

Automatic Retargeting of Web Page Content

Abstract
We present a novel technique for automatically
retargeting content from one web page onto the layout
of another. Web pages are decomposed into their
perceptual hierarchical representations. We then use a
structured-prediction algorithm to learn reasonable
mappings between the perceptual trees. Using the
mappings, we are able to merge the content of one
page with the layout of another.

Keywords
Web design, automatically generated alternatives

ACM Classification Keywords
D.2.2 [Software Engineering]: Design Tools and
Techniques.

Introduction
Enumerating multiple alternatives is critical to good
design [1] but is often tedious and time consuming. On
the web, templates can be used to efficiently generate
design alternatives. However, this limits designers to
the corpus of pre-constructed templates. What if users
could use any web page as a template? This paper
presents a technique for borrowing the layout and style
from any web page and applying it to your own.

The remainder of the paper is structured as follows. We
describe the relationship of this paper to prior work. We

Copyright is held by the author/owner(s).

CHI 2009, April 4 – 9, 2009, Boston, Massachusetts, USA

ACM 978-1-60558-247-4/09/04.

 Ranjitha Kumar

Stanford University HCI Group

353 Serra Mall

Stanford, CA 94305

ranju@stanford.edu

Juho Kim

Stanford University HCI Group

353 Serra Mall

Stanford, CA 94305

juhokim@stanford.edu

Scott R Klemmer

Stanford University HCI Group

353 Serra Mall

Stanford, CA 94305

srk@cs.stanford.edu

Figure 1. Pipeline for retargeting web page
content. (a) Segment pages into perceptual trees.
(b) Compute a reasonable mapping between
content and layout trees. (c) Use mapping to
retarget content onto the new layout.

B_1B_1 B_2B_2 B_3B_3 B_4B_4 B_5B_5

B_1_1B_1_1 B_1_2B_1_2

B_2_1B_2_1 B_2_2B_2_2

B_3_2B_3_2 B_3_3B_3_3

B_4_1B_4_1 B_4_2B_4_2

B_3_1B_3_1

B_1B_1 B_2B_2 B_3B_3 B_4B_4 B_5B_5

B_1_1B_1_1 B_1_2B_1_2

B_2_1B_2_1 B_2_2B_2_2

B_3_2B_3_2 B_3_3B_3_3

B_4_1B_4_1 B_4_3B_4_3

B_3_1B_3_1

B_4_2B_4_2

content pagecontent page layout pagelayout page

(a)(a)

(b)(b)

(c)(c)

synthesized pagesynthesized page

then present the pipeline and algorithms
used to synthesize alternatives. Finally,
we discuss results and future work
pertaining to building a graphical
interface leveraging our technique to aid
web design.

Related Work
This work draws on two main areas of
prior work: web design tools that aid in
producing higher quality designs and
techniques for generating design
alternatives.

Template-based systems (e.g., Blogger)
operate on the principle that pre-
existing content can aid design. These
systems allow users to quickly create
many cookie-cutter web sites, but they
greatly limit expressivity. Prior work has
also explored using web pages with
authentic content as starting templates.
Lee et al.’s Adaptive Ideas [6] enables
users to parametrically browse through
a corpus of actual web pages, use the
example pages as starting templates,
and borrow style attributes (limited to

font and colors) from them. With Adaptive Ideas, users
must manually adapt content to the example designs in
the corpus. The system introduced here performs this
step automatically. Ivory et al.’s system [4] uses
learned statistical profiles of good sites to suggest
improvements to existing designs to increase their
quality. These changes, however, must be manually
implemented by the user, and the system provides no

assistance for designers in the tabula rasa stage of
development.

Prior work has explored two main approaches to
generating alternatives. One is to represent the design
as a set of parameters, which are manipulated to
explore the space of alternatives [7, 9]. The other is to
synthesize alternatives by adapting and merging past
solutions to fit the current context: a common expert
practice and the keystone of case-based design
literature [5, 6]. Our framework provides an explicit
mechanism for borrowing layouts and styles from other
web pages to synthesize alternatives.

Synthesizing Alternatives
Automatically adapting content to different design
layouts poses two significant technical challenges. First,
given a pair of web pages, both must be segmented
into their constituent perceptual blocks. Second, a
mapping between the blocks of the two pages must be
computed. Current template-based systems that
support automatic layout changes require pages to be
composed of labeled content blocks (Figure 2). Differ-
ent template layouts are simply different arrangements
of the same content blocks, making retargeting
straightforward. We present a new method for merging
content and layout between any two arbitrary HTML
pages without imposing restrictions on content.

Perceptual Tree Construction
To merge content and layout of arbitrary HTML pages,
it is necessary to codify the visual structure of web
pages. We implemented a modified version of Cai et
al.’s “VIsion based Page Segmentation” (VIPS) algo-
rithm [2], an iterative, top-down method for building a
tree representation of a web page’s content structure.

Figure 2. To edit layouts in Blogger,
move around labeled content blocks.

Each iteration of the algorithm has three phases. In the
visual-block extraction phase, the system recursively
traverses the DOM tree of the page and extracts DOM
nodes which correspond to visually dominant blocks.
The heuristics for determining perceptual importance
are based on visual cues such as background color,
size, and content type. In the next phase, vertical and
horizontal separators are detected between the
extracted blocks. These separators are assigned
weights according to the visual difference between the
blocks that they separate. In the final step, the
extracted blocks are merged together into new blocks
to form the hierarchical representation of the content

structure. Merging starts with the blocks separated by
minimally-weighted separators and iterates until the
blocks separated by the maximally-weighted separators
are merged.

At the end of an iteration, the leaf nodes of the tree
(i.e., the extracted blocks from that iteration) are fed
back into the next iteration of the algorithm unless they
exceed a granularity threshold (Figure 3). It is impor-
tant that both the page containing the content and the
page containing the layout have been broken down to
the same level of granularity for our mapping algorithm
to perform well.

Tree Mapping
Given this perceptual tree representation of web pages,
the mapping between the visual structures of a pair of
web pages can be computed. In general, a mapping
between two trees specifies a sequence of edit opera-
tions that should be applied to each node in order to
transform one tree into the other (Figure 4).

Suppose we impose an ordering on the nodes of a
given tree. Let []T i represent the i th node of tree T in
the given ordering. Formally, a mapping M from T to
T̂ is a set of pairs of integers {(,)}i j satisfying the
following constraints:

1. 1 i T≤ ≤ , ˆ1 j T≤ ≤ , where | |T is the number of nodes
in T .

2. For any pair of 1 1(,)i j and 2 2(,)i j in M :

 1 2i i= ⇔ 1 2j j= (one-to-one),

Figure 3. A web page segmented
using our implementation of the VIPS
algorithm [2]. (a) Blocks extracted
after the first iteration. (b) Blocks
extracted after the second iteration.
(c) Resulting perceptual tree
structure.

B_1B_1

B_2B_2

B_3B_3

B_4B_4

B_5B_5

B_1_1B_1_1

B_1_2B_1_2

B_2_1B_2_1

B_4_1B_4_1

B_4_2B_4_2

B_2_2B_2_2

B_3_1B_3_1

B_3_2B_3_2 B_3_3B_3_3

(a)(a)

(b)(b)

B_1B_1 B_2B_2 B_3B_3 B_4B_4 B_5B_5

B_1_1B_1_1 B_1_2B_1_2

B_2_1B_2_1 B_2_2B_2_2

B_3_2B_3_2 B_3_3B_3_3

B_4_1B_4_1 B_4_2B_4_2

B_3_1B_3_1

(c)(c)

 1[]T i is an ancestor of 2[]T i ⇔ 1
ˆ[]T j is an ancestor of

2
ˆ[]T j (ancestor relationship preserved) [8].

Then, the reward of a mapping M can be defined to be
the sum of all individual rewards associated with each
edit operation:

() ()
()

()
()

()
()

1 2 1
, { | . . , }

2
{ | . . , }

,

i j M i j s t i j M

j i s t i j M

M t i t j t i

t j

γ γ γ λ

γ λ

∈ ∃ ∈

∃ ∈

= → + →⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦

+ → ⎡ ⎤⎣ ⎦

∑ ∑

∑

where ()1t iγ λ→⎡ ⎤⎣ ⎦ and ()2t jγ λ → ⎡ ⎤⎣ ⎦ represent insertion
and deletion edit operations, respectively.

Predicting Mappings
Given this formalized notion of mapping between trees,
we use the generalized perceptron algorithm for
structured-prediction [3] to predict reasonable map-
pings between the visual structures of web pages. For
this supervised learning algorithm, a training example
is given by a pair () ()(,)i ix y , where the input variable

()ix represents a pair of perceptual trees and the
target variable ()iy represents the mapping between
them.

To predict good mappings, the algorithm learns how to
weight (reward) shared features between a pair of
perceptual blocks. Using these learned weights, the
optimal mapping (that is, the mapping with the highest
reward) can be calculated for a given tree pair. More
formally, the algorithm learns a rewards-weight vector
w
r

 such that () ()arg max (,)i i
y

Ty w F x y=
r

, where ()(,)iF x y is
a feature-counts vector containing the number of

appearances of each feature in a given mapping. The
feature-counts vector we use has the form

of inserts and deletes
of matchings with matching tags
of matchings with similar content

of matchings with similar dimensions
of matchings with similar positioning on page

of matchings meeting none of the above

criter

F =

ia

.

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

Each iteration of stochastic gradient ascent executes
the following sequence of operations until w

r
 con-

verges:

 Pick a random training example: () ()(,)i ix y .

 Compute () ()ˆ arg max (,)t T i
yy w F x y= , where t is the

iteration variable.

 Update (1) () () () () () ˆ((,) (,))t t t i i iw w F x y F x yα+ = + −
r r

, where
() 1 / 1t tα = + is the learning rate.

In each iteration, the optimal mapping ŷ is computed
for the given tree pair ()ix , using the current rewards-
weight vector ()tw . The algorithm for computing the
optimal mapping between two unordered trees is NP-
complete. However, if we bound the number of leaves
in even one tree, the exhaustive search algorithm runs
in polynomial time [8]. The leaves of our trees corres-
pond to the smallest perceptual blocks that are
returned by our VIPS implementation. By controlling
segmentation granularity, we generate trees that have
fewer than 20 leaf nodes, giving a reasonable bound on
the running time of the algorithm. Dynamic program-

Figure 4. A mapping between two
unordered trees, T and T̂ [8]. A dotted
line from a node in T to a node in T̂
indicates a matching operation. A node in
T and T̂ that is not touched by a dotted
line should be added and deleted,
respectively.

ming solutions exist but introduce mapping constraints
that greatly restrict the flexibility in choosing mappings
between trees [10]. Furthermore, once we have
learned a reward function that allows us to predict good
mappings between perceptual trees, we can employ
heuristic algorithms to predict mappings [8] instead of
relying on exhaustive search.

We are still in the process of generating training data to
produce better predictions. Manually constructing
mappings between tree pairs is very tedious; therefore,
we are designing a graphical interface to aid in the
process. With such an interface, we can even crowd-
source the task.

Preliminary tests done with
only a few mappings in the
training set are promising. The
reward weights corresponding
to the various features are
reasonable: the weight
associated with “insertions and
deletions” is negative, while
the weights associated with
matched pairs with “matching
html tags”, “similar content”,
and “similar dimensions” are
large and positive.

Synthesizing a new page
Given a mapping between two
page trees, we can synthesize
a new page in which the
content from one page has
been adapted to the layout of
another. Since all the graphi-

cal content of a page is contained within the leaf nodes
of its tree, we consider only the image of the leaf nodes
of the content page under the computed mapping. If
these nodes are all mapped to blocks in the layout tree,
we are finished. If some nodes are not mapped, we
must determine approximate mappings in order to
ensure that we transfer all of the content from our
current design. We accomplish this by collapsing the
unmatched blocks into their siblings or ancestors,
depending upon which of these blocks have the best
mappings; see Figure 1(c). The synthesized pages
shown in Figure 5 were constructed using this method.

Conclusions
This work-in-progress introduced a novel technique for
automatically retargeting the content of a web page
onto the layout of any other web page. This technique
allows users to quickly realize new alternative designs
for their web pages without restrictions on content. We
have observed that our algorithmic pipeline produces
reasonable results when mappings are manually
defined, and the results of the mapping predictor
trained with only a few examples are likewise encour-
aging. We are currently collecting more training data to
produce better predictions, which we hope will result in
a fully automated retargeting pipeline.

After that, the next step is to build a graphical interface
which leverages this technique. Since there could be
many reasonable ways to actually retarget content onto
different layouts, presenting the user with a gallery of
options would allow for greater customization flexibility.
By extending this pipeline, we could also support
borrowing of style and layout separately. We plan to
deploy this tool as a web application to do large-scale

(a)(a)

(b)(b)
(c)(c)

empirical studies on how these methods
would effect the quality of designs produced.

References
[1] Buxton, B. Sketching User Experiences:
Getting the Design Right and the Right
Design. Morgan Kaufmann, San Francisco, CA,
2007.

[2] Cai, D., Yu, S., Wen, J., and Ma, W.
VIPS: a Vision-based Page Segmentation
Algorithm. Microsoft Technical Report, MSR-
TR-2003-79, 2003.

[3] Collins, M. Discriminative training
methods for hidden Markov models: theory
and experiments with perceptron algorithms.
In Proceedings of the Acl-02 Conference on
Empirical Methods in Natural Language
Processing - Volume 10 Annual Meeting of
the ACL. (2002), 1-8.

[4] Ivory, M. Y. and Hearst, M. A. Statistical
profiles of highly-rated web sites. In Proc.
CHI 2002, ACM Press (2002), 367-374.

[5] Kolodner, J.L., and Wills, L.M. Case-Based Creative
Design. In AAAI Spring Symposium on AI and Creativi-
ty. Stanford, CA. (1993), 50-57

[6] Lee, B., Klemmer, S. R., Srivastava, S., and
Brafman, R. Adaptive Interfaces for Supporting Design
by Example. Stanford Tech Report, CSTR 2007-16,
2007. (http://hci.stanford.edu/cstr/)

[7] Marks, J. et al. Design galleries: a general ap-
proach to setting parameters for computer graphics and
animation. In Proc. SIGGRAPH 1997, ACM
Press/Addison-Wesley Publishing Co., New York, NY
(1997), 389-400.

[8] Shasha, D., Wang, J. T. L., Zhang, K. Exact and
approximate algorithms for unordered tree matching.
IEEE Trans. Systems, Man, and Cybernetics 24, 4
(1994), 668-678.

[9] Terry, M. and Mynatt, E. D. 2002. Side views:
persistent, on-demand previews for open-ended tasks.
In Proc. UIST 2002, ACM Press (2002), 71-80.

[10] Zhang, K. A Constrained Edit Distance Between
Unordered Labeled Trees. Algorithmica 15, 3 (1996),
205-222.

Figure 5. Two synthesis results (continued from
previous page). Mappings were manually defined.
(a) Content page, (b) layout pages, (c) synthe-
sized pages. Zoom for more detail.

(c)(c)

(b)(b)

