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Abstract 
We present a novel technique for automatically 
retargeting content from one web page onto the layout 
of another. Web pages are decomposed into their 
perceptual hierarchical representations. We then use a 
structured-prediction algorithm to learn reasonable 
mappings between the perceptual trees. Using the 
mappings, we are able to merge the content of one 
page with the layout of another.  
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Introduction 
Enumerating multiple alternatives is critical to good 
design [1] but is often tedious and time consuming.  On 
the web, templates can be used to efficiently generate 
design alternatives. However, this limits designers to 
the corpus of pre-constructed templates. What if users 
could use any web page as a template? This paper 
presents a technique for borrowing the layout and style 
from any web page and applying it to your own.  

The remainder of the paper is structured as follows. We 
describe the relationship of this paper to prior work. We 
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Figure 1. Pipeline for retargeting web page 
content. (a) Segment pages into perceptual trees. 
(b) Compute a reasonable mapping between 
content and layout trees. (c) Use mapping to 
retarget content onto the new layout.  
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then present the pipeline and algorithms 
used to synthesize alternatives. Finally, 
we discuss results and future work 
pertaining to building a graphical 
interface leveraging our technique to aid 
web design. 

Related Work 
This work draws on two main areas of 
prior work: web design tools that aid in 
producing higher quality designs and 
techniques for generating design 
alternatives. 
 
Template-based systems (e.g., Blogger) 
operate on the principle that pre-
existing content can aid design. These 
systems allow users to quickly create 
many cookie-cutter web sites, but they 
greatly limit expressivity. Prior work has 
also explored using web pages with 
authentic content as starting templates. 
Lee et al.’s Adaptive Ideas [6] enables 
users to parametrically browse through 
a corpus of actual web pages, use the 
example pages as starting templates, 
and borrow style attributes (limited to 

font and colors) from them.  With Adaptive Ideas, users 
must manually adapt content to the example designs in 
the corpus. The system introduced here performs this 
step automatically. Ivory et al.’s system [4] uses 
learned statistical profiles of good sites to suggest 
improvements to existing designs to increase their 
quality. These changes, however, must be manually 
implemented by the user, and the system provides no 

assistance for designers in the tabula rasa stage of 
development.  

Prior work has explored two main approaches to 
generating alternatives. One is to represent the design 
as a set of parameters, which are manipulated to 
explore the space of alternatives [7, 9]. The other is to 
synthesize alternatives by adapting and merging past 
solutions to fit the current context: a common expert 
practice and the keystone of case-based design 
literature [5, 6]. Our framework provides an explicit 
mechanism for borrowing layouts and styles from other 
web pages to synthesize alternatives.  

Synthesizing Alternatives 
Automatically adapting content to different design 
layouts poses two significant technical challenges. First, 
given a pair of web pages, both must be segmented 
into their constituent perceptual blocks. Second, a 
mapping between the blocks of the two pages must be 
computed. Current template-based systems that 
support automatic layout changes require pages to be 
composed of labeled content blocks (Figure 2). Differ-
ent template layouts are simply different arrangements 
of the same content blocks, making retargeting 
straightforward. We present a new method for merging 
content and layout between any two arbitrary HTML 
pages without imposing restrictions on content. 

Perceptual Tree Construction 
To merge content and layout of arbitrary HTML pages, 
it is necessary to codify the visual structure of web 
pages. We implemented a modified version of Cai et 
al.’s “VIsion based Page Segmentation” (VIPS) algo-
rithm [2], an iterative, top-down method for building a 
tree representation of a web page’s content structure. 

Figure 2. To edit layouts in Blogger, 
move around labeled content blocks. 



  

Each iteration of the algorithm has three phases. In the 
visual-block extraction phase, the system recursively 
traverses the DOM tree of the page and extracts DOM 
nodes which correspond to visually dominant blocks. 
The heuristics for determining perceptual importance 
are based on visual cues such as background color, 
size, and content type. In the next phase, vertical and 
horizontal separators are detected between the 
extracted blocks. These separators are assigned 
weights according to the visual difference between the 
blocks that they separate. In the final step, the 
extracted blocks are merged together into new blocks 
to form the hierarchical representation of the content 

structure. Merging starts with the blocks separated by 
minimally-weighted separators and iterates until the 
blocks separated by the maximally-weighted separators 
are merged. 

At the end of an iteration, the leaf nodes of the tree 
(i.e., the extracted blocks from that iteration) are fed 
back into the next iteration of the algorithm unless they 
exceed a granularity threshold (Figure 3). It is impor-
tant that both the page containing the content and the 
page containing the layout have been broken down to 
the same level of granularity for our mapping algorithm 
to perform well. 

Tree Mapping 
Given this perceptual tree representation of web pages, 
the mapping between the visual structures of a pair of 
web pages can be computed.  In general, a mapping 
between two trees specifies a sequence of edit opera-
tions that should be applied to each node in order to 
transform one tree into the other (Figure 4). 

Suppose we impose an ordering on the nodes of a 
given tree. Let [ ]T i  represent the i th node of tree T  in 
the given ordering. Formally, a mapping M from T  to 
T̂  is a set of pairs of integers {( , )}i j satisfying the 
following constraints:  

1. 1 i T≤ ≤ , ˆ1 j T≤ ≤ , where | |T  is the number of nodes 
in T . 

2. For any pair of 1 1( , )i j  and 2 2( , )i j  in M : 

 1 2i i= ⇔ 1 2j j=  (one-to-one), 

Figure 3. A web page segmented 
using our implementation of the VIPS 
algorithm [2]. (a) Blocks extracted 
after the first iteration. (b) Blocks 
extracted after the second iteration. 
(c) Resulting perceptual tree 
structure. 
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 1[ ]T i  is an ancestor of 2[ ]T i ⇔ 1
ˆ[ ]T j  is an ancestor of 

2
ˆ[ ]T j  (ancestor relationship preserved) [8]. 

Then, the reward of a mapping M can be defined to be 
the sum of all individual rewards associated with each 
edit operation: 
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where ( )1t iγ λ→⎡ ⎤⎣ ⎦  and ( )2t jγ λ → ⎡ ⎤⎣ ⎦  represent insertion 
and deletion edit operations, respectively.  

Predicting Mappings 
Given this formalized notion of mapping between trees, 
we use the generalized perceptron algorithm for 
structured-prediction [3] to predict reasonable map-
pings between the visual structures of web pages. For 
this supervised learning algorithm, a training example 
is given by a pair ( ) ( )( , )i ix y , where the input variable 

( )ix   represents a pair of perceptual trees and the 
target variable ( )iy  represents the mapping between 
them.  

To predict good mappings, the algorithm learns how to 
weight (reward) shared features between a pair of 
perceptual blocks. Using these learned weights, the 
optimal mapping (that is, the mapping with the highest 
reward) can be calculated for a given tree pair. More 
formally, the algorithm learns a rewards-weight vector 
w
r

 such that ( ) ( )arg max ( , )i i
y

Ty w F x y=
r

, where ( )( , )iF x y  is 
a feature-counts vector containing the number of 

appearances of each feature in a given mapping. The 
feature-counts vector we use has the form 

# of inserts and deletes
# of matchings with matching tags
# of matchings with similar content

# of matchings with similar dimensions
# of matchings with similar positioning on page

# of matchings meeting none of the above
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Each iteration of stochastic gradient ascent executes 
the following sequence of operations until w

r
 con-

verges: 

 Pick a random training example: ( ) ( )( , )i ix y . 

 Compute ( ) ( )ˆ arg max ( , )t T i
yy w F x y= , where t  is the 

iteration variable. 

 Update ( 1) ( ) ( ) ( ) ( ) ( ) ˆ( ( , ) ( , ))t t t i i iw w F x y F x yα+ = + −
r r

, where 
( ) 1 / 1t tα = + is the learning rate. 

 

In each iteration, the optimal mapping ŷ  is computed 
for the given tree pair ( )ix , using the current rewards-
weight vector ( )tw . The algorithm for computing the 
optimal mapping between two unordered trees is NP-
complete. However, if we bound the number of leaves 
in even one tree, the exhaustive search algorithm runs 
in polynomial time [8]. The leaves of our trees corres-
pond to the smallest perceptual blocks that are 
returned by our VIPS implementation. By controlling 
segmentation granularity, we generate trees that have 
fewer than 20 leaf nodes, giving a reasonable bound on 
the running time of the algorithm. Dynamic program-

Figure 4. A mapping between two 
unordered trees, T  and T̂  [8]. A dotted 
line from a node in T  to a node in T̂  
indicates a matching operation. A node in 
T  and T̂   that is not touched by a dotted 
line should be added and deleted, 
respectively.  

 



  

ming solutions exist but introduce mapping constraints 
that greatly restrict the flexibility in choosing mappings 
between trees [10]. Furthermore, once we have 
learned a reward function that allows us to predict good 
mappings between perceptual trees, we can employ 
heuristic algorithms to predict mappings [8] instead of 
relying on exhaustive search. 

We are still in the process of generating training data to 
produce better predictions. Manually constructing 
mappings between tree pairs is very tedious; therefore, 
we are designing a graphical interface to aid in the 
process. With such an interface, we can even crowd-
source the task.  

Preliminary tests done with 
only a few mappings in the 
training set are promising. The 
reward weights corresponding 
to the various features are 
reasonable: the weight 
associated with “insertions and 
deletions” is negative, while 
the weights associated with 
matched pairs with “matching 
html tags”, “similar content”, 
and “similar dimensions” are 
large and positive. 

Synthesizing a new page 
Given a mapping between two 
page trees, we can synthesize 
a new page in which the 
content from one page has 
been adapted to the layout of 
another. Since all the graphi-

cal content of a page is contained within the leaf nodes 
of its tree, we consider only the image of the leaf nodes 
of the content page under the computed mapping.  If 
these nodes are all mapped to blocks in the layout tree, 
we are finished.  If some nodes are not mapped, we 
must determine approximate mappings in order to 
ensure that we transfer all of the content from our 
current design.  We accomplish this by collapsing the 
unmatched blocks into their siblings or ancestors, 
depending upon which of these blocks have the best 
mappings; see Figure 1(c). The synthesized pages 
shown in Figure 5 were constructed using this method. 

Conclusions 
This work-in-progress introduced a novel technique for 
automatically retargeting the content of a web page 
onto the layout of any other web page. This technique 
allows users to quickly realize new alternative designs 
for their web pages without restrictions on content. We 
have observed that our algorithmic pipeline produces 
reasonable results when mappings are manually 
defined, and the results of the mapping predictor 
trained with only a few examples are likewise encour-
aging. We are currently collecting more training data to 
produce better predictions, which we hope will result in 
a fully automated retargeting pipeline.  

After that, the next step is to build a graphical interface 
which leverages this technique. Since there could be 
many reasonable ways to actually retarget content onto 
different layouts, presenting the user with a gallery of 
options would allow for greater customization flexibility. 
By extending this pipeline, we could also support 
borrowing of style and layout separately. We plan to 
deploy this tool as a web application to do large-scale 
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empirical studies on how these methods 
would effect the quality of designs produced. 
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Figure 5. Two synthesis results (continued from 
previous page). Mappings were manually defined. 
(a) Content page, (b) layout pages, (c) synthe-
sized pages. Zoom for more detail. 
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