The implementation of Edge MAE and Edge Transformer in our paper:
Liang Yao, Jiazhen Peng, Shenggong Ji, Qiang Liu, Hongyun Cai, Feng He, and Xu Cheng. 2023. Friend Ranking in Online Games via Pre-training Edge Transformers. In Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’23), pages 2016-2020. https://doi.org/10.1145/3539618.3591990
The repository is modified from a MAE implementation and tested on Python 3.7.
pip install -r requirements.txt
(1) Due to privacy reason, we could not provide real world data, but we prepare synthetic data in the same format in ./data.
(2) ./data/train and ./data/val are for edge classification training and validation.
(3) ./data/unlabeled are for Edge MAE pre-traininig.
python mae_pretrain.py --model_path results/edge-mae.pt
python train_classifier.py --pretrained_model_path results/edge-mae.pt --output_model_path results/transformer2L_mae.pt
python link_cnn.py
python link_bilinear.py