Peptidoglicano
O peptidoglicano,[1] tamén chamado mureína,[2] é un polímero formado por azucres e aminoácidos que forma unha capa que rodea a membrana plasmática da maioría das bacterias (pero non das arqueas) e que constitúe a súa parede celular. O compoñente carbohidrato do peptidoglicano é un heteropolisacárido formado por residuos alternantes dos monosacáridos N-acetilglicosamina e ácido N-acetilmurámico, unidos entre si por enlace glicosídico β-(1,4). As cadeas deste heteropolisacárido dispóñense paralelamente. Unido ao ácido N-acetilmurámico está o compoñente aminoacídico, que é un péptido de tres a cinco aminoácidos. Esta cadea peptídica pode establecer enlaces cruzados cos péptidos doutras cadeas do heteropolisacárido, formando unha capa reticular tridimensional.[3]
Algunhas Archaea teñen unha capa bastante similar pero de pseudopeptidoglicano ou pseudomureína, na que os residuos de azucres están unidos por enlaces glicosídicos β-(1,3) e os azucres que a forman son a N-acetilglicosamina e a ácido N-acetiltalosaminurónico. Isto explica que a parede das arqueas sexa insensible á lisozima, que ataca o peptidoglicano.[4]
O peptidoglicano exerce un papel estrutural na célula bacteriana, dándolle forza estrutural, e protexéndoa da presión osmótica exercida polo citoplasma. Aínda que o peptidoglicanolle dá forza estrutural á parede, para a determinación da súa forma necesítanse tamén as proteínas MreB e RodZ.[5][6] O peptidoglicano está tamén implicado na fisión binaria durante a división celular bacteriana.
A capa de peptidoglicano é moito máis grosa nas bacterias grampositivas, nas que ten entre 20 e 80 nanómetros de grosor, ca nas gramnegativas, nas que só ten entre 7 e 8 nanómetros. O peptidoglicano constitúe arredor do 90 % do peso seco das bacterias grampositivas, pero só o 10% das gramnegativas. Deste modo, a presenza de grandes cantidades de peptidoglicano é a característica principal para caracterizar as bacterias grampositivas.[7] Nas bacterias grampositivas o peptidoglicano é importante para a adhesión a superficies e para o estereotipado.[8] As partículas de aproximadamente 2 nanómetros poden atravesar o peptidoglicano, tanto nas grampositivas coma nas negativas.[9]
Estrutura
[editar | editar a fonte]A capa de peptidoglicano na parede celular bacteriana é unha estrutura que forma unha rede cristalina constituída por cadeas liñais paralelas de dous aminoazucres alternantes, a N-acetilglicosamina (GlcNAc ou NAG) e o N-acetilmurámico (MurNAc ou NAM), os cales están unidos por enlace glicosídico β-(1,4). Cada residuo de MurNAc está unido a un curto péptido de 4 a 5 residuos de aminoácidos, que contén L-alanina, ácido D-glutámico, ácido meso-diaminopimélico, e D-alanina no caso de Escherichia coli (unha bacteria gramnegativa) ou L-alanina, D-glutamina, L-lisina, e D-alanina cunha ponte peptídica de 5 glicinas que une os tetrapéptidos no caso de Staphylococcus aureus (unha bacteria grampositiva). Estes aminoácidos, excepto os L-aminoácidos, non aparecen en proteínas, polo que poderían ser unha protección contra o ataque da maioría das peptidases.
Os enlaces cruzados entre os aminoácidos de diferentes cadeas de aminoazucres establécense pola acción do encima transpeptidase e orixinan unha estrutura tridimensional forte e ríxida. A secuencia específica de aminoácidos e a estrutura molecular varía coa especie bacteriana considerada.[10]
-
Estrutura do peptidoglicano.
-
Parede celular grampositiva.
-
Proteína de unión á penicilina formando enlaces cruzados nunha parede bacteriana acabada de formar.
Inhibición por antibióticos
[editar | editar a fonte]Algúns fármacos antibacterianos como a penicilina interfiren coa produción de peptidoglicano ao unirse aos encimas bacterianos chamados proteínas de unión á penicilina ou transpeptidases.[8] As proteínas de unión á penicilina forman os enlaces cruzados entre os oligopéptidos do peptidoglicano. Para que unha célula bacteriana se reproduza por fisión binaria, deben unirse máis dun millón de subunidades (NAM-NAG oligopéptido) do peptidoglicano ás subunidades xa existentes.[11] As mutacións nas transpeptidases que reducen as interaccións cun antibiótico son unha fonte significativa de produción de resistencia aos antibióticos bacteriana.[12]
A lisozima das bágoas, considerado o antibiótico propio do corpo humano, funciona rompendo os enlaces glicosídicos β-(1,4) do peptidoglicano e destruíndo así moitas células bacterianas. Antibióticos como a penicilina xeralmente impiden a correcta formación da parede bacteriana, da cal o peptidoglicano é o compoñente principal, ao inhibir as transpeptidases.
Biosíntese
[editar | editar a fonte]Os monómeros de peptidoglicano son sintetizados no citosol e líganse despois ao transportador de membrana bactoprenol. O bactoprenol transporta os monómeros de peptidoglicano a través da membrana celular, e son inseridos no peptidoglicano xa existente.[13] A síntese divídese en fase 1 e fase 2 e consta de varios pasos biosintéticos:
Fase 1
[editar | editar a fonte]Ten lugar no citosol. No primeiro paso da síntese do peptidoglicano, o aminoácido glutamina, doa un grupo amino ao azucre, frutosa 6-fosfato. Isto transforma a frutosa 6-fosfato en glicosamina 6-fosfato. No segundo paso da síntese, transfírese un grupo acetilo desde o acetil-CoA ao grupo amino da glicosamina 6-fosfato orixinando N-acetilglicosamina 6-fosfato.[14] No terceiro paso, a N-acetilglicosamina 6-fosfato é isomerizada, ao que fai que cambie a N-acetilglicosamina 1-fosfato.[14]
No paso cuarto, a N-acetilglicosamina 1-fosfato, que é agora un monofosfato, ataca a UTP (nucleótido que actúa como fonte de enerxía). Nesta reacción, o UTP perde un pirofosfato, que é substituído polo fosfato do aminoazucre, orixinándose UDP-N-acetilglicosamina (UDP-GlcNAc), que é o precursor do NAG do peptidoglicano.
No 5º paso, parte do UDP-N-acetilglicosamina é convertido en UDP-ácido N-acetilmurámico (UDP-MurNAc) pola adición dun grupo lactilo á glicosamina. Tamén nesta reacción, o grupo C3 hidroxilo retira un fosfato do carbono alfa do fosfoenolpiruvato. Isto crea o que se denomina un enol derivado que será reducido a un “residuo lactil” polo NADPH no paso sexto da síntese.[14]
No 7º paso, o UDP–MurNAc covértese no pentapéptido UDP-MurNAC pola adición de cinco aminoácidos, normalmente incluíndo o dipéptido D-alanil-D-alanina.[14] Cada unha destas reaccións require como fonte de enrxía o ATP.[14]
Fase 2
[editar | editar a fonte]A fase 2 ocorre na membrana plasmática. Na membrana o transportador lipídico bactoprenol leva os precursores do peptidoglicano a través da membrana. O bactoprenol ataca o UDP-MurNAc-pentapéptido, creando o PP-MurNac-pentapéptido, que é agora un lípido. O UDP-GlcNAc transpórtase despois ao residuo MurNAc da molécula anterior, orixinando o lípido-PP-MurNAc-pentapéptdido-GlcNAc, un disacárido, precursor do peptidoglicano.[14] Non se sabe como esta molécula é transportada ao outro lado da membrana. Porén, unha vez que está no periplasma, engádese a unha cadea de glicano en crecemento.[14] A seguinte reacción coñécese como transglicosilación. Nesta reacción, o grupo hidroxilo do GlcNAc únese ao MurNAc no glicano, o cal despraza o lípido-PP da cadea de glicano. O encima responsable disto é a transglicosilase.[14]
Notas
[editar | editar a fonte]- ↑ Coordinadores: Jaime Gómez Márquez, Ana Mª Viñas Díaz e Manuel González González. Redactores: David Villar Docampo e Luís Vale Ferreira. Revisores lingüísticos: Víctor Fresco e Mª Liliana Martínez Calvo. (2010). Dicionario de bioloxía galego-castelán-inglés. (PDF). Xunta de Galicia. p. 133. ISBN 978-84-453-4973-1.
- ↑ Coordinadores: Jaime Gómez Márquez, Ana Mª Viñas Díaz e Manuel González González. Redactores: David Villar Docampo e Luís Vale Ferreira. Revisores lingüísticos: Víctor Fresco e Mª Liliana Martínez Calvo. (2010). Dicionario de bioloxía galego-castelán-inglés. (PDF). Xunta de Galicia. p. 119. ISBN 978-84-453-4973-1.
- ↑ "Animation of Synthesis of Peptidoglycan Layer". Arquivado dende o orixinal o 13 de xaneiro de 2018. Consultado o 01 de xuño de 2012.
- ↑ Madigan, M. T., J. M. Martinko, P. V. Dunlap, and D. P. Clark. Brock biology of microorganisms. 12th ed. San Francisco, CA: Pearson/Benjamin Cummings, 2009.
- ↑ van den Ent F, Amos LA, Löwe J (2001). "Prokaryotic origin of the actin cytoskeleton.". Nature 413 (6851): 39–44. PMID 11544518. doi:10.1038/35092500.
- ↑ van den Ent F, Johnson CM, Persons L, de Boer P, Löwe J (2010). "Bacterial actin MreB assembles in complex with cell shape protein RodZ.". EMBO J 29 (6): 1081–90. PMC 2845281. PMID 20168300. doi:10.1038/emboj.2010.9.
- ↑ C.Michael Hogan. 2010. Bacteria. Encyclopedia of Earth. eds. Sidney Draggan and C.J.Cleveland, National Council for Science and the Environment, Washington DC
- ↑ 8,0 8,1 Salton MRJ, Kim KS (1996). Univ of Texas Medical Branch, ed. Structure. In: Baron's Medical Microbiology (Barron S et al., eds.) (4th ed.). ISBN 0-9631172-1-1.
- ↑ Demchick PH, Koch AL (1 February 1996). "The permeability of the wall fabric of Escherichia coli and Bacillus subtilis". Journal of Bacteriology 178 (3): 768–73. PMC 177723. PMID 8550511.
- ↑ Ryan KJ, Ray CG (editors) (2004). McGraw Hill, ed. Sherris Medical Microbiology (4th ed.). ISBN 0-8385-8529-9.
- ↑ Bauman R (2007). Benjamin Cummings, ed. Microbiology with Diseases by Taxonomy (2nd ed.). ISBN 0-8053-7679-8.
- ↑ Spratt BG (1994). "Resistance to antibiotics mediated by target alterations". Science (New York) 264 (5157): 388–93. PMID 8153626. doi:10.1126/science.8153626.
- ↑ "II. THE PROKARYOTIC CELL: BACTERIA". Arquivado dende o orixinal o 26 de xullo de 2010. Consultado o 1. MAY 2011.
- ↑ 14,0 14,1 14,2 14,3 14,4 14,5 14,6 14,7 White, D. (2007). Oxford University Press Inc., ed. The physiology and biochemistry of prokaryates (3rd ed.). NY.