लजान्द्र रूपान्तर की ज्यामितीय व्याख्या
गणित में किसी वास्तविक मान वाले, तथा सभी बिन्दुओं पर अवकलनीय फलन f तथा g में निम्नलिखित सम्बन्ध हो तो g को f का लजान्द्र रूपान्तर (LegendreTransform) कहा जाता है। इस रूपान्तर का नाम फ्रांसीसी गणितज्ञ आद्रियें मारि लजान्द्र (Adrien-Marie Legendre) के नाम पर पड़ा है।
D
f
=
(
D
g
)
−
1
{\displaystyle Df=\left(Dg\right)^{-1}}
जहाँ D , अवकलज (डिफरेंशियल) का प्रतीक है तथा दाहिनी ओर आने वाला -1 , प्रतिलोम फलन को सूचित कर रहा है। यह आसानी से दिखाया जा सकता है कि g , f का लजान्द्र रूपान्तर हो तो f , g का लजान्द्र रूपान्तर होगा
उदाहरण के लिये , फलन
f
(
x
)
=
x
2
2
{\displaystyle f(x)={\tfrac {x^{2}}{2}}}
तथा फलन
g
(
p
)
=
−
p
2
2
{\displaystyle g(p)=-{\tfrac {p^{2}}{2}}}
एक दूसरे के लजान्द्र रूपान्तर हैं।
एक विशेष स्थिति में, यदि फलन f एक उत्तल फलन (कान्वेक्स फंक्शन) हो तो इसका लजान्द्र रूपान्तर ƒ* निम्नलिखित सम्बन्ध द्वारा अभिव्यक्त किया जा सकता है-
f
⋆
(
p
)
=
sup
x
(
p
x
−
f
(
x
)
)
.
{\displaystyle f^{\star }(p)=\sup _{x}{\bigl (}px-f(x){\bigr )}.}
Let f (x ) = cx 2 defined on R , where c > 0 is a fixed constant.
For x * fixed, the function x *x – f (x ) = x *x – cx 2 of x has the first derivative x * – 2cx and second derivative −2c ; there is one stationary point at x = x */2c , which is always a maximum. Thus, I * = R and
f
∗
(
x
∗
)
=
x
∗
2
4
c
{\displaystyle f^{*}(x^{*})={\frac {{x^{*}}^{2}}{4c}}}
Clearly,
f
∗
∗
(
x
)
=
1
4
(
1
/
4
c
)
x
2
=
c
x
2
,
{\displaystyle f^{**}(x)={\frac {1}{4(1/4c)}}x^{2}=cx^{2},}
namely f ** = f .
Let f (x ) = x 2 for x ∈ I = [2, 3] .
For x * fixed, x *x − f (x ) is continuous on I compact , hence it always takes a finite maximum on it; it follows that I * = R . The stationary point at x = x */2 is in the domain [2, 3] if and only if 4 ≤ x * ≤ 6 , otherwise the maximum is taken either at x = 2 , or x = 3 . It follows that
f
∗
(
x
∗
)
=
{
2
x
∗
−
4
,
x
∗
<
4
x
∗
2
4
,
4
⩽
x
∗
⩽
6
,
3
x
∗
−
9
,
x
∗
>
6
{\displaystyle f^{*}(x^{*})={\begin{cases}2x^{*}-4,\quad &x^{*}<4\\{\frac {{x^{*}}^{2}}{4}},&4\leqslant x^{*}\leqslant 6,\\3x^{*}-9,&x^{*}>6\end{cases}}}
.
The function f (x ) = cx is convex, for every x (strict convexity is not required for the Legendre transformation to be well defined). Clearly x *x − f (x ) = (x * − c )x is never bounded from above as a function of x , unless x * − c = 0 . Hence f * is defined on I * = {c } and f *(c ) = 0 .
One may check involutivity: of course x *x − f *(x *) is always bounded as a function of x * ∈ {c }, hence I ** = R . Then, for all x one has
sup
x
∗
∈
{
c
}
(
x
x
∗
−
f
∗
(
x
∗
)
)
=
x
c
,
{\displaystyle \sup _{x^{*}\in \{c\}}(xx^{*}-f^{*}(x^{*}))=xc,}
and hence f **(x ) = cx = f (x ) .
Let
f
(
x
)
=
⟨
x
,
A
x
⟩
c
{\displaystyle f(x)=\langle x,Ax\rangle c}
be defined on X = R n , where A is a real, positive definite matrix. Then f is convex, and
⟨
p
,
x
⟩
−
f
(
x
)
=
⟨
p
,
x
⟩
−
⟨
x
,
A
x
⟩
−
c
,
{\displaystyle \langle p,x\rangle -f(x)=\langle p,x\rangle -\langle x,Ax\rangle -c,}
has gradient p − 2Ax and Hessian −2A , which is negative; hence the stationary point x = A −1 p /2 is a maximum. We have X * = R n , and
f
∗
(
p
)
=
1
4
⟨
p
,
A
−
1
p
⟩
−
c
{\displaystyle f^{*}(p)={\frac {1}{4}}\langle p,A^{-1}p\rangle -c}
.
f
(
x
)
{\displaystyle f(x)}
dom
f
{\displaystyle \operatorname {dom} f}
f
⋆
(
x
⋆
)
{\displaystyle f^{\star }(x^{\star })}
dom
f
⋆
{\displaystyle \operatorname {dom} f^{\star }}
शर्तें
a
f
(
x
)
{\displaystyle af(x)}
dom
f
{\displaystyle \operatorname {dom} f}
a
f
⋆
(
x
⋆
/
a
)
{\displaystyle af^{\star }(x^{\star }/a)}
a
⋅
dom
f
⋆
{\displaystyle a\cdot \operatorname {dom} f^{\star }}
a
>
0
{\displaystyle a>0}
f
(
a
x
)
{\displaystyle f(ax)}
a
−
1
⋅
dom
f
{\displaystyle a^{-1}\cdot \operatorname {dom} f}
f
⋆
(
x
⋆
/
a
)
{\displaystyle f^{\star }(x^{\star }/a)}
a
⋅
dom
f
⋆
{\displaystyle a\cdot \operatorname {dom} f^{\star }}
a
>
0
{\displaystyle a>0}
f
(
x
)
a
{\displaystyle f(x) a}
dom
f
{\displaystyle \operatorname {dom} f}
f
⋆
(
x
⋆
)
−
a
{\displaystyle f^{\star }(x^{\star })-a}
dom
f
⋆
{\displaystyle \operatorname {dom} f^{\star }}
a
∈
R
{\displaystyle a\in \mathbb {R} }
f
(
x
−
a
)
{\displaystyle f(x-a)}
a
dom
f
{\displaystyle a \operatorname {dom} f}
f
⋆
(
x
⋆
)
a
x
⋆
{\displaystyle f^{\star }(x^{\star }) ax^{\star }}
dom
f
⋆
{\displaystyle \operatorname {dom} f^{\star }}
a
∈
R
{\displaystyle a\in \mathbb {R} }
f
(
x
)
a
x
{\displaystyle f(x) ax}
dom
f
{\displaystyle \operatorname {dom} f}
f
⋆
(
x
⋆
−
a
)
{\displaystyle f^{\star }(x^{\star }-a)}
a
dom
f
⋆
{\displaystyle a \operatorname {dom} f^{\star }}
a
∈
R
{\displaystyle a\in \mathbb {R} }
f
(
x
)
g
(
x
)
{\displaystyle f(x) g(x)}
dom
f
∩
dom
g
{\displaystyle \operatorname {dom} f\cap \operatorname {dom} g}
(
f
⋆
⋆
inf
g
⋆
)
(
x
⋆
)
{\displaystyle (f^{\star }\star _{\text{inf}}g^{\star })(x^{\star })}
dom
f
⋆
dom
g
⋆
{\displaystyle \operatorname {dom} f^{\star } \operatorname {dom} g^{\star }}
(
f
⋆
inf
g
)
(
x
)
=
inf
y
{
f
(
x
−
y
)
g
(
y
)
}
{\displaystyle (f\star _{\text{inf}}g)(x)=\inf _{y}\{f(x-y) g(y)\}}
(
f
⋆
inf
g
)
(
x
)
{\displaystyle (f\star _{\text{inf}}g)(x)}
dom
f
dom
g
{\displaystyle \operatorname {dom} f \operatorname {dom} g}
f
⋆
(
x
⋆
)
g
⋆
(
x
⋆
)
{\displaystyle f^{\star }(x^{\star }) g^{\star }(x^{\star })}
dom
f
⋆
∩
dom
g
⋆
{\displaystyle \operatorname {dom} f^{\star }\cap \operatorname {dom} g^{\star }}
(
f
⋆
inf
g
)
(
x
)
=
inf
y
{
f
(
x
−
y
)
g
(
y
)
}
{\displaystyle (f\star _{\text{inf}}g)(x)=\inf _{y}\{f(x-y) g(y)\}}
a
x
b
{\displaystyle ax b}
R
{\displaystyle \mathbb {R} }
−
b
{\displaystyle -b}
{
a
}
{\displaystyle \{a\}}
|
x
|
p
/
p
{\displaystyle |x|^{p}/p}
R
{\displaystyle \mathbb {R} }
|
x
⋆
|
p
⋆
/
p
⋆
{\displaystyle |x^{\star }|^{p^{\star }}/p^{\star }}
R
{\displaystyle \mathbb {R} }
1
/
p
1
/
p
⋆
=
1
{\displaystyle 1/p 1/p^{\star }=1}
,
p
>
1
{\displaystyle p>1}
−
x
p
/
p
{\displaystyle -x^{p}/p}
[
0
,
∞
)
{\displaystyle [0,\infty )}
−
|
x
⋆
|
p
⋆
/
p
⋆
{\displaystyle -|x^{\star }|^{p^{\star }}/p^{\star }}
(
−
∞
,
0
]
{\displaystyle (-\infty ,0]}
1
/
p
1
/
p
⋆
=
1
{\displaystyle 1/p 1/p^{\star }=1}
,
p
<
1
{\displaystyle p<1}
exp
(
x
)
{\displaystyle \exp(x)}
R
{\displaystyle \mathbb {R} }
x
⋆
(
ln
(
x
⋆
)
−
1
)
{\displaystyle x^{\star }(\ln(x^{\star })-1)}
R
{\displaystyle \mathbb {R} ^{ }}
x
ln
(
x
)
{\displaystyle x\ln(x)}
R
{\displaystyle \mathbb {R} ^{ }}
exp
(
x
−
1
)
{\displaystyle \exp(x-1)}
R
{\displaystyle \mathbb {R} }
−
1
/
2
−
ln
x
{\displaystyle -1/2-\ln x}
R
{\displaystyle \mathbb {R} ^{ }}
−
1
/
2
−
ln
|
x
⋆
|
{\displaystyle -1/2-\ln |x^{\star }|}
R
−
{\displaystyle \mathbb {R} ^{-}}
x
exp
(
x
1
)
{\displaystyle x\exp(x 1)}
R
{\displaystyle \mathbb {R} }
x
⋆
(
W
(
x
⋆
)
−
1
)
2
/
W
(
x
⋆
)
{\displaystyle x^{\star }(W(x^{\star })-1)^{2}/W(x^{\star })}
[
−
1
/
e
,
∞
)
{\displaystyle [-1/e,\infty )}
लैम्बर्ट का W फलन