Hypothesis 13.3.1, so we are able to apply Theorem
13.1.7 to conclude that K/O2(K) is quasisimple for each K ∈ Lf (G, T ). By 1.2.9,
L∗f (G, T ) 6= ∅, and we pick L ∈ L∗f (G, T ). In particular, Hypothesis 12.2.1 is satis-
fied. The proof of Theorem 12.2.2 discusses how previous work leads to the groups
in conclusions (1) and (2) of 12.2.2; Hypothesis 12.2.3 excludes these groups, but
they are also excluded in Hypothesis 13.3.1, so Hypothesis 12.2.3 is also satisfied.
This allows us to appeal to the work in chapter 12 which restricts the choice for
the pair L, V in the Fundamental Setup to those listed in 13.3.2.

Theorem 14.8.2 (Theorem D). Assume that G is a simple QTKE-group, with
T ∈ Syl2(G), and Lf (G, T ) 6= ∅. Then one of the following holds:

(1) G is a group of Lie type over F2n , n > 1, of Lie rank 2, but G ∼= U5(2
n)

only for n = 2.
(2) G is L4(2), L5(2), A9, M22, M23, M24, He, or J4.
(3) G is Sp6(2), U4(2), L

ε
4(3), G2(3), HS, or Ru.

Proof. Since the groups excluded in parts (2) and (3) of Hypothesis 13.3.1 ap-
pear as conclusions in Theorem D, we may assume that parts (1)–(3) of Hypothesis
13.3.1 are satisfied. Now choose L ∈ L∗f (G, T ) with L/O2(L) not A5 if possible.
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Suppose that L/O2(L) ∼= A5. Then the choice of L above was forced, so that
K/O2(K) ∼= A5 for allK ∈ L∗f (G, T ). Therefore J/O2(J) ∼= A5 for all J ∈ Lf (G, T )
by 1.2.4 and A.3.12. Thus part (4) of Hypothesis 13.3.1 is satisfied, completing the
verification of Hypothesis 13.3.1.

Now Theorem 14.8.1 completes the proof of Theorem D. ¤





Part 6

The case Lf(G,T ) empty





CHAPTER 15

The case Lf (G,T) = ∅

In this chapter, we complete the treatment of the case Lf (G, T ) empty. Since
the previous chapter completed the analysis of the case Lf (G, T ) nonempty, this
chapter will complete the proof of our Main Theorem.

Initially we assume Hypothesis 14.1.5, introduced at the start of the previous
chapter, with M := Mf . Recall that V (M) is defined just before 14.1.2: as men-
tioned in section A.5, in this chapter we are deviating from our usual meaning
of V (M) in definition A.4.7, instead using the meaning in notation A.5.1, namely
V (M) := 〈ZM 〉. In the first two sections of this chapter, we reduce to the case
where M and V := V (M) satisfy m(V ) = 4 and M/O2(M) ∼= O+

4 (V ). We treat
that final difficult case in the third section. The fourth section then treats the
remaining subcase of the case Lf (G, T ) empty when Hypothesis 14.1.5 is not sat-
isfied; this subcase quickly reduces to the situation L(G, T ) empty, or equivalently
each member of H(T ) is solvable.

15.1. Initial reductions when Lf (G,T) is empty

In this section, and indeed until the final section of this chapter, we assume
Hypothesis 14.1.5. This Hypothesis isolates the most important subcase of the case
Lf (G, T ) empty, and was already introduced at the beginning of the previous chap-
ter. Recall Hypothesis 14.1.5 includes the assumption that |M(T )| > 1, which is
appropriate in view of Theorem 2.1.1. Hypothesis 14.1.5 also includes the assump-
tion that there is a unique maximal 2-local Mc containing the centralizer in G of
Z := Ω1(Z(T )); that is,

Mc = !M(CG(Z)).

The case where this condition fails will be treated in the final section of the chapter;
in that case Hypothesis 15.4.1.2 of the final section is satisfied.

By 14.1.12.1, there is M :=Mf ∈ M(T )− {Mc}, which is maximal under the

partial order
<
∼ onM(T ) of Definition A.5.2, andM is the unique maximal member

of M(T ) − {Mc} under
<
∼. As in Definition A.5.8, set V (M) := 〈ZM 〉; as usual

V (M) ∈ R2(M) by B.2.14.
The uniqueness theorems in A.5.7, for overgroups of T in M which cover

M/CM (V (M)), replace the uniqueness theorems for members of L∗f (G, T ), used
in the treatement of the Fundamental Setup (3.2.1), which are no longer available
as Lf (G, T ) is empty.

Lemma 15.1.1. Set V := V (M), R := CT (V ), and M̄ := AutM (V ). Then

(1) Case (II) of Hypothesis 3.1.5 is satisfied with NM (R) in the role of “M0”,
and any H ∈ H∗(T,M).

(2) q̂(M̄, V ) ≤ 2, and if q(M̄, V ) > 2 then q̂(M̄, V ) < 2.

1083
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Proof. AsM is maximal inM(T ) under
<
∼ and V = V (M), we conclude from

A.5.7.2 that R = O2(NM (R)), V ∈ R2(NM (R)), M̄ = AutNM (R)(V ) = NM (R),
and M = !M(NM (R)). So as V E M , (1) holds. Further for H ∈ H∗(T,M),
O2(〈H,NM (R)〉) = 1 as M = !M(NM (R)), so conclusion (1) of Theorem 3.1.6
does not hold. Then conclusion (2) or (3) of 3.1.6 holds, establishing (2) since

NM (R) = M̄ . ¤

By 15.1.1, AutM (V (M)) and its action on V (M) are described in section D.2.
Using the fact that Mc = !M(CG(Z)), we refine that description in the first lemma
in this section, which provides the basic list of cases to be treated in the first three
sections of this chapter. Recall Q̂∗(AutM (V (M)), V (M)) from Definition D.2.1,

and set Ĵ(AutM (V (M)), V (M)) := 〈Q̂∗(AutM (V (M)), V (M))〉.

Lemma 15.1.2. Let V := V (M), and set M̄ :=M/CM (V ) and M̄J := Ĵ(M̄, V ).
Then one of the following holds:

(1) M̄J
∼= D2p and m(V ) = 2m, where (p,m) = (3, 1), (3, 2), or (5, 2).

(2) m(V ) = 4 and M̄ = M̄J = Ω+
4 (V ) ∼= S3 × S3.

(3) M̄J = M̄1 × M̄2 and V = V1 ⊕ V2, with M̄i
∼= D2p, Vi := [V,Mi] of rank

2m, (p,m) as in (1), and M̄1 and M̄2 interchanged in M̄ .
(4) M̄J = P̄ 〈t̄〉 where P̄ := O2(M̄) ∼= 31+2, and t̄ is an involution inverting

P̄ /Φ(P̄ ). Further m(V ) = 6, and T acts irreducibly on P̄ /Φ(P̄ ).
(5) M̄J = P̄ 〈t̄〉 where P̄ := O2(M̄) ∼= E9 and t̄ is an involution inverting P̄ .

Further m(V ) = 4, and T̄ ∼= Z4.
(6) M̄J

∼= S3, V = [V,MJ ]× CV (MJ) with m([V,MJ ]) = 4 and CV (MJ) 6= 1,
M/CM ([V,MJ ]) = Ω+

4 ([V,MJ ]), and M ∩Mc = CM ([V,MJ ])CM (CV (MJ))T is of
index 3 in M .

Proof. By 15.1.1.1, q̂(M̄, V ) ≤ 2, while by 14.1.6.1, M̄ is solvable. Hence, in
the language of the third subsection of section D.2, (M̄J , [V, F (M̄J)]) is a sum of
indecomposables, so there is a partition

Q̂∗(M̄, V ) = Q1 ∪ · · · ∪ Qs

such that M̄J = M̄1 × · · · × M̄s and V0 := [V, F (M̄J)] = V1 ⊕ · · · ⊕ Vs, where
M̄i := 〈Qi〉, Vi := [V,Mi], and (M̄i, Vi) is indecomposable as defined in section D.2.
Further by D.2.17, each indecomposable (M̄i, Vi) satisfies one of the conclusions
of D.2.17. Let Mi denote the preimage in M of M̄i. As M permutes the set
{Qi : 1 ≤ i ≤ s} of orbits of MJ on Q̂∗(M̄, V ), M permutes {Mi : 1 ≤ i ≤ s}.

Observe that F ∗(M̄i) = Op(M̄) for some odd prime p (depending on i), so for
each nontrivial 2-element t̄ in M̄i, COp(M̄)(t̄) is cyclic by A.1.31.1. Thus if M̄i is not

normal in M̄ , then as the product M̄J of the M̄j is direct, M̄M̄
i = M̄T

i is of order
2, and mp(M̄i) = 1, so that M̄i falls into case (1) or (2) of D.2.17. In particular, if
mp(M̄i) > 1, then M̄i E M̄ .

Let K1, . . . ,Ka be the groups 〈MM
i 〉, and set Wi := [V,Ki]; then M̄J = K̄1 ×

· · · × K̄a and V0 = W1 ⊕ · · · ⊕Wa. Further V = V0 ⊕ CV (F (M̄J)) by Coprime
Action.

Assume first that J(T ) 6≤ CM (V ). Then as M 6= Mc, we conclude from 14.1.7
that either (1) or (3) holds, with (p,m) = (3, 1).

Thus in the remainder of the proof, we may assume that J(T ) ≤ CM (V ).

Therefore since M is maximal in M(T ) under
<
∼, we may apply 14.1.4 to conclude
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that Mc
<
∼M . Then since Mc 6≤M , A.5.6 gives

There is no 1 6= X ≤ V with X = 〈(Z ∩X)M∩Mc〉 E M. (∗)

Suppose first that (M̄1, V1) satisfies case (6) of D.2.17; we will derive a con-
tradiction. For then P̄ := O2(M̄1) = P̄1 × P̄2 × P̄3, with P̄j ∼= Z3 for each j,
and V1 = U1 ⊕ U2 ⊕ U3, where Uj := [V, Pj ] is of rank 2 for Pj the preimage of
P̄j . As m3(M̄1) > 1, M1 and V1 are normal in M by the second paragraph of the
proof, so M permutes X := {P1, P2, P3}. Then T fixes some member of X , say P1,
so that T acts on [V, P1] = U1, and on U := U2 ⊕ U3. Thus 1 6= Z1 := Z ∩ U1

and 1 6= ZU := Z ∩ U . So P1 ≤ CG(Z1) ≤ Mc = !M(CG(Z)), and similarly

P2P3 ≤ CM (ZU ) ≤ Mc. Then V1 = 〈ZP11 , ZP2P3U 〉 = 〈(Z ∩ V1)Mc∩M 〉, contrary to
(*). This completes the proof that no (M̄i, Vi) satisfies conclusion (6) of D.2.17.

Next suppose for the moment that (M̄1, V1) satisfies conclusion (3) of D.2.17; in
this case, we show thatM1T acts irreducibly on V1. Again by the second paragraph,
M1 and V1 are normal in M . As case (3) of D.2.17 holds, M̄1

∼= Z2/E9, with
m(V1) = 4 and O(M̄1) inverted in M̄1. Thus AutM (V1) ≤ NGL(V1)(M̄1) ∼= O+

4 (V1).
Assume now that M1T acts reducibly on V1. Then AutT (V1) ∼= Z2 or E4, and
in either case Z ∩ V1 ∼= E4 and M = 〈CM (z) : z ∈ Z# ∩ V1〉, so M ≤ Mc as
Mc = !M(CG(Z)). This contradiction completes the proof that if (M̄i, Vi) satisfies
case (3) of D.2.17, then MiT acts irreducibly on Vi.

Next we introduce a basic case division for the proof of the lemma: Let Zi :=
Z ∩Wi, and suppose that Wi = 〈Z

Ki

i 〉 for some i, and that either CV (MJ) 6= 1, or
a > 1. Then CZ(Ki) 6= 1, so that Ki ≤ CG(CZ(Ki)) ≤ Mc = !M(CG(Z)). Then

Wi is generated by ZKi

i ⊆ ZM∩Mc

i , so as Wi E M since Ki = 〈MM
i 〉, we have a

contradiction to (*). Thus we conclude that either

(i) a = 1 and V = V0, or

(ii) For each i, 〈ZKi

i 〉 < Wi.

We first assume that case (i) does not hold; then case (ii) holds, and we will
show that conclusion (6) is satisfied in this case. Choose notation so that W1 =

V1 ⊕ · · · ⊕ Vb; then b ≤ 2 by paragraph two. As (ii) holds, 〈ZK1
1 〉 < W1, so K1T

acts reducibly on W1, and hence M1NT (V1) acts reducibly on V1. Now in D.2.17,
M̄1 acts reducibly only in case (3), and in case (1) when m(V1) = 4. But earlier
we showed M1NT (V1) is irreducible on V1 in case (3), so M̄1

∼= S3 with m(V1) = 4,
and in particular q̂(M̄1, V1) = 2 and AutM (V1) ≤ NGL(V1)(M̄1) = Ω+

4 (V1).

Since 〈CV1 (NT (V1))
M1〉 < V1, m(CV1 (NT (V1))) = 1, so |AutT (V1)| > 2. Then

as AutM (V1) ≤ Ω+
4 (V1), AutT (V1)

∼= E4, so AutM (V1)) is either Ω
+
4 (V1) or S3×Z2.

However in the latter case, M = K1CM (Z1), so as W1 > 〈Z
K1
1 〉, also W1 > 〈ZM1 〉,

contrary to V = 〈ZM 〉.
Therefore AutM (V1) = Ω+

4 (V1). Now as M̄1 = Aut(M̄1), M̄0 := NM̄ (M̄1) =
M̄1 × CM̄0

(M̄1), with m3(CM̄0
(M̄1)) ≤ 1 using A.1.31.1. Suppose s > 1. Then by

symmetry, M̄2
∼= S3, so M̄0 = M̄1 × M̄2 × CM̄0

(M̄1M̄2), and then O(M̄1)O(M̄2) =

O3′(M̄0) by A.1.31.1. This is a contradiction as AutM (V1) = Ω+
4 (V1) and [V1,M2] =

1. Therefore s = a = 1, and hence K1 = M1 = MJ and W1 = V1 = V0. If
V = V0, then case (i) holds, contrary to our assumption, so we may assume that
CV (MJ) 6= 0. Now CM (V0) and CM (CV (MJ)) lie in Mc = !M(CG(Z)), and
|M : CM (V0)CM (CV (MJ ))T | divides |AutM (V0) : K̄1T̄ | = 3; then as M 6≤ Mc, we
conclude thatM∩Mc = CM (V0)CM (CV (MJ))T is of index 3 inM . This completes
the proof that conclusion (6) of 15.1.2 holds if case (i) does not hold.
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Thus we may assume that case (i) holds, so M̄J = K̄1 and V = V0 =W1. Thus
M̄ is faithful on W1 and M̄ ≤ NGL(W1)(K̄1).

Assume first that (M̄J , V ) is indecomposable. Then s = 1, so M̄J = M̄1 and
V = V1. Recall we showed that conclusion (6) of D.2.17 does not hold for (M̄J , V ).
Conclusions (1) and (2) of D.2.17 give conclusion (1) of 15.1.2.

Suppose conclusion (5) of D.2.17 holds. Then M̄J = Ω+
4 (2), so M̄ = M̄J , for

otherwise M̄ = NGL(V )(M̄J ) = O+
4 (V ) contains transvections, whereas q̂(M̄, V ) =

3/2 in case (5) of D.2.17. Thus conclusion (2) of 15.1.2 holds in this case.
Suppose conclusion (3) of D.2.17 holds. We showed earlier that M̄ ≤ O+

4 (V )
and M acts irreducibly on V . As conclusion (3) of D.2.17 holds, q̂(M̄, V ) = 2, so
T̄ contains no transvections on V . Hence as M is irreducible on V , T̄ ∼= Z4, so
conclusion (5) of 15.1.2 holds.

Suppose that case (4) of D.2.17 holds. Then M̄J = P̄ 〈t̄〉, where P̄ = F ∗(M̄J) ∼=
31+2, t̄ inverts P̄ /Φ(P̄ ), and m(V ) = 6. Hence M̄ ≤ NGL(V )(M̄J ) ∼= GL2(3)/3

1+2.

If O2(M̄) > P̄ , then m3(CM̄ (t̄)) > 1, contrary to A.1.31.1; thus O2(M̄) = P̄ .
Therefore if T is irreducible on P̄ /Φ(P̄ ), then conclusion (4) of 15.1.2 holds, so we
may assume that T is reducible on P̄ /Φ(P̄ ), and it remains to derive a contradiction.
Then T̄ ∼= Z2 or E4, and in either case T acts on subgroups P̄1 and P̄2 of order 3
generating P̄ . Thus Z = E1E2, where 1 6= Ei := CV (P̄iT̄ ). Therefore the preimages
Pi satisfy PiT ≤ CG(Ei) ≤ Mc = !M(CG(Z)), and hence M = 〈P1, P2〉T ≤Mc, a
contradiction.

Finally assume that (M̄J , V ) is decomposable. As (i) holds, a = 1. Then from
the second paragraph of the proof, s = 2 and (M̄i, Vi) satisfies case (1) or (2) of
D.2.17. As a = 1, M̄1 and M̄2 are interchanged in M , so that conclusion (3) of
15.1.2 holds.

This completes the proof of 15.1.2. ¤

15.1.1. Statement of the main theorem, and some preliminaries. Our
first goal is to show that case (1) or (3) of 15.1.2 holds, and V (M) is an FF-module
for M̄ . That is, we will prove that either m(V (M)) = 2 with M/CM (V (M)) =
GL(V (M)) ∼= L2(2), or m(V (M)) = 4 with M/CM (V (M)) = O+

4 (V ).
In the remaining cases there are no quasithin examples; indeed as far as we

can tell, there are not even any shadows. But we saw in Theorem 14.6.25 of
the previous chapter that quasithin examples do arise in the first case, and many
shadows complicate our analysis of the second case, in the third section 15.3 of this
chapter.

Thus the remainder of this section is devoted to the first steps in a proof of the
following main result:

Theorem 15.1.3. Assume Hypothesis 14.1.5, and let M :=Mf as in 14.1.12.
Then either

(1) m(V (M)) = 2, M/CM (V (M)) ∼= L2(2), and G is isomorphic to J2, J3,
3D4(2), the Tits group

2F4(2)
′, G2(2)

′ ∼= U3(3), or M12; or
(2) m(V (M)) = 4, and M/CM (V (M)) = O+

4 (V (M)).

The proof of Theorem 15.1.3 involves a series of reductions, which will not be
completed until the end of section 15.2. Thus in the remainder of this section, and
throughout section 15.2, we assume G is a counterexample to Theorem 15.1.3. We
also adopt the following convention:
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Notation 15.1.4. Set M := Mf . We choose V := V (M) in cases (1)–(5)
of 15.1.2, but in case (6) of 15.1.2 we choose V := [V (M),MJ ], where MJ is the

preimage in M of Ĵ(M/CM (V (M)). Set M̄ :=M/CM (V ) and M̄0 := Ĵ(M̄, V ).

Observe that except in case (6) of 15.1.2, M̄0 coincides with M̄J . We review
some elementary but fundamental properties of V :

Lemma 15.1.5. (1) V = 〈(Z ∩ V )M0 〉, so V ∈ R2(M).
(2) CG(V ) ≤Mc.

Proof. From the description of V in 15.1.2, V = 〈(Z ∩ V )M0〉. Then B.2.14
completes the proof of (1). Part (2) follows since Mc = !M(CG(Z)). ¤

Lemma 15.1.6. O2(CM (Z)) ≤ CM (V ).

Proof. By 14.1.6.1, M∞ ≤ CM (V ). Let S := T ∩M∞. By a Frattini Argu-
ment, CM (Z) = M∞K, where K := CM (Z) ∩NM (S). Since K∞ ≤ NM∞(S) and
NM∞(S) is 2-closed, K is solvable. Thus K = XT , where X is a Hall 2′-subgroup
of K. Therefore it remains to show X ≤ CM (V ), so we may assume X̄ 6= 1. From
the structure of M̄ described in 15.1.2, M̄ is 2-nilpotent, and hence so is X̄T̄ .
Therefore X̄ = O(X̄T̄ ) E X̄T̄ . Then as X̄ 6= 1, Z ∩ [V,X ] = C[V,X](T ) 6= 1, and

C[V,X](X̄) = 1 by Coprime Action, whereas X ≤ K ≤ CM (Z). This contradiction
completes the proof. ¤

In the next result we review the cases from 15.1.2 which can occur in our
counterexample, except that we reorder them according to the value of m(V ):

Lemma 15.1.7. One of the following holds:

(1) m(V ) = 4, and M̄ = M̄0
∼= S3.

(2) m(V ) = 4, M̄0
∼= S3, and M̄ ∼= S3 × Z3.

(3) m(V ) = 4, and M̄ = M̄0 = Ω+
4 (V ).

(4) m(V ) = 4, M̄0 = P̄ 〈t̄〉 where P̄ := O2(M̄) ∼= E9 and t̄ is an involution
inverting P̄ , and T̄ ∼= Z4.

(5) m(V ) = 4, M̄0
∼= D10, T̄ ∼= Z2 or Z4, and either F (M̄) = F (M̄0) or

F (M̄) ∼= Z15.
(6) m(V ) = 8, M̄0 = M̄1× M̄2 where M̄i

∼= D2p with p = 3 or 5, M t
1 =M2 for

some t ∈ T , and V = V1 ⊕ V2, where Vi := [V,Mi].
(7) m(V ) = 6, M̄0 = P̄ 〈t̄〉 where P := O2(M̄) ∼= 31+2, t̄ is an involution

inverting P̄ /Φ(P̄ ), and T acts irreducibly on P̄ /Φ(P̄ ).

Furthermore if V < V (M), then case (3) holds.

Proof. Suppose first that V < V (M). Then by definition of V in 15.1.4, case
(6) of 15.1.2 holds and V = [V,MJ ]; it follows that conclusion (3) holds. Thus in
the remainder of the proof we may assume that V = V (M), and hence that one of
cases (1)–(5) of 15.1.2 holds.

Assume first that m(V ) = 2. Then case (1) of 15.1.2 holds with (p,m) = (3, 1)
and M̄ ∼= S3. Then as we observed at the start of section 14.2, 14.1.18 shows that
Hypothesis 14.2.1 is satisfied. Therefore we may apply Theorem 14.6.25 to conclude
that G is one of the groups listed in conclusion (1) of Theorem 15.1.3, contrary to
the choice of G as a counterexample.

Thus m(V ) > 2. Also since G is a counterexample, conclusion (2) of Theorem
15.1.3 does not hold. Thus if case (3) of 15.1.2 holds, then m(Vi) = 4 for each i, so
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that conclusion (6) holds. In case (2) of 15.1.2, conclusion (3) holds. Cases (4) and
(5) of 15.1.2 are conclusions (7) and (4).

It remains to treat case (1) of 15.1.2. In this case, m(V ) = 4 as m(V ) > 2,
so M̄0 is S3 or D10. If P̄ := O2(M̄0) = F ∗(M̄), then M̄ ≤ Aut(P̄ ) ∼= S3 or
Sz(2), respectively, so that conclusion (1) or (5) holds. Thus we may assume that
P̄ < F ∗(M̄). Now M̄ ≤ NGL(V )(M̄0), and NGL(V )(M̄0) is Ω+

4 (V ) or Z4/Z15,

respectively. Since P̄ < F ∗(M̄), and O2(M̄) = 1 by 15.1.5.1, one of conclusions
(2)–(5) of the lemma holds. This completes the proof. ¤

Our assumption that G is a counterexample to Theorem 15.1.3 has ruled out
the subcases of 15.1.2 in which M̄ contains an FF∗-offender on V ; that is we are
left with thoses cases where q(M̄, V ) > 1. Indeed:

Lemma 15.1.8. One of the following holds:

(1) q̂(M̄, V ) = q(M̄, V ) = 2.
(2) Case (3) of 15.1.7 holds, where q̂(M̄, V ) = 3/2 and q(M̄, V ) = 2.

Proof. The proof of 15.1.2 showed that one of the following holds:

(i) V = V (M), and (M̄J , V ) is an indecomposable appearing in one of cases
(1)–(5) of D.2.17.

(ii) V = V (M), and the (M̄i, Vi) are indecomposable and appear in case (1) or
(2) of D.2.17; hence case (6) of 15.1.7 holds.

(iii) V < V (M), and hence case (3) of 15.1.7 holds.

In cases (i) and (ii), M̄J = M̄0 by Notation 15.1.4, so we conclude from the
values listed in the corresponding cases of D.2.17 that q̂(M̄0, V ) = q(M̄0, V ) = 2—
unless case (3) of 15.1.7 holds, where (M,V ) appears in case (5) of D.2.17, M̄0 =

M̄ , q̂(M̄0, V ) = 3/2, and q(M̄0, V ) = 2. However by definition of Q̂∗(M̄, V ), if
q̂(M̄, V ) ≤ 2, then q̂(M̄, V ) = q̂(M̄0, V ) and q̂(M̄, V ) ≤ q(M̄, V ). Thus the lemma
holds in cases (i) and (ii). In case (iii), conclusion (2) of the lemma holds, again as
(M̄, V ) appears in case (5) of D.2.17. ¤

Recall that |M(T )| > 1 by Hypothesis 14.1.5.3, so that H∗(T,M) is nonempty.
The next few results study properties of members of H∗(T,M).

Lemma 15.1.9. Set R := CT (V ). Then

(1) [V, J(T )] = 1 = [V (M), J(T )], so that Baum(T ) = Baum(R) and further
C(G,Baum(T )) ≤M .

(2) M is the unique maximal member of M(T ) under
<
∼.

(3) H∗(T,M) ⊆ CG(Z) ≤Mc.
(4) For each H ∈ H∗(T,M), O2(H ∩M) ≤ CM (V ).
(5) M = !M(NM (R)).

(6) NM (R) ∈ He, V ∈ R2(NM (R)), R = O2(NM (R)), and NM (R) = M̄ ; and
case (II) of Hypothesis 3.1.5 is satisfied with NM (R) in the role of “M0” for any
H ∈ H∗(T,M).

(7) NG(T ) ≤ M , and each H ∈ H∗(T,M) is a minimal parabolic described in
B.6.8, and in E.2.2 if H is nonsolvable.

Proof. If J(T ) does not centralize V (M), then as m(V ) > 2 by 15.1.7, 14.1.7
shows that conclusion (2) of Theorem 15.1.3 holds, contrary to the choice of G as
a counterexample. Therefore J(T ) centralizes V (M), and hence also centralizes V .



15.1. INITIAL REDUCTIONS WHEN Lf (G,T) IS EMPTY 1089

Since M is maximal in M(T ) under
<
∼, we may now apply 14.1.4 to conclude that

(2) holds; and apply 15.1.5.1, (2), and 14.1.2 to complete the proof of (1). Observe
that NM (R) ∈ He by 1.1.3.2. Using case (b) of the hypothesis of A.5.7.2 rather
than case (a), the proof of 15.1.1.1 shows that (5) and (6) hold, and case (II) of
Hypothesis 3.1.5 is satisfied with NM (R) in the role of “M0” for anyH ∈ H∗(T,M).
Further M = !M(NM (R)) by (5), so (3) follows from 3.1.7. Then (4) follows from
(3) and 15.1.6. Finally NG(T ) ≤M by (1), so (7) follows from 3.1.3.2. ¤

Lemma 15.1.10. If case (6) of 15.1.7 holds with p = 3, then M̄ ∼= S3 wr Z2.

Proof. Since CO3(M̄)(T̄ ∩ M̄i) is cyclic by A.1.31.1, O2(M̄0) = O2(M̄). Then

as O2(M̄) acts on M̄i and Vi for i = 1, 2, CGL(Vi)(M̄i) ∼= L2(2), and O2(M̄) = 1 by
15.1.5.1, the result follows. ¤

Lemma 15.1.11. For H ∈ H∗(T,M):

(1) V ≤ O2(H).
(2) UH := 〈V H〉 is elementary abelian.

Proof. Set R := CT (V ). By 15.1.9.5, O2(〈NM (R), H〉) = 1, so Hypothe-
sis F.7.1 is satisfied with NM (R), H in the roles of “G1, G2”. Further as R =
O2(NM (R)) by 15.1.9.6, R = O2(CNM (R)(V )), so that Hypothesis F.7.6 is also sat-
isfied. Now V is not an FF-module for AutNM (R)(V ) by 15.1.8, so if (1) holds, we
may apply F.7.11.8 to obtain (2).

So we may assume that V 6≤ O2(H), and it remains to derive a contradiction.
By 3.1.3.1, H ∩M is the unique maximal subgroup of H containing T , and by
15.1.9.7, H is described in B.6.8. Then our assumption V 6≤ O2(H) implies V 6≤
kerH∩M (H) by B.6.8.5. Thus Hypothesis E.2.8 is satisfied with H∩M in the role of
“M”. Then by E.2.15, r := q̂(M̄, V ) < 2, so that by 15.1.8, m(V ) = 4, M̄ = Ω+

4 (2),
and r = 3/2. Also by 15.1.9.4, O2(H ∩M) ≤ CH (V ). Hence by E.2.17, Y = 〈V H〉
is isomorphic to S3/Q

2
8, L3(2)/D

3
8, or (Z2 × L3(2))/D

3
8. However in the last two

cases, |AutT (V )| ≥ 8 by E.2.17, contrary to |M̄ |2 = 4. Therefore Y ∼= S3/Q
2
8. Set

P := O2(Y ), X0 := O2(NM (R)), and X := O2([X0, P ]). As AutP (V ) ∼= E4
∼= T̄

and R = CT (V ), T = PR, so X̄ = X̄0
∼= E9. Next

[R,P ] ≤ CP (V ) = V ∩ P, (∗)

so P centralizes R/V , and hence X ≤ [X0, P ] centralizes R/V . Then V = [R,X ]
so as F ∗(M) = O2(M) ≤ R, CX (V ) is a 2-group by Coprime Action. Then as
X̄ ∼= E9 and X = O2(X), it follows that X ∼= A4 × A4 and R = V × CR(X). By
(*), [CR(X), P ] ≤ CV (X) = 1, so TX = PRX = PX×CR(X) with PX ∼= S4×S4.
But now [V, J(T )] 6= 1, contrary to 15.1.9.1. ¤

Lemma 15.1.12. Let H ∈ H∗(T,M) and UH := 〈V H〉. Then

(1) H has exactly two noncentral chief factors U1 and U2 on UH .
(2) There exists A ∈ A(T ) − A(O2(H)), and for each such A chosen with

AO2(H)/O2(H) minimal, A is quadratic on UH , and setting B := A ∩ O2(H), we
have:

2m(A/B) = m(UH/CUH (A)) = 2m(B/CB(UH));

2m(B/CB(V
h)) = m(V h/CV h(B))
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for each h ∈ H with [B, V h] 6= 1; m(A/B) = m(Ui/CUi(A)); and CUH (A) =
CUH (B).

(3) H/CH(Ui) ∼= S3, S5, S3 wr Z2, or S5 wr Z2, with Ui the direct sum of the
natural modules [Ui, F ], as F varies over the S3-factors or S5-factors of H/CH(Ui).
Further J(H)CH (Ui)/CH(Ui) ∼= S3, S5, S3 × S3, or S5 × S5, respectively.

(4) [Ω1(Z(J1(T ))), O
2(H)] = 1.

Proof. Let R := CT (V ). By 15.1.9.6, M̄ = NM (R). We check that the
hypothesis of 3.1.9 holds, with NM (R) in the role of “M0”: First case (II) of
Hypothesis 3.1.5 is satisfied by 15.1.9.6. By 15.1.11, V ≤ O2(H), giving (c). By

15.1.7 and B.1.8, V is not a dual FF-module for M̄ = NM (R), giving (d). By 15.1.8,
q(M̄, V ) = 2, giving (a). By 15.1.9.5, M = !M(NM (R)), giving (b). Finally by
15.1.9.4, O2(H ∩M) ≤ CG(V ), so the hypotheses of part (5) of 3.1.9 are satisfied.
Therefore by 3.1.9, (1)–(3) hold.

As A∗ is an FF∗-offender on Ui, it follows from (3) that there is a subgroup X
of Y with A∗ ∈ Syl2(X∗), O2(H) ≤ X , X/O2(X) ∼= S3, and H = 〈O2(X), T 〉. Now
we chose A ∈ A(T ), and UH is elementary abelian by 15.1.11.2, with A ∩ UH ≤
A ∩ O2(H) = B, so CUH (A) = A ∩ UH = B ∩ UH ≤ CB(UH). Next by (2),

m(A/CB(UH)) = m(A/B) +m(B/CB(UH)) = 2m(A/B) = m(UH/CUH (A)),

so m(UHCB(UH)) ≥ m(A). Hence UHCB(UH) ∈ A(T ), so as UHCB(UH) ≤
O2(H) ≤ O2(X), also UHCB(UH) ∈ A(O2(X)). Therefore by B.2.3.7, Ω1(Z(J(T )))
and Ω1(Z(J(O2(X)))) are contained in UHCB(UH), so by B.2.3.2, Ω1(Z(J1(T ))) =:
E and Ω1(Z(J1(O2(X)))) =: D are also contained in UHCB(UH). In particular,
E ≤ O2(X), so E ≤ D.

If [E,O2(X)] = 1, thenH = 〈O2(X), T 〉 ≤ NG(E), and henceK ≤ 〈O2(X)H〉 ≤
CG(E), so that (4) holds. Thus we may assume that [E,O2(X)] 6= 1, and it re-
mains to derive a contradiction. We saw E ≤ D, so also [D,O2(X)] 6= 1. Then as
O2(X) = [O2(X), A] by construction, [D,A] 6= 1, so in particularD 6≤ A∩O2(X) =:
BX . Observe that BX ≥ A∩O2(H) = B. On the other hand, BX ∈ A1(O2(X)) as
X/O2(X) ∼= S3, so D centralizes BX , and then as D 6≤ BX , m(DBX) > m(BX) =
m(A) − 1, so DBX ∈ A(T ). Then as D ≤ UHCB(UH) ≤ O2(H), by minimal-
ity of AO2(H)/O2(H), BX ≤ O2(H) ∩ A = B, so that BX = B. But by (2),
CUH (B) = CUH (A), so

D ≤ CB(UH)UH ∩ CG(B) = CB(UH)CUH (B) = CB(UH)CUH (A) ≤ CG(A),

contrary to an earlier observation. This contradiction completes the proof of
15.1.12. ¤

Lemma 15.1.13. Let E1 := Ω1(Z(J1(T ))). Then

(1) CG(E1) 6≤M .
(2) [V, J1(T )] 6= 1.
(3) Either

(i) for all A ∈ A1(T ) with Ā 6= 1, |Ā| = 2 and Ā ∈ Q̂∗(M̄, V ), or
(ii) case (3) of 15.1.7 holds.

(4) Either

(a) J1(T ) = T̄ ∩ M̄0 and J1(M) = M̄0, or

(b) Case (3) of 15.1.7 holds, and J1(T ) is of order 2.
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Proof. As H∗(T,M) 6= ∅, (1) follows from 15.1.12.4. Next if [V, J1(T )] = 1,
then by B.2.3.5, NM (CT (V )) normalizes J1(T ) and hence also normalizes E1, so
that NG(E1) ≤M by 15.1.9.5, contrary to (1). This establishes (2).

By (2), there is A ∈ A1(T ) with Ā 6= 1. Now m(Ā) ≤ m2(M̄) and m2(M̄) ≤ 2
from 15.1.7. As A ∈ A1(T ), m(V/CV (A)) ≤ m(Ā) + 1, while q(M̄, V ) > 1 by
15.1.8, so that m(V/CV (A)) = m(Ā) + 1. Hence for m(Ā) = 1 or 2,

rĀ,V =
m(V/CV (A))

m(Ā)
= 2 or 3/2,

respectively. Assume that case (3) of 15.1.7 does not hold. Then by 15.1.8,
q̂(M̄, V ) = q(M̄, V ) = 2, and the calculation above shows that m(Ā) = 1 and

rĀ,V = 2 for each A ∈ A1(T ) with Ā 6= 1, so that Ā ∈ Q̂∗(M̄, V ). This establishes
(3).

It remains to prove (4). Suppose first that case (3) of 15.1.7 holds. Then

M̄ = M̄0 and T̄ ∼= E4, and J1(T ) 6= 1 by (2). Therefore either J1(T ) = T̄ ,

and hence conclusion (a) of (4) holds, or J1(T ) is of order 2, and conclusion (b)
holds. Thus we may assume that case (3) of 15.1.7 does not hold. Then by (3),

J1(T ) ≤ T̄ ∩ M̄0 =: T̄0. As case (3) of 15.1.7 does not hold, either case (6) of 15.1.7

holds or |T̄0| = 2. In the latter case, J1(T ) = T̄0 so that J1(M) = M̄0, giving
conclusion (a). In the former case, Ā ≤ M̄i for i = 1 or 2 since rĀ,V = 2, and then

J1(T ) = 〈Ā, Āt〉 = T̄0, so again conclusion (a) holds. This completes the proof of
(4). ¤

Lemma 15.1.14. Let VE := CV (J1(T )). Then

(1) O2(CG(Z)) ≤ CG(VE).
(2) NM (J1(T )) ≤ NG(VE) ≤Mc.
(3) NG(J1(T )) ≤M ∩Mc.

Proof. By 15.1.6, O2(CM (Z)) ≤ CM (V ) ≤ CM (VE). Thus if (1) fails, then

O2(CG(Z)) 6≤ 〈M ∩O2(CG(Z))T,O
2(CG(Z)) ∩ CG(VE)〉,

so there exists H ∈ H∗(T,M) with H ≤ CG(Z) but O
2(H) 6≤ O2(CG(VE)). How-

ever since VE ≤ Ω1(Z(J1(T ))), this contradicts 15.1.12.4, so (1) is established.
Then (1) implies (2) since Mc = !M(CG(Z)). Finally as J(J1(T )) = J(T ) by (1)
and (3) of B.2.3,

NG(J1(T )) = NG(J(T )) ∩NG(J1(T )) ≤ NM (J1(T ))

by 15.1.9.1, so (2) implies (3). ¤

15.1.2. Eliminating some larger possibilities from 15.1.7. Our proof of
Theorem 15.1.3 now divides into two cases:

Case I. M = 〈CM (Z1), T 〉 for some nontrivial subgroup Z1 of CV (J1(T )).
Case II. There exists a subgroup X of M containing T with M = !M(X) and
X/O2(X) ∼= S3, D10, or Sz(2).

Case II will be treated in the following section. Cases (1)–(3) and (5) of 15.1.7
appear in Case II, although this fact is not established until lemma 15.2.6 in that
section. In the remainder of this section, we treat the three cases from 15.1.7 which
appear in Case I. Namely we prove the following theorem:

Theorem 15.1.15. None of cases (4), (6) or (7) of 15.1.7 can hold.
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Until the proof of Theorem 15.1.15 is complete, assume G is a counterexample.
Thus we are in case (4), (6), or (7) of 15.1.7. As in 15.1.13, let E1 := Ω1(Z(J1(T ))).
By 15.1.13.1, CG(E1) 6≤M .

As case (3) of 15.1.7 does not hold, J1(T ) = T̄ ∩ M̄0 and J1(M) = M̄0 by
15.1.13.4. Also V = V (M) by 15.1.7.

We begin by determining VE := CV (J1(T )) in each of our three cases, and
defining some notation:

Notation 15.1.16. (a) In case (6) of 15.1.7, V = V1 ⊕ V2 for Vi defined there,
and VE = Z1 ⊕ Z2, where Zi := CVi(T ∩M0) ∼= E4.

(b) In case (4) of 15.1.7, V = V1⊕V2, where V1 and V2 are the two 4-subgroups
of V such that M̄i := NM̄ (Vi) is not a 2-group; in this case VE = Z1 ⊕ Z2 where
Zi := VE ∩ Vi is of order 2.

(c) Finally in case (7) of 15.1.7, VE ∼= E16. In this last case, P̄ := O3(M̄) ∼=
31+2. Let P̄Z := Z(P̄ ), pick P̄i of order 3 in M̄0 inverted by T ∩M0 for i = 1, 2
with P̄ = P̄Z P̄1P̄2, and set Zi := CV (P̄i) and V2 := [V, P1], so that V = Z1 ⊕ V2,
Zi ∼= E4, and V2 ∼= E16. In this case VE = Z1 ⊕ Z2.

In each case, set S := CT (Z1), G1 := CG(Z1), MZ := G1 ∩Mc, and Q1 :=
O2(MZ).

Observe that in each of the cases in Notation 15.1.16, Case I holds by construc-
tion: Namely Z1 ≤ VE = CV (J1(T )), and M = 〈CM (Z1), T 〉. Also:

Lemma 15.1.17. S ∈ Syl2(G1 ∩M), J(S) = J(T ), Baum(S) = Baum(T ), and
C(G,Baum(S)) ≤M .

Proof. By construction in Notation 15.1.16, S is Sylow inG1∩M and CT (V ) ≤
CT (Z1) = S. So as J(T ) ≤ CT (V ) by 15.1.9.1, J(S) = J(T ) and Baum(S) =
Baum(T ) by (3) and (5) of B.2.3. Then 15.1.9.1 completes the proof. ¤

Lemma 15.1.18. (1) Z1 ≤ VE, and O
2(CG(Z)) ≤MZ .

(2) O2(M ∩Mc ∩G1) = O2(CM (V )) and CM (Z1) 6≤MZ .
(3) S, MZ , and Q1 are T -invariant.
(4) S ∈ Syl2(G1).
(5) C(G1, Q1) =MZ = NG1(Q1), so Hypothesis C.2.3 is satisfied with G1, Q1,

MZ in the roles of “H, R, MH”.
(6) Hypothesis 1.1.5 is satisfied with G1, Mc in the roles of “H, M”, for any

1 6= z ∈ Z.
(7) Mc = !M(MZT ) and C(G,Q1) ≤Mc.

Proof. We observed earlier that Case I holds, so in particular, Z1 ≤ VE
and M = 〈CM (Z1), T 〉. Then as O2(CG(Z)) ≤ CG(VE) by 15.1.14.1, and Mc =
!M(CG(Z)), (1) follows; and as M 6≤ Mc, CM (Z1) 6≤ MZ . By 15.1.17, S ∈
Syl2(G1 ∩M) and NG(S) ≤M , so (4) holds. Hence S is also Sylow in MZ and in
M ∩MZ = G1 ∩M ∩Mc. Since Z1 ≤ V , 15.1.5.2 says that CM (V ) ≤ G1 ∩M ∩Mc.

By construction in 15.1.16, O2(CM (Z1)) is of prime order, so as CM (Z1) 6≤ MZ

and S ∈ Syl2(MZ), it follows that O
2(M ∩Mc∩G1) = O2(CM (V )), completing the

proof of (2). We check in each case in 15.1.16 that S̄ = CT̄ (VE), so that S E T .

By 15.1.9.2, Mc
<
∼M , so

Mc = NM (V (Mc))CMc(V (Mc)). (∗)
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By (1),

O2(CG(V (Mc))) ≤ O2(CG(Z)) ≤ O2(MZ), (∗∗)

and then by (*) and (**),

O2(MZ) = O2(NM∩MZ (V (Mc)))O
2(CMc(V (Mc)).

Next from (2), O2(M ∩MZ) = O2(CM (V )), so

O2(MZ) = O2(CM (V ))O2(CMc(V (Mc)),

and hence O2(MZ) is T -invariant. Therefore as S is Sylow in MZ and normal in
T , both O2(MZ)S = MZ and O2(MZ) = Q1 are also T -invariant, completing the
proof of (3). Then as O2(CG(Z)) ≤ MZ and Mc = !M(CG(Z)), (7) holds. Since
C(G,Q1) ≤ Mc, C(G1, Q1) = MZ = NG1(Q1) and Q1 ∈ B2(G1). Then we easily
verify Hypothesis C.2.3 with G1, Q1, MZ in the roles of “H , R, MH”, so that (5)
holds. Finally for any 1 6= z ∈ Z,Mc ∈ M(CG(z)), so (6) follows from 1.1.6 applied
to G1, Mc in the roles of “H , M”. ¤

Lemma 15.1.19. (1) O(G1) = 1.
(2) If K = O2,2′(K) is an MZ-invariant subgroup of G1 with F

∗(K) = O2(K),
then K ≤MZ .

(3) O2,F (G1) ≤MZ .
(4) If MZ ≤ H ≤ G1 with O2,F∗(H) ≤MZ , then H =MZ .
(5) O∞(G1) ≤MZ .
(6) There exists L ∈ C(G1) with L/O2(L) quasisimple and L 6≤MZ .
(7) For L as in (6), O2(NM (Z1))V2 acts on L and [L, V2] 6= 1.

Proof. Observe that V2 = [V2, O
2(CM (Z1))] by construction in Notation

15.1.16, so V2 centralizes O(G1) by A.1.26.1. Also by construction, 1 6= Z∩Z1Z2 =
Z ∩ Z1V2 =: Z+, so that Z+ centralizes O(G1). Now by 15.1.18.6, we may apply

1.1.5.2 with any involution of Z#
+ in the role of “z”, so (1) follows.

Assume KZ is a counterexample to (2). Then K is MZ-invariant and S ∈
Syl2(G1) by 15.1.18.4, so O2(K) ≤ O2(KMZ) ≤ S ≤ MZ , and hence O2(K) ≤
O2(MZ) = Q1, so that Q1 ∈ Syl2(KQ1). Then by 15.1.18.5 and C.2.5, there is an
A3-blockX ofK withX 6≤MZ . Let Y := O2(MZ); then [Y,X ] ≤ O2(K) ≤ NG(Y ),
so X normalizes O2(Y O2(K)) = Y . However as Mc = !M(MZT ) by 15.1.18.7,
X ≤ NG(Y ) ≤Mc, contrary to the choice of X . This contradiction establishes (2).
By (1), F ∗(O2,F (G1)) = O2(O2,F (G1)), so (2) implies (3).

Assume the hypotheses of (4). Then Q1 = O2(H) by A.4.4.1 with MZ in the
role of “K”, so H ≤ NG(Q1) ≤ Mc by 15.1.18.5, establishing (4). By (3), we may
apply (4) with O∞(G1)MZ in the role of “H”, to obtain (5). Similarly if (6) fails,
then by (3), O2,F∗(G1) ≤MZ , so G1 =MZ by (4), contrary to 15.1.18.2.

Finally by 1.2.1.3, O2(CM (Z1)) acts on each L satisfying (6), and hence so does
V2 = [V2, O

2(CM (Z1))]. Further if V2 centralizes L, then so does Z ∩ Z1V2 6= 1,
so that L ≤ Mc = !M(CG(Z)), contrary to L 6≤ MZ . So V2 is nontrivial on L,
establishing (7). ¤

Recall J(S) = J(T ) by 15.1.17, and S ∈ Syl2(G1) by 15.1.18.4. Further
15.1.19.6 shows that there is L ∈ C(G1) with L/O2(L) quasisimple and L 6≤ MZ ,
so the collection of subgroups studied in the following result is nonempty:
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Lemma 15.1.20. Let L ∈ L(G1, S) with L/O2(L) quasisimple and L 6≤ MZ .
Set SL := S ∩ L and ML :=MZ ∩ L. Then SL ∈ Syl2(L) and

(1) L 6≤M .
(2) Assume F ∗(L) = O2(L). Then L = [L, J(S)], and one of the following

holds:

(a) L is a block of type A5 or L2(2
n), and ML is a Borel subgroup of L.

(b) L/O2,Z(L) ∼= A7, L3(2), A6, or G2(2)
′. Further if L ∈ C(G1) then L

is a block of type A7, L3(2), A6, or G2(2). In the last three cases, ML = CL(Z) is
the maximal parabolic subgroup of L centralizing CU(L)(SL), and in the first case
ML is the stabilizer of the vector of U(L) of weight 2 centralized by SL.

(c) L/O2(L) ∼= L4(2) or L5(2), and ML is a proper parabolic subgroup of
L.

(3) Assume L is a component of G1. Then Z(L) is a 2-group, and one of the
following holds:

(a) L is a Bender group or L/O2(L) ∼= Sz(8), and ML is a Borel subgroup
of L.

(b) L ∼= L3(2
n) or Sp4(2

n), n > 1, or L/O2(L) ∼= L3(4), and ML is a
Borel subgroup or a maximal parabolic of L.

(c) L ∼= G2(2)
′, 2F4(2)

′, or 3D4(2), and ML = CL(Z(SL)).
(d) L/O2(L) is a Mathieu group, J2, HS, He, or Ru, andML = CL(Z(SL)).
(e) L ∼= L4(2) or L5(2), and ML is a proper parabolic subgroup containing

CL(Z(SL)).

Proof. If L ≤M , then by 14.1.6.1 and 15.1.5.2, L ≤ CM (V ) ≤Mc, contrary
to the choice of L; so (1) holds.

Since S ∈ Syl2(G1) by 15.1.18.4, and L ∈ L(G1, S) by hypothesis, SL = S ∩ L
is Sylow in the subnormal subgroup L of 〈L, S〉.

Suppose that L/O2(L) is a simple Bender group; we claim that ML is the
Borel subgroup BL of L over SL. For BL is the unique maximal overgroup of
SL in L, so as SL ≤ ML < L, it follows that ML ≤ BL; then NMZ (L) acts on
NL(O2(ML)) = BL, and hence MZ normalizes the Borel subgroup B0 := 〈BS〉 of
L0 := 〈LS〉. As L/O2(L) is a Bender group, F ∗(B0) = O2(B0), so B0 ≤ MZ by
15.1.19.2, and hence ML = BL, as claimed.

We now begin the proof of (2), so assume that F ∗(L) = O2(L). Set H :=
LSH , where SH := NS(L). Then SH ∈ Syl2(H) and as F ∗(L) = O2(L), also
F ∗(H) = O2(H). Let U := 〈ZH〉 and H∗ := H/CH(U), so that O2(H

∗) = 1 by
B.2.14. As CH (U) ≤ CH (Z) ≤ MZ and L 6≤ MZ , L

∗ 6= 1; thus as L/O2(L) is
quasisimple, L∗ is quasisimple. As NG(J(S)) ≤M by 15.1.17, and L 6≤M by (1),
J(S) 6≤ O2(〈L, S〉) using B.2.3.3. Now by B.2.5, we may apply B.1.5.4 to conclude
that J(S)∗ normalizes L∗, so that L = [L, J(S)]. Thus U is an FF-module for H∗

by B.2.7. Therefore by Theorem B.4.2, L∗ is one of L2(2
n), SL3(2

n), Sp4(2
n)′,

G2(2
n)′, Ln(2), for suitable n, or Â6, or A7.
Suppose L∗ ∼= L2(2

n). If L is a block then L/O2(L) ∼= L2(2
n), soM∗

L is a Borel
subgroup of L∗ by paragraph three, and hence conclusion (a) of (2) holds. So we
assume L is not a block, and it remains to derive a contradiction. Now as L/O2(L)
is quasisimple, H is a minimal parabolic, so we may apply C.1.26 to conclude that
either C1(SH) centralizes L, or C2(SH) E H . By 15.1.17, Baum(T ) = Baum(S),
and by C.1.16.3, Baum(S) acts on L, and hence Baum(S) = Baum(SH ) by B.2.3.4.
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Now by Remark C.1.19, we may take C2(SH) = C2(T ) and C1(T ) ≤ C1(SH ). Then
NG(C2(SH)) ≤ M by 15.1.17, so C2(SH) is not normal in H by (1). Therefore
L ≤ CG(C1(SH)) ≤ CG(C1(T )) ≤ Mc since C1(T ) ≤ Z and Mc = !M(CG(Z)).
However this contradicts our hypothesis that L 6≤MZ .

Suppose next that L∗ ∼= SL3(2
n), Sp4(2

n), or G2(2
n) with n > 1. Let Pi,

i = 1, 2, be the maximal parabolics of H over SH , and Li := O2(Pi). Then
Li ∈ L(G1, S) with Li/O2(Li) ∼= L2(2

n), but Li is not a block since O2(L
∗
i ) 6= 1

and [U,Li] 6= 1, so by the previous paragraph, Li ≤MZ . Thus L = 〈L1, L2〉 ≤MZ ,
contrary to hypothesis.

If L∗ ∼= L4(2) or L5(2), then as SL ≤ ML < L and SL ∈ Syl2(L), ML is
a proper parabolic subgroup, so conclusion (c) of (2) holds. If L∗ is one of the
remaining possibilities, then L/O2,Z(L) is listed in conclusion (b) of (2). Thus to
complete the proof of (2), it remains to assume that L ∈ C(G1) with L

∗ ∼= L3(2),

A6, A7, Â6, or G2(2)
′, and to verify the final two sentences of (2b).

As L is not a χ0-block, by 15.1.18.5 we may apply C.2.4 to conclude that Q1 acts
on L. So since L ∈ C(G1), the hypotheses of C.2.7 are satisfied, and hence L is listed
in C.2.7.3. Set ZS := CU (SH ) and ZU := C[U,L](SH); then Z ≤ U ∩ Z(SH) = ZS.
By B.2.14, U = CZS (L)[U,L], so ZS = CZS (L)ZU . Since Mc = !M(CG(Z)),

CL(ZU ) = CL(ZS) ≤ CL(Z) ≤ML. (∗)

Suppose either that L/O2,Z(L) is of rank 2 over F2, or that L is an exceptional A7-
block. The module [U,L]/CU,L(L) is described in case (i) or (ii) of Theorem B.5.1.1,
and in each module U , CL(ZU ) is a maximal subgroup of L. Therefore as ML < L,
the inequalities in (*) are equalities, so that ML = CL(ZU ) = CL(Z(SL)). Suppose
instead that L is an ordinary A7-block; then ZU contains vectors zw of weights
w = 2, 4, 6, and there is z ∈ Z∩CZS (L)zw for some w. Then CL(zw) ≤ CL(z) ≤ML.
But unless w = 2, AutO2(CLSH (zw))([U,L]) contains no FF∗-offenders by B.3.2.4,

contrary to C.2.7.2. Thus w = 2 and as CL(z2) is maximal in L, CL(z2) =ML.
We have shown that if L is one of the four blocks listed in (2b), then (2b)

holds, so we may assume L is not one of these blocks. If L∗ is A6 or G2(2)
′,

then by C.2.7.3, L is an A6-block or G2(2)-block, contrary to this assumption. If
L∗ ∼= L3(2), then by C.2.7.3, L is described in C.1.34. By the previous paragraph,
MZ is the parabolic centralizing ZS , so case (1) or (5) of C.1.34 holds as the other
cases exclude Q1 normal in that parabolic; thus L is an L3(2)-block, again contrary
to assumption. If L/O2,Z(L) ∼= A7, then by C.2.7.3, L is either an A7-block or an
exceptional A7-block. Again the first case contradicts our assumption, and in the
second case, we showed in the previous paragraph thatM ∗

L is the maximal subgroup
of index 15 fixing ZU , rather than the subgroup of index 35 in L∗ appearing in case
(d) of C.2.7.3.

Thus it only remains to eliminate case (c) of C.2.7.3, where L is a block of

type Â6: Here by B.4.2, the only parabolic P of L such that O2(P ) contains an
FF-offender is not the parabolic CL(Z) =ML, contrary to C.2.7.2. This completes
the proof of (2).

Finally we prove (3), so assume L is a component of G1. By 15.1.18.6 we
can apply 1.1.5, and in particular L is described in 1.1.5.3. Since O(G1) = 1 by
15.1.19.1, Z(L) = O2(L) is a 2-group. By 1.1.5.1,MZ ∈ He, soML ∈ He by 1.1.3.1.
By 1.1.5.3, Z is faithfully represented on L with AutZ(L) ≤ Z(AutS(L)). Thus if
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some z ∈ Z# induces an inner automorphism on L, then as Mc = !M(CG(Z)), we
have CL(Z(SL)) ≤ CL(z) ≤ML.

We first treat cases (a)–(c) of 1.1.5.3, where L/O2(L) is of Lie type in char-
acteristic 2, and hence described in case (3) or (4) of Theorem C (A.2.3). As
ML is contained in a proper overgroup of SL ∈ Syl2(L), ML is contained in a
proper parabolic subgroup PL of L (cf. 47.7 in [Asc86a]). In cases (a)–(c) of
1.1.5.3, either L ∼= A6, or Z induces inner automorphisms on L. In the latter case,
CL(Z(SL)) ≤ PL by the previous paragraph, and in the former CL(SL) = SL ≤ PL
trivially.

Next if L/O2(L) is of Lie rank 1, then by 1.1.5.3, L/O2(L) is a simple Bender
group, and conclusion (a) of (3) holds by paragraph three. Thus we may assume
that L/O2(L) is of Lie rank at least 2. Then by 1.1.5.3, either L is simple, or
L/O2(L) ∼= L3(4) or G2(4).

Assume first that L/O2(L) is defined over F2n with n > 1. This rules out case
(4) of Theorem C, so that L/O2(L) is in one of the five families of groups of Lie
rank 2 in case (3) of Theorem C. Further L E G1 by 1.2.1.3. If S is nontrivial
on the Dynkin diagram of L, then either L ∼= L3(2

n) or Sp4(2
n) with n > 1, or

L/O2(L) ∼= L3(4); further the Borel subgroup B of L over SL is the unique S-
invariant proper parabolic subgroup of L containing SL, so arguing as in paragraph
three, ML = B, and then conclusion (b) of (3) holds.

Thus we may assume that S normalizes both maximal parabolics Pi, i = 1, 2,
of L over SL. Then Li := P∞i ∈ L(G1, S) with F ∗(Li) = O2(Li), and Li/O2(Li)
is either L2(2

m) (with m a multiple of n) or Sz(2n). By a Frattini Argument,
MZ = MLNMZ (SL), and NMZ (SL) = O2(NMZ (SL))S acts on the two maximal
overgroups P1 and P2 of SL in L. Thus MZ acts on each parabolic P containing
ML, so O2,2′(P ) ≤ MZ by 15.1.19.2. Then if Li ≤ MZ , Pi ≤ MZ by 15.1.19.4, so
Pi =ML by maximality of Pi.

If Li is not a block, then Li ≤ MZ by (2). Thus if neither L1 nor L2 is a
block, then L = 〈L1, L2〉 ≤MZ , contrary to hypothesis. Therefore Li is a block for
i = 1 or 2, so either L is L3(2

n) or Sp4(2
n), or L/O2(L) ∼= L3(4). So if L1 ≤ML,

then MZ = P1 by the previous paragraph, so that conclusion (b) of (3) holds.
Thus we may assume that neither L1 nor L2 is contained in ML. Then (cf. 47.7 in
[Asc86a]), ML is contained in the Borel subgroup P1∩P2 = P over SL, soML = P
by the previous paragraph, and again conclusion (b) of (3) holds.

Thus we may assume that L/O2(L) is defined over F2. Then from 1.1.5.3,
and recalling Z(L) is a 2-group, L is simple. So from Theorem C, L is G2(2)

′,
2F4(2)

′, 3D4(2), Sp4(2)
′, L3(2), L4(2) or L5(2). Recall from earlier discussion that

Pc := CL(Z(SL)) ≤ ML ≤ PL for some proper parabolic PL of L. However in the
first three cases, Pc is a maximal parabolic, so ML = Pc, and hence conclusion (c)
of (3) holds. Thus we may assume one of the remaining four cases holds. In those
cases, all overgroups of SL are parabolics, so ML is a parabolic. Thus conclusion
(e) of (3) holds if L ∼= L4(2) or L5(2).

In cases (a)–(c) of 1.1.5.3, we have reduced to L ∼= L3(2) or A6. We now
eliminate these cases, along with case (d) of 1.1.5.3. Since Z(L) = O2(L), L ∼= A7

in the last case. In each case SL ∼= D8, and Z(SL) is of order 2.
We claim that Z contains a nontrivial subgroup ZL inducing inner automor-

phisms on L. If L ∼= L3(2), this follows from earlier discussion. In the other two
cases, L is normal in G1 by 1.2.1.3, so as Out(L/O2(L)) is an elementary abelian
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2-group, Φ(S) induces inner automorphisms on L. Then as S E T by 15.1.18.3,
1 6= Z ∩ Φ(S) induces inner automorphisms, completing the proof of the claim.

Notice the claim eliminates case (d) of 1.1.5.3 where L ∼= A7, as there each
z ∈ Z# induces outer automorphisms on L. Thus L ∼= L3(2) or A6.

Next Y := O2(CG(Z)) ≤ MZ by 15.1.18.1, and so Y acts on L by 1.2.1.3.
However as L is L3(2) or A6, CAut(L)(Z(SL)) is a 2-group, so as ZL induces Z(SL)

on L, O2(CAut(L)(Z)) ≤ O2(CAut(L)(Z(SL))) = 1, and hence Y ≤ CG1(L). Then as
Mc = !M(CG(Z)), L ≤ NG(Y ) ≤Mc, contrary to our choice of L. This completes
the treatment of cases (a)–(d) of 1.1.5.3.

Next suppose case (f) of 1.1.5.3 holds. Then L/O2(L) is sporadic, Z induces in-
ner automorphisms on L, and Z(SLO2(L)/O2(L)) is of order 2. Thus by paragraph
one, Z induces Z(SL) on L and CL(Z(SL)) ≤ ML. Indeed if L/Z(L) is not M22,
M23, or M24, then CL(Z(SL)) is a maximal subgroup, so that CL(Z(SL)) = ML.
Hence in these cases either conclusion (d) of (3) holds, or L ∼= J4, a case we post-
pone temporarily. Next assume L/Z(L) ∼= M22, M23, or M24. To complete our
treatment of case (f) in these cases, we assume that CL(Z(SL)) < ML, and derive
a contradiction. Here since F ∗(ML) = O2(ML) from paragraph one, the subgroup
structure of L determines ML uniquely as a block of type A6, exceptional A7, or
L4(2), respectively. Therefore [ML, Z] 6= 1 as CL(Z(SL)) = CL(ZL) = CL(Z).
Then ML ≤M∞

c , so 1.2.1.1 says M∞
c contains a member of Lf (G, T ), contrary to

Hypothesis 14.1.5.1.
To complete our treatment of case (f), we may assume L ∼= J4. Then there is

K ∈ L(G1, S) with K ≤ L, F ∗(K) = O2(K), and K ∼= M24/E211 . Now K ≤ ML

by (2). But then L = 〈K,CL(Z(SL))〉 ≤ML, contrary to our choice of L 6≤MZ .
Finally suppose case (e) of 1.1.5.3 holds. We have already treated the cases

where L ∼= L2(4) ∼= L2(5) and L ∼= L3(2) ∼= L2(7). Thus L is either L3(3), or L2(p)
for p > 7 a Fermat or Mersenne prime. By 15.1.19.7, X := O2(CM (Z1)) acts on
L, and V2 acts nontrivially on L. Thus X is nontrivial on L since V2 = [V2, X ]
by construction of V2 in 15.1.16. This is impossible since SL acts on X , whereas
neither L3(3) nor L2(p) has a subgroup of odd index in which an element of odd
order acts nontrivially on a normal elementary abelian 2-subgroup. (Cf. Dickson’s
Theorem A.1.3 in the case of L2(p)). ¤

In the remainder of this section, we will eliminate cases from 15.1.20 until we
have reduced to case (2c), at which point we will derive our final contradiction.

We begin by eliminating cases (2a) and (3ab) of 15.1.20:

Lemma 15.1.21. Assume L ∈ C(G1). Assume further that either F ∗(L) =
O2(L) with L an L2(2

n)-block or an A5-block, or L is a component of G1 with
L/O2(L) a Bender group, L3(2

n) or Sp4(2
n). Then L ≤MZ .

Proof. Set SL := S∩L,ML := L∩MZ , and assume that L 6≤MZ . By 15.1.20,
ML is a either the Borel subgroup BL of L over SL, or a maximal parabolic of L.
Set L0 := 〈LS〉; then MZ ∩ L0 is either the Borel subgroup B := 〈BSL〉 of L0 over
S ∩ L0, or a maximal parabolic of L0. So in any case, B ≤MZ , and S normalizes
B.

When L is a block, L = [L, J(S)] by 15.1.20.2, so the action of J(S) on L is
described in Theorem B.4.2. When L is a component, n > 1 by 15.1.20.3. Then
we conclude that one of the following holds:

(i) J(S) E SB, and L is not an A5-block.
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(ii) O2(B) = [O2(B), J(S)], and either L ∼= L2(4) or L is an A5-block.
(iii) L ∼= U3(2

n), some A ∈ A(S) does not induce inner automorphisms on L,
and J(S) E DS, where D is the subgroup of B generated by all elements of order
dividing 2n − 1.

Suppose that case (i) or (iii) holds. Let B0 := B in case (i), and B0 := D
in case (iii). By 15.1.17, J(T ) = J(S) and B0 ≤ NG(J(S)) ≤ M . As B ≤ MZ ,
B0 ≤M ∩MZ =M ∩Mc ∩G1, so by 15.1.18.2, B0 = O2(B0) centralizes V . Thus
V2 ≤ CS(B0) ≤ CS(L) from the structure of Aut(L) in (i) or (iii), contrary to
15.1.19.7.

Therefore case (ii) holds. Now J(T ) = J(CT (V )) by 15.1.9.1, so that M =
CM (V )NM (J(T )) by a Frattini Argument. Hence by construction of Z1 and V2 in
15.1.16, there is a p-subgroup Y of NM (J(T )) ∩ G1 where p := 3 or 5, satisfying
SY = Y S and V2 = [V2, Y ]. Now Y S = SY , Y acts on J(T ) = J(S), and
O2(B) = [O2(B), J(S)], so it follows from the structure of Aut(L0) that [L, Y ] = 1.
But then V2 = [V2, Y ] centralizes L0, contrary to 15.1.19.7. This contradiction
completes the proof. ¤

We now define notation in force for the remainder of this section: By 15.1.19.6,
we may choose L ∈ C(G1) with L/O2(L) quasisimple and L 6≤ MZ . Set ML :=
MZ ∩ L and SL := S ∩ L. Then L is described in 15.1.20. In the next lemma, we
refine that description.

Lemma 15.1.22. One of the following holds:

(1) L is an A7-block. Further L = 〈M ∩L,ML〉, M ∩L is a proper subgroup of
L containing the stabilizer of the partition of type 23, 1 stabilized by SL, and ML is
the stabilizer of the vector of weight 2 in CU(L)(SL).

(2) L is a block of type L3(2), A6, or G2(2), ML is the maximal parabolic
subgroup of L centralizing Z, M ∩ L is the remaining maximal parabolic over SL,
and CS(O

3′ (M ∩ L)) = CS(L).
(3) F ∗(L) = O2(L) with L/O2(L) ∼= L4(2) or L5(2), and ML and M ∩ L are

proper parabolic subgroups of L which generate L.
(4) L ∼= G2(2)

′, 2F4(2)
′, or 3D4(2), ML = CL(Z(SL)), M ∩L is the remaining

maximal parabolic over SL, and CS(O
3′ (M ∩ L)) = CS(L).

(5) L/Z(L) is J2, He, or a Mathieu group other than M11, ML = CL(Z(SL)),

and CS(O
3′ (M ∩ L)) = CS(L).

(6) L ∼=M11, ML = CL(Z(SL)), and O
2(NG1(J(S))) ≤ CG1(L).

(7) L ∼= L4(2) or L5(2), L = 〈ML,M ∩ L〉, where ML is a proper parabolic

containing CL(Z(SL)), M ∩L is a proper parabolic, and CS(O
3′(M ∩L)) = CS(L).

Proof. Observe that M ∩L < L by 15.1.20.1, and ML < L since L 6≤MZ by
the choice of L. By 15.1.19.1, Z(L) is a 2-group.

We first establish some preliminary technical results. The first is on overgroups
of SL in L. Let P be the set of NS(L)-invariant subgroups P of L such that
F ∗(P ) = O2(P ), PNS(L)/O2(PNS(L)) ∼= S3 or S3 wr Z2, and O2(P ) is not a
product of A3-blocks. We show:

(*) For P ∈ P , either P ≤M ∩ L or P ≤ML.

For let P0 := 〈P, S〉; then P0 is a minimal parabolic in the sense of Definition B.6.1,
so as O2(P ) is not a product of χ0-blocks, we conclude from C.1.26 that either
C1(S) centralizes P , or C2(S) is normalized by P . But Baum(T ) = Baum(S) by
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15.1.17, so by Remark C.1.19 we may take C2(S) = C2(T ) and C1(T ) ≤ C1(S).
Thus NG(C2(S)) ≤ M by 15.1.17, while CG(C1(S)) ≤ Mc since C1(T ) ≤ Z and
Mc = !M(CG(Z)). This establishes (*).

Next let GL := NG1(L), G
+
L := GL/CG1(L), and Z

+
L := Ω1(Z(NS(L)

+))). We
establish:

(**) If |Z+
L | = 2, then Z+ = Z+

L and CL+(Z+) = CL(Z)
+ ≤ (MZ ∩ L)

+.

Further if O3′(M ∩ L) 6≤ML, then CS(O
3′(M ∩ L)) = CS(L).

For assume the hypotheses of (**). As L 6≤ MZ but Mc = !M(CG(Z)), L does
not centralize Z, and hence Z+ 6= 1. Therefore since |Z+

L | = 2, Z+ = Z+
L , so

O2(CL+(Z+
L )) = O2(CL(Z)

+) by Coprime Action. Then as the Sylow 2-group S

of G1 centralizes Z, CL+(Z+
L ) = CL(Z)

+ ≤ (MZ ∩ GL)+. Therefore if O3′(M ∩

L) 6≤ ML, then O3′(M ∩ L)+ does not centralize Z+
L . However, NS(L) acts on

D := CS(O
3′ (M ∩ L)), so if D+ 6= 1, then 1 6= Z+

L ∩ D
+. Then as |Z+

L | = 2, Z+
L

lies in D+, and so centralizes O3′ (M ∩L)+, contrary to the previous remark. This
completes the proof of (**).

Our final preliminary result says:

(!) If P0 ⊆ P with 〈P0〉 6≤ML, then P ≤M for each P ∈ P0 with P 6≤ML. If

in addition |Z+
L | = 2, then CS(O

3′ (M ∩ L)) = CS(L).

Under the hypothesis of (!), the first statement follows from (*), and so in particular

O3′(M ∩ L) 6≤ML. Then the second statement follows from (**).
We now begin to show that one of the conclusions of the lemma must hold. By

15.1.21, cases (2a), (3a), and (3b) of 15.1.20 do not hold.
Suppose that case (2b) or (3c) of 15.1.20 holds, but L is not an A7-block.

Therefore either L is a block of type L3(2), A6, or G2(2), or L ∼= G2(2)
′, 2F4(2),

or 3D4(2). In each case NS(L) is trivial on the Dynkin diagram of L/O2(L); when
L is a block, this follows since U(L)/CU(L)(L) is the natural module. Thus each

minimal parabolic over SL is NS(L)-invariant. Further in each case, CL(Z
+
L ) is

one of these minimal parabolics, with ML = CL(Z
+
L ) by 15.1.20. Let P denote the

other minimal parabolic over SL, and set P0 := {P}. As O2(P ) is not an A3-block,
P0 ⊆ P . Thus if we can show that |Z+

L | = 2, then conclusion (2) or (4) of 15.1.22
will hold by (!). When L+ is simple, this is a well-known fact (cf. 16.1.4 and 16.1.5)
about the structure of Aut(L), so we may assume L is a block. Here F ∗(L+) =
O2(L)

+ = O2(L)
+ by A.1.8, so also F ∗(L+NS(L)

+) = O2(L
+NS(L)

+) =: Q+
L , and

hence Z+
L ≤ Q+

L . But then Z
+
L = CU(L)+(NS(L)

+) by Gaschütz’s Theorem A.1.39.

Thus |Z+
L | = 2 from the action of L on U(L), completing the proof that the lemma

holds in this case.
Next we consider the remaining case in (2b) of 15.1.20, where L is an A7-

block. Here we adopt the notation of section B.3, let P denote the preimage of
the stabilizer of the partition {{1, 2}, {3, 4}, {5, 6}, {7}}, and set P0 := {P}. Again
P0 ⊆ P . Further by 15.1.20, ML is the stabilizer of the vector e5,6 of U(L), and
hence P 6≤ ML, so P ≤ M by (!), completing the proof that conclusion (1) holds
in this case.

Now assume that case (2c) or (3e) of 15.1.20 holds, so that L/O2(L) ∼= L4(2)
or L5(2). Then S = NS(L) by 1.2.1.3. Let Pc denote the parabolic generated by
the minimal parabolics for the interior nodes in the diagram for L/O2(L). In case
(3e), |Z+

L | = 2, and by 15.1.20, ML is a proper parabolic containing Pc = CL(Z
+
L ).
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In case (2c), ML is some proper parabolic. In any case, let

P0 := {〈P
S〉 : P is a minimal parabolic and P 6≤ML}.

Now either L+S+ ∼= Aut(L5(2)) and F ∗(L) = O2(L), or P0 ⊆ P . In the latter
case, conclusion (3) or (7) of 15.1.22 holds by (*) and (!), so we may assume the
former case holds. Here L = 〈Pc, Pe〉, where Pe is the parabolic generated by the
two end-node minimal parabolics, Pe ∈ P , and PcS/O2(PcS) ∼= Aut(L3(2)). As
Pe ∈ P , Pe is contained in Me ∈ {ML,M ∩ L} by (*). Then as PeS is a maximal
subgroup of LS, Me = Pe.

If Pc centralizes Z, then Pc ≤Mc as CG(Z) ≤Mc, so Pc =ML by maximality
of PcS in LS. Then Pe =M∩L by the previous paragraph, so that conclusion (3) of
15.1.22 holds. Thus we may assume that [Z, Pc] 6= 1. NowW := 〈ZPc〉 ∈ R2(Pc) by
B.2.14, so as PcS/O2(PcS) ∼= Aut(L3(2)), and the latter group has no FF-module
by Theorem B.5.1, we conclude that J(S) ≤ CPcS(W ) = O2(PcS). Therefore
J(S) = J(O2(PcS)) by B.2.3.3, and hence Pc ≤ NG(J(S)) ≤ M by 15.1.17. As
M ∩ L < L and Pc is a maximal S-invariant subgroup of L, we conclude that
Pc =M ∩L, and then Pe =ML by the previous paragraph, so again conclusion (3)
of 15.1.22 holds.

Finally we assume that case (d) of 15.1.20.3 holds, so that L is a component of
G1 with L/Z(L) sporadic, and Z(L) = O2(L).

Suppose first that L/Z(L) is HS or Ru. Then there is K ∈ L(LS, S) ∩ L
with F ∗(K) = O2(K) and K/O2(K) ∼= L3(2). Further O2(K) ∼= Z3

4 or 23+8,
respectively, so KS is not among the conclusions of C.1.34. Hence by C.1.34, there
is a nontrivial characteristic subgroup C of S normal in K. Then as S E T by
15.1.18.3, 〈K,T 〉 ≤ N := NG(C). Then K ≤ N∞ ≤ Mc by 14.1.6.3; but this is
impossible, as K 6≤ CL(Z(SL)), whereas CL(Z(SL)) =ML by 15.1.20.3.

Therefore L/Z(L) is a Mathieu group, J2, or He, and ML = CL(Z(SL)) by
15.1.20.3. Assume first that L/Z(L) is not M11, and set K := 〈ML,P〉. Then from
the structure of Aut(L), either K = L, or L/Z(L) ∼= M22 and K/Z(L) ∼= A6/E16.
Moreover in the latter case, K > ML as we saw in our treatment of M22 during the
proof of 15.1.20. Thus in any case there is P ∈ P with P 6≤ ML, and as |Z+

L | = 2
in these groups, (!) completes the proof that conclusion (5) holds.

It remains to treat the case L/Z(L) ∼= M11, where L ∼= M11 by I.1.3, and
L E G1 by 1.2.1.3. Then Out(L) = 1, so that G1 = L × CG1(L); in particular
J(S) = J(CS(L))×J(SL), and hence NG1(J(S)) ≤ NG1(J(SL)). Further J(SL)

∼=
D8, so that NL(J(SL)) = SL, and hence O2(NG1(J(S)) centralizes L, so that
conclusion (6) holds.

This completes the proof of 15.1.22. ¤

Lemma 15.1.23. If case (6) of 15.1.7 holds, then p = 3, so M̄ ∼= S3 wr Z2.

Proof. Assume case (6) of 15.1.7 holds. If p = 3, then M̄ ∼= S3 wr Z2 by
15.1.10. So we may assume that p = 5, and it remains to derive a contradiction.
Then M̄0

∼= D10 ×D10. Hence there is a 5-group Y ≤ CM (Z1) with SY = Y S and
V2 = [V2, Y ]. Set G0 := NG1(L) and G

∗
0 := G0/CG0(L). By 15.1.19.7, Y V2 acts on

L, and V2 acts nontrivially on L. Thus as Y is faithful and irreducible on V2, Y V2 is
faithful on L. Thus comparing the list in 15.1.22 to the possibilities for L/O2(L) in
A.3.15, we conclude L ∼= 2F4(2)

′, and AutY (L) ≤ AutP (L), where P := CL(Z(SL))
with P/O2(P ) ∼= Sz(2). This is impossible, as AutY S(L) does not act irreducibly
on an E16-subgroup AutV2(L) of P . ¤



15.1. INITIAL REDUCTIONS WHEN Lf (G,T) IS EMPTY 1101

In the remainder of the section, let Y := O3′(G1∩M). As G is a counterexample
to Theorem 15.1.15, 15.1.23 says we are in case (4), case (6) with p = 3, or case (7)
of 15.1.7, so that M̄0 is a {2, 3}-group. In particular Y 6≤MZ by 15.1.18.2.

Lemma 15.1.24. (1) Either case (4) of 15.1.7 holds, or case (6) of 15.1.7 holds
with p = 3. In particular, Z1 ≤ V1.

(2) L is not an L3(2)-block.
(3) For each Y0 = O2(Y0) ≤ Y with Y0 6≤ MZ , V2 = [V2, Y0] and |Y0 :

CY0(V2)| = 3. In particular V2 = [V2, Y ].
(4) V1 ≤ CS(Y ).

Proof. By construction of V2 in 15.1.16, and since p = 3 when case (6) of
15.1.7 occurs, Ȳ is of order 3 and V2 = [V2, Y ]. Thus (3) follows from 15.1.18.2.
Further from 15.1.16, in cases (4) and (6) of 15.1.7, V1 ≥ Z1 and Ȳ centralizes V1,
so (4) will follow once we prove (1).

To establish (1), we may assume that case (7) of 15.1.7 holds, and we must
produce a contradiction. Let X0 be the preimage inM of Z(O2(M̄)), R := O2(M ∩
Mc), and X1 := O2(〈RX0〉). We apply 14.1.17 to Mc, X0 in the roles of “M1, Y0”
to conclude X̄1 = X̄0 = [X̄0, R] and [R,CX1(V )] ≤ O2(M). As X̄1 = X̄0, Z1 =
[Z1, X0]. Then as X̄1 = [X̄1, R] and [R,CX1(V )] ≤ O2(M), there is a subgroup
X2 of X1 of order 3 with Z1 = [Z1, X2]. So as m3(NG(Z1)) ≤ 2, A.3.18 eliminates
the possibilities in 15.1.22 of 3-rank 2, leaving the case where L is an L3(2)-block.

Then by 1.2.1.3, X2 = O2(X2) normalizes L and O3′(G1) = LO3′(CG1(L/O2(L))).

Therefore as X2 6≤ G1 and m3(NG1(Z1)) ≤ 2, L = O3′(G1).
Thus to establish both (1) and (2), it suffices to assume L is an L3(2)-block.

As usual let U(L) := [O2(L), L]. By 15.1.22, ML is the parabolic of L centralizing
ZS := Ω1(Z(SL)), and M ∩ L is the remaining maximal parabolic of L over SL.
Let Y0 := O2(M ∩ L), so that as L ≤ G1, Y0 ≤ Y but Y0 6≤ ML; hence V2 =
[V2, Y0] and CY0(V2) = O2(Y0) by (3). Thus V2 ≤ Z(O2(Y0)) ≤ U(L), so V2 ≤
[CU(L)(O2(Y0)), Y0] =: U2. As L is an L3(2)-block, U2 is of rank 2, so V2 = U2 is of
rank 2. This eliminates cases (6) and (7) of 15.1.7, and in particular completes the
proof of conclusions (1) and (4) as mentioned earlier, though not yet of (2). Thus
case (4) of 15.1.7 holds. Further V1 ≤ CS(Y0) by (4), and CS(Y0) = CS(L) as L is
an L3(2)-block, so L centralizes V1. Since Z1 ≤ V1 by (1), CG(V1) ≤ CG(Z1) = G1,
and hence L ∈ C(CG(V1)). Let t ∈ T − S and X ∈ Syl3(Y

t
0 ); then X is of order

3, and by our construction of V1 and V2 in 15.1.16, V1 = [V1, X ] and [V2, X ] = 1.
As L ∈ C(CG(V1)), Y t0 = O2(Y t0 ) acts on L by 1.2.1.3, and as X centralizes V2 =
[U(L), Y0], X centralizes L, since L is an L3(2)-block. Then as m3(NG(V1)) ≤ 2

and X 6≤ CG(V1), arguing as above, we conclude that L = O3′(CG(V1)). Indeed

as X centralizes L, so does 〈XY t0 〉 = Y t0 . Then U(L) ≤ CS(Y
t
0 ) = CS(L

t), and
by symmetry, U(L)t centralizes L. Thus 〈L, T 〉 acts on W := U(L)U(L)t. Then
setting N := NG(W ), L ≤ N∞ ≤Mc by 14.1.6.3, contrary to the choice of L. This
contradiction completes the proof of (2), and hence of the lemma. ¤

Lemma 15.1.25. (1) L = O3′ (G1).
(2) L is not M11.
(3) V1 does not centralize L.
(4) |S : CS(V1)| = 2.
(5) L is not an A7-block.
(6) |T : S| = 2.
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Proof. By 15.1.24.2, L is not an L3(2)-block, while in all other cases of 15.1.22,
m3(L) = 2; then we obtain (1) from A.3.18.

Let G∗1 := G1/CG1(L/O2(L)). By (1), Y ≤ L, so Y = O3′ (L ∩ M). By
15.1.17, J(S) = J(T ) and NG(J(S)) ≤M . By 15.1.9.1, J(T ) centralizes V , so by a
Frattini Argument, Y = CY (V )Y0, where Y0 := O2(NY (J(S))). Now CY (V ) ≤Mc

by 15.1.5.2, but we saw Y 6≤ MZ , so Y0 6= 1. However if L ∼= M11, then as
Y0 ≤ O2(NG1(J(S))), Y0 centralizes L as case (6) of 15.1.22 holds, contradicting
1 6= Y0 ≤ L. Hence (2) is established.

Next recall by 15.1.24.1, that we are in case (4) or (6) of 15.1.7, so that |T :
S| = 2 from our construction in 15.1.16; thus (6) holds.

We turn to the proof of (3). Let t ∈ T − S; then V t2 = V1 since we are in case
(4) or (6) of 15.1.7. By 15.1.24.3, V2 = [V2, Y ], and so V1 = [V1, Y

t]. Further a
Sylow 3-group of L, and hence also of Y , is of exponent 3, so there is X of order 3 in
Y t faithful on V1. However if V1 centralizes L, then as Z1 ≤ V1, L = O3′(CG(V1)),

while X 6≤ L as X is faithful on V1. This is a contradiction as L = O3′(NG(V1)) by
A.3.18, so (3) is established.

Part (4) follows from the action of M̄ on V in cases (4) and (6) of 15.1.7; use
15.1.23 in case (6).

Finally suppose L is an A7-block. Represent LS on Ω := {1, . . . , 7}, and
adopt the notation of section B.3. By 15.1.22, Y ∗S∗ contains the stabilizer P ∗ of
the partition {{1, 2}, {3, 4}, {5, 6}, {7}}. Let P be the preimage of P ∗ and Y1 :=
O2(P ). By 15.1.24.4, V1 ≤ CS(Y1), and from the representation of LS on U(L),
CS(Y1) ≤ CS(L)〈u, s〉, where u := eθ, θ := {1, . . . , 6}, and s∗ := (1, 2)(3, 4)(5, 6).
Therefore as s∗ does not induce a transvection on U(L), we conclude from (4)
that V1 ≤ CLS(U(L)) = O2(LS). So as V1 ≤ CS(L)〈u, s〉, V1 ≤ CS(L)〈u〉, so V1
centralizes K := L∞7 with K/O2(K) ∼= A6. As Z1 ≤ V1, K = O3′(CG(V1)) by

(1), and then it follows from A.3.18 that O3′(NG(V1)) = K ≤ CG(V1). This is a
contradiction, as the subgroup X of order 3 defined earlier acts nontrivially on V1.
Hence the proof of (5) and of 15.1.25 is complete. ¤

Lemma 15.1.26. F ∗(L) = O2(L) and L/O2(L) ∼= L4(2) or L5(2).

Proof. Assume otherwise. In cases (2), (4), (5), and (7) of 15.1.22, CS(O
3′(M∩

L)) = CS(L). Thus by 15.1.24.4, V1 ≤ CS(Y ) ≤ CS(L), contrary to 15.1.25.3. Fur-
ther cases (1) and (6) of 15.1.22 were eliminated in parts (5) and (2) of 15.1.25,
leaving only case (3) of 15.1.22, where the lemma holds. ¤

By 15.1.26, F ∗(LS) = O2(LS). Let U := 〈ZL2 〉 and UL := [U,L]. By 15.1.24.1,
case (4) or (6) of 15.1.7 holds, where by construction in 15.1.16, Z is a full diagonal
subgroup of Z1 ⊕ Z2, so CG1(Z) = CG1(Z2) and S = CT (Z1) = CT (Z2). Thus
U ∈ R2(LS) by B.2.14. Set (LS)∗ := LS/CLS(U), and recall CLS(U) = O2(LS)
since L/O2(L) is simple and U ∈ R2(LS). From 15.1.20.2, L = [L, J(S)], so that U
is an FF-module for L∗S∗; then we conclude from Theorem B.5.1 and B.4.2 using
I.1.6 that:

Lemma 15.1.27. One of the following holds:

(1) UL is the orthogonal module or its 7-dimensional cover for L∗ ∼= L4(2).
(2) UL is a 10-dimensional irreducible for L∗ ∼= L5(2).
(3) UL is the sum of the natural module and its dual.
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(4) UL is a sum of at most n− 1 isomorphic natural modules for L∗ ∼= Ln(2),
where n = 4 or 5.

By B.2.14, U = ULCU (L). Let ZU be the projection of Z2 on UL with respect
to this decomposition.

Lemma 15.1.28. UL is a natural module and ML = CL(Z) is the stabilizer of
the point ZU in UL.

Proof. First by 15.1.18.5, C(G1, Q1) =MZ , and Hypothesis C.2.3 is satisfied
with G1, Q1, MZ in the roles of “H , R, MH”. Thus by C.2.1.2, O2(LS) ≤ Q1.
Further L is normal in G1 by 15.1.25.1, so we may apply C.2.7.2 to conclude that
Q1 contains an FF-offender on U .

As CG1(Z) = CG1(Z2), CLS(ZU ) = CLS(Z) ≤ MZ . That is, ML is an S-
invariant proper parabolic containing CL(ZU ).

Suppose case (1), (2), or (4) of 15.1.27 holds. Then CL(ZU ) is a maximal
parabolic, acting irreducibly on O2(CL(ZU )

∗), so by the previous paragraphML =
CL(ZU ) and Q

∗
1 = O2(M

∗
L). Therefore as Q

∗
1 contains an FF∗-offender, we conclude

from B.3.2 or B.4.2 that case (1) holds with UL the natural module for L, so that
the lemma holds in this case.

Thus we may assume case that (3) of 15.1.27 holds. Therefore U = U1 ⊕ U2,
where U1 is a natural module for L∗, and U2 is its dual. Let Z0 := CUL(S), so
that ZU ≤ Z0. Then either S acts on U1 and U2 with Z0 = ZU,1 ⊕ ZU,2, where
ZU,i is the point of Ui fixed by SL, or else S is nontrivial on the Dynkin diagram
of L∗, with Z0 = 〈z1z2〉 where ZU,i := 〈zi〉. In either case, CL(Z0) contains the
parabolic P determined by the interior node(s) of the diagram for L∗. Thus as
CL(Z0) ≤ CL(ZU ) ≤ ML, Q

∗
1 ≤ O2(P

∗). But then by B.4.9.2, Q∗1 contains no
FF∗-offenders, contrary to an earlier remark. ¤

Lemma 15.1.29. UL is not a natural module.

Proof. By 15.1.24.1, we are in case (4) or (6) of 15.1.7. Adopt the notation
of the proof of 15.1.28. By 15.1.28, the projection ZU of Z2 on UL is of order 2.
We saw U = ULCU (L) and Z is a full diagonal subgroup of Z1Z2 with [Z1, L] = 1,
L 6≤ Mc, and CG(z) ≤ Mc for each z ∈ Z#. Thus Z projects faithfully on UL, so
|Z| = 2. Therefore case (4) of 15.1.7 holds, rather than case (6) with p = 3, so V2
is of rank 2. As S acts on V2, and V2 = [V2, Y ] ≤ [U,L] ≤ UL, it follows that V2
is the line in UL stabilized by S. Thus NL(V2) contains the minimal parabolic P0
of LS over S which is not contained in the maximal parabolic MLS = CL(Z)S.
By 15.1.9.1, J(T ) ≤ CT (V2), and by 15.1.17, J(T ) = J(S) and NG(J(S)) ≤ M .
Hence J(S) = J(CS(V2)) = J(O2(P0)) using B.2.3.3, so that P0 ≤ M , and hence
Y0 := O2(P0) ≤ Y with V2 = [V2, Y0]. Let P2 be the minimal parabolic adjacent to
P0 with respect to the Dynkin diagram of L, let Y2 := O2(P2), and letK := 〈Y0, Y2〉.
Thus KS/O2(KS) ∼= L3(2) with KS the rank-2 parabolic corresponding to an end
node and its neighbor, andKS∩MLS = P2. Let Q := CT (V ) and t ∈ T−S. Let P3
be the remaining end-node minimal parabolic of L, and set L0 := O3′(ML). Thus
L0S/O2(L0S) ∼= Ln−1(2), and P2 and P3 are the end-node minimal parabolics of

L0S. By 15.1.25.1 and 15.1.28, L0 = O3′(CG1(Z)), so as O2(CG(Z)) ≤ CG(VE)

by 15.1.14.1, and Z1 ≤ VE by 15.1.18.1, L0 = O3′(CG(Z)). Thus T acts on L0.
Hence as P2 and P3 are the end-node minimal parabolics of L0, Y

t
2 is either Y2 or

Y3 := O2(P3).
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Next O2(P0) = CS(V2), and as case (4) of 15.1.7 holds, CS(V2) = CT (V ), so
Q = O2(P0). Thus from the structure of the rank-2 parabolics of LS: O2(Y3) ≤ Q
so that Q ∈ Syl2(QY3), as the nodes determining P0 and P3 are not adjacent in the
diagram of L; but Q /∈ Syl2(P2), as the nodes determining P0 and P2 are adjacent.
Therefore as t acts on Q, Y t2 6= Y3, so Y

t
2 = Y2.

Let Q2 := O2(P2); as T acts on Y2 and on S, T acts on Q2. But P2 = CKS(Z),
and K has noncentral 2-chief factors on both O2(L) and O2(K)O2(L)/O2(L), so
that K is not an L3(2)-block. We conclude from C.1.34 that there is a nontrivial
characteristic subgroup C of Q2 with C E KQ2, and hence C E KT . Then
H := 〈T,K〉 ≤ NG(C). On the other hand, Y0 centralizes Z1 but V2 = [V2, Y0],
so from our construction in 15.1.16, M = 〈T, Y0〉CM (V ). Then by A.5.7.1, M =
!M(〈T, Y0〉). Since Y0 ≤ K, we conclude H ≤ NG(C) ≤M . But then K = K∞ ≤
CM (V ) by 14.1.6.1, contrary to V2 = [V2, Y0]. This contradiction completes the
proof of 15.1.29. ¤

Observe that 15.1.28 and 15.1.29 supply a contradiction which establishes The-
orem 15.1.15.

15.2. Finishing the reduction to Mf/CMf
(V(Mf )) ' O+

4 (2)

In this section, we complete the proof of Theorem 15.1.3, begun in section 15.1.
Thus we assume G is a counterexample to Theorem 15.1.3.

15.2.1. Preliminary reductions. Recall we are assuming Hypothesis 14.1.5;
in particular by 14.1.5.2,

Mc = !M(CG(Z)).

We continue Notation 15.1.4: namely we set M := Mf , and set V := V (M)
unless case (6) of 15.1.2 holds, where we set V := [V (M),MJ ]. Also M0 is the

preimage in M of Ĵ(M̄, V ).
Since Theorem 15.1.15 eliminated cases (4), (6), and (7) of 15.1.7, we have

reduced to the remaining cases in 15.1.7, which we summarize below for convenience:

Lemma 15.2.1. m(V ) = 4, and one of the following holds:

(1) M̄ = M̄0
∼= S3.

(2) M̄0
∼= S3 and M̄ ∼= S3 × Z3.

(3) M̄ = M̄0 = Ω+
4 (V ).

(4) M̄0
∼= D10, T̄ ∼= Z2 or Z4, and either F (M̄) = F (M̄0) or F (M̄) ∼= Z15.

Furthermore if V < V (M), then case (3) holds.

Lemma 15.2.2. If T ≤ X ≤ M with M0 ≤ XCM (V ) or M0 ≤ XNM (Z ∩ V ),
then M = !M(X).

Proof. Let M1 ∈ M(X). By 15.1.5.1, V = 〈(Z ∩ V )X 〉, and by 15.1.9.2,

M1
<
∼M , so M1 ≤M by A.5.6. ¤

Lemma 15.2.3. Let Rc := O2(M ∩Mc), Y := O2(〈R
O2(M0)T
c 〉), and M∗ :=

M/O2(M). Then

(1) 1 6= Ȳ = [Ȳ , R̄c], and one of the following holds:

(i) Ȳ = O2(M̄0) ∼= Y ∗. Further if case (3) of 15.2.1 holds, then CM (V ) is
a 3′-group.
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(ii) Case (3) of 15.2.1 holds, R̄c ∼= Z2 inverts O2(M̄0) = O2(M̄) = Ȳ ,
Y ∗ ∼= 31+2, and O2(O2,Z(Y )) is the subgroup θ(CM (V )) generated by all elements
of CM (V ) of order 3.

(iii) Case (3) of 15.2.1 holds, R̄c ∼= Z2 inverts Ȳ ∼= Y ∗ ∼= Z3, and a Sylow
3-subgroup of M is isomorphic to Z3 × Z3n for some n ≥ 1.

(2) Y E M .
(3) If Ȳ = O2(M̄0), then M = !M(Y T ).
(4) M = (M ∩Mc)O

2(M0).
(5) R∗cY

∗ centralizes CM (V )∗.

Proof. Part (3) follows from 15.2.2. Set Y0 := O2(M0). To establish the
remaining parts, we apply case (b) of 14.1.17 with Mc in the role of “M1”. By
14.1.17: R̄c 6= 1, Ȳ = [Ȳ0, R̄c], and R

∗
cY

∗ centralizes CM (V )∗, so that (5) holds. As
R̄c 6= 1 = O2(M̄) using 15.1.5.1, Ȳ 6= 1.

Assume for the moment that Ȳ is cyclic. Then Ȳ is of prime order from 15.2.1,
and Ȳ is inverted in R̄c. Hence as R∗c centralizes CY (V )∗ by (5), we conclude
CY (V )∗ = 1, so that Ȳ ∼= Y ∗.

We next prove (1). If case (3) of 15.2.1 does not hold, then Ȳ0 is of prime
order, so Ȳ = Ȳ0, and then conclusion (i) of (1) holds by the previous para-
graph. Thus we may assume that case (3) of 15.2.1 holds. Since R∗c is faithful
on F ∗(M∗) ≤ Y ∗0 CM (V )∗, but R∗c centralizes CM (V )∗, R∗c is faithful on O3(M

∗),
so that m3(CM (V )) ≤ 1 by 14.1.17.4.

Suppose first that Ȳ = Ȳ0, so that Ȳ = O2(M̄). Since CY (V )∗ ≤ Z(Y ∗) by (5),
we conclude from A.1.21 and A.1.24 that either Y ∗ ∼= Ȳ ∼= E9 or Y ∗ ∼= 31+2. In the
former case, conclusion (i) of (1) holds: for CM (V )∗ is centralized by Y ∗ ∼= E9 by
(5), so that CM (V ) is a 3′-group since m3(M) = 2. In the latter case as T̄ ∼= E4,
we conclude from (5) that R̄c is the subgroup of order 2 in T̄ which centralizes
CY (V )∗, and hence inverts Ȳ ; then since m3(CM (V )) ≤ 1, conclusion (ii) of (1)
holds.

Thus we may suppose that Ȳ < Ȳ0. Therefore Ȳ is of order 3, so R̄c is of order
2, and Ȳ ∼= Y ∗ by the second paragraph of the proof. Since Y ∗ centralizes CM (V )∗

and m3(CM (V )) ≤ 1, conclusion (iii) of (1) holds, completing the proof of (1).
We next prove (4). First assume the subcase of case (4) of 15.2.1 where T̄ ∼= Z4

and O(M̄) ∼= Z15 does not hold. In the remaining cases, M̄ = Ȳ0NM̄ (T̄ ), and

NM̄ (T̄ ) = NM (T ) by a Frattini Argument, so as NM (T ) ≤ NM (Z) ≤ Mc =

!M(CG(Z)), (4) holds. Now consider the excluded subcase. By 15.1.13.4, J1(T ) =

T̄ ∩ M̄0, so J1(T ) centralizes O3(M̄). Then O3′(M) acts on VE := CV (J1(T )), so

that O3′ (M) ≤Mc by 15.1.14.2. HenceM = Y TO3′(M) = Y0(M∩Mc), completing
the proof of (4).

As M ∩Mc acts on Rc and Y0, M ∩Mc and Y0 act on [Y0, Rc] = Y . Then as
M = (M ∩Mc)Y0 by (4), (2) holds. ¤

Recall that 15.1.12 describes the possible structures for H ∈ H∗(T,M). We
next eliminate one subcase of 15.1.12.3:

Lemma 15.2.4. If H ∈ H∗(T,M), then H/O2(H) is not S5 wr Z2.

Proof. Assume otherwise, define Rc and Y as in 15.2.3, setM∗ :=M/O2(M)
and X := O2(H ∩M). By 15.1.9.7 we may apply E.2.2 to conclude that X∗ ∼= E9.
FurtherX ≤ CM (V ) ≤M∩Mc by 15.1.9.4 and 15.1.5.2. Therefore case (3) of 15.2.1
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does not hold, as in that casem3(CM (V )) ≤ 1 by 15.2.3.1. Thus Ȳ = O2(M̄0) ∼= Y ∗

by 15.2.3.1, so Y ∗X∗ = Y ∗ ×X∗ as Y ∗ centralizes CM (V )∗ by 15.2.3.5. Then as
M is an SQTK-group, O2(M̄0) ∼= Y ∗ is a 3′-group, so case (4) of 15.2.1 holds.

Next K := O2(H) = K1K
t
1 for t ∈ T − NT (K1) and K1 ∈ C(H) with

K1/O2(K1) ∼= A5 and K1 6≤ M . Observe that F ∗(K1) = O2(K1) by 1.1.3.1. Let
Xi := X∩Ki and S := NT (K1), and observe that O2(XT ) ≤ S, while J(T ) ≤ S by
15.1.12.3. By 15.2.3.2, O2(Y ) ≤ O2(M) ≤ Rc, and hence Rc ∈ Syl2(Y Rc). Then
as X ≤ M ∩Mc, Rc ≤ O2(XT ) ≤ S, so S ∈ Syl2(G1), where G1 := Y X1S. Also
S ∈ Syl2(G2), where G2 := K1S. Let G0 := 〈G1, G2〉.

Suppose first that O2(G0) = 1. This assumption gives part (e) of Hypothesis
F.1.1 with Y Rc, K1 in the roles of “L1, L2”; most other parts are straightfor-
ward, but we mention: As X∗ centralizes Y ∗R∗c , NK1(S ∩ K1) = X1(S ∩ K1) ≤
XS ≤ NG(Y Rc). Recall that Y = [Y,Rc] by construction in 15.2.3, so that
Y Rc/O2(Y Rc) ∼= D10 or Sz(2). Thus the amalgam α := (G1, X1S,G2) is a weak
BN-pair of rank 2 by F.1.9. Furthermore as S = NY S(Rc), α is described in F.1.12.
This is a contradiction, as Y Rc/O2(Y Rc) ∼= D10 or Sz(2) while K1/O2(K1)) ∼= A5,
and no such pair appears in F.1.12.

Therefore O2(G0) 6= 1. Let S ≤ T0 ∈ Syl2(G0). We saw J(T ) ≤ S, so that
J(T ) = J(S) by B.2.3.3. As |T : S| = 2, |T0 : S| ≤ 2, so that T0 normalizes S.
We conclude from 15.1.9.1 that T0 ≤ NG(J(T )) ≤ M , so that either T0 = S or
T0 ∈ Syl2(M). But in the latter case, M = !M(Y T0) by 15.2.3.3, so K1 ≤ G0 ≤

M , whereas we saw K1 6≤ M . Thus S ∈ Syl2(G0). Let Ĝ0 := G0/O2(G0) and

M1 := G0 ∩M . If F ∗(Ĝi) = O2(Ĝi) for i = 1 and 2, then as above (Ĝ1, X̂1Ŝ, Ĝ2)
is a weak BN-pair described in F.1.12, for the same contradiction as before. Thus
either Ŷ ∼= Z5 or K̂1

∼= A5.
As K1 ∈ L(G0, S) and S ∈ Syl2(G0), K1 ≤ L1 ∈ C(G0) by 1.2.4. As K1 6≤M ,

L1 6≤ M . As S normalizes K1, L1 E G0 by 1.2.1.3. Indeed since K1 ≤ L1 and
G1 ≤M1, G0 = 〈G1, G2〉 = L1M1. As |T : S| = 2 and S ≤M1, F

∗(M1) = O2(M1)
by 1.1.4.7.

We claim that G0 ∈ He: If Ŷ ∼= Z5, then V = [V, Y ] ≤ O2(Y ) ≤ O2(G0),

so that G0 ∈ He by 1.1.4.3. Suppose on the other hand that K̂ ∼= A5. We have
seen that G0 = L1M1 and F ∗(M1) = O2(M1). Further NG(O2(Y )) = M since
Y E M and M ∈ M. So it suffices by A.1.10 to show that F ∗(L1) = O2(L1).

Now as K1 ≤ L1 and K̂1
∼= A5, O2(K1) ≤≤ O2(L1). Therefore L̂1

∼= L1/O2(L1) is
quasisimple by 1.2.1.4. Then as F ∗(K1) = O2(K1), L1 does not centralize O2(L1),
so that F ∗(L1) = O2(L1). This completes the proof of the claim that G0 ∈ He.

Let R := O2(Y S). As Y and S are T -invariant, so is R; so as M = !M(Y T ) by
15.2.3.3, C(G,R) ≤ M , and hence C(G0, R) ≤ M1. Further as Y E M1, C.1.2.4
says R ∈ B2(M1) and R ∈ Syl2(〈RM1〉, so R ∈ B2(G0). Thus Hypothesis C.2.3 is
satisfied with G0, M1 in the roles of “H , MH”.

Suppose first that R ∈ Syl2(RL1). Then L1 is a χ0-block by C.2.5, so as K1 ∈

L(L1, S), we conclude from A.3.14 that L1 = K1. As Ŷ = O5′ (Ŷ ) normalizes R̂, it

centralizes the Sylow group R̂∩K̂1 of K̂1 = L̂1, and hence centralizes L̂1. Therefore
K1 normalizes O2(Y O2(G0)) = Y , and hence K1 ≤ NG(Y ) ≤ M = !M(Y T ), a
contradiction. Thus R is not Sylow in RL1. However if Y 6≤ L1, then Y normalizes
Y S ∩ L1 = S ∩ L1, so S ∩ L1 ≤ O2(Y S) = R, contradicting R /∈ Syl2(RL1).
Therefore Y ≤ L1.



15.2. FINISHING THE REDUCTION TO Mf/CMf
(V(Mf )) ' O+

4 (2) 1107

Suppose L̂1 is not quasisimple. Then by 1.2.1.4, F̂1 := F (L̂1) = F ∗(L̂1) is a 3′-

group, so the preimage F1 of F̂1 lies in M1 by C.2.6.2. Then Y ≤ F1: for otherwise
[F1, Y ] ≤ F1 ∩ Y ≤ F1 ∩ O2(Y ) ≤ O2(F1), and then L1 = [L1, Y ] centralizes F̂1,

contradicting F ∗(L̂1) = F̂1. Therefore Ŷ ≤ O5(L̂1), so L̂1
∼= SL2(5)/E25 by 1.2.1.4.

In particular S is irreducible on F̂1, impossible as S acts on Y and Y < F1.
Therefore L̂1 is quasisimple, so as L1 E G0, L1 is described in C.2.7.3. Further

Ŷ is an Ŝ-invariant subgroup of L̂1 with |Ŷ : O2(Ŷ )| = 5, so we may apply A.3.15;
comparing the list of A.3.15 with the list of C.2.7.3, we conclude L1/O2(L1) ∼=
L2(2

n) or SL3(2
n) with n ≡ 0 mod 4. This is impossible, as K1 ∈ L(L1S, S) with

K1/O2(K1) ∼= A5. This contradiction completes the proof of 15.2.4. ¤

We are now able to obtain the analogue of 14.2.2.5:

Lemma 15.2.5. M(T ) = {M,Mc}.

Proof. We assume M1 ∈ M(T )− {M,Mc}, and derive a contradiction. Set
H := M ∩M1 and ZV := Z ∩ V . As Mc = !M(CG(Z)), CM1(V (M1)) ≤ CG(Z) ≤

Mc ≥ NG(ZV ). By 15.1.9.2, M1
<
∼ M , so that M1 = HCM1(V (M1)), and hence

as CM1(V (M1)) ≤ Mc but M1 6≤ Mc, also H 6≤ Mc. Thus H 6≤ NM (ZV ), so
as CM (V ) ≤ Mc by 15.1.5.2, it follows that H̄ 6≤ M̄c, so that T̄ < H̄. On the
other hand if O2(M0) ≤ HNM (ZV ), then M = !M(H) by 15.2.2, contrary to
H ≤M1 6=M . Thus O2(M0) 6≤ HCM (V ), so that H̄ < M̄ .

Now if either case (1) or (2) of 15.2.1 holds, then |M : NM (ZV )| = 3 is prime,
so as H 6≤ NM (ZV ), M = NM (ZV )H , which is contrary to the previous paragraph.
Similarly in case (4) of 15.2.1, as O2(M̄0) 6≤ H̄ and M̄ > H̄ > T̄ , F ∗(M̄) has order
15, and H̄ = O3(M̄)T̄ . But M̄ = M ∩McO

2(M̄0) by 15.2.3.4, so H̄ = O3(M̄)T̄ =
M ∩Mc, contrary to the previous paragraph.

Thus case (3) of 15.2.1 holds, so as M̄ > H̄ > T̄ , H̄ ∼= Z2 × S3. Set M∗ :=
M/O2(M) and R := O2(H).

Suppose for the moment that V < V (M). Then from Notation 15.1.4, case (6)

of 15.1.2 holds. Let MJ denote the preimage in M of Ĵ(AutM (V (M)), V (M)), and
VJ := CV (M)(MJ); by 15.1.4, V = [V (M),MJ ], and by 15.1.2.6, V (M) = V × VJ
with VJ 6= 1, CM (V )CM (VJ )T = Mc, and |M : M ∩Mc| = 3 is prime. So as
H 6≤ Mc, M = H(M ∩Mc) = HCM (V )CM (VJ ) in this case. We now drop the
assumption that V < V (M).

Suppose that R̄ = 1. Observe that hypothesis (a) of 14.1.17 is satisfied with
V (M), O2(M) in the roles of “V , Y0” so as R̄ = 1, we conclude V < V (M)
from 14.1.17.1, and we adopt the notation of the previous paragraph. As R̄ =
1, R ≤ CM (V ), so [CM (VJ ), R] ≤ CM (V (M)). Also R = O2(RCM (V (M))) by
14.1.17.5 applied to V (M) in the role of “V ”, so CM (VJ ) ≤ NM (R). From the
previous paragraph, M = HCM (V )CM (VJ ), so M = CM (V )NM (R), and hence
M = !M(NM (R)) by 15.2.2. Therefore C(G,R) ≤ M , so C(M1, R) = H , and
hence M1 = !M(H) by 14.1.16, contrary to H ≤M 6=M1.

Therefore R̄ 6= 1. Since R̄ ≤ O2(H̄) with H̄ ∼= S3 × Z2, R̄ = O2(H̄) is of order
2. Let Y0 denote the preimage in M of O(H̄); then H̄ = Ȳ0T̄ . As O

2(M̄) is abelian
and T ≤ H , Ȳ0 of order 3 is normal in M̄ .

Set R1 := O2(M1 ∩ Mc), V1 := V (M1), M̂1 := M1/CM1(V1), and M+
1 :=

M1/O2(M1). Recall M̂1 = Ĥ and CM1(V1) ≤ Mc, so M1 = (M1 ∩ Mc)H , and

O2(Ĥ) 6= 1 as M1 6≤Mc.
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We next construct a subgroup Y1 of H with Ŷ1 of order 3, Y1 E M1, and
M1 = (M1 ∩Mc)Y1.

Suppose first that V = V (M). Then by A.5.3.3, CM (V ) ≤ CM1(V1) ∩M ≤ H ,

so as H̄ = Ȳ0T̄ , Y0 ≤ H and H = Y0T . Therefore Ŷ0 E Ŷ0T̂ = Ĥ = M̂1. Further
Ŷ0 6= 1 as O2(Ĥ) 6= 1, so as Ȳ0 has order 3 and CM (V ) ≤ CM1(V1), we conclude

that Ŷ0 has order 3. In this case let Y1 be the preimage inM1 of Ŷ0, so that Ŷ1 = Ŷ0
has order 3 and M̂1 = Ŷ1T̂ , so that M1 = Y1(M1 ∩Mc) and Y1 E M1.

Suppose instead that V < V (M). Then by our earlier discussion, M = H(M ∩
Mc) with |M : M ∩Mc| = 3. Thus M = Y0(M ∩Mc), and Ȳ0 is the unique T̄ -
invariant subgroup of M̄ of order 3 not contained in M ∩Mc. Let Rc := O2(M ∩
Mc), and define Y as in 15.2.3. As |M : M ∩ Mc| = 3, Ȳ = [O2(M̄0), R̄c] <
O2(M̄0) ∼= E9, so case (iii) of 15.2.3.1 holds, and Y ∗ ∼= Ȳ = [O2(M̄0), R̄c]. By the
uniqueness of Ȳ0 mentioned above, Ȳ = Ȳ0. Therefore Y CM (V ) = (Y0∩H)CM (V ).
Now Rc acts on Y0 ∩H , Y ∗R∗cCM (V )∗ = Y ∗R∗c × CM (V )∗ by 15.2.3.5, and Y ∗ =
[Y ∗, R∗c ] since Y

∗ ∼= Ȳ = [Ȳ , Rc]. Thus Y ≤ H , so as |M : M ∩Mc| = 3 is prime,
H = Y (H ∩Mc). Then as we saw M1 = H(M1 ∩Mc), M1 = Y (M1 ∩Mc). As

Y E M and M̂1 = Ĥ, Ŷ E M̂1. As Y 6≤Mc ≥ CM1(V1) ≥ CM (V1), Ŷ 6= 1, so as

Y ∗ has order 3 and CY (V ) ≤ CM1(V1), we conclude Ŷ has order 3. In this case, let

Y1 be the preimage inM1 of Ŷ , so that Ŷ1 = Ŷ has order 3, andM1 = Y1(M1∩Mc).
This completes the definition of Y1 in our second case.

Now in either case we have the hypotheses of case (b) of 14.1.17, with M1, Mc,

R1, Y1 in the roles of “M , M1, R, Y0”. We claim Ŷ1 = [Ŷ1, R1]: For otherwise

R̂1 is normal in Ŷ1M̂1 ∩Mc = M̂1, whereas O2(M̂1) = 1 by B.2.14. Set Y2 :=

O2(〈RY11 〉) = O2(〈RY1T1 〉), so that Y2 plays the role of “Y ” in 14.1.17. Since R1 is

normal in M1 ∩Mc and M1 = Y1(M1 ∩Mc), we have Y2 = O2(〈RM1
1 〉) normal in

M1, so that M1 = NG(Y2) as M1 ∈ M. To complete the proof, we will show that
Y2 E M , so that M = NG(Y2) =M1, contrary to our choice of M1 6=M .

Since Ŷ1 = [Ŷ1, R̂1] is of order 3, Ŷ2 = Ŷ1 ∼= Z3. But by 14.1.17.3, CY2(V1)
+

centralizes R+
1 , so Y

+
2
∼= Ŷ2 ∼= Z3. Moreover Y2CM1(V1) = Y1CM1 (V1), so arguing

as above when we showed Y ≤ H , we conclude Y2 ≤ H . Further Y +
2 = [Y +

1 , R
+
1 ].

Suppose first that V < V (M). Then by construction Y ≤ Y1 and Ŷ = Ŷ1 =

[Ŷ1, R1], so that O2(Y ) = CY (V1) as Y
∗ ∼= Z3. Then as R1 acts on Y , Y = [Y,R1].

Thus Z3
∼= Y +

2 = [Y +
1 , R1] ≥ [Y +, R1] = Y + ∼= Z3, so Y

+
2 = Y +. Then Y2 =

O2(Y2O2(M1)) = O2(Y O2(M1)) = Y E M by 15.2.3, completing the proof in this
case.

Thus we may assume that V = V (M). Here we saw that CM (V ) ≤ H , so
CM (V ) ≤ M1 = NG(Y2), and [R,CM (V )] ≤ O2(H) ∩ CM (V ) ≤ O2(CM (V )) ≤
O2(M), so that R∗ centralizes CM (V )∗. Further R̄ centralizes O(H̄), so case (ii)
of 15.2.3.1 does not hold, since there Y ∗ ∼= 31+2, in which case involutions not
inverting O2(M̄) do not centralize CY (V )∗. Therefore a Sylow 3-subgroup P of M
is abelian by 15.2.3.1. Choose P with X := P ∩ Y2 ∈ Syl3(Y2). Then P centralizes
X and normalizes CM (V ). Now we saw CM (V ) ≤ CM1 (V1) and Y2 E M1, so
〈XCM (V )〉 = Y2. Hence P acts on Y2 so HP = M acts on Y2, completing the
proof. ¤

Lemma 15.2.6. Define Rc and Y as in 15.2.3. Then there exists a T -invariant
subgroup Y1 := O2(Y1) of Y such that
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(1) Y1Rc/O2(Y1Rc) ∼= S3, D10, or Sz(2).
(2) CY1(V ) = O2(Y1).
(3) M = !M(Y1T ).

Proof. Assume case (3) of 15.2.1 does not hold. Here we take Y1 := Y . Then
by 15.2.3.1, Ȳ = [Ȳ , R̄c] = O2(M̄0) and CY (V ) = O2(Y ), so (2) holds, and (3)
follows from 15.2.3.3. Conclusion (1) follows from the structure of M̄0 described in
15.2.1.

So assume that case (3) of 15.2.1 holds. In case (iii) of 15.2.3.1, we again
choose Y1 := Y , so that Ȳ = [Ȳ , R̄c] is of order 3. In cases (i) and (ii) of 15.2.3.1,
we choose Y0 to be the preimage of a T -invariant subgroup Y ∗0 of Y ∗ of order 3
with Ȳ0 = [Ȳ0, R̄c] of order 3, and set Y1 := O2(Y0). In each case Y1 satisfies (1) by
construction. In case (iii) of 15.2.3.1, Ȳ1 = Ȳ ∼= Y ∗, so (2) holds; in the remaining
cases we chose Y1 with Ȳ1 ∼= Y ∗, so again (2) holds. Finally as Y1 = [Y1, Rc],
Y1 6≤Mc, so (3) follows from 15.2.5. ¤

Lemma 15.2.7. Define Y as in 15.2.3 and Y1 as in 15.2.6. Then

(1) M = !M(Y T ).
(2) If 1 6= X = O2(X) ≤ CM (V ) is T -invariant, then

(i) NG(X) ≤M , and
(ii) if |X : O2(X)| = 3, then X acts on Y1.

Proof. Part (1) follows from 15.2.6.3 as Y1 ≤ Y . Assume X satisfies the
hypotheses of (2); to prove (2), it suffices by (1) to show that Y acts on X , and
that X acts on Y1 if |X : O2(X)| = 3. Let M∗ := M/O2(M). As T acts on
X = O2(X) and Y1 = O2(Y1), it suffices to show that Y ∗ acts on X∗, and that
X∗ acts on Y ∗1 if |X : O2(X)| = 3. But as Y E M by 15.2.3.2, [X,Y ] ≤ CY (V ),
so if CY (V ) = O2(Y ), then [X∗, Y ∗] = 1, and the lemma holds. Thus by 15.2.3.1,
we may assume that case (ii) of 15.2.3.1 holds. Then [X∗, Y ∗] ≤ Z(Y ∗) with
Z(Y ∗) of order 3. Thus if X∗ is a 3′-group, then X∗ = O2(X∗) centralizes Y ∗ by
Coprime Action, and as before the lemma holds. Finally if X∗ is not a 3′-group,
then Z(Y ∗) ≤ X∗ as case (ii) of 15.2.3.1 holds, so [X∗, Y ∗] ≤ Z(Y ∗) ≤ X∗, and
once again Y ∗ acts on X∗. Also if |X : O2(X)| = 3, then X∗ = Z(Y ∗) acts on Y ∗1 ,
completing the proof. ¤

Lemma 15.2.8. If H ∈ H∗(T,M), then H/O2(H) ∼= S3 wr Z2.

Proof. First H/CH(U1) is described in 15.1.12.3, where U1 is a noncentral
chief factor for H on UH := 〈V H〉. In particular O2(H/CH (U1)) = 1, so O2(H) ≤
CH(U1). Recall by 15.1.9.7 that H is a minimal parabolic described by B.6.8;
thus H ∩ M = NH(T ∩ H) by 3.1.3.1, and CH(U1) ≤ H ∩ M by B.6.8.6a. If
CH(U1) > O2(H), then X := O2(CH(U1)) 6= 1, so that X ≤ CM (V ) by 15.1.9.4;
hence by 15.2.7.2, H ≤ NG(X) ≤ M , contrary to H ∈ H∗(T,M). Therefore
O2(H) = CH (U1).

Thus H/CH(U1) = H/O2(H) is described in 15.1.12.3. By 15.2.4, H/O2(H) is
not S5 wr Z2, and the lemma holds if H/O2(H) is S3 wr Z2, so we may assume
that H/O2(H) ∼= S3 or S5, and it remains to derive a contradiction.

Define Rc and Y as in 15.2.3, and Y1 as in 15.2.6. We will verify that Hypothesis
F.1.1 is satisfied with Y1Rc, H , T in the roles of “L1, L2, S”. Most parts are
straightforward, but we give a few details: First Y1Rc/O2(Y1Rc) ∼= S3, D10, or
Sz(2) by 15.2.6.1, while we saw H/O2(H) ∼= S3 or S5, so that part (c) holds. Next
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M = !M(Y1T ) by 15.2.6.3, so that O2(〈Y1T,H〉) = 1, and hence part (e) holds. To
verify part (d), we must show that H ∩M normalizes Y1Rc. By 15.1.9.3, H ≤Mc,
so H ∩M acts on Rc. By 15.1.9.4, O2(H ∩M) ≤ CM (V ), so O2(H ∩M) acts on
Y1 by 15.2.7.2.

Hence α := (Y1(H ∩M), H ∩M,H) is a weak BN-pair of rank 2 by F.1.9, and
sinceNY1Rc(T ) = T , α appears in the list of F.1.12. Now UH is abelian by 15.1.11.2,
and H has two noncentral 2-chief factors on UH by 15.1.12.1, which are natural
modules for H/O2(H) ∼= Sn for n = 3 or 5 by 15.1.12.3. But these conditions are
not satisfied by any member of F.1.12. ¤

We now define notation which will be in force for the remainder of the section:

Notation 15.2.9. Pick H ∈ H∗(T,M), and let QH := O2(H), UH := 〈V H〉,
and H∗ := H/O2(H). Recall in particular by 15.1.9.3 that

H ≤Mc.

By 15.1.12.1, H has exactly two noncentral chief factors U1 and U2 on UH . By
15.2.8, H∗ ∼= S3 wr Z2. Thus by 15.1.12.4, m(Ui) = 4 and H∗ = O+

4 (Ui), so
Ui = Ui,1 ⊕ Ui,2 with Ui,j ∼= E4, j = 1, 2, the two definite 2-dimensional subspaces
of the othogonal space Ui. Also H∗ = (H∗1 × H∗2 )〈t

∗〉, where t∗ is an involution
with Ht

1 = H2 and H∗i
∼= S3. This choice for H1 and H2 is not unique, but 15.1.12

supplies us with a distinguished choice: Pick Hi := CH(U1,3−i). In particular the
subgroups H∗i , i = 1, 2 contain the transvections in H∗ on U1. Let Ki := O2(Hi)
and K := O2(H).

Next let ∆ consist of those A ∈ A(H) such that A∗ is minimal subject to
A 6≤ QH . By 15.1.12.2, for each A ∈ ∆, A∗ is an FF∗-offender on U1 and U2.
From B.2.9.1 and the description of FF∗-offenders in B.1.8.4, A∗ is of order 2 by
minimality of A∗, so A∗ induces transvections on both U1 and U2. Thus A lies in
either H1 or H2, and we can choose notation so that also Hi = CH(U2,3−i). Then
Uj,i = [Uj , Hi] and U

t
j,1 = Uj,2.

For A ∈ ∆, let B(A) := A∩QH ; thus |A : B(A)| = |A∗| = 2. Let Σ := {B(A) :
A ∈ ∆}.

Observe by 15.2.8 that T = M ∩ H = NH(V ), so |V H | = 9. For h ∈ H , let
∆(V h) := ∆ ∩ T h, ∆′(V h) := ∆ − ∆(V h); Σ(V h) := {B(A) : A ∈ ∆(V h)}, and
Σ′(V h) := Σ− Σ(V h).

Lemma 15.2.10. Let D̄ ∈ Q(T̄ , V ). Then

(1) D̄ ≤ M̄0 and m(D̄) = 1.
(2) m([V,D]) = 2.
(3) [V,D] E T .

Proof. By 15.2.1, Q(T̄ , V ) ⊆ Ω1(T̄ ) ≤ M̄0. Then the lemma follows easily
from 15.2.1: For example (3) follows as T̄ is abelian, and in case (3) of 15.2.1,
m(D̄) = 1 since D̄ acts quadratically on V . ¤

Lemma 15.2.11. Let B ∈ Σ′(V ) and ZS := [V,B]. Then

(1) B̄ ∈ Q(M̄, V ).
(2) ZS ≤ Z(K).
(3) E4

∼= ZS E T .
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Proof. Recall B = B(A) for some A ∈ ∆′(V ), and we may assume without
loss that A ≤ H1. Let X := 〈∆ ∩ T ∩H1〉 and I1 := 〈XH1〉; then X E NT (H1).
As A ≤ H1, K1 = [K1, A] ≤ I1. Also H1 = QH〈X,A〉, so I1 = 〈X,A〉.

We saw T = NH(V ), so A does not normalize V , and hence [V,A] 6= 1. But
B ≤ O2(H), so B does normalize V , and by 15.1.12.2, CUH (A) = CUH (B); so
[V,B] 6= 1. Therefore (1) holds by 15.1.12.2, and then (3) follows from 15.2.10.
Recall A∗ is of order 2; thus 1 = m(A/B) = m(B/CB(UH)) by 15.1.12.2. Also
15.1.12.2 shows A is quadratic on UH , so ZS = [V,B] is centralized by A. Further
as ∆ ⊆ A(H), X ≤ J(T ) ≤ CG(V ) by 15.1.9.1, so ZS is centralized by 〈X,A〉 = I1.
Thus by (3), ZS E 〈I1, T 〉 = H , so K = 〈KH

1 〉 ≤ CG(ZS), and hence (2) holds. ¤

Recall from Notation 15.2.9 that H ≤Mc. Set Kc := 〈KMc〉.

Lemma 15.2.12. Let B ∈ Σ′(V ) and ZS := [V,B]. Then

(1) K ∈ Ξ(G, T ).
(2) One of the following holds:

(i) Kc = K.
(ii) Kc ∈ L∗(G, T ) = C(Mc) and KcT/O2(KcT ) ∼= Aut(Ln(2)), n = 4 or

5.
(iii) Kc = LLt with L ∈ L∗(G, T ) = C(Mc) and L/O2(L) ∼= L2(2

n), n
even, or L2(p) for some odd prime p.

(3) Mc = !M(H) and ZS E H, so NG(ZS) ≤Mc.

(4) Kc = O3′(Mc) ≤ CG(Z).
(5) Case (6) of 15.1.2 does not hold, so V = V (M).

Proof. Part (1) is immediate from 15.2.8. By 1.3.4, either K = Kc, or Kc =
〈LT 〉 for some L ∈ C(Mc) described in (1)–(4) of 1.3.4. Suppose the latter holds.
By 14.1.6.2, L ∈ L∗(G, T ). As AutT (K/O2(K)) ∼= D8, we conclude from 1.3.4 that
either LT/O2(LT ) ∼= Aut(Ln(2)), n = 4 or 5, or L < Kc and L/O2(L) ∼= L2(2

n) or
L2(p). Therefore (2) is established.

By 15.2.5, Mc = !M(H), while by (2) and (3) of 15.2.11, H normalizes ZS,
so (3) holds. In case (i) of (2), as AutT (K/O2(K)) ∼= D8 and Aut(K/O2(K)) =
GL2(3), it follows as T ∈ Syl2(NG(K)) that AutG(K/O2(K)) = AutT (K/O2(K)),

so O3′(Mc) = KO3′(CMc(K/O2(K))). Therefore asK/O2(K) ∼= E9 andm3(Mc) ≤

2, we conclude Kc = K = O3′(Mc). In cases (ii) and (iii) of (2), we obtain

Kc = O3′(Mc) using A.3.18 and 1.2.2.a. If K < Kc, then Kc = K∞c centralizes Z
by 14.1.6.3. If K = Kc, this follows from 15.1.9.3. This completes the proof of (4).

By (4), O3′(M∩Mc) ≤ CM (Z). However in case (6) of 15.1.2, |M :M∩Mc| = 3
and O2(M̄) ∼= E9 with T̄ = CM̄ (Z ∩ V ). This contradiction establishes (5). ¤

Lemma 15.2.13. (1) Either

(i) case (1) or (4) of 15.2.1 holds, with M̄ ∼= S3, D10, or Sz(2), or
(ii) case (3) of 15.2.1 holds, and O(M̄) = [O(M̄ ), B] for each B ∈ Σ′(V ).

(2) Let B̄0 be the unique subgroup of T̄ of order 2 with O(M̄ ) = [O(M̄), B̄0].
Then for each B ∈ Σ′(V ), B̄ = B̄0, and CV (B) = [V,B] = [V, B̄0] = CV (B̄0).

Proof. Assume conclusion (i) of (1) does not hold. Then either one of cases
(2) or (3) of 15.2.1 holds, or case (4) of 15.2.1 holds with F ∗(M̄) ∼= Z15. Pick B ∈
Σ′(V ). By 15.2.11.1 and 15.2.10.1, B̄ is of order 2. Then either X̄ := CO(M̄)(B̄) ∼=

Z3, or case (3) of 15.2.1 holds with O(M̄) = [O(M̄), B̄]. Assume the former case
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holds. Then we compute that X̄ acts faithfully on [V,B] =: ZS, so X ≤ NG(ZS) ≤
Mc by 15.2.12.3. Hence X ≤ CG(Z) by 15.2.12.4, impossible as X is nontrivial
on ZS , and 1 6= Z ∩ ZS. Therefore the latter case holds for each B ∈ Σ′(V ), and
hence conclusion (ii) of (1) holds. This completes the proof of (1). Then (1) implies
(2). ¤

For the remainder of the section, we define B̄0 and ZS := [V, B̄0] as in 15.2.13.2.
Thus ZS = [V,B] for each B ∈ Σ′(V ) by 15.2.13.2. Let S := CT (ZS).

Lemma 15.2.14. (1) Mc = CG(Z).
(2) Z ≤ ZS, and either

(a) S = T and Z = ZS ∼= E4, or
(b) M̄ ∼= Sz(2) or Ω+

4 (V ), Z is of order 2, and |T : S| = 2.

(3) Baum(T ) ≤ S.
(4) ZS = Ω1(Z(S)).
(5) M ∩Mc = CM (Z) = CM (V )T .
(6) m(M̄, V ) = 2 and a(M̄, V ) = 1.

Proof. As M̄ is solvable, a(M̄, V ) = 1 by E.4.1. Then by inspection of the
cases in 15.2.13.1, and recalling V = V (M) by 15.2.12.5 so that Z ≤ V , (2) and (6)
hold, and CM̄ (Z) = T̄ . Recall CM (V ) ≤ Mc by 15.1.5.2. In case (i) of 15.2.13.1,
T̄ is maximal in M̄ , so CM (V )T = M ∩Mc as Mc 6≤ M . In case (ii) of 15.2.13.1,

this holds as O3′(M ∩Mc) ≤ CM (V ) by 15.2.12.4. Thus (5) is established. Further

Mc = (M ∩Mc)CMc(V (Mc)) since Mc
<
∼ M by 15.1.9.2, so Mc centralizes Z by

(5), and hence (1) holds.
If ZS = Z, then S = T so (3) and (4) are trivial; thus we may assume that

M̄ ∼= Sz(2) or Ω+
4 (2) with Z of order 2. Then Baum(T ) ≤ CT (V ) ≤ S by 15.1.9.1,

completing the proof of (3). Finally ZS ≤ Ω1(Z(S)) =: Z0 and Z2
∼= Z = CZ0(T );

so as T/S is of order 2, m(Z0) ≤ 2m(Z) = 2 = m(ZS) using 15.2.11.3, and hence
Z0 = ZS , establishing (4). ¤

15.2.2. A uniqueness theorem. This subsection is devoted to establishing
the following uniqueness theorem:

Theorem 15.2.15. Mc = !M(CMc(ZS)).

The proof of Theorem 15.2.15 involves a series of reductions. Until it is com-
plete, we assume I ∈ H(CMc(ZS)) with I 6≤Mc, and work toward a contradiction.
Set MI :=Mc ∩ I and NI :=M ∩ I . In particular

MI < I.

Since Z ≤ ZS by 15.2.14.2, and Mc = CG(Z) by 15.2.14.1, while we chose
CMc(ZS) ≤ I :

Lemma 15.2.16. CG(ZS) = CMc(ZS) ≤MI .

Recall H ≤Mc by Notation 15.2.9; so as ZS ≤ Z(K) by 15.2.11.2, KS ≤MI .
As CMc(ZS) ≤ I 6≤ Mc and Mc = CG(Z), Z < ZS . Hence case (b) of 15.2.14.2
holds, so by that result:

Lemma 15.2.17. (1) M̄ ∼= Sz(2) or Ω+
4 (2).

(2) |Z| = 2.
(3) |T : S| = 2.
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Lemma 15.2.18. (1) S ∈ Syl2(I).
(2) B := Baum(T ) = Baum(S) and C(I, B) ≤ NI .
(3) Either

(i) NI ≤MI , or
(ii) NI 6≤ MI , case (ii) of 15.2.13.1 holds, with M̄ = Ω+

4 (V ), and NI =
CM (Z1) is of index 6 in M , for some complement Z1 to Z in ZS.

Proof. Recall ZS is of order 4 by 15.2.11.3. Let S ≤ TI ∈ Syl2(I). By
15.2.14.3 and B.2.3.5, B = Baum(S) = Baum(TI), and C(G,B) ≤ M by 15.1.9.1.
Thus (2) holds and also TI ≤ NI(B) ≤ M , so as NM̄ (S̄) = T̄ and |T : S| = 2 by
15.2.17, TI is either T or S. But if TI = T , then I ≤ M by 15.2.5 since I 6≤ Mc,
and we saw K ≤MI ; but this is contrary to H 6≤M . Thus (1) is established.

Next using 15.2.16, CM (V ) ≤ CM (ZS) ≤ MI , so if O2(NI) ≤ CM (V ), then
conclusion (i) of (3) holds. Thus we may assume X := O2(NI) 6≤ CM (V ).

Suppose X̄ E M̄ . Then T acts on SXCM (V ) and K, so T acts on G0 :=
〈SXCM (V ),K〉. Now O2(I) ≤ S ≤ G0 ≤ I , so TG0 ∈ H(T ). But by 15.2.14.5,
M ∩Mc = CM (V )T , so as X 6≤ CM (V ), TG0 6≤ Mc. Hence M = !M(TG0) by
15.2.5, so K ≤ G0 ≤M , contrary to H 6≤M .

Therefore X̄ is not normal in M̄ , so case (ii) of 15.2.13.1 holds, and X̄ is one
of the two subgroups of O(M̄) of order 3 not normal in M̄ . Thus conclusion (ii) of
(3) holds, completing the proof. ¤

Recall C1(S) from Definition C.1.18.

Lemma 15.2.19. Define B := Baum(S).

(1) If conclusion (i) of 15.2.18.3 holds, then C(I, B) ≤MI ≥ CI(C1(S)).
(2) If conclusion (ii) of 15.2.18.3 holds, then Hypothesis C.2.3 is satisfied with

I, O2(NI), NI in the roles of “H, R, MH”.

Proof. Assume first that conclusion (i) of 15.2.18.3 holds. Then NI ≤ MI ,
so C(I, B) ≤ NI ≤ MI by 15.2.18.2. Further C1(S) E T as S E T by 15.2.17.3,
so 1 6= Z ∩ C1(S) and hence CI (C1(S)) ≤ CG(Z ∩ C1(S)) ≤ Mc = !M(CG(Z)),
completing the proof of (1).

Next assume conclusion (ii) of 15.2.18.3 holds, and let R := O2(NI). Then N̄I ∼=
S3, so R ≤ CM (V ). But CM (V ) ≤ CM (ZS) ≤ NI , so R = O2(CM (V )) = O2(M),
and hence C(I, R) ≤ NI . Then as R = O2(NI), the remaining two conditions of
Hypothesis C.2.3 are trivially satisfied, so (2) holds. ¤

Lemma 15.2.20. (1) The hypotheses of 1.1.5 are satisfied with I, Mc in the
roles of “H, M” for each z ∈ Z#.

(2) F ∗(MI) = O2(MI).
(3) O(I) = 1.

Proof. Let I0 ∈ M(I); then part (1) holds for I0 in the role of “I” by 1.1.6.
Then by 15.2.18.1, S is Sylow in I and I0. In particular, O2(I0∩Mc) ≤ O2(I∩Mc) ≤
S by A.1.6. Hence as I0 satisfies the hypotheses of 1.1.5,

CO2(Mc)(O2(I ∩Mc)) ≤ CO2(Mc)(O2(I0 ∩Mc)) ≤ T ∩ I0 = S ≤ I,

and so (1) holds. Then (2) follows from (1) and 1.1.5.1. As usual 1 6= UK := [UH ,K]
centralizes O(I) by A.1.26.1, and Z ≤ UK since Z = Ω1(Z(T )) has order 2 by
15.2.17.2, so (3) follows from 1.1.5.2. ¤
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Lemma 15.2.21. (1) If S is not irreducible on K/O2(K) then KS = H1H2,

Kt
1 = K2 for t ∈ T − S, and Kc centralizes ZS, so that Kc = O3′(MI).
(2) If K = Kc then CM (V ) is a 3′-group.
(3) Assume Kc/O2(Kc) ∼= L4(2), conclusion (ii) of 15.2.18.3 holds, and there is

an S-invariant subgroup Y1 = O2(Y1) of NI with Y1S/O2(Y1S) ∼= S3 and Y1 6≤MI .
Then S is irreducible on K/O2(K).

Proof. Assume S is not irreducible on K/O2(K). From Notation 15.2.9,
K∗T ∗ ∼= O+

4 (2), so T
∗ is irreducible on K∗ and hence S∗ < T ∗. But |T : S| = 2

by 15.2.17.3, so O2(KT ) ≤ S. As J(T ) ≤ S by 15.2.18.2, and |T ∗ : J(T )∗| = 2 by
15.1.12.3, J(T )∗ = S∗. Further J(T )∗ ∈ Syl2(H∗1H

∗
2 ) by 15.1.12.3, so KS = H1H2,

and hence Kt
1 = K2 for t ∈ T − S.

Recall Kc = 〈KMc〉 = O3′ (Mc) is described in 15.2.12.2. If K = Kc, then
(1) holds by 15.2.11.2, so we may assume K < Kc. Then Kc = 〈LT 〉 for some
L ∈ C(Mc) described in 15.2.12.2. Now using A.1.6, O2(KcT ) ≤ O2(KT ) ≤ S =
CT (ZS), so as L /∈ Lf (G, T ) by Hypothesis 14.1.5.1, Kc ≤ CG(ZS) ≤MI by 1.2.10
and 15.2.16, completing the proof of (1).

Assume in addition the hypotheses of (3); we will obtain a contradiction to
our assumption that S is not irreducible on K/O2(K), and hence establish (3). As
|Y1 : O2(Y1)| = 3 and Y1 ≤ NI but Y1 6≤ MI , Ȳ1 ∼= Z3. By hypothesis, case (ii) of
15.2.18.3 holds, so NI = CM (Z1) is of index 6 in M , for some complement Z1 to
Z in ZS ; in particular, Ȳ1 = O(N̄I ) is not T -invariant. Define Y as in 15.2.3, and

set M̂ := M/O2(M). If case (iii) of 15.2.3.1 holds, then Ŷ ∼= Z3 is T -invariant, so
Y Y1/O2(Y Y1) ∼= Ȳ Ȳ1 ∼= E9, and hence CM (V ) is a 3′-group as m3(M) ≤ 2.

Next KS is the maximal parabolic subgroup of KcS determined by the end
nodes of the Dynkin diagram for Kc/O2(Kc). Let Y0 := O2(P ), where P is the
minimal parabolic determined by the middle node. If Y0T 6≤ M , then Y0T ∈
H∗(T,M), contrary to 15.2.8; hence Y0T ≤M , so Y0 ≤ CM (V ) by 15.2.14.5. Thus
CM (V ) is not a 3′-group, so case (ii) of 15.2.3.1 holds by the previous paragraph.

Therefore Ŷ ∼= 31+2 and Ŷ0 = Z(Ŷ ). Now S̄ inverts Ȳ1 which is not T̄ -invariant, so

as |T : S| = 2, S̄ is the subgroup of order 2 of T̄ inverting Ȳ , and so Ŝ centralizes

Ŷ0, This is impossible, as Kc ≤ MI by (1), so S ∈ Syl2(KcS) by 15.2.18.2, and
then SY0/O2(SY0) ∼= S3. So (3) is established.

Finally assumeK = Kc. Then asM∩K = O2(K) by 15.2.8, and K = O3′(Mc)

by 15.2.12.4, we conclude O3′ (M ∩Mc) = 1, so (2) holds. ¤

Lemma 15.2.22. Assume conclusion (ii) of 15.2.18.3 holds, F ∗(I) = O2(I),
and CM (V ) is a 3′-group. Assume S is not irreducible on K/O2(K), and there is
Y1 = O2(Y1) ≤ NI which is S-invariant with Y1S/O2(Y1S) ∼= S3. Then [Y1,K2] 6≤
Y1 ∩K2.

Proof. Assume [Y1,K2] ≤ Y1 ∩K2. Then for t ∈ T − S, [Y t1 ,K1] ≤ Y t1 ∩K1

as Kt
2 = K1 by 15.2.21.1. Next as conclusion (ii) of 15.2.18.3 holds, N̄I = CM̄ (Z1)

is of index 6 in M̄ ∼= Ω+
4 (V ) for some complement Z1 to Z in ZS . Then as Y1 ≤ NI

and CM (V ) is a 3′-group, Ȳ1 = O3(N̄I), Ȳ1Ȳ
t
1 = O(M̄) ∼= E9, and M has Sylow

3-subgroups isomorphic to E9. Define Y as in 15.2.3; as Y E M but Y1 is not
T -invariant, Y Y1 contains a Sylow 3-subgroup of M , so by a Frattini Argument,
we may take t to act on Y Y1, and thus Y Y1 = Y1Y

t
1 with [Y1, Y

t
1 ] ≤ Y1 ∩ Y t1 .

Let X := 〈Y1,K1〉; then [X,Xt] ≤ X ∩X t, in view of the commutator relations
established in first sentence of the proof, along with the relations [Y1, Y

t
1 ] ≤ Y1∩Y

t
1
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and [K1,K2] ≤ K1 ∩K2. Now S acts on X , F ∗(I) = O2(I) by hypothesis, and S ∈
Syl2(I) by 15.2.18.1; thus F ∗(XS) = O2(XS) by 1.1.4.4. Then F ∗(X) = O2(X) by
1.1.3.1, so that O2(X) 6= 1. It follows that O2(XX

t) 6= 1. Then as T acts on XX t,
XXtT ∈ H(T ). This is a contradiction, as Y1Y

t
1 T ≤ XX tT and M = !M(Y1Y

t
1 T )

by 15.2.2, so that K = K1K2 ≤M , contrary to H 6≤M . ¤

Recall CMc(ZS) = CG(ZS) by 15.2.16. During the remainder of the proof of
Theorem 15.2.15, take I minimal subject to I ∈ H(CG(ZS)) and I 6≤ Mc. Recall
MI < I , so as MI = I ∩Mc, MI is a maximal subgroup of I .

For X ≤ G, let θ(X) be the subgroup generated by all elements of X of order
3.

Lemma 15.2.23. F ∗(I) 6= O2(I).

Proof. We assume F ∗(I) = O2(I) and derive a contradiction. We begin with
some preliminary reductions.

Suppose first that there is X0 = O3′ (X0) = X∞0 E I with X0 nontriv-

ial on Z0 := Ω1(Z(O2(X0))) and X0 ≤ Mc. As X0 = O3′(X0), X0 ≤ Kc by
15.2.12.4. Since S ∈ Syl2(I) by 15.2.18.1, S ∩ O2(Kc) = I ∩ O2(Kc), so X0

acts on S ∩ O2(Kc). Therefore as |T : S| = 2 by 15.2.17.3, |O2(Kc) : S ∩
O2(Kc)| ≤ 2, so [O2(Kc), X0] ≤ S ∩ O2(Kc) ≤ NG(X0), Thus X0 = (X0O2(Kc))

∞

is O2(Kc)-invariant. Hence [X0, O2(Kc)] ≤ O2(X0) ≤ CG(Z0), so by the Thompson
A × B-lemma, X0 is nontrivial on CZ0(O2(Kc)). But since Kc ∈ He by 1.1.3.1,
CZ0(O2(Kc) ≤ Ω1(Z(O2(Kc))) =: Zc. Hence Kc is nontrivial on Zc, so that
Kc ∈ Lf (G, T ) by 1.2.10, contradicting part (1) of Hypothesis 14.1.5. Thus no
such X0 exists.

Next assume that either X is a χ-block of I , or X ∈ C(I) with X/O2(X) ∼=
L3(2) and X is described in C.1.34. Set X0 := 〈XS〉 and U0 := 〈ZX0

S 〉. Observe
that X0 E I either by 1.2.1.3, or when X is an A3-block since |XI | ≤ m3(I) ≤ 2.

If X is an A7-block, then X = O3′(I) by A.3.18, so K ≤ X . In the remaining cases,
m3(X) = 1 and K acts on X , so as m3(KX) ≤ 2, K0 := O2(K ∩X) 6= 1.

Consider first the subcase where X is an A3-block or an L2(2
n)-block. By

15.2.11.2, ZS centralizes K, so that ZS ∩ U0 centralizes 〈KS
0 〉 = X0; this is impos-

sible, as ZS ∩ U0 6≤ CU0(X0) in these blocks (cf I.2.3.1).
This leaves the subcases where either X is an A5-block or an A7-block, or

X/O2(X) ∼= L3(2). Then X0 6≤ Mc by paragraph two, so M0 := X0 ∩MI < X0.
Notice CX0 (ZS) ≤ M0 by 15.2.12.3. If X is an A5-block, then CX0(ZS) is a Borel
subgroup ofX0, soM0 is that Borel subgroup. IfX is an A7-block, then we sawK ≤
X , so K ≤ M0 by 15.2.11.2, and hence M0 = K(X ∩ S) is the maximal subgroup
stabilizing the partition {{1, 2, 3, 4}, {5, 6, 7}}, using the notation of section B.3.
Finally if X/O2(X) ∼= L3(2), then since CX0(ZS) ≤ M0 < X0, case (5) of C.1.34
is eliminated by B.4.8.2, as in that case ZS centralizes X0. Thus CX0(ZS) is a
maximal parabolic of X0, so M0 is that maximal parabolic.

Let QI := O2(KS); in each case M0 E KS, so QI = O2(M0QI). Further M0

contains a Sylow 2-group of X0, so O2(X0QI) ≤ QI by A.1.6. Next QI E H as |T :
S| = 2, so C(I,QI) ≤ MI by 15.2.12.3. Then as M0 < X0, J(QI) 6≤ O2(X0QI)),
so there is an FF∗-offender in AutQI (U0) by B.2.10. Hence by B.3.2.4, X is not
an A5-block or an A7-block. Further cases (2)–(4) of C.1.34 are eliminated since
CX0(ZS) ≤M0, leaving case (1) of C.1.34 where X is an L3(2)-block. Thus we have
shown that I possesses no χ-blocks, and if X ∈ C(I) with X/O2(X) ∼= L3(2) and
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X is described in C.1.34, then X is an L3(2)-block. This completes our preliminary
reductions.

Suppose first that conclusion (i) of 15.2.18.3 holds. Then by 15.2.19.1 and
C.1.28, I = MIL1 · · ·Ls, where Li is a χ-block. But then MI = I by the previous
paragraph, a contradiction.

Therefore conclusion (ii) of 15.2.18.3 holds. Set R := O2(NI). Then case
(2) of 15.2.19 holds, so Hypothesis C.2.3 is satisfied by I , R, NI in the roles of
“H , R, MH”. If O2,F (I) 6≤ NI , then by C.2.6, there is an A3-block X of I with
X 6≤ NI , contrary to an earlier reduction. Thus O2,F (I) ≤ NI . On the other
hand, if O2,F∗(I) ≤ NI , then R = O2(I) by A.4.4.1, contradicting NI = NI(R) and
K 6≤ NI . Thus there is X ∈ C(I) with X/O2(X) quasisimple and X 6≤ NI . Further
K = O2(K) normalizes X by 1.2.1.3.

If R does not act on X , then X is a χ-block by C.2.4, contrary to an earlier
reduction. Thus R acts on X , so X is described in C.2.7.3. Let MX := M ∩ X ,
and this time set M0 :=MI ∩X , so that M1 := CX (ZS) ≤M0 by 15.2.12.3.

Suppose that case (g) of C.2.7.3 holds. Then X/O2(X) ∼= SL3(2
n), MX is a

maximal parabolic of X , and (XR,R) is an MS-pair described in C.1.34. Assume
first that n > 1. Then M1 = P∞, where P is the maximal parabolic of XS
over S other than MX . As m3(KCX(ZS)) = 2, K0 := O2(K ∩M1) 6= 1; then
as S acts on K0, n is even. Then O2,Z(X) > O2(X), so as m3(KO2,Z(X)) = 2,
O2,Z(X) ≤ K. This is impossible, as O2,Z(X) ≤ MX while K ∩ M = O2(K).
Therefore n = 1, so by an earlier reduction, X is an L3(2)-block and M0 = M1

is the maximal parabolic of X over S ∩ X other than MX . If X < 〈XS〉 =: X0,
then MXS/O2(MXS) ∼= O+

4 (2). This is impossible, as M̄X S̄ ∼= S3 since conclusion
(ii) of 15.2.18.3 holds, while O+

4 (2) has no such quotient group. Thus X E I by
1.2.1.3, so by minimality of I , I = MIX . Then S is not irreducible on K/O2(K)
since m3(K ∩X) = 1, so Kc ≤MI by 15.2.21.1. Further KS = H1H2 by 15.2.21.1,
so

(*)K1 andK2 are the S-invariant subgroupsK+ ofK with |K+ : O2(K+)| = 3.

As m3(KX) = 2 = m3(K), by (*) we may assume K1 = O2(K ∩ X). Then by
another application of (*), [X,K2] ≤ O2(X). Further K1 = O2(M0) E MI , so that

K = Kc by 15.2.12.2. Thus CM (V ) is a 3′-group by 15.2.21.2, so O3′(NI) =: Y1 =

O3′(MX), and Y1 is S-invariant with Y1S/O2(Y1S) ∼= S3. As [X,K2] ≤ O2(X),
[Y1,K2] ≤ K2 ∩ Y1, contrary to 15.2.22.

Thus case (g) of C.2.7.3 is eliminated. An earlier reduction showed that X is
not a χ-block; this eliminates case (a) of C.2.7.3, and the subcases of (b) where X
is a χ-block. In the remaining cases, m3(X) = 2, and then X = θ(I) by A.3.18;
so as KS ≤ CG(ZS) by 15.2.11.2, KS ≤ M1 ≤ M0. In particular m3(M0) = 2,
with KS/O2(KS) ∼= S3 × S3; so by inspection of the list in C.2.7.3 (recalling that
Out(Sp4(4)) is cyclic; cf. 16.1.4 and its underlying reference), either X is an A7-
block, orX/O2(X) ∼= L4(2) or L5(2). The former case was eliminated earlier, so the
latter holds. NowM1 is a proper parabolic of X containingK, so eitherM1S = KS
is determined by a pair of non-adjacent nodes, or X/O2(X) ∼= L5(2) and M1S is
a maximal parabolic determined by all the nodes except one interior node. Let
U := [〈ZXS 〉, X ]. By B.2.14, 〈ZXS 〉 = UC〈ZXS 〉(X), so that CX(U ∩ ZS) = CX(ZS).

Now by C.2.7.2, U is an FF-module for (XS)+ := XS/O2(XS), and hence is
described in Theorem B.5.1. In particular one of the following holds:
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(a) U is the sum of isomorphic natural modules, andM1 is an end-node maximal
parabolic.

(b) U is the sum of a natural module and its dual, and M1 is the parabolic
determined by the interior nodes.

(c) U/CU (X) is the 6-dimensional orthogonal module for X+ ∼= L4(2).
(d) U is a 10-dimensional module for X+ ∼= L5(2).

As K ≤ M1, case (b) is eliminated. Let KI := O3′(M1). Assume case (d) oc-

curs. ThenKI/O2(KI) ∼= Z3×L3(2). NowX = O3′(I) by A.3.18; so as CG(ZS) ≤ I

and M1 = CX(ZS), KI = O3′ (CG(ZS)) is T -invariant, and so O3′(O2,3(KI)) is a
T -invariant subgroup of 3-rank 1. But this is impossible as T is irreducible on
K/O2(K). Assume case (a) occurs. Then as K ≤ M1, X/O2(X) ∼= L5(2), and
KI/O2(KI) ∼= L4(2). In particular as S acts on M1, S is trivial on the Dynkin
diagram of X/O2(X), and so S is not irreducible on K/O2(K). Then by 15.2.21.2,

Kc = O3′(MI), so KI = Kc. As conclusion (ii) of 15.2.18.3 holds, O3′ (NI) 6≤ MI ,
so the minimal parabolic P of X not contained in KI is contained in NI . Thus
Y1 := O2(P ) ≤ NI with Y1S/O2(Y1S) ∼= S3, but Y1 6≤ MI . This contradicts
15.2.21.3.

Thus case (c) holds. In this case, M1S = KS is the maximal parabolic deter-
mined by the end nodes. We apply an argument made in an earlier reduction, with
M1, U in the roles of “M0, U0”, to conclude that for QI = O2(KS), AutQI (U) con-
tains an FF∗-offender. But this is not the case for this parabolic and representation
by B.3.2.6.

This contradiction finally completes the proof of 15.2.23. ¤

By 15.2.20.3,O(I) = 1, so as F ∗(I) 6= O2(I) by 15.2.23,E(I) 6= 1. By 15.2.20.2,
F ∗(MI) = O2(MI), so there is a component L of I with L 6≤MI , and by 15.2.20.1,
L is described in 1.1.5.3. Further as O(I) = 1, Z(L) is a 2-group. Let L0 := 〈LS〉,
SL := S ∩ L0, and ML := L0 ∩MI . As usual L0 E I by 1.2.1.3. Recall by our
minimal choice of I that MI is a maximal subgroup of I ; hence I = L0MI . By
1.1.5.3, Z is faithful on L.

Lemma 15.2.24. L/Z(L) is not of Lie type and characteristic 2.

Proof. Suppose otherwise. Then we are in one of cases (a)–(c) of 1.1.5.3, and
L ∼= A6 in case (c), since Z(L) is a 2-group.

Now SL ∈ Syl2(L0) and SL ≤ ML. Further ML < L0 since MI is a maximal
subgroup of I = L0MI . So since the maximal S-invariant overgroups of SL in L0

are parabolics over SL, ML is such a parabolic. Also Z ≤ CI(ML) by 15.2.14.1,
and Z is faithful on L. We conclude from the list in (a)–(c) of 1.1.5.3 that L is
defined over F2, and if L ∼= L3(2), thenML = SL, so that NS(L) is nontrival on the

Dynkin diagram of L. Now if m3(L0) = 2 then L0 = O3′(I) by A.3.18 or 1.2.2.a,
so K ≤ CL(Z) ≤ ML, and hence m3(CL(Z)) ≥ 2; but this is not the case for the
groups of 3-rank 2 defined over F2 in Theorem C (A.2.3). Therefore m3(L0) = 1,
so L0 = L ∼= L3(2). But now AutMI (L) is a 2-group, so K centralizes L and hence
m3(KL) = 3, contrary to I an SQTK-group. ¤

We are now in a position to complete the proof of Theorem 15.2.15. By
15.2.20.3, L is described 1.1.5.3, and indeed appears in one cases (d)–(f) by 15.2.24,
and Z is faithful on L. Further in case (d), L ∼= A7 since Z(L) is a 2-group.
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If L ∼= L2(p) for p a Mersenne or Fermat prime, then p > 7 by 15.2.24, and
CL0(Z) = SL. Then as K centralizes Z, and AutMI (L) is a 2-group, [K,L0] = 1,
so L ≤ NI(K) ≤Mc = !M(H) by 15.2.12.3, contrary to the choice of L.

Thus L is not L2(p). In the remaining cases m3(L) = 2, so L = O3′(I) by
A.3.18. Thus K ≤ CL(Z), so m3(CL(Z)) = 2. Inspecting the list of groups
remaining in 1.1.5.3, we conclude L ∼= J4. But then O2(CL(Z))/O2(O

2(CL(Z)) ∼=
M̂22, whereas CG(Z) =Mc by 15.2.14.1, Kc = O3′(Mc) by part (4) of 15.2.12, and
Kc contains no such section by part (2) of the latter result. This contradiction
completes the proof of Theorem 15.2.15.

15.2.3. The final contradiction. For X ≤ G, write Λ(X) for the subgroup
generated by all involutions of X .

Lemma 15.2.25. (1) Case (1) or (4) of 15.2.1 holds, with M̄ ∼= S3, D10, or
Sz(2).

(2) Λ(T ) ≤ S.

Proof. If (1) fails, then conclusion (ii) of 15.2.13.1 holds. In this case there
is Z1 of order 2 in ZS with CM̄ (Z1) ∼= S3. In particular as M ∩Mc = CM (V )T by
15.2.14.5, CM (Z1) 6≤ Mc, contrary to Theorem 15.2.15. Therefore (1) holds. By
(1), S̄ = Ω1(T̄ ), so (2) holds. ¤

Recall UH = 〈V H〉 from Notation 15.2.9.

Lemma 15.2.26. (1) r(G, V ) > 1 and hence s(G, V ) > 1.
(2) W0(T, V ) ≤ CT (V ).
(3) W0(QH , V ) ≤ CH (UH).

Proof. Let U be a hyperplane of V . Suppose first that M̄ is not Sz(2). Then
Z = ZS is of rank 2 by examination of the cases in 15.2.25.1, and hence Z ∩U 6= 1.
Then as CG(Z) =Mc by 15.2.14.1, CG(Z) = CG(Z∩U). Similarly for g ∈M−Mc,
CG(Z

g) = CG(Z
g ∩ U) and ZZg = V , so that

CG(U) ≤ CG(Z ∩ U) ∩ CG(Z
g ∩ U)) = CG(Z) ∩ CG(Z

g) = CG(V ).

Thus r(G, V ) > 1 in this case.
So assume M̄ ∼= Sz(2). In this case m(ZS) = 2 and m(Z) = 1. Here M

has two orbits on nonzero vectors of V of lengths 5 and 10, and hence two orbits
on hyperplanes of V , which are also of lengths 5 and 10. Notice by 15.1.9.5 that
Hypothesis E.6.1 is satisfied, so if U is T -invariant then E.6.13 says CG(U) ≤
NG(V ). If U is not T -invariant, then |UM | = 10, so as T̄ is cyclic, we may assume
that s normalizes U and hence centralizes a nontrivial 2-subspace of U , so that
ZS = CV (s) ≤ U . As V = 〈ZM 〉, there exists g ∈ M −Mc with Zg 6≤ U . By
Theorem 15.2.15, CG(Z

g
S ∩ U) ≤ M g

c , so as Mg
c = CG(Z

g) by 15.2.14.1, with
Zg 6≤ ZgS ∩U 6= 1 and ZgS of rank 2, we conclude that CG(Z

g
S ∩U) = CG(Z

g
S). Thus

CG(U) = CG(V ) as in the previous paragraph.
Therefore r(G, V ) > 1 in either case. Since m(M̄, V ) > 1 by 15.2.14.6, also

s(G, V ) > 1, so that (1) holds. Furthermore a(M̄, V ) = 1 by 15.2.14.6. Now
E.3.21.1 implies (2), and (2) implies (3). ¤

Lemma 15.2.27. (1) O2,F∗(Mc) ≤ Kc(M ∩Mc).
(2) V ≤ O2(Mc).
(3) If ZS ∩ V g 6= 1, then [V, V g] = 1.
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Proof. We claim that O3′(Mc) ≤ M ∩Mc: for otherwise we may choose a
T -invariant 3′-subgroup K of Mc minimal with respect to J := KT 6≤ M ; then
J ∈ H∗(T,M), whereas members of H∗(T,M) are not 3′-groups by 15.2.8. So the

claim holds, and hence as O3′ (Mc) = Kc by 15.2.12.4, (1) holds.
If (2) fails, then [Kc, V ] 6= 1 by (1), so K < Kc as V ≤ O2(H) by 15.1.11.1.

Thus case (ii) or (iii) of 15.2.12.2 holds. and then by Kc = [Kc, V ] by (1). Let

Qc := O2(Mc), Vc := V ∩ Qc, K∗cT
∗ := KcT/O2(KcT ), and M̃c := Mc/Z. Then

CMc(Q̃c) ≤ Qc by A.1.8. Thus as V ∗ 6= 1, V does not centralize Q̃c, so as [Q̃c, V ] ≤
Ṽc, m(Ṽc) ≥ 1. On the other hand since m(Z) ≥ 1 ≤ m(V ∗) and V has rank

4, m(Ṽc) ≤ 2 with equality holding only if V ∗ and Z are of rank 1. Next in the
groups in (ii) and (iii) of 15.2.12.2, no normal subgroup of T ∗ induces a group of
F2-transvections with fixed center on a chief section of Qc by B.4.2, keeping in mind
in (ii) that T ∗ is nontrivial on the Dynkin diagram of K∗c . Therefore we conclude

that [V, Q̃c] = Ṽc is of rank 2, so that V ∗ and Z are indeed of order 2. It follows that
V ∗ = Z(T ∗), KcT has just one noncentral 2-chief factor W , and (e.g., by D.3.10,
B.4.2, and B.4.5) either

(i) K∗cT
∗ ∼= S8 or Aut(L5(2)), and either W is the 6-dimensional orthogonal

module for S8, or W is the sum of the natural module for K∗c
∼= Ln(2) (n = 4 or

5) and its dual; or
(ii) K∗cT

∗ ∼= L3(2) wr Z2 and W = W1 ⊕W2, where Wi := [W,Kc,i] is the
natural module for the direct factor K∗c,i

∼= L3(2) of K
∗
c .

Next as Z is of order 2 and ZS is of order 4, 1 6= Z̃S . As Z̃S ≤ Z(T̃ ), we

conclude Z̃S ≤ Q̃c ∩ V = Ṽc using B.2.14. Thus the projection WZ of Z̃S on W is
nontrivial and centralized by H∗ by 15.2.11.2. As H∗ ∼= S3 wr Z2, it follows that
in (i), K∗cT

∗ ∼= S8 and W is the orthogonal module; and in (ii), H∗ is the parabolic
of K∗cT

∗ over T ∗ stabilizing a point of W . In either case, there is a parabolic
P ∗ of K∗cT

∗ not contained in H∗, minimal subject to being T ∗-invariant; further
P ∗/O2(P

∗) ∼= S3 in (i), and P ∗ ∼= S3 wr Z2 in (ii). By minimality of P ∗, if the
preimage P is not contained in M , then P ∈ H∗(T,M). We conclude from 15.2.8
that P ≤ M in (i), while in (ii) we get P ≤ M from 15.2.11.2 since [WZ , P ] 6= 1
by construction. Then by 15.2.14.5, O2(P ) ≤ CP (V ) ≤ CP (ZS), again contrary to
[WZ , P ] 6= 1. This contradiction completes the proof of (2).

Now by (2), V x ≤ Qc ≤ T for each x ∈Mc, so [V, V x] = 1 by 15.2.26.2. Finally
assume that 1 6= ZS ∩ V g for some g ∈ G. As V ≤ Z(J(T )) and NG(J(T )) ≤ M
by 15.1.9.1, we may apply Burnside’s Fusion Lemma A.1.35 to conclude that M
controls fusion in V . Therefore we may take g ∈ NG(ZS ∩ V g) by A.1.7.1, and
hence g ∈ Mc by Theorem 15.2.15. Then [V, V g] = 1 by the initial remark of the
paragraph, so (3) holds. ¤

Lemma 15.2.28. [UH ,Λ(QH)] ≤ ZS.

Proof. Observe that Λ(QH) ≤ Λ(T ) ≤ S by 15.2.25.2, and S centralizes
V/ZS in each case of 15.2.25.1. Thus as Λ(QH) E H and UH = 〈V H〉, the lemma
holds. ¤

We are now in a position to complete the proof of Theorem 15.1.3.
Observe that the pair M , H satisfies Hypotheses F.7.1 and F.7.6 in the roles

of “G1, G2”. Form the coset graph Γ on the pair M , H , and adopt the notation
of section F.7. In particular γ0 and γ1 are the points of Γ stabilized by M and H ,
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respectively. For α := γ1g and β := γ0y, set Uα := UgH , Zα := ZgS , and Vβ := V y.
Let b := b(Γ, V ). Also we choose a geodesic

γ0, γ1, . . . , γb =: γ

with V 6≤ G
(1)
γ . As V is not an FF-module for M̄ by 15.1.8, b is odd by F.7.11.7.

From 15.2.8, QH = G
(1)
γ1 . Thus as V ≤ QH by 15.1.11.2, b > 1. As b is odd, Gγ is

a conjugate of H , so G
(1)
γ = O2(Gγ) =: Qγ .

While Hypothesis F.8.1 does not hold, we can still make use of arguments in
section F.8. As in section F.8, define Dγ := Uγ ∩ QH and DH := UH ∩ Qγ . By
choice of γ, V 6≤ Qγ , so DH < UH . Indeed V does not centralize Uγ , so there is
g ∈ G with γ1g = γ and [V, V g ] 6= 1. But if Dγ = Uγ , then V g ≤ W0(QH , V ) ≤
CH(UH) ≤ CH (V ) by 15.2.26.3, a contradiction. Therefore Dγ < Uγ , so we have
symmetry between γ1 and γ (cf. Remark F.9.17).

Next

m(Uγ/Dγ) = m(U∗γ ) ≤ m2(H
∗) = 2,

so by symmetry, m(UH/DH) ≤ 2. Now [UH , Dγ ] ≤ ZS by 15.2.28, so by symmetry
[Uγ , DH ] ≤ Zγ . Then [DH , Dγ ] ≤ ZS ∩ Zγ , while as [V, Vγ ] 6= 1, we conclude from
15.2.27.3 that ZS∩Zγ = 1. Thus [DH , Dγ ] = 1. Next m(Dγ/CDγ (V )) ≤ m2(M̄) =
1 by 15.2.25.1, and by symmetry m(DH/CDH (V

g)) ≤ 1, so

m(UH/CUH (V
g)) ≤ m(UH/DH) + 1 ≤ 3.

Therefore V g∗ induces a transvection on each of the 2-chief factors of H on UH
appearing in 15.1.12, so V g

∗

≤ H∗i for i = 1 or 2. Hence m(V g/(V g ∩ QH)) = 1.
By symmetry, m(V/(V ∩Qγ)) = 1, and

[V ∩Qγ , V
g ∩QH ] ≤ [Dγ , DH ] = 1.

Therefore as s(G, V ) > 1 by 15.2.26.1, E.3.6 says V ∩ Qγ ≤ CG(V
g), and then by

another application of those lemmas, V g ≤ CG(V ∩Qγ) ≤ CG(V ), contrary to the
choice of V g.

This contradiction completes the proof of Theorem 15.1.3.

15.3. The elimination of Mf/CMf
(V(Mf )) = S3 wr Z2

In this section, we complete our treatment of the groups satisfying Hypothesis
14.1.5, by proving:

Theorem 15.3.1. Assume Hypothesis 14.1.5. Then G is isomorphic to J2, J3,
3D4(2), the Tits group

2F4(2)
′, G2(2)

′, or M12.

Observe that the groups in Theorem 15.3.1 have already appeared in Theorem
15.1.3, so that we will be working toward a contradiction. On the other hand, the
shadows of the groups Aut(Ln(2)), n = 4, 5, S9, A10, Aut(He), and L wr Z2 for
L ∼= S5 or L of rank 2 over F2 arise, and cause difficulties: Each of these groups
possessesM ∈M(T ) such that V (M) is of rank 4 and AutM (V (M)) = O+(V (M)).

For X ≤ G, we let θ(X) denote the subgroup generated by all elements of X
of order 3.
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15.3.1. Preliminary results. Recall by Hypothesis 14.1.5.2 that

Mc = !M(CG(Z)).

Throughout section 15.3 we assume G is a counterexample to Theorem 15.3.1.
Let M := Mf be the unique maximal member of M(T )− {Mc} under the partial

order
<
∼ of Definition A.5.2, supplied by 14.1.12. Recall in particular that M ∈

M(NG(C2)), where C2 := C2(Baum(T )) is the characteristic subgroup of Baum(T )
from C.1.18. Let V := V (M).

We summarize what has been established in this chapter so far:

Lemma 15.3.2. (1) m(V ) = 4 and M̄ = O+
4 (V ).

(2) Z = CV (T ) is of order 2.
(3) M(T ) = {M,Mc}.
(4) If T ≤ X ≤M , then either

(i) O2(X) ≤ CM (V ), or
(ii) X̄ = M̄ and M = !M(X).

(5) M is the unique maximal member of M(T ) under
<
∼.

(6) NG(T ) ≤ M . In particular, members of H∗(T,M) are minimal parabolics
described in B.6.8, and in E.2.2 when nonsolvable.

Proof. As G is a counterexample to Theorem 15.3.1, and the groups in 15.3.1
appear as conclusions in Theorem 15.1.3, conclusion (2) of 15.1.3 holds, giving (1).
Then (1) implies (2) as V = V (M) = 〈ZM 〉, and (2) and 14.1.12.1 imply (5).

Since NG(T ) preserves the relation
<
∼ on M(T ), NG(T ) ≤ M by (5); then 3.1.3.2

completes the proof of (6).
Assume the hypotheses of (4). By (1), T̄ is maximal in M̄ , so either O2(X) ≤

CM (V ) so that (i) holds, or X̄ = M̄ . In the latter case, (ii) holds by A.5.7.1. Thus
(4) is established.

Finally suppose M1 ∈ M(T ). By (5), M1 = (M ∩M1)CM1(V (M1)). As usual
CM1(V (M1)) ≤ Mc since Mc = !M(CG(Z)). We apply (4) to M ∩M1 in the role
of “X”: in case (i) of (4), M ∩M1 ≤ CM (V ) ≤ CG(Z) ≤Mc, so that M1 ≤Mc; in
case (ii) of (4), M = !M(M ∩M1) so that M1 =M . Thus (3) holds. ¤

Lemma 15.3.3. (1) M = !M(NM (C2(Baum(T )))).
(2) If Baum(T ) ≤ S ≤ T , then Baum(T ) = Baum(S), and further NG(S) ≤

NG(Baum(S)) ≤M .

Proof. Set C2 := C2(Baum(T )), and recall M ∈ M(NG(C2)). By 15.3.2.2
and 14.1.11, M = CM (V )NM (C2), so that (1) follows from 15.3.2.4. Choose S as
in (2). Then Baum(T ) = Baum(S) by B.2.3.4, and NG(S) ≤ NG(Baum(S)) ≤
NG(C2), so that (2) follows from (1). ¤

Lemma 15.3.4. Mc = CG(Z).

Proof. Let U := V (Mc), and assume the lemma fails; then U > Z. Next

Mc
<
∼ M by 15.3.2.5, so Mc = CM (U)X where X := M ∩Mc, and hence U =

〈ZX〉. Thus as Z < U , O2(X) 6≤ CG(V ), so M = !M(X) by 15.3.2.4, contrary to
Mc 6=M . ¤

By 15.3.2.1, M̄ = O+
4 (V ) preserves an orthogonal-space structure on V , so

V = V1 ⊕ V2, where V1 and V2 are the two definite 2-dimensional subspaces of V .
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Thus M̄ = (M̄1×M̄2)〈t̄〉, whereMi := CM (V3−i), Vi = [V,Mi], M̄i
∼= O−2 (Vi)

∼= S3,
and t̄ is an involution with M t

1 =M2. Set S := NT (V1) and ZS := CV (S).

Lemma 15.3.5. Let E := Ω1(Z(J(T ))) and B := Baum(T ). Then either

(1) [V, J(T )] = 1, B = Baum(CT (V )), V ≤ E, and C(G,B) ≤M , or

(2) B̄ = J(T ) = S̄ ∼= E4 and E ∩ V = ZS ∼= E4.

Proof. If J(T ) ≤ CT (V ) then V ≤ E and B = Baum(CT (V )) by B.2.3.5;
thus M = CM (V )NM (B) by a Frattini Argument, and hence C(G,B) ≤ M by

15.3.2.4. Otherwise J(T ) 6= 1, and then (2) follows from B.1.8. ¤

Lemma 15.3.6. (1) Baum(T ) = Baum(S).
(2) NG(S) ≤ NG(Baum(S)) ≤M .
(3) S ∈ Syl2(CG(CV1(S))).
(4) S ∈ Syl2(NG(V1)).

Proof. By 15.3.5, Baum(T ) ≤ S, so that (1) and (2) follow from 15.3.3.2. As
S ∈ Syl2(CM (CV1 (S))), (2) implies (3), and similarly (2) implies (4). ¤

Lemma 15.3.7. Let Rc := O2(M∩Mc) and Y := O2(〈RMc 〉). Then Ȳ = O2(M̄),
M ∩Mc = CM (V )T ,

M = NG(Y ) = !M(Y T ),

O2(Y T ) = CT (V ), and either

(1) O2(Y ) = CY (V ) with Y/O2(Y ) ∼= E9, and Y = O3′(M); or
(2) Y/O2(Y ) ∼= 31+2, O2,Z(Y ) = CY (V ), R̄c is cyclic, Y = θ(M), and M ∩Mc

has cyclic Sylow 3-subgroups.

Proof. We apply case (b) of 14.1.17 with Mc in the role of “M1”, and Y0 :=
O2(M). By 14.1.17.1, R̄c 6= 1. As R̄c E T̄ , R̄c contains Z(T̄ ) =: 〈r̄〉, and r̄
inverts Ȳ0 by 15.3.2.1, so Ȳ0 = [Ȳ0, R̄c] and M ∩Mc = CM (V )T . Further applying
parts (2) and (3) of 14.1.17, we conclude Ȳ = Ȳ0 and Y ∗R∗c centralizes CM (V )∗,
where M∗ := M/O2(M). In particular, M = !M(Y T ) by 15.3.2.4, and of course
M = NG(Y ) as Y E M ∈ M. Also V = 〈ZY 〉, so that V ∈ R2(Y T ) by B.2.14.

As r̄ inverts Ȳ0 = O2(M̄) and [r∗, CY (V )∗] = 1, r inverts y of order 3 in each
coset of CY (V ) in Y . Therefore since Y ∗ centralizes CM (V )∗, Y ∗ = Ω1(Y

∗) is a
3-group. As Φ(Y ∗) ≤ CY (V )∗ ≤ CY ∗(r

∗), it follows that Φ(Y ∗) ≤ Z(Y ∗), and
hence Y ∗ ∼= Y/O2(Y ) ∼= E9 or 31+2 by A.1.24. Further O2(Y T ) = CT (V ).

If Y ∗ ∼= E9, then as M = Y CM (Y/O2(Y ))T and m3(M) ≤ 2, Y = O3′(M),
so that (1) holds. If Y ∗ ∼= 31+2, m3(CM (V )) = 1 by 14.1.17.4, so that Y =
θ(M), and CM (V )T has cyclic Sylow 3-subgroups. Further R̄c is embedded in
CAut(Y ∗)(Z(Y

∗)) ∼= Q8, while T̄ ∼= D8, so T̄ contains no Q8-subgroup. Thus R̄c is
cyclic, completing the proof of (2). ¤

In the remainder of this section, define Y as in lemma 15.3.7.

Lemma 15.3.8. ZS = Ω1(Z(S)) ∼= E4.

Proof. Let Z0 := Ω1(Z(S)). As T/S is of order 2, Z = CZ0(T ) is of rank at
least m(Z0)/2, so m(Z0) ≤ 2 as Z is of order 2. As ZS = CV (S) is of rank 2, the
lemma follows. ¤

Finally we eliminate a configuration which appears at various points later, the
case V = O2(Y ):
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Lemma 15.3.9. V < O2(Y ), so that Y 6∼= A4 ×A4.

Proof. Assume V = O2(Y ), or equivalently that Y ∼= A4 × A4. By 15.3.7,
Y E M . As Aut(A4) ∼= S4, Aut(Y ) ∼= S4 wr Z2 with CAut(Y )(V ) = AutV (Y ).
Thus Y CM (V ) = Y × CM (Y ). Since Z has order 2 and CT (Y ) E T , CM (Y ) has
odd order; thus CM (Y ) = 1 as F ∗(M) = O2(M). Therefore M ≤ Aut(Y ), so as
M̄ ∼= O+

4 (2) by 15.3.2.1, we conclude M ∼= S4 wr Z2. But this is ruled out by
Theorem 13.9.1. ¤

15.3.2. Uniqueness theorems for Y and O2(CY(Vi)). Our first main
goal, in Theorem 15.3.45 in this subsection, is to show that M = !M(CY (Vi)S); to
do so, we first show that M = !M(Y S). We prove the two results simultaneously,
adopting a suitable hypothesis to cover both cases, and eventually establish the
common uniqueness result in 15.3.44.

Thus in this subsection, we assume:

Hypothesis 15.3.10. Either

(1) Y+ := Y , or
(2) M = !M(Y S) and Y+ := O2(CY (V1)).

Let

H+ := H(Y+S,M) = {I ∈ H(Y+S) : I 6≤M},

and write H+,∗ for the mimimal members of H+ under inclusion. As our goal
is to show that M = !M(Y+S), we will assume H+ is nonempty, and derive a
contradiction. Given I ∈ H+, define MI := M ∩ I , UI := 〈ZI〉, I∗ := I/CI(UI),
and R := O2(Y+S).

Lemma 15.3.11. Assume I ∈ H+. Then

(1) S ∈ Syl2(I).
(2) CI (UI) ≤MI .
(3) If case (2) of Hypothesis 15.3.10 holds, then Y+ = O2(Y ∩I) and NG(Vi) ≤

M ≥ NG(Y+) for i = 1, 2.
(4) NI(Y+) =MI .
(5) Either:

(i) Y+/O2(Y+) is E9 or 3
1+2, Y+S/O2,Φ(Y+S) ∼= S3×S3, R = O2(Y S) E

Y T , and R = CT (V ). Further R = O2(NI(R)), R ∈ Syl2(〈R
MI 〉), and C(G,R) ≤

M . Or:
(ii) Case (2) of Hypothesis 15.3.10 holds, Y+S/R ∼= S3, Y+ = O3′ (MI),

and R = CS(V2).

(6) Y+ = θ(MI).
(7) F ∗(MI) = O2(MI).
(8) O(I) = 1.
(9) NI∗(Y

∗
+) =M∗

I < I∗, and Y ∗+ 6= 1.
(10) Either

(i) Baum(R) = Baum(S) and C(I,Baum(S)) ≤MI , or
(ii) Y+ = [Y+, J(S)], so Y

∗
+ ≤ J(I)∗.

(11) J(I)∗ 6≤M∗
I .

(12) If L ≤ I with [V,O2(Y ∩ L)] 6= 1 and L 6≤ M , then no nontrivial charac-
teristic subgroup of S is normal in 〈L, S〉.
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Proof. Let S ≤ TI ∈ Syl2(I). By 15.3.6.2, NG(S) ≤ M , so as |T : S| = 2,
TI ≤ M . Thus either (1) holds, or TI ∈ Syl2(M), and in the latter case, 15.3.2.4
supplies a contradiction as Ȳ+ 6= 1. Thus (1) is established.

We next prove (2)–(6).
Suppose first that case (1) of Hypothesis 15.3.10 holds. Then (3) holds vac-

uously, and (4) holds as M = NG(Y ) by 15.3.7. Also V = 〈ZY 〉 ≤ UI , so (2)
holds as M = NG(V ). Further from 15.3.7 and the structure of M̄ in 15.3.2.1, (6)
and the first three statements of (5i) hold. As R E Y T , M = !M(NG(R)) by
15.3.7, so that C(G,R) ≤ M . Also R = CT (V ) as O2(Ȳ S̄) = 1. As Y E MI

and R = O2(Y S) with S ∈ Syl2(I), R ∈ B2(MI) and R ∈ Syl2(〈RMI 〉) by C.1.2.4.
Then as NI(R) ≤MI , R = O2(NI(R)), completing the proof that conclusion (i) of
(5) holds in this case.

Now suppose that case (2) of Hypothesis 15.3.10 holds, so that Y+ = O2(CY (V1)).
ThenM = !M(Y S) by Hypothesis 15.3.10, so that Y 6≤ I . Then as |Y : Y+O2(Y )| =
3, Y+ = O2(Y ∩ I). Further as V1, V2, and Y+ are normal in Y S, the remainder
of (3) and also (4) follow as M = !M(Y S). Then as V2 ≤ 〈ZY+〉 ≤ UI , (2) follows
from (3). We next prove (5) and (6). First suppose that conclusion (1) of 15.3.7

holds. Then Y = O3′ (M), so Y+ = O3′ (MI) as Y+ = O2(Y ∩ I). Thus (6) holds,
and visibly conclusion (ii) of (5) holds. Therefore we may assume that conclusion
(2) of 15.3.7 holds. Then Y ∗ ∼= 31+2 and Y+/O2(Y+) ∼= E9, with Y+S/R ∼= S3×S3
using the structure of M̄ in 15.3.2.1. This time Y = θ(M), so (6) holds. As
CT (V ) = CS(Y

∗
+), R = CT (V ) = O2(Y S), so C(G,R) ≤ M as M = !M(Y T ).

As Y+ E MI by (6) and R = O2(Y+S) with S ∈ Syl2(I), R ∈ B2(MI) and
R ∈ Syl2(〈RMI 〉) by C.1.2.4. Then as NI(R) ≤ MI , R = O2(NI(R)), so that
conclusion (i) of (5) holds.

It remains to prove (7)–(12).
As |T : S| = 2 and F ∗(M) = O2(M), 1.1.4.7 implies (7). In case (1) of

Hypothesis 15.3.10, V = [V, Y ] so that O(I) ≤ CI (V ) ≤MI by A.1.26.1, and hence
(8) follows from (7). In case (2) of Hypothesis 15.3.10, V2 = [V2, Y+], and (8) follows
similarly from (7) as CI (V2) ≤M by (3).

Next X := Y+CI(UI) ≤ MI by (2), so Y+ = θ(Y+CI(UI)) by (6); then (9)
follows from (4) as Y+ is nontrivial on 1 6= [V2, Y+] ≤ UI by construction. By (5),
CT (V ) ≤ R ≤ S. So if [V, J(T )] = 1, then Baum(R) = Baum(S) = Baum(CT (V ))
and C(I,Baum(S)) ≤ MI by 15.3.5 and B.2.3.5, so that conclusion (i) of (10)
holds. Then I = J(I)NI (J(S)) = J(I)MI by a Frattini Argument, so as I 6≤ M ,
J(I) 6≤ M , and hence J(I)∗ 6≤ M∗

I by (2), establishing (11). So suppose instead

that [V, J(T )] 6= 1. Then case (2) of 15.3.5 holds, so that J(T ) = S̄. But by (5),
Y+ = [Y+, S] and CT (V ) ≤ R ≤ S, so Y+ = [Y+, J(S)], and hence conclusion (ii) of
(10) holds. Thus if J(I)∗ ≤M∗

I , then Y
∗
+ = θ(J(I)∗) E I∗ by (6), contrary to (9).

This completes the proof of (10) and (11).
Assume the hypotheses of (12), with 1 6= C char S and C E 〈L, S〉. Then

〈O2(Y ∩ L), T 〉 ≤ NG(C), so as O2(Y ∩ L) 6≤ CM (V ) by hypothesis, NG(C) ≤ M
by 15.3.2.4, a contradiction. ¤

Lemma 15.3.12. Assume I ∈ H+ and there is L ∈ C(I) with m3(L) ≥ 1. Also
assume m3(Y+) = 2. Then

(1) YL := O2(Y+ ∩ L) 6= 1. Further R normalizes L and O2(L)O2(YL) ≤ R.
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(2) Assume that m3(L) = 1 and Y+ induces inner automorphisms of L/O2(L).
Then Y+ = YLYC where YC := O2(CY+(L/O2(L))), |YL|3 = 3 = |YC |, and
Y+/O2(Y+) ∼= E9.

Proof. First Y+ = O2(Y+) normalizes L by 1.2.1.3. Then m3(LY+) ≤ 2 since
I is an SQTK-group, so as m3(Y+) = 2 and m3(L) ≥ 1 by hypothesis, YL 6= 1. As
[YL, R] is a 2-group, R normalizes L by 1.2.1.3. Further O2(L)O2(YL) is normalized
by Y+, and so lies in R, completing the proof of (1).

Assume that m3(L) = 1. As YL 6= 1 by (1) while Y+ is of exponent 3, |YL|3 = 3.
Assume also that Y+ induces inner automorphisms on L/O2(L); then as m3(L) = 1
and Y+ is of exponent 3, AutY+(L) = AutYL(L). Hence Y+ = YLYC , with YL ∩ YC
a 2-group as Z(L/O2(L)) = 1. In particular, Y+/O2(Y+) ∼= E9 rather than 31+2,
and |YC |3 = 3, completing the proof of (2). ¤

We now begin our analysis of the case F ∗(I) = O2(I). Observe then that
UI = 〈ZI〉 ∈ R2(I) by B.2.14.

We partition the problem into the subcases m3(Y+) = 2 and m3(Y+) = 1.

Theorem 15.3.13. Assume I ∈ H+ and m3(Y+) = 2. Then F ∗(I) 6= O2(I).

Until the proof of Theorem 15.3.13 is complete, assume I is a counterexample.
Then F ∗(I) = O2(I), so that UI ∈ R2(I) by B.2.14. As m3(Y

+) = 2, case (i) of
15.3.11.5 holds, so Y/O2(Y ) ∼= E9 or 31+2, and R = CT (V ). If case (2) of Hypothe-
sis 15.3.10 holds, then as Y+ < Y , Y/O2(Y ) ∼= 31+2 and CY (V )/O2(CY (V )) ∼= Z3.
Thus:

Lemma 15.3.14. (1) V ≤ Z(R).
(2) If case (2) of Hypothesis 15.3.10 holds, then Y/O2(Y ) ∼= 31+2 and |CY (V ) :

O2(CY (V ))| = 3.

Lemma 15.3.15. (1) Hypothesis C.2.3 is satisfied with I, MI in the roles of
“H, MH”.

(2) There exists L ∈ C(J(I)) with L 6≤ MI , m3(L) ≥ 1, L = [L, Y+], and L
∗

and L/O2(L) quasisimple.
(3) Each solvable Y+S-invariant subgroup of I is contained in MI .

Proof. As case (i) of 15.3.11.5 holds with R = CT (V ), (1) follows. By
15.3.11.11, J(I)∗ 6≤ M∗

I . In particular J(I)∗ 6= 1, so that UI is an FF-module
for I by B.2.7, and hence J(I)∗ is described in Theorem B.5.6. If L∗ is a di-
rect factor of J(I)∗ isomorphic to S3, then there are at most two such factors by
Theorem B.5.6, so Y ∗+ = O2(Y ∗+) normalizes and hence centralizes L∗, and then
L∗ ≤ NI∗(Y

∗
+) =M∗

I by 15.3.11.9. Thus as J(I)∗ 6≤M∗
I , Theorem B.5.6 says there

exists L ∈ C(J(I)) with L 6≤ MI , m3(L) ≥ 1, and L∗ quasisimple. By 1.2.1.3,
Y+ = O2(Y+) ≤ NI(L). By 15.3.11.2, CI(UI) ≤MI , so as L 6≤MI , L = [L, Y+] by
15.3.11.9. Further as L∗ is quasisimple and not isomorphic to Sz(2m) by Theorem
B.5.6, O3′(L) ≤ CI(UI) ≤MI , so by 15.3.11.6, [O3′(L), Y+] ≤ Y+∩O3′ (L) ≤ O2(L),
and hence L/O2(L) is quasisimple by 1.2.1.4. Thus (2) holds. Then by 1.2.1.1, each
member of H+ is nonsolvable, so (3) follows. ¤

During the remainder of the proof of Theorem 15.3.13, pick L as in 15.3.15.2.
Set YL := O2(Y+ ∩ L), YC := O2(CY+(L/O2(L)), SL := S ∩ L, RL := R ∩ L, and
ML :=M ∩ L. Let WL := 〈V L〉 and (LRY+)

+ := LRY+/CLRY+(WL).
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Lemma 15.3.16. (1) WL ∈ R2(LR) ∩ R2(LRY+) and L
+ is quasisimple.

(2) m3(L) ≥ 1, YL 6= 1, R acts on L, L = [L, J(R)], and L is described in
C.2.7.3.

Proof. By 15.3.15, m3(L) ≥ 1 and we can appeal to the results in section
C.2. As m3(L) ≥ 1, YL 6= 1, R acts on L, and O2(LR) ≤ R by 15.3.12.1.

As L/O2(L) is quasisimple and O2(LR) ≤ R = CT (V ), WL ∈ R2(LR) ∩
R2(LRY+). As R acts on L and L 6≤ MI , L is described in C.2.7.3. By C.2.7.2,
L = [L, J(R)]. As CG(V ) ≤M but L 6≤MI , L

+ 6= 1, so as L/O2(L) is quasisimple,
so is L+. ¤

Lemma 15.3.17. One of the following holds:

(1) m3(L) = 1 and L/O2(L) ∼= L2(2
n), n even, or L3(2).

(2) m3(L) = 2 and Y+ ≤ θ(I) = L.
(3) m3(L) = 2 and L∗ ∼= SL3(2

n) with n even.

Proof. By 15.3.16, m3(L) ≥ 1, YL 6= 1, and L is described in C.2.7.3.
Suppose first that m3(L) = 1. Then from the list in C.2.7.3, L/O2(L) ∼= L2(2

n)
or L3(2

m), with m odd. Now as S ∈ Syl2(I), SL = S ∩ L ∈ Syl2(L) and SL acts
on YL since Y+ is S-invariant. It follows that n is even if L/O2(L) ∼= L2(2

n), and
that m = 1 if L/O2(L) ∼= L3(2

m). That is, (1) holds in this case.
So assume m3(L) = 2. Then (3) holds if L∗ ∼= SL3(2

n) with n even; otherwise
θ(I) = L by A.3.18, so that (2) holds. ¤

In the remainder of the proof of Theorem 15.3.13, we successively eliminate the
various possibilities in C.2.7.3 given by 15.3.16.

Lemma 15.3.18. L is not an L2(2
n)-block.

Proof. Assume otherwise. Then n is even by 15.3.17, while by 15.3.16, YL 6= 1
and R normalizes L.

Let L0 := 〈LS〉, so that S0 := S ∩ L0 ∈ Syl2(L0) and M0 := M ∩ L0 ≥ YL.
ThenM0 is an overgroup of S0 in L0, soM0 is contained in a unique Borel subgroup
B0 of L0, and hence B0 is MI -invariant. Therefore as B0 is solvable, B0 = M0 by
15.3.15.3. Then as Y+ E MI by 15.3.11.4, we conclude that Y+ induces inner
automorphisms on L0/O2(L0). By 15.3.12.2, Y+ = YLYC with |YL|3 = 3 = |YC |3,
and Y+/O2(Y+) ∼= E9. As S0 is MI-invariant, S0 ≤ O2(Y+S) = R; hence RL =
R∩L ∈ Syl2(L), and R ∈ Syl2(LR). Thus as V ≤ Z(R) and U(L) = [WL, L] since
L is a block, WL = CWL(RL)U(L) by B.2.14, so that

V ≤ CU(L)(R)CWL(L). (∗)

Now if [V, YL] = 1, then by (*), we have V ≤ CU(L)CR(L)(YL) = CR(L),
since U(L)/CU(L)(L) is the natural module for L2(2

n). But then L ≤ CG(V ) ≤
M , contrary to L 6≤ M . Therefore 1 6= [V, YL] is a B0-invariant subgroup of
[CU(L)(RL), YL], so [V, YL] = CU(L)(RL) by (*) and the structure of coverings
of the natural module. in I.2.3. But for b ∈ B0 − R, CU(L)(b) = CU(L)(L), while

O2,3(ML) ≤ CG(V ) ≤ CG([V, YL]) by 15.3.2.1, so we conclude that (B0∩L)/RL is a
3-group, and hence n = 2. Thus as [V, YL] = CU(L)(RL), [V, YL]/C[V,YL](YL)

∼= E4.
As V = V1 ⊕ V2 where V1 and V2 are the only Y+-invariant 4-subgroups of V ,
CU(L)(L) = 1 and we may take V2 = [V, YL], and hence YL ≤ CM (V1) =M2. Then
by (*), V1 ≤ CWL(YL), so as L 6≤ M , also NG(V1) 6≤ M . Hence by 15.3.11.3, we
are in case (1) of Hypothesis 15.3.10, where Y+ = Y . Then Y/O2(Y ) ∼= E9, so
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as YL ≤ M2, O
2(M2) = YL is S-invariant. Hence S also acts on L and YC , so

YC = O2(M1). Let t ∈ T − S, and recall |T : S| = 2 so that t normalizes S. As
M t

1 = M2, Y
t
L = YC . Further YC centralizes L by C.1.10, and as YL contains a

Sylow 2-group of L, U(L) ≤ O2(YL). Then U(L)t ≤ O2(YL)
t = O2(YC) E LS.

Hence 〈LS, t〉 = 〈L, T 〉 acts on U(L)U(L)t, so that 〈L, T 〉 ≤ M = !M(Y T ) by
15.3.7, contrary to L 6≤M . ¤

Lemma 15.3.19. L/O2(L) is not L2(2
n).

Proof. Assume otherwise. Then by 15.3.16 and C.2.7.3, L is a block of type
L2(2

n) or type A5, so by 15.3.18, L is an A5-block. Let L0 := 〈LS〉, S0 := S ∩ L0,
andM0 :=M∩L0. Arguing as in the proof of the previous lemma, we conclude that
M0 is the Borel subgroup of L0 containing S0, Y+ = YLYC with |YL|3 = 3 = |YC |3,
Y+/O2(Y+) ∼= E9, RL := R ∩ L ∈ Syl2(L), and WL = U(L)× CWL(L), so

V ≤ CU(L)(RL)× CWL(L). (∗)

Since U(L) is the A5-module, YL centralizes V by (*), so as CY (V ) 6= 1, case (2)
of 15.3.7 holds, with Y/O2(Y ) ∼= 31+2. In particular |CY (V ) : O2(CY (V ))| = 3,
so YL = O2(CY (V )). Further as Y+/O2(Y+) ∼= E9, Y+ < Y , so that case (2)
of Hypothesis 15.3.10 holds, with V2 = [V, Y+], and NG(V2) ≤ M by 15.3.11.3.
Now EndL/O2(L)(U(L)) ∼= F2 so that YC centralizes U(L). Thus V2 = [V2, Y+] ≤
[U(L)CR(L), YC ] ≤ CR(L). Then L ≤ NG(V2) ≤ M , contrary to the choice of
L. ¤

Lemma 15.3.20. L/O2(L) is not SL3(2
n) with n > 1 or Sp4(4).

Proof. Assume otherwise. By 15.3.16, L is described in C.2.7.3, and in par-
ticular asWL is an FF-module for L+R+, S is trivial on the Dynkin diagram of L+

by Theorem B.4.2. Further as S normalizes Y , SLY+ = Y+SL, so as each solvable
overgroup of SL in LY+ is 2-closed, Y+ acts on SL. Thus Y+S acts on both maximal
parabolics Pi of L. If Xi := PiY+S 6≤M , then Xi ∈ H+, contrary to 15.3.19. Thus
L = 〈P1, P2〉 ≤M , contrary to the choice of L. ¤

Lemma 15.3.21. L is not a block of type A6, G2(2), Â6, or A7, and L is not
an exceptional A7-block.

Proof. Assume L is one of the blocks appearing in 15.3.21. By 15.3.17, Y+ ≤
L, so that Y+ = YL. As Y+SL = SLY+, L is not of type A6 or G2(2), since no

proper parabolic in these groups has 3-rank 2. Similarly if L/O2(L) ∼= Â6, the
preimage of a proper parabolic does not contain 31+2, and if L/O2(L) ∼= A7, then
L has abelian Sylow 3-groups; thus Y+S/R ∼= S3 × S3 in these two cases. Hence L
is not an an exceptional A7-block, since in that case LS/O2(LS) ∼= A7 rather than
S7. Further L is not an ordinary A7-block, since in that case M+

L has no normal

E9-subgroup by C.2.7.3. This leaves the case where L is an Â6-block, where by
C.2.7.3, S+Y +

+ is the stabilizer of a 2-dimensional F4-subspace U of [WL, L]. Now
[WL, L] has the structure of an F4L-module on which Z(L+) induces scalars in F4,
and U = U1 ⊕ U2 is the sum of two Y+-invariant F4-points, so Ui = Vi. Thus is

impossible as S interchanges the two F4-points in an Â6-block, but S acts on V1
and V2 by definition. ¤

Lemma 15.3.22. L/O2(L) ∼= Ln(2) for n = 3, 4, or 5.
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Proof. Observe that 15.3.19, 15.3.20, and 15.3.21 have eliminated all other
possibilities for L∗ from the list of C.2.7.3 provided by 15.3.16. Then as L/O2(L)
is quasisimple by 15.3.15.2, and the Schur multiplier of L∗ is a 2-group by I.1.3,
O2,Z(L) = O2(L) so that L/O2(L) ∼= L∗ is simple. ¤

Lemma 15.3.23. L/O2(L) is not L3(2).

Proof. Assume L/O2(L) ∼= L3(2), and set UL := [WL, L]. By 15.3.12.2,
Y+ = YLYC with |YL|3 = 3 = |YC | and Y+/O2(Y+) ∼= E9. By 15.3.16, R acts on
L, and by C.2.7.3, ML = SLYL is a minimal parabolic of L and R = O2(Y+S) =
O2(LR)O2(YL).

By C.2.7.3, (LR,R) is described in Theorem C.1.34. In particular L has k := 1,
2, 3, or 6 noncentral 2-chief factors. If k = 6, then case (4) of C.1.34 holds so that
m(Ω1(Z(S))) = 3, contrary to 15.3.8. Thus 1 ≤ k ≤ 3.

From C.1.34, either UL is the direct sum of s ≤ 2 isomorphic natural modules,
or UL is a 4-dimensional indecomposable. Thus either [UL, YC ] = 1, or s = 2 and
UL = [UL, YC ].

Assume first that [V, YL] = 1. Then as YL 6= 1 and Y is faithful on V in case
(1) of 15.3.7, case (2) of 15.3.7 holds with Y/O2(Y ) ∼= 31+2, and YL = O2(CY (V )).
We saw Y+/O2(Y+) ∼= E9, so Y+ < Y , and hence case (2) of Hypothesis 15.3.10
holds. Then NG(Vi) ≤ M by 15.3.11.3, Y+ centralizes V1, and V2 = [V2, Y+] =
[V2, YC ] ≤ CWL(YL). As NG(Vi) ≤M but L 6≤M , L centralizes neither V1 nor V2.
From the previous paragraph, UL is either a sum of isomorphic natural modules,
or a 4-dimensional indecomposable with a natural quotient, while ML is a minimal
parabolic of L with R = O2(MLR). Thus V ≤ Z(R) while the fixed points of the
unipotent radical R on any extension in B.4.8 of UL with trivial quotient lie in UL,
so we conclude that

V ≤ ULCWL(L).

By the previous paragraph, either [UL, YC ] = 1, or s = 2 and UL = [UL, YC ]. In
the first case,

V2 = [V2, YC ] ≤ [ULCWL(L), YC ] = [CWL(L), YC ] ≤ CWL(L),

contrary to an earlier remark. In the second case,

V1 = CV (YC) ≤ CUL(YC)CWL(LYC) = CWL(LYC),

contrary to the same remark.
Therefore [V, YL] 6= 1. Now YL = [YL, SL] while [YC , SL] ≤ O2(YC), so from

the action of S on Y+, YL and YC are normal in Y+S, and {YL, YC} is the set Y of
S-invariant subgroups of Y+ with Sylow 3-group of order 3. In particular, S acts
on YL and hence on L.

Suppose that case (2) of Hypothesis 15.3.10 holds. Then by 15.3.14.2, Y/O2(Y )
∼= 31+2 with CY (V ) > O2(Y ). As Y = {YL, YC} while [V, YL] 6= 1, it follows that
YC = O2(CY (V )), so NG(YC) ≤ M as M = !M(NG(YC)) by 15.3.7.2. But L
normalizes O2(YCO2(L)) = YC , contradicting L 6≤M .

Thus we are in case (1) of Hypothesis 15.3.10, so Y = Y+, and hence from earlier
discussion, Y = YCYL and Y/O2(Y ) ∼= E9. Therefore we may take YC = O2(M1)
and YL = O2(M2), since {YL, YC} = Y . Thus Y tL = YC , and V2 = [V, YL]. As
V2 = [V, YL] is S-invariant, YLSL is the parabolic of L stabilizing the line V2 in
Z(O2(L)). Hence case (5) of C.1.34 does not hold, as no such line exists in that
case.



15.3. THE ELIMINATION OF Mf/CMf
(V(Mf )) = S3 wr Z2 1129

Set Q := [O2(L), L] as in C.1.34, and observe that [Z,L] ≤ UL ≤ Q. We
will complete the proof by showing that for t ∈ T − S, W := QQt is normalized
by LS, and hence also by T as |T : S| = 2. Then as Y = YLYC ≤ 〈YL, t〉,
〈L, T 〉 ≤ NG(W ) ≤M = !M(Y T ) by 15.3.7, contrary to the choice of L.

Assume that k = 3, so that case (3) of C.1.34 holds. Then as YL stabilizes
the line V2 in the natural module Z(Q), Q = [Q, YL], so Q ≤ O2(YL). Fur-
ther YC centralizes the natural module Z(Q) since EndL/O2(L)(Z(Q) = F2. As
Q/Z(Q) is the direct sum of two natural modules, either YC centralizes Q, or
Q = [Q, YC ]. In the latter case Q = O2(YC) ∩ O2(YL), so Q is t-invariant, whereas
YC and YL have three and two nontrivial 2-chief factors, on Q/Z(Q), respectively.
Therefore [Q, YC ] = 1, so YC = O2(YC) centralizes L by Coprime Action. Then
Qt ≤ O2(YL)

t = O2(YC) ≤ CS(L), so that W = QQt E LS, which suffices as
mentioned above.

Suppose finally that k = 1 or 2, so that case (1) or (2) of C.1.34 holds. In
each case Q = [Q, YL]CQ(PL), for PL ∈ Syl3(YL), and as YC centralizes the line V2
stabilized by YL in a natural submodule in Q, YC centralizes L from the structure
of Aut(L). Thus Q = O2(YL)CQ(P ) ≤ O2(YL)CS(P ), for P ∈ Syl3(Y ), and by a
Frattini Argument we may assume t ∈ T − S normalizes P , and hence also CS(P ).
Therefore Qt ≤ O2(YC)CS(P ) ≤ O2(LS), so [Qt, LS] ≤ [O2(LS), L] = Q, and
hence W = QQt E LS, which again suffices as mentioned earlier. ¤

Lemma 15.3.24. L/O2(L) is not L4(2) or L5(2).

Proof. Assume L/O2(L) ∼= Ln(2) for n := 4 or 5. Then Y+ is solvable and
S-invariant of 3-rank 2, Y+ ≤ L by 15.3.17, and S ∩ L ∈ Syl2(L) as S ∈ Syl2(I).
Thus LS ∈ H+, so we may take I = LS, and hence UI = 〈ZL〉. As Sylow 3-
subgroups of L are isomorphic to E9, Y+/O2(Y+) ∼= E9 rather than 31+2. Then
Y+S/R ∼= S3×S3 from the action of S on Y , so S is trivial on the Dynkin diagram
of L/O2(L).

Suppose first that n = 4. Then Y+S is the maximal parabolic of LS over S
determined by the end nodes, so Y+SL = L ∩M as L 6≤ M . This parabolic has
unipotent radical RL/O2(L) ∼= E24 .

Set UL := [WL, L]. By 15.3.16, L = [L, J(R)], so there are FF-offenders on
UL with respect to R, and in particular UL is an FF-module for L/O2(L). As
1 6= [Z, Y+] ≤ UL, UL/CUL(L) is not the orthogonal module, so we conclude from
Theorem B.5.1 that UL is either the sum of a natural module and its dual, or the sum
of at most n− 1 isomorphic natural modules. Now by B.2.14, ULZ = ULCULZ(L),
and we let ZL denote the projection of Z on UL with respect to this decomposition.
Then Z ≤ ZLCWL(L), so that CL(ZL) = CL(Z).

Assume first that UL is a sum of isomorphic natural modules. Then WL =
ULCWL(L) by I.1.6.6. Also 1 6= O2(CY+(ZL)) = O2(CY+(Z)) ≤ O2(CY+(V )), so
case (2) of 15.3.7 holds. Hence Y+ < Y , so that case (2) of Hypothesis 15.3.10
holds, and thus NG(V1) ≤M by 15.3.11.3. But now V1 ≤ CWL(Y+) = CWL(L), so
L ≤ CG(V1) ≤M , contrary to the choice of L.

Therefore UL is the sum of a natural module and its dual. Since Y+SL = L∩M
is the maximal parabolic over SL determined by the end nodes, each L3(2)-parabolic
P over SL satisfies P 6≤M and [ZL, O

2(Y+ ∩ P )] 6= 1. Then applying 15.3.11.12 to
P in the role of “L”, no nontrivial characteristic subgroup of S is normal in PS.
Thus (O2(P )S, S) is an MS-pair, and hence is described in C.1.34. But P has two
noncentral chief factors on UL and one on O2(P )/O2(L), so case (3) or (4) of C.1.34



1130 15. THE CASE Lf (G,T) = ∅

holds, since in the other cases in C.1.34 there are at most two such factors. Case
(4) is eliminated as m(Ω1(Z(S))) ≥ 3, contrary to 15.3.8. Suppose case (3) holds,
set QP := [O2(P ), P ], and let WL = W1 ⊕W2 with Wi ∈ Irr+(L,WL); we may
choose notation so that [W1, P ] is of rank 3 and W2 = [W2, P ]. Then Z(QP ) is a
natural module for P/QP and QP /Z(QP ) is the sum of two copies of the dual of
Z(QP ), impossible as [W1, P ]CW2(P ) ≤ Z(QP ).

So n = 5. Let P be a maximal parabolic of L over SL containing Y+. Since
Y+S/R ∼= S3 × S3, L is generated by such parabolics, so we may assume P 6≤
M . Thus PS ∈ H+, and we obtain a contradiction from earlier reductions as
P/O2(P ) ∼= S3 × L3(2) or L4(2). ¤

Observe that 15.3.22, 15.3.23, and 15.3.24 establish Theorem 15.3.13.

We now complete the elimination of the case F ∗(I) = O2(I) under Hypothesis
15.3.10, by treating the remaining subcase where m3(Y+) = 1 in the following
result:

Theorem 15.3.25. If I ∈ H+ then F ∗(I) 6= O2(I).

Until the proof of Theorem 15.3.25 is complete, assume I is a counterexample.
The proof will be largely parallel to that of Theorem 15.3.13, except this time
our list of possibilities for L∗ will come from Theorem B.5.6 rather than C.2.7.3,
and the elimination of those cases will be somewhat simpler. As F ∗(I) = O2(I),
UI = 〈ZI〉 ∈ R2(I) by B.2.14.

Lemma 15.3.26. (1) Case (2) of Hypothesis 15.3.10 holds, Y+S/R ∼= S3, Y+ =

O3′(MI), and R = CS(V2).
(2) There is L ∈ C(J(I)) with L 6≤ MI , L = [L, Y+], and L∗ and L/O2(L)

quasisimple.
(3) Each solvable Y+S-invariant subgroup of I is contained in MI .

Proof. By Theorem 15.3.13, m3(Y+) = 1. Then (1) follows from 15.3.11.5.
The proofs of (2) and (3) are the same as those in 15.3.15. ¤

During the remainder of the proof of Theorem 15.3.25, pick L as in 15.3.26.2.
As L∗ is a component of J(I)∗, L∗ = [L∗, J(S)∗] and UL := [UI , L] is an FF-module
for AutLJ(S)(UL) by B.2.7, so L∗ is described in Theorem B.5.6.

Recall H+,∗ denotes the set of members of of H+ minimal under inclusion.

Lemma 15.3.27. (1) L E I.
(2) Y+ ≤ L.

(3) L∗ is not SL3(2
n), n even, or Â6.

(4) If I ∈ H+,∗, then I = LS, and MI is the unique maximal subgroup of I
containing Y+S.

Proof. Suppose first that L is not normal in I , and let L0 := 〈LS〉. By

1.2.1.3 and Theorem B.5.6, L∗ ∼= L2(2
n) or L3(2). By 1.2.2, L0 = O3′ (I), so

Y+ ≤ L0. Then as Y+S/R ∼= S3 by 15.3.26.1, and S ∈ Syl2(I) by 15.3.11.1,
L∗ ∼= L2(2

n)—since when L∗ ∼= L3(2), there is no S-invariant subgroup of L0 with
Sylow 3-group of order 3. Let B0 be the Borel subgroup of L0 containing S ∩ L0;
then M0 := M ∩ L0 ≤ B0, and B0 is MI-invariant and solvable, so M0 = B0 by
15.3.26.3. Then as Y+ ≤ B0, n is even. But now m3(MI) ≥ m3(B0) > 1, contrary
to 15.3.26.1. This contradiction establishes (1).
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By 15.3.26.2, L∗ = [L∗, Y ∗+]. Comparing the list of Theorem B.5.6 with that in
A.3.18, we conclude that one of the following holds:

(i) m3(L) = 1 and L∗ is L2(2
n) or L3(2

m), m odd.
(ii) L = θ(I).
(iii) L∗ ∼= SL3(2

n), n even.

In case (ii), (2) holds. In case (i), as Y+S/R ∼= S3 and Out(L/O2(L)) is abelian,
Y ∗+ induces inner automorphisms on L∗. Then the projection Y ∗L of Y ∗+ on L∗ is

contained in M∗
I by 15.3.26.3, so the preimage YL is contained in O3′(MI) = Y+

by 15.3.26.1, so that (2) holds again. Finally if (iii) holds, then Z(L)∗ ≤ M∗
I by

15.3.26.3, so O3′ (MI)
∗ = Y ∗+ = Z(L∗) by 15.3.26.1, contradicting L∗ = [L∗, Y ∗+].

This completes the proof of (2), and the same argument shows that L∗ is not Â6,
completing the proof of (3) also.

Finally assume that I ∈ H+,∗. By (1), S acts on L, and by (2), Y+ ≤ L. Thus
as L 6≤ M , LS ∈ H+, so I = LS by minimality of I . Similarly MI is the unique
maximal subgroup of I containing Y+S, so (4) holds. ¤

Until the proof of Theorem 15.3.25 is complete, assume I ∈ H+,∗. Thus I = LS
by 15.3.27.4.

Lemma 15.3.28. Let ML :=M ∩ L; then one of the following holds:

(1) L∗ ∼= L2(2
n), n even, and M∗

L is a Borel subgroup of L∗.
(2) L∗ ∼= L3(2), Sp4(2)

′, or G2(2)
′, and M∗

L is a minimal parabolic of L∗, so
that S is trivial on the Dynkin diagram of L∗.

(3) I∗ ∼= S8 and M
∗
L is the middle-node minimal parabolic of L∗S∗.

Proof. Suppose first that L∗ ∼= A7. Then as Y+S/R ∼= S3 by 15.3.26.1, Y ∗+S
∗

is either the stabilizer of a partition of type 23, 1, or is contained in the stabilizer
I∗4,3 of a partition of type 4, 3. In the latter case, the preimage I4,3 is contained in
MI by 15.3.27.4, whereasm3(MI) = 1 by 15.3.26.1. In the former, Y ∗+S

∗ ≤ I∗1
∼= A6

or S6, and this time I1 ≤MI for the same contradiction.
Then by 15.3.27.3 and Theorem B.5.6, L∗ is of Lie type and characteristic 2,

so as S ∈ Syl2(I), M
∗
L is a maximal S-invariant parabolic of L∗ by 15.3.27.4. As

O3′(M∗
L) = Y ∗+ with Y+S/R ∼= S3 by 15.3.26.1, we conclude by inspection of the

list of Theorem B.5.6 and appeals to parts (3) and (4) of 15.3.27 that one of cases
(1)–(3) of the lemma holds. ¤

Lemma 15.3.29. (1) No nontrivial characteristic subgroup of S is normal in I.
(2) NG(V1) ≤M and V1 centralizes Y+.

Proof. As Y+ ≤ L by 15.3.27.2 and I = LS, we may apply 15.3.11.12 to obtain
(1). By 15.3.26.1, case (2) of Hypothesis 15.3.10 holds, so that V1 centralizes Y+,
and NG(V1) ≤M by 15.3.11.3, so (2) holds. ¤

Lemma 15.3.30. L∗ is not L2(2
n).

Proof. Assume L∗ is L2(2
n). By 15.3.28,M∗

L is a Borel subgroup of L∗, so as
R = O2(Y+S), R ∈ Syl2(LR). Then by 15.3.27.4, LR is a minimal parabolic in the
sense of Definition B.6.1, so we conclude from 15.3.29.1 and C.1.26 that L is a block
of type L2(2

n) or A5. Next MI acts on [V, Y+] = V2 ∼= E4, so V2 ≤ U(L) is an ML-
invariant line. Thus L is not an A5-block, so L is an L2(2

n)-block and in particular
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CAut(L)(Y+) = 1. Then by 15.3.29.2, V1 ≤ CS(Y+) ≤ CS(L), so L ≤ CG(V1) ≤ M
by 15.3.29.2, contrary to the choice of L. ¤

Lemma 15.3.31. I∗ ∼= S8.

Proof. Assume otherwise; by 15.3.30 and 15.3.28, we may assume that case
(2) of 15.3.28 holds; that is L∗ ∼= L3(2), Sp4(2)

′, or G2(2). As V2 = [V2, Y+] ∼= E4 is
a Y+S-invariant line in UL, it follows from Theorem B.5.6 that M∗

L is the parabolic
stabilizing the line V2 in someW ∈ Irr+(L

∗, UL), and hence for each suchW when
[Ω1(Z(S)), L] is a sum of two isomorphic natural modules for L∗ ∼= L3(2). By
15.3.29.1, (LS, S) is an MS-pair in the sense of Definition C.1.31, and by 15.3.27.3,

L is not a Â6-block. Therefore by C.1.32, either L is a block of type A6 or G2(2), or
L∗ ∼= L3(2) and L is described in C.1.34. In particular, L/O2(L) is simple in each
case, so that L/O2(L) = L∗. Set Q := [O2(L), L]. As L E I = LS, Q = [O2(I), L].

In case (4) of C.1.34, m(Ω1(Z(S))) = 3, contrary to 15.3.8, and case (5) of
C.1.34 does not hold, as M∗

L stabilizes the line V2. Thus only cases (1)–(3) of
C.1.34 can arise when L∗ ∼= L3(2).

Next by 15.3.29.2, V1 ≤ CI (Y+) =: D. It will suffice to show that D = CI(L):
for then L ≤ CG(V1) ≤ M by 15.3.29.2, contrary to the choice of L. Set I+ :=
I/CI(L); it remains to show that D+ = 1.

Suppose that D centralizes Q. Then [D,Q] ≤ CL(Q) ≤ O2(L), so as L/Q is
quasisimple, [D,L] ≤ Q. Thus [D,L] ≤ CQ(Q) = Z(Q). Therefore O2(D+) = 1
by Coprime Action. Further as Φ(Z(Q)) = 1, Φ(D+) = 1 (cf. the argument in
the proof of C.1.13); so as Y+ centralizes D, D+ = 1 from the structure of the the
covering of the L∗-module Z(Q)/CZ(Q)(L) in I.2.3.

Therefore we may assume [D,Q] 6= 1. Thus Q 6≤ Y+. In case (3) of C.1.34,
Z(Q) is a natural module for L∗ and Q/Z(Q) is a sum of two modules dual to Z(Q).
In this case, and when L is a block of type A6 or G2(2), since M

∗
L is the parabolic

stabilizing the line V2 in Z(Q), Q = [Q, Y+] ≤ O2(Y+). Therefore case (1) or (2)
of C.1.34 holds. Then CI∗(Y

∗
+) = 1, so [D,L] ≤ Q. Further the intersection of Y+

with each W ∈ Irr+(L,Q) is a hyperplane W0 of W , so as DQ E DL and Q is
abelian, DQ centralizes 〈WL

0 〉 = W . Therefore DQ centralizes Q, a contradiction
completing the proof. ¤

Now L/O2(L) is quasisimple by 15.3.26.2, L∗ ∼= A8 by 15.3.31, and the Schur
multiplier of A8 is a 2-group by I.1.3. Then as I = LS, O2(I) = CI(UL) = CS(UL).

Lemma 15.3.32. (1) UL is the 6-dimensional orthogonal module for I∗.
(2) CZS (L) = ZS ∩ V1 =: Z1 is of order 2.

(3) L = O3′ (CG(Z1)).

(4) X := O3′(CG(ZS)) = O3′(K), where K is the maximal parabolic of L over
S ∩ L determined by the end nodes of the diagram of L∗.

(5) W := 〈UL, U tL〉 = UL × U tL for t ∈ T − S, and XS normalizes W .
(6) Let (XS)+ := XS/CS(W ) and P := O2(XS). Then P+ = CS(UL)

+ ×
CS(U

t
L)

+.

Proof. By 15.3.31, I∗ ∼= S8, and then by 15.3.28.3, M∗
L is the middle-node

minimal parabolic. Therefore as UL is an FF-module for I∗, B.5.1 says that either
UL/CUL(L) is the orthogonal module, or UL is the sum of a natural module and its
dual. Then as V2 = [V2, Y+] is an S-invariant line of UL, the former case holds with
CUL(L) = 1, giving (1). Recall that ZS ∼= E4 by 15.3.8, and that Zi := ZS ∩ Vi is
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of order 2 for i = 1, 2. Further Z1V2 = ZV2 = 〈ZY+〉 ≤ 〈ZL〉 = UI , so UI = Z1UL.
Then as Z1 ≤ Z(S), UI = ULCUI (LS) by B.2.14, and CUI (LS) = CZS (L) =
CZS (Y+) = Z1, so (2) holds.

Next I1 := CG(Z1) ∈ H+, so S ∈ Syl2(I1) by 15.3.11.1. Thus L ≤ L1 ∈ C(I1)
by 1.2.4, and A.3.12 says that either L = L1 or L1/O2(L1) ∼= L5(2), M24, or J4.
As S is nontrivial on the Dynkin diagram of L∗, it follows that L = L1, and then
(3) folllows from A.3.18.

Let K be the S-invariant maximal parabolic of L, and set X := O2(K) and
P := O2(XS). Thus XS/P ∼= S3 wr Z2 is determined by the end nodes of the
Dynkin diagram of L∗. By (1), XS = CI(ZS), so (3) implies (4). Then as ZS E T ,
T acts on O2(CI (ZS)) = X and P . Let t ∈ T − S. Then T acts on UL ∩ U tL,
so if UL ∩ U tL 6= 1, then Z ≤ UL ∩ U tL, whereas ZS ∩ UL = ZS ∩ V2 = Z2. Thus
UL ∩ U

t
L = 1, so as UL E XS and T acts on XS, (5) holds.

Adopt the notation of (6) and let PI := O2(I). As XS is irreducible on P ∗,
either P tI ≤ PI , or P = PIP

t
I and (6) follows from (5). But in the former case

P tI = PI , so that 〈T, L〉 acts on PI ; then as Y+ 6≤ CM (V ), L ≤ M by 15.3.2.4,
contrary to the choice of L. Thus (6) holds. ¤

We can now complete the proof of Theorem 15.3.25. Let X , W , and P be
defined as in 15.3.32.

Let B be the set of A ∈ A(S) such that A∗ 6= 1, and A∗ is minimal subject
to this property. Choose some A ∈ B. By B.2.5, A∗ ∈ P∗(I∗, UL). Now B.3.2.6
describes the possible FF-offenders, and the only strong FF-offender is generated
by four transvections; so from B.2.9 we conclude that one of the following holds:

(i) A∗ ∼= E8 is regular on Ω := {1, . . . , 8}.
(ii) A∗ is generated by a transposition.
(iii) A∗ = D := 〈(1, 2), (3, 4), (5, 6), (7, 8)〉.
(iv) A∗ = D ∩ L∗.

In particular in each case, A 6≤ P . Further m(A∗) = m(UL/CUL(A)) except in
case (iii), where m(A∗) = 4 and m(UL/CUL(A)) = 3.

Let C := B ∩Bt for t ∈ T − S. As A 6≤ P , AutA(U
t
L) 6= 1 by 15.3.32.6, so there

is A+ ≤ A such that AutA+(U
t
L) ∈ P

∗(AutIt(U
t
L), U

t
L) by B.1.4.4. Then A+ 6≤ P

by the previous paragraph applied to U tL in place of UL, so A
∗
+ 6= 1 again using

15.3.32.6. Hence by minimality of A∗, A∗+ = A∗. Thus A ∈ C.

Let X̂T := XT/O2(XT ), so that Ŝ ∼= D8, and set S0 := S∩LO2(LS). Observe:

(I) In (i), |Â| = 2 and Ŝ0 = Â× Z(Ŝ).

(II) In (ii), |Â| = 2 and Â 6≤ Ŝ0.

(III) In (iii), Â is the 4-subgroup of Ŝ distinct from Ŝ0.

(IV) In (iv), Â = Z(Ŝ).

Let B := CA(W ), m0 := m(Â), m1 := m(A∗ ∩ P ∗), m2 := m(AutA∩P (U
t
L)),

m3 := m(UL/CUL(A)), and m4 := m(U tL/CUtL(A)). Then m(A) ≤ m0+m1+m2+

m(B). Also m(BW ) = m(B) + m3 + m4. Therefore as m(A) ≥ m(BW ) since
A ∈ A(S),

m0 +m1 +m2 ≥ m3 +m4. (!)

Suppose first that Ŝ < T̂ . Then T̂ is Sylow in GL2(3), so T̂ ∼= SD16, and hence

Ŝt0 is the 4-subgroup in Ŝ distinct from Ŝ0. As A ∈ C, it satisfies one of conclusions
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(I)–(IV), and also one of the analogous conclusions on U tL. Then inspecting (I)–
(IV), we conclude that either:

(a) A∗ is in case (ii) and AutA(U
t
L) is in case (i), or vice versa; or:

(b) A∗ and AutA(U
t
L) are in case (iv).

However in case (a), the tuple of parameters (m0,m1,m2,m3,m4) is (1, 0, 2, 1, 3),
contrary to (!). Similarly in case (b), the tuple is (1, 2, 2, 3, 3), again contrary to
(!).

Thus T̂ = Ŝ. So as Ŝ0 and Z(Ŝ) are normal in Ŝ, their preimages are normal
in T . Then inspecting (I)–(IV), we conclude that A∗ and AutA(U

t
L) always appear

in the same case of (i)–(iv). In cases (i), (ii), and (iv), we calculate the tuple of
parameters to be (1, 2, 2, 3, 3), (1, 0, 0, 1, 1), and (1, 2, 2, 3, 3), again contrary to (!).
We conclude A∗ is in case (iii). In particular, A 6≤ S0; so since A is an arbitary
member of B, it follows that J(S0) ≤ CI(UL). Thus J(S0) = J(CI (UL)) E 〈T, L〉,
again contrary to L 6≤M = !M(Y T ) by 15.3.2.4 since Y+ 6≤ CM (V ).

This completes the proof of Theorem 15.3.25.

Theorem 15.3.25 has reduced the treatment of Hypothesis 15.3.10 to the case
F ∗(I) 6= O2(I). As O(I) = 1 by 15.3.11.8, there is a component L of I , and
Z(L) = O2(L). As F

∗(MI) = O2(MI) by 15.3.11.7, L 6≤M . Thus to complete our
proof that M = !M(Y+S), it remains to determine the possibilities for L, and then
to eliminate each possibility.

Set L0 := 〈LS〉, SL := S ∩ L, and ML := M ∩ L. Let z denote a generator of
Z.

Lemma 15.3.33. (1) If L1 is a Y+S-invariant subgroup of L0 with F ∗(L1) =
O2(L1), then L1 ≤MI .

(2) The hypotheses of 1.1.5 are satisfied with I, Mc is the roles of “H, M”.
(3) If K ∈ C(I) then K 6≤ M , K = [K, z] is described in 1.1.5.3, O(K) = 1,

and

F ∗(CK(z)) = O2(CK(z)).

Proof. Choose L1 as in (1); if L1 6≤M , then L1Y+S ∈ H+, contrary to The-
orem 15.3.25, so (1) holds. Next let H ∈ M(I), so in particular H = NG(O2(H)).
Then H ∈ H+, so S ∈ Syl2(H) by 15.3.11.1. Thus S = T ∩ H and O2(H) ≤
O2(I ∩Mc) by A.1.6, so

CO2(Mc)(O2(I ∩Mc)) ≤ CT (O2(H)) ≤ T ∩H = S ≤ I,

and hence (2) follows since CG(z) = Mc by 15.3.4. Then (2) and 1.1.5 imply (3),
since we saw O(I) = 1. ¤

Observe that 15.3.33.3 applies to L in the role of “K”. We now begin to
eliminate the various possibilities for L in 1.1.5.3.

Lemma 15.3.34. L/Z(L) is not Sz(2n). Hence m3(L) ≥ 1.

Proof. If L/Z(L) ∼= Sz(2n), then Y+S acts on a Borel subgroup B of L0,
so B = MI ∩ L0 by 15.3.33.1, since B is a maximal S-invariant subgroup of L0.
By 15.3.11.4, MI = NI(Y+), so as automorphisms of L0/O2(L0) of order 3 acting
on B are nontrivial on B/O2(L0), we conclude Y+ ≤ CI (B) = CI (L0). Thus
L0 ≤ NI(Y+) =MI by 15.3.11.4, contrary to our choice of L. ¤
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Again we will divide the proof into two cases: m3(Y+) = 2 and m3(Y+) = 1.
We eliminate the first case in the next theorem:

Theorem 15.3.35. Case (2) of Hypothesis 15.3.10 holds, Y+S/R ∼= S3, Y+ =

O3′(MI), Y+ < Y , and R = CS(V2).

Until the proof of Theorem 15.3.35 is complete, assume I is a counterexample.
Therefore case (i) of 15.3.11.5 holds, so:

Lemma 15.3.36. (1) Y+S/O2,Φ(Y+S) ∼= S3 × S3.
(2) R = CT (V ).

The next lemma eliminates the shadow of G ∼= A10, where L ∼= A6. It also
eliminates the shadows of G ∼= L wr Z2, for various groups L of Lie rank 2 over F2.

Lemma 15.3.37. One of the following holds:

(1) Y+ ≤ L0.
(2) L = L0

∼= L2(2
n) or U3(2

n) with n even, or L3(2). Further Y+ = YLYC
where YL := O2(Y+ ∩ L), YC := O2(CY+(L)), |YL|3 = 3 = |YC |, and Y+/O2(Y+) ∼=
E9.

(3) L = L0, with L ∼= L3(2
n), n even, or L/O2(L) ∼= L3(4). Further YL :=

O2(Y+ ∩ L) 6= 1 and Y+ = YL〈y〉 with y of order 3 inducing a diagonal outer
automorphism on L.

Proof. By 15.3.34, m3(L) ≥ 1. Thus if L < L0, then L0 = O3′(I) by 1.2.2,
so (1) holds. Therefore we may assume L = L0. By 15.3.12.1, YL 6= 1.

Suppose first that m3(L) = 1. Then |YL|3 = 3. Further by 15.3.33.3 and
1.1.5.3, one of the following holds: L is L2(2

n), L is Lδ3(2
m) with 2m ≡ −δ mod 3,

or L is L2(p) for some Fermat or Mersenne prime p. Then as YL 6= 1 and SL acts
on YL, n is even in the first case; in the second case, either L ∼= L3(2), or m is even
and L ∼= U3(2

m); and in the third case, p = 5 or 7, so that L is L2(4) or L3(2) and
so appears in previous cases. Now if L is L2(2

n) or U3(2
m), then MI acts on the

Borel subgroup B of L containing SL, so B =ML by 15.3.33.1 and maximality of B
in L. Thus B acts on Y+ by 15.3.11.4. Hence Y+ induces inner automorphisms on
L. This also holds if L is L3(2) since there Out(L) is a 2-group. Then by 15.3.12.2,
Y+ = YLYC with |YL|3 = 3 = |YC |3 and Y+/O2(Y+) ∼= E9. Then (2) holds.

Finally suppose m3(L) = 2. Again by 15.3.33.3, L is described in 1.1.5.3 with
O(L) = 1, and then by A.3.18, either

(i) L = θ(I), or
(ii) L ∼= Lε3(2

n) with 2n ≡ ε mod 3, or L/O2(L) ∼= L3(4). Further some y of
order 3 in Y+ induces a diagonal outer automorphism on L.

In case (i), Y+ ≤ L, so that (1) holds. In case (ii), Y+ = YL〈y〉O2(Y ) is S-
invariant of 3-rank 2, so ε = +1 and hence (3) holds, completing the proof of the
lemma. ¤

The next lemma rules out conclusion (3) of 15.3.37, and eliminates the first
appearance of a shadow of Aut(He), where L/Z(L) ∼= L3(4).

Lemma 15.3.38. If m3(L) = 2, then Y+ ≤ L.

Proof. Assume otherwise, and let I+ := I/CI(L). Then case (3) of 15.3.37
holds, and in particular some element y of order 3 in Y+ induces a diagonal outer
automorphism on L. If L/O2(L) ∼= L3(4), let n := 2; in the remaining cases L ∼=
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L3(2
n) with n even. As S ∈ Syl2(I) acts on Y+, Y+S acts on the Borel subgroup

B of L over S ∩ L = SL, and then YL := O2(Y+ ∩ L) ≤ B ≤ MI by 15.3.33.1.
Hence by 15.3.11.6, MI = NI(B), n is coprime to 3, and YL/O2(YL) ∼= Z3. Also
[V, YL] 6= 1: for otherwise V ≤ CS(YL) = CS(L), so L ≤ NG(V ) = M , contrary to
the choice of L. Since YL is S-invariant with YL/O2(YL) of order 3, YL ≤ Mi for
i = 1 or 2, and we may choose notation so that i = 2. Thus E4

∼= V2 = [V, YL] E B,
so n = 2, and V +

2 is the root group Z(S+
L ) of L

+. Further V1 = CV (YL) ≤ CG(L),
so NG(V1) 6≤ M , and hence by 15.3.11.3, case (1) of Hypothesis 15.3.10 holds, so
Y = Y+ and YL = O2(Y ∩M2). Hence Y/O2(Y ) ∼= E9. Let YD := O2(Y ∩M1)
and t ∈ T − S. Then Y tL = O2(Y ∩M2)

t = O2(Y ∩M1) = YD, and Y = YLYD.
As case (3) of 15.3.37 holds, an element of order 3 in YD induces a diagonal outer
automorphism on L+. Also YD ≤M1 ≤ CG(V2), so from the structure of PGL3(4),
V +
2 = CS+L

(YD) and SL = [SL, YD]. Of course [SL, YD] ≤ O2(YD), so as O2(YL) =

SL and Y tL = YD, SL = O2(YD) by an order argument. Thus t acts on SL, and
hence also on Z(S+

L ) = V +
2 . Since t interchanges V1 and V2, V1 ≤ V2Z(L).

Now CZ(L)(YD) = 1, and we showed V +
2 = CS+L

(YD). Further Z(L) = CSL(YL).

Thus V2 = CSL(YD) and Z(L)
t = CSL(Y

t
L) = CSL(YD) = V2 ∼= E4, so E4

∼= V1 =
V t2 = Z(L).

Next CS(YL) = CS(L), so conjugating by t, |CS(YD)| = |CS(L)|, and as Y =
YLYD, CS(Y ) = CS(L) ∩ CS(YD). Then as CS(YD) ≤ V2CS(L) and |V2CS(L) :
CS(L)| = |V2| = 4, |V2CS(L) : CS(YD)| = 4. Therefore |CS(L) : CS(Y )| = |CS(L) :
CS(L) ∩ CS(YD)| ≤ 4, so as CV1(YD) = 1, CS(L) = V1CS(Y ). But by 15.3.8,
Ω1(Z(S)) = ZS ≤ V , and CV (Y ) = 1, so we conclude that CS(Y ) = 1; hence V1 =
CS(L). Thus CT (V ) = O2(Y S) = O2(Y ) = SL. As Y S/CT (V ) = Ȳ S̄ ∼= S3 × S3,
we conclude that L+Y +

D S
+ = Aut(L+). As O(I) = 1, V1 = CS(L) = CI (L), so

L = F ∗(I) and hence I = LYDS.
Let X ∈ Syl3(Y ); then CSL(X) = 1, and by a Frattini Argument, NY S(X) ∼=

S3×S3. Let E := NS(X); then E = 〈τ, f〉, where τ and f are involutions inducing
a graph and a field automorphism on L+, respectively. Further X = XL × XD,
where XA := X ∩ YA for A := L,D, f inverts X , and τf centralizes V1. By a
Frattini Argument, we may choose t ∈ NT (X), so 〈t, τ〉 ∼= T̄ ∼= D8. Thus we may
choose t to be an involution and τ t = τf .

Let w be of order 4 in 〈τ, t〉, and set W := 〈w, SL〉; then |T : W | = 2, so as
G = O2(G), τG∩W 6= ∅ by Thompson Transfer. AsW/SL = W̄ ∼= Z4 and w2 = f ,
τ is fused to a member of W0 := 〈f〉SL.

Next V1 = Z(L) E I . Then I1 := NG(V1) ∈ H+, so S ∈ Syl2(I1) by 15.3.11.1,
and thus L ≤ L1 ∈ C(I1) by 1.2.4. Then m3(L1) ≥ m3(L) = 2, so applying our
reductions so far to I1, L1 in the roles of “I , L”, we conclude that I1/O2(I1) ∼=
Aut(L3(4)), and hence L = L1 and I = I1. That is, I = NG(V1).

Let 〈v〉 = ZS ∩ V1, Gv := CG(v), and Ġv := Gv/〈v〉. Then Z2
∼= V̇1 and

L̇Ṡ = CĠv (V̇1) as I = NG(V1). By I.3.2, L ≤ O2′,E(Gv), so F
∗(Gv) 6= O2(Gv), and

hence |Gv |2 < |T | as G is of even characteristic. Thus as S ≤ Gv and |T : S| = 2,
S ∈ Syl2(Gv). Therefore L ≤ Lv ∈ C(Gv) by 1.2.4, with the embedding described

in A.3.12. As L ≤ O2′,E(Gv), Lv is quasisimple. Indeed as L̇ is a component of

CL̇v(V̇1), while the only embedding of L3(4) appearing in A.3.12 is inM23, andM23

has trivial Schur multiplier by I.1.3, we conclude Lv = L. Thus Gv ≤ NG(L) ≤
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NG(V1) = I , so as M1 is transitive on V #
1 , V1 is a TI-subgroup of G by I.6.1.1.

Then as V1 ∼= E4:

(*) V1 is faithful on any subgroup F = O2(F ) on which it acts nontrivially.

Recall τ is fused to an element of W0. But L is transitive on the involutions
in fL, and each involution in L is fused into V under L and hence is in zG ∪ vG.
Thus to obtain a contradiction and complete the proof, it remains to show that τ
is not fused to f , v, or z.

Recall that τf centralizes V1. Suppose τf = vg for some g ∈ G. Then V1
normalizes V g1 since V1 is a TI-subgroup of G, and hence by I.6.2.1, [V1, V

g
1 ] = 1.

Thus V g1 ≤ CG(V1) = CI (V1) = L〈τf〉, so V g1 centralizes F := O2(CL(τf)) ∼= E9

by (*). Then as |CAut(L)(F )| = 2, 1 6= V g1 ∩ V1, so V
g
1 = V1 as V1 is a TI-subgroup,

contrary to vg = τf 6∈ V1. Thus τf is not fused to v, so as τ t = τf , τ is not fused
to v. Similarly using (*) and Generation by Centralizers of Hyperplanes A.1.17,
O(CG(τf)) centralizes V1, so O(CG(τf)) ≤ O(CI (τf)) ∼= E9.

Next O2(CL(τ)) ∼= L2(4), so applying I.3.2 as above, we conclude F ∗(CG(τ)) 6=
O2(CG(τ)), and hence τ is not fused to z in G. Therefore τ is fused to f in G, so
τf is also.

Let Lf := O2(CL(f)) and Gf := CG(f); then Lf ∼= L3(2), and again using
I.3.2, Lf ≤ O2′,E(Gf ). We saw earlier that O(CG(τf)) is an elementary abelian
3-group of rank at most 2, and f is fused to τf ; so O2′,E(Gf )

∞ = E(Gf ), and
hence Lf ≤ E(Gf ).

Suppose that there is a component L1 of Gf of 3-rank 1. As f is fused to τf ,
and a Sylow 3-subgroup of CI (τf) is isomorphic to 31+2, there is 31+2 ∼= B ≤ Gf .
But now m3(L1B) = 3 from the structure of Aut(L1) with L1 of 3-rank 1 in
Theorem C (A.2.3), contrary to Gf an SQTK-group. Thus no such component
exists. But Lf ≤ E(Gf ) so there is a component L2 of Gf which is not a 3′-group,

and then as m3(Gf ) ≤ 2, L2 is of 3-rank 2 and L2 = O3′ (E(Gf )), so Lf ≤ L2.
Indeed L3(2) ∼= Lf is a component of CL2(v), so we conclude using Theorem C
that L2/Z(L2) ∼= L3(4), J2, or L3(7). By A.3.18, either CGf (L2) is a 3′-group or
L2/O2(L2) is SL3(4) or SL3(7), with O(Z(L2)) the unique subgroup of order 3 in
CGf (L2).

As τf is fused to f , there is a conjugate U1 of V1 with L3 := O2(CG(〈U1, f〉)) =
O(CGf (U1)) ∼= 31+2. In particular, U1 acts nontrivially on L2, and hence U1 acts
faithfully on L2 by (*). By the previous paragraph, either L3 is faithful on L2

or Z(L2) = Z(L3). We conclude from the structure of centralizers of involutions
in Aut(L2) in our three cases that L3 = O(CGf (U1)) ≤ CGf (L2), contrary to the
previous paragraph. ¤

Lemma 15.3.39. L = L0.

Proof. Assume L < L0. Then L0 := LLs for some s ∈ S − NS(L), with
L described in 1.2.1.3. Then m3(L) = 1 by 15.3.34, and by 15.3.33.3, L is also
described in 1.1.5.3 with O(L) = 1, so L is simple and L0 = L× Ls. Therefore as
m3(Y+) = 2 and Y+ ≤ L0 by 15.3.37, Y+ = XXs where X := O2(Y+ ∩ L). Next
there is Y2 ≤ Y+ ∩M2, with V2 = [V, Y2] and Y2 is S-invariant. As Y2 and V2 are
s-invariant, they are diagonally embedded in L0, so X is the projection of Y2 on
L, and VL = [VL, X ], where VL is the projection of V2 on L. Similarly s acts on
O2(CY+(V2)) =: Y1, so Y1 is also diagonally embedded in L0 with projection X on
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L. Now Y1 centralizes V2 and hence also VL, whereas [VL, Y1] = [VL, X ] 6= 1, a
contradiction. ¤

The next lemma rules out conclusion (1) of 15.3.37, and eliminates the shadow
of G ∼= S9 where L ∼= A5, and also those of G ∼= L wr Z2 for L ∼= L3(2) and A5.

Lemma 15.3.40. Y+ ≤ L.

Proof. Assume Y+ 6≤ L. Then m3(L) = 1 by 15.3.38, and L = L0 by 15.3.39,
so that case (2) of 15.3.37 holds, and in that notation of the lemma, Y+ = YLYC
with |YL|3 = 3 = |YC |3, and Y+/O2(Y+) ∼= E9. As L is S-invariant, the subgroups
YL and YC are S-invariant. By 15.3.36.1, Y+S/R ∼= S3 × S3, so from the structure
of M̄ in 15.3.2.1, {YC , YL} = {Y1, Y2}, where Y2 ≤ Y+ ∩M2 with V2 = [V, Y2], and
Y1 ≤ Y+ ∩M1.

If YC = Y2 then V2 = [V2, YC ] ≤ CG(L), so as L 6≤M , CG(V2) 6≤M , and hence
Y = Y+ by 15.3.11.3. Then since V1 = [V1, Y1], interchanging the roles of V1 and V2
if necessary, we may assume instead that YL = Y2. As YL = Y2, V2 = [V2, YL] ≤ L.

Suppose first that L ∼= L2(2
n) or U3(2

n). Then MI acts on the Borel subgroup
over SL, so ML is that Borel subgroup by 15.3.33.1. In particular ML acts on
V2 ∼= E4, so we conclude n = 2. Then as AutMI (V2)

∼= S3, L ∼= L2(4).
Therefore L ∼= L2(4) or L3(2) as case (2) of 15.3.37 holds, so Y2 = YL ∼= A4. In

particular Y/O2(Y ) is E9 rather than 31+2 as Y2 has one noncentral 2-chief factor,
so Y = Y+ = Y2 × Y t2

∼= A4 ×A4 for t ∈ T − S, contrary to 15.3.9. ¤

Assume for the remainder of the proof of Theorem 15.3.35 that I ∈ H+,∗. By
15.3.39, L E I , by 15.3.40, Y+ ≤ L, and by 15.3.33.3, L 6≤M . Thus LS ∈ H+, so
I = LS by minimality of I . Let I+ := I/CI(L).

Lemma 15.3.41. (1) F ∗(I+) = L+ is simple and described in 1.1.5.3.
(2) M+

I is a 2-local of I+ containing a Sylow 2-subgroup S+ of I+ with Y +
+ E

M+
L , Y

+
+ S

+/O2,Φ(Y
+
+ S

+) ∼= S3×S3, andM
+
I is maximal in I+ subject to F ∗(M+

I ) =

O2(M
+
I ).

Proof. Part (1) follows from 15.3.33.3. By 15.3.11.4 and Coprime Action,
M+
I = NI+(Y

+). The remaining two assertions follow from 15.3.36.1 and Theorem
15.3.25. ¤

Lemma 15.3.42. L+ is of Lie type and characteristic 2.

Proof. Assume otherwise. If L+ ∼= A7, then as Y+ ≤ L and Y+ is S-invariant,
Y+ ∼= A4 × Z3. Thus MI is the stabilizer in I of a partition of type 4, 3, as that
stabilizer is the unique maximal subgroup of I containing Y+S. This contradicts
F ∗(MI) = O2(MI) in 15.3.11.7.

By 15.3.11.8, O(L) = 1. Thus by the previous paragraph, L must appear in
case (e) or (f) of 1.1.5.3. Inspecting the 2-local subgroups of the groups in those
cases for subgroups satisfying the conclusions of 15.3.41.2, we conclude that I+ ∼=
Aut(J2). Then as V ≤ Z(R) by 15.3.36.2, and [V, Y+] is normal inMI , we conclude
[V, Y+] ∼= E4, and hence case (2) of Hypothesis 15.3.10 holds, so V2 = [V, Y+]. But
now V1 ≤ CI(Y+) ≤ CI (L) from the structure of Aut(J2), so L ≤ CG(V1) ≤M by
15.3.11.3, contrary to the choice of L. ¤

We are now in a position to complete the proof of Theorem 15.3.35.
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By 15.3.42, L+ is of Lie type and characteristic 2, and hence is described in
cases (a)–(c) of 1.1.5.3. By 15.3.41.2, M+

L is a maximal S-invariant parabolic of

I+ and S+ acts on Y +
+ with Y +

+ S
+/O2,Φ(Y

+
+ S

+) ∼= S3 × S3. Therefore either
L+ ∼= L4(2) or L5(2), or L

+ is of Lie rank 2 and defined over F2n for n > 1 with
Y+ contained in the Borel subgroup B of L over SL.

Assume the latter case holds. Then as Y+S/O2,Φ(Y+S) ∼= S3×S3, we conclude
from the structure of Aut(L+) that L+ ∼= L3(2

n) with n even. As O2,3(B) ≤ CM (V )
by 15.3.2.1, and [V, Y+] E B, we conclude n = 2. Since O(L) = 1 by 15.3.33.3,
L ∼= L3(4), so that m3(B) = 1, a contradiction.

Therefore L ∼= L4(2) or L5(2). As Y+S/R ∼= S3 × S3, we conclude that S is
trivial on the Dynkin diagram of L. By 15.3.41.2, M+

I is maximal in I+ subject to

F ∗(M+
I ) = O2(M

+
I ), so L+ ∼= L4(2) and M+

I = Y +
+ S

+ is the maximal parabolic

determined by the two end nodes. Therefore Y +
+ S

+ is irreducible on O2(Y
+
+ S

+) of
order 16, impossible as E4

∼= V2 = [V2, Y+] E Y+S.
This contradiction completes the proof of Theorem 15.3.35.

Finally we complete our analysis of Hypothesis 15.3.10 by eliminating the only
possiblity left in Theorem 15.3.35:

Theorem 15.3.43. Y+S/R is not S3.

Proof. Assume otherwise; then case (ii) of 15.3.11.5 holds, so

(a) Y+ = O3′(MI) with |Y+ : O2(Y+)| = 3.

In particular, case (2) of Hypothesis 15.3.10 holds, so that

(b) [V1, Y+] = 1 and V2 = [V2, Y+] ∼= E4.

Further NG(Vi) ≤ M by 15.3.11.3, so as L 6≤ M , [V1, L] 6= 1. Therefore as V1 ≤
CS(Y+) by (b):

(c) [V1, L] 6= 1 and CS(Y+) 6= CS(L).

Suppose Y+ ∼= A4. As |Y+|3 = 3, case (1) of 15.3.7 holds and Y+ = O3′(M2).
Thus Y = Y+ × Y t+

∼= A4 ×A4 for t ∈ T − S, contrary to 15.3.9. Therefore:

(d) Y+ is not isomorphic to A4.

Arguing as in the the proof of 15.3.37, one of the following holds:

(i) Y+ ≤ θ(I) = L0.
(ii) L = L0 is of 3-rank 1 with L/O2(L) ∼= L2(2

n), Lδ3(2
m) with 2m ≡ −δ

mod 3, or L2(p) for some Fermat or Mersenne prime p.
(iii) L = L0

∼= Lε3(2
n), 2n ≡ ε mod 3, or L/O2(L) ∼= L3(4). Further some y of

order 3 in Y+ induces a diagonal outer automorphism on L.

Suppose that Y+ does not induce inner automorphisms on L. Then as Y+S/R ∼=
S3, conclusion (iii) holds. As Y+S = SY+, Y+S acts on a Borel subgroup B of L
over S ∩ L, so by 15.3.33.1, B ≤ML. But then m3(MI) > 1, contrary to (a).

Therefore Y+ induces inner automorphisms on L, and hence case (i) or (ii)
holds. As L 6≤ M , [L, Y+] 6= 1 by 15.3.11.4, so the projection YL of Y+ on L is
nontrivial. Now NS(L) acts on YL, so S ∩ YL ∈ Syl2(YL) and hence YL normalizes

O2(Y+O2(S∩YL)) = Y+, so that YL ≤MI by 15.3.11.4. Thus YL ≤ O3′(MI) = Y+,
so YL = Y+ since |Y+|3 = 3.

As S normalizes Y+ and Y+ ≤ L, S normalizes L, and hence L E I . As Y+ ≤ L
and I ∈ H+,∗, I = LS. Let I+ := I/CI(L). Now we obtain the following analogue
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of 15.3.41, using the same proof, but replacing the appeal to 15.3.36.1 by an appeal
to (a):

(e) F ∗(I+) = L+ is simple, and is described in 1.1.5.3. Further M+
I is a 2-local

of I+ containing a Sylow 2-subgroup S+ of I+ with Y +
+ = O3′(M+

I ), S+Y +
+ /R

+ ∼=
S3, and M

+
I is maximal subject to F ∗(M+

I ) = O2(M
+
I ).

We now eliminate the various possibilities for L+ arising in 1.1.5.3 and satisfying
condition (e).

Suppose first that L+ is of Lie type over F2n , and hence is described in cases
(a)–(c) of 1.1.5.3. Then M+

L is a maximal S-invariant parabolic by (e).

Assume that n > 1. Then as Y+ = O3′(ML), we conclude L+ ∼= L3(2
n)

or L2(2
n) with n even, or U3(2

n), and M+
L is a Borel subgroup of L+. Then

E4
∼= V2 = [V, Y+] E ML by (b), so we conclude that n = 2. But from the

structure of Aut(L), CS(Y+) = CS(L), contrary to (c).

So n = 1. As Y+ = O3′(ML) andML is a maximal S-invariant parabolic, either
L+ is of Lie rank 2, or I+ ∼= S8 and M+

L is the middle-node minimal parabolic
isomorphic to S3/Q

2
8. As E4

∼= V2 E MI , the last case is eliminated. Now by (b),
V1 ≤ CS(Y+), but [V1, L] 6= 1 by (c), and again V2 E MI , so we conclude that
I+ ∼= S6. However in this case Y+ ∼= A4, contrary to (d).

Suppose next that L+ is sporadic. We inspect the list of possible sporadics
in case (f) of 1.1.5.3 for subgroups I+ of Aut(L) such that there is a 2-local M+

I

satisfying (e) and with E4
∼= V2 = [V2, Y+] E MI . We conclude L+ ∼= M12. But

then CS(Y+) = CS(L), contrary to (c).
If L+ ∼= A7, then arguing as in the sporadic case, MI is the stabilizer of a

partition of type 23, 1, so Y+ ∼= A4, again contrary to (d).
From the list of 1.1.5.3, this leaves the case where L is L3(3) or L2(p), p a Fermat

or Mersenne prime; we may take p > 7 as L2(5) ∼= L2(4) and L2(7) ∼= L3(2) were
eliminated earlier. However in each case, there is no candidate for MI satisfying
(e). This completes the proof of 15.3.43. ¤

By Theorems 15.3.35 and 15.3.43:

Theorem 15.3.44. Assume Hypothesis 15.3.10. Then M = !M(Y+S).

In the remainder of this subsection we deduce information about the structure
of M and of members of H(T,M) from these uniqueness results.

Theorem 15.3.45. For i = 1, 2:

(1) M = !M(CY (Vi)S).
(2) NG(Vi) ≤M .
(3) CG(CVi (S)) ≤M .

Proof. First Hypothesis 15.3.10.1 is satisfied with Y+ := Y , so by 15.3.44,
M = !M(Y S). Therefore Hypothesis 15.3.10.2 also holds with Y+ := O2(CY (V1)),
so (1) holds since V1 and V2 are conjugate in M . Then as Vi E Y S and CY (Vi)S ≤
CG(CVi(S)), (2) and (3) follow from (1). ¤

Recall that we view V as a 4-dimensional orthogonal space of sign +1 over
F2, and M̄ as the isometry group of this space. In particular, there are two M -
classes of involutions in V : the 9 singular involutions fused to z under M , and the

6 nonsingular involutions in V #
1 ∪V

#
2 . We will show next that these classes are not
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fused in G. Recall weak closure parameters r(G, V ) and w(G, V ) from Definitions
E.3.3 and E.3.23.

Lemma 15.3.46. (1) M controls G-fusion of involutions in V .
(2) For g ∈ G−M , V ∩V g is totally singular. In particular if 1 < U < V with

NG(U) 6≤M , then U is totally singular.
(3) r(G, V ) > 1.
(4) W0(T, V ) centralizes V , so that w(G, V ) > 0, V G ∩ M ⊆ CG(V ), and

NG(W0(T, V )) ≤M .
(5) NG(ZS) ≤M ≥ CG(v) for v ∈ V nonsingular.

Proof. Let 〈v〉 = ZS ∩V1; as we just observed, v and z are representatives for
the orbits of M on V #. Now S ∈ Syl2(CM (v)), and CG(v) ≤M by 15.3.45.3, so v
is not 2-central in G, and hence is not fused to the 2-central involution z. Thus (1)
holds. As CG(v) ≤M = NG(V ), (1) and A.1.7.2 say that V is the unique member
of V G containing v, so (2) holds. As no hyperplane of V is totally singular, (2)
implies (3). Similarly ZS is not totally singular, so (5) holds.

It remains to prove (4), so suppose g ∈ G −M and A := V g ≤ T . We must
show [V,A] = 1, so assume otherwise.

Assume first that V ≤ NG(A). Then we have symmetry between V and A,
1 6= [V,A] ≤ V ∩ A, and [V,A] is totally singular by (2). As [V,A] is totally
singular, m(Ā) = 1 and Ā = 〈ā〉 with V a1 = V2. But as m(Ā) = 1, V centralizes the
hyperplane CA(V ) of A, so that V induces a group of transvections on A, contrary
to V a1 = V2 and symmetry.

Therefore V 6≤ NG(A). In the notation of Definition F.4.41, by (3), U :=
Γ1,Ā(V ) ≤ NV (A), so U < V . Hence m(Ā) > 1 so m(Ā) = m2(M̄) = 2, and so Ā is

one of the two 4-subgroups of T̄ . As V = Γ1,S̄(V ), Ā is the 4-subgroup distinct from

S̄, so U = Z⊥ and CU (A) = Z. Let B := CA(V ); then m(B) = 2 = m(AutU (A)).
As V 6≤ NG(A), CG(B) 6≤ NG(A), so B is totally singular in A by (2). This is
impossible, as U centralizes B and m(AutU (A)) = 2, whereas the centralizer of a
totally singular line is of 2-rank 1.

Therefore W0(T, V ) centralizes V , and hence w(G, V ) > 0 and V G ∩NG(V ) ⊆
CG(V ). Then by a Frattini Argument, M = CM (V )NM (W0(T, V )), and it follows
that NG(W0(T, V )) ≤M by 15.3.2.4. ¤

Lemma 15.3.47. If x ∈ CG(ZS), then either [V, x] = 1 or V G ∩ NG([V, x]) ⊆
CG(V ).

Proof. Assume [V, x] 6= 1. As x ∈ CG(ZS), x ∈M by 15.3.46.5. Therefore as
[V, x] 6= 1 and x centralizes ZS , [V, x] is not totally singular, so NG([V, x]) ≤M by
15.3.46.2. But then V G ∩NG([V, x]) ⊆ CG(V ) by part (4) of 15.3.46. ¤

Observe that Mc ∈ H(T,M), and in particular H(T,M) is nonempty.

In the remainder of the section, H denotes a member of H(T,M).

LetMH :=M∩H , VH := 〈V H〉, UH = 〈ZHS 〉, QH := O2(H), andH∗ := H/QH .

By 15.3.2.3 and 15.3.4, H ≤Mc = CG(Z), so we can form H̃ := H/Z.

Lemma 15.3.48. If case (2) of 15.3.7 holds, assume that CY (V ) ≤ H. Then

(1) Hypothesis F.9.1 is satisfied with Y , ZS, Z in the roles of “L, V+, V1”.

(2) Z̃S ≤ Z(T̃ ), ŨH ≤ Ω1(Z(Q̃H)), and Φ(UH) ≤ Z.

(3) QH = CH (ŨH).
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(4) O2(H
∗) = 1.

Proof. By 15.3.46.5, NG(ZS) ≤ M = NG(V ), so that part (c) of Hypothesis
F.9.1 holds. Let L1 := O2(CY (Z)). By 15.3.7, CM (Z) = TCM (V ), so L1 ≤ CM (V ).

Now part (b) of Hypothesis F.9.1 holds as ZS E T and Z̃S is of order 2. Further

Z̃S ≤ Z(T̃ ). Part (d) holds as M = !M(Y T ) by 15.3.7.
We next establish part (a) of F.9.1. As CG(ZS) ≤ M by 15.3.46.5, and

CM (Z) = TCM (V ), CG(ZS) = CM (V )S, so that using Coprime Action,

X := O2(kerCH(Z̃S)
(H)) ≤ CM (V ),

and hence [X,Y ] ≤ CY (V ). In case (1) of 15.3.7, CY (V ) = O2(Y ); thus [Y,X ] ≤
O2(Y ) and L1 = 1 so L1T ≤ H . In case (2) of 15.3.7, CY (V ) = O2,Z(Y ), and
L1 ≤ CY (V ) ≤ H by hypothesis. If X is a 3′-group then again [Y,X ] ≤ O2(Y )
as Aut(Y/O2(Y )) is a {2, 3}-group. If X is not a 3′-group then as O2(CY (V )) =
θ(CM (V )) by 15.3.7, [Y,X ] ≤ CY (V ) ≤ XO2(Y ). Thus in any case [Y,X ] ≤
XO2(Y ), so as X E XT , Y T normalizes O2(XO2(Y )) = X . It follows that
X = 1, as otherwise H ≤ NG(X) ≤ M = !M(Y T ) by 15.3.7, contrary to H ∈
H(T,M). Thus kerCH(Z̃S)

(H) is a 2-group, and hence lies in QH . This completes

the verification of part (a) of F.9.1.
Finally under the hypothesis of part (e) of F.9.1, V g ≤ W0(NG(V )) ≤ CG(V )

by 15.3.46.4, so part (e) holds. This completes the verification of (1). By (1), we
may apply F.9.2 to obtain the remaining conclusions of 15.3.48. ¤

The next result eliminates case (2) of 15.3.7; in particular Lemma 15.3.48 ap-
plies thereafter to all members of H(T,M).

Lemma 15.3.49. (1) O2(MH) ≤ CMH (V ).
(2) Z = [ZS , O2(Mc)].
(3) Case (1) of 15.3.7 holds, so Y/O2(Y ) ∼= E9, O2(Y ) = CY (V ) = CY (Z),

and Y = O3′ (M).
(4) CM (V ) and MH are 3′-groups.
(5) NG(ZS) = NM (ZS) is a 3′-group.

Proof. Part (1) follows since M ∩Mc = CM (V )T by 15.3.7.
Since CY (V ) ≤ CG(Z) = Mc ∈ H(T,M), enlarging H ir necessary, we may

assume when case (2) of 15.3.7 holds that H contains CY (V ), so that 15.3.48
applies to H .

Let UC := CUH (QH); we claim:

(a) O2,F∗(H) centralizes UC .

For UC ≤ Z(QH), so as Lf (G, T ) = ∅ by Hypothesis 14.1.5, each member of C(H)
centralizes UC by A.4.11, and hence O2,E(H) centralizes UC . Also by Coprime
Action, UC = CUC (O2,F (H)) ⊕ [UC , O2,F (H)], so as Z ≤ CUC (Mc) by 15.3.4, and
H ≤Mc, it follows that [UC , O2,F (H)] = 1, completing the proof of (a).

Set ÛH := UH/UC . By 15.3.48, H∗ is faithful on ŨH and O2(H
∗) = 1, while

F ∗(H∗) centralizes ŨC by (a); thus F ∗(H∗) is faithful on ÛH , and then also H∗

is faithful on ÛH . In particular UH 6≤ Z(QH), so [ZS , QH ] = Z by 15.3.48.2, and
hence (2) holds since we may take Mc in the role of “H”.

By 15.3.7, (3) holds iff CM (V ) is a 3′-group, in which case M ∩Mc = CM (V )T
is a 3′-group, and hence MH is also a 3′-group as H ≤ Mc. That is, (3) and (4)
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are equivalent. Further NG(ZS) = NM (ZS) by 15.3.46.5, so as NM̄ (ZS) = T̄ is a
2-group, (4) implies (5).

Thus we may assume that (3) fails, and it remains to derive a contradiction.
Hence case (2) of 15.3.7 holds, so that Y/O2(Y ) ∼= 31+2, Y = θ(M), CY (V ) =
O2,Z(Y ), and Y0 := O2(CY (V )) 6= 1. Hence:

(b) Y0 = θ(MH).

Let Ω := Ω1(QH). Now [QH , Y0] ≤ QH∩Y0 ≤ O2(Y0), so Ω̄ ≤ Ω1(CT (Y0/O2(Y0))) =
Z(T̄ ). Thus Ω ≤ S, so as UH = 〈ZHS 〉:

(c) UH ≤ Z(Ω).

(d) VH is elementary abelian.

For [V,QH ] ≤ V ∩QH ≤ Ω ≤ CH(UH) by (c), so VH centralizes QH/CH(UH). Now
Hypothesis F.9.1 holds by 15.3.48.1, and UH is abelian by (c), so we may apply

F.9.7 to conclude that QH/CH(UH) is H-isomorphic to the dual of ÛH . So as H∗

is faithful on ÛH , VH ≤ QH . In particular VH normalizes V , so V commutes with
each H-conjugate of V by 15.3.46.4, and hence VH is abelian, establishing (d).

We next extend Hypothesis F.9.1 to:

(e) Hypothesis F.9.8 holds.

For suppose Z ≤ V ∩ V g for some g ∈ G. As Mc = CG(Z), and M controls
G-fusion in V by 15.3.46.1, we conclude from A.1.7.1 that Mc is transitive on
{U ∈ V G : Z ≤ U}. Thus we may take g ∈Mc, and then [V, V g] = 1 by (d) applied
to Mc in the role of “H”. Thus condition (f) of Hypothesis F.9.8 holds. Further
case (ii) of condition (g) of Hypothesis F.9.8 holds by 15.3.47.

We now adopt the notation of the latter part of section F.9 and obtain:

(f) [EH , Vγ ] = 1 = [Eγ , VH ]. In particular, CVH (Uγ/Zγ) = CVH (Uγ).

For as VH is elementary abelian by (d), Eγ = Vγ ∩ QH ≤ Ω, and so [Eγ , UH ] = 1
by (c). Thus as ZS ≤ UH , Eγ ≤ CT (ZS). Suppose Eγ does not centralize V .
Then 1 6= [V,Eγ ] ≤ Vγ , so as Vγ is abelian, Vγ ∈ V G ∩ CG([V,Eγ ]) ⊆ CG(V ) by
15.3.47, contradicting our assumption that [V,Eγ ] 6= 1. Thus Eγ centralizes V .
But as Eγ ≤ QH , Eγ normalizes each H-conjugate of V , so this argument gives
the second equality in (f). Before completing the proof of (f), we recall [V, Uγ ] 6= 1

since V 6≤ G
(1)
γ , so as [Dγ , V ] ≤ [Eγ , V ] = 1:

(g) Dγ < Uγ .

By (g) we have symmetry between γ1 and γ as discussed in the first paragraph
of Remark F.9.17, so that the remaining equality in (f) follows from that symmetry.
Further by F.9.16.4, we can choose γ so that 0 < m(U ∗γ ) ≥ m(UH/DH), and hence
by (f):

(h) U∗γ and V ∗γ are quadratic FF∗-offenders on ŨH .

Choose h ∈ H with γ0 = γ2h, set α := γh, and observe V ∗α ≤ O2(Y
∗
0 T

∗)—since
from the proof of 15.3.48, Y0 plays the role of “L1”. Let JH := 〈V Hα 〉. We show:

(i) JH is the product of C-components L of JH with L = [L, Y0].

For if JH is not the product of members of C(JH), then by (h) and Theorem B.5.6,

there is L∗ subnormal in J∗H with L∗ ∼= S3, O3(L
∗) = [O3(L

∗), V ∗α ], and [ŨH , L]
of rank 2. Further Y0 acts on L∗ as there are at most two H-conjugates of L∗ in
Theorem B.5.6 and Y0 = O2(Y0). As O3(L

∗) = [O3(L
∗), V ∗α ] and V

∗
α ≤ O2(Y

∗
0 T

∗),
O3(L

∗) 6= Y ∗0 . Hence Y0 centralizes L/O2(L) so that L normalizes O2(Y0O2(L)) =
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Y0. Thus L ≤ NG(Y0) = M , contrary to (b) since we just saw O3(L
∗) 6= Y ∗0 .

This contradiction shows that JH is the product of members of C(JH). Similarly
L = [L, Y0] for each L ∈ C(JH), completing the proof of (i).

Applying (i) to any overgroup of Y0T in H we conclude

(j) Each solvable overgroup of Y0T in H is contained in MH .

Pick L ∈ C(JH) and let L0 := 〈LT 〉 and U0 := [UH , L0]. Then L0Y0T ∈
H(Y0T,M), so replacing H by L0Y0T , we may assume H = L0Y0T . As Z̃S ≤ Z(T̃ )

by 15.3.48, ŨH = Ũ0CŨH (H) by B.2.14. Let Z̃0 be the projection of Z̃S on Ũ0 with

respect to this decomposition; thus CH∗(Z̃0) ≤ NH(ZS)
∗ ≤M∗

H by 15.3.46.5.

By Theorems B.5.1 and B.5.6, L∗ is A7, Â6, Ln(2) for n := 4 or 5, or a group
of Lie type of Lie rank 1 or 2 over some F2e . Set T0 := T ∩ L0. When L∗ is of Lie
type, let B denote the Borel subgroup of L0 containing T0.

Assume first that Y0 6≤ L0. Then L∗ is not A7 or Â6 by A.3.18. Further
T0 = Y0T ∩ L0 is Y0T -invariant, so Y0T acts on B. Then B ≤MH by (j), so as we
are assuming Y0 6≤ L0, we conclude from (b) that B is a 3′-group acting on Y0. As
L0 = [L0, Y0] by (i), we conclude from the structure of Aut(L∗) for L∗ of Lie type
that B = T0, and so L is defined over F2. Then Out(L

∗
0) is a 3′-group from the list

of possibilities in Theorem B.4.2, so Y0 induces inner automorphisms on L∗0, and
this time we obtain a contradiction from (j) and (b) since the projection of Y ∗0 on
L∗0 is Y0T -invariant and nontrivial. Thus we have shown:

(k) Y0 ≤ L0.

Suppose that L∗ is of Lie type, and defined over F2e with e > 1; then from
Theorem B.4.2, L∗ is L2(2

e), SL3(2
e), Sp4(2

e), or G2(2
e). Further as T0 acts on

Y0, Y0 is contained in B, and e is even. Then by (b), θ(NL∗0 (Y0)) = Y ∗0 is of 3-
rank 1, so we conclude L∗ = L∗0

∼= L2(2
e). As V ∗α is an FF∗-offender contained in

O2(Y
∗
0 T

∗), we conclude from Theorem B.4.2 that Ũ0/CŨ0(L) is the natural module

for L∗. But then Z̃0 ≤ CŨ0(Y0) ≤ CŨ0(L), contrary to UH = 〈ZHS 〉. Therefore L∗

is not of Lie type of F2e with e > 1.
Applying (j) and (b) as at the end of the proof of (k), we conclude that L = L0

if L∗ ∼= L3(2); so using 1.2.1.3, we have reduced to:

(l) L0 = L, L∗ is Ln(2), 3 ≤ n ≤ 5, A6, Â6, A7, or G2(2)
′, and either Y ∗0 T

∗
0 is

a minimal parabolic of L∗ of Lie type, or L∗ is A7 or Â6.

(m) VH > UHV .

For suppose that VH = UHV ; then because [UH , QH ] ≤ V1 by 15.3.48.2, [VH , QH ] =
[UH , QH ][V,QH ] ≤ V1V = V . Further [V,QH ] 6= 1 by (2), so Z(T̄ ) ≤ Q̄H as Z(T̄ ) is
of order 2. Thus ZS ≤ [V,QH ], and hence ZS ≤ [VH , QH ] ≤ V . Therefore [VH , QH ]
is not totally singular in V , so H ≤ NG([VH , QH ]) ≤ M by 15.3.46.2, contrary to
H ∈ H(T,M).

(n) V ∗γ is a strong FF∗-offender on ŨH .

Suppose otherwise. By the choice of γ, m(U ∗γ ) ≥ m(UH/DH), and Uγ ≤ Vγ ≤

CH(DH) by (f), so as V ∗γ is not a strong offender, we conclude that D̃H = CŨH (Vγ),

U∗γ = V ∗γ , and m(U∗γ ) = m(UH/DH). By the last equality we have symmetry
between γ and γ1 (as discussed in the second paragraph of Remark F.9.17) so also
VH = UHCVH (Uγ/Zγ) by that symmetry. Further CVH (Uγ/Zγ) = CVH (Uγ) by
(f), so Uγ centralizes VH/UH . Hence as L = [L,Uγ ], L centralizes VH/UH , so as
H = LY0T , VH = 〈V H〉 = UHV , contrary to (m). Thus (n) holds.
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Observe that L∗ is A6 or Ln(2), 3 ≤ n ≤ 5, since in the remaining cases in (l),
L∗T ∗ has no strong FF∗-offenders by Theorem B.4.2, contrary to (n).

Suppose that L∗ ∼= L3(2). As V ∗α ≤ O2(Y
∗
0 T

∗) and Y ∗0 T
∗ is the stabilizer of

the point Z̃0 in Ũ0, V
∗
γ is not a strong offender on ŨH by Theorem B.5.1, contrary

to (n). Thus L∗ is not L3(2).
Suppose next that L∗ ∼= Ln(2) for n = 4 or 5. As Y ∗0 T

∗
0 is a T -invariant

minimal parabolic by (l), either LT is generated by overgroups H1 of Y0T with
H1/O2(H1) ∼= S3 × S3 or L3(2), or H

∗ ∼= S8 with Y ∗0 T
∗
0 the middle-node minimal

parabolic of L∗. In the first case, L ≤ M by our previous reductions, contrary to
H 6≤ M . In the second case, Y0T = CH(Z̃0), so by Theorem B.5.1, Ũ0 is the sum
of the natural module and its dual; hence O2(Y

∗
0 T

∗) contains no FF∗-offender by
B.4.9.2iii, whereas V ∗α is such an offender by (h).

Thus L∗ ∼= A6. But then as V ∗α ≤ O2(Y
∗
0 T

∗) with Y ∗0 T
∗ the stabilizer of the

point Z̃0, V
∗
γ is not a strong FF∗-offender on ŨH by B.3.2, contrary to (n). This

contradiction completes the proof of 15.3.49. ¤

15.3.3. The case 〈VMc〉 nonabelian. Recall from 15.3.49.4 that case (1) of
15.3.7 holds, and in particular 15.3.48 applies to all H ∈ H(T,M).

In this subsection, we will assume that 〈V Mc〉 is nonabelian, and derive a
contradiction via an application of the methods in section 12.8; in particular we
will use Theorem G.9.3. Thus we will reduce to the following situation, to be
treated in the final subsection:

Theorem 15.3.50. VH is abelian for each H ∈ H(T,M).

Until the proof of Theorem 15.3.50 is complete, assume H is a counterexample.
Then 〈V Mc〉 is also nonabelian, so as usual in the nonabelian case of section F.9,
we take H := Mc. Recall Mc = CG(Z) by 15.3.4, so VH = 〈V CG(Z)〉. Set U :=

UH = 〈Z
CG(Z)
S 〉.

Lemma 15.3.51. (1) V ∗ 6= 1.
(2) Either

(a) U is nonabelian, Ū is the 4-subgroup of T̄ distinct from S̄, and Ū is a
Sylow group of Ω+

4 (V ), or
(b) U is elementary abelian, U ≤ S, Z(T̄ ) ≤ Ū , and ZS = V ∩ U .

(3) Y = [Y, U ].
(4) [V,QH ] ≤ V ∩QH and [V, U ] ≤ V ∩ U .

Proof. If V ≤ QH then the members of V H normalize V , so that VH is
abelian by 15.3.46.4, contrary to our choice of H as a counterexample. Thus (1)

holds, so [Ũ , V ] 6= 1 by 15.3.48.3, and hence Ū 6= 1. By 15.3.48.2, Φ(U) ≤ Z, so Ū
is elementary abelian, and as T ≤ H , Ū E T̄ , so Z(T̄ ) ≤ Ū as Z(T̄ ) is of order
2. As U = 〈ZHS 〉, U is nonabelian iff U 6≤ CT (ZS) = S iff conclusion (a) of (2)
holds. Thus if U is abelian then U ≤ S, so as Z(T̄ ) ≤ Ū , ZS ≤ V ∩ U ≤ CV (U) ≤
CV (Z(T̄ )) = ZS , and hence conclusion (b) of (2) holds. As Z(T̄ ) ≤ Ū , Ȳ = [Ȳ , Ū ],
so (3) holds. Part (4) follows as V normalizes QH and U , and vice versa. ¤

Lemma 15.3.52. U is nonabelian.

Proof. Assume U is abelian; then case (b) of 15.3.51.2 holds. Thus ZS = V ∩U
with [U, V ] ≤ U ∩V by 15.3.51.4, so V ∗ induces a group of transvections on Ũ with
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center Z̃S . Then V ∗H = 〈V ∗H
∗

〉 is generated by transvections, Ũ = 〈Z̃HS 〉, and

V ∗ E T ∗, so by G.6.4.4, V ∗H = H∗ ∼= Ln(2), 2 ≤ n ≤ 5, S6, or S7, and Ũ/CŨ (H
∗)

is the natural module for H∗. As CH∗(Z̃S) is a 3′-group by 15.3.49.5, we conclude
that H∗ ∼= S3. Then m(U) = 3 and ZS = CU (V ) = U∩V . Now as O2(Y ) = CY (V )
by 15.3.49.3, [O2(Y ), U ] ≤ CU (V ) ≤ V ; then in view of 15.3.51.3, Y centralizes
O2(Y )/V , so that V = O2(Y ). Thus Y ∼= A4 ×A4, contrary to 15.3.9. ¤

Lemma 15.3.53. (1) Ū Ȳ = Ω+
4 (V ) = N̄1 × N̄2 with N̄i ∼= S3 and V = [V,Ni].

(2) V ∩ QH = V ∩ U = [U, V ] = Z⊥ is the hyperplane of V orthogonal to Z.
Thus V ∗ is of order 2.

Proof. By 15.3.52, conclusion (a) of 15.3.51.2 holds, giving (1). Next by (1),
[U, V ] = Z⊥, so as V ∗ 6= 1 by 15.3.51.1, and [U, V ] ≤ U ∩ V by 15.3.51.4, (2)
follows. ¤

For the remainder of this subsection, define Ni as in 15.3.53, and set Yi :=
O2(Y ∩Ni).

Lemma 15.3.54. Let g ∈ Y with Zg not orthogonal to Z in V , and set I :=
〈U,Ug〉, P := O2(I), and W := U ∩ P . Then

(1) I = Y U .
(2) P =WW g and V ≤ Z(P ).
(3) U ∩ Ug =W ∩W g = Z⊥ ∩ Zg⊥ ∼= E4.
(4) P/V = P1/V ⊕ P2/V , where Pi/V := [P/V, Yi] = CP/V (N3−i), and Pi/V

is the sum of s natural modules for N̄i.
(5) [W g , U ] ≤W and W g normalizes U .

Proof. We verify the hypotheses of G.2.6, with V , Y , Z, U in the roles of “VL,
L, V1, U” By 15.3.481, G.2.2 is satisfied by the tuple of groups, and the remaining
hypotheses of G.2.6 hold by 15.3.53. Hence the conclusions of G.2.6 hold with
V (U ∩Ug) in the role of “S2”. Thus conclusions (1) and (2) of 15.3.54 follow from
G.2.6, and conclusion (4) will follow from G.2.6.5 once we show that U ∩ U g ≤ V .

As W g ≤ T , W g normalizes U , so [W g , U ] ≤ P ∩U =W , and hence (5) holds.
Further Φ(Ug) ≤ Zg by 15.3.48.2, so [U ∩ U g,W g ] ≤ W ∩ Zg. But Zg ≤ V , so
W ∩Zg ≤ U ∩V , and henceW ∩Zg = 1, since we chose Zg 6≤ Z⊥, and Z⊥ = U ∩V
by 15.3.53.2. ThusW g centralizes U ∩Ug , and by symmetry, W centralizes U ∩U g,
so using (2), P0 := (U ∩ Ug)V ≤ Z(P ). Further by G.2.6.4, I centralizes P0/V , so
since P0 ≤ Z(P ), we may apply Coprime Action to conclude P0 = V ×CP0(Y ). Now
T normalizes Y U = I , and hence normalizes the preimage P0 of CO2(I)/V (Y ) in I ,
and then also normalizes CP0(Y ). Therefore as Ω1(Z(T )) = Z ≤ V , we conclude
CP0(Y ) = 1 so that P0 = V , and hence U ∩ Ug ≤ V . As mentioned earlier, this
completes the proof of (4), and we established (5) earlier, so it remains to complete
the proof of (3). But by 15.3.53.2, U ∩ V = Z⊥, so as U ∩ Ug ≤ V ,

U ∩ Ug = (U ∩ V ) ∩ (Ug ∩ V ) = Z⊥ ∩ Zg⊥ =W ∩W g ∼= E4.

¤

In the next few lemmas, we use techniques similar to those in section 12.8 to
study the action of H on U .

For the remainder of the subsection, define g, W , P , Pi, and s as in 15.3.54.

Lemma 15.3.55. U is extraspecial, and V = Z(P ).
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Proof. First U is nonabelian by 15.3.52, so that Z = Φ(U) by 15.3.48.2; hence
U = U0ZU , where U0 is extraspecial and ZU := Z(U). Thus we must show that
ZU = Z. As U = 〈ZHS 〉 is nonabelian and ZS is of order 4, ZS ∩ ZU = Z; then as

CṼ (T ) = Z̃S , V ∩ ZU = Z. Therefore [V, ZU ] ≤ V ∩ ZU = Z, but no member of
M̄ induces a transvection on V with singular center, so ZU ≤ CU (V ) =W . Hence
also ZgU ≤W g .

As ZU ∩ V = Z, ZgU ∩ V = Zg , so by 15.3.54.3,

ZgU ∩ U = ZgU ∩ (U ∩ Ug) = ZgU ∩ (Z⊥ ∩ Zg⊥) ≤ Zg ∩ Z⊥ = 1.

Then asW g normalizes U and W normalizes U g by 15.3.54.5, [ZgU ,W ] ≤ ZgU ∩U =
1, so as P = WW g by 15.3.54.2, ZgU ≤ ZP := Z(P ). Therefore also ZU ≤ ZP .
By 15.3.54.4, the irreducibles for Y on P/V are not isomorphic to those on V , so
ZP = V ⊕ Z0, where Z0 is the sum of the Y -irreducibles on ZP not isomorphic
to those on V . Thus T acts on Z0, so as Z ≤ V , Z0 = 1. Thus ZP = V , so as
ZU ≤ ZP , ZU = V ∩ ZU = Z, completing the proof. ¤

Lemma 15.3.56. Let y ∈ Y1 − O2(Y1), V0 := 〈ZY1〉, F := U ∩ Hy, X := F y,
E := F ∩ F y, and t ∈ T − UCT (V ). Then

(1) The power map and commutator map make Ũ into an orthogonal space with

H∗ ≤ O(Ũ ).

(2) m(Ũ) = 2(s+ 2).

(3) X ∩ QH = E, [X,F ] ≤ E, V0 = ZZy, and Ẽ is totally singular of rank

s+ 2 in the orthogonal space Ũ .
(4) X∗ ∼= E2s+1 induces the full group of tranvections on Ẽ with center Ṽ0.

(5) Ũ = Ẽ⊕ Ẽt and X∗ induces the full group of transvections on Ẽt with axis

C̃Et(V0).
(6) X∗ ∩X∗t = V ∗ is of order 2, and X∗X∗t ∼= Ds

8.

(7) Z̃S = CŨ (〈X
∗, t∗〉).

Proof. Part (1) follows from 15.3.55. By 15.3.54.4, |P | = 24s+4, while by
parts (2) and (3) of 15.3.54, |P | = 22(m(W )−1). Thus m(W ) = 2s+ 3. By 15.3.53.1
and 15.3.54.1, m(U/W ) = 2, so (2) follows.

As y ∈ Y1 − O2(Y1), z
y ∈ Z⊥ − Z, so zy ∈ U − Z by 15.3.53.2. Thus as

U is extraspecial, |U : F | = 2; and the argument in 8.14 of [Asc94], which is
essentially repeated in the proof of G.2.3, gives us the structure of J := 〈U,U y〉:
J/O2(J) ∼= S3, ZZ

y = V0 ∼= E4, O2(J) = FF y = FX = CJ (V0), [E, J ] ≤ V0,
and for some r, O2(J)/E is the direct sum of r natural modules for J/O2(J) with
[O2(J)/E,U ] = F/E. Thus

J has r + 1 noncentral 2-chief factors. (∗)

Moreover J and E are normal in NG(V0).
As O2(J)/E is abelian andO2(J) = XF , [X,F ] ≤ E. Similarly as [XF/E,U ] =

F/E and |U : F | = 2, for u ∈ U − F the map ϕ : X/E → F/E defined by
ϕ(xE) := [u, x]E is a bijection. Therefore as [U,QH ] = Z ≤ E by 15.3.52 and

15.3.48.2, X ∩QH = E. Finally Φ(E) ≤ Φ(U)∩Φ(U y) = Z ∩Zy = 1, so by (1), Ẽ

is totally singular in the orthogonal space Ũ .
Next J̄ = Ȳ1Ū ∼= S3 × Z2, with F̄ = X̄ = Z(J̄) = Ū ∩ N̄2; in particular

[Z⊥, X ] = Z. By 15.3.54.4, Y1 has s noncentral chief factors on P/V , and by
15.3.53.1, Y1 has two noncentral chief factors on V . Thus J has s + 2 noncentral
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2-chief factors, so s+ 2 = r + 1 by (*). Further m(U/X) = 1 and m(X/E) = r, so
using (2),

m(Ẽ) = m(Ũ)− (r + 1) = 2(s+ 2)− (s+ 2) = s+ 2,

completing the proof of (3). Further F̄ 6= F̄ t, so F ∩ F t ≤ P . Also [E ∩ P, Y1] ≤
[E, J ] ≤ V0 ≤ V , so (E ∩ P )/V ≤ CP/V (Y1) = P2/V by definition of P2, and then

E ∩ Et ≤ P2 ∩ P t2 = V .
Now (4) holds, using an argument in the proof of 12.8.11.3; indeed the argument

is easier here since U is extraspecial. Next using 15.3.53.2, V ∩ U = Z⊥ = V0V
t
0 ,

and we saw earlier that [Z⊥, X ] = Z, so X centralizes Ṽ ∩ U . Therefore X acts on
V0 and V t0 , so since E and Et are normal in NG(V0) and NG(V

t
0 ), respectively, X

acts on E and Et. We saw earlier that E ∩Et ≤ V , so

E ∩ Et ≤ U ∩ Uy ∩ Uyt ∩ V = Z⊥ ∩ Zy⊥ ∩ Zyt⊥ = Z.

Then as m(Ũ) = 2m(Ẽ), Ũ = Ẽ⊕ Ẽt. Since the action of H∗ on Ũ is self-dual, the

action of X∗ on Ẽt is dual to its action on Ẽ, so (5) holds. By 15.3.53.2, V ∗ is of
order 2, so (4) and (5) imply (6) and (7). ¤

In the remainder of the proof of Theorem 15.3.50, define V0, X , E, and y as in
lemma 15.3.56.

Lemma 15.3.57. (1) H is irreducible on Ũ .

(2) If 1 6= K∗ = O2(K∗) E H∗ and the irreducibles of K∗ on Ũ are of rank at
least 3, then [K∗, V ∗] 6= 1, and either

(a) K∗ is irreducible on Ũ , or

(b) Ũ = Ũ1 ⊕ Ũ2, where the Ũi are irreducible K
∗-modules of rank s + 2,

and V ∗ induces a transvection on each Ũi.

Proof. Let Ũ0 be a nonzero H-submodule of Ũ . Then CŨ0(T ) 6= 0, so by

15.3.56.7, Z̃S ≤ Ũ0. Thus Ũ = 〈Z̃HS 〉 ≤ Ũ0, so (1) holds.

Assume the hypothesis of (2). By (1) and Clifford’s Theorem, Ũ is a semisimple

K∗-module, and by hypothesis, each J̃ ∈ Irr+(K
∗, Ũ) is of rank at least 3. If

[K∗, V ∗] = 1 then K∗ acts on [Ũ , V ∗]; this is impossible as [Ũ , V ∗] = Ṽ ∩ U is

of rank 2 by 15.3.53.2, contradicting m(J̃) > 2 for J̃ ∈ Irr+(K
∗, [Ũ , V ∗]). Thus

[K∗, V ∗] 6= 1.

Similarly if V ∗ does not normalize some J̃ , then m([Ũ , V ∗]) ≥ m(J̃) > 2 by

hypothesis, again contrary to 15.3.53.2. Thus we can write Ũ = J̃1⊕· · ·⊕ J̃k where
J̃i ∈ Irr+(K∗, Ũ) and J̃i is V

∗-invariant. Again using 15.3.53.2,

2 = m([Ũ , V ∗]) =

k∑

i=1

m([J̃i, V
∗]) ≥ k,

so that (2) holds. ¤

The next lemma eliminates the shadow of Aut(L4(2)), and begins to zero in on
the shadows of Aut(L5(2)) and Aut(He).

Lemma 15.3.58. (1) H∗ ∼= Aut(L3(2)).
(2) s = 1 and U ∼= D3

8.

(3) Ũ = Ũ1 ⊕ Ũ t1, for t ∈ T − UCT (V ), and some natural submodule Ũ1 for

O2(H∗) ∼= L3(2), such that Ũ
t
1 is dual to Ũ1.
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Proof. Observe first that s > 0: For if s = 0, then by 15.3.54.4, Y ∼= A4×A4,
contrary to 15.3.9.

Next let VU := V ∩U ; as VU = Z⊥ by 15.3.53.2, NG(VU ) ≤M by 15.3.46.2; so

as ṼU = [Ũ , V ∗] by 15.3.53.2, CH∗ (V
∗) ≤ M∗

H . Now using (4) and (5) of 15.3.49,

NH∗(ṼU ), CH∗(Z̃S), and CH∗(V
∗) are 3′-groups.

Let K∗ be a minimal normal subgroup of H∗. As H∗ is faithful and irreducible
on Ũ using 15.3.57.1, Ũ = [Ũ ,K∗]. If K∗ is a 3-group, then as CH∗(V

∗) is a
3′-group, V ∗ inverts K∗; so by 15.3.56.2 and 15.3.53.2,

2(s+ 2) = m(Ũ) = 2m([Ũ , V ∗]) = 4,

contradicting s > 0.
ThereforeK∗ is not a 3-group, so each irreducible forK∗ on Ũ has rank at least

3. Thus by 15.3.57.2, [K∗, V ∗] 6= 1, and K∗ satisfies one of the two conclusions of
15.3.57.2. Suppose K∗ is solvable. Then K∗ is a p-group for some prime p > 3.
As m([Ũ , V ∗]) = 2, it follows (cf. D.2.13.2) that [K∗, V ∗] ∼= Z5. However as s > 0,
there is a D8-subgroup D

∗ of H∗ with center V ∗ by 15.3.56.5. As V ∗, and hence
also D∗, is faithful on [K∗, V ∗], this is a contradiction.

Therefore K∗ is not solvable, so as K is an SQTK-group, K∗ is the direct
product of at most two isomorphic nonabelian simple groups.

Suppose first that conclusion (b) of 15.3.57.2 holds. Then Ũ = Ũ1 ⊕ Ũ2 is the

sum of twoK∗-irreducibles Ũi of rank s+2 with V ∗ inducing a transvection on each
Ũi. By G.6.4.4, K∗V ∗ ∼= Ln(2), 3 ≤ n ≤ 5, S6, or S7, and Ũi is a natural module

for K∗. Let 〈ũi〉 = [Ũi, V
∗]; then ṼU = 〈ũ1, ũ2〉, so as NK∗(ṼU ) is a 3′-group, we

conclude K∗ ∼= L3(2), and so s = 1.

Next as K∗ is irreducible on Ũi, and Ũi is not self-dual, Ũi is totally singular,
and Ũ2 is dual to Ũ1. Thus Irr+(K

∗, Ũ) = {Ũ1, Ũ2} is permuted by H∗, and

as H∗ is irreducible on Ũ by 15.3.57.1, H∗ is transitive on {Ũ1, Ũ2}. Further as

EndK∗(Ũi) ∼= F2, CH∗(K
∗) = 1, so H∗ ∼= Aut(L3(2)). completing the proof of the

lemma in this case.
Thus we may assume thatK∗ is irreducible on Ũ . By 15.3.56.6,m2(H

∗) ≥ s+1,

so using 15.3.56.2,m(Ũ) = 2(s+2) ≤ 2(m2(H
∗)+1). As [K∗, V ∗] 6= 1 by 15.3.57.2,

the hypotheses of Theorem G.9.3 are satisfied withK∗, Ũ , X∗ in the roles of “H , V ,
A”, so H∗ and its action on Ũ are described in Theorem G.9.3. As m([Ũ , V ∗]) = 2
with V ∗ ≤ Z(T ∗), we conclude: cases (0)–(2) and (15)–(17) do not hold (see e.g.
chapter H of Volume I for the Mathieu groups); in cases (6)–(10), n ≤ 2; and in

case (13), Ũ is a natural module rather than a 10-dimensional module. As s > 0,

m(Ũ) ≥ 6; therefore case (3) does not hold, nor does (6) or (7) when n ≤ 2,

completing the elimination of those cases. As Z̃S = CŨ (T ) is of order 2, and

CH∗(Z̃S) is a 3′-group, the remaining cases are eliminated. ¤

Let K := O2(H) and TK := T ∩K, so that K∗ ∼= L3(2) by 15.3.58.1.

Lemma 15.3.59. (1) U = QH .
(2) TK ∈ Syl2(Y U).
(3) |T : TK | = 2.
(4) M = Y T .

Proof. Let QC := CT (U). As Q̃H = CT̃ (Ũ) by 15.3.48, and U is extraspecial,

QH = UQC . Now [QC , V ] ≤ CV (U) = Z, so [Q̃C , V
∗] = 1. Then as K = [K,V ]
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and K = O2(K), we conclude using Coprime Action that K centralizes QC . Thus

QC = CT (TK). By 15.3.58, U ≤ K and K∗ ∼= L3(2), so K̂ := K/U ∼= L3(2) or

SL2(7) and hence |TK | ≥ 210 and Q̂C ≤ Φ(T̂K).
Next X∗ = [X∗, O2(NK(V0))], so as X ∩ QH = E ≤ U by 15.3.56.3, X ≤ K.

Thus as T̂K = X̂X̂tQ̂C and Q̂C ≤ Φ(T̂K), TK = 〈X,Xt〉U . Further X ≤ 〈UY 〉 =
Y U , so TK ≤ Y U . Then (2) holds as |TK | ≥ 210 and |Y U |2 = 210 by 15.3.54.4
since s = 1.

Since F ∗(Y U) = O2(Y U), since V = Z(P ) by 15.3.55, and since QC centralizes
TK , QCV = CY UQC (P ). Thus by Coprime Action, QCV = QY × V , where QY :=
CQCV (Y ). Then as T acts on QY , and Ω1(Z(T )) = Z ≤ V , QY = 1, so QC ≤ Z,
establishing (1) and (3). Then O2(Y T ) = O2(Y ), so as Y E M , F ∗(M) =
O2(M) = O2(Y ) using A.1.6. By 15.3.58.2, s = 1, so from 15.3.53.1 and 15.3.54.4,
AutY (B) = O2(NGL(B)(AutY (B))) for B ∈ {V,O2(Y )/V }. Therefore Y = O2(M)
by Coprime Action, so (4) holds. ¤

Let DM ∈ Syl3(CM (V1)) and DH ∈ Syl3(H); observe DM and DH both have
order 3. Let 〈v〉 = ZS ∩ V1 and Z = 〈z〉. By 15.3.46.5, CG(v) ≤M .

By 15.3.59.4, M = Y T , and s = 1 by 15.3.58.2, so by 15.3.54.4, CM (DM ) =
DM × JM , where JM ∼= S4 and V1 = O2(JM ). By construction, an involution
t ∈ JM − V1 induces a transvection on V , and hence t /∈ UCT (V ).

Next a Sylow 2-group of CM (DM ) is dihedral of order 8 with center 〈v〉, and as
CG(v) ≤M , |CG(DM )|2 = 8. On the other hand, from the structure of H described
in 15.3.58 and 15.3.59, |CH(DH)|2 = 24, soDM /∈ DG

H . Thus asDH ∈ Syl3(CG(z)),
t /∈ zG. Summarizing:

Lemma 15.3.60. (1) DM /∈ DG
H .

(2) An involution t in T ∩ JM − V1 is not in UCT (V ), and t 6∈ zG.

Lemma 15.3.61. (1) t /∈ vG.
(2) All involutions in K are in zG or vG.

Proof. As Ũ = Ũ1 ⊕ Ũ t1 by 15.3.58.3, m(Ũ) = 2m([Ũ , t]), so Ũ is transitive

on involutions in t̃Ũ . Thus O2(CH∗ (t
∗)) = O2(CH (t)∗), and hence t centralizes a

conjugate of DH . But by 15.3.46.5, CM (v) = CG(v), so DM is Sylow in CG(v) by
construction. Thus (1) follows from 15.3.60.1.

From the action of H on U described in 15.3.58,H has two orbits on involutions
in U −Z: (U1−Z)∪ (U t1 −Z) ⊆ zG and vH . Let a ∈ V −U with Ua the preimage
in U of CŨ (a). Then all involutions in K − U are fused into aUa under H , so it
remains to show that each such involution is in zG ∪ vG. Now |U : Ua| = 4 = |Ū |
by 15.3.53, so Ua = CU (V ) = CU (U ∩ V ). Thus Ua ∼= E4 ×D8, and all involutions
in UaV are in the two E16 subgroups A1 and A2 of UaV .

Next V Ua ≤ P ; let P+ := P/V . From the description of I in 15.3.54, U+
a =

[P+, U ] is an isotropic line in the orthogonal space P+ with one singular point, and
I is transitive on singular and nonsingular points of P+. Thus A+

i , i = 1, 2, are the
nonsingular points in U+

a . Therefore there is Di of order 3 in I centralizing A+
i and

[Z,Di] is a singular line in the orthogonal space V , so [Di, Z] ≤ V ⊥ = U ∩V . Let ai
generate CAi(Di). If ai ∈ U , then each member of Ai is fused into U under Di, so
that (2) holds. Thus we may assume ai /∈ U . Here each member of Ai − 〈ai〉[ai, P ]
is fused into U , and P is transitive on ai[ai, P ], so it remains to show the ai is fused
to z or v.
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Let Bi := CP (Di)V . Then Bi ∼= E64 and I has four orbits on B#
i : z

I and vI ,
and orbits of length 12 and 36 on Bi−V . Further Bi ≤ TK , and Ei := Bi ∩U is of
rank at most m(U) = 4, while m(B∗) ≤ m(H∗) = 2, so B∗i is a 4-group in T ∗K and

Ẽi = CŨ (B
∗
i ). Then Bi = CTK (Ei) is invariant under NH(Ei) = NH(B

∗
i )
∼= S4, so

as NH(B
∗
i ) does not act on V ∗, NG(Bi) does not act on V . Thus as v /∈ zG, the

two orbits of I on V # are fused to its two orbits on Bi−V , so all involutions in Bi
are fused to z or v, completing the proof of (2). ¤

We now eliminate the shadows of Aut(L5(2)) and Aut(He), and establish
Theorem 15.3.50.

First the involution t of 15.3.60.2 is in T−TK , since TK = UCT (V ) by 15.3.59.2.
By 15.3.59.3, |T : TK | = 2, so as G is simple, tG ∩ TK 6= ∅ by Thompson Transfer.
Thus t ∈ zG ∪ vG by 15.3.61.2. However this contradicts 15.3.60.2 and 15.3.61.1.
This contradiction completes the proof of Theorem 15.3.50.

15.3.4. The case 〈VMc〉 abelian. By Theorem 15.3.50, VH is abelian for
each H ∈ H(T,M). This will allow us to use weak closure in 15.3.63, and to verify
Hypothesis F.9.8. Then Hypothesis F.9.8 eventually leads to a contradiction.

Lemma 15.3.62. (1) Mc is transitive on {V g : g ∈ G and Z ≤ V g}.
(2) If V ∩ V g 6= 1, then [V, V g] = 1.

Proof. Part (1) folllows from 15.3.46.1 using A.1.7.1, since Mc = CG(Z) by
15.3.4. If g ∈ G−M and V ∩V g 6= 1, then as V ∩V g is totally singular by 15.3.46.2
and M is transitive on singular vectors, we may take Z ≤ V ∩ V g. Therefore
V g ≤ VMc ≤ CG(V ) by (1) since VMc is abelian by Theorem 15.3.50. ¤

Lemma 15.3.63. Assume r(G, V ) ≥ 3. Then

(1) W1(T, V ) ≤ CT (V ), so w(G, V ) > 1.
(2) n(H) > 1 for each H ∈ H(T,M).

Proof. Assume W1(T, V ) does not centralize V , and let A be a hyperplane of
V g with A ≤ T and Ā 6= 1. In particular V 6≤ M g by 15.3.46.4, so as r(G, V ) ≥ 3
by hypothesis, m(V g/CV g(V )) = m(Ā) + 1 > 2, and hence m(Ā) = 2 = m2(M̄).
As M̄ is solvable, a(M̄, V ) = 1 by E.4.1, so there is a hyperplane B of A with
CA(V ) ≤ B such that 1 6= [CV (B), A] =: VB . As r(G, V ) ≥ 3 and m(V g/B) = 2,
CV (B) ≤M g, so 1 6= VB ≤ V ∩ V g , contrary to 15.3.62.2. Thus [V,W1(T, V )] = 1,
establishing (1).

By A.5.7.2, M = !M(NM (CT (V ))), while r(G, V ) > 1 < w(G, V ) by our
hypotheses and (1). Thus (2) follows from E.3.35.1. ¤

Recall that Hypothesis F.9.1 holds by 15.3.48.1 and 15.3.49.3.. Further 15.3.62.2
gives part (f) of Hypothesis F.9.8, while case (ii) of part (g) of Hypothesis F.9.8
holds by 15.3.47. Thus Hypothesis F.9.8 holds, so we conclude from F.9.16.3 that:

Lemma 15.3.64. q(H∗, ŨH) ≤ 2.

Lemma 15.3.65. (1) If H ∈ H∗(T,M), then n(H) = 1.
(2) r(G, V ) = 2.

Proof. By 15.3.46.3, r(G, V ) ≥ 2, so if (2) fails then r(G, V ) ≥ 3, and hence
n(H) > 1 for H ∈ H(T,M) by 15.3.63.2. Thus (1) implies (2), so it remains to
establish (1).
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AssumeH ∈ H∗(T,M) with n(H) > 1. Then in view of 15.3.2.6,H is described
in E.2.2. In particular K0 := O2(H) = 〈KT 〉 for some K ∈ C(H), K0/O2(K0) is
of Lie type over F2n for some n > 1, and setting M0 := M ∩ K0, M0 is a Borel
subgroup of K0. As MH is a 3′-group by 15.3.49.4, n is odd.

By A.1.42.2, we may pick Ĩ ∈ Irr+(K0, ŨH , T ); set ĨT := 〈ĨT 〉. We apply parts
(4) and (5) of F.9.18 to the list of possibilities in E.2.2 defined over F2n with n
odd. In view of 15.3.64, we may also appeal to Theorems B.4.2 and B.4.5; this
determines the modules from the restrictions given in F.9.18. In particular as n
is odd, there is no orthogonal module for L2(2

n). We conclude that one of the
following holds:

(i)K/O2(K) is a Bender group, and Ĩ/CĨ(K) is the natural module forK/O2(K).
Further either K = K0 and I = IT ; or K < K0, K/O2(K) ∼= L2(2

n) or Sz(2n),
and for t ∈ T −NT (K), IT = I + It and [I,Kt] = 0.

(ii) K/O2(K) ∼= SL3(2
n) or Sp4(2

n), T is nontrivial on the Dynkin diagram of

K/O2(K), and ĨT /CĨT (K) is the sum of a natural module and its conjugate by an
outer automorphism nontrivial on the diagram.

(iii) K0/O2(K0) ∼= Ω+
4 (2

n), and ĨT is the orthogonal module.

Now by Theorems B.5.1 and B.4.2, K0T/O2(K0T ) has no FF-modules, ex-
cept in (i) with K/O2(K) ∼= L2(2

n), where K0T/O2(K0T ) has no strong FF-
modules. We conclude from F.9.18.6 that either IT = [UH ,K0], or case (i) holds
with K/O2(K) ∼= L2(2

n), and [UH ,K]/I is an extension of the natural module for
K/O2(K) over a submodule centralized by K. (Recall that n > 1 is odd).

As T centralizes Z̃S and H = K0T , ŨH = [ŨH ,K0]CŨH (H) by B.2.14. By

15.3.49.1, O2(M0) centralizes V , and hence M0 centralizes Z̃S . It follows from the

structure of the modules described in (i)–(iii), that H centralizes Z̃S . But then K

centralizes ZS by Coprime Action, and so K centralizes ŨH , contrary to K∗ 6= 1.
This contradiction completes the proof of 15.3.65. ¤

As r(G, V ) = 2 by 15.3.65.2, there is E4
∼= E ≤ V with and GE := NG(E) 6≤

M . Further E is totally singular by 15.3.46.2. Pick E so that TE := NT (E) ∈
Syl2(ME), where ME := NM (E). Let YE := O2(NY (E)), QE := O2(GE), and
VE := 〈V GE 〉.

Lemma 15.3.66. (1) T̄E = T̄ ∩ Ω+
4 (V ).

(2) |T : TE | = 2.
(3) T̄E is the 4-subgroup of T̄ distinct from S̄.
(4) Z ≤ E.
(5) YETE/O2(YETE) ∼= S3, V = [V, YE ], QE ≤ CG(E), and O2(YETE) =

CYETE (E).
(6) GE = YETECG(E).
(7) CG(E) ≤Mc.

Proof. As E is a totally singular line in V , AutM (E) = GL(E), so that
QE ≤ CG(E) and (1) and (5) hold. Then (1) implies (2)–(4), and as YETE induces
GL(E) on E, (6) holds. Finally CG(E) ≤ CG(Z) =Mc by (4) and 15.3.4. ¤

Lemma 15.3.67. (1) R := CT (V ) = CG(V ) and M = Y T .
(2) TE ∈ Syl2(GE) and BE := Baum(TE) ≤ R, so that C(G,BE) ≤M .
(3) GE = YEXETE, where XE := O2(CG(E)) 6≤ M , with XE/O2(XE) ∼=

YE/O2(YE) ∼= Z3, and YE and XE are normal in GE.
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(4) GE/QE ∼= S3 × S3 and XE = [XE , J(R)].

Proof. By 15.3.5.2, if A ∈ A(T ) with A 6≤ CT (V ) = R, then either Ā ≤ M̄i

or Ā = S̄. Therefore by 15.3.66.3, J(TE) = J(R), so that BE = Baum(R) by
B.2.3.5. Hence C(G,BE) ≤ M as M = !M(NM (R)) by A.5.7.2. In particular
NG(TE) ≤M , so as TE ∈ Syl2(ME), TE ∈ Syl2(GE), and hence (2) holds.

Let Qc := O2(Mc) and Pc := Qc ∩ GE . By 15.3.49.2, Q̄c 6= 1, so as Q̄c E T̄
while Z(T̄ ) is of order 2 and lies in T̄E by 15.3.66.3, Z(T̄ ) ≤ P̄c and YE = [YE , Pc].
As Pc is (Mc ∩ GE)-invariant, PGEc = P YEc since GE = YETECG(E) by 15.3.66.6;
thus as YE = [YE , Pc], YE = O2(〈PGEc 〉) E GE . So as V = [V, YE ] by 15.3.66.5,
VE = [VE , YE ]. Further V

GE = V YETECG(E) = V CG(E) ⊆ V Mc , so that VE ≤ VMc .
Thus VE is abelian since VMc is abelian by Theorem 15.3.50.

Let SE := O2(YETE) = CYETE (E) and CE := CG(E). Then SE = CT (E) ∈
Syl2(CE) by (2). Let ĠE := GE/QE. Then ĠE = ẎE〈τ̇ 〉 × ĊE , where τ ∈ Pc −SE
and ẎE〈τ̇ 〉 ∼= S3. As τ /∈ SE and E ∼= E4, CE(τ) = Z. As GE = YE〈τ〉CE and
YE〈τ〉 acts on V , VE = 〈V GE 〉 = 〈V CE 〉.

Let ǦE := GE/E. Now [V, SE ] = E from 15.3.66.1, so QE centralizes V̌E as

QE ≤ SE . Then as we saw ĠE = ẎE〈τ̇ 〉 × ĊE and ẎE〈τ̇ 〉 ∼= S3,

V̌E = V̌E,1 ⊕ V̌E,2

is a CE-invariant decomposition, where VE,1 := CVE (τ), and VE,2 := CVE (τ
y) for

1 6= ẏ ∈ ẎE . Thus V
y
E,1 = VE,2.

Let I := J(CE). By (2), J(TE) ≤ CT (V ) ≤ SE , so that J(TE) = J(SE) by
B.2.3.3. Then GE := INGE (J(TE)) = IME by a Frattini Argument and (2), so as

GE 6≤M , we conclude I 6≤M . Thus İ 6= 1.
Let I0 := NI(CT (V̌E)). In order to determine the structure of I0, temporarily

replacing GE by NGE(CT (ṼE)) if necessary, we may assume that QE = CT (ṼE).
We will drop this assumption later, once we have determined I0, and then complete
the proof of (1) and (3).

Let ĜE := GE/CGE (VE). Now 〈τ,QE〉 ≤ TE , so Φ(〈τ̄ , Q̄E〉) ≤ Φ(T̄E) = 1,

and hence Φ(〈τ,QE〉 ≤ CG(V ). We saw earlier that τ̇ centralizes ĊE , so CE acts
on 〈τ,QE〉. Then as VE = 〈V CE 〉, we conclude that Φ(〈τ,QE〉) ≤ CG(VE), and

hence Φ(〈τ̂ , Q̂E〉) = 1. Therefore as QE centralizes V̌E , Q̂E induces a group of
transvections on VE,1 with center CE(τ) = Z. Next [YE , QE] ≤ O2(YE) = CYE (V ),

so as [YE , QE ] E GE , [YE , QE] ≤ CGE (VE), and hence [ŶE , Q̂E ] = 1. Then as
Y yE,1 = YE,2, CQE (VE1) = CQE (VE). Hence as QE induces a group of transvections

on VE,1 with center Z, we conclude m(VE/CVE (Ŵ )) = 2m(Ŵ ) for each Ŵ ≤ Q̂E .

As İ 6= 1, there is A ∈ A(TE) with Ȧ 6= 1. Let B := A∩QE and D := CA(VE).
Then since CVE (A) = A ∩ VE as A ∈ A(TE),

m(Ȧ) +m(B̂) +m(D) = m(A) ≥ m(DVE)

≥ m(D) +m(VE/(A ∩ VE)) = m(D) +m(VE/CVE (A))

so that

m(Ȧ) +m(B̂) ≥ m(VE/CVE (A)).

Further using an earlier remark with B̂ in the role of “Ŵ”,

m(VE/CVE (A)) = m(VE/CVE (B)) +N = 2m(B̂) +N,
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where N := m(CVE (B)/CVE (A)). Therefore m(Ȧ) ≥ m(B̂) +N and hence

2m(Ȧ) ≥ 2m(B̂) + 2N = m(VE/CVE (A)) +N.

Further
m(VE/CVE (A)) ≥ m(V̌E/CV̌E (A)) = 2m(V̌E,1/CV̌E,1(A)),

so m(Ȧ) ≥ m(V̌E,1/CV̌E,1(A)) +N/2 with N ≥ 0, and hence Ȧ is an FF∗-offender

for the FF-module V̌E,1.

Next m3(GE) ≤ 2 since GE is an SQTK-group, and ĠE ∼= S3 × ĊE , so

m3(CE) ≤ 1. Therefore by Theorem B.5.1, İ ∼= L2(2
n), L3(2

m), m odd, or S5,
with V̌E,1/CV̌E,1(I) the natural module or the sum of two natural modules for

L3(2
m). As GE = IME , VE = 〈V I〉, and as V̌ ≤ Z(ŠE), V̌E = [V̌E , I ]V̌ and

Cİ(V̌ ) = Cİ(V̌#), where V̌# 6= 1 is the projection of V̌ on V̌E,1 in the decomposi-

tion of V̌E . Also V̌# ≤ CV̌E,1(ŠE), and by (2), Nİ(J(SE)) ≤ ĊE ∩ ṀE ≤ CĠE (V̌ ),

so Nİ(J(SE)) ≤ Cİ(V̌#). Using the structure of J(SE) from Theorem B.4.2 we

conclude that İ ∼= S3, S5, or L3(2). But in the last two cases, as V̌# ≤ Z(ŠE),

O3′(CI (V̌ )) 6= 1, contradicting 15.3.49.5.

Therefore İ0 ∼= S3 and m([V̌E,1, I ]) = 2. At this point, we drop the temporary

assumption that QE = CT (V̌E).
By a Frattini Argument, I = I0CI(V̌E), while CI (V̌E) ≤ NI(V ) ≤ME . Thus as

GE = MEI , GE = MEI0, so |GE : ME| = 3. Therefore O2,3(GE) = O2,3(CG(V ))
is normal in M and GE , so O

2,3(GE) = O2,3(CM (V )) = 1 as GE 6≤ M ∈ M.
Then as CM (V ) is a 3′-group by 15.3.49.4, (1) holds. Hence ME = YETE , so as
|GE :ME | = 3, (3) holds. Further XE = [XE, J(R)] since J(TE) = J(R) by (2), so
GE/QE ∼= S3 × S3 since YETE/O2(YETE) ∼= S3 and R ≤ O2(ME). This completes
the proof of 15.3.67. ¤

Next Z is contained in exactly two totally singular 4-subgroups E and F :=
Es of V , where s ∈ S − TE. Observe TE = T sE = TF acts on YF := Y sE with
TE ∈ Syl2(YFTE), and Y = YEYFO2(Y ). Let G1 := YFTE , G2 := XETE , and
G0 := 〈G1, G2〉. Set Li := O2(Gi) and Qi := O2(Gi) for i = 1, 2. Thus Gi/Qi ∼= S3
and TE = G1 ∩G2 ∈ Syl2(Gi).

Lemma 15.3.68. (1) G0 ≤ NG(YE).
(2) V ≤ Z(Q0), where Q0 := O2(G0).
(3) TE ∈ Syl2(M0) for each M0 ∈M(G0).
(4) (G0, G1, G2) is a Goldschmidt triple.
(5) Q0 = O3′(G0).

Proof. By construction, YE E Y TE, so G1 acts on YE . By 15.3.67.3, G2

acts on YE . Thus G0 = 〈G1, G2〉 acts on YE , establishing (1). By 15.3.66.5,
V = [V, YE ], so V ≤ O2(YE) and hence V ≤ Q0 by (1). Set R := CT (V ) as in
15.3.67.1. Then Q0 ≤ Q1 ∩ Q2 = R = CTE (V ), so V ≤ Z(Q0). Hence (2) holds.
Next let M0 ∈ M(G0). As NG(TE) ≤ M by 15.3.67.2, if TE /∈ Syl2(M0) then we
may take T ≤ M0. But then Y T = 〈YF , T 〉 ≤ M0, so XE ≤ M0 = M = !M(Y T )
by 15.3.7, contrary to 15.3.67.3. Hence (3) holds and TE ∈ Syl2(G0), so (4) holds.

Let P := O3′(G0)). By F.6.11.1, P is 2-closed with TE ∩ P = Q0, so P
is solvable. By (2), V ≤ O2(P ), so O(P ) ≤ CG(V ), and hence O(P ) = 1 as
CG(V ) = R by 15.3.67.1. Thus F ∗(P ) = Q0. Let X := J(TE)P , T0 := TE ∩ X ,
and Z0 := R2(X). Then T0 ∈ Syl2(X) as Q0 is Sylow in P , and F ∗(X) = O2(X).
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By 15.3.67.2, J(TE) ≤ R, so that J(TE) E YFTE , and so YF acts on X . As X is
a 3′-group with F ∗(X) = O2(X), X = CX(Z0)NX(J(TE)) by Solvable Thompson
Factorization B.2.16. As YF acts on X , F = 〈ZYF 〉 ≤ Z0 by B.2.14, so P =
CP (F )NP (J(TE)). But by 15.3.67, CG(F ) and M = Y T are {2, 3}-groups, so
P = Q0 as NG(J(TE)) ≤M by 15.3.67.2. Thus (5) holds, completing the proof of
15.3.68. ¤

We are now in a position to complete the proof of Theorem 15.3.1.
Let Q0 := O2(G0) and Ġ0 := G0/Q0. By 15.3.68.3 and F.6.5.1, (Ġ1, ṪE , Ġ2)

is a Goldschmidt amalgam. Since G1 ∩ G2 = TE , and O3′(G0) = Q0 ≤ TE by

15.3.68.5 case (i) of F.6.11.2 holds, so Ġ0 is described in Theorem F.6.18.
Let V0 := 〈V

G0〉. By 15.3.68.2, V0 ≤ Ω1(Z(Q0)). Also CG0(V0) ≤ CG0(V ) = R
is a 2-group by 15.3.67.1, so Q0 = CG0(V0). By 15.3.67.4, XE = [XE, J(TE)] ≤
J(G0) =: X , so V0 is an FF-module for Ġ0. Thus examining the list of Theorem
F.6.18 for groups appearing in Theorem B.5.6, and recalling that J(TE) E G1 by

15.3.67.2, we conclude that Ẋ ∼= S3, L3(2), A6, S6, A7, S7, Â6, or G2(2).

Assume first that Ẋ ∼= S3. Then XE = O2(X), so Z ≤ CG0(X), and hence
F = 〈ZYF 〉 ≤ CG0(X). But then XE acts on EF = Z⊥, so XE ≤M by 15.3.46.2,
contrary to 15.3.67.3.

In the remaining cases, O2(X) = O2(G0) by Theorem F.6.18, so YF ≤ X .

However Q0O2(YF ) ≤ CTE (V ) = R, so O2(ẎF ) centralizes V , while [V,Q1] = F ,

so Q̇1 > O2(ẎF ). This eliminates the cases Ġ0
∼= L3(2), A6, A7, or Â6, so that

Ġ0 is S6, Ŝ6, S7, or G2(2). As V = [V, YF ] ≤ [V0, X ], V0 = [V0, X ]. Thus O2(ẎF )

centralizes the 4-dimensional subspace V of the FF-module V0 = [V0, X ] for Ẋ,

so we conclude using Theorem B.5.1 that Ġ0 is Ŝ6 and m(V0) = 6. But now
NẊ(V1) has a quotient A5, whereas NG(V1) ≤ M by 15.3.45.2, and M is solvable
by 15.3.67.1.

This contradiction completes the proof of Theorem 15.3.1.

15.4. Completing the proof of the Main Theorem

In this section, we complete the treatment of the case Lf (G, T ) empty, and
hence also the proof of the Main Theorem. Our efforts so far have in effect reduced
us to the case L(G, T ) empty (cf. 15.4.2.1 below).

More precisely, since we have been assuming that |M(T )| > 1, and since The-
orem 15.3.1 completed the treatment of groups satisfying Hypothesis 14.1.5, we
may assume that condition (2) of Hypothesis 14.1.5 fails. Thus in this section, we
assume instead:

Hypothesis 15.4.1. G is a simple QTKE-group, T ∈ Syl2(G), and

(1) Lf (G, T ) = ∅.
(2) Let Z := Ω1(Z(T )). Then |M(CG(Z))| > 1.

The section culminates in Theorem 15.4.24, where we see that L3(2) and A6

are the only groups which satisfy Hypothesis 15.4.1.

We now define a collection of subgroups similar to the set Ξ(G, T ) of chapter
1: Let ξ(G, T ) consist of those T -invariant subgroups X = O2(X) of G such that
XT ∈ H(T ) and |X : O2(X)| is an odd prime. Let ξ∗(G, T ) consist of those
X ∈ ξ(G, T ) such that ∃!M(XT ).
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Because of Hypothesis 15.4.1, members of ξ(G, T ) have few overgroups, so that
ξ∗(G, T ) is nonempty in many situations—cf. 15.4.3.1 and 15.4.12.

15.4.1. Preliminary results, and the reduction to CG(Z) = T. Recall
Ξ+(G, T ) is defined before 3.2.13.

Lemma 15.4.2. (1) L(G, T ) = ∅.
(2) Each member of M(T ) is solvable.
(3) If X ∈ Ξ(G, T ) then [Z,X ] 6= 1 and X ∈ Ξ∗f (G, T ) but X /∈ Ξ+(G, T ). In

particular X/O2(X) is a 3-group or a 5-group.
(4) Assume M0 ∈ H(T ) with M = !M(M0), and V ∈ R2(M0) with R :=

CT (V ) = O2(CM0(V )) and V ≤ O2(M). Then q̂(M0/CM0(V ), V ) ≤ 2.

Proof. Assume L(G, T ) 6= ∅. Then there is L ∈ L∗(G, T ). Setting L0 :=
〈LT 〉, NG(L0) = !M(〈L, T 〉) by 1.2.7.3. But by Hypothesis 15.4.1.1, Lf (G, T ) =
∅, so 〈L, T 〉 ≤ CG(Z) and hence NG(L0) = !M(CG(Z)), contrary to Hypothesis
15.4.1.2. Thus (1) holds, and since C(M) ⊆ L(G, T ) forM ∈ M(T ), (1) and 1.2.1.1
imply (2).

Supppose X ∈ Ξ(G, T ). By (1), X ∈ Ξ∗(G, T ), so by 1.3.7, NG(X) = !M(XT ).
Thus [Z,X ] 6= 1 by Hypothesis 15.4.1.2, so X ∈ Ξ∗f (G, T ). Hence X /∈ Ξ+(G, T )

by 3.2.13, completing the proof of (3).
Assume the hypotheses of (4), and let q̂ := q̂(M0/CM0(V ), V ). Pick H ∈

H∗(T,M), and let QH := O2(H). Observe that Hypothesis D.1.1 is satisfied with
M0, H in the roles of “G1, G2”: First, by hypothesis M = !M(M0), so that
O2(〈M0, H〉) = 1, and hence part (3) of Hypothesis D.1.1 holds. Second, CT (V ) =
O2(CM0 (V )), with O2(CM0(V )) = O2(M0) since V ∈ R2(M0), so that part (2)
of D.1.1 holds. Finally by 3.1.3.1, H ∩M is the unique maximal subgroup of H
containing T , so that part (1) of D.1.1 holds. Now recall by B.5.13 that if the dual
V ∗ is an FF-module forM0/CM0(V ), then q(M0/CM0(V ), V ) ≤ 2. Thus combining
conclusions (2), (3), and (4) of the qrc-lemma D.1.5 into case (ii) below, one of the
following holds:

(i) V 6≤ QH .
(ii) q(M0/CM0(V ), V ) ≤ 2.
(iii) V ≤ R ∩ QH E H , the dual V ∗ is not an FF-module for M0/CM0(V ),

U := 〈V H〉 is abelian, and H has a unique noncentral chief factor on U .

If (ii) holds, then the conclusion of (4) holds and we are done.
Assume that (i) holds. We verify Hypothesis E.2.8 with H ∩M in the role of

“M”: As V 6≤ QH , T 6≤ QH , so H 6≤ NG(T ); hence by 3.1.3.2, H is a minimal
parabolic in the sense of Definition B.6.1, and so is described in B.6.8. Therefore by
B.6.8.5, kerH∩M (H) is 2-closed with Sylow group QH , so V 6≤ kerH∩M (H). Finally
V ≤ O2(M) by hypothesis, so that V ≤ O2(H ∩M). Now q̂(AutH(V ), V ) ≤ 2 by
E.2.13.2, and again (4) holds.

This leaves case (iii), so asH is solvable by (2), R ∈ Syl2(O2(H)R) by D.1.4.4.2.
But now O2(〈M0, H〉) 6= 1 by Theorem 3.1.1, contrary to an earlier observation.
This completes the proof of (4), and hence of 15.4.2. ¤

Following the notational convention of chapter 1, set ξf (G, T ) := ξ(G, T )∩Xf .

Lemma 15.4.3. Let X ∈ ξ(G, T ), with |X : O2(X)| = p where p is chosen
maximal among such X, and suppose p > 3. Then
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(1) ∃!M(XT ), so that X ∈ ξ∗(G, T ).
(2) X ≤ O2,p(M) for M ∈M(XT ). In particular, O2(X) ≤ O2(M).
(3) [Z,X ] 6= 1, so X ∈ ξf (G, T ).
(4) p = 5.

Proof. Let M ∈ M(XT ), and set M∗ := M/O2(M). If q 6= p is an odd
prime such that [Oq(M

∗), X∗] 6= 1, then AutX(Oq(M
∗)) is embedded in GL2(q) by

A.1.25.2, so p divides q − ε for ε := ±1. This is impossible as p ≥ q by maximality
of p, with p and q odd. Therefore X∗ ≤ CM∗(Op(F (M∗))) =: H∗, and as M
is solvable by 15.4.2.2, F ∗(H∗) = Op(H

∗) × Op(Z(H∗)). As p > 3, the solvable
subgroup AutH(Op(H

∗)) of GL2(p) is p-closed using Dickson’s Theorem A.1.3, so

that X∗ = Op
′

(X∗) ≤ Op(H
∗) ≤ Op(M

∗), establishing (2) for each M ∈M(XT ).
Let NG(X) ≤ MX ∈ M. We will show that M = MX ; then since M is an

arbitrary member of M(XT ), (1) will be established. Let K := O2,F (M) and
Y := O2(NK(X)); by (2), X ≤ Y ≤ M ∩ MX =: I . Let X0 be the preimage
in M of X∗; as X is T -invariant, X = O2(X0), so NM (X∗) = NM (X). Thus
Y ∗ = O2(NK∗(X

∗)). Next CK∗(Y
∗) ≤ CK∗(X

∗) ≤ Y ∗ as K∗ is of odd order. Thus
the hypotheses of case (b) of A.4.4 are satisfied with M , MX , Y O2(M), in the roles
of “H , K, X”. Therefore R := O2(I) = O2(M) by A.4.4.1, and C(MX , R) ≤ I by
A.4.4.2, so Hypothesis C.2.3 is satisfied byMX , I in the roles of “H ,MH”. Further
C.2.6.2 says that either O2,F (MX) ≤ I , or MX has an A3-block L with L 6≤ I .
In the first case M = MX by A.4.4.3, as desired. In the second [L, Y ] ≤ O2(L),
so taking YZ to be the preimage in M of Z(Op(M

∗)) ≤ Y ∗ and Y0 := O2(YZ), L
normalizes O2(Y0O2(L)) = Y0. Then L ≤ NG(Y0) = M as M ∈ M, contrary to
L 6≤ I . This contradiction completes the proof of (1).

If [Z,X ] = 1 then XT ≤ CG(Z) and M = !M(XT ) by (1), so that also
M = !M(CG(Z)), contrary to Hypothesis 15.4.1.2. Thus (3) holds.

Next V := 〈ZX〉 ∈ R2(XT ) and V ≤ O2(M) by B.2.14, and as [Z,X ] 6= 1 and
X/O2(X) has prime order, CXT (V ) = O2(CXT (V )) = CT (V ). Then by (1) we may
apply 15.4.2.4 with XT in the role of “M0”, to conclude q̂(XT/CXT (V ), V ) ≤ 2.
Then as p > 3 by hypothesis, D.2.13.1 shows p = 5, so (4) holds. ¤

Lemma 15.4.4. Each member of M(T ) is a {2, 3, 5}-group.

Proof. Suppose some M ∈ M(T ) has order divisible by p > 5, and choose p
maximal subject to this constraint. As M is solvable by 15.4.2.2, there is a Hall
{2, p}-subgroup H of M containing T . Let P denote a Sylow p-subgroup of the
preimage in H of Ω1(Z(H/O2(H))); then TP ∈ H(T ) with P elementary abelian,
andmp(P ) ≤ 2 since H is an SQTK-group. If mp(P ) = 2 and T is irreducible on P ,
then H ∈ Ξ(G, T ), contrary to 15.4.2.3. Thus there is X ≤ TP with X ∈ ξ(G, T ),
contrary to 15.4.3.4. ¤

Lemma 15.4.5. CG(Z) is a {2, 3}-group.

Proof. If not, arguing as in the proof of 15.4.4, there is a nontrivial elementary
abelian 5-subgroup P of CG(Z) with PT ∈ H(T ), and there is X ≤ PT with
X ∈ Ξ(G, T ) or ξ(G, T ). Since X ≤ CG(Z), the former is impossible by 15.4.2.3,
and the latter by 15.4.3.3. ¤

Recall from 14.1.4 that for V (M) := 〈ZM 〉:
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Lemma 15.4.6. IfM is maximal inM(T ) with respect to
<
∼ and [V (M), J(T )] =

1, then M is the unique maximal member of M(T ) under
<
∼.

The two groups which satisfy Hypothesis 15.4.1 appear in conclusion (2) of the
next result. The second subsection completes the treatment of Hypothesis 15.4.1,
by eliminating the case where |Z| > 2, and the case where |Z| = 2 but conclusion
(1) of the result fails.

Lemma 15.4.7. Assume Z is of order 2. Then either

(1) There exists a nontrivial characteristic subgroup C2 := C2(T ) of Baum(T )
such that

Mf = !M(NG(C2)),

and Mf is the unique maximal member of M(T ) under
<
∼, or

(2) G ∼= L3(2) or A6.

Proof. Let S := Baum(T ) and choose Ci := Ci(T ) for i = 1, 2 as in the
Glauberman-Niles/Campbell Theorem C.1.18. Thus 1 6= C2 char S, and 1 6= C1 ≤
Z, so as Z is of order 2 by hypothesis, C1 = Z.

Assume (2) fails; we claim that:

(*) For each M ∈ M(T ), M = NM (C2)CM (V (M)).

Assume (*) fails and set V := V (M). If [V, J(T )] = 1, then S = Baum(CT (V ))
by B.2.3.5, so (*) holds by a Frattini Argument, contrary to our assumption. Thus
[V, J(T )] 6= 1.

By 15.4.2.2, M is solvable, so by Solvable Thompson Factorization B.2.16,
J(M) = Ȳ = Ȳ1 × · · · × Ȳr with Ȳi ∼= S3 and V = V1 × · · · × Vr × CV (J(M)),
where Vi := [V, Yi] ∼= E4, and Y and Yi denote the preimages in M of Ȳ and Ȳi.
As M is an SQTK-group, r ≤ 2 by A.1.31.1. As |Z| = 2, CV (J(M)) = 1 and T is
transitive on {Y1, . . . , Yr}. Thus if r = 1, then m(V ) = 2 and M̄ = Ȳ = GL(V ),
while if r = 2 then m(V ) = 4 and M̄ is the normalizer O+

4 (V ) of Ȳ in GL(V ).
In either case as C1 = Z, CM (C1) = CM (Z) = CM (V )T . Thus as (*) fails,
M > NM (C2)CM (V ) = NM (C2)CM (C1) = 〈NM (C2), CM (C1)〉. Therefore as M is
solvable, we conclude from C.1.28 that there is an A3-block A4

∼= X E E M such
that X = [X, J(T )].

Let X0 := 〈XM 〉. By the previous paragraph, either r = 1 and X0 = X , or
r = 2 and X0 = X1 ×X2 with X = X1 and X2 = Xt for suitable t ∈ T −NM (X).
Let H ∈ M(X0T ). As H is solvable by 15.4.2.2, applying C.1.27 to H , X in the
roles of “G, K”, we conclude that X0 E H , so H = NG(X0) as H ∈ M. Thus
H = !M(X0T ), so M = H = NG(X0) = !M(X0T ) as X0T ≤ M ∈ M. Next
X0T/CT (X0) ∼= S4 or S4 wr Z2. As |Z| = 2, Z ≤ O2(X0), so CT (X0) = 1. Then
as M ∈ He, CM (X0) = 1, so M = X0T ∼= S4 or S4 wr Z2. In the second case,
Theorem 13.9.1 supplies a contradiction, so suppose the first case holds. Then
T ∼= D8, so as F ∗(CG(Z)) = O2(CG(Z)) by 1.1.3.2, we conclude T = CG(Z).
Further Thompson Transfer shows that each noncentral involution of T is fused
into Z(T ), so that G has one conjugacy class of involutions. Thus (2) holds by
I.4.1.2, contrary to our assumption; this completes the proof of the claim (*).

Pick Mf ∈ M(NG(C2)). By (*), for each M ∈ M(T ), M
<
∼ Mf . Thus Mf

is the unique maximal member of M(T ) under
<
∼—in particular Mf is uniquely

determined since
<
∼ is a partial order (cf. A.5.5, and in particular A.5.4). Thus (1)

holds. ¤
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We come to the main result of this subsection:

Theorem 15.4.8. CG(Z) = T .

The proof of Theorem 15.4.8 involves a short series of reductions. Until the
proof is complete, assume G is a counterexample. Let X consist of those X ∈
ξ(G, T ) such that X E CG(Z). Recall by 15.4.5 that X/O2(X) ∼= Z3.

Lemma 15.4.9. X 6= ∅.

Proof. Set H := CG(Z) and Ĥ := H/O2(H). By 15.4.5, H is a {2, 3}-

group, so as G is a counterexample to Theorem 15.4.8, O3(Ĥ) 6= 1. Let P̂ :=

Ω1(Z(O3(Ĥ))). If P̂ is of order 3, then X := O2(P ) ∈ X , so we may assume that

|P̂ | > 3. Then as m3(H) ≤ 2, E9
∼= P̂ = Ω1(O3(Ĥ)), so that CĤ (P̂ ) = O3(Ĥ)

by Coprime Action, and Ĥ/O3(Ĥ) is a subgroup of GL2(3). As H centralizes Z,

PT 6∈ Ξ(G, T ) by 15.4.2.3, so T̂ is not irreducible on P̂ . Therefore there is a normal

subgroup P̂1 of Ĥ of order 3, and so X := O2(P1) ∈ X . ¤

Lemma 15.4.10. For each X ∈ X and each M ∈ M(XT ), X ≤ CM (V (M)).

Proof. Assume X , M is a counterexample, and let V := V (M) and M̄ :=
M/CM (V ). In particular X̄ 6= 1. If O2(X̄) = 1, then V = [V,X ] ⊕ CV (X) by
Coprime Action, and Z ∩ [V,X ] 6= 1 as X is T -invariant, contrary to X ≤ CG(Z).
Therefore O2(X̄) 6= 1, so O2(X) 6≤ O2(M).

Let M∗ := M/O2(M). Thus 1 6= O2(X)∗ ≤ O2(X
∗). We claim next that

O2(X
∗) centralizes O5(M

∗), so suppose not. Then by A.1.25, O2(X
∗) acts non-

trivially on a supercritical subgroup P ∗ of O5(M
∗), P ∗ ∼= Z5, E25 or 51+2, and

AutX(P
∗) is a subgroup of Aut(P ∗)/O5(Aut(P

∗)) ∼= GL2(5). As O2(X
∗) does

not centralize P ∗ and X∗ = O2(X∗), we conclude that P ∗ is not of order 5 and
AutX∗(P

∗) ∼= Z3/Q8. Thus O2(X
∗) is irreducible on P ∗/Φ(P ∗), and so the preim-

age P contains a member of Ξ+(G, T ), contrary to 15.4.2.3. This establishes the
claim.

As M is a solvable {2, 3, 5}-group by 15.4.4, F ∗(M∗) = O3(M
∗)O5(M

∗), so
O2(X

∗) is faithful on O3(M
∗) by the claim. Again by A.1.25, O2(X

∗) acts nontriv-
ially on a supercritical subgroup P ∗ of O3(M

∗), P ∗ ∼= E9 or 3
1+2, and O2(X

∗) ∼= Q8

is irreducible on P ∗/Φ(P ∗). Let Y := O2(P ), so that Y ∈ Ξ(G, T ) and AutX(P
∗) ∼=

SL2(3). If P
∗ ∼= 31+2, then as AutX∗(P

∗) ∼= SL2(3), m3(XP ) = 3, contrary to M
an SQTK-group; thus P ∗ ∼= E9.

Let H := Y XT ,W := 〈ZH〉, and H+ := H/CH(W ); thenW = 〈ZH〉 ∈ R2(H)
and W ≤ O2(M) by B.2.14. As [Z, Y ] 6= 1 by 15.4.2.3, and O2(X

∗) is irreducible
on P ∗, CY (W ) = O2(Y ). Therefore H+ is the split extension of P+ ∼= E9 by
either SL2(3) or GL2(3), so W contains an 8-dimensional faithful irreducible H-
submodule I . Thus q̂(H+,W ) ≥ q̂(H+, I) > 2.

By 15.4.2.3, Y ∈ Ξ∗(G, T ), so that N := NG(Y ) = !M(Y T ) by 1.3.7, and as
Y T ≤ M , M = N . Of course Y T ≤ H , so M = !M(H). Further O2(CH(W )) =
CT (W ) since CY (V ) = O2(Y ). Thus we may apply 15.4.2.4 to conclude q̂(H+,W ) ≤
2, contrary to the previous paragraph. ¤

We are now ready to complete the proof of Theorem 15.4.8. By Hypothesis
15.4.1.2, there exist distinct members M1 and M2 of M(CG(Z)). By 15.4.9, there
is X ∈ X . Now X is not normal in both M1 and M2, so we may assume X is
not normal in M1. Let Y1 := 〈XM1〉, and set M i

i := Mi/O2(Mi) for i = 1, 2. By
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15.4.10, X ≤ CMi(V (Mi)) =: Hi, so as Hi ≤ CG(Z) and X E CG(Z), X E Hi.
Thus O2(X) ≤ O2(Hi), so X

i is of order 3 for each i, and Y 1
1
∼= E3e for some

e ≥ 1. Notice e ≤ m3(M1) ≤ 2, so as X is not normal in M1, e = 2. Now
T ≤ CG(Z) ≤ NM1(X), so as AutM1(Y

1
1 ) ≤ GL2(3) and Y1 = 〈XM1〉, it follows

that O2(AutM1(Y
1
1 ))

∼= Z3. Therefore Y1 = XX1, where X1 := O2(X0) and
X0 is the preimage in Y1 of CY 1

1
(P 1) for P ∈ Syl3(M1). Thus X1 ∈ X , so by

15.4.10, X1 ≤ H2. As H2 ≤ CG(Z), X
2 and X2

1 are normal in H2
2 . Therefore

O2(H2
2 ) ≤ CH2

2
(Y 2

1 ), so as m3(H2) ≤ 2, Y 2
1 = Ω1(O3(H

2
2 )). Hence Y1 is normal in

M2, and Y1 is normal in M1 by definition, contrary to the simplicity of G. This
contradiction completes the proof of Theorem 15.4.8.

In the remainder of the subsection, we collect some useful consequences of
Theorem 15.4.8.

Lemma 15.4.11. For each M ∈ M(T ):

(1) O2(M) = CM (V (M)).

(2) M is maximal with respect to
<
∼. In particular, there is no unique maximal

member of M(T ) under
<
∼.

(3) [V (M), J(T )] 6= 1.

Proof. First CM (V (M)) ≤ CG(Z) = T by Theorem 15.4.8, so as V (M) is

2-reduced, (1) holds. Now if M
<
∼M1 ∈M(T ), then

M = CM (V (M))(M ∩M1) = O2(M)(M ∩M1) ≤M1

by (1), so M = M1. Thus M is maximal in M(T ) under
<
∼, so since |M(T )| > 1

by Hypothesis 15.4.1.2, (2) holds. Then (3) follows from (2) and 15.4.6. ¤

Define Y to consist of those groups Y in Ξ(G, T ) ∪ ξ(G, T ) such that Y =
[Y, J(T )]; we show Y is nonempty in the next lemma. Set S := Baum(T ) and
E := Ω1(Z(J(T )).

Lemma 15.4.12. Let M ∈ M(T ). Then Y ∩M 6= ∅. Further for each Y ∈
Y ∩M :

(1) Y E M .
(2) M = NG(Y ) = !M(Y T ).
(3) For suitable s(Y ) = 1 or 2, Y/O2(Y ) ∼= E3s(Y ) and m([V (M), Y ]) = 2s(Y ).
(4) S ∈ Syl2(Y S).
(5) R2(Y T ) = [V (M), Y ] ⊕ EY , where EY := CΩ1(Z(O2(Y T )))(Y ) and E =

EY ⊕ C[V (M),Y ](S).
(6) Either

(i) s(Y ) = 1, Y T/O2(Y T ) ∼= S3, and |E : EY | = 2, or
(ii) s(Y ) = 2, Y T/O2(Y T ) ∼= O+

4 (2), Y = Y1Y2 with Yi/O2(Yi) ∼= Z3,
[V (M), Y ] = V1 ⊕ V2, where Vi := [V (M), Yi] ∼= E4 for i = 1, 2, Yi = [Yi, J(T )] is
S-invariant, and |E : EY | = 4.

Proof. Set M̄ :=M/CM (V (M)). By 15.4.11.3, [V (M), J(T )] 6= 1, so asM is
solvable, we conclude from Solvable Thompson Factorization B.2.16 and A.1.31.1
that X̄ := [O3(M̄), J(T )] and its action on V (M) are described in (3). Let X be
the preimage in M of X̄ and Y0 := O2(X).
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By 15.4.11.1, O2(Y0) = CY0(V (M)). If T acts irreducibly on X̄, then Y0 lies in
Ξ(G, T ) or ξ(G, T ), and hence also in Y∩M , and Y0 satisfies (1) and (3). Otherwise,
X̄ = X̄1× X̄2 where X̄i is T -invariant; setting Yi := O2(Xi) for Xi the preimage in
M of X̄i, Yi lies in ξ(G, T ) and hence also in Y ∩M , and Yi satisfies (1) and (3).
In particular Y ∩M 6= ∅. By E.2.3, Yi satisfies (4)–(6) for i = 0 or i = 1, 2 in our
two cases.

Now consider any Y ∈ Y ∩ M . By 15.4.11.1, O2(Y ) = CY (V (M)). Since
Y = [Y, J(T )], Ȳ ≤ [O3(M̄), J(T )] by Solvable Thompson Factorization B.2.16.
Hence as Y = O2(Y ) is T -invariant, either Y = Y0, or Y = Y1 or Y2, in our two
cases. In particular Y E M , so M = NG(Y ) as M ∈M; similarly Y is normal in
each member of M(Y T ), so (2) holds. ¤

Lemma 15.4.13. For Y ∈ Y, Y T is not isomorphic to Z2 × S4.

Proof. Assume otherwise. Then Z ∼= E4 and T ∼= Z2×D8 with Φ(T ) of order
2, so O2(Aut(T )) centralizes Z. Thus as NG(T ) controls fusion in Z by Burnside’s
Fusion Lemma A.1.35, the three involutions in Z are in distinct G-conjugacy classes.
Pick an involution t ∈ T − O2(Y T ), and let R := 〈t〉O2(Y ). Then R ∼= D8 has
two Y T -classes of involutions tR and zY for 1 6= z ∈ Z ∩ R = Φ(T ). As the three
involutions in Z are in distinct G-classes, at most one of the two involutions in
Z − R can be G-conjugate to t, so that some i ∈ Z# satisfies i /∈ tG ∪ zG. Thus
iG ∩ R = ∅, so by Thompson Transfer, i /∈ O2(G), contrary to the simplicity of
G. ¤

15.4.2. The final contradiction. In this subsection, we assume that G is
not L3(2) or A6.

Lemma 15.4.14. (1) For each Y ∈ Y, CZ(Y ) is a hyperplane of Z.
(2) m(Z) = 2. Thus CZ(Y ) 6= 1.

Proof. Part (1) follows from 15.4.12.6. By the hypothesis of this subsection,
conclusion (2) of 15.4.7 does not hold, and by 15.4.11.2, conclusion (1) of 15.4.7 does
not hold. Thus m(Z) > 1 by 15.4.7. Indeed |M(T )| > 1 by Hypothesis 15.4.1.2,
so by 15.4.12 there exist distinct Y,X ∈ Y with !M(XT ) 6= !M(Y T ), and hence
CZ(Y ) ∩ CZ(X) = 1. Thus m(Z) ≤ 2 by (1), so (2) holds. ¤

Lemma 15.4.15. There exists at most one M ∈ M(T ) such that s(Y ) = 1 for
some Y ∈ Y ∩M .

Proof. Assume Mi ∈ M(T ), i = 1, 2, are distinct, with Yi ∈ Y ∩Mi such
that s(Yi) = 1. Let Gi := YiT for i = 1, 2, and G0 := 〈G1, G2〉; then (G0, G1, G2)
is a Goldschmidt triple. By 15.4.12.2, O2(G0) = 1, so by F.6.5.1, α := (G1, T,G2)
is a Goldschmidt amalgam, and hence α is described in F.6.5.2. As Gi ∈ H(T ),
Gi ∈ He, so α appears in case (vi) of F.6.5.2—namely in one of cases (1), (2),
(3), (8), (12), or (13) of F.1.12. By 15.4.14, Z 6≤ Z(Gi) for i = 1 and 2, and
m(Z) = 2. Thus by inspection of the possibilities for α, case (2) of F.1.12 holds;
that is G1

∼= G2
∼= Z2 × S4. However this contradicts 15.4.13. ¤

Recall that S = Baum(T ).

Lemma 15.4.16. NG(S) ≤M for each M ∈M(T ).
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Proof. Pick Y ∈ Y ∩M , and apply Theorem 3.1.1 to S, NG(S), Y T in the
roles of “R, M0, H”. Note that by 15.4.12.4, S ∈ Syl2(Y S), and by 15.4.12.6,
Y S is a minimal parabolic in the sense of Definition B.6.1, so the hypotheses of
3.1.1 are indeed satisfied. Therefore by Theorem 3.1.1, O2(〈NG(S), Y T 〉) 6= 1, so
NG(S) ≤M by 15.4.12.2. ¤

Lemma 15.4.17. Assume BCG(B) ≤ H ≤ NG(B) for some 1 6= B ≤ T such
that TH := T ∩ H ∈ Syl2(H). Assume TH ≤ I ≤ H, and for z ∈ Z#, let
Mz ∈ M(CG(z)). Then

(1) The hypotheses of 1.1.5 are satisfied with I, Mz, z in the roles of “H, M ,
z”.

(2) If Z ∩ O2(I) 6= 1, then F ∗(I) = O2(I).

Proof. As TH ∈ Syl2(H), and Z ≤ CT (B) ≤ TH by hypothesis, 1.1.6 says
that the hypotheses of 1.1.5 are satisfied with H , Mz, z in the roles of “H , M , z”.
Then as TH is Sylow in H and I , O2(H ∩CG(z)) ≤ O2(I ∩CG(z)) by A.1.6, so that
(1) holds. Assume Z ∩ O2(I) 6= 1. Then N := NG(O2(I)) ∈ He by 1.1.4.3, so as
BCN (B) ≤ H ∩N ≤ NN (B), H ∩N ∈ He by 1.1.3.2. Hence as TH ≤ I ≤ H ∩N ,
and TH is Sylow in H , we conclude I ∈ He from 1.1.4.4. ¤

Lemma 15.4.18. s(Y ) = 2 for each Y ∈ Y.

Proof. Assume Y ∈ Y with s(Y ) = 1, and let M1 := NG(Y ); then M1 =
!M(Y T ) by 15.4.12.2. Pick M2 ∈ M(T )− {M1}; by 15.4.12, we may choose X ∈
Y ∩M2, and again M2 = NG(X) = !M(XT ). By 15.4.15, s(X) = 2, so by 15.4.12,
X = Y2Y

t
2 where Y2 = O2(Y2) = [Y2, J(T )] is S-invariant with Y2/O2(Y2) ∼= Z3 and

t ∈ T −NT (Y2). Set TI := NT (Y2), Y1 := Y , Gi := YiTI , and I := 〈G1, G2〉. By
15.4.12.4, S ∈ Syl2(YiS), so as S ≤ TI , TI ∈ Syl2(Gi). Notice |T : TI | = 2.

As S ∈ Syl2(YiS), E = Ω1(Z(J(T ))) = Ei × Fi, where Ei := CE(Yi), and
Fi := [E, Yi] ∩ E is of order 2. In particular Ei is a hyperplane of E. Similarly
E = EX × FX , where EX := CE(X) and FX := [E,X ] ∩ E ∼= E4. As T acts on
EX ∩ E1, if EX ∩ E1 6= 1, then CZ(X) ∩ CZ(Y ) 6= 1, then M1 = M2 by 15.4.12.2,
contrary to the choice of M2. Thus EX ∩ E1 = 1, so as E1 is a hyperplane of E,
m(EX) ≤ 1. By 15.4.14, 1 6= CZ(X) ≤ EX , so CZ(X) = EX is of rank 1, and
m(E) = 3. Thus as Ei is a hyperplane of E, E1 ∩E2 =: E0 6= 1; and Gi centralizes
E0, so I ≤ CG(E0). In particular, IE0 ∈ H, so that I is an SQTK-group.

Next S = Baum(T ) ≤ TI , so that S = Baum(TI) by B.2.3.5. Thus NG(TI) ≤
NG(S) ≤ Mi by 15.4.16, so as TI = NT (Y2) ∈ Syl2(CM2(E0)), we conclude that
TI is Sylow in GE := CG(E0), and hence also TI ∈ Syl2(I). Thus (I,G1, G2) is
a Goldschmidt triple. Let I∗ := I/O3′(I). As T ≤ M1, Y2 6≤ M1 since M2 =
!M(XT ). Then as M1 = !M(Y T ) and O2(G1) E Y T , we conclude O2(G1) 6=
O2(G2). Thus α := (G∗1, T

∗
I , G

∗
2) is a Goldschmidt amalgam by F.6.11.2, so α and

I∗ are described in Theorem F.6.18.
As Z ≤ TI ∈ Syl2(GE), we may apply 15.4.17 with I , GE , E0 in the roles of

“I , H , B”. We conclude that for z ∈ Z# and Mz ∈ M(CG(z)), the hypotheses of
1.1.5 are satisfied with I , Mz, z in the roles of “H , M , z”, and F ∗(I) = O2(I) if
Z ∩ O2(I) 6= 1. By 1.1.5.1, F ∗(I ∩Mz) = O2(I ∩Mz), so by 1.1.3.2, F ∗(CI (z)) =
O2(CI (z)). As [Z, Yi] ≤ CI(O(I)) by A.1.26.1, and 1 6= Z ∩ [Z, Y1], O(I) = 1 by
1.1.5.2.

Suppose first that F ∗(I) 6= O2(I). Then there is a component L of I , and Z is
faithful on L by 1.1.5.3. Now L is described in one of cases (3)–(13) of F.6.18, so as
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F ∗(CI(z)) = O2(CI (z)) for each z ∈ Z#, and m(Z) = 2 by 15.4.14.2, we conclude

L ∼= A6 and L∗Z∗ ∼= S6. In particular Yi ≤ O3′ (I) = L for i = 1, 2, so L = O2(I)
using F.6.6. Now T acts on CTI (Y ) = CTI (L)×(Z∩L), but T acts on no nontrivial
subgroup of CTI (L) as CZ(X)∩CZ(Y ) = 1. Therefore as |T : TI | = 2, CTI (L) is of
order 2, and hence CTI (L) = E0, so Gi ∼= E4×S4. Thus Y2 ∼= A4, so X ∼= A4×A4.
Then as CZ(X) = EX is of order 2, m2(TI) ≥ 5, contrary to Gi ∼= E4 × S4.

Therefore F ∗(I) = O2(I). Let VI := 〈ZI〉, so that VI ∈ R2(I) by B.2.14. But

CI(VI ) ≤ CI(Z) = TI using Theorem 15.4.8, so CI (VI ) = O2(I). Let Î := I/O2(I).
Now Yi = [Yi, J(T )] as Yi ∈ Y , and [Z, Yi] 6= 1 by 15.4.12.6, so VI is an FF-module

for Î . Then using Theorem B.5.6 to determine the FF-modules for the possible
groups in Theorem F.6.18, it follows as CI(Z) = TI , that Î ∼= S3×S3. But then Y2
normalizes O2(Y1O2(I)) = Y1, so that Y2 ≤ NG(Y ) = M1, contrary to an earlier
remark. ¤

We now define notation in force for the remainder of the subsection. By Hypoth-
esis 15.4.1.2, we can pick distinct members M1 and M2 of M(T ), and by 15.4.12,
we can choose X ∈ Y ∩M1 and Y ∈ Y ∩M2. Thus M1 = NG(X) = !M(XT )
and M2 = NG(Y ) = !M(Y T ) by 15.4.12.2. Further s(X) = s(Y ) = 2 by 15.4.18,
so that Y = Y1Y2 and X = X1X2 as in 15.4.12.6. Let T0 := NT (Y1) ∩ NT (X1).
By 15.4.12.4, S is Sylow in XS and Y S, so as S ≤ T0 by 15.4.12.6, T0 is Sylow
in XT0 and Y T0. Let L1 := X1 or X2, and L2 := Y1 or Y2. Set Gi := LiT0,
and I := 〈G1, G2〉. Let Vi := [V (Mi), Li], so that Vi ∼= E4 by 15.4.12.6. Observe
|T : T0| ≤ 4 since |T : NT (Yi)| = 2 = |T : NT (Xi)|.

Lemma 15.4.19. (1) 1 6= CE(I) ≤ Z(I). In particular I ∈ H.
(2) L3−i 6≤Mi.
(3) Z ∩ Z(I)V1 6= 1.

Proof. If L2 ≤M1 then Y T = 〈L2, T 〉 ≤M1, contrary to M2 = !M(Y T ) and
the choice of M1 6=M2. Thus (2) holds. Similarly Z ∩ Z(I) = 1.

Let EI := CE(T0). Arguing as in the second paragraph of the proof of 15.4.18,
EI = Ei × Fi, where Ei := CE(Gi) and Fi := CVi(T0)

∼= Z2. Thus E0 := CE(I)
is of corank at most 2 in EI . As CZ(X) 6= 1 by 15.4.14, and CE∩[Z,X](T0) ∼= E4

by 15.4.12.6, m(EI) ≥ 3, so (1) holds. Further as Z ∩ Z(I) = 1 and m(Z) = 2 by
15.4.14.2, EI = E0 × Z, so 1 6= Z ∩ E0F1 ≤ Z(I)V1, and hence (3) holds. ¤

By 15.4.19, I ∈ H, so that H(I) is nonempty.

Lemma 15.4.20. T0 ∈ Syl2(I0) for each I0 ∈ H(I).

Proof. Assume otherwise, and let T0 < TI ∈ Syl2(I0), and T1 := TI∩M1∩M2.
As S ≤ T0 ≤ T1, S = Baum(T1) by B.2.3.4, and hence NTI (T1) ≤ NTI (S) ≤ TI ∩
M1∩M2 = T1 by 15.4.16. Thus TI = T1, so we may take TI ≤ T . Of course TI < T ,
as otherwise I contains XT and Y T , contrary to !M(XT ) =M1 6=M2 = !M(Y T ).
Therefore |T : TI | = 2 since |T : T0| ≤ 4. Also TI ∈ Syl2(J) for any J ∈ H(I0), and
in particular, T0 ∈ Syl2(NG(O2(I0))).

As TI > T0, TI does not normalize at least one of L1 or L2, so we may assume
TI does not normalize L1. Then X = 〈LTI1 〉 ≤ I ≤ I0 and R := O2(XTI) E XT ,
so as M1 = !M(XT ),

C(G,R) ≤M1.
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Set K := 〈XI0〉 and recall K ∈ Ξ(G, T ). As M1 = NG(X), X is not normal in I0
since I0 6≤M1 by 15.4.19.2.

Observe that either:

(i) K ∈ C(I0) with KTI/O2(KTI) ∼= Aut(Ln(2)), n = 4 or 5, or
(ii) K = K1K

r
1 for some K1 ∈ C(I0) and r ∈ TI−NTI (K1), with K1/O2(K1) ∼=

L2(2
n), n even, or L2(p) for some odd prime p.

This follows from 1.3.4, since K/O2(K) is not L3(3), M11, or Sp4(2
n) because TI

induces D8 on X/O2(X) since XS/O2(XS) ∼= S3 × S3 by 15.4.12.6, while TI does

not act on L1. AlsoK = O3′ (I0) by A.3.18 or 1.2.2, so I ≤ KTI , and hence without
loss I0 = KTI .

Suppose first that F ∗(K) 6= O2(K), so that K is a product of components of I0.
By an earlier remark, T0 is also Sylow in NG(O2(I0)), so we may apply 15.4.17 with
I0, NG(O2(I0)), O2(I0) in the roles of “I , H , B” to conclude that for z ∈ Z# and
Mz ∈ M(CG(z)), the hypotheses of 1.1.5 are satisfied with I0, Mz, z in the roles of
“H , M , z”. Thus K is described in 1.1.5.3, and Z is faithful on K. Suppose first
that case (ii) holds. As Z is noncyclic and in the center of TI , while TI induces D8

on X/O2(X), K1 is not L2(p) for p odd. Thus K1
∼= L2(2

n), so as L2(4) ∼= L2(5)
and n is even, n ≥ 4. Further as C(G,R) ≤ M1, a Borel subgroup B of K is
contained in M1, and hence B = O2(B) acts on the 4-subgroup V1 of 15.4.12.6; this
is impossible, as when n ≥ 4, B does not act on a 4-subgroup of O2(B). Thus (i)
holds, in which case we again have a contradiction to Z 2-central, noncyclic, and
faithful on K.

Therefore F ∗(K) = O2(K). Let IX := I0 ∩M1. Recall C(G,R) ≤M1, so that
Hypothesis C.2.3 is satisfied with IX , I0 in the roles of “MH , H”. If case (ii) holds,
then as R centralizes X/O2(X), R normalizes K1, so it follows from C.2.7.3 that
either K1 is a block of type L2(2

n) or A5, or K1/O2(K1) ∼= L3(2).
Let VI := 〈ZK〉 so that VI ∈ R2(I0) by B.2.14, and set I∗0 := I0/O2(I0).

As K/O2(K) is semisimple, O2(I0) = CI0(VI ). As Li = [Li, J(T )], VI is an FF-
module for I∗0 . Then as CI0(Z) is a 2-group by Theorem 15.4.8, it follows from the
description of the modules in C.2.7.3 and C.1.34 for the groups in cases (i) and (ii),
that K1 is an L2(2

n)-block. But once again a Borel subgroup B of K is contained
in M1, and hence B = O2(B) acts on the 4-subgroup V1 of case (ii) of 15.4.12.6,
so we conclude that K1 is an L2(4)-block. Finally by 15.4.14, CZ(X) 6= 1, so
CZ(X) ≤ Z(I0) from the structure ofK. Thus I0 ≤ CG(CZ(X)) ≤M1 = !M(XT ),
contrary to 15.4.19.2. ¤

Recall I ∈ H by 15.4.19.1, so T0 ∈ Syl2(I) by 15.4.20. Then (I,G1, G2) is a
Goldschmidt triple. Set Qi := O2(Gi) and I

+ := I/O3′(I).

Lemma 15.4.21. If F ∗(I) = O2(I), then I = L1L2T0 with Li E I.

Proof. Assume F ∗(I) = O2(I) and let VI := 〈ZI〉. As CI(VI ) ≤ CI(Z) = T0
by Theorem 15.4.8, and VI ∈ R2(I) by B.2.14, we conclude that CI(VI ) = O2(I).
Let I∗ := I/O2(I), so that I+ is a quotient of I∗. As Li = [Li, J(T )], VI is an
FF-module for I∗ and Li centralizes O

3(F (I∗)) by B.1.9.
We claim α := (G+

1 , T
+
0 , G

+
2 ) is a Goldschmidt amalgam. For if not, by F.6.11.2,

Q1 = Q2 and I+ ∼= S3 with O3′(I)
∗ 6= 1. Then Q1 = O2(I) and I is solvable by

F.6.11.1, so as L∗i centralizes O
3(F (I∗)), I is a {2, 3}-group by F.6.9, contradicting

O3′(I
∗) 6= 1. Thus the claim is established.
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By the claim, I+ is described in Theorem F.6.18. Therefore as VI is an FF-
module for I∗, either the lemma holds, or comparing the list of Theorem F.6.18
with that of Theorem B.5.1, we conclude that I∗ is an extension of L3(2), A6, A7,

Â6, or G2(2), so that CI(Z) is not a 2-group. The latter case contradicts Theorem
15.4.8. ¤

Lemma 15.4.22. If F ∗(I) 6= O2(I) then I = KT0, K ∼= A6, and I/CT (K) ∼= S6.

Proof. Assume F ∗(I) 6= O2(I). By 15.4.20, T0 ∈ Syl2(NG(O2(I))), so we
may apply 15.4.17 to conclude that the hypotheses of 1.1.5 are satisfied and Z ∩
O2(I) = 1. Since V1 = [V1, L1] ∼= E4, V1 centralizes O(I) by A.1.26.1, so 1 6=
Z ∩ V1Z(I) centralizes O(I) by 15.4.19.3. Thus O(I) = 1 by 1.1.5.2.

If Q1 = Q2 then Q1 = O2(I); but Z ≤ Q1 by B.2.14, contradicting Z ∩
O2(I) = 1. Thus Q1 6= Q2, so (G+

1 , T
+
0 , G

+
2 ) is a Goldschmidt amalgam by F.6.11.2,

and I+ is described in Theorem F.6.18. By F.6.11.1, O3′(I) is 2-closed, so as
Z ∩ O2(I) = 1, Z ∩ O3′(I) = 1 and hence Z ∼= Z+ is noncyclic; then we conclude
from Theorem F.6.18 that I+ is either L2(p

2) extended by a field automorphism,
or S7. However F ∗(I ∩Mz) = O2(I ∩Mz) for each z ∈ Z# by 1.1.5.1, so that
F ∗(CI(CZ(W ))) = O2(CI (CZ(W ))) for W := X,Y by 1.1.3.2. We conclude that
I+ ∼= S6. AsO3′(I) is 2-closed and F ∗(I) 6= O2(I), it follows that I has a component

K with K/O2(K) ∼= A6 and then that K = O3′ (I) by A.3.18. Thus K = O2(I) by
F.6.6, so I = KT0. As E4

∼= Z is faithful on K, Z(K) = 1, so the lemma holds. ¤

Lemma 15.4.23. F ∗(I) 6= O2(I).

Proof. Assume F ∗(I) = O2(I). Then by 15.4.21, [L2, L1] ≤ O2(L1). We
may choose notation so that L1 := X1, and set L′1 := X2 and I ′ := 〈L′1T0, L2〉.
As [L1, L

′
1] ≤ O2(L1) and [L1, L2] ≤ O2(L1), we conclude [O2(I ′), L1] ≤ O2(L1)

from F.6.6. However by 15.4.21 and 15.4.22, I ′ contains an E9-subgroup P , with
P ∩ L1 = 1, since I ′ 6≤ M1 by 15.4.19.2. Therefore as [O2(I ′), L1] ≤ O2(L1),
m3(L1P ) = 3, contrary to NG(I) an SQTK-group. ¤

We are now ready to establish the main result of this section. By 15.4.23, we
may apply 15.4.22, to conclude that Li ∼= A4, O2(L1)O2(L2) ∼= D8, and O2(L1) ∩
O2(L2) 6= 1. We may choose L1 := X1, and set L′1 := X2 and I ′ := 〈L′1, L2〉. By
symmetry, O2(L

′
1) ∩ O2(L2) 6= 1, so as O2(L1) ∩ O2(L

′
1) = 1,

O2(L2) = (O2(L1) ∩O2(L2))(O2(L
′
1) ∩ O2(L2)) ≤ O2(X) ∼= E16.

This is impossible as O2(L1)O2(L2) ∼= D8 and O2(L1) ≤ O2(X).
Since we assume in this subsection that G is not L3(2) or A6, this contradiction

establishes:

Theorem 15.4.24. Assume Hypothesis 15.4.1. Then G ∼= L3(2) or A6.

Then combining the main results of this chapter:

Theorem 15.4.25 (Theorem E). Assume G is a simple QTKE-group, T ∈
Syl2(G), |M(T )| > 1, and Lf (G, T ) = ∅. Then G is isomorphic to J2, J3,

3D4(2),
the Tits group 2F4(2)

′, G2(2)
′, M12, L3(2), or A6.

Proof. If Hypothesis 15.4.1 holds, the groups in Theorem 15.4.24 appear in
the list of Theorem E. On the other hand if Hypothesis 15.4.1 fails, then there is a
unique member Mc ofM(CG(Z)), so that Hypothesis 14.1.5 holds, and the groups
in Theorem 15.3.1 appear as conclusions in Theorem E. ¤
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Although by this point it may feel like something of an anticlimax, we have also
completed the proof of the Main Theorem: For suppose G is a simple QTKE-group,
with T ∈ Syl2(G). If |M(T )| = 1, the groups appearing as conclusions in Theorem
2.1.1 of chapter 2 appear as conclusions in the Main Theorem. So assume that
|M(T )| > 1. If Lf (G, T ) = ∅, then the groups in the conclusion of Theorem E are
among those in the conclusion of the Main Theorem. Finally if Lf (G, T ) 6= ∅, then
the groups in the conclusion of Theorem D (14.8.2) appear as conclusions in the
Main Theorem.

Thus, after a hiatus of roughly twenty years, there is at last a classification of
the quasithin groups of even characteristic. In particular, this result fills that gap
in the literature classifying the finite simple groups.



Part 7

The Even Type Theorem





CHAPTER 16

Quasithin groups of even type but not even

characteristic

The original proof of the classification of the finite simple groups (CFSG) re-
quires the classification of simple QTK-groups G of characteristic 2-type. (Recall
G is of characteristic 2-type if F ∗(M) = O2(M) for all 2-local subgroups M of
G.) Mason produced a preprint [Mas] which goes a long way toward such a clas-
sification, but that preprint is incomplete. Our Main Theorem fills this gap in the
“first generation” proof of CFSG, since we determine all simple groups in the larger
class of QTK-groups of even characteristic. (Recall G is of even characteristic if
F ∗(M) = O2(M) only for those 2-localsM containing a Sylow 2-subgroup T of G.)

The “revisionism” project (see [GLS94]) of Gorenstein-Lyons-Solomon (GLS)
aims to produce a “second-generation” proof of CFSG. In GLS, the notion of char-
acteristic 2-type from the first-generation proof is replaced by the notion of even
type (see p. 55 in [GLS94]). In a group of even type, centralizers of involutions
are allowed to contain certain components (primarily of Lie type in characteristic
2). In particular, if the centralizer of a 2-central involution has a component, then
G is not of even characteristic, and so does not satisfy the hypothesis of our Main
Theorem.

To bridge the gap between these two notions of “characteristic 2”, this final
chapter of our work classifies the simple QTK-groups of even type. More precisely,
our main result Theorem 16.5.14 (the Even Type Theorem) shows that J1 is the
only simple QTK-group which is of even type but not of even characteristic. Thus
the simple QTK-groups of even type are the groups in our Main Theorem, of even
type, along with J1.

To prove Theorem 16.5.14, we will utilize a small subset of the machinery on
standard components from the first generation proof of CFSG. In sections I.7 and
I.8 of Volume I, we give proofs of all but one of the results we use; that result is
Lemma 3.4 from [Asc75], which is a fairly easy consequence of Theorem ZD on
page 21 in [GLS99].

We are grateful to Richard Lyons and Ronald Solomon for their careful reading
of this chapter, and suggestions resulting in a number of improvements.

16.1. Even type groups, and components in centralizers

In this chapter, we assume the following hypothesis:

Hypothesis 16.1.1. G is a quasithin simple group, all of whose proper sub-
groups are K-groups, but G is not of even characteristic. On the other hand, G is
of even type in the sense of GLS.

1169
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The definition of even type is given on p.55 of [GLS94]. We will not need to
assume that m2(G) ≥ 3 as in part (3) of that definition. Part (2) of that definition
says that if K is a component of the centralizer of an involution, then K/Z(K) is
in the set C2 of simple groups listed in Definition 12.1 on page 100 in [GLS94];
and also that Z(K) satisfies further restrictions given in the final sentences of that
definition. We will not reproduce that full list here, since as G is a QTK-group,
K/O2(K) also appears in Theorem C (A.2.3). Instead, intersecting the list of
possibilities from Theorem C (A.2.3) with the list of possibilities in Definition 12.1
on page 100 of [GLS94], it follows that when G is a QTK-group, G is of even type
if and only if:

(E1) O(CG(t)) = 1 for each involution t ∈ G.
(E2) If L is a component of CG(t) for some involution t ∈ G, then one of the
following holds:

(i) L/O2(L) is of Lie type and characteristic 2 appearing in case (3) or (4) of
Theorem C; but L is not SL2(q), q = 5, 7, 9 or A8/Z2. Further if L/O2(L) ∼= L3(4),
then Φ(O2(L)) = 1.

(ii) L ∼= L3(3) or L2(p), p a Fermat or Mersenne prime.
(iii) L/O2(L) is M11, M12, M22, M23, M24, J2, J4, HS, or Ru.

Observe that from Theorem C, in case (i) either L/O2(L) is of Lie rank 1, and so
of Lie type A1 = L2,

2B2 = Sz, or 2A2 = U3; or L/O2(L) is of Lie rank 2 and of
Lie type A2, B2, G2,

2F4, or
3D4; or L is L4(2) or L5(2).

In the remainder of this introductory section assume that L is a component of
the centralizer of some involution of G, and set L̄ := L/Z(L). Thus by Hypothesis
16.1.1, L is one of the quasisimple groups listed above. To provide a more self-
contained treatment, in this introductory section we collect some facts about L
which we use frequently.

First, inspecting the list of Schur multipliers in I.1.3 for the groups L in (E2),
and recalling that O(L) = 1 by (E1), we conclude:

Lemma 16.1.2. (1) If L is not simple, then Z(L) = O2(L) and L̄ ∼= Sz(8),
L3(4), G2(4), M12, M22, J2, HS, or Ru.

(2) Either |Z(L)| ≤ 2, or L̄ ∼= Sz(8) or L3(4) with Z(L) ∼= E4, or L̄ ∼= M22

with Z(L) ∼= Z4.

Occasionally we need more specialized information about the quasithin groups
appearing in 16.1.2, which can be obtained from knowledge of the covering groups
L of L̄. Such facts are collected in I.2.2.

In the next two lemmas, we list the involutory automorphisms of L and their
centralizers in L̄. Notice that we write L rather than L̄ in those cases where
Z(L) = 1 by 16.1.2.1.

We begin with the groups of Lie type and characteristic 2 in case (i) of (E2),
that is, in case (3) or (4) of Theorem C. Recall that the involutions in classical
groups of characteristic 2 are determined up to conjugacy by their Suzuki type: In
orthogonal and symplectic groups, the types are denoted ak, bk, ck, as discussed in
Definition E.2.6; in linear and unitary groups, the types are denoted jk, as discussed
in Aschbacher-Seitz [AS76a]. In each case, k is the dimension of the commutator
space for the involution on the natural module for the classical group.
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Notation 16.1.3. Recall that the types of twisted groups in Theorem C are
2A2 = U3,

2B2 = Sz, 3D4, and
2F4. We adopt the convention of [GLS98] for

labeling involutory outer automorphisms of these groups. We emphasize that this
convention differs from that of Steinberg which is widely used in the literature
(eg. in the Atlas [C+85]) in which there are no graph automorphisms of twisted
groups. Instead the convention in Definition 2.5.3 in [GLS98] is that all involutory
automorphisms of groups of type 2A2 = U3 which are not inner-diagonal are called
graph automorphisms, but involutory outer automorphisms of groups of type 3D4

are called field automorphisms. All involutory automorphisms of groups of types
2B2 = Sz and 2F4 are inner.

Lemma 16.1.4. Assume that L̄ ∼= X(2n) is of Lie type X and characteristic
2. Let r be an involution in Aut(L), and set Lr := O2(CL(r)). Then one of the
following holds:

(1) r induces an automorphism on L corresponding to a root involution of L̄
(or in Sp4(2) or G2(2), if L = Sp4(2)

′ or G2(2)
′), and Lr = O2(CP (r)) for the

proper parabolic P containing CL(r).
(2) L ∼= Sp4(2

n), r induces an automorphism of type c2, and Lr = 1.
(3) L ∼= L4(2) or L5(2), r induces an automorphism of type j2, and Lr ∼= A4

or Z3/(E4 ×E4), respectively.
(4) r induces a field automorphism on L̄ and Lr ∼= X(2n/2)′. Further Sz(2n)

and 2F4(2
n) have no involutory non-inner automorphisms, and U3(2

n) has no in-
volutory field automorphisms.

(5) L̄ ∼= L3(2
n), n even, r induces a graph-field automorphism on L, and

Lr ∼= U3(2
n/2)—unless n = 2, where Lr ∼= E9.

(6) L̄ ∼= Lε3(2
n), r induces a graph automorphism on L̄, and Lr ∼= L2(2

n)′.
(7) L ∼= Sp4(2

n), n odd, r induces a graph-field automorphism on L, and
Lr ∼= Sz(2n)′.

(8) L ∼= L4(2) or L5(2), r induces a graph automorphism on L, and Lr ∼= A6.
(9) L〈r〉 ∼= S8, r is of type 23, 12, and Lr ∼= A4.

Proof. This follows from list of possibilities for L in (E2), and the 2-local
structure of Aut(L) (cf. Aschbacher-Seitz [AS76a]). ¤

We turn to the cases in parts (ii) and (iii) of (E2):

Lemma 16.1.5. Assume that L̄ is not of Lie type and characteristic 2, and r is
an involution in Aut(L). Then one of the following holds:

(1) L ∼= L3(3) and either r is inner with CL(r) ∼= GL2(3), or r is outer with
CL(r) ∼= S4.

(2) L ∼= L2(q) for q > 7 a Fermat or Mersenne prime, and either r is inner with
CL(r) ∈ Syl2(L), or r is an outer automorphism in PGL2(q) with CL(r) ∼= Dq+ε,
where q ≡ ε mod 4.

(3) L ∼=M11, r is inner, and CL(r) ∼= GL2(3).
(4) L̄ ∼= M12 and either r is inner with CL̄(r)

∼= S3/Q
2
8 or Z2 × S5, or r is

outer and CL̄(r)
∼= Z2 ×A5.

(5) L̄ ∼= M22 and either r in inner with CL̄(r)
∼= S4/E16, or r is outer with

CL̄(r)
∼= L3(2)/E8 or Sz(2)/E16.

(6) L ∼=M23, r is inner, and CL(r) ∼= L3(2)/E16.
(7) L ∼=M24, r is inner, and CL(r) ∼= L3(2)/D

3
8 or S5/E64.
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(8) L̄ ∼= J2 and either r is inner with CL̄(r)
∼= A5/Q8 ∗D8 or E4 ×A5, or r is

outer and CL̄(r)
∼= Aut(L3(2)).

(9) L ∼= J4, r is inner, and CL(r) ∼= Aut(M̂22)/D
6
8 or Aut(M22)/E211 .

(10) L̄ ∼= HS, and either r is inner with CL̄(r)
∼= S5/(Q

2
8∗Z4) or Z2×Aut(A6),

or r is outer with CL̄(r)
∼= S8 or S5/E16.

(11) L̄ ∼= Ru, r is inner, and CL̄(r)
∼= S5/E64/E32 or E4 × Sz(8).

Proof. The Atlas [C+85] contains a list of centralizers, as does [GLS98].
Neither reference includes proofs for the sporadic groups, but there are proofs in
section 5 of chapter 4 of [GLS98] when L̄ is of Lie type and odd characteristic.
Proofs for M24, He, and J2 appear in [Asc94], for M11 and M12 in [Asc03b], and
for HS in [Asc03a]. Proofs or references to proofs for the remaining groups can
be found in [AS76b]. ¤

Lemma 16.1.6. Assume r is a 2-element of Aut(L) centralizing a Sylow 2-
subgroup of L. Then either

(1) r ∈ Inn(L), and if L appears in case (i) of (E2) and r is an involution,
then either r̄ is a long-root involution or L̄ ∼= Sp4(2

n); or
(2) L ∼= A6 and r induces an automorphism in S6.

Proof. This is well known; it follows from 16.1.4 and 16.1.5 when r is of order
2. ¤

Our final preliminary results describe the possible embeddings among compo-
nents of involution centralizers.

Lemma 16.1.7. Assume t is an involution in G, L is a component of CG(t), and
i is an involution in CG(〈t, L〉). Set K := 〈LE(CG(i))〉. Then one of the following
holds:

(1) K = L.
(2) L/O2(L) ∼= L2(2

n), Sz(2n), or L2(p), p prime, K = K1K
t
1 with K1 a

component of CG(i) and K1 6= Kt
1, K1/O2(K1) ∼= L/O2(L), and L = CK(t)∞.

(3) K is a component of CG(i), K = [K, t], L is a component of CK(t), and
one of the following holds:

(a) K/O2(K) ∼= X(22n), where X is a Lie type of Lie rank at most 2, but
not Sz(2n), U3(2

n), or 2F4(2
n), and t induces a field automorphism on K/O2(K)

with L/O2(L) ∼= X(2n)′.
(b) K ∼= L3(2

2n) for n > 1, t induces a graph-field automorphism on K,
and L ∼= U3(2

n).
(c) K/O2(K) ∼= Lε3(2

n) for n > 1, t induces a graph automorphism on
K/O2(K), and L ∼= L2(2

n).
(d) K ∼= Sp4(2

n), n > 1 odd, t induces a graph-field automorphism on K,
and L ∼= Sz(2n).

(e) K ∼= L4(2) or L5(2), t induces a graph automorphism on K, and
L ∼= A6.

(f) K/O2(K) ∼=M12 or J2 and L ∼= A5.
(g) K/O2(K) ∼= J2 and L ∼= L3(2).
(h) K/O2(K) ∼= HS and L ∼= A6 or A8.
(i) K/O2(K) ∼= Ru and L ∼= Sz(8).
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Proof. Let K̄ := K/O2(K). Since L is a component of CG(t) and i centralizes
L by hypothesis, L is also a component of CCG(i)(t). We apply I.3.2 with CG(i)
in the role of “H”: As O(CG(i)) = 1 by (E1), O2′,E(CG(i)) = E(CG(i)) and the
2-components in that result are components. Then either

(i) K = K1K
t
1 for some component K1 6= Kt

1 of CG(i), L/O2(L) ∼= K̄1, and
L = CK(t)∞, or

(ii) K is a t-invariant component of CG(i), and L is a component of CK(t).

In case (i), since G is quasithin, the possibilities in (2) are obtained by intersecting
the list of A.3.8.3 with that of (E2). Therefore we may assume that case (ii) holds,
and K > L since otherwise conclusion (1) holds. The simple group K̄ is described
in (E2). The cases in (3) arise by inspecting 16.1.4 and 16.1.5 for involutions
i ∈ Aut(K) such that CK(i) has a component. We use 16.1.2.1 to conclude that
O2(K) = 1 or O2(L) = 1 when appropriate; in case (i) of (3), Z(L) = 1 from the
structure of the covering group K of K̄ ∼= Ru in I.2.2.7a. ¤

Lemma 16.1.8. Assume t is an involution in G, L is a component of CG(t), i
is an involution in CG(〈t, L〉), and S ∈ Syl2(CG(i)) with |S : CS(t)| ≤ 2. Then L
is a component of CG(i).

Proof. Assume otherwise, and set K := 〈LE(CG(i))〉; then K is described
in case (2) or (3) of 16.1.7, and it remains to derive a contradiction. As S ∈
Syl2(CG(i)) and K is subnormal in CG(i), SK := S ∩ K ∈ Syl2(K). Further
|SK : CSK (t)| ≤ |S : CS(t)| ≤ 2. However in case (2) of 16.1.7,

|SK : CSK (t)| ≥ |K1/O2(K1)|2 > 2,

so case (3) must hold. But in each subcase of (3), |SK : CSK (t)| > 2, a contradiction
establishing the lemma. ¤

16.2. Normality and other properties of components

Let P denote the set of pairs (z, L) such that z is a 2-central involution in G
and L is a component of CG(z).

Lemma 16.2.1. P 6= ∅.

Proof. Let T ∈ Syl2(G). By Hypothesis 16.1.1, G is not of even charac-
teristic, so there is M ∈ M(T ) such that O2(F ∗(M)) 6= 1 and there is 1 6= z ∈
Ω1(Z(T )) ∩ O2(M). Then O2(F ∗(M))) ≤ O2(F ∗(CM (z))), so that F ∗(CM (z)) 6=
O2(CM (z)). Then as M = NG(O2(M)) since M ∈ M, F ∗(CG(z)) 6= O2(CG(z))
by 1.1.3.2. On the other hand by Hypothesis 16.1.1, G is of even type, so by (E1),
O(CG(z)) = 1. Therefore E(CG(z)) 6= 1, so there is a component L of CG(z), and
then (z, L) ∈ P . ¤

In view of 16.2.1, we assume for the remainder of the chapter:

Notation 16.2.2. T ∈ Syl2(G), z is an involution in Z(T ), (z, L) ∈ P , Gz :=
CG(z), TL := T ∩ L, and TC := CT (L).

Lemma 16.2.3. If t is an involution in TC with |T : CT (t)| ≤ 2, then L is a
component of CG(t).
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Proof. Let CT (t) ≤ S ∈ Syl2(CG(t)), so that CT (t) ≤ CS(z). Since T ∈
Syl2(G),

|S : CS(z)| ≤ |S : CT (t)| ≤ |T : CT (t)| ≤ 2,

and hence the lemma follows from 16.1.8 with z, t in the roles of “t, i”. ¤

Of course the component L is subnormal in Gz ; the main result in this section
is 16.2.4 below, showing that in fact L is normal in Gz .

Our eventual goal will be to show that L is standard in G, as defined in the next
section. As Ronald Solomon has observed, rather than proving that L is normal in
Gz, we might instead prove that L is “terminal” in the sense of [GLS99] (ie. for
each t ∈ CG(L), L is a component of CG(t)), and then appeal to Corollary PU4 in
chapter 3 of [GLS99] to prove that L is standard. Instead we show directly that
L is standard, later in 16.3.2. This allows us to keep our treatment self-contained,
and avoid an appeal to a fairly deep result such as Corollary PU4 of [GLS99], with
a minimal amount of extra effort.

Theorem 16.2.4. L E Gz.

Until the proof of Theorem 16.2.4 is complete, assume (z, L) is a counterexam-
ple. Set L0 := 〈LGz〉 and H := NG(L0). By A.3.8, |T : NT (L)| = 2 and L0 = LLu

for u ∈ T − NT (L), so that T ≤ H and [L,Lu] = 1. The possibilities for L are
obtained by intersecting the lists of A.3.8.3 and (E2); 16.1.2.1 allows only one case
with O2(L) 6= 1:

Lemma 16.2.5. Either L ∼= L2(2
n), Sz(2n), or L2(p) with p odd, or L/O2(L) ∼=

Sz(8) with O2(L) 6= 1.

In the remainder of this section we will eliminate the possibilities in the list of
16.2.5.

Lemma 16.2.6. (1) L is a component of CG(t) for each involution t ∈ 〈z〉Lu.
(2) If L/O2(L) ∼= Sz(8) and O2(L) 6= 1, then L is a component of CG(s) for

each involution s ∈ O2(L).

Proof. Let t be an involution in 〈z〉Lu. From our list in 16.2.5, either

(I) L is simple and has one conjugacy class of involutions, or
(II) L/O2(L) ∼= Sz(8), and O2(L) 6= 1.

If (I) holds, then conjugating in L, we may take t ∈ Z(NT (L)); then as |T :
NT (L)| = 2, L is a component of CG(t) by 16.2.3, establishing (1) in this case.

Therefore we may assume that (II) holds. Let s be an involution in O2(L);
then the same argument also establishes (2), since O2(L) = Z(L) ≤ Z(NT (L)) as
Out(L/Z(L)) is of odd order. Thus it remains to establish (1) in case (ii).

By (2), L is a component of CG(s). Thus we can apply 16.1.7 to s, t in the roles
of “t, i”. As s ∈ L ≤ O2(CG(t)), s acts on each component of CG(t) by A.3.8.1, so
that case (2) of 16.1.7 does not occur. Also the only subcase of case (3) of 16.1.7 in
which L/Z(L) ∼= Sz(8) is subcase (i), and in that subcase L is simple, whereas here
O2(L) 6= 1. Thus case (1) of 16.1.7 holds, completing the proof that conclusion (1)
holds. ¤

Lemma 16.2.7. 〈NG(L), NG(Lu)〉 ≤ H.
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Proof. Let g ∈ NG(Lu), and let t be an involution in Lu. By 16.2.6.1, L is a
component of CG(t), so as CG(L

u) ≤ CG(t), L is a component of CG(L
u). Since

g ∈ NG(Lu), Lg is also a component of CG(L
u). If L 6= Lg, then CG(L

u) contains
three isomorphic components Lu, L, and Lg, contrary to A.1.34.2. Thus L = Lg,
so g normalizes LLu = L0. Therefore NG(L

u) ≤ NG(L0) = H , so the lemma holds
as u ∈ H . ¤

In the next few lemmas, we will show that L is tightly embedded in G. Recall
that a subgroup K of a finite group G is tightly embedded in G if K has even order,
but K ∩Kg is of odd order whenever g ∈ G−NG(K).

Lemma 16.2.8. (1) If g ∈ G such that 〈z〉Lu ∩ (〈z〉Lu)g has even order, then
g ∈ H.

(2) Either L is tightly embedded in G, or L/O2(L) ∼= Sz(8) and O2(L) 6= 1.
(3) If X is a nontrivial 2-subgroup of 〈z〉Lu, then NG(X) ≤ H.

Proof. Observe that (3) is a special case of (1). Assume the hypotheses of
(1). Then there is an involution t ∈ 〈z〉Lu ∩ (〈z〉Lu)g , so by 16.2.6, L and Lg are
both components of CG(t). Then Lg normalizes L so that Lg ≤ H by 16.2.7, and
hence Lg is a component of CH(t). Applying I.3.2, Lg lies in a 2-component of H ,
which is a member of C(H), so that by A.3.7, either Lg ∈ {L,Lu} or [LLu, Lg] = 1.
The latter case is impossible, for since L/O2(L) is not U3(8), case (1.a) of A.1.34

holds, so that Or
′

(H) = LLu for a suitable odd prime r; while in the former, either
g or gu−1 lies in NG(L), so g ∈ H by 16.2.7. Thus (1) holds.

Now if Lu ∩ Lug has even order, then g ∈ H by (1). Hence if g 6∈ NG(L),
then Lug = L, so that 1 6= Lu ∩ L ≤ O2(L). Then we conclude from 16.2.5 that
L/O2(L) ∼= Sz(8), so that (2) holds. ¤

Lemma 16.2.9. (1) Let p be a prime divisor of 2n − 1 if L/O2(L) ∼= Sz(2n) or

L2(2
n), and let p := 3 if L ∼= L2(r) for odd r. Then L0 = Op

′

(H).
(2) L0 6≤ Hg for g ∈ G−H.

Proof. Observe if L ∼= L2(r) for r odd that 3 divides the order of some 2-local
subgroup of L. Then part (1) follows as case (a) of A.1.34.1 holds. If L0 ≤ Hg then

L0 = Op
′

(L0) ≤ Op
′

(Hg) = Lg0 by (1), so that g ∈ NG(L0) = H , and (2) holds. ¤

When analyzing a tightly embedded subgroup K of a group G, one focuses on
the conjugates Kg such that NKg(K) is of even order. (See e.g. the definition of
∆(K) in Section 4.) In our present setup, we need a slightly stronger condition,
which we establish in the next lemma:

Lemma 16.2.10. (1) The strong closure of TL in NT (L) with respect to G
properly contains TL ∪ T uL .

(2) There is g ∈ G−H such that |Lg ∩NH(L)|2 > 1.

Proof. Set A1 := TL, A2 := T uL , and assume A1 ∪ A2 is strongly closed in
NT (L) with respect to G; we check that the hypotheses of Lemma 3.4 of [Asc75]
are satisfied. First if Agi ∩Aj 6= 1 for some i, j, then Awg2 ∩Av2 6= 1 for some choice of
v, w ∈ {1, u−1}; therefore wgv−1 ∈ NG(A2) ≤ H by 16.2.8.1, and hence also g ∈ H
as u ∈ H . Thus the subgroup H0 of H generated by all such elements g plays the
role of the group “H” in 3.4 of [Asc75]. Next as H permutes {L,Lu}, A1 ∪ A2 is
strongly closed in T with respect to H . Of course NT (Ai) = NT (L), so hypothesis
(*) of 3.4 of [Asc75] is satisfied.
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Then since H0 ≤ H < G and TL 6≤ T uL , conclusion (3) of 3.4 in [Asc75] holds:
namely A1 ∩ A2 6= 1, and A1 is dihedral or semidihedral. But as 1 6= A1 ∩ A2 ≤
L∩Lu ≤ O2(L), L/O2(L) ∼= Sz(8) by 16.2.5, so that A1 is of 2-rank at least 3 and
hence not dihedral or semidihedral. This contradiction completes the proof of (1).

As TL ∈ Syl2(L) and H permutes {L,Lu}, (1) implies (2). ¤

Lemma 16.2.11. O2(L) = 1, so L is tightly embedded in G.

Proof. If L is not tightly embedded in G, then 1 6= O2(L) = Z(L) by 16.2.8.2,
so to prove both assertions we may assume Z(L) 6= 1, and it remains to derive a
contradiction. By 16.2.5, L/Z(L) ∼= Sz(8).

Set ZL := Ω1(TL). From I.2.2.4, involutions of TLZ(L)/Z(L) lift to involutions
of TL, and these involutions are the nontrivial elements of ZL, so ZL is elementary
abelian. Further Out(L) is of odd order. From these remarks we deduce:

(*) If A is an elementary abelian 2-subgroup of NT (L) then A ≤ ZLTC and A
centralizes ZL.

Further as Z(L) 6= 1, m(ZL) > m(ZL/Z(L)) = 3.
By 16.2.10.2, there is g ∈ G−H such that Lg∩NH(L) contains an involution i,

and as T ∈ Syl2(H) we may take i ∈ T . Then by (*), i centralizes ZL, so as CG(i) ≤
Hg by 16.2.8.3, ZL ≤ Hg; then conjugating in Hg, we may take ZL ≤ T g. Hence
by (*), X := NZL(L

g) centralizes V := ZgL. Further |ZL : X | ≤ |H : NH(L)| =
2 < |ZL : Z(L)|, and hence X 6≤ Z(L). In particular 1 6= X , so V ≤ CG(X) ≤ H
by 16.2.8.3. As X ≤ ZL but X 6≤ Z(L), NH(X) ≤ NH(L), so V ≤ NH(L).
Then as m(V ) > 3 = m2(Aut(L)), CV (L) 6= 1, so L ≤ CG(CV (L)) ≤ Hg by
16.2.8.3. Similarly CV (L

u) 6= 1 so that Lu ≤ Hg, and then L0 ≤ Hg, contrary to
16.2.9.2. ¤

Lemma 16.2.12. TGL ∩ T = {TL, T
u
L}.

Proof. Assume otherwise. Then there is g ∈ G−H with S := T gL ≤ T but S
is not equal to TL or T uL . Now as |TL| > 2 = |T : NT (L)|, 1 6= NS(L) ≤ NS(TL); so
as L is tightly embedded in G by 16.2.11, S centralizes TL (and similarly T uL) by
I.7.6 with G, L, TL, T in the roles of “H , K, Q, S ”. Then R := TL〈z〉 ≤ CG(S) ≤
Hg using 16.2.8.3. As R centralizes S ∈ Syl2(L

g), we conclude from 16.1.6 that
R induces inner automorphisms on Lg. Then as |R| = 2|S|, 1 6= CR(L

g), so
Lg ≤ CG(CR(L

g)) ≤ H by 16.2.8.3. Similarly Lug ≤ H , so Lg0 ≤ H , contrary to
16.2.9.2. ¤

We are now in a position to complete the proof of Theorem 16.2.4.
By 16.2.10.2, there is g ∈ G−H such that Lg ∩NT (L) contains an involution

i. If i centralizes a Sylow 2-subgroup of L, we may assume by conjugating in L
that i centralizes TL. Then by 16.2.8.3, TL ≤ CG(i) ≤ Hg , and conjugating in
Hg we may assume TL ≤ T g. But now by 16.2.12, TL ∈ {T

g
L, T

ug
L }, contrary to

L tightly embedded in G by 16.2.11 since g 6∈ H . Thus i does not centralize any
Sylow 2-subgroup of L. But as O2(L) = 1 by 16.2.11, 16.2.5 says that L has one
conjugacy class of involutions, so we conclude i induces an outer automorphism on
L. Therefore by 16.1.4 and 16.1.5 applied to the list in 16.2.5, either

(i) L ∼= L2(2
2n), and i induces a field automorphism on L, or

(ii) L〈i〉 ∼= PGL2(p).
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In case (ii), CL0(i)
∼= Dp+ε ×Dp+ε, where p ≡ ε mod 4 and ε = ±1. But 3 divides

p + ε as p is a Fermat or Mersenne prime, so CL0(i) contains E ∼= E9. This is
impossible, since i ∈ T gL, so using 16.2.9.1,

E ≤ O3′(CHg (i)) ≤ CLg0 (i) ≤ CLg (i)× L
ug ∼= Dp−ε × L2(p).

Similarly in case (i), CL0(i)
∼= L2(2

n)× L2(2
n), and by 16.2.8.3 and 16.2.9.1,

1 6= O2(CL0(i)) ≤ Oq
′

(Hg) = Lg0,

for any prime divisor q of 2n − 1. Since L2(4) ∼= L2(5), we may assume n > 1, so
such primes q exist and mq(CL0(i)) = 2 while mq(CLg0 (i)) = 1. This contradiction
completes the proof of Theorem 16.2.4.

16.3. Showing L is standard in G

In Theorem 16.3.7 of this section, we will show that the component L is in
standard form in G, in the sense of [Asc75]: that is CG(L) is tightly embedded in
G, NG(L) = NG(CG(L)), and L commutes with none of its conjugates.

To show that L is standard, we show that L is “terminal” in the sense of
[GLS99], as defined earlier. The next two lemmas show that if L is terminal then
L is standard. The proof of the first lemma makes use of the normality of L in Gz
which we established in Theorem 16.2.4.

Lemma 16.3.1. CG(L) contains at most one component isomorphic to L, and
no component G-conjugate to L.

Proof. The first assertion follows from A.1.34.2 with NG(L) in the role of
“H”. Assume that Lg is a component of CG(L). Then by the first assertion,

Θ(L) := {Lx : x ∈ G and Lx is a component of NG(L)} = {L,L
g}.

Since L is not SU3(8), case (1.a) of A.1.34 holds, so that LLg = Or
′

(NG(L))

for a suitable odd prime r, and hence Lg = Or
′

(CG(L)). It follows that L =

Or
′

(CG(L
g)), so that Θ(L) = Θ(Lg) = Θ(L)g . Thus g ∈ NG(Θ(L)) =: N , and

hence a Sylow 2-subgroup of N is transitive on Θ(L) of order 2. This is impossible,
as by Theorem 16.2.4, T ≤ NG(L) ≤ NG(Θ(L)) = N so that T fixes Θ(L) pointwise
but is also Sylow in N . ¤

Lemma 16.3.2. Assume that L is a component of CG(t) for each involution
t ∈ CG(L). Then L is standard in G.

Proof. Assume the hypothesis of the lemma. We first observe that CG(L)
contains no conjugate of L, verifying the third condition in the definition of “stan-
dard form”. For if Lg ≤ CG(L), then L

g is a component of CG(i) for each involution
i ∈ L by hypothesis, so as CG(L) ≤ CG(i), L

g is a component of CG(i), contrary
to 16.3.1.

Set H := NG(L), X := CG(L), and assume that X ∩ Xg is of even order
for some g ∈ G. We will show that g ∈ H , which will suffice: For then since
CG(L) is of even order and H ≤ NG(CG(L)), CG(L) is tightly embedded in G and
NG(CG(L)) = H , verifying the remaining conditions for L to be in standard form.

Finally assume that g 6∈ H . Thus Lg 6= L, while as X ∩ Xg is of even order,
there is an involution t ∈ X ∩ Xg. By hypothesis, L and Lg are components of
CG(t), so as Lg 6= L, Lg ≤ CG(L), contrary to our first observation. ¤
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Observe also (cf. I.7.2.5):

Remark 16.3.3. If L is standard in G, then for each nontrivial 2-subgroup X
of CG(L),

NG(X) ≤ NG(CG(L)) = NG(L).

To show that L is terminal, we need to eliminate the proper inclusions of L in
K in parts (2) and (3) of 16.1.7. The first elimination makes use of an approach
suggested by Richard Lyons. Although the method could be applied without appeal
to Theorem 16.2.4, it goes more smoothly with such appeal. The method could also
be used to eliminate other proper containments in 16.1.7, but it is easier to use other
arguments like those in 16.3.9.

Lemma 16.3.4. Assume t is an involution in TC, and L is a component of
CK(i) for some component K of CG(t) and some involution i ∈ CG(L〈t〉) with
K = [K, i]. Then K is not U3(2

n), M12, J2, HS, or Ru.

Proof. Assume K is one of the components we wish to eliminate. Inspecting
the list of possibilities for the pair L,K in 16.1.7, we find that L is simple, so
TLTC = TL × TC . By Theorem 16.2.4, T acts on L, so |T : TC | ≤ |Aut(L)|2, while
by inspection of the pairs on our list, |K|2 > |Aut(L)|2, so |K|2|TC | > |T |.

When K ∼= U3(2
n) set V := TL, and in the remaining cases choose V of order

2 in TL ∩ Z(T ). Thus in any case TC ∩ V = 1 and T ≤ NG(V ), so as T ∈ Syl2(G),
T ∈ Syl2(NG(V )). Thus for S ∈ Syl2(NG(V )), S = T g for some g ∈ NG(V ), and
setting SA := T gA for A ∈ {C,L}, SC E S, |K|2|SC | > |S| and SC ∩ V = 1.

Next we claim that there exists SK ∈ Syl2(K) such that V = Z(SK): This
is clear from the embedding of L in K when K is U3(2

n), while in the remaining
cases we will show that 2-central involutions in L are 2-central in K, so the claim
holds there too. Choose SK so that Si := CSK (i) ∈ Syl2(CK(i)). Then Si contains
an involution z in Z(SK), and by inspection of CK(i) for the pairs on our list,
this forces z ∈ L: This is evident if Z(Si) ≤ L, while in the remaining cases all
involutions in CSi(L) are not 2-central and all involutions in Z(Si) − L are fused
into CSi(L) under NK(Si).

By the claim, SK ≤ NK(V ); let SK ≤ S ∈ Syl2(NG(V )). Then |SK ||SC | =
|K|2|SC | > |S|, so SK∩SC 6= 1. By the claim, Z(SK) = V , so as 1 6= SK∩SC E SK ,
V ∩ (SK ∩ SC) 6= 1, contrary to SC ∩ V = 1. ¤

Lemma 16.3.5. Assume E is a subgroup of G of order 4, and K is a component
of CG(e) for each e ∈ E#. Let i be an involution in CG(EK). Then one of the
following holds:

(1) K is a component of CG(i).
(2) K < I, where I is a component of CG(i) such that E is faithful on I,

O2(I) 6= 1, E ∼= CAut(I)(AutK(I)) ∼= E4, and either

(a) K ∼= A5 and I/O2(I) ∼=M12 or J2, or
(b) K ∼= Sz(8) and I/O2(I) ∼= Ru.

Proof. Assume that conclusion (1) fails, and set I := 〈KE(CG(i))〉. Then I
and the action of an involution t ∈ E# on I are described in conclusion (2) or (3)
of 16.1.7, with K, I in the roles of “L, K ”. Observe that CE(I) = 1 since K < I
and K is a component of CG(e) for each e ∈ E#, so E is faithful on I .

Suppose the pair (t, I) satisfies case (2) of 16.1.7. Then I = I1I
t
1 with I1 6= It1,

for some component I1 of CG(i) such that I1/Z(I1) ∼= K/Z(K). Thus NE(I1) 6= 1
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as E is of order 4, so by hypothesis K is a component of the centralizer of an
involution e ∈ NE(I1). Thus as e centralizes K, which is a full diagonal subgroup
of I1I

t
1 = I , e centralizes I , contrary to E faithful on I .

Therefore (t, I) is described in case (3) of 16.1.7. Then as K centralizes the
subgroup E of order 4 faithful on I , we conclude from 16.1.4 and 16.1.5 (applied
to I described in 16.1.7.3) that E ∼= E4, and I/O2(I) ∼= M12, J2, HS, or Ru. By
16.3.4, O2(I) 6= 1. We may assume that conclusion (2) fails, so I/O2(I) ∼= HS,
with E = 〈s, t〉 a 4-group such that E(CI (s)) ∼= A8 and E(CI (t)) ∼= A6. But this
contradicts the hypothesis that K is a component of CI(e) for each e ∈ E#. ¤

Lemma 16.3.6. Assume E ≤ TC is of order 4, with L a component of CG(e)
for each e ∈ E#. Then L is a component of CG(i) for each involution i ∈ CG(EL).

Proof. Assume otherwise. Let i be a counterexample to the lemma, set Gi :=
CG(i), and take E〈i〉 ≤ Ti ∈ Syl2(NGi(L)). As T ∈ Syl2(NG(L)) by Theorem
16.2.4, we may assume Ti ≤ T , so that Ti = CT (i). Then i ∈ CT (L) = TC .

As L is a component of CG(e) for each e ∈ E#, and we are assuming the lemma
fails, L < I := 〈LE(Gi)〉, where I , E, and L are described in 16.3.5.2 with L, I in
the roles of “K, I”. In particular O2(I) 6= 1. Set R := CTC (i); as Ti = CT (i),
R = CTi(L), so z ∈ R. Also TL ≤ Ti since i ∈ CG(L), so CTLTC (i) = TLR.

Let R0 := CR(I). By 16.3.5.2, E ∼= E4 is faithful on I and AutE(I) =
CAut(I)(AutL(I)), so R = R0E with E ∩ R0 = 1. Next R < TC : for otherwise
TLTC ≤ Ti, so that |T : Ti| ≤ |T : TLTC | ≤ |Out(L)|2 ≤ 2 by inspection of the
cases in 16.3.5.2, contrary to 16.1.8 with z in the role of “t”.

Now pick the counterexample i so that R is maximal. As R < TC , there is
y ∈ NTC (R)− R with y2 ∈ R. Suppose X := R0 ∩ R

y
0 6= 1. Then as R normalizes

R0 and y normalizes R, R also normalizes Ry0 , and hence normalizes X . Therefore
there is an involution i1 in X central in R〈y〉, contrary to the maximality of R.

Therefore R0∩R
y
0 = 1, so R0 is isomorphic to a subgroup of R/R0 = R0E/R0

∼=
E4, and in particular Φ(R0) = 1. As O2(I) 6= 1, from (5b) and (7b) of I.2.2, non-
2-central involutions of I/Z(I) lift to 4-elements of I , so either CI (L) ∼= Q8, or
I/O2(I) ∼= M12 and CI(L) ∼= Z4. In either case there is e ∈ E# inducing an inner
automorphism on I , so that e = r0f with r0 ∈ R0 and f ∈ CI(L); then f is of
order 4 with f2 ∈ Z(I), so r0 is also of order 4, contradicting Φ(R0) = 1. ¤

We are now ready to state the main result of this section:

Theorem 16.3.7. L is standard in G.

Until the proof of Theorem 16.3.7 is complete, assume L is a counterexample.
Thus by 16.3.2, there is an involution t ∈ CG(L) such that L is not a component
of Gt := CG(t). Recall TC = CT (L) ∈ Syl2(CG(L)), so we may assume t ∈ TC .

Lemma 16.3.8. TC is dihedral or semidihedral of order at least 8. In particular
CTC (t) = 〈z, t〉.

Proof. As L is not a component of Gt, t 6= z, so |TC | > 2. Since T normalizes
TC by Theorem 16.2.4, we may choose E ≤ TC of order 4 with E E T , and
set S := CTC (E). Then |T : CT (e)| ≤ 2 for each e ∈ E#, and hence L is a
component of CG(e) by 16.1.8. Hence L is a component of CG(s) for each s ∈ S#

by 16.3.6. Therefore t ∈ TC − S, and if CS(t) > 〈z〉, then applying 16.3.6 to a
subgroup of CS(t) of order 4 in the role of “E”, we contradict our assumption that
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L is not a component of Gt. Therefore CS(t) = 〈z〉, so as S is of index 2 in TC ,
CTC (t) = 〈t, z〉 ∼= E4. Then by a lemma of Suzuki (cf. Exercise 8.6 in [Asc86a]),
TC is dihedral or semidihedral. As TC > S ≥ E and |E| = 4, |TC | > 4. ¤

Let K := 〈LE(Gt)〉. By assumption, K > L, so K, L, and the action of z
on K are described in case (2) or (3) of 16.1.7. To prove Theorem 16.3.7, we will
successively eliminate those possibilities, beginning with the reduction:

Lemma 16.3.9. One of the following holds, with O2(K) 6= 1 in cases (2)–(4):

(1) K ∼= L4(2), L ∼= A6, and z induces a graph automorphism on K.
(2) K/O2(K) ∼=M12 and L ∼= A5.
(3) K/O2(K) ∼= J2 and L ∼= A5 or L3(2).
(4) K/O2(K) ∼= HS and L ∼= A6 or A8.

Proof. We observe first that either

(i) t 6∈ K, so that m2(K〈t〉) ≥ m2(K) + 1, or
(ii) t ∈ K, so that t ∈ Z(K) and hence Z(K) 6= 1.

On the other hand, T normalizes L by Theorem 16.2.4, and m2(TC) = 2 by 16.3.8,
so

m2(K〈t〉) ≤ m2(T ) = m2(LT ) ≤ m2(Aut(L)) +m2(TC) = m2(Aut(L)) + 2. (!)

We will eliminate those cases in 16.1.7 not appearing in the lemma, primarily by
appeals to (!). Set K̄ := K/Z(K), L∗ := L/Z(L), and m := m2(L

∗).
Suppose first that K is not quasisimple, so that case (2) of 16.1.7 holds. By

16.1.2, either L is simple, or L∗ ∼= Sz(8) with m(Z(L)) ≤ 2. Furthermore as
Inn(L∗) ≤ Aut(L) ≤ Aut(L∗), using 16.1.4 and 16.1.5, m2(Aut(L)) = m; Thus (!)
says that

m2(K〈t〉) ≤ m+ 2. (∗)

Further m2(K) ≥ 2m. Thus if t 6∈ K, then 2m + 1 ≤ m + 2 by paragraph one
and (*), so that m ≤ 1, contrary to L∗ simple. On the other hand if t ∈ K, then
Z(K) 6= 1 and hence L∗ ∼= K̄ ∼= Sz(8). Thus 2m ≤ m + 2 by (*), contrary to
m = m2(Sz(8)) = 3.

Therefore K is quasisimple, and so K is described in one of the subcases of
part (3) of 16.1.7.

Suppose first that one of subcases (a)–(d) holds, but that K̄ is neither Sp4(4)
nor G2(4). By 16.3.4, K is not U3(2

m). Further either K is simple, and then L
is also simple in each case; or Z(K) 6= 1, and then by 16.1.2, K̄ ∼= L3(4) and
Φ(Z(K)) = 1. Hence when Z(K) 6= 1, involutions in K̄ lift to involutions in K,
and so as Φ(Z(K)) = 1, m2(K) = m2(K̄) + m(Z(K)). Therefore in any case,
m2(T ) ≥ m2(K̄) + 1 from paragraph one. By inspection, m2(K̄) ≥ 2m, and
m2(Aut(L)) = m. Thus from (!), 2m+ 1 ≤ m+ 2, contradicting m > 1.

The lemma holds if K is L4(2), or if K appears in case (f)–(h) of 16.1.7, using
16.3.4 to conclude that O2(K) 6= 1 in the latter cases. So we may assume that K̄
is Sp4(4), G2(4), L5(2), or Ru. Now by 16.1.2, either K is simple, or K̄ ∼= G2(4)
or Ru with Z(K) of order 2. By inspection, m3(Aut(L)) = 3 in each case, so (!)
says that

m2(K〈t〉) ≤ 5. (!!)

However by inspection, m2(K̄) ≥ 6, so if K is simple, then (!!) supplies a contra-
diction. Thus K̄ ∼= G2(4) or Ru and |Z(K)| = 2. In the latter case m2(K) ≥ 6
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by I.2.2.7b, contrary to (!!). Thus K̄ ∼= G2(4). By I.2.2.5a, 2-central involutions of
K̄ lift to involutions of K; so since the unipotent radical of the stabilizer in K̄ of
a point in the natural representation contains a product of two long roots groups
with elements permuted transtivitely by a subgroup L2(4) of a Levi complement,
we conclude that m2(K) ≥ 5. Therefore Z(K) = 〈t〉 by (!!).

Next from I.2.2.5b, short-root involutions in K̄ lift to elements of order 4 in
K squaring to t. We may choose such a u of order 4 to normalize L. But now
as T is Sylow in NG(L), if necessary replacing T by a Sylow 2-subgroup of NG(L)
containing 〈u, z〉, we may assume that u lies in T and so normalizes TC . But by
16.3.8, TC is dihedral or semidihedral of order at least 8 and CTC (t) = 〈z, t〉, while
as u2 = t, t centralizes the characteristic subgroup of TC isomorphic to Z4. ¤

Lemma 16.3.10. Neither t nor tz is in zG.

Proof. Suppose zg = t. Then as Lg and K are distinct components of Gt
described in 16.3.9, m3(KL

g) > 2, contrary to G quasithin.
Therefore t /∈ zG. But by 16.3.8, tz ∈ tTC , so also tz /∈ zG. ¤

Lemma 16.3.11. (1) 〈t, z〉 ∈ Syl2(CGt(L)).
(2) 〈t〉 ∈ Syl2(CGt (K)).
(3) K ∼= A8, L ∼= A6, and z induces a transposition on K.

Proof. By 16.3.8, 〈t, z〉 =: E ∈ Syl2(CGt(L〈z〉), and by 16.3.10, tz /∈ zG, so z
is weakly closed in E with respect to Gt. Hence (1) holds, and of course (1) implies
(2) since z does not centralize K.

Assume (3) fails. Then K appears in one of cases (2)–(4) of 16.3.9. Thus
1 6= O2(K), so by (2), O2(K) = 〈t〉, and if z induces an inner automorphism on K,
then z ∈ K. Let K̄ := K/〈t〉.

Suppose z induces an inner automorphism on K. Then z ∈ K by the previous
paragraph, so as z centralizes L, we conclude from 16.1.5 that z̄ is a non-2-central
involution of K̄. Then from I.2.2.5b, the lift in K of z̄ is of order 4, a contradiction.

Thus z induces an outer automorphism on K. Again using 16.1.5, z centralizes
a non-2-central involution ū in K̄. Thus a preimage u of ū in K is of order 4, and
ū acts on L̄ = O2(CK̄(z)), so u acts on L. Now the argument in the last paragraph
of the proof of 16.3.9 supplies a contradiction. ¤

Let Tt := CT (t); as T ∈ Syl2(Gz) and L E Gz, we may choose t so that
Tt ∈ Syl2(CGt(z)). Let Tt ≤ P ∈ Syl2(Gt).

As K〈z〉 ∼= S8 by 16.3.11.3, we can represent K〈z〉 as the symmetric group on
Ω := {1, . . . , 8} with z := (1, 2). Then there is an involution u ∈ CK(z) acting as
(1, 2)(3, 4) on Ω and inducing a transposition on L ∼= A6. Let y denote a generator
for the characteristic cyclic subgroup Y of index 2 in TC provided by 16.3.8. Choose
w ∈ {u, tu} with |CY (w)| maximal.

Lemma 16.3.12. J(T ) = R × TL × 〈w〉, where either

(1) w centralizes TC , R := TC if TC is dihedral, and R is the dihedral subgroup
of TC of index 2 if TC is semidihedral; or

(2) |Y | > 4, yw = yz, and R = 〈y2, t〉.

Proof. First 〈u, t〉 acts on Y with yt = y−1 or y−1z for TC dihedral or semidi-
hedral, respectively. Further L〈u〉 ∼= S6 by construction, so that m2(T/TC) = 3,
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while m2(TC) = 2 by 16.3.8; hence

m2(T ) ≤ m2(T/TC) +m2(TC) = 3 + 2 = 5,

so as m2(T ) ≥ m2(P ) ≥ m2(S8) + 1 = 5, all inequalities are equalities. Hence
m2(T ) = 5, and for each A ∈ A(T ), m(A/A ∩ TC) = 3 and m(A ∩ TC) = 2. Thus
ALTC/TC ∼= S6, so A ≤ TCL〈u〉 and hence J(T ) = J(T0), where T0 := TCTL〈u〉.

If 〈u, t〉 is not faithful on Y , then w centralizes TC since we chose |CY (w)|
maximal; therefore T0 = TC × TL〈w〉, and (1) follows. Thus we may assume that
〈u, t〉 is faithful on Y , so |Y | > 4 and yw = yz. Then we calculate that Ω1(T0) =
〈y2, t〉 × TL〈w〉, and then that (2) holds. ¤

We now complete the proof of Theorem 16.3.7.
As L ∼= A6, TL ∼= D8. It follows from 16.3.12 and 16.3.8 that Ω1(Φ(J(T ))) =

〈z, v〉, where 〈v〉 = Z(TL), and 〈z, v〉 ≤ Z(T ). On the other hand, by 16.3.11.2,
〈t〉 = CP (K), so P = 〈t〉 × Q, where Q := (P ∩ K)〈z〉 ∼= D8 wr Z2. Thus
J(P ) = 〈t〉×S1×S2, with Si ∼= D8, and Ω1(Φ(J(P )) = 〈s1, s2〉, where 〈si〉 = Z(Si),
si has cycle structure 22 on Ω, and s1s2 has cycle structure 24.

Now by 16.3.12, J(T ) = R × TL × 〈w〉, where R and TL are dihedral of order
at least 8. Then by the Krull-Schmidt Theorem A.1.15, either |R| > |TL| and
NG(J(T )) normalizes RZ(J(T )) and TLZ(J(T )), or |R| = |TL| = 8 and NG(J(T ))
permutes the pair. Thus NG(J(T )) permutes {z, v} since 〈z〉 = Ω1(Φ(RZ(J(T )))
and 〈v〉 = Ω1(Φ(TLZ(J(T )))). Next J(P ) ≤ T g for some g ∈ G, and m2(P ) = 5 =
m2(T ), so J(P ) ≤ J(T g). Then 〈s1, s2〉 = Φ(J(P )) ≤ Φ(J(T g)) = 〈z, v〉g. This is
impossible as 〈z, v〉 ≤ Z(T ), whereas 〈s1, s2〉 6≤ Z(P ).

This contradiction completes the proof of Theorem 16.3.7.

Lemma 16.3.13. (1) LG ∩ CG(L) = ∅.
(2) L is standard in G.
(3) If CG(L) ∩ NG(Lg) is of even order for some g ∈ G − NG(L), then L 6≤

NG(L
g).

Proof. Observe that (2) is just a restatement of Theorem 16.3.7, and (1) is
a restatement of the condition in the definition of standard form that L commutes
with none of its conjugates.

Assume the hypothesis of (3) and L ≤ N := NG(L
g). Thus Lg 6= L, and there

is an involution i ∈ CN (L). By Remark 16.3.3, L is a component of CN (i), so we
may apply I.3.1 with N , 〈i〉 in the roles of “H , P”, to conclude that L ≤ KK i,
where K and Ki are (not necessarily distinct) 2-components of N . If Lg ≤ KKi,
then Lg ∈ {K,Ki}, so as i ∈ N = NG(L

g), L ≤ KKi = Lg, contrary to L 6= Lg.
Therefore [Lg,KKi] = 1 by 31.4 in [Asc86a], so L ≤ CG(L

g), contrary to (1). ¤

16.4. Intersections of NG(L) with conjugates of CG(L)

Recall that in Notation 16.2.2, z is an involution in the center of T , and L is a
component of Gz = CG(z). By Theorem 16.3.7, L is standard in G.

With this setup, we could now finish quickly by quoting some of the machinery
on standard subgroups and tightly embedded subgroups in the Component Paper
[Asc75] and the Tightly Embedded Subgroup Paper [Asc76], and some of the
classification theorems in the literature based on that theory. But since GLS do
not use this machinery, we will only use some comparatively elementary results
from that theory, which we have reproduced in section I.7.
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In this section we develop some technical tools, which we apply in the final
section to show that J1 is the only group satisfying Hypothesis 16.1.1.

Set K := CG(L), H := NG(L), and H∗ := H/K. As L is standard in G,
H = NG(K). Thus for each nontrivial 2-subgroupX of K, NG(X) ≤ H by Remark
16.3.3. In particular,

Gz ≤ H.

For K ′ ∈ KG, define L(K ′) := Lg , where g ∈ G with Kg = K ′; as NG(K) =
NG(L) = H , this definition is independent of the choice of g, and the set of such
elements is a coset of H in G.

Recall TL = T ∩ L and TC = T ∩K.
Our discussion in this section will be based on an analysis of the set

∆ = ∆(K) := {K ′ ∈ KG − {K} : |NK′(K)|2 > 1}.

To see that ∆ is nonempty under our hypotheses, we appeal to I.8.2: Since G is
simple, K is not normal in G = 〈KG〉. Therefore if ∆ is empty, then H is strongly
embedded in G by I.8.2. Then by the Bender-Suzuki classification (see Theorem
SE on p. 20 of [GLS99]) of simple groups with strongly embedded subgroups,

G = O2′(G) is a Bender group, contrary to our assumption in Hypothesis 16.1.1
that G is not of even characteristic. Thus we conclude that

∆ is nonempty.

Recall that in Notation 16.2.2, T ∈ Syl2(G), and then T ∈ Syl2(H) using
Theorem 16.2.4. Then as ∆ is nonempty we can extend that earlier Notation by
adopting:

Notation 16.4.1. K ′ ∈ ∆, L′ := L(K ′),H ′ := NG(K
′), andR ∈ Syl2(NK′(K))

with R ≤ T . For each involution r in R, set Lr := O2(CL(r)). Also set H
∗ := H/K.

Since R ≤ T in Notation 16.4.1, R normalizes TL and TC by Theorem 16.2.4.
Our next result lists elementary properties of the members of ∆(K):

Lemma 16.4.2. (1) R ∼= NTC (R) = CTC (R) = NTC (K
′) ∈ Syl2(NK(K ′)), with

R ∩K = 1. In particular R is faithful on L and |NK′(K)|2 = |NK(K ′)|2.
(2) L 6≤ H ′.
(3) R = K ′ ∩ T .
(4) There exists g ∈ G with K ′ = Kg and NT (K

′) ≤ T g.
(5) For each 1 6= X ≤ R, NG(X) ≤ H ′.
(6) If NT (R) ∈ Syl2(NH(R)), then CT (R〈z〉) ∈ Syl2(CG(R〈z〉)).

Proof. Part (5) is a restatement of Remark 16.3.3. We apply parts (1) and
(2) of I.7.7 with K ′, K, TCR in the roles of “K, Kg, S” to obtain NTC (R) =
CTC (R)

∼= R. By I.7.7.3, NTC (R) is Sylow in NK(K ′), completing the proof of (1).
By (1), |NK(K ′)| is even, so (2) follows from 16.3.13.3. Part (3) holds since

R ∈ Syl2(NK′(K)) and R ≤ T . Let g ∈ G with K ′ = Kg and NT (K
′) ≤ T ′ ∈

Syl2(H
′). As T g ∈ Syl2(H ′) there is y ∈ H ′ with T gy = T ′, so replacing g by gy,

we may take NT (K
′) ≤ T g. Thus (4) holds.

If NT (R) ∈ Syl2(NH(R)) then CT (R) ∈ Syl2(CH (R)), so as z ∈ Z(T ),
CT (R〈z〉) ∈ Syl2(CH (R〈z〉)). Thus (6) follows as Gz ≤ H . ¤

The next result says that ∆ defines a symmetric relation on KG.
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Lemma 16.4.3. (1) K ∈ ∆(K ′).
(2) L′ = [L′, z].

Proof. Part (1) is a consequence of 16.4.2.1. By 16.4.2.1, z ∈ Z(T ) ∩ TC ≤
NTC (K

′). Thus (2) follows from 16.4.2.1 and the fact that ∆ is symmetric. ¤

Lemma 16.4.4. (1) Assume R is of order 2. Then CTC (R) = 〈z〉 is also of order
2, m2(RTC) = 2, and RTC is dihedral or semidihedral. If furthermore Z(L) 6= 1,
then z ∈ Z(L).

(2) If TC is cyclic, then K = TCO(K) and CK(z) = TC.

Proof. Assume R is of order 2. Then by 16.4.2.1, CTC (R) is also of order 2,
so that CTC (R) = 〈z〉. Hence by Suzuki’s lemma (cf. Exercise 8.6 in [Asc86a]),
RTC is dihedral or semidihedral, so that (1) holds.

Next assume TC is cyclic. Then by Cyclic Sylow 2-Subgroups A.1.38, K =
TCO(K). Further as Gz ≤ H = NG(K), CO(K)(z) ≤ O(Gz) = 1 by (E1), so that
(2) holds. ¤

Now we begin the process of obtaining restrictions on H , and in particular on
the Sylow 2-subgroup R of NK′(K).

Lemma 16.4.5. Assume p is an odd prime with mp(L) > 1, and i is an involu-
tion in K. Then either

(1) L = Op
′

(CG(i)), or

(2) p = 3, O3′(CG(i)
∗) ∼= PGLε3(2

n) or Lε,◦3 (2n), with 2n ≡ ε mod 3, and

L = O3′(LCK(i)). In particular, O3′(H∗) ∼= PGLε3(2
n) or Lε,◦3 (2n).

Proof. Recall L E CG(i) by Remark 16.3.3, and O(L) = 1 by (E1). Thus as
L is in the list of (E2), CG(i) satisfies conclusion (1) or (2) of A.3.18, so the lemma
holds. ¤

The next lemma eliminates the shadow of L2(p
2) (p a Fermat or Mersenne

prime) extended by a field automorphism, and the shadow of S7. These groups are
quasithin, and have a 2-central involution with centralizer Z2 × PGL2(p), but the
groups are neither simple nor of even type.

Lemma 16.4.6. If L ∼= L2(q), q odd, then no involution in R induces an outer
automorphism in PGL2(q) on L.

Proof. Let r denote an involution in R with L〈r〉 ∼= PGL2(q). Recall q is a
Fermat or Mersenne prime or 9 by (E2). Further if q 6= 9, Aut(L) ∼= PGL2(q), so
either H∗ ∼= PGL2(q), or q = 9 and H∗ ∼= Aut(PGL2(9)) ∼= Aut(A6).

If q 6= 9, let R0 := R∩LK; while if q = 9, let R0 be the subgroup of R inducing
automorphisms in S6. Then R = R0〈r〉. If R0 6= 1 there is an involution r0 in R0,
and L = 〈CL(r), CL(r0)〉 ≤ H ′ by 16.4.2.5, contrary to 16.4.2.2. Thus R0 = 1, so
R = 〈r〉 is of order 2. Hence by 16.4.4.1, 〈z〉 = CTC (R) is also of order 2. Choose
T so that NT (R) ∈ Syl2(NH(R)).

Let E := 〈r, z〉 and TE := CT (E). As RTL is dihedral, CTL(r) =: 〈v〉 is of
order 2. Therefore as CTC (R) = 〈z〉, TE ∩ LKR =: V = 〈v, z, r〉 ∼= E8, and either
H∗ ∼= PGL2(q) and TE = V , or H∗ ∼= Aut(A6) and TE ∼= E4 × Z4. Further

TE ∈ Syl2(CG(E)) by 16.4.2.6. As RTL is dihedral, rv ∈ rNTL (TE). From the
structure of Aut(L), Z(T ∗) = 〈v∗〉, so Z(T ) ≤ 〈v〉TC ∩ TE = 〈v, z〉, and hence
Z(T ) = 〈z, v〉.



16.4. INTERSECTIONS OF NG(L) WITH CONJUGATES OF CG(L) 1185

We claim that z is weakly closed in Z(T ) with respect to G; the proof will
require several paragraphs. Suppose the claim fails. Then using Burnside’s Fu-
sion Lemma A.1.35, NG(T ) induces Z3 on Z(T ), and in particular is transitive on
Z(T )#. Thus there are h, k ∈ NG(T ) such that v = zh and vz = zk; and in partic-
ular, NG(T ) transitively permutes {TC , T

h
C , T

k
C} =: T . As K is tightly embedded

in G, distinct members of T intersect trivially.
Since TL and T kC are normal in T , TL ∩ T kC is normal in T . Then as Z(T ) ∩

TL = 〈v〉 is of order 2, v lies in TL ∩ T
k
C if this group is nontrivial; but this is

impossible as v = zh ∈ T hC and T hC ∩ T
k
C = 1 by the previous paragraph. Therefore

[TL, T
k
C ] ≤ TL ∩ T kC = 1, so that T kC

∼= T k∗C ≤ CT∗(T
∗
L). Now by 16.1.6, either

CT∗(T
∗
L) = 〈v∗〉 or H∗ ∼= Aut(A6) and CT∗(T

∗
L) = 〈v∗, x∗〉, where x induces a

transposition on L and L = 〈CL(v), CL(x)〉. Thus by 16.4.2.2, T k∗C 6= 〈v∗, x∗〉 when
H∗ ∼= Aut(A6), so |T kC | = 2. Therefore TC = 〈z〉 is of order 2. Then zh = v ∈ [T, T ]
since L〈r〉 ∼= PGL2(q), so as h ∈ NG(T ), z ∈ [T, T ]. Thus |T : TL| > 4, so that q = 9
and H∗ ∼= Aut(A6). Then [T ∗, T ∗] = Y ∗, where Z4

∼= Y ≤ TL, so [T, T ] ≤ TCY
and hence 〈v〉 = Φ([T, T ]) E NG(T ). This contradiction completes the proof of
the claim that z is weakly closed in Z(T ) with respect to G. In particular, z 6∈ vG.

By 16.4.2.4 there exists g ∈ G with K ′ = Kg and NT (K
′) ≤ T g. By 16.4.3.2,

L′ = [L′, z].
We next establish symmetry between L, r and L′, z by showing that L′〈z〉 ∼=

PGL2(q). Assume otherwise and recall E = 〈r, z〉 and TE ∈ Syl2(CG(E)) is
abelian. Thus if q = 9, z does not induce an automorphism of L′ contained in
S6. Therefore we may assume that z induces an inner automorphism on L′. By
16.4.2.1, R is Sylow in CK′(z), so as z ∈ K ′L′ and R is of order 2, R is Sylow in

K ′. Hence zL
′

∩Z(T g) 6= ∅, impossible as r is weakly closed in Z(T g) by the claim.
Therefore L′〈z〉 ∼= PGL2(q).

Recall that rv ∈ rL, so if v ∈ L′, then by symmetry zv ∈ zL
′

, contrary to
the claim. Hence v 6∈ L′. Recall that 〈z, r, v〉 = V = Ω1(TE) ∼= E8, and there is
t ∈ NTL(TE) with [t, r] = v. As v 6∈ L′,

V ∩ L′ =: 〈u〉 6= 〈v〉,

and by symmetry there is s ∈ NT g (TE) with [s, z] = u. Set X := NG(V ) and
X+ := X/CX(V ), so that X+ ≤ GL(V ) ∼= L3(2), and t

+ and s+ are transvections
in X+ on V , with centers v, u, and axes Z(T ) = 〈z, v〉, Z(T g) = 〈r, u〉, respectively.
As Z(T ) 6= Z(T g) and v 6= u, 〈t+, s+〉 is either D8 or S3 from the structure of
L3(2). In the first case the unique hyperplaneW of V normalized by 〈t+, s+〉 ∼= D8

is centralized by either t or s, say t; but then W = Z(T ) is not centralized by
s, so that z 6= zs ∈ Z(T ), contrary to the claim. Hence 〈t+, s+〉 ∼= S3, and so
V = V1 ⊕ V2, where

V1 := 〈u, v〉 = [V, 〈s, t〉] ∼= E4,

and

V2 := CV (〈s, t〉) = Z(T ) ∩ Z(T g) = 〈vz〉 = 〈ur〉.

In particular as u is fused to v and all involutions in D := TL〈u〉 are in vG. As
z 6∈ vG by the claim, zG ∩D = ∅.

Next if TC > 〈z〉, then NTC (V )+ is a transvection on V with axis Z(T ) and
center 〈z〉, so 〈NTC (V )+, t+, s+〉 ∼= S4 is the stabilizer in GL(V ) of vz, and hence
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is transitive on V − 〈vz〉, which is impossible since v /∈ zG by the claim. Therefore
TC = 〈z〉, so TCTLR = TC ×D as vz = ur.

Suppose that H∗ ∼= PGL2(q). Then |T : D| = 2, so since we saw that zG∩D =
∅, z /∈ O2(G) by Thompson Transfer, contrary to the simplicity of G.

Therefore H∗ ∼= Aut(A6), so TE ∼= E4 × Z4. Now 〈s, t〉 acts on TE and
CV (〈t, s〉) = 〈vz〉, so we conclude that 〈vz〉 = Φ(TE). Next D = TL〈u〉 and
T = TETL with TE abelian, so that D E T . As vz /∈ D and vz ∈ Φ(TE),
T/D ∼= Z4. Then since we saw that zG ∩ D = ∅, z 6∈ O2(G) by Generalized
Thompson Transfer A.1.37.2, contrary to the simplicity of G, completing the proof
of 16.4.6. ¤

In the next lemma, we deal with the only case (other than those eliminated
in 16.4.6 and the case L ∼= L2(2

n)) where for some involution r in R, Lr is not
generated by its p-elements as p varies over those odd primes such that mp(L) > 1.

Lemma 16.4.7. If L∗ ∼= M22, then no involution in R induces an outer auto-
morphism on L with CL∗(r) ∼= Sz(2)/E16.

Proof. Assume r is a counterexample, and set LR := O2(NL(O2(Lr))). Recall
Lr = O2(CL(r)). Then R = R0〈r〉, where R0 := R∩LK. From the structure of the
extension of L∗ by a 2-group in I.2.2.6a, Lr is isomorphic to Z5/E16 if |Z(L)| < 4,
but isomorphic to Z5/Q8D8 if Z(L) ∼= Z4.

We first show that R0 = 1, so we assume that R0 6= 1 and derive a contradiction.
Then as Lr ≤ H ′, [Lr, CR0(r)] ≤ Lr ∩K ′ =: Y E Lr, and Y

∗ 6= 1 as CH∗(L
∗
r) = 1.

Thus Y ∗ contains the unique minimal normal subgroup O2(L
∗
r) of L

∗
r , so O2(Lr) ≤

Y ≤ K ′. It follows from 16.4.2.5 that LR ≤ H ′. Further as O(L′) = 1 by (E1),

L′ = O3′(H ′) by A.3.18, and hence LR ≤ L′. But then O2(Lr) ≤ K ′ ∩ L′ ≤ Z(L′),
impossible as m2(O2(Lr)) ≥ 3 by the first paragraph, while Z(L′) is cyclic by
16.1.2.2.

Thus R0 = 1, so R = 〈r〉 is of order 2. So by 16.4.4.1, CTC (R) = 〈z〉 is of
order 2, and TCR dihedral or semidihedral. Thus if Z(L) 6= 1, 〈z〉 = Ω1(Z(L)).
Conversely if z ∈ L, then Z(L) 6= 1 and 〈z〉 = Ω1(Z(L)). By 16.4.3.2, L′ = [L′, z].

Again we establish symmetry between L, z, r and L′, r, z, by showing that
the action of z on L′ is the same as that of r on L: First RTC is dihedral or
semidihedral and isomorphic to a Sylow group of H/L, so as Lr ≤ H ′ and Lr
is irreducible on O2(Lr)/Φ(O2(Lr)) ∼= E16, we conclude that O2(Lr) ≤ L′ and
O2(Lr) ∩K ′ ≤ Φ(O2(Lr)). As z centralizes Lr, we conclude from 16.1.5.5 that z
induces an outer automorphism of L′ with CL′/O2(L′)(z)

∼= Sz(2)/E16, establishing
the symmetry.

In particular as |Out(L′)| = 2, z 6∈ [H ′, H ′]. But if Z(L) ∼= Z4, then we saw
that z ∈ [O2(Lr)), O2(Lr]; so |Z(L)| ≤ 2, and hence O2(Lr) ∼= E16 from our earlier
discusion. Further we saw O2(Lr) ≤ L′.

Set E := 〈r, z〉, V := O2(Lr)E, and choose g ∈ G with Kg = K ′ and NT (K
′) ≤

T g. Set M := 〈NH(V ), NH′(V )〉 and M+ :=M/CM (V ); then NL(V )+ ∼= S5.
Assume for the moment that Z(L) 6= 1, so that Z(L) = 〈z〉 is of order 2. Then

V is a 6-dimensional indecomposable for NL(V )+, so by symmetry between r and
z, also NL′(V )+ is indecomposable on V , and hence M is irreducible on V when
Z(L) 6= 1. Now assume that Z(L) = 1. Then V = 〈z〉 ⊕O2(Lr)〈r〉 as an NL(V )+-
module, and O2(Lr)〈r〉 is a 5-dimensional indecomposable with trivial quotient.
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Since we saw O2(Lr) ≤ L′, we conclude by symmetry that O2(Lr) E M when
Z(L) = 1.

Suppose that TC > 〈z〉 and set SC := NTC (V ). Then as [V, SC ] = [R,SC ] ≤
V ∩ TC = 〈z〉 = CTC (R), SC is of order 4 and S+

C = 〈t+〉, where t+ induces
a transvection on V with center 〈z〉 and axis O2(Lr)〈z〉. By symmetry there is
t0 ∈ M ∩ T gC − R which induces a transvection on V with center 〈r〉 and axis not

containing z. As 〈z〉 is the center of t+, CM+(t+) ≤ CM (z)+ = S+
C × NL(V )+.

In particular S+
C = O2(CM+(t+)), so either O2(M

+) = 1 or O2(M
+) = S+

C . But
in the latter case, M+ acts on z, whereas [t0, z] 6= 1. Thus O2(M

+) = 1. Let
X+ := 〈t+, t+0 〉; then X

+ ∼= S3 centralizes O2(Lr) from the structure of subgroups
of the general linear group generated by a pair of transvections.

Assume first that Z(L) = 1. Then O2(Lr) E M and NL(V ) centralizes
V/O2(Lr), so

[X+, NL(V )+] ≤ CM+(O2(Lr)) ∩ CM+(V/O2(Lr)) ≤ O2(M
+) = 1

by Coprime Action, and hence NL(V ) normalizes [V,X ] = 〈z, r〉. This is a con-
tradiction as r does not centralize LV . Therefore Z(L) 6= 1, so M is irreducible
on V by earlier remarks. As M+ contains the transvection t+, with CM+(t+) ≤
CM (z)+ ∼= Z2 × S5, it follows from G.6.4 that M+ ∼= S7 and V is the natural
module. This is a contradiction as the noncentral chief factor for NL(V )+ on V
is the natural module for L2(4), whereas the centralizer in A7 of a transvection
has the A5-module as its noncentral chief factor. This contradiction completes the
elimination of the case TC > 〈z〉.

So TC = 〈z〉. Then T = TLTCR acts on V , so T+ = T+
L
∼= D8 is Sylow in M+.

We may apply A.3.12 to conclude that LV ≤ N ∈ C(M), and the embedding of L+
V

in N+ is described in A.3.14. As D8 is Sylow in N+T+ and there is a nontrivial
F2N

+T+-representation of dimension 6, we conclude that either N+ = L+
V or

N+ ∼= A7. In the first case, M acts on CV (LV ) = 〈z〉, and then by symmetry,
M also centralizes r, a contradiction as LV does not centralize r. In the second
case, as m(V ) = 6 and S5 ∼= NL(V )+ = CM+(z), we conclude that V is the core of
the 7-dimensional permutation module for M+, and that z is of weight 2 in that
module. This is impossible, as we saw at the end of the previous paragraph. This
contradiction completes the proof of 16.4.7. ¤

Lemma 16.4.8. Let r be an involution of R. Then either

(1) Lr ≤ L′, or

(2) O3′ (H∗) ∼= PGLε3(2
n) or Lε,◦3 (2n), 2n ≡ ε mod 3, r induces an inner

automorphism on L, n 6= 3, and O3(Lr) ≤ L′.

Proof. As usual recall that Lr ≤ CG(r) ≤ H ′. Let H̄ ′ := H ′/K ′, and define

Λ(Lr) := 〈O
p′ (Lr) : p is an odd prime such that mp(L) > 1〉.

Applying 16.4.5 with L′, r in the roles of “L, i”, either Λ(Lr) ≤ Lg or O3′ (H̄ ′) ∼=
PGLε3(2

n) or Lε,◦3 (2n).

Assume first that the latter case holds. In particular, n ≥ 2.
We will first treat the subcase where r induces an outer automorphism on L.

Then by 16.1.4, either Lr is PSL3(2
n/2), U3(2

n/2) with n > 2, or L2(2
n); or r

induces a graph-field automorphism on L∗ ∼= L3(4) and Lr ∼= E9. As m3(L
′) =

2, Z(L′) is a 2-group, and L′K ′ is an SQTK-group, CK′(r) is a 3′-group; so as
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O3′(Lr) = 1, Lr is faithful on L′ and L̄r E O2(CH̄′ (z̄)). We conclude from

16.1.4 first that z induces an outer automorphism on L′, and second as O3′(H̄ ′) is
PGLε3(2

n) or Lε,◦3 (2n) that either L̄r ≤ L̄′, or O2(H̄ ′) ∼= PGL3(4) and z induces a
graph-field automorphism on L′ with O2(CL′(z)) ∼= E9

∼= Lr. In the former case
conclusion (1) holds, so we may assume the latter. Then |CL∗(r∗) : CL(r)

∗| ≤
|Z(L)| =: m, and by 16.1.2.2, m ≤ 4. On the other hand, CL∗(r

∗) contains a
Q8-subgroup faithful on L∗r , so if m < 4, then r centralizes x ∈ L with x2 inverting
Lr; but then x̄2 ∈ L̄′ by 16.4.2.5, so that Lr = [Lr, x

2] ≤ L′, and conclusion
(1) holds again. Finally if m = 4, then r centralizes Z(L) by I.2.2.3b, so that
Z(L) ≤ CG(r) ≤ H ′ using 16.4.2.5. Then as m2(CAut(L′)(Lr)) = 1, Z(L)∩K ′ 6= 1,
contradicting K tightly embedded in G.

Next we treat the subcase where r induces an inner automorphism on L. Recall
here that |CL(r)/O2(CL(r))| = (2n − ε)/3. Assume that n > 3. Then there are

prime divisors p > 3 of |CL(r)|, and mp(L) > 1 for each such p; hence L = Op
′

(H)

by 16.4.5, so that Op
′

(Lr) ≤ Op
′

(H ′) = L′. Thus O3(Lr) ≤ L′, so that conclusion
(2) holds. Finally suppose that n = 3, so that L ∼= U3(8), |Lr : TL| = 3, and
O2(Lr) centralizes Z(TL). Let x be of order 3 in Lr; we may assume (1) fails, so

x /∈ L′. By 16.4.5, O3′(H̄ ′) ∼= PGU3(8) or U◦3 (8), and CK′(r) is a 3′-group, so as
x /∈ L′, x̄ /∈ L̄′. As 1 6= z̄ ∈ CH̄′ (x), CH̄′(x) is of even order, and x̄ is of order 3; so

from the structure of Aut(U3(8)), and as O3′(H̄ ′) ∼= PGU3(8) or U
◦
3 (8), x̄ ∈ L̄

′, a
contradiction.

This completes the treatment of the case where O3′(H̄ ′) is described in case (2)
of 16.4.5, so we may assume that Λ(Lr) ≤ Lg. In particular if Lr = Λ(Lr), then
conclusion (1) holds, so we may assume that Λ(Lr) < Lr; thus Lr 6= 1.

Suppose first that L ∼= L2(q), q odd. Then q is a Fermat or Mersenne prime or 9
by (E2), and r does not induce an outer automorphism in PGL2(q) on L by 16.4.6.
If q = 9 and r induces an outer automorphism in S6, then Lr ∼= A4, contrary to
our assumption that Λ(Lr) < Lr. Thus we conclude from 16.1.4 that r induces an
inner automorphism of L. But then CL(r) is a 2-group, so Lr = 1, again contrary
to assumption.

Next suppose L∗ = X(2n) is of Lie type. We can assume by the previous
paragraph that L is not L2(4) ∼= L2(5), L3(2) ∼= L2(7), or Sp4(2)

′ ∼= L2(9). Hence
as Λ(Lr) < Lr, we conclude from 16.1.4 and 16.1.2.1 that L ∼= L2(2

n) for n > 2
even, and r induces a field automorphism on L. For each involution i ∈ CTC (r),
Lr ∼= L2(2

n/2) is a component of CH′(〈i, r〉) using 16.4.2.5. Therefore either Lr ≤ L′

so that conclusion (1) holds, or Lr ≤ K ′, and we may assume the latter. Then using
16.4.2.5,

L = 〈CL(j) : j is an involution in Lr〉 ≤ H ′,

contrary to 16.4.2.2.
It remains only to consider the cases in (E2) where L ∼= L3(3) or L

∗ is sporadic.
Inspecting centralizers of involutory automorphisms of L using 16.1.5, we conclude
that Lr = Λ(Lr), except in the situation which we already eliminated in 16.4.7.
This completes the proof of 16.4.8. ¤

We now focus on those members of ∆ with the property that involutions of R
induce inner automorphisms on L. Set

∆0 = ∆0(K) := {K ′ ∈ ∆ : Ω1(R) ≤ KL for R ∈ Syl2(NK′(K))}.
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We will first show in 16.4.9.2 that ∆0 is nonempty. The shadow of S10 is eliminated
toward the end of the proof: that is, a transposition in S10 is a 2-central involution
with centralizer Z2 × S8, such that ∆0 = ∅; of course S10 is neither simple nor
quasithin.

Lemma 16.4.9. (1) If K ′ /∈ ∆0, then |R| = 2.
(2) ∆0 6= ∅.
(3) Assume J ∈ KG, and some involution i in J induces a nontrivial inner

automorphism on L. Then J ∈ ∆0.

Proof. First assume (1) and the hypothesis of (3). Then i ∈ LK − K, so
J 6= K and |NJ(K)|2 > 1, and hence J ∈ ∆. Now if |NJ(K)|2 > 2 then J ∈ ∆0

since we are assuming (1), while if |NJ(K)|2 = 2, then 〈i〉 ∈ Syl2(NJ(K)) with
i ∈ LK, so that J ∈ ∆0 by definition. Thus (1) implies (3), so it remains to
establish (1) and (2).

If ∆ = ∆0 then (1) is vacuous and (2) holds as ∆ is nonempty, so we may assume
K ′ ∈ ∆−∆0 and pick some involution r ∈ R inducing an outer automorphism on
L. Then by 16.4.8, Lr ≤ L′ ≤ CG(R).

We now prove (1). By inspection of the centralizers of involutory outer auto-
morphisms of L∗ listed in 16.1.4 and 16.1.5, one of the following holds:

(I) CH∗(L
∗
r) = 〈r

∗〉.
(II) L∗T ∗ ∼= S8 and r∗ is of type 23, 12.
(III) L∗ ∼=M12 and L∗r

∼= A5.

In case (I), as R∗ centralizes L∗r and R ∼= R∗, R = 〈r〉 is of order 2, and hence (1)
holds in this case. Thus we may assume that (II) or (III) holds. In either case,
CH∗(L

∗
r)
∼= E4, so either R is of order 2 and (1) holds, or R∗ = CH∗(L

∗
r)
∼= E4, and

we may assume the latter.
Suppose case (II) holds. Then there is s ∈ R# with s∗ of type 2, 16. But then

[R∗, L∗s] 6= 1, a contradiction since Ls ≤ L′ ≤ CG(R) by 16.4.8.
Therefore case (III) holds. Then there is s ∈ R# with s∗ ∈ L∗ but s∗ not

2-central in L∗. Let sL denote the projection of s on L. If O2(L) 6= 1, then from
I.2.2.5b, sL is of order 4, so s = sLsC with sC ∈ NTC (K

′) of order 4, impossible as
NTC (K

′) ∼= R ∼= R∗ ∼= E4 by 16.4.2.1. Therefore O2(L) = 1, and hence CL∗(s
∗) =

CL(s)
∗, with CL(s) ≤ NG(K

′) by 16.4.2.5. Thus 〈sL〉 = [CTL(s), r] ≤ T ∩K ′ = R
by 16.4.2.3, and hence s = sL ∈ L. Then

TC = CTC (s) ≤ NTC (K
′) = CTC (R)

∼= R ∼= E4,

so TC ∼= E4 centralizes R. Then as L∗〈r∗〉 = Aut(L∗), T = TCTLR ≤ CG(TC) so
TC ≤ Z(T ). Hence R is in the center of each Sylow 2-subgroup of H ′ containing R.
As CT (s) ≤ H ′ and [R,CTL(s)] 6= 1, this is a contradiction. Thus (1) is established.

We may assume that (2) fails, and it remains to derive a contradiction. Now
R = 〈r〉 is of order 2 by (1). By 16.4.4.1, CTC (r) = 〈z〉 is of order 2, and TCR is
dihedral or semidihedral. Set E := 〈r, z〉. By (1) and (3):

If J ∈ ∆, then |NJ(K)|2 = 2 and J ∩KL is of odd order. (∗)

By 16.4.3.1, K ∈ ∆(K ′), so we have symmetry between K and K ′. Thus applying
(*) with the roles of K and K ′ reversed, we conclude that z induces an outer
automorphism on L′.

Next we show:
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(+) If rl = rv for some l ∈ L and 1 6= v ∈ CL(r), then rl acts on K ′ with
〈r〉 ∈ Syl2(CK′(rl)) and v /∈ L′.

For assume the hypotheses of (+), and let J := (K ′)l. Then rl ∈ CJ (r) ≤ NJ(K
′),

and as R has order 2, rl /∈ K ′, so that J 6= K ′. Thus J ∈ ∆(K ′), and then
by (*), R ∈ Syl2(NK′(J)), and also J ∩ K ′L′ is of odd order so that v 6∈ L′.
As 〈r〉 = R ∈ Syl2(NK′(J)) and CG(r

l) ≤ NG(J), also 〈r〉 ∈ Syl2(CK′(r
l)),

completing the proof of (+).
As r induces an outer automorphism on L, by 16.1.6, r does not centralize TL

unless L is A6. In the first case, there is l ∈ TL with r 6= rl ∈ CG(r), and in the
second by inspection there is l ∈ L with this property; thus in any case there is
l ∈ L with r 6= rl ∈ CG(r). Let J := (K ′)l.

Suppose that TC > 〈z〉. Then rl normalizes some subgroup X = 〈x, r〉 of
order 4 in K ′, and 〈r〉 ∈ Syl2(CK′(r

l)) by (+), so that 〈rl, X〉 ∼= D8, and hence
v := rrl = rlx ∈ Jx ∩ L. Thus Jx /∈ ∆ by (*), so Jx = K and hence v ∈
K ∩ L = Z(L), so z = v ∈ L as 〈z〉 = CTC (r). Further rL ∩ CG(r) = {r, rz},
so |CL∗(r∗) : CL(r)

∗| = 2 and r∗CL(r)
∗ ∩ r∗L

∗

= {r∗}, so there are involutions
in CL∗(r

∗) − CL(r)
∗. Suppose L∗ ∼= L3(4) or M22. Examining 16.1.4 and 16.1.5

for outer automorphisms r with CL∗(r) not perfect, we conclude that either L∗ ∼=
L3(4), r is a graph-field automorphism, and CL∗(r

∗) ∼= Q8/E9; or L
∗ ∼= M22 and

CL∗(r
∗) ∼= Z4/Z5/E24 . However in both cases each subgroup of CL∗(r

∗) of index
2 contains all involutions in CL∗(r

∗), contrary to an earlier remark.
We have shown that either 〈z〉 = TC ∈ Syl2(K), or z ∈ L and L∗ is not L3(4)

or M22.
As r induces an outer automorphism on L, Lr ≤ L′ by 16.4.8. So if rv = rl for

some l ∈ L and 1 6= v ∈ Lr, then v ∈ L′ which is contrary to (+). Thus:

rL ∩ rLr = {r}. (!)

It is now fairly easy to eliminate most possibilities for the involutory outer
automorphism r on L in 16.1.4 and 16.1.5; indeed the next few paragraphs will be
devoted to the reduction to the following cases:

(i) L ∼= A6 or A8.
(ii) L∗ ∼= L3(4), and r

∗ induces a graph-field automorphism on L∗.

We may assume that neither (i) nor (ii) holds, and will derive a contradiction. Since
r induces an outer automorphism on L, L is not L3(2) by 16.4.6. Then as (ii) does
not hold, by inspection of the outer automorphisms in the remaining cases in 16.1.4
and 16.1.5, Lr is of even order. Choose notation so that CT (r) ∈ Syl2(CH (r)).

Suppose first that L ∼= M22 or HS, and let Tr := T ∩ RCL(r)); then Z(Tr) =
R × Zr, where Z2

∼= Zr = 〈v〉 ≤ Lr. So as Tr < RTL ∈ Syl2(RL), rv ∈ r
NTL (Tr),

contrary to (!). Thus if L∗ ∼=M22 or HS, we may assume that O2(L) 6= 1.
Now assume that O2(L) = 1, and recall L is not A6, A8, M22, or HS by

assumption. Therefore by inspection of the outer automorphisms in the possibilities
remaining in 16.1.4 and 16.1.5, L is transitive on the involutions in rL. Then since
Lr is of even order (recalling L∗ 6∼= L3(4) as we are assuming that (ii) fails), (!)
supplies a contradiction.

Thus to establish our reduction, it remains to treat the case 1 6= O2(L) = Z(L).
Since L∗ admits the outer automorphism r∗ of order 2, we conclude from 16.1.2.1
that L∗ is L3(4), G2(4), M12, M22, J2, or HS. If |TC | = 2, then 〈z〉 = Z(L). If
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|TC | > 2, we showed z ∈ L and L∗ is not L3(4) or M22. So in any case z ∈ Z(L);
it then follows by 16.1.2.2 that Z(L) = 〈z〉 is of order 2.

Suppose first that L∗ ∼= L3(4), and recall we are assuming that r∗ does not
induce a graph-field automorphism on L∗. Assume that r∗ induces a field auto-
morphism on L∗, so that Lr ∼= L3(2) by 16.1.4.4. Let Lr,1 be a maximal parabolic
of Lr; then there is an r-invariant maximal parabolic L1 of L with Lr,1 ≤ L1

and O2(Lr,1) ≤ O2(L1). Then O2(L1) is transitive on rO2(Lr,1), contrary to (!).
Therefore by 16.1.4, r∗ induces a graph automorphism on L∗, so Lr ∼= L2(4)
by 16.1.4.6. Let U := T ∩ Lr ∼= E4 and V := EU ; thus V ∼= E16 and as
Z(L) = 〈z〉, NTL(V )/V ∼= E4 induces a group of F2-tranvections on V with axis
V0 := 〈z, U〉 ∼= E8. Now R ≤ T ≤ NG(TL), so that [NTL(V ), r] =: W ≤ U is a
hyperplane of V0, and hence W = U . Then for 1 6= v ∈ W , rv ∈ rL, contrary to
(!). This establishes the reduction to (ii) when L∗ ∼= L3(4).

Next suppose that L∗ ∼= G2(4), M12, J2, or HS. Then |Z(L)| = 2, so Z(L) =
〈z〉; and from I.2.2.5b, r inverts y of order 4 in L with y2 = z, so ry = rz. Hence
the involutions in rZ(L) are fused under L: for example, from the description of
CL∗(r

∗) in 16.1.4 or 16.1.5, and observing that CL∗(r
∗) ∼= G2(2) when L

∗ ∼= G2(4),
choose y∗ ∈ CL∗(r∗)− L∗r , and observe y∗r∗ ∈ r∗L, so r inverts y as required. But
we showed earlier that r∗v∗ = r∗l for some involution v∗ ∈ L∗r and l ∈ L, and now
from I.2.2.5a, we may choose a preimage v to be an involution. So as rl ∈ rvZ(L)
and the involutions in rZ(L) are fused, rv ∈ rL, again contrary to (!).

This leaves the case L∗ ∼= M22, where in view of 16.1.5 and 16.4.7, CL∗(r
∗) =

L∗r
∼= L3(2)/E8. Choose an involution s∗ inducing an outer automorphism of the

type in 16.4.7, with r∗ ∈ s∗O2(Ls); then as we saw in the proof of 16.4.7, since
Z(L) = 〈z〉 is of order 2, the group O2(L

∗
s)
∼= E16 splits over Z(L), so J(CT (r)) is

the group V of rank 6 in the proof of 16.4.7, now with s in the role of “r”. Now the
argument in the final paragraph of that proof again supplies a contradiction. This
finally completes the proof of the reduction to (i) or (ii).

Thus to prove (2), it remains to eliminate the groups in parts (i) and (ii) of the
claim. Choose T so that NT (R) ∈ Syl2(NH(R)). As in 16.4.2.4, choose g ∈ G with
Kg = K ′ and NT (K

′) ≤ T g.
Suppose first that (ii) holds. Then Lr ∼= E9 by 16.1.4.5, and NLE(E) = LrQ,

where Q/E ∼= Q8 and 〈z, r〉 = E = CQ(Lr).
Assume that O2(L) 6= 1. Then since TC = 〈z〉 is of order 2, 〈z〉 = Z(L). Also

CQ(E)/E ∼= Z4 is irreducible on Lr, and Q induces a transvection on E with center
〈z〉. By symmetry, Qg induces a transvection on E with center 〈r〉, so X := 〈Q,Qg〉
induces S3 on E. Since NT (R) ∈ Syl2(NH(R)), CT (E) ∈ Syl2(CG(E)) by 16.4.2.6,
so by a Frattini Argument, Y := O2(NG(E) ∩ NG(CT (E))) is transitive on E#.
Hence as Lr ≤ L′,

Lr = O2(
⋂

y∈NG(E)

Ly) E NG(E),

and then as CT (E) is irreducible on Lr, either [Lr, Y ] = 1 or Y induces SL2(3)
on Lr. In the former case as CT (E) is irreducible on Lr, there is an element
of order 3 in Y − Lr centralizing Lr, contradicting G quasithin. In the latter,
NT (E)Y/E ∼= GL2(3) has a unique Q8-subgroup, so that Q E NT (E)Y , impossible
as AutQ(E) is not normal in AutQY (E).
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Therefore O2(L) = 1, so L ∼= L3(4). Then Q centralizes E, and there is a
complement P to E in Q. Let H̄ ′ := H ′/K ′. Each Q8-subgroup of CH̄′(z̄) is
contained in L̄′〈z̄〉, so that P ≤ T g ∩K ′L′E ≤ L′E. Hence 1 6= Φ(P ) ≤ L′. This
contradicts (+) as Φ(P ) = 〈v〉 where v is an involution in CL(r) with rv ∈ rL.

Thus case (i) holds, so L ∼= A6 or A8. Since R = 〈r〉, TC = 〈z〉, and NT (K
′) ≤

T g, r = zg. Further r induces an outer automorphism on L, and RL is not PGL2(9)
by 16.4.6, so we conclude that zG ∩LT ⊆ LE and LE = LR×〈z〉 ∼= Sn×Z2, with
n := 6 or 8. Represent LE on Ω := {1, . . . , n} with kernel TC = 〈z〉. Observe that
either LT = LE and T = TLE, or H∗ ∼= Aut(A6) and |LT : LE| = |T : TLE| = 2.

By (*), zG ∩ L〈z〉 = {z}, so since zG ∩ LT ⊆ LE, we conclude zG ∩ LT ⊆
{z}∪ rL∪ rzL. If n = 6, we may choose notation so that r induces a transposition
on Ω, and if n = 8, r is either a transposition, or of type 23, 12. In any case,
setting m := n/2 + 1, there is a subgroup A0 of TLR generated by a set of m− 1
commuting transpositions, and by the m− 1 conjugates of r under L in A0. Thus
there is E2m

∼= A ≤ LE with α := {z} ∪ (rL ∩ A) of order m.
Let a, b, c be a triple from α. Then c := zx for suitable x ∈ G; set X := Lx〈zx〉.

By the previous paragraph,
zG ∩X = {zx}. (∗∗).

Then a, b ∈ LxA−X , so as zG∩LxT x ⊆ LxEx and |(LE)x : X | = 2, ab ∈ X . Hence
by (**), neither ab nor abzx is in zG. Thus no product of two or three members of
α is in zG.

Now assume n = 8, let α = {a1, . . . , a5}, and take a5 = zx. By the previous
paragraph, a1a2 and a3a4 are in X , so a1a2a3a4 ∈ X . Hence by (**), neither
a1a2a3a4 nor a1a2a3a4z

x = a1a2a3a4a5 is in zG. Thus no product of four or five
members of α is in zG, so zG ∩ A = α. But each involution in T is fused into A
under L, so we conclude that zG ∩ 〈rz〉L = ∅, and hence z /∈ O2(G) by Thompson
Transfer, 1 contrary to the simplicity of G.

Therefore n = 6. Set α = {a1, . . . , a4} and zG ∩ T =: β. First assume H∗ 6∼=
Aut(A6). Then LT = LE = LA and T = TLR × 〈z〉. If t := a1a2a3a4 /∈ zG, then
the argument of the previous paragraph supplies a contradiction, so t ∈ zG. Hence
β = α ∪ {t} is of order 5. But A(T ) is of order 2, while the member A of A(T ) is
normal in T , so A is weakly closed in T with respect to G. Hence by Burnside’s
Fusion Lemma A.1.35, NG(A) is transitive on β. Then as NGz(A)/A induces S3 on
β, AutG(A) is a subgroup of S5 of order 30, a contradiction.

Therefore H∗ ∼= Aut(A6). Thus A(T ) = {A,As} for s ∈ T − ATL, so CG(z) is
transitive on A(CG(z)); hence by A.1.7.1, NG(A) is transitive on β. In particular
as |NT (A) : A| = 2, |β| 6= 4, so t ∈ β and |β| = 5, for the same contradiction as at
the end of the previous paragraph.

This finally completes the proof of 16.4.9. ¤

In view of 16.4.9:

In the remainder of this chapter, we choose K ′ ∈ ∆0. Thus Ω1(R) ≤ KL,
where R ∈ Syl2(NK′(K)).

Lemma 16.4.10. R ∈ Syl2(K ′).

Proof. This is more or less the argument on page 101 of [Asc76]: By 16.4.2.1,
R ∼= NTC (K

′) = CTC (R) =: S. Assume R /∈ Syl2(K
′); then also S < TC , so in

1Here we are in particular eliminating the shadow of S10.
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particular TC does not centralize R. For 1 6= r ∈ R, observe by 16.4.2.5 that
CTC (r) ≤ NTC (K

′) = CTC (R) = S, so that CTC (r) = S. By parts (4) and (6) of
I.7.7, S E TC and R is abelian.

Set R0 := R ∩ LK, U := Ω1(R), and recall K ′ ∈ ∆0 so that U ≤ R0. In
particular R0 6= 1. For r ∈ R0, we can write r = s(r)l(r) with s(r) ∈ TC and
l(r) ∈ L. Observe that l(r) is determined up to an element of L ∩K = Z(L), and
then s(r) is determined by l(r). Also s(r)Z(L) ⊆ CTC (s(r)) ≤ CTC (r). Then as
CTC (r) = S < TC , s(r)Z(L) ⊆ S, but s(r) /∈ Z(TC). Indeed ŝ(r) := s(r)Z(L)

is a uniquely determined element of Ŝ := S/Z(L), and ŝ : R0 → Ŝ is a group
homomorphism. Also R ∩ L = 1 as CTC (r) = S < TC for r ∈ R#, so ker(ŝ) =
R0 ∩Z(L) = 1 and hence ŝ is injective. For R1 ≤ R0, let s(R1) be the preimage in
S of ŝ(R1). As s(r) 6∈ Z(TC) for each r ∈ R#, s(U) ∩ Z(TC) = 1.

As R is abelian, U is elementary abelian. Suppose s(U) is elementary abelian.
Then since s(U)/Z(L) ∼= ŝ(U) ∼= U ∼= Ω1(S) ≥ s(U), we conclude that Z(L) = 1
and the map s : U → Ω1(S) is an isomorphism. So as S E TC , we have a
contradiction to s(U) ∩ Z(TC) = 1.

Thus for some u ∈ U#, we may choose s(u), and hence also l(u), of order at
least 4. Thus 1 6= l(u)2 ∈ Z(L), so Z(L) 6= 1. Therefore L∗ is not L3(4), since
Z(L) is elementary abelian, and from I.2.2.3b, involutions in L∗ lift to involutions
in L. Hence by inspection of the remaining groups in 16.1.2.1, Out(L) has Sylow
2-groups of order at most 2, so |R : R0| ≤ 2. Therefore

|R| = |S| ≥ |ŝ(R0)||Z(L)| = |R0||Z(L)| ≥ |R||Z(L)|/2.

So as |Z(L)| ≥ 2, all inequalities are equalities, and hence S = s(R0) with Z(L) =
〈l(u)2〉 of order 2. Thus there is 1 6= v ∈ U with E := 〈s(v)〉Z(L) a normal subgroup
of TC of order 4. Then |TC : CTC (s(v))| = |TC : CTC (v)| = 2, so S = CTC (s(v)) is
of index 2 in TC . Thus RS E RTC , so as NTC (R) = S ∼= R is abelian, while R is a
TI-set in TCR under NG(TCR) by I.7.2.3, SR = R×Rt for t ∈ TC − S. Therefore
Ω1(S) = CUUt (t) = [U, t], and hence s(w) ∈ Z(TC) for each w ∈ U , contrary to
s(U) ∩ Z(TC) = 1. This contradiction completes the proof. ¤

The next lemma summarizes some fundamental properties of members of ∆0;
in particular it shows that ∆0 defines a symmetric relation on KG.

Lemma 16.4.11. (1) R centralizes TC ∼= R. In particular, TC ≤ H ′.
(2) K ∈ ∆0(K

′).
(3) If we choose g as in 16.4.2.4, then R = T gC .

Proof. By 16.4.10, R ∈ Syl2(K ′), so that R ∼= TC . Then since R ∼= CTC (R)
by 16.4.2.1, TC centralizes R, and so (1) holds using 16.4.2.5.

By 16.4.3.1, K ∈ ∆(K ′). Suppose that K /∈ ∆0(K
′). Then by 16.4.9.1, |TC | =

2, and by 16.4.9.1, z induces an outer automorphism on L′. Applying 16.4.8 with
the roles of K and K ′ reversed, we conclude that Lz := O2(CL′(z)) ≤ L. As
CG(r) ≤ NG(L

′), we conclude that Lz E Lr. Comparing the fixed points of outer
and inner automorphisms of order 2 in 16.1.4 and 16.1.5, we conclude L∗ ∼= M12

and L∗r = L∗z
∼= A5. As r induces an inner automorphism on L, if Z(L) 6= 1, then

I.2.2.5b says that the projection rL of r on L is of order 4, so r = rCrL with rC ∈ TC
of order 4, contradicting |TC | = 2. Thus Z(L) = 1, so CL(r) ∼= Z2 × S5. However
CL(r) ≤ CH′ (z) by 16.4.2.5, and as z induces an outer automorphism on L′, no
element of CH′ (z) induces an outer automorphism on Lz. Therefore (2) holds.
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Choose g as in 16.4.2.4; that is, so that NT (K
′) ≤ T g. Then R ≤ T gC ≤ K ′ and

R ∈ Syl2(K ′), so R = T gC , establishing (3). ¤

16.5. Identifying J1, and obtaining the final contradiction

In this final section, we first see that G ∼= J1 when L/Z(L) is a Bender group.
Then we eliminate all other possiblities for L appearing in (E2), to establish our
main result Theorem 16.5.14.

Recall R is faithful on L by 16.4.2.1 and H∗ = H/K. Set U := Ω1(R); as
K ′ ∈ ∆0,

U ≤ KL.

Let u denote an element of U#, and set UC := Ω1(TC). By 16.4.11.3, if we choose
g as in 16.4.2.4, then R = T gC and hence U = UgC ; in particular, UC ∈ UG.

Proposition 16.5.1. If L∗ is a Bender group, then G ∼= J1.

Proof. By hypothesis, L∗ ∼= L2(2
n), U3(2

n), or Sz(2n). Set UL := Ω1(TL).

Then there is X ≤ NL(TL) with X ∼= Z2n−1 and X regular on U∗#L . Now either
Z(L) = 1, or from 16.1.2, L∗ ∼= Sz(8), with U∗L = Ω1(T

∗
L) from I.2.2.4. Thus as

U ≤ KL,

U ≤ UCUL =: V = UC × [V,X ],

with X regular on [V,X ]# and UC = CV (X).
We claim that there is g ∈ M := NG(V ) with Kg = K ′. Suppose first that

L∗ ∼= L2(2
n) or Sz(2n). Recall by 16.4.6 that if L ∼= L2(4) ∼= L2(5), then no

involution in U induces an outer automorphism on L, so that V = 〈UG∩T 〉. In the
remaining cases, no outer automorphism of L is an FF ∗-offender on UL, so that
V = J(T ). Thus in each case, V is weakly closed in T with respect to G, so by
Burnside’s Fusion Lemma A.1.35,M controls fusion in V , and hence there is g ∈M
with UgC = U and hence Kg = K ′, as claimed. So we may assume L ∼= U3(2

n).
Choose g as in 16.4.2.4, so that NT (K

′) ≤ T g, and as observed earlier, R = T gC
and U = UgC . Fix u ∈ U

#. Set Yu := O3(Lu) if n 6= 3 and Yu := Lu if n = 3; then
Yu ≤ L′ by 16.4.8. But in either case TL ≤ Yu, so TL ≤ L′ and hence TL = T gL as
NT (K

′) ≤ T g. Thus UL = UgL, so as U = UgC ,

V g = (ULUC)
g = ULU

g
C = ULU = V,

completing the proof of the claim.
Pick g as in the claim, and set M+ := M/CG(V ). As UC = V ∩ K and K

is tightly embedded in G, UC is a TI-set in V under the action of M by I.7.2.3.
Further X+ = NL(V )+ E (M ∩H)+ = NM+(UC) since NG(TC) ≤ H by 16.4.2.5,
and X+ is regular on [V,X ]#, while T+ ∈ Syl2(M

+) acts on X+. So we have a
Goldschmidt-O’Nan pair in the sense of Definition 14.1 of [GLS96]; hence we may
apply O’Nan’s lemma Proposition 14.2 in [GLS96] with M+, X+, V in the roles
of “X , Y , V ”: Observe that conclusion (i) of that result does not hold, since there
M normalizes UC—whereas here g ∈ M −NG(UC). Similarly conclusions (ii) and
(iii) of that result do not hold, since here T normalizes UC , but does not normalize
UC there. Thus conclusion (iv) of that result holds: m(UC) = 1, m(V ) = 3, and
M+ ∼= Frob21. In particular, n = 2, so that L ∼= L2(4) or U3(4). But the latter
case is impossible, since we saw in the unitary case that g normalizes TL, so that
M+ = 〈X+, Xg+〉 acts on Φ(TL) = UL, whereas M

+ is irreducible on V .
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Thus L ∼= L2(4). Then H = LK by 16.4.6, so R induces inner automorphisms
on L. Recall R is faithful on L, so R is elementary abelian; hence as |UC | = 2,
UC = TC is of order 2. Therefore CK(z) = TC by 16.4.4.2, so that Gz = L× TC ∼=
L2(4)×Z2, and hence G is of type J1 in the sense of I.4.9. Then we conclude from
that result that G ∼= J1. ¤

In the remainder of the chapter, assume G is not J1; therefore by Proposition
16.5.1, L∗ is not a Bender group. To complete the proof of our main result Theorem
16.5.14, we must eliminate each remaining possibility for L in (E2).

Recall from 16.4.3.2 that L′ = [L′, z], and that z induces an inner automorphism
on L′ since K ∈ ∆0(K

′) by the symmetry in 16.4.11.2.

Lemma 16.5.2. (1) If R ∩ Z(T ) 6= 1 and g is chosen as in 16.4.2.4, then
g ∈ NG(T ).

(2) Assume u, z are involutions in R, TC whose projections on L,Lg are 2-
central, and that |T : TCTL| ≤ 2. Then either

(a) R ∩ Z(T1) 6= 1 for some T1 ∈ Syl2(H), and we may choose T1 so that
R E T1 ∈ Syl2(H ∩H ′), or

(b) TCT
l
L =: T0 ∈ Syl2(H∩H

′) for some l ∈ L, with R E T0, |T0| = |T |/2,
and there exists g ∈ NG(T0) with Kg = K ′.

Proof. Assume that R ∩ Z(T ) 6= 1, and that g is chosen as in 16.4.2.4. Now
T ≤ CG(R ∩ Z(T )) ≤ NT (K

′) using 16.4.2.5, so T g = T as NT (K
′) ≤ T g by the

choice of g. Thus (1) holds.
Assume the hypotheses of (2). Then u centralizes T lL for some l ∈ L, so

T lL ≤ H ′ by 16.4.2.5. Also TC ≤ H ′ by 16.4.11.1, so T0 := TCT
l
L acts on some

R1 ∈ Syl2(K ′ ∩H). But by 16.4.10, R ∈ Syl2(K ′), so by Sylow’s Theorem there is
x ∈ K ′∩H with Rx1 = R, and thus T2 := T x0 acts on R. Let T2 ≤ T1 ∈ Syl2(H). By
hypothesis |T1 : T2| ≤ 2, so either R E T1, or T2 = NT1(R) ∈ Syl2(H ∩H

′). In the
former case, R ∩ Z(T1) 6= 1 and conclusion (a) of (2) holds, so we may assume the

latter. Thus T0 = T x
−1

2 ∈ Syl2(H ∩H ′). By 16.4.11.2 we have symmetry between
K and K ′, so there is S ∈ Syl2(K

′L′) with S Sylow in H ∩ H ′. Thus there is
h ∈ H∩H ′ with T h0 = S, so as h acts on K ′L′, T0 is Sylow in K ′L′. Let y ∈ G with
Ky = K ′; then T0 and T y0 are Sylow in K ′L′, so there is w ∈ K ′L′ with T yw0 = T0,
and hence conclusion (b) of (2) holds with g := yw. ¤

We now begin the process of eliminating the possibilities for L remaining in
(E2). Let u denote an involution in U , and recall z ∈ TC ∩ Z(T ). Also R ∩K = 1
by 16.4.2.1, so that by 16.4.11.1,

R∗ ∼= R ∼= TC .

In particular as U ≤ LK,
U ∼= U∗ ≤ T ∗L.

Lemma 16.5.3. L is not A6.

Proof. Assume otherwise. Then U ∼= U∗ ≤ T ∗L
∼= D8, and hence U ∼= Z2,

E4 or D8. Now in the notation of Definition F.4.41, X := Γ1,U (L) ≤ H ′ using
16.4.2.5. But if U∗ ∼= D8, then X = L, contrary to 16.4.2.2. Assume U ∗ ∼= E4.
Then X ∼= S4 with O2(X

∗) = U∗; so as X acts on K ′ while U = Ω1(R), X acts
on K ′ ∩ O2(XU) = U , and hence 3 ∈ π(AutH′(U)). Then as Out(L′) is a 3′-
group, 3 ∈ π(NK′(U)), so that m2,3(H) > 2, contradicting G quasithin. Hence
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U = Ω1(R) is of order 2, so as R ∼= TC , m2(R) = 1 = m2(TC). Recall u denotes
the involution in U and z the involution in TC . The projection v of u on L is
2-central in LT , so conjugating in L if necessary, without loss v ∈ Z(T ), and then
u ∈ 〈z, v〉 =: E ≤ Z(T ). Now we may choose g as in 16.4.2.4, so that u = zg by
16.4.11.3, and g ∈ NG(T ) by 16.5.2.1. Now

[T, T ] = YL × YC , (∗)

where YC is the preimage in TC of [T/TL, T/TL], and YL is of index at most 2 in
the cyclic subgroup Y of order 4 in TL.

Assume that YC = 1; that is, that T/TL is abelian. Set Z := Ω1(Z(T )). Then
either Z = E, or Z = E〈t〉 where t induces a transposition on L. Further NG(T )
centralizes [T, T ] ∩ Z = 〈v〉 by (*). However g does not centralize Z since u = zg,
so g 6∈ T , and hence we may assume g has odd order. As g ∈ NG(T ), g centralizes
v, so Z = E〈t〉 = 〈v〉 × [Z,NG(T )] where [Z,NG(T )] is of rank 2, and g induces
an element of order 3 on Z. But then either z or u = zv lies in [Z,NG(T )], so
as u = zg, we conclude z ∈ [Z,NG(T )], and then zzg = z(zv) = v ∈ [Z,NG(T )],
whereas we saw NG(T ) centralizes v.

Therefore YC 6= 1. Then as m2(TC) = 1, 〈z〉 = Ω1(YC), so by (*), Ω1([T, T ]) =
E ≤ Ω1(Z(T )). Therefore as g ∈ NG(T ), g induces an element of order 3 on E,
and NG(T ) is transitive on E

#. Thus as YL is cyclic, so is YC by the Krull-Schmidt
Theorem A.1.15, and then YC ∼= YL, so that YC is cyclic of order at most 4.

Next YC E T , so Y gC E T . Now s ∈ TL − Y inverts Y and centralizes YC , so
if |YC | = 4, then s does not act on Y gC , a contradiction.

Thus YC = 〈z〉, so YL = 〈v〉 as YL ∼= YC . As YL = 〈v〉, L∗T ∗ is A6 or
S6. Assume L∗ ∼= A6. Then T = TL × TC , so TC ∼= Q8 since m3(TC) = 1 and
〈z〉 = YC ∼= [T/TL, T/TL] ∼= [TC , TC ]. But R = T gC , so Q8

∼= TC ∼= R ∼= R∗ ≤ T ∗ =
T ∗L, impossible as T ∗L

∼= D8. Therefore L∗T ∗ ∼= S6, so T
∗ ∼= Z2 × D8. Then as

TC ∼= R ∼= R∗ ≤ T ∗, while m2(TC) = 1 and [T, TC ] 6= 1, we conclude that TC ∼= Z4

and t ∈ T −TCTL inverts TC . As T
∗ ∼= Z2×D8, we may pick t so that t centralizes

TL and t2 ∈ TC . Let T1 := TC〈t〉; then T = T1 × TL, with T1 ∼= D8 or Q8, and
TL ∼= D8. Now g ∈ NG(T ) is transitive on E#; but this is impossible, as by the
Krull-Schmidt Theorem A.1.15, NG(T ) permutes {Φ(T1Z(T )),Φ(TLZ(T ))}. ¤

Lemma 16.5.4. L∗ is not L3(4).

Proof. Assume otherwise. As U∗ ≤ T ∗L and all involutions in L are 2-central
in L from I.2.2.3b, u centralizes a Sylow 2-group of L. Then as R centralizes TC ,
we may take u ∈ Z(TLTC).

Suppose first that U∗ 6≤ Z(T ∗L). Then Y := Γ1,U (L) contains a maximal
parabolic P of L, and Y ≤ H ′ by 16.4.2.5. If P ≤ L′, then P ≤ CG(U), so
U∗ ≤ CL∗(P

∗) = 1, a contradiction. Thus P 6≤ L′, so K ′ has an L2(4)-section, and
hence m2,3(H

′) > 2, contradicting G quasithin.
Therefore U∗ ≤ Z(T ∗L), so U

∼= Z2 or E4. Now J(T ) = J(TLTC) = TLJ(TC) =
TLUC , where UC = Ω1(TC) ∼= U . As u ∈ Z(TCTL), u ∈ Z(J(T )). Recall UC ∈ UG

so there is g ∈ G with U g = UC . Thus ug ∈ UC ≤ Z(J(T )), and by Burn-
side’s Fusion Lemma A.1.35, we may take g ∈ M := NG(J(T )). Hence g acts on
Z(J(T )) =: V , where V = UC × VL, with VL := [V,X ] ∼= E4 for X of order 3 in
NL(TL). Now we argue, just as in the proof of Proposition 16.5.1, that X is regular

in V #
L , and UC is a TI-set under M , so again by Proposition 14.2 in [GLS96],
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conclusion (iv) of that result holds: namely, m(V ) = 3 and AutM (V ) ∼= Frob21.
But then M acts irreducibly on V , impossible as M acts on Φ(J(T )) = VL. ¤

Notation 16.5.5. For u ∈ U#, define Xu := O3(Lu) if L ∼= L3(2
n), n even,

and Xu := Lu otherwise. In the former case, n > 2 by 16.5.4. Thus in any event,
Xu ≤ Lg ≤ CG(R) by 16.4.8, so R∗ ≤ CH∗(X

∗
u). Further for i an involution in

TC , we can define Xi ≤ Lg analogously. Then Xu ≤ Xi as Xu ≤ CLg (i), so by
symmetry between L, u and Lg, i, Xi ≤ Xu. Thus we may define X := Xu = Xi.

Inspecting the possibilities for L∗ remaining in (E2) after 16.5.1, 16.5.3, and
16.5.4, we conclude from 16.1.4 and 16.1.5 that for each involution j∗ in L∗, Xj 6= 1
except when L ∼= Sp4(2

n) with n > 1, and j∗ is of type c2.
Observe that the fourth part of the next lemma supplies another assertion

about the symmetry between K and K ′.

Lemma 16.5.6. Let H̄ ′ := H ′/K ′.

(1) X = Xu = Xi for all involutions i ∈ TC and u ∈ R.
(2) R∗ ≤ CL∗T∗(X

∗).
(3) If we choose choose g as in 16.4.2.4, then g ∈ NG(X).
(4) The following are equivalent:

(a) Some involution in R∗ is 2-central in L∗.
(b) Each involution in T̄C is 2-central in L̄′.
(c) Some involution in T̄C is 2-central in L̄′.
(d) Each involution in R∗ is 2-central in L∗.

(5) Assume that Z(L) = 1, and for each J ∈ ∆0 and each involution i in
NJ(K), that i∗ is not 2-central in L∗. Let v be the projection of u on L, and
suppose there is l ∈ L with vvl an involution of X. Then v̄v̄l is not 2-central in L̄′.

Proof. We already observed that (1) and (2) hold. We saw in 16.4.11.3 that
if we choose g as in 16.4.2.4, then T gC = R, so (1) implies (3).

Suppose u∗ is 2-central in L∗. By (1), for each involution i ∈ TC , Xu = Xi,
so by inspection of the centralizers of involutions of H∗ listed in 16.1.4 and 16.1.5
remaining after 16.5.1, 16.5.3, and 16.5.4, we conclude that ī is also 2-central in
L̄′. Thus (4a) implies (4b). Then as K ∈ ∆0(K

′) by 16.4.11.2, by symmetry (4c)
implies (4d). Of course (4b) implies (4c), and (4d) implies (4a), so (4) holds.

Assume the hypotheses of (5). As Z(L) = 1, u = jv for some j ∈ TC with
j2 = 1, so uul = (jv)(jvl) = vvl ∈ X ≤ L′ by hypothesis and (1), and ūl = v̄v̄l. Let

i := ulg
−1

and J := (K ′)lg
−1

. As uul ∈ X while g ∈ NG(X) by (3), ug
−1

ulg
−1

∈ X ;

thus as ug
−1

∈ K, i = ulg
−1

∈ J ∩XK, so J ∈ ∆0 by 16.4.9.3. By hypothesis i∗ is
not 2-central in L∗, so conjugating by g, v̄v̄l = ūl is not 2-central in L̄′, establishing
(5). ¤

Lemma 16.5.7. Assume Z(L) = 1, |CT∗(T ∗L)| = 2, and |T ∗ : T ∗L| ≤ 2. Then

(1) R∗ contains no 2-central involution of L∗.
(2) L has more than one class of involutions.

Proof. As U ≤ LK while Z(L) = 1 by hypothesis, (1) implies (2). Hence we
may assume that (1) fails, and it remains to derive a contradiction.

By 16.5.6.4, the hypotheses of 16.5.2.2 are satisfied. If case (a) of 16.5.2.2 holds,
then replacing T by the subgroup “T1” defined there, we may assume R E T ;
further by 16.5.2.1, we may choose g ∈ NG(T ) with Kg = K ′. Otherwise case
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(b) of 16.5.2.2 holds, and replacing T by the subgroup T l defined there, we may
assume T0 := TCTL = NT (R) is of index 2 in T , and take g ∈ NG(T0) with
Kg = K ′. Set T1 := T or T0 in the respective cases, and set ZC := Z(T1) ∩ TC
and ZL := Z(T1) ∩ TL. Thus g ∈ NG(T1), so g acts on Z(T1) and T1 = NT (R).
By hypothesis, TLTC = TL × TC and CT (TL) = TCZ(TL) with |Z(TL)| = 2, so
ZL = Z(TL) = CTL(T ), and as Z(T1) ≤ CT (TL),

Z(T1) = ZL × ZC . (∗)

By 16.4.2.1, ZC ∩ Z
g
C = 1, so as g acts on Z(T1) and |Z(T1) : ZC | = |ZL| = 2 by

(*), we conclude ZC is also of order 2. Hence T centralizes ZL×ZC . Then since R
is normal in T1, 1 6= R ∩ Z(T1) is central in T by (*), so that R ∩ Z(T ) 6= 1; thus
case (a) of 16.5.2.2 holds, and hence T1 = T .

As T1 = T , Z(T ) = ZL × ZC is of rank 2 and g ∈ NG(T ). In particular
R = T ∩ Kg = (T ∩ K)g = T gC . Also as ZgC ∩ ZC = 1, g induces an element of

order 3 on Z(T ) so either ZgC or Zg
2

C is not equal to ZL, and replacing g2 by g of
necessary, we may assume ZgC 6= ZL. As TC E T , also R = T gC E T , so R∩L E T .
Hence as Z(T ) ∩ R = ZgC is of order 2 and does not lie in L, R ∩ L = 1. Thus
[TL, R] ≤ TL ∩ R = 1, so R∗ ≤ CT∗(T

∗
L) = Z∗L. Therefore as |Z∗L| = 2 and R ∼= R∗,

R is of order 2, and hence TC = ZC . Then as |T ∗ : T ∗L| ≤ 2, |T : TL| ≤ 4, so that
[T, T ] ≤ TL. By Proposition 16.5.1 and our assumption that G is not J1, L is not
L2(2

n), so by inspection of the groups in (E2), TL is nonabelian. Therefore as ZL
is of order 2, ZL = Z(T )∩ [T, T ] E NG(T ). This is impossible, as 〈g〉 is irreducible
on Z(T ) ∼= E4. ¤

Lemma 16.5.8. (1) L is not L2(p), p an odd prime, or L3(3).
(2) L is not M11, M22, M23.

Proof. If L is a counterexample to (1) or (2), then L has one class of involu-
tions, Z(L) = 1, Out(L) is of order at most 2, and CT∗(T

∗
L) is of order 2; hence the

lemma follows from 16.5.7. ¤

Lemma 16.5.9. L is not U3(3).

Proof. Assume otherwise. Then L has one class of involutions, X ∼= SL2(3),
and CH∗(X

∗) ∼= Z4 or Q8. Thus R∗ ∼= R is of 2-rank 1 by 16.5.6.2, and TC ∼= R
by 16.4.11.1. Then Z := Ω1(Z(T )) ∼= E4, with u ∈ Z := 〈z, v〉, where z ∈ TC and
v ∈ TL. Choose g as in 16.4.2.4; then T gC = R by 16.4.11.3. As R ∩ Z(T ) 6= 1,
g ∈ NG(T ) by 16.5.2.1, and as T gC = R, g is nontrivial on Z. Then as Z is of rank
2 we conclude that g induces an element of order 3 on Z. This is impossible, as
g ∈ NG(X) by 16.5.6.3, so g acts on Z(X) = 〈v〉. ¤

Lemma 16.5.10. Assume L∗ is not of Lie type of Lie rank 2 over F2n for some
n > 1. Then

(1) If L∗ is of Lie type in characteristic 2, then L is 2F4(2)
′, 3D4(2), L4(2), or

L5(2).
(2) If L∗ is not of Lie type and characteristic 2, then L∗ ∼= M12, M22, M24,

J2, J4, HS, or Ru; and if L
∗ ∼=M22, then Z(L) 6= 1.

(3) |T ∗ : T ∗L| ≤ 2.
(4) |CT∗(T ∗L)| ≤ 2.
(5) Either Z(L) 6= 1, or R∗ contains no 2-central involution of L∗.
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(6) Assume that Z(L) = 1, v is the projection of u on L, and there is l ∈ L
with vvl an involution in X. Then vvl is not 2-central in L′.

Proof. Part (2) follows from 16.5.8 and inspection of the groups in (E2).
Suppose that L∗ is of Lie type in characteristic 2. By Proposition 16.5.1 and

our assumption that G is not J1, L is not of Lie rank 1, and by hypothesis L∗ is
not of Lie rank 2 over F2n for some n > 1. Thus from Theorem C, either L∗ is
of Lie rank 2 over F2, or L

∗ ∼= L4(2) or L5(2). By 16.5.8 L is not L3(2) ∼= L2(7),
by 16.5.9 L is not U3(3) ∼= G2(2)

′, and by 16.5.3 L is not A6
∼= Sp4(2)

′. Thus (1)
holds since L is simple by 16.1.2.1.

Next by inspection of Aut(L∗) for L∗ listed in (1) and (2), |Out(L∗)|2 ≤ 2, so
(3) holds. Similarly (4) follows from inspection of Aut(L∗). Then (5) follows from
(3), (4), and 16.5.7.1. Finally assume the hypotheses of (6). Then the hypotheses
of 16.5.6.5 are satisfied using (5), so (6) follows from that result. ¤

Lemma 16.5.11. L∗ is of Lie type in characteristic 2.

Proof. Assume otherwise; then L∗ is in the list of 16.5.10.2.
Suppose first that u∗ is 2-central in L∗. Then by 16.5.10.5, Z(L) 6= 1, so

applying 16.1.2.1 to the list in 16.5.10.2, L∗ is M12, M22, J2, HS, or Ru. Fur-
thermore using 16.1.5, we find that either CH∗(X

∗) is of order 2, or L∗ is HS and
CH∗(X

∗) ∼= Z4. Thus by 16.5.6.2, either |R| = 2, or L∗ is HS and R ∼= Z4. In any
case 〈u〉 = Ω1(R) and 〈z〉 = Ω1(TC). Further if L∗ is M22, then as TC ∼= R ∼= Z2,
TC = 〈z〉 and Z(L) ∼= Z2. Hence we conclude from 16.1.2.2 that in each case
〈z〉 = Ω1(TC) = Z(L) ∼= Z2. Then from the structure of the covering group L of
L∗ in parts (5)–(7) of I.2.2, either:

(a) There is a unique v ∈ uZ(L) such that there exists x ∈ O2(X) with x2 = v.
(b) L∗ is Ru, and setting Y1 := CO2(X)(Φ(O2(X))), Y := [Y1, Y1] is of of order 2,
and Y ∗ = 〈u∗〉.

In case (a) set Y := 〈u〉. Thus in any case Y ∗ = 〈u∗〉. Further T normalizes X , and
hence centralizes Y , so T centralizes Z(L)Y = 〈z, u〉. Therefore 1 6= u ∈ R ∩Z(T ).
Choose g as in 16.4.2.4; then g ∈ NG(T ) by 16.5.2.1, and g ∈ NG(X) by 16.5.6.3.
Next |CT∗(T ∗L)| = 2 in each case, so Z(T ∗L) = 〈u∗〉 and hence Z := Ω1(Z(T )) =
〈z, u〉 ∼= E4. By our choice of g and 16.4.11.3, R = T gC and hence u = zg. Then
as g acts on T , g induces an element of order 3 on Z, and in particular 〈g〉 acts
irreducibly on Z. This is impossible since g acts on X and hence on Y < Z.

Therefore u∗ is not 2-central in L∗. Thus as M22 has one class of involutions,
L∗ is not M22.

Inspecting the list of centralizers of non-2-central involutions in 16.1.5 for the
remaining groups in 16.5.10.2, either CH∗(X

∗) is of order 2, or L∗ is M12, M24,
J2, HS, or Ru and CH∗(X

∗) ∼= E4. Arguing as in the previous paragraph, either
|R| = 2 = |TC |, or one of the exceptional cases holds with R ∼= E4

∼= TC . In any
case, Φ(R) = 1 = Φ(TC), so R = U .

Assume L ∼= J4 or M24. Then Out(L) = 1, so T = TL × TC with Φ(TC) = 1,

and hence z 6∈ Φ(T ) for T ∈ Syl2(CG(z)), and TC is in the center of O2′ (CG(z)).
Thus if |TC | = 2, then zG ∩ TL 6= ∅ by Thompson Transfer, whereas for each
involution a ∈ TL, a ∈ Φ(CTL(a)) by 16.1.5.9. Thus |TC | > 2, so L ∼= M24, and

then U is not centralized by O2′ (CL(u)); so as U = R = T gC , this is contrary to TC
in the center of O2′(CG(z)).
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Therefore L∗ is M12, J2, HS, or Ru. If Z(L) 6= 1, then from (5b) and (7b)
of I.2.2, the projection v of u on L is of order 4, so u = vt with t ∈ TC of order
4, contrary to Φ(TC) = 1. Hence Z(L) = 1, so if v is the projection of u on L
and there is l ∈ L with vvl an involution of X , then by 16.5.10.6, vvl is not a
2-central involution of L′. However X ∼= A5, A5, A6, or Sz(8), respectively, with
all involutions in X 2-central in L, and the involutions in vX are in vL, so we have
a contradiction which completes the proof of 16.5.11. ¤

Lemma 16.5.12. L∗ is of Lie type in characteristic 2 of Lie rank 2.

Proof. Assume otherwise. By 16.5.11 and 16.5.10.1, L is Ln(2) for n := 4 or
5. Thus H∗ is either L∗ or Aut(L∗), so H = LKT . Recall z is an involution in
TC ∩ Z(T ). If TC is cyclic, then by 16.4.4.2, TC = CK(z), so that Gz = LT .

Next L has two classes j1 and j2 of involutions, where j1 is the class of transvec-
tions and the 2-central class. Hence u∗ ∈ j2 by 16.5.10.5, so by 16.1.4.3, X ∼= A4

or Z3/2
4+4, for n = 4 or 5, respectively. Also CT∗(X

∗) ∼= E4, unless L
∗T ∗ ∼= S8,

in which case CT∗(X
∗) ∼= D8. Thus by 16.5.6.2, either R is a subgroup of E4, or

H∗ = L∗R∗ ∼= S8 and R ∼= Z4; R is not D8 as Ω1(R
∗) = U∗ ≤ T ∗L.

Suppose H∗ ∼= S8 with R ∼= Z4. Then TC ∼= R ∼= Z4, so Gz = LRTC by
paragraph one. Hence T = TLTCR centralizes TC , so TC ≤ Z(Gz). Then R ≤
Z(CG(u)), whereas R

∗ ∼= Z4 is not central in a subgroup D8 of CL∗(u
∗).

Therefore R ∼= Z2 or E4, so that R = U and hence R∗ ≤ T ∗L. Let v denote the
projection of u on L.

Assume first that n = 5. Then

Φ(O2(X)) =: V = [V,X ]⊕ CV (X),

with the involutions in the 4-groups [V,X ] and CV (X) of type j2, and the diagonal
involutions of type j1. Then v ∈ CV (X), and there is l ∈ L with vl ∈ [V,X ], so
that vvl is 2-central in L′, contrary to 16.5.10.6.

Hence n = 4, so that L ∼= L4(2). Assume R ∼= E4. Then for r ∈ R − 〈u〉,
the projection of r on L is in O2(CL(X)) − 〈v〉, so as CG(u) ≤ H ′ by 16.4.2.5,
v ∈ [r, CTL(u)] ≤ K ′, so u = v ∈ L. Similarly r ∈ L, so that R = O2(CL(X)).
Then there is y ∈ L of order 3 faithful on R. But as m3(NL(O2(X))) = 2 and G is

quasithin, K is a 3′-group, so y ∈ O3′(H ′) = L′ ≤ CG(R), a contradiction.
Therefore R = 〈u〉 is of order 2, so as TC ∼= R, TC = 〈z〉 is of order 2,

and Gz = LT by paragraph one. Set A := O2(CL(u))TC . Then A ∼= E32 and
A = J(CTLTC (u)). If H∗ ∼= L4(2) then T = TL × 〈z〉, so that z 6∈ Φ(T ) with T ∈
Syl2(CG(z)). However z

G∩TL 6= ∅ by Thompson Transfer, and each involution a ∈
L satisfies a ∈ Φ(CL(a)) (cf. parts (1) and (3) of 16.1.4). Therefore LT ∼= S8 × Z2

with D8×E8
∼= O2(CLT (u)) = J(O2(CLT (u))). Choose g with T ∩H ′ = NT (K

′) ≤
T g as in 16.4.2.4, so that R = T gC by 16.4.11.3, and hence u = zg ∈ zG ∩ A − {z}
and A ≤ T g.

Suppose first that A ≤ L′K ′. Then A ≤ T gLT
g
C , so A = J(C(TLTC)g (z)) =

O2(CL′(z)) × R, and hence A plays the same role for the pairs L′, TC and L,R.
Next A∩j2 is an orbit of length 6 on A#∩L under NH(A), with AutH(A) ∼= O+

4 (2).
Further if y ∈ G such that zy ∈ LK projects on a member of the class j1, then
Ky ∈ ∆0 by 16.4.9.3, contrary to 16.5.10.5. Thus no member of zG ∩ LK projects
on j1, so as NH(A) has two orbits of length 6 on the elements of A projecting on
members of j1 and u is such a member, we conclude zG∩A =: α is of order 7 or 13.
SetM := NG(A) andM

+ :=M/CM (A). Since A plays the same role for both pairs
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L′, TC and L,R, CM (u) moves z, so zM is of order 7 or 13. Further A = 〈zM 〉,
so M+ acts faithfully on zM . Since |L5(2)| is not divisible by 13, |zM | = 7, so
M+ ≤ S7. As CM+(z) ∼= O+

4 (2), |M
+| = 23 · 32 · 7. But S7 has no subgroup of

index 10.
Therefore A 6≤ L′K ′. Hence LT ∼= S8 × 〈z〉, so from the structure of S8,

A(T ) = {A,A1, A
t
1, B} for suitable B and t ∈ TL, where J(O2(CLT (u))) = {A,A1}.

As A 6≤ L′K ′, A1 = O2(CL′(z))R = J(CT gLT
g
C
(u)), so A1 ∈ AG. Observe that

each member of A(T ) is normal in J(T ), so by Burnside’s Fusion Lemma, I :=
NG(J(T )) is transitive on AG ∩ J(T ), and hence A1 ∈ AI . As |T : J(T )| = 2, I
is not transitive on A(T ), so AI = {A,A1, A

t
1} and I induces S3 on A(T ). But

J(T ) ∼= Z2 × D8 × D8, so by the Krull-Schmidt Theorem A.1.15, I permutes the
two involutions generating the Frattini subgroups of the D8-subgroups, so that
O2(I) centralizes Φ(J(T )). Then as Z(J(T )) ∼= E8, by Coprime Action, O2(I) ≤
O2(CG(Z(J(T ))) ≤ O2(Gz) = O2(LT ) = L; then I = NL(J(T ))T ≤ NG(A),
contrary to |AI | = 3. This completes the proof of 16.5.12. ¤

Lemma 16.5.13. (1) u∗ is not in the center of T ∗.
(2) L∗ is not L3(2

n) or Sp4(2
n).

Proof. By 16.5.12, L∗ ∼= Y (2n)′, where Y is one of the Lie types A2, C2,
G2,

2F4, or
3D4. Further if n = 1, then L is the Tits group 2F4(2)

′ or 3D4(2) by
16.5.10.1, and so (1) holds by 16.5.10.5. Thus we may assume that n > 1. Further
L∗ is not L3(4) by 16.5.4, so by 16.1.2.1, either Z(L) = 1 or L∗ is G2(4).

We first treat the case where u∗ is a long-root involution. (When L ∼= Sp4(2
n),

either class of root involutions can be regarded as “long”, as the classes are in-
terchanged in Aut(L).) Thus u∗ is 2-central in L∗. Let Z denote the root group
of the projection v of u on L—unless L∗ is G2(4) with Z(L) 6= 1, where we let
Z := [NL(Z1), Z1] where Z1 is the preimage in L of the root group of u∗. Set
P := NL(Z) and recall the definition of X := Xu from Notation 16.5.5. As u∗ is a
long-root involution, either

(a) P is a maximal parabolic of L, and we check (cf. 16.1.4.1) that X = P∞,
or

(b) L ∼= L3(2
n) and X = CP (Z) if n is odd, while X = O3(CP (Z)) if n is even.

In case (b), n > 2 by 16.5.4. Thus in any case X 6= 1 and Z∗ = CL∗T∗(X
∗), so that

V := ZTC = CT (X), and TC ∼= R ∼= R∗ ≤ Z∗ by 16.5.6.2. In particular Φ(R) =
Φ(TC) = 1. Choose g as in 16.4.2.4; thus V = ZTC ≤ T ∩ H ′ = NT (K

′) ≤ T g.
Further Xg = X by 16.5.6.3, so

V = CT (X) ≤ CT g (X) = CT g (X
g) = CT (X)g = V g ,

and hence g ∈ NG(V ) ∩ NG(X) =: M . Let T0 := NT (X) and notice that either
T0 = T , or T ∗ is nontrivial on the Dynkin diagram of L∗ ∼= Sp4(2

n) with T0 of index
2 in T . Let M̄ := M/CM (V ). We can finish much as in the proof of Proposition
16.5.1: For P̄ ∼= Z2n−1 is regular on Z# = [V, P ]#, TC = CV (P ) is a TI-set in V
under the action of M by I.7.2.3, NM (TC) ≤ NM (P ) by 16.4.2.5, and T̄ ∈ Syl2(M̄)
acts on P̄ . Thus again we have the hypotheses for a Goldschmidt-O’Nan pair in
Definition 14.1 of [GLS96], so we may apply O’Nan’s lemma Proposition 14.2 in
[GLS96]. Conclusion (i) of that result is eliminated since g ∈ M − NG(TC), so
either m(V ) = 3 and M̄ ∼= Frob21 is irreducible on V , or TMC is of order 2n where
n = m(Z∗) > 1. The latter case is impossible as |T : T0| ≤ 2. In the former as M
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is irreducible on V and M normalizes X containing Z, V ≤ X ≤ L. Thus TC ≤ L
so Z(L) 6= 1, and hence L∗ is G2(4) and Z(L) = TC is of order 2 by 16.1.2.2.
Then X/V ∼= L2(4)/E28 and the chief factors for X/V on O2(X)/V are natural

modules. However Y := O7′ (M) centralizes X/O2(X) as Aut(A5) = S5, so since
the group of units of EndX/V (O2(X)/V ) is GL2(4), Y centralizes O2(X)/V . Then
as V = Φ(O2(X)), Y centralizes O2(X) by Coprime Action, a contradiction as Y
induces Z7 on V . Therefore u∗ is not a long-root involution.

If L∗ ∼= L3(2
n) then all involutions of L∗ are long-root involutions, so the

lemma is established in this case. Further when L∗ is of type G2,
2F4, or

3D4,
the 2-central involutions are the long-root involutions, so the lemma holds in these
cases too. Thus we may assume L∗ ∼= Sp4(2

n), so that Z(L) = 1 by 16.1.2.1. As
u∗ is not a root involution, u∗ is 2-central of type c2 in L∗ by 16.1.4.2, so we may
take u∗ ∈ Z(T ∗); thus the projection v of u is in Z(T ), so u ∈ Z(TLTC) since R
centralizes TC . Proceeding as in the proof of 16.5.4, U ∗ ≤ Z(T ∗L). As U

∗ ∼= U and
U∗ contains no root elements, m(U) ≤ n. Also as in 16.5.4, J(T ) = TLJ(TC) =
TLUC , where UC = Ω1(TC) ∼= U is elementary abelian. Let M := NG(J(T )).
Recall that UC ∈ UG, so by Burnside’s Fusion Lemma A.1.35, UC ∈ UM . Now
V := Z(J(T )) = UCVL is elementary abelian of order rq2, where VL := Z(TL) ∼=
Eq2 , q := 2n, and r := |UC |. Further M acts on Φ(J(T )) = VL and on V , so as
UC ∩ VL = 1, also UmC ∩ VL = 1 for each m ∈ M . Let β be the set of involutions
in V − VL either contained in UC , or projecting on a member of VL − (Z1 ∪ Z2),
where Z1 and Z2 are the two root groups in VL. Then

|β| = (q2 − 1− 2(q − 1) + 1)(r − 1) = ((q − 1)2 + 1)(r − 1).

Let γ be the set of involutions contained in a member of UMC . If y ∈ G such that
zy ∈ H and zy∗ is a root involution of L∗, then Ky ∈ ∆0 by 16.4.9.3, contrary
to 16.5.10.5. It follows that γ ⊆ β. Also L ∩M contains a Cartan subgroup Y
of NL(TL) of order (q − 1)2, and Y acts regularly on U∗Y and hence also on UY .
Therefore as K is tightly embedded in G, and NM (K) normalizes V ∩K = UC , UC
is a TI-subset of V under the action of M by I.7.2.3, so

|γ| ≥ ((q − 1)2 + 1)(r − 1) = |β|,

and hence as γ ⊆ β, we conclude that γ = β and UMC = γ is of order 1 + (q − 1)2.
This is impossible since 1 + (q − 1)2 is even, while T ≤ NM (UC) and T is Sylow in
G. This contradiction completes the proof of 16.5.13. ¤

We are now in a position to establish our main result Theorem 16.5.14.
By 16.5.12 and 16.5.13.2, we have reduced the possibilities for L in (E2) to the

case where L∗ ∼= G2(2
n)′, 2F4(2

n)′, or 3D4(2
n). By 16.5.10.1, n > 1 if L∗ ∼= G2(2

n),
and by 16.5.13.1, u∗ is a short-root involution in L∗. By 16.1.2, either Z(L) = 1, or
L∗ is G2(4) and Z(L) is of order 2. However in the latter case, from I.2.2.5b, u∗ lifts
to an v element of order 4, so u = cv with c ∈ TC of order 4. This is impossible, as
CH∗(X

∗) ∼= E4, so Φ(R∗) = 1 by 16.5.6.2, and hence R∗ ∼= R ∼= TC is elementary
abelian. Thus Z(L) = 1.

Let V be the root group of the projection v of u on L—except when L is
3D4(2

n), where we set V := Z(X). Then (cf. 16.1.4 and [AS76a] for further
details) one of the following holds:

(a) L ∼= G2(2
n), X ∼= L2(2

n)/E22n is an L2(2
n)-block, and E2n

∼= V ∗ =
CH∗(X

∗).
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(b) L ∼= 2F 4(2
n)′, X/O2(X) ∼= L2(2

n)′, Z(O2(X)) = V ⊕W , where W :=
[Z(O2(X), X ] is the natural module for X/O2(X), and V = Z(X).

(c) L ∼= 3D4(2
n), X/O2(X) ∼= L2(2

n)′, Z(O2(X)) = V ⊕ W , where W :=
[Z(O2(X)), X ] is the natural module for X/O2(X), and V = Z(X) ∼= E2n .

In case (a), set W := O2(X). We finish as in several earlier arguments: In each
case,W# is the set of long root involutions in Z(O2(X)), and vvl ∈ W# for suitable
l ∈ L, contrary to 16.5.10.6.

This final contradiction establishes:

Theorem 16.5.14 (Even Type Theorem). Assume G is a quasithin simple
group, all of whose proper subgroups are K-groups. Assume in addition that G is
of even type, but not of even characteristic. Then G ∼= J1.
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L2′ (H) (2-layer), 414

M(λi) (basic irreducible for Lie type group),
386

O2,E(U), 491

O2,F (U), 491

O2,Φ(U), 491

PG(V ) (projective space of V ), 327

Qm
8 D

n
8 (extraspecial group), 228

Qm
8 (extraspecial group), 228

R2(G) (maximal 2-reduced), 78

S(γ1, γ), 324
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∼ in final chapter), 61
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λi (fundamental weight of Lie type group),
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〈. . . 〉 (subspace spanned by), 197
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<
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A2(G) (elementary 2-subgroups), 67
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C(G) (C-components), 41
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H (“partial ” 2-locals), 500
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H∗(T,M), 571
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G, 499
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K (known simple groups), 4, 482

K-group, 4, 482
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L∗f (G,T ) (nonsolvable uniqueness groups),
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M (maximal 2-locals), 499
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P(G, V ) (FF∗-offenders), 68
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S2(G) (2-subgroups), 121
Se
2(G), 500
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(E) even characteristic hypothesis, 4, 482

(F-1)-module, 68

(F-1)-offender, 68

(F-j)-module, 256
(K) inductive “known” hypothesis, 4, 482

(PU) pushing up hypothesis, 122

(QT) quasithin hypothesis, 4, 482

(SQT) strongly quasithin, 32
(SQTK) strongly quasithin K-group, 33
IM (X, 2) (invariant 2-subgroups), 56

2-component, 414

2-layer, 414
2-local p-rank, 26

2-radical, 121

2-reduced, 77, 491

2-signalizers, 56

2-stubborn, 121
2F-modules, 10

5-dimensional module for A6, 885

A×B Lemma (Thompson), 24

almost special (group), 333

almost-extraspecial 2-group, 357

Alperin, J., 416, 518

Alperin-Brauer-Gorenstein Theorem (semidi-
hedral and wreathed Sylow 2-subgroups),
416

Alperin-Goldschmidt conjugation family, 518

Alperin-Goldschmidt Fusion Theorem, 519

amalgam, 14

amalgam (rank-2), 260
amalgam method, 6, 311

amalgam, subgroup, 260

Andersen, H., 329

apartment (of a rank-2 amalgam), 274

Aschbacher block, 123
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Aschbacher Local C(G,T )-Theorem, 121
Aschbacher, M., 10, 209, 231, 429, 486
automorphism group of an amalgam, 260
axis (of a transvection), 23

b (amalgam parameter), 313
Background References, 3
backtracks, path without, 270
Baer-Suzuki Theorem, 20
balance, 414
base (for uniqueness system), 658
basic irreducible module M(λi) (Lie type

group), 386
Baumann subgroup (Baum(H)), 75

Baumann’s Argument, 7, 9, 80
Baumann’s Lemma, 9, 117
Baumann, B., 9, 80, 117, 176
Baumeister, B., 418
Bender groups (rank-1 Lie type), 487
Bender, H., 415, 429, 484, 518
Bender-Glauberman revision of Feit-Thompson,
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Bender-Suzuki Theorem (strongly embedded
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Bennett, C., 279
Blackburn, N., 15
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BN-pair, 283
Borel-Tits Theorem, 414
Brauer trick, 431
Brauer, R., 416, 417
Brauer-Suzuki Theorem, 429, 435
Brauer-Suzuki-Wall Theorem, 415
building, Tits, 283
Burnside’s Fusion Lemma, 30
Burnside’s Lemma, 30

C(G,T)-Theorem, 134
Campbell, N., 10, 126
Cartan subgroup of L0 or ofH ∈ H∗(T,M)),

740
Carter, R., 48
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central extension (of a group), 407
CFSG (Classification), 3, 483
characteristic p-type, 484
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characteristic of a group (abstract notions

of), 3, 481
Classification (of the Finite Simple Groups),
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Clifford’s Theorem, 31
cocode module (for M22), 395
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commuting graph, 487
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component, 483
conjugation family, 518
Conway, J., 396, 431, 712
Cooperstein, B., 86, 451
Coprime Action (various results), 24
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covering (of a group), 407
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covering, dual (of a module), 408
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critical subgroup, 24
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Cyclic Sylow 2-Subgroups (transfer), 31

Dedekind Modular Law, 19
defined over (Lie type group), 38
Delgado, A., 6, 487
Dickson’s Theorem (on subgroups of L2(q)),

20
Dickson, L., 20
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dual covering (of a module), 408

E (even characteristic hypothesis), 4, 482
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equivalence (of completions), 265
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Even Type Theorem, 1203
example, 484
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A6, 1165
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A9, 799, 807, 1078
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J2, 982, 986, 1042, 1086, 1120, 1165
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extraspecial 2-group (notation), 228

extremal, 294
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MS-pair, 135
multipliers of quasithin K-groups, 407
multipliers of SQTK-groups, 407

natural module for Sn, 83

natural module for dihedral group, 424
Niles, R., 10, 126

O’Nan, M., 520
obstructions (to pushing up), 122
octad (of Steiner system), 396

Odd Order Theorem (Feit-Thompson), 15
odd transpositions, 339
offender, 68

(F − 1), 68
w (weak closure), 236

FF, 76

strong, 76
FF∗, 68

strong, 68
for q or q̂ ≤ 2, 12

opposite (at maximal distance in building),
446

parabolic isomorphic (amalgams), 262

parabolic, minimal (abstract), 112
parabolics in Lie-type groups, structure of,

38
Parker, R., 346

Parrott, D., 418, 431
Parshall, B., 16, 91, 408

partition (of a vector space), 1072
path (in a coset geometry), 270
path without backtracks, 270

pointwise stabilizer, 311
polar space (for Sp4(2)), 420
product-disconnected, 429

projective module, 408
PU (pushing up hypothesis), 122
pushing up, 5, 122

rank 2 (Meierfrankenfeld-Stellmacher), 135

qrc-lemma, 177
QT (quasithin hypothesis), 4, 482
QTKE-group, 4, 482

quadratic (action on a module), 67
quasiequivalence (of completions), 266
quasiequivalence of modules (conjugacy in

Out(G)), 111

quasithin, 4, 32
quasithin, strongly, 32

quintet (of Steiner system), 396

radical (J(M), of a module M), 343

radical (2-radical) subgroup, 11, 121
rank 2 amalgam, 260
rank-2 pushing up (Meierfrankenfeld-Stellmacher),

135

recognition theorems, 6
reduced (2-reduced), 77
regular (transitive) permutation action, 22

representation (of a group or amalgam, in a
category), 265

residually connected (geometry), 419

residue (of a vertex), 419
Ronan, M., 818
root group (in Lie type group), 88

Rudvalis rank 3 group, 445
Rudvalis, A., 431

Schreier property, 46
Schur multiplier, 407
Schur multipliers of quasithin K-groups, 407
Schur multipliers of SQTK-groups, 407
Schur’s Lemma, 31

Scott, L., 17, 197
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Segev, Y., 723

Seitz, G., 16, 282

Serre, J.-P., 273

sextet (of Steiner system), 396

shadow, 484

A5 wr Z2, 1138

A10, 969, 1120, 1135

Aut(G2(3)), 1008

Aut(HS), 1005

Aut(He), 1120, 1135, 1148, 1151

Aut(L) for L a Bender group, 521

Aut(L2(p2)), 1184

Aut(L4(2)), 1120, 1148

Aut(L4(2n)), n > 1, 731

Aut(L4(3)), 922

Aut(L5(2)), 1120, 1148, 1151

Aut(L5(2n)), n > 1, 731

Aut(L6(2)), 724, 725

Aut(L7(2)), 724, 725

Aut(U4(2)), 922

Aut(U4(3)), 921, 995

Co1, 719

Co2, 721, 723

Co3, 857

F3 (Thompson group), 857

F5 (Harada-Norton group), 495, 1009

F ′24, 822

G with V not an FF-module, 696

L wr Z2 for L of rank 2 over F2, 1120,
1135

L2(2n) wr Z2, 521

L2(p) wr Z2, 560

L3(2) wr Z2, 1138

L4(2n), n > 1, 489, 759, 760, 770, 773–
775

McL, 807, 808

O+10(2), 822

O+12(2), 817

PΩ+8 (3), 822

PSL2(p) wr Z2, 566

S5 wr Z2, 1120

S7, 1184

S9, 1120, 1138

S10, 1189, 1192

Sp6(2n), n > 1, 759, 760, 770, 775, 778

Sp8(2), 822

Sp10(2), 817

Sz(2n) wr Z2, 521

U6(2), 721, 723

U6(2n), n > 1, 716

U7(2), 720

U7(2n), n > 1, 716

Ω7(3), 809

Ω−8 (2
n), n > 1, 759, 760

Ω7(3), 807

Ω+8 (2), 822, 823, 831

Ω−8 (2), 1010

Ω+10(2), 817

Ω−12(2), 817

Z2/L3(2n), 529, 532
Z2/Sp4(2n), 529, 532

Z2/Ω
+
8 (2

n), n > 1, 759, 760, 775, 778

Z3/Ω
+
8 (2), 586, 595, 599

Conway groups, 494

extensions of L4(3), 544, 547, 550, 558,
560, 565

Fischer groups, 494, 711–713
rank 2 groups, certain, 517

shadow (configuration “close” to Main The-
orem), 484

short (group), 123
Shpectorov, S., 279
Shult’s Fusion Theorem, 430, 518

Shult, E., 429, 518
Sims, C., 6, 10, 486
Sin, P., xiv

small (faithful completion of an amalgam),
278

small dimensional representations, 348, 356
Smith, F., 486
Smith, S., 13, 818

Solomon, R., xiii, 4, 416, 482
Solvable Thompson Factorization, 70, 79
split BN-pair of rank 2, 283
split BN-pairs of rank 2, 16

SQT, 32
SQTK, 33
SQTK-group, 7, 33

stable (subset of offenders P(G, V )), 70
standard form, 1177
Standard Notation (for G, T ), 499
standard subgroup of G, 1177

Steinberg module, 453
Steinberg relations (for Lie-type group), 356
Steiner system (for Mathieu groups), 396

Stellmacher, B., 6, 171, 311, 487
Stellmacher-Meierfrankenfeld qrc-lemma, 177
Stelmmacher, B., 9
strong FF∗-offender, 68

strong FF-module, 68
strong FF-offender, 76
strongly closed, 518
strongly embedded (subgroup), 428

strongly quasithin, 4, 32
Stroth, G., 87, 311
structure of Lie-type groups, 38

structure of parabolics in Lie-type groups,
38

stubborn (2-stubborn), 121
subgroup amalgam, 14, 260
supercritical subgroup, 24

Supercritical Subgroups Lemma, 24
Suzuki 2-group, 532
Suzuki type ai, 218

Suzuki type bi, 218
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Suzuki type ci, 218

Suzuki type (of suitable involutions), 218

Suzuki, M., 164, 291, 296, 298, 415, 417, 427,
429, 569, 1072, 1180, 1184

symmetry (between γ1 and γ), 317, 322, 324
symplectic type (p-group), 1016

Tanaka, Y., 487

tetrad (of Steiner system), 396

Theorem A, 33

Theorem B, 33
Theorem C, 33

Theorem D, 1078

Theorem E, 1165

thin (group), 4

Thompson A×B Lemma, 24
Thompson amalgam strategy, 487

Thompson factorization, 5, 78

Thompson Factorization for Solvable Groups,
79

Thompson Factorization Lemma, 78

Thompson Order Formula, 64
Thompson Replacement Lemma, 68

Thompson strategy, 487

Thompson subgroup, 74

higher (Jj(H)), 74

usual (J(H)), 74
Thompson subgroup (J(X)), 8

Thompson Transfer (Lemma), 30

Thompson’s Dihedral Lemma, 20

Thompson, J., xiv, 231, 428
Three-Subgroup Lemma, 20

TI-set, 21

tightly embedded (subgroup), 425

Timmesfeld, F., 13, 364, 425, 494, 852

Tits amalgam, 281
Tits building, 283

Tits group 2F4(2)′, 495

Tits sytem, 283

Tits, J., 16, 273, 274, 419

Tits-Weiss Theorem (Moufang buildings), 14,
16, 275, 282, 629

Todd module (for M22), 395

Todd module (for M24, M23), 395

Todd, J., 396, 712

transvection, 23

triangulable (uniqueness system), 658
trio (of Steiner system), 396

Tutte, W., 6, 486

Tutte-Sims graph methods, 6, 304, 311, 486,
487

type H(2,Ω−4 (2)), 418

type ai of involution, 218
type bi of involution, 218

type ci of involution, 218

type G2(3), 417

type HS, 418

type J1, 418

type J2, 418
type J3, 418
type jk (of involution in linear/unitary group),

1170
type Ru, 431
type U3(3), 417
type (of a block), 124

uniqueness subgroup, 499
uniqueness system, 657
universal completion, 14
universal completion (of an amalgam), 261,

265
universal covering (of a group), 407

universal covering (of a module), 408
universal covering group, 407
universal dual covering (of a module), 408

w-offender (weak closure), 236
Wales, D., 418, 431
Wall, G. E., 415
Walter, J., 415
weak BN-pair of rank 2, 261
weak closure W (X,Ω) of Ω in X, 210
weak closure methods, 6
weak closure methods, basics of, 232
weakly closed, 22
weight λi, fundamental (of Lie type group),

386
weight (of vector in permutation module),

83, 395
weight theory for Lie-type representations,

386
Weiss, R., 16, 282
Weyl group (of an amalgam), 274
Wilson, R., 346
Wong, S. K., 416, 418
Wong, W., 416, 417

Yoshiara, S., 38

Zassenhaus groups, 415
Zsigmondy prime divisor, 22
Zsigmondy’s Theorem, 22
Zsigmondy, K., 16, 22, 640, 731


