-
Notifications
You must be signed in to change notification settings - Fork 121
/
inversion_tree.cpp
122 lines (105 loc) · 4.72 KB
/
inversion_tree.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
//
// Created by 理 傅 on 2017/1/1.
//
#include <iostream>
#include "inversion_tree.h"
inversionTree inversionTree::newInversionTree(int dataShards, int parityShards) {
inversionTree tree;
tree.m_root.m_children.resize(dataShards parityShards, nullptr);
tree.m_root.m_matrix = matrix::identityMatrix(dataShards);
return tree;
}
matrix
inversionTree::GetInvertedMatrix(std::vector<int> &invalidIndices) {
if (invalidIndices.size() == 0) {
return m_root.m_matrix;
}
return m_root.getInvertedMatrix(invalidIndices, 0);
}
int
inversionTree::InsertInvertedMatrix(std::vector<int> &invalidIndices, matrix &matrix, int shards) {
// If no invalid indices were given then we are done because the
// m_root node is already set with the identity matrix.
if (invalidIndices.size() == 0) {
return -1;
}
if (!matrix.IsSquare()) {
return -2;
}
// Recursively create nodes for the inverted matrix in the tree until
// we reach the node to insert the matrix to. We start by passing in
// 0 as the parent index as we start at the m_root of the tree.
m_root.insertInvertedMatrix(invalidIndices, matrix, shards, 0);
return 0;
}
matrix
inversionNode::getInvertedMatrix(std::vector<int> &invalidIndices, int parent) {
// Get the child node to search next from the list of m_children. The
// list of m_children starts relative to the parent index passed in
// because the indices of invalid rows is sorted (by default). As we
// search recursively, the first invalid index gets popped off the list,
// so when searching through the list of m_children, use that first invalid
// index to find the child node.
int firstIndex = invalidIndices[0];
auto node = m_children[firstIndex - parent];
// If the child node doesn't exist in the list yet, fail fast by
// returning, so we can construct and insert the proper inverted matrix.
if (node == nullptr) {
return matrix{};
}
// If there's more than one invalid index left in the list we should
// keep searching recursively.
if (invalidIndices.size() > 1) {
// Search recursively on the child node by passing in the invalid indices
// with the first index popped off the front. Also the parent index to
// pass down is the first index plus one.
std::vector<int> v(invalidIndices.begin() 1, invalidIndices.end());
return node->getInvertedMatrix(v, firstIndex 1);
}
// If there aren't any more invalid indices to search, we've found our
// node. Return it, however keep in mind that the matrix could still be
// nil because intermediary nodes in the tree are created sometimes with
// their inversion matrices uninitialized.
// std::cout << "return cached matrix:" << std::endl;
return node->m_matrix;
}
void
inversionNode::insertInvertedMatrix(
std::vector<int> &invalidIndices,
struct matrix &matrix,
int shards,
int parent) {
// As above, get the child node to search next from the list of m_children.
// The list of m_children starts relative to the parent index passed in
// because the indices of invalid rows is sorted (by default). As we
// search recursively, the first invalid index gets popped off the list,
// so when searching through the list of m_children, use that first invalid
// index to find the child node.
int firstIndex = invalidIndices[0];
auto node = m_children[firstIndex - parent];
// If the child node doesn't exist in the list yet, create a new
// node because we have the writer lock and add it to the list
// of m_children.
if (node == nullptr) {
// Make the length of the list of m_children equal to the number
// of shards minus the first invalid index because the list of
// invalid indices is sorted, so only this length of errors
// are possible in the tree.
node = std::make_shared<inversionNode>();
node->m_children.resize(shards - firstIndex, nullptr);
m_children[firstIndex - parent] = node;
}
// If there's more than one invalid index left in the list we should
// keep searching recursively in order to find the node to add our
// matrix.
if (invalidIndices.size() > 1) {
// As above, search recursively on the child node by passing in
// the invalid indices with the first index popped off the front.
// Also the total number of shards and parent index are passed down
// which is equal to the first index plus one.
std::vector<int> v(invalidIndices.begin() 1, invalidIndices.end());
node->insertInvertedMatrix(v, matrix, shards, firstIndex 1);
} else {
node->m_matrix = matrix;
}
}