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Abstract

Distributed key-value stores employ replication for high availability. Yet, they do not always effi-
ciently take advantage of the availability of multiple replicas for each value, and read operations often
exhibit high tail latencies. Various replica selection strategies have been proposed to address this
problem, together with local request scheduling policies. It is difficult, however, to determine what is
the absolute performance gain each of these strategies can achieve. We present a formal framework
allowing the systematic study of request scheduling strategies in key-value stores. We contribute a
definition of the optimization problem related to reducing tail latency in a replicated key-value store
as a minimization problem with respect to the maximum weighted flow criterion. By using schedul-
ing theory, we show the difficulty of this problem, and therefore the need to develop performance
guarantees. We also study the behavior of heuristic methods using simulations that highlight which
properties enable limiting tail latency: for instance, the EarliestFinishTime strategy—which uses
the earliest next available time of servers—exhibits a tail latency that is less than half that of state-
of-the-art strategies, often matching the lower bound. Our study also emphasizes the importance
of metrics such as the stretch to properly evaluate replica selection and local execution policies.

Keywords: Online Scheduling, Key-Value Store, Replica Selection, Tail Latency, Lower Bound

1 Introduction

Online services are used by a large number of users
accessing ever-increasing amounts of data. One
major constraint is the high expectation of these
users in terms of service responsiveness. Studies

have shown that an increase in the average latency
has direct effects on the use frequency of an online
service, e.g., experiments at Google have shown
that an additional latency of 400 ms per request
for 6 weeks reduced the number of daily searches
by 0.6% (Brutlag, 2009).
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In modern cloud applications, data storage
systems are important actors in the evolution of
overall user-perceived latency. Considerable atten-
tion has been given, therefore, to the performance
predictability of such systems. Serving a single
user request usually requires fetching multiple
data items from the storage system. The overall
latency is often that of the slowest request. As a
result, a very small fraction of slow requests may
degrade the overall service latency for many users.
This problem is known as the tail latency problem.
In large-scale deployments of cloud applications,
it has been observed that the 95th and 99th per-
centiles in the distribution of query latencies show
values that can be several orders of magnitude
higher than the median (Atikoglu, Xu, Frachten-
berg, Jiang, & Paleczny, 2012; Dean & Barroso,
2013).

In this study, we focus on the popular class of
storage systems that are key-value stores, where
each value is simply bound to a specific key (De-
Candia et al., 2007; Lakshman & Malik, 2010).
These systems scale horizontally by distributing
responsibility for fractions of the key space across
a large number of storage servers. They ensure
disjoint-access parallelism, high availability, and
durability by relying on data replication over sev-
eral servers. As such, read requests may be served
by any of these replica.

Replica selection strategies dynamically sched-
ule requests to different replicas in order to reduce
tail latency (Jaiman, Ben Mokhtar, Quéma, Chen,
& Rivière, 2018; Jiang, Xie, Zhou, Fang, & Wang,
2019; Suresh, Canini, Schmid, & Feldmann, 2015).
When the request reaches the selected replica, it is
inserted into a queue and a local scheduling strat-
egy may decide to prioritize certain requests over
others. These combinations of global and local
strategies are well adapted to the distributed na-
ture of key-value stores, as they assume no omni-
scient or real-time knowledge of the status of each
replica, or of concurrently-scheduled requests. It
remains difficult, however, to systematically assess
their potential. On the one hand, there is no clear
upper bound on the performance that a global,
omniscient strategy could theoretically achieve.
On the other hand, it is difficult to determine what
is the impact of using only local or partial informa-
tion on achievable performance. Our goal in this
paper is to bridge this gap, and equip designers
of replica selection and local scheduling strategies

with tools enabling their formal evaluation. By
modeling a corresponding scheduling problem, we
develop a number of guarantees that apply to a
variety of designs.
Outline. We make the following contributions:

� a formal model to describe replicated key-value
stores and the scheduling problem associated to
the minimization of tail latency (Section 3);

� an optimal polynomial-time offline algorithm,
an NP-completeness result and a lower bound
on the competitive ratio of any online algorithm
for related scheduling problems (Section 4);

� online heuristics to solve the online optimiza-
tion of maximum weighted flow, representing
compromises in locally available information
at the different servers of the key-value store
(Section 5);

� the comparison of these heuristics in extensive
simulations (Section 6).

The algorithms, as well as the related code,
data and analysis, are available online1. A shorter
version of this work has also been published at
EuroPar 2021 (Ben Mokhtar et al., 2021).

2 Related Work

We review related work on key-value stores and
systems contributions for reducing latency, and on
latency minimization in scheduling theory.

2.1 Tail Latency in Key-Value Stores

The principles of key-value stores were first doc-
umented by Amazon with Dynamo (DeCandia et
al., 2007). Cassandra (Lakshman & Malik, 2010)
is a widely-used open-source key-value store, fol-
lowing principles similar to that of Dynamo; other
popular key-value stores include Redis (Carlson,
2013), memcached (Jose et al., 2011), and docu-
ment stores such as MongoDB (Chodorow, 2013).

Key-value stores implement data partitioning
for horizontal scalability. Typically, data is spread
over a cluster of servers using consistent hashing.
This consists in treating the output of a hashing
function as a ring; each server is then assigned
a position on this circular space and becomes
responsible for all data between it and its prede-
cessor. The position of a data item is decided by

1https://doi.org/10.6084/m9.figshare.21750605.v1

https://doi.org/10.6084/m9.figshare.21750605.v1
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hashing the corresponding key (DeCandia et al.,
2007; Lakshman & Malik, 2010). Replication is
implemented on top of data partitioning, by du-
plicating each data item on the successors of its
assigned server.

Various designs have been proposed to im-
prove response time and in particular reduce tail
latency in key-value stores. They include using
redundant requests (Vulimiri et al., 2013; Wu,
Yu, & Madhyastha, 2015), performing smart re-
source allocation (Didona & Zwaenepoel, 2019),
or employing hybrid scheduling (Delgado, Didona,
Dinu, & Zwaenepoel, 2016; Delgado, Dinu, Ker-
marrec, & Zwaenepoel, 2015). We are interested in
this paper in replica selection strategies (Jaiman
et al., 2018; Jiang et al., 2019; Suresh et al., 2015).
They seek to avoid that a request be sent to
a busy server when a more available one would
have answered faster. The server receiving a re-
quest (the coordinator) is generally not the one in
charge of the corresponding key. All servers know,
however, the partitioning and replication plans.
Coordinators can, therefore, associate a key with
a list of replicas and select the most appropriate
server to query. Cassandra uses Dynamic Snitch-
ing (Lakshman & Malik, 2010), which selects the
replica with the lowest average load over a time
window. This strategy is prone to instabilities, as
lowly-loaded servers tend to receive swarm of re-
quests. C3 (Suresh et al., 2015) uses an adaptive
replica selection strategy that can quickly react
to heterogeneous service times and mediate this
instability. Dynamic snitching and C3 both as-
sume that values are served with the same latency.
This does not reflect the reality of storage work-
loads, where values may be highly heterogeneous
in size (Atikoglu et al., 2012). Requests for small
values may be scheduled behind requests for large
values, creating a head-of-line blocking problem
and increasing tail latency. Coordinator servers
only know the requested key and they do not
know the size of data items they do not hold. This
makes inferring the service time of a request dif-
ficult, as the workload is not known in advance.
Héron (Jaiman et al., 2018) proposes to address
this problem by propagating across the cluster the
identity of values whose size is over a threshold,
together with load information and pending re-
quests to such large values. This information is
stored at each coordinator using a Bloom filter,
and Héron avoids scheduling requests for small

values behind pending requests for large values.
Size-aware sharding (Didona & Zwaenepoel, 2019)
avoids head-of-line blocking on a specific server,
by specializing some of its cores to serve only re-
quests for large values. Local scheduling can take
into account the specificities of the data struc-
ture used for storing updates to the local values
under write-heavy workloads, such as with Log-
Structured Merge Key-Value Stores (Balmau et
al., 2020). Other systems, such as REIN (Reda,
Canini, Suresh, Kostić, & Braithwaite, 2017) or
TailX (Jaiman, Mokhtar, & Rivière, 2020), fo-
cus on the specific case of multi-get operations,
whereby multiple keys are read in a single oper-
ation. We intend to consider multi-get queries in
our future work, as an extension of our formal
models.

All the solutions mentioned above empirically
improve tail latency under the considered test
workloads. There is, however, no strong evidence
that no better solution exists as the proposed
heuristics are not compared to any formal ground.
In contrast, and similarly to our objective, Li,
Sharma, Ports, and Gribble (2014) propose a
single-node model of a complete hardware, appli-
cation and operating system stack using queueing
theory. This allows determining expected tail la-
tencies in the modeled system. The comparison of
the model and an actual hardware and software
stack shows important discrepancies. The au-
thors were able to identify performance-impacting
factors (e.g., request re-ordering, limited concur-
rency, non-uniform memory accesses, etc.) and
address them, matching close to optimal perfor-
mance under the knowledge of predictions from
the model. Our goal is to be an enabler for such in-
formed optimization and development for the case
of distributed (i.e., multi-node) storage services.

2.2 Latency in Scheduling Theory

Minimization of latency, i.e., the time a request
spends in the system, is commonly approached as
the optimization of flow time in theoretical works,
and a great diversity of scheduling problems deal
with this criterion. The functions that usually con-
stitute the objective to minimize are the maximum
flow (also known as max-flow, or Fmax) and the
average flow (also known as sum-flow, or

∑
Fi).

We focus on the former, as explained in Section 3.
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Minimizing maximum flow. It is well-known
that the maximum flow criterion is minimized
by the First In First Out (FIFO) strategy on a
single-machine (Bender, Chakrabarti, & Muthukr-
ishnan, 1998). This scheme is also (3 − 2/m)-
competitive on m machines with and without pre-
emption (Bender et al., 1998; Mastrolilli, 2004).
Ambühl and Mastrolilli (2005) gave a (2 − 1/m)-
competitive algorithm for the preemptive case,
which is the best possible competitive ratio for this
problem. The maximum weighted flow (maxwiFi)
is sometimes considered in order to give more im-
portance to some requests. For example, Bender
et al. (1998) introduced the stretch Si, where the
weight wi is the inverse of the request service
time pi (Si = Fi/pi), to express and study the
notion of fairness for scheduling HTTP requests
in web servers. For single-machine problems, they
proved that no polynomial-time algorithm can ap-
proximate the offline non-preemptive problem of
optimizing the max-stretch criterion (i.e., Smax =
maxSi) within a factor Ω(n1−ε) for any ε >
0, unless P = NP . They also exhibit a Fully
Polynomial-Time Approximation Scheme for the
preemptive case, and they derive an O(

√
∆)-

competitive algorithm from the Earliest Deadline
First strategy, with ∆ being the ratio between
the largest processing time to the smallest one
(∆ = max pi/min pi). Later, Legrand, Su, and
Vivien (2008) presented a polynomial-time algo-
rithm to solve the offline minimization of maxi-
mum weighted flow time on unrelated machines
when preemption is allowed. The FIFO strategy
is also shown to be ∆-competitive for the on-
line problem of minimizing the max-stretch on

one machine, and a lower bound of 1
2∆
√

2−1 is
derived. Saule, Bozdağ, and Çatalyürek (2012)
improved this result by showing a lower bound
of 1

2 (∆ + 1) on a single server and 1
2 ( ∆
m+1 + 1)

on m servers. Finally, Dutot, Saule, Srivastav,
and Trystram (2016) closed the online problem
of minimizing the stretch on a single machine by
proving a lower bound of 1

2∆(
√

5 − 1) + 1, which
is tight. Some additional works deal with the min-
imization of maximum weighted flow time under
different assumptions and models (Anand, Bring-
mann, Friedrich, Garg, & Kumar, 2017; Bansal
& Cloostermans, 2016; Lucarelli, Moseley, Thang,
Srivastav, & Trystram, 2019). Tables 1 and 2
provide a summary of results on max-flow mini-
mization.

Data replication in scheduling. An impor-
tant consequence of data replication is that a
given request i cannot be executed by any server;
it must be processed by a server in the subset
of replicas Mi able to handle it. In scheduling
literature, this constraint is known as restricted
assignment, multipurpose machines, processing set
restrictions or even eligibility constraints. The
great majority of problems involving such con-
straints focus on makespan minimization in vari-
ous settings (Lee, Leung, & Pinedo, 2013; Leung
& Li, 2008, 2016). Anand et al. (2017) give a
strong lower bound of Ω(m) on the competitive ra-
tio of any online algorithm trying to minimize the
maximum flow time when unstructured processing
set restrictions are considered. Brucker, Jurisch,
and Krämer (1997) used a routine based on the
minimum cost matching problem to solve prob-
lems Q|Mi, pi = 1|∑wiUi and P |Mi, ri, pi =
1|∑wiUi in polynomial time. Another notable re-
sult is that P |Mi, pmtn|∑Ci can be solved by
transforming any preemptive schedule in a non-
preemptive one without worsening the objective.

3 Formal Model

We propose a formal model of a distributed key-
value store. This section describes the theoretical
framework and states the optimization problem
related to the minimization of tail latency.

3.1 Application and Platform

The considered problem is to schedule a set of n
requests T = {T1, . . . , Tn} on m parallel servers
M = {M1, . . . ,Mm} in a replicated key-value
store. Each request contains a key that is used to
designate a specific value (or data item) in the
store. Answering (or processing) the request con-
sists in sending the corresponding value to the
initiator of the request. As key-value stores repli-
cate each data item on k servers (k is called the
replication factor), we get a multipurpose ma-
chines problem, where a given server may execute
a request only if it holds the corresponding value.
We define Mi ⊆ M as the set of machines able
to process the request Ti. In Graham’s α|β|γ no-
tation of scheduling problems, this constraint is
commonly denoted byMi in the β-part. Note that
in our case, |Mi| = k for all Ti.
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Table 1: Complexity of max-flow minimization problems. P , Q and R respectively denote parallel
machines, related machines, and unrelated machines. maxwiFi, Fmax and Smax respectively denote
maximum weighted flow, max-flow and max-stretch criteria. Arrows are reduction relationships (A→ B
means that A is a special case of B). A sign + (resp. -) means that the problem is NP-hard (resp.
polynomially solvable) via the reduction relationship. Incompatible problem designations are noted ∅.

Objective Constraints 1 P Q R

maxwiFi ri + + + +

ri, pmtn - - - p. solvable (2008)

ri, pmtn∗ - NP-hard [Th. 3] + +

◦ p. solvable (1993) + + +

pi = p - - p. solvable [Th. 1] ∅

Fmax ri p. solvable (1998) NP-hard [Sec. 4.1] + +

Smax ri NP-hard (1998) + + +

◦ - s. NP-hard (2021) + +

Table 2: Results on maximum (weighted) flow minimization. P |Mi denotes parallel machines with
processing set restrictions. We have P → Q → R and P → P |Mi → R. (F)PTAS stands for (Fully)
Polynomial-Time Approximation Scheme. any indicates that the approximation ratio applies to any
algorithm of the corresponding type. The approximation ratio of an online algorithm should be seen
as a competitive ratio.

Objective Env. Preemption Algorithm Type Approx./Competitive ratio Ref.

maxwiFi 1 Non-preemptive any Online ≥ ∆ + 1 Th. 4

P Non-preemptive any Online ≥ Ω(wmax/wmin) (2016)

R Preemptive Legrand et al. (2008) Offline Optimal (1978)
(1984)
(2008)

Fmax P Non-preemptive FIFO Online 3− 2/m (1998)
any Online ≥ 2− 1/m (2005)

Preemptive FIFO Online 3− 2/m (2004)
Ambühl and Mastrolilli (2005) Online 2− 1/m (2005)
any Online ≥ 2− 1/m (2005)

P |Mi Non-preemptive any Online ≥ Ω(m) (2017)

Q Non-preemptive Double-Fit Online 13.5 (2016)
Slow-Fit Online ≥ Ω(m) (2016)
Greedy Online ≥ Ω(logm) (2016)

R Non-preemptive Bansal and Kulkarni (2015) Offline O(logn) (2015)

Bansal and Kulkarni (2015) PTAS 1 + ε in nO(m/ε) (2005)
Mastrolilli (2004) FPTAS 1 + ε in O(nm(n2/ε)m) (2004)

Smax 1 Non-preemptive FIFO Online ∆ (2008)

WDA Online ∆(
√

5− 1)/2 + 1 (2016)

any Online ≥ ∆(
√

5− 1)/2 + 1 (2016)

any Offline ≥ Ω(n1−ε) (1998)

Preemptive stretch-so-far EDF Online O(
√

∆) (1998)
Bender et al. (1998) PTAS 1 + ε (1998)

P Non-preemptive FIFO Online 2∆ + 1 (2012)
any Online ≥ Ω(∆) (2016)
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There is no precedence relations between re-
quests. We limit ourselves to the non-preemptive
problem, as real implementations of key-value
stores generally do not interrupt requests. In ad-
dition, each request Ti has a processing time pi
that is equal to the average network latency L plus
data sending time ziB̃, which is proportional to
the size zi of the value this request is looking for
(factor B̃ represents the inverse of the bandwidth),
i.e., pi = ziB̃ + L. We consider the online model,
that is to say, a request is unavailable before its
release time ri (ri ≥ 0) and its properties are un-
known as well. Unless stated otherwise, the model
is clairvoyant, i.e., the exact processing time pi of
a request Ti becomes known at release time ri.

3.2 Problem Statement

There is no objective criterion that can straight-
forwardly represent the optimization of tail la-
tency, as there is no unique formal definition of
this system concept. Different works consider the
95th percentile, the 99th percentile, or the max-
imum of the latency distribution, and it should
be highlighted that we do not want to degrade
average performance too much. We propose to ap-
proach the tail latency optimization by minimizing
a well-known criterion in online scheduling the-
ory: the maximum time spent by requests in the
system, also known as the maximum flow time
maxFi, where Fi = Ci−ri expresses the difference
between the completion time Ci and the release
time ri of a request Ti.

However, it seems unfair to wait longer for a
request for a small value to complete than for a
large one: for example, we know that a user’s tol-
erance for the response time of a real system is
higher when a process considered to be heavy is in
progress. Hence, the latency should be weighted
to emphasize the relative importance of a given
request; we are looking for a fairness property. To
formalize this idea, we associate a weight wi to
each request Ti. The definition of this weight is
flexible, in order to allow the key-value store sys-
tem designer to consider different kinds of metrics.
We focus on three weighting strategies in our sim-
ulations. First, the flow time (wi = 1) gives an
importance to each request that is proportional
to its cost, which favors requests for large values.
Second, the stretch (wi = 1/pi) gives the same im-
portance to each request, but this favors requests

for small values because they are more sensitive
to scheduling decisions. Third, the inverse of the
square root of the processing time (wi = 1/

√
pi)

constitutes a compromise between the two previ-
ous cases. This last weighting strategy is denoted
as the weak stretch in this paper.

In summary, our optimization problem consists
in finding a schedule minimizing the maximum
weighted flow time maxwiFi under the following
constraints:

� There are m parallel identical servers.
� Multipurpose machines: each request Ti is exe-

cutable by a subset of servers Mi.
� Online model: each request Ti has a release time
ri ≥ 0 and request characteristics (Mi, ri, pi
and wi) are not known before time ri.

We note this problem P |Mi, online−ri|maxwiFi
in Graham’s notation. A solution is to find a
schedule that provides each request Ti with an ex-
ecuting server Mj and a starting time σi ≥ ri.
The server Mj must hold the required value (Mj ∈
Mi), and there are no simultaneous executions:
two different requests cannot be executed at the
same time on the same server.

4 Max-Flow Minimization

In order to evaluate the performance of replica se-
lection heuristics, it would be interesting to derive
optimal or guaranteed algorithms for the offline
version of our problem, namely the minimization
of the maximum weighted flow time of requests, or
even for restricted variants. We show here that we
can derive optimal or approximation algorithms
when requests are all released at the same time,
but as soon as we introduce different release dates
or processing set restrictions, the problem gets
harder to tackle. Nevertheless, a lower bound can
be computed.

4.1 Zero Release Times

We first focus on the non-preemptive problem
of minimizing the maximum weighted flow time
when all requests are available at time 0. Re-
mark that in this case, minimizing the maximum
weighted flow time is strictly equivalent to mini-
mizing the weighted makespan maxwiCi.
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Algorithm 1 Max-Weight

Schedule requests in non-increasing order of
wi and put each request on the machine that
finishes it the earliest

Let us consider the Max-Weight schedul-
ing algorithm (Algorithm 1), which schedules re-
quests by non-increasing order of weights wi. It
is known that Max-Weight is optimal on a sin-
gle server (Ben Mokhtar et al., 2021). It does not
extend to m parallel identical machines in the gen-
eral case, but it solves the related machines case
when all requests have homogeneous size p.

Theorem 1. Max-Weight (Algorithm 1) solves
Q|pi = p|maxwiCi in polynomial time.

Proof Let OPT be an optimal schedule with two re-
quests Tj and Tk such that wj < wk and where Tk
completes at time Cj + c with c > 0 (on any server).

Their contribution is C = max(wjCj , wk(Cj +
c)) = wk(Cj+c) because wjCj < wkCj < wk(Cj+c).
If we switch Tj and Tk, then the contribution is
C′ = max(wkC

′
k, wj(C

′
k + c)) because pj = pk = p.

By construction, C′k + c = Cj + c, i.e., C′k = Cj . We
have wkC

′
k = wkCj < wk(Cj + c) and wj(C

′
k + c) =

wj(Cj + c) < wk(Cj + c). Hence, C′ < C.
It follows that we can transform OPT in another

optimal schedule by switching repeatedly non-sorted
requests. Max-Weight schedules requests one by one
in non-increasing order of wi and put each request
on the machine that completes it the earliest. Then,
Max-Weight is optimal because it ensures that if Tj
and Tk are two requests such that wj ≥ wk, then Tk
completes after Tj (i.e., Ck = Cj + c with c > 0).

�

On m identical machines, the problem with
arbitrary processing times is trivially NP-hard
even with unit weights because P ||Cmax is NP-
hard (Lenstra, Kan, & Brucker, 1977). More-
over, minimizing the max-stretch (P ||Smax) is also
NP-Hard (Benoit et al., 2021). We prove that
Max-Weight is an approximation algorithm.

Theorem 2. Max-Weight (Algorithm 1) com-
putes a (2 − 1/m)-approximation for the problem
P ||maxwiCi, and this ratio is tight.

Proof The bound has been established by Hall (1993)
and Ben Mokhtar et al. (2021). We prove that it is

asymptotically tight by considering the instance with
m machines and n = m(m−1)+1 requests {Ti}1≤i≤n
with the following weights and processing times:

� wi = W + 1, pi = 1 for all 1 ≤ i < n;
� wn = W , pn = m.

The request Tn will be scheduled last by the
Max-Weight algorithm, which gives an objective of
maxwiCi = (2m− 1)W , whereas an optimal schedule
OPT starts this request at time 0 and has an objec-
tive of maxwiC

OPT
i = m(W + 1). On this instance,

the approximation ratio (2− 1/m) ·W/(W + 1) tends
to 2− 1/m as W →∞. �

The two proofs of this section may be eas-
ily adapted to a slightly more general problem
where the objective is to minimize maxwiFi when
all release times are identical, but not necessarily
equal to 0, i.e., ri = r ≥ 0 for all i. However, in
this case there is no equivalence anymore between
maxwiCi and maxwiFi, because of the weighted
objective: maxwiFi = maxwi(Ci− r), which does
not simplify.

4.2 Non-Zero Release Times

Legrand et al. (2008) solved the scheduling prob-
lem R|ri, pmtn|maxwiFi in polynomial time us-
ing a linear formulation of the model. This offline
problem is very similar to the one we are interested
in, as the platform relies on unrelated machines,
which generalizes our parallel multipurpose ma-
chines environment (P |Mi|maxwiFi is a special
case of R||maxwiFi (Leung & Li, 2008)). In fact,
it only differs on one specific aspect: it allows pre-
empting and migrating jobs between machines,
that is to say, resuming the execution of an inter-
rupted job on a different machine, which we do
not permit in our model.

We establish below the complexity of the prob-
lem P |ri, pmtn∗|maxwiFi, where non-migratory2

preemption is allowed. Interestingly, preventing
migration makes the problem NP-complete. The
proof of this result consists in a reduction from
the NP-complete decision problem associated to
P ||Cmax (Lenstra et al., 1977).

Definition 1 (NonMigratory-Dec(T,M,B)).
Given a set of requests T , a set of machines M

2We express non-migratory preemption as pmtn∗ in the β-
part, not to be confused with the classic pmtn constraint.
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and a bound B, is there a valid non-migratory pre-
emptive schedule where each request Ti completes
before time ri +B/wi?

Theorem 3. NonMigratory-Dec(T,M,B) is
NP-complete.

Proof We prove the NP-completeness of this prob-
lem by reduction from P ||Cmax, which is well-known
to be NP-complete (Lenstra et al., 1977). To prove
that NonMigratory-Dec(T,M,B) belongs to NP,
we consider solutions where the number of preemp-
tions of each job is bounded by n, as it is useful to
preempt a job only when a new job is released. The
validity of such a solution can then be verified in
polynomial time.

Building instance. We consider an instance I1 of
the decision version of P ||Cmax: given a set of re-
quests T ′, a set of servers M ′ and a bound B′, is there
a valid non-preemptive schedule where each request
completes before time B′? We construct the following
instance I2 of NonMigratory-Dec(T,M,B) from
I1. We first set M = M ′ and B = B′. For each re-
quest T ′i we define a request Ti with processing time
pi, a release time ri = 0 and a weight wi = 1. I2 can
clearly be constructed in polynomial time in the size
of I1.

Equivalence of problems. A solution to I1 trivially
constitutes a non-preemptive (thus non-migratory)
solution to I2.

Assume now that I2 has a solution Π. It means
that for each server Mj , we know a set Aj ⊆ T
of requests that are preemptively scheduled on Mj

exclusively (recall migration is not allowed), and
maxTi∈Aj Ci is the makespan of Mj in Π. As Π is
a solution to I2, Ci ≤ ri + B/wi = B for all i (by
definition), and thus, for all j, maxTi∈Aj Ci ≤ B.

For each request Ti, we define the associated set
of ni processing intervals as Λi = {(σi,k, δi,k) s.t. 1 ≤
k ≤ ni}, where σi,k and δi,k respectively denote the
start time and the duration of the k-th processing
interval of Ti. Note that for all i, k, σi,k+δi,k ≤ σi,k+1.

We can build a solution Π′ to I1 by removing pre-
emptions from Π, i.e., for each request Ti, we rearrange
its ni intervals (without migrating them) such that
for all k, σ′i,k + δi,k = σ′i,k+1. This is clearly feasible
in polynomial time, and as we only permute process-
ing intervals, it does not change the server makespan
values. Therefore,

max
Ti∈Aj

C′i = max
Ti∈Aj

Ci ≤ B = B′.

�

4.3 Online Problems

We now study problems in an online context,
where properties of requests are not known before
their respective release time. We prove that there
exists a lower bound of ∆ + 1 (where ∆ is the
ratio between maximum and minimum processing
times) on the competitive ratio of any online algo-
rithm trying to minimize the maximum weighted
flow time on a single server, as outlined in the
following theorem.

Theorem 4. The competitive ratio of any on-
line algorithm is at least ∆ + 1 for the problem
1|online−ri|maxwiFi.

Proof Let a, b be values such that a ≥ b > 0. By con-
tradiction, suppose there exists a ρ-competitive online
algorithm A for the problem 1|online−ri|maxwiFi
such that ρ < a/b + 1. We now build an adversary
request submission strategy that will lead to exceed-
ing this ratio when ∆ = a/b. The adversary sends two
requests T1 and T2 with the following characteristics:

� r1 = 0, p1 = a, w1 = 1;
� r2 = σ1 + ε, p2 = b, w2 = W , where σ1 is the

start time of T1 when scheduled by A, ε is an
arbitrary value such that 0 < ε < b(a/b+1−ρ),
and W = 2a/b+ 1.

When scheduled by A, T1 completes at time σ1 + a
and T2 completes at time σ1 +a+b in the best case: as
the adversary sends T2 at time σ1 + ε, T1 has already
started and we must wait for its completion. Thus, in
this schedule, w1F1 = σ1 +a and w2F2 ≥W (σ1 +a+
b− (σ1 + ε)) = W (a+ b− ε). Therefore,

maxwiFi ≥ max(σ1 + a,W (a+ b− ε))
≥W (a+ b− ε).

We now study the performance of an offline schedule
OFF on this instance, which executes T2 first if and
only if σ1 < a − ε. We will see that OFF is indeed
optimal, as it always reaches an objective of Wb, which
is a lower bound on the weighted flow for request T2.
We consider two cases in the analysis, depending on
whether T2 is scheduled first or not.

Case 1: The algorithm A decides to execute T1 before
time a − ε, i.e., σ1 < a − ε. In the offline schedule,
T2 is executed first at time r2 = σ1 + ε, which gives
w2F

OFF
2 = Wb, and then T1 at time σ1 +ε+ b, which

gives

w1F
OFF
1 = σ1 + ε+ b+ a

< a− ε+ ε+ b+ a = 2a+ b.



Springer Nature 2021 LATEX template

9

Algorithm 2 Max-Flow

1: when the machine is idle at time t do
2: Execute the pending request i whose cur-

rent weighted flow wi(t+ 1− ri) is the highest

As we have chosen W such that W = 2a/b + 1, we
have Wb = 2a + b. Hence, w1F

OFF
1 < Wb, and then

maxwiF
OFF
i = w2F

OFF
2 = Wb.

Case 2: The algorithm A decides to execute T1 after
time a − ε, i.e., σ1 ≥ a − ε. In the offline schedule
OFF , T1 is executed first at time r1 = 0, which gives
w1F

OFF
1 = a, and then T2 at time r2 = σ1 + ε ≥ a,

which gives w2F
OFF
2 = Wb. We have a < Wb, hence,

maxwiF
OFF
i = w2F

OFF
2 = Wb.

In both cases, the objective value of the offline sched-
ule OFF is Wb (and hence OFF is optimal). Thus,

maxwiFi
maxwiF

OFF
i

≥ W (a+ b− ε)
Wb

=
a

b
+ 1− ε

b
.

As ε < b(a/b+ 1− ρ), we have

maxwiFi
maxwiF

OFF
i

>
a

b
+ 1− b(a/b+ 1− ρ)

b
= ρ.

This contradicts the ρ-competitiveness of A, thus the
competitive ratio is at least a/b+ 1. Note that in this
instance, max pi = p1 = a and min pi = p2 = b, i.e.,
a/b = max pi/min pi = ∆. We conclude that the com-
petitive ratio of any online algorithm is at least ∆ + 1
for the problem 1|online−ri|maxwiFi. �

We now present an adaptation of the Max-
Weight algorithm to the online case and re-
stricted to unit requests, called Max-Flow (Al-
gorithm 2): at each time step t, we consider all
submitted requests at this time and schedule the
one whose flow (if processed now) is the largest.
This gives priority to the currently most impact-
ing requests. Unfortunately, even on unit requests,
this strategy does not lead to an approximation
algorithm, as outlined by the following theorem.

Theorem 5. The competitive ratio of Max-
Flow (Algorithm 2) is arbitrarily large for the
problem 1|online−ri, pi = 1|maxwiFi.

The proof (detailed in Appendix A) consists
in an adversary that first submits a set of k tasks
of weight k at time 0. Then, at each time step, a
new task is submitted with a weight slightly larger
than the previous one (the weight is increased by a
factor 1+1/k at each time step). An optimal strat-
egy consists in scheduling tasks with larger weight

as soon as they arrive, to prevent them from long
delays. Max-Flow schedules tasks in the order of
their submission, as it only computes the poten-
tial flow of scheduling each task in the next slot
and is not aware that some tasks may be largely
delayed. This results in a maximum weighted flow
that is larger than k times the optimal one.

4.4 Lower Bound

Our initial problem P |Mi, online−ri|maxwiFi
(i.e., with heterogeneous processing times, pro-
cessing set restrictions, arbitrary release times and
no preemption allowed) is far from being solvable
in polynomial time. It also seems highly diffi-
cult to get a reasonable approximation. Still, we
would like to have an idea of the best achiev-
able performance on a given instance, in order
to fairly compare various online heuristics. This
motivates the search of lower bounds to consti-
tute a formal baseline. In fact, the solution to
the preemptive problem R|ri, pmtn|maxwiFi pro-
vides such a lower bound (even if not tight for our
non-migratory problem). It is found by performing
a binary search on a Linear Program (Legrand et
al., 2008), followed by the reconstruction scheme
provided by Lawler and Labetoulle (1978). This
bound is used to assess the performance of prac-
tical heuristics in Section 6.

5 Online Heuristics

We recall that a solution to the general problem
P |Mi, online−ri|maxwiFi consists, for each re-
quest, in choosing a server among the ones holding
a replica of the requested data item as well as a
starting time for each request. These two decisions
appear at different places in a real key-value store:
the selection strategy Ru used by the coordinator
Mu gives a replica Ru(Ti) = Mr, whose execu-
tion policy Er defines the request starting time
Er(Ti) = σi. This section describes several online
replica selection heuristics and execution policies
that we then compare by simulation.

From now on, we consider the sub-problem
where each replication groupMi follows the stan-
dard configuration of key-value store implemen-
tations, that is, the cluster is a circular, ordered
set of servers M1,M2, . . . ,Mm, and each Mi is
an interval of servers of size k. In other words,
Mi = {Mj ,Mj+1, . . . ,Mj+k−1} for all Ti, where
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Mj is the first server storing the requested data
item of Ti. We show an example of this structure
in Fig. 1.

M1 M2

M3

M4M5

M6

Figure 1: A cluster where replication groups
follow a fixed-size interval structure. The ring rep-
resents the dataset, splitted over the servers of the
cluster. Each colored segment represents a parti-
tion of data that is stored on a particular server
and replicated on the two consecutive neighbors;
for example, the red partition is stored on server
M5 and replicated on servers M6 and M1.

5.1 Replica Selection

We consider several replica selection heuristics
that leverage different types of information on the
cluster state. Note that the perfect knowledge of
the cluster state is not achievable in a real system;
for instance, the information about the load of a
given server will often be slightly out of date. Sim-
ilarly, the information about the processing time
can only be partial, as the size of the requested
value cannot be known by the coordinator for
large scale data sets, and practical systems gener-
ally employ an approximation of this metric, e.g.,
by keeping track of size categories of values us-
ing Bloom filters (Jaiman et al., 2018). However,
we exploit this exact knowledge in our simulations
to estimate the maximal performance gain that a
given type of information allows. We now describe
selection heuristics.

Random. The replica is chosen uniformly at ran-
dom among compatible servers: Mr = randMi.
This strategy has no particular knowledge.

LeastOutstandingRequests (LOR). Let us
define Outu(Mj) to be the number of outstanding
requests sent from the coordinator Mu (where u
is the index of the coordinator machine) to server
Mj , i.e., the number of sent requests that received
no response yet. The chosen replica minimizes

Outu(Mj): Mr = argminMj∈Mi
Outu(Mj). It is

easy to implement, as it only requires local infor-
mation; in fact, it is one of the most commonly
used in load-balancing applications (Suresh et al.,
2015).

Héron. We also consider an omniscient ver-
sion of the replica selection heuristic used by
Héron (Jaiman et al., 2018). It identifies requests
for values whose size is larger than a threshold,
and avoids scheduling other requests behind such
a request for a large value by marking the chosen
replica as busy. When the request for a large value
completes, the replica is marked available again.
The replica is chosen among compatible servers
that are available according to the scoring method
of C3 (Suresh et al., 2015). The threshold is cho-
sen according to the wanted proportion of large
requests in the workload.

EarliestFinishTime (EFT). Let Avail(Mj) de-
note the earliest time when the server Mj becomes
available, i.e., the time at which it will have emp-
tied its execution queue. The chosen replica is the
one with minimum Avail(Mj) among compatible
servers: Mr = argminMj∈Mi

Avail(Mj). Knowing
Avail is hard in practice, because it assumes the
existence of a mechanism to obtain the exact cur-
rent load of a server. A real system would use a
degraded version of this heuristic.

EFT-Sharded (EFT-S). In this heuristic, we
specialize servers; there are small servers, which
execute only requests for small values, and large
servers, which execute all requests for large values
and some requests for small values when possible
(similarly to size-aware sharding technique (Di-
dona & Zwaenepoel, 2019)). Each request for a
large value is scheduled on large servers using the
EFT strategy, while each request for a small value
is scheduled on any server (small or large), also
using EFT.

For the following experiments, we define large
servers as the set of servers {Mb}1≤b≤m such that
b mod k = 0 (recall k is the replication factor).
This makes sure that one server in each replica-
tion group Mi is capable of treating requests for
large values, as each Mi is an interval of size k.
We define a threshold parameter ω to distinguish
between requests for small and large values: re-
quests with duration larger than ω are treated by
large servers only, while others can be processed
by all available servers.
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We derive the threshold ω from the size distri-
bution of stored values. In the best case, when all
servers in each replication group are perfectly bal-
anced, requests for small values are scheduled on
small servers only and requests for large values on
large servers only. It means that the total work is
k times larger than the work on large servers on
average. Let X be the random variable that mod-
els the size distribution of stored values, and fX
denote its probability density function. We denote
by p(X) = B̃X + L the duration of the corre-
sponding request (where B̃ is the inverse of the
bandwidth and L the latency), and by pω(X) the
duration if it is a large value (and zero otherwise),
that is:

pω(X) =

{
p(X) if p(X) ≥ ω,
0 otherwise.

Then, the expected work on large servers when
any request is submitted is

E [pω(X)] =

∫ ω−L
B̃

x=0

0fX(x)dx

+

∫ ∞
x=ω−L

B̃

(B̃x+ L)fX(x)dx.

It should be equal to the expected work when any
request is submitted, E[p(X)], divided by k. This
leads to finding ω such that

E [pω(X)] =
1

k
E[p(X)]. (1)

This heuristic has to be able to distinguish re-
quests for small and large values with respect
to ω; it could be achieved in practice with com-
bined Bloom filters, in a similar fashion than
Héron (Jaiman et al., 2018).

StaticWindow (SW). Requests are no longer
scheduled on reception, but every q time units,
where q is a parameter of the heuristic. The set
Q denotes the requests received during this win-
dow of q time units. Let t be the time at which
requests from Q must be scheduled (requests with
t < ri ≤ t + q form the next batch and must be
scheduled at time t+q). We assume here a central-
ized system, where a unique scheduler receives and
schedules all requests. The underlying idea is to
be able to make choices based on more exhaustive

Algorithm 3 Sufferage-SW

1: repeat every q time units
2: for all Ti ∈ Q do
3: ρ(Ti)← argminMj∈Mi

F(Ti,Mj)
4: ρ′(Ti)← argminMj∈Mi\ρ(Ti) F(Ti,Mj)
5: Suf(Ti)← F(Ti, ρ

′(Ti))−F(Ti, ρ(Ti))
6: end for
7: while Q is not empty do
8: Ts ← argmaxTi∈Q Suf(Ti)
9: Schedule Ts on ρ(Ts)

10: Q← Q \ {Ts}
11: Update ρ, ρ′ and Suf
12: end while

workload information than previous greedy heuris-
tics. This heuristic must therefore also decide the
order in which the requests of Q are scheduled.
We derive two versions.

Sufferage-SW (SSW). The Sufferage heuris-
tic (Maheswaran, Ali, Siegel, Hensgen, & Freund,
1999) inspired this strategy. Let F be the function
giving the estimated weighted flow F(Ti,Mj) =
wi(max(ri,Avail(Mj))+pi−ri) of Ti when sched-
uled on Mj as soon as possible. Let ρ(Ti) =
argminMj∈Mi

F(Ti,Mj) be the best server for Ti,
i.e., the one minimizing its weighted flow, and
ρ′(Ti) = argminMj∈Mi\ρ(Ti) F(Ti,Mj) be the sec-
ond best server for Ti. Then, we define the suffer-
age value Suf(Ti) = F(Ti, ρ

′(Ti))−F(Ti, ρ(Ti)) >
0 as the difference of weighted flow values on ρ′(Ti)
and ρ(Ti). The request we choose to schedule is
the one which suffers the most if we schedule it on
its second best server: Ts = argmaxTi∈Q Suf(Ti).
The chosen replica is ρ(Ts): Mr = ρ(Ts) =
argminMj∈Mi

F(Ts,Mj).
Request Ts is then removed from Q, and we

update sufferage values of remaining requests. Al-
gorithm 3 describes this procedure. This strategy
runs in time O(n2m) and uses a space O(n) per
time window.

MaxMin-SW (MSW). This strategy is inspired
from the Max-Min heuristic (Maheswaran et al.,
1999). We build a matrix Mat whose rows are
requests of set Q and columns are servers, where

Mat[Ti,Mj ] =

{
F(Ti,Mj) if Mj ∈Mi,

+∞ otherwise.
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Algorithm 4 MaxMin-SW

1: repeat every q time units
2: for all Ti ∈ Q do
3: for all Mj ∈M do
4: if Mj ∈Mi then
5: Mat[Ti,Mj ]← F(Ti,Mj)
6: else
7: Mat[Ti,Mj ]← +∞
8: end if
9: end for

10: end for
11: while Q is not empty do
12: Ts ← argmaxTi∈Q Fbest(Ti)
13: Mr ← argminMj∈M Mat[Ts,Mj ]
14: Schedule Ts on Mr

15: Q← Q \ {Ts}
16: Remove row Ts from Mat
17: Update column Mr in Mat
18: end while

The best weighted flow of request Ti is Fbest(Ti) =
F(Ti, ρ(Ti)) = minMj∈M Mat[Ti,Mj ]. Then, we
schedule the request Ts whose best objective value
is the highest: Ts = argmaxTi∈Q Fbest(Ti). The
chosen replica minimizes the objective value of Ts:
Mr = argminMj∈M Mat[Ts,Mj ].

The request Ts is then removed from the set Q,
as well as the related row in the matrix Mat, and
the column Mr is updated with new values. These
operations are repeated until Q is empty (see Al-
gorithm 4). This strategy runs in time O(n2m)
and uses a space O(nm) per time window.

Table 3 summarizes the properties of our se-
lection heuristics.

Table 3: Properties of replica selection heuristics.
Ack denotes the need to acknowledge the com-
pletion of sent requests. Avail is the knowledge of
available times of each server. pi denotes the pro-
cessing times of local requests and ri their release
times. n is the number of requests in Q and m is
the total number of servers.

Heuristic Knowledge Type Complexity

Random None Distributed O(1)
LOR Ack Distributed O(m)

Héron Ack, pi ≥ ω Distributed O(m)
EFT Avail Distributed O(m)

EFT-S Avail, pi ≥ ω Distributed O(m)
SSW Avail, pi, ri Centralized O(n2m)
MSW Avail, pi, ri Centralized O(n2m)

Table 4: Properties of local scheduling heuristics.
pi denotes the processing times of local requests
and ri their release times. N is the number of local
requests in Q.

Heuristic Knowledge Complexity

FIFO None O(1)
MWF pi, ri O(N)

5.2 Local Queue Scheduling Policies

We now present scheduling policies locally en-
forced by replicas. Each replica handles an execu-
tion queue Q in which coordinators send requests,
and then decides of the order of executions. In a
real key-value store, these policies should be able
to extract exact information on the local values,
and in particular their sizes, as a single server
is responsible for a limited number of keys. We
consider the following local policies.

FirstInFirstOut (FIFO). This strategy is com-
monly used as a local scheduling policy in key-
value stores (e.g., Cassandra (Lakshman & Malik,
2010)). The requests in Q are ordered by non-
increasing insertion time, i.e., the first request that
entered the queue (the one with the minimum ri)
is the first to be executed.

MaxWeightedFlow (MWF). We propose an-
other strategy, which reorders requests. When the
server becomes available at time t, the next re-
quest Ts to be executed is the one whose weighted
flow is the highest: Ts = argmaxTi∈Q wi(t+pi−ri).
We consider that pi is always known, as the re-
quest Ti necessarily looks for a value that is hosted
on the local server. Consequently, we know the size
of the value, and the request processing time can
be estimated accordingly. MWF is a general exe-
cution policy that considers the request weights as
defined by the system designer. In any case, star-
vation is not a concern: focusing on the maximum
weighted flow ensures that all requests will even-
tually be processed. Note that when coupled with
the stretch metric (wi = 1/pi), MWF is equiva-
lent to the strategy that selects the request with
maximal stretch. This favors requests for small
values in front of requests for large ones, and thus
is a way to mitigate the problem of head-of-line
blocking. Table 4 summarizes the properties of our
local heuristics.
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6 Simulations

We analyse the behavior of previously-described
strategies and compare them with each other in
simulations. We built a discrete-event simulator
based on Python 3.8 and the salabim package3

(v21.0.1) for this purpose, which mimics a real
key-value store: coordinators receive user requests
and send them to replicas in the cluster, which ex-
ecute these requests. Each request is first headed
to the queue of a server holding a replica of the re-
quested data by the selection heuristic. Then, the
queue is reordered by the local execution policy
and requests are processed in this order.

6.1 Workload and Settings

We designed a synthetic heterogeneous workload
to evaluate our strategies: the sizes of data items
follow a Weibull distribution with scale η = 32 000
and shape θ = 0.5, which gives an average value
size of 64 kilobytes (standard deviation: 143 kB;
median: 15 kB). These parameters yield a long-
tailed distribution that is consistent with existing
file sizes characterizations (Feitelson, 2015). User
requests arrive at coordinators according to a
Poisson process with arrival rate λ = mL/p, where
m is the number of servers, L is the wanted av-
erage server load (defined as the average fraction
of time spent by servers on serving requests),
and p is the average processing time of requests.
Hence, release times are chosen such that the
time between two consecutive arrivals follows an
exponential distribution with parameter λ. Each
key has the same probability of being requested,
i.e., we do not model skewed popularity. In other
words, replication groupsMi are chosen with uni-
form probability. The cluster consists in m = 15
servers and we set the replication factor to k = 3,
which is a common configuration in real imple-
mentations (DeCandia et al., 2007; Lakshman &
Malik, 2010). The network bandwidth is set to
1/B̃ = 100 Mbps and the average latency is set
to L = 1 ms. Note that the number of requests
directly depends on the arrival rate λ and the du-
ration of the simulation; for example, a simulation
running over 120 seconds on 15 servers with a
90% average load and an average service time of
6.12 ms yields about 250 000 requests in total.

3https://www.salabim.org.

For the threshold between requests for small
and large values, we plug the density function of
our Weibull distribution in Equation (1) and solve
it numerically for ω:

E [pω(X)] =
1

k

∫ ∞
x=0

(B̃x+ L)
θ

η

(
x

η

)θ−1

e−( xη )
θ

dx.

This yields a threshold ω ≈ 26.4 ms (for a value
size of 318 kB), resulting in a proportion of 5%
of requests for large values in the workload. Each
experiment is repeated on 10 different scenarios; a
given scenario defines the processing times pi, the
release times ri, and the replication groups Mi

according to described settings.

6.2 Weight Values

We recall that each request in our model is associ-
ated to a weight value wi. Thus far, we considered
these weights to be completely arbitrary. We now
describe and explain the values we used in our
simulations:

� wi = 1 for all Ti ∈ T . This is the classic flow
time (or latency) metric.

� wi = 1/pi. Latency tends to favor large requests
over the small ones. One way to work around
this behavior is to consider the stretch (weight-
ing the latency with the processing time): it
measures the slowdown of a request, i.e., the
cost for sharing resources with other requests.

� wi = 1/
√
pi. Although the stretch metric is

more fair than latency, we noted in some exper-
iments that it tends to be inappropriate under
heterogeneous workloads where the majority of
requests are small. Small requests are too fa-
vored. For instance, if a small request of 1 ms
and a large request of 100 ms have a stretch
value of 2, then the large request can tolerate
a 100 ms delay (Fi = 200), whereas the small
one can only tolerate a 1 ms delay (Fi = 2).
Yet it seems reasonable to delay small requests
a little more to avoid impacting the large ones
too much. This weighting seems to be a trade-
off between latency and stretch metrics, and we
denote it as the weak stretch.

https://www.salabim.org
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6.3 Results

Fig. 2 shows Empirical Cumulative Distribution
Functions4 (ECDF) of the flow, the stretch and
the weak stretch, for each combination of dis-
tributed selection heuristic and execution strategy.
The dashed horizontal lines respectively represent
median, 95th and 99th percentile. Data items are
requested with a load L = 0.9, and the simulations
run for 120 seconds.

We show in Fig. 3 the ECDF of window-based
strategies when servers are subject to a burst, i.e.,
the arrival rate is very high and the average load
is greater than 1. We measure the metrics with av-
erage load values of 1 and 3, combined to a FIFO
execution. For SSW and MSW, we consider the
stretch weighting (wi = 1/pi), to favor small re-
quests that are in majority in the workload. We
recall that these heuristics are centralized, i.e., all
requests are scheduled by one coordinator, and the
time window is set to q = 100 ms. The simulations
run over 3 seconds in order to simulate a short
burst of requests.

Fig. 4a shows the 99th quantiles of each met-
ric as a function of average server load for each
combination of selection and execution heuristics
and for load values ranging from 0.5 to 0.9. In this
context, the maximum of the distribution is im-
pacted by rare events of varying amplitude, which
makes this criterion unstable. The stability of the
99th quantile allows comparing more confidently
the performance between scenarios with identical
settings. For the local execution policy MWF, we
discard the case wi = 1/

√
pi, as it exhibits per-

formances always worst than the case wi = 1/pi.
The simulations run for 120 seconds.

The comparison of online heuristics with the
lower bound introduced in Section 4.4 is shown
in Fig. 4b. We normalize the maximum objective
maxwiFi generated by a given heuristic with the
lower bound. Each boxplot5 represents the dis-
tribution of these normalized maximums among
10 different scenarios, for each combination of
strategies. Horizontal red bars help to locate the
lower bound. Data items are requested with a load

4An Empirical Cumulative Distribution Function is the dis-
tribution function obtained from the empirical measure of a
sample. With enough realizations, it converges to the actual,
underlying cumulative distribution function.

5A boxplot consists of a bold line for the median, a box for
the quartiles and whiskers that extend at most to 1.5 times the
interquartile range from the box.

L = 0.9, and the 10 scenarios are solved over 1200
requests.

The first thing to note in Fig. 2-4b is that
the choice on replica selection heuristic is in-
deed critical for read latency, as the 99th quantile
can often be improved by a factor 2 compared
to state-of-the-art strategies LOR and Héron,
without increasing median performance as con-
firmed in Fig. 2. This highlights the fact that some
properties of the cluster and the workload are
more suitable to taming tail latency; in particu-
lar, knowing the current load of a server, and thus
its earliest available time, allows implementing the
EFT strategy and getting very close to the lower
bound (Fig. 4b).

Fig. 4b also shows that EFT yields the most
stable maximums between scenarios, as more than
50% of normalized max-flow range from 1.0 to
1.15, in particular when coupled with FIFO. This
improves the confidence that this strategy will per-
form close to optimal in a majority of cases, and
cannot be significantly improved. On the opposite,
when considering the stretch, the gap between the
best achieved performance and the lower bound
increases significantly. It is yet unclear whether
this is because the lower bound is far from the
optimal as it exploits migration, or whether the
proposed heuristics are not the best suited to the
stretch metric, even if EFT-S shows the best
results. On a side note, the effect of switching
from FIFO to MWF and the relative performance
between the heuristics are consistent with Fig. 4a.

For the stretch metric, where latencies are
weighted by processing times, EFT-S performs
even better than EFT (Fig. 2, 4a), yielding a 99th

quantile of 30 (resp. 18) when coupled with FIFO
(resp. MWF (wi = 1/pi)). This is due to the
nature of EFT-S that favors requests for small
values, which are in majority in the workload.
However, EFT-S does not perform well for the
last quantiles in the latency distribution; this cor-
responds to the 5% of requests for large values that
are delayed in order to avoid head-of-line block-
ing situations. Fig. 2, 4a and 4b also illustrate
the significant impact of local execution policies
on the stretch metric: local reordering according
to MWF (wi = 1/pi) favors requests for small
values, which results in an improvement for all
selection strategies, even on the median values.
Note that this does not necessarily improve la-
tency, as FIFO is well-known to be the optimal
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Figure 2: ECDF of flow, stretch and weak stretch metrics given by each combination of distributed
selection and execution heuristics in steady-state over 120 seconds, under average load of 90%.

strategy for max-flow on a single machine (Bender
et al., 1998). It is confirmed by our observations,
as MWF worsen the tail latency.

When a burst occurs, Fig. 3 shows the value of
our window-based heuristics. Interestingly, these
replica selection strategies do not benefit a lot
from centralized and global information about the
workload, and are not even effective for realistic
load values. When the average load exceeds 300%
(L ≥ 3) we see that ECDF of EFT and SSW or
MSW are similar, but the window-based heuris-
tics never outperform EFT. This seems to confirm
that EFT is a close-to-optimal strategy in av-
erage, as additional information do not allow to
increase performance.

7 Conclusion

This study defines a formal model of a key-value
store in order to derive maximal performance
achievable by a real online system, and states the
associated optimization problem. We also provide
theoretical results on various problems related to

our main scheduling problem. After showing the
difficulty of this problem, we describe some in-
vestigations on a lower bound. We develop online
heuristics and compare them with state-of-the-
art strategies such as LOR, Héron (Jaiman
et al., 2018) or size-aware sharding (Didona &
Zwaenepoel, 2019) using simulations. This allows
understanding more finely the impact of replica
selection and local execution on performance met-
rics. We hope that our work will help practitioners
draw new scheduling strategies. We plan to con-
tinue to improve on a lower bound, for example by
using resource augmentation models (Choudhury,
Das, Garg, & Kumar, 2018; Kalyanasundaram &
Pruhs, 2000), and we propose to formally analyze
EFT with various techniques such as competitive
analysis. We wish to study the effect of various
assumptions on scheduling, e.g., the impact of
skewed key popularity, and to extend the model
with multi-get operations (Jaiman et al., 2020;
Reda et al., 2017).
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Figure 3: ECDF of flow and stretch metrics given
by centralized heuristics SSW and MSW com-
bined to a local FIFO execution in a burst over 3
seconds, under average loads of 100% and 300%.

Appendix A Proof of
Theorem 5

Proof First, we build an instance designed to reach
an arbitrarily large ratio. Then, we determine a lower
bound on the objective achieved with Max-Flow, and
finally, an upper bound on the optimal one.

Instance characteristics. For an arbitrary compet-
itive ratio k ≥ 1, we build the following instance with
n requests. The first k requests have a weight wi = k
and release time ri = 0. Then, a new request arrives
at each new time step with a weight that is the highest
integer lower than or equal to 1+1/k times the weight
of the previous request (i.e., wi = b(1+1/k)wi−1c and
ri = i−k for k < i ≤ n). In total, n = k2 +11 requests
are submitted.

Lower bound. At time t = 0, Max-Flow starts one
of the first k requests because they are the only ones
that are ready. We now prove that at any time t such
that 1 ≤ t < k, Max-Flow starts one of the remaining
first k requests, which delays all arriving requests (any
request Ti such that k < i < 2k).

On the one hand, wi(t + 1 − ri) = k(t + 1) for
any of the first k requests (1 ≤ i ≤ k). On the other
hand, for k < i ≤ n, wi ≤ (1 + 1/k)wi−1, and thus,

wi ≤ (1 + 1/k)i−kk. Therefore, wi(t + 1 − ri) ≤ (1 +
1/k)i−kk(t+ 1− i+ k).

Let us show that at any time t such that 1 ≤ t < k,
any of the first k requests has the highest value, that is
k(t+1) ≥ (1+1/k)i−kk(t+1−i+k) for all k < i ≤ t+k.
By changing variables (j = i − k and t′ = t + 1),
this corresponds to proving (1 + 1/k)j(t′ − j) ≤ t′

for all 1 ≤ j < t′ ≤ k. We show by induction that
(1 + 1/k)j(t′ − j) ≤ t′ for all 0 ≤ j and for a given t′

(2 ≤ t′ ≤ k). The induction basis with j = 0 is direct.
The induction step assumes (1 + 1/k)j(t′ − j) ≤ t′ to
be true for a given j ≥ 0. We have

(1 + 1/k)
t′ − j − 1

t′ − j = (1 + 1/k)(1− 1

t′ − j )

= 1 + 1/k − 1

t′ − j −
1

k(t′ − j) ≤ 1.

The last line is obtained by remarking that t′ ≤ k and
j ≥ 0 (thus, 1/k ≤ 1

t′−j ). Therefore,

(1 + 1/k)j+1(t′ − (j + 1))

= (1 + 1/k)j(1 + 1/k)(t′ − j) t
′ − j − 1

t′ − j
≤ (1 + 1/k)j(t′ − j) ≤ t′,

which concludes the induction proof.
At time t = k, all of the first k requests have

been completed. We now prove that at any time t such
that k ≤ t < n, Max-Flow starts request Tt+1. This
would mean that at time t, only requests Ti such that
t < i ≤ t + k are ready and not completed. We prove
by induction that at time k ≤ t < n, all requests Ti
with i ≤ t are completed. The induction basis with
t = k is already proven above. Assume the hypothesis
is true for a given k ≤ t < n. It remains to prove that
at time t′ = t + 1, Tt+2 is started among requests Ti
such that t′ < i ≤ t′ + k.

On the one hand, wi(t
′ + 1 − ri) = wt+2k for re-

quest Tt+2. On the other hand, for t′+ 1 < i ≤ t′+ k,

wi(t
′ + 1− ri) ≤ (1 + 1/k)i−t

′−1wt+2(t′ + 1− i+ k).

Let us show that (1+1/k)i−t
′−1wt+2(t′+1− i+k) <

wt+2k for t′+1 < i ≤ t′+k and for a given k ≤ t < n.
By changing variables (j = i − t′ − 1), this corre-
sponds to proving that (1 + 1/k)j(k − j) < k for all
0 < j < k. We show this again by induction on j for a
given k ≥ 1. For the induction basis, (1+1/k)(k−1) =
k+1−1−1/k < k. For the induction step, we can show

that (1+1/k)k−j+1
k−j ≤ 1 by remarking that k > k− j,

which concludes the induction proof.
To conclude on the performance of Max-Flow,

request Ti is started at time i − 1 and therefore, the
objective value is at least wnFn = wn(n− (n− k)) =
kwn.

Upper bound. A better objective value can be ob-
tained by starting all requests as soon as they arrive
except for the first k ones: request T1 is started at time
t = 0; then, request Ti is started at time t = i − k
for k < i ≤ n; finally, the remaining requests among
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mums for each combination of selection/execution heuristics. Items
are requested with a load of 90%, and the 10 different scenarios
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Figure 4: Comparisons of absolute and relative performance for each combination of selection/execution
heuristics.

the first k ones are started (Ti is started at time
t = n − k + i − 1 for 1 < i ≤ k). We analyse the ob-
jective value for request Tk because it is the last one
to be executed among the first k requests, and Tn be-
cause it is the one with the highest weight among the
last n− k requests. For Tk, wkFk = k(Ck − rk) = kn.
For Tn, wnFn = wn.

We prove that wn ≥ kn by deriving a lower bound
on wn. The weights increase in multiple stages. At
first, each increment is unitary: wi+1 = wi+ 1 for k ≤
i < 2k. Then, the increment increases at the second
stage and wi+1 = wi + 2 for 2k ≤ i < 2k + dk/2e.
At the k-th stage, wi+1 = wi + k for a single request.
At a given stage j, the increment of the weight is j
for at most dk/je requests. Let n1 =

∑k
j=1dk/je be

the number of such requests (assuming n − k ≥ n1).
Finally, the remaining n2 = n − k − n1 requests are
incremented by a value that increases by at least 1 for
each new request: wi+1 ≥ wi + (k + i − n + n2) for
n− n2 < i ≤ n.

The last weight wn is at least the sum of the
increments of all these stages:

wn ≥ k +

k∑
j=1

jdk/je+

n2∑
j=1

(k + j).

Thus, wn ≥ k(k + 1) + kn2 + n2
2/2. Our hypothesis is

that wn ≥ kn, which would be verified if

k(k + 1) + kn2 + n2
2/2 ≥ kn.

By replacing n2 and simplifying, the condition be-
comes

n ≥ k + n1 +
√

2k(n1 − 1). (A1)

We bound n1 using the asymptotic expansion of the
harmonic number Hk:

n1 =

k∑
j=1

dk/je < k

k∑
j=1

1

j
+ k

< k(Hk + 1)

< k(log(k) + γ +
1

2k
+ 1),

where γ ≈ 0.577 is the Euler-Mascheroni constant.
Thus, the optimal objective is at most wn and the

one achieved with Max-Flow is at least kwn, which
concludes the proof. �

Appendix B Notations

Table B1 summarizes the notations used in this
paper.
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Table B1: List of the most used notations.

Symbol Definition

i index of requests
j index of machines
n number of requests
m number of machines
k replication factor

Ti ∈ T request i
Mj ∈M machine j
Mi ⊆M machines able to process Ti

wi weight of Ti
ri release time of Ti
zi size of the stored value for Ti
pi processing time of Ti
σi start time of Ti
Ci completion time of Ti
CSi completion time of Ti in a schedule S
Fi flow time of Ti
Si stretch of Ti

B̃ inverse of network bandwidth
L network latency
λ request submission rate
η Weibull scale parameter
θ Weibull shape parameter
L average load

Appendix C Approximation

We provide a comprehensive summary of results
related to approximation and competitive analysis
of scheduling problems that address the minimiza-
tion of flow time. Table C2 presents competi-
tive analysis results that are related to average
weighted flow.

Appendix D Complexity

To complete our survey on scheduling problems re-
lated to our study, we present a summary on com-
plexity results related to sum-flow in Table D3.
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Table D3: Complexity of sum-flow minimization problems. P , Q and R denote parallel machines,
related machines, and unrelated machines, respectively. Arrows are reduction relationships (A → B
means that A is a special case of B). Unknown problem complexity is denoted by ?. A sign + (resp.
-) means that the problem is NP-hard (resp. polynomially solvable) via the reduction relationship.
Incompatible problem designations are noted ∅.

Objective Constraints 1 P Q R∑
wiFi Mi ? + + +

◦ ? s. NP-hard (1974) + +

ri,Mi, pi = 1 - p. solvable (1997) ? ?

ri, pi = p - p. solvable (2008) ? ∅

ri, pmtn s. NP-hard (1984) + + +∑
Fi ri s. NP-hard (1977) + + +

Mi - - - p. solvable (1974)

◦ - - - -

ri,Mi, pi = 1 - - ? ?

ri, pi = p - p. solvable (1983) ? ∅

ri, pmtn p. solvable (1974) s. NP-hard (2007) + +

Mi, pmtn - p. solvable (1997) ? s. NP-hard (2001)

ri, pi = p, pmtn - - p. solvable (2009) ?∑
Si ri NP-hard (2008) + + +∑
Fpi ri, pmtn s. NP-hard (2013) + + +∑
Spi ri, pmtn s. NP-hard (2013) + + +
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Optimizing the stretch of independent tasks
on a cluster: From sequential tasks to mold-
able tasks. Journal of Parallel and Dis-
tributed Computing , 72 (4), 489–503.

Simons, B. (1983). Multiprocessor scheduling of
unit-time jobs with arbitrary release times
and deadlines. SIAM Journal on Comput-
ing , 12 (2), 294–299.

Sitters, R. (2001). Two np-hardness results for
preemptive minsum scheduling of unrelated
parallel machines. International conference
on integer programming and combinatorial
optimization (pp. 396–405).

Suresh, L., Canini, M., Schmid, S., Feldmann,
A. (2015). C3: Cutting tail latency in
cloud data stores via adaptive replica se-
lection. 12th USENIX symposium on net-
worked systems design and implementation
(pp. 513–527).

Vulimiri, A., Godfrey, P.B., Mittal, R., Sherry, J.,
Ratnasamy, S., Shenker, S. (2013). Low
latency via redundancy. 9th acm confer-
ence on emerging networking experiments
and technologies (pp. 283–294).

Wu, Z., Yu, C., Madhyastha, H.V. (2015). Costlo:
Cost-effective redundancy for lower latency
variance on cloud storage services. 12th
USENIX symposium on networked systems
design and implementation (pp. 543–557).


	Introduction
	Related Work
	Tail Latency in Key-Value Stores
	Latency in Scheduling Theory

	Formal Model
	Application and Platform
	Problem Statement

	Max-Flow Minimization
	Zero Release Times
	Non-Zero Release Times
	Online Problems
	Lower Bound

	Online Heuristics
	Replica Selection
	Local Queue Scheduling Policies

	Simulations
	Workload and Settings
	Weight Values
	Results

	Conclusion
	Proof of Theorem 5
	Notations
	Approximation
	Complexity

