-
Notifications
You must be signed in to change notification settings - Fork 24
/
dyrep.py
747 lines (627 loc) · 33.7 KB
/
dyrep.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
863
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from encoder import *
from utils import *
class DyRep(nn.Module):
def __init__(self,
node_embeddings,
# n_event_types,
N_nodes,
A_initial=None,
N_surv_samples=5,
n_hidden=32,
bilinear=False,
bilinear_enc=False,
sparse=False,
n_rel=1,
encoder=None,
node_degree_global=None,
rnd=None,
sym=False,
model='gcn',
soft_attn=False,
freq=False,
verbose=False,
device='cuda'):
super(DyRep, self).__init__()
self.opt = True
self.exp = True
self.rnd = rnd
self.bilinear = bilinear
self.bilinear_enc = bilinear_enc
self.n_hidden = n_hidden
self.sparse = sparse
self.encoder = encoder
self.device = device
self.model = model
self.N_surv_samples = N_surv_samples
self.latent_graph = encoder is not None
self.generate = self.latent_graph
self.soft_attn = soft_attn
self.freq = freq
self.verbose = verbose
if self.verbose:
print('using {} attention'.format('soft' if self.soft_attn else 'hard').upper())
self.node_degree_global = node_degree_global
self.N_nodes = A_initial.shape[0]
if A_initial is not None and len(A_initial.shape) == 2:
A_initial = A_initial[:, :, None]
if self.latent_graph:
self.n_assoc_types = n_rel
else:
self.n_assoc_types = 1
# self.n_relations = self.n_assoc_types len(EVENT_TYPES) # 3 communication event types association event
self.initialize(node_embeddings, A_initial)
n_in = 0
if self.model != 'dyrep':
self.W_h = nn.ModuleList([nn.Linear(in_features=n_hidden, out_features=n_hidden) for _ in range(3)]) # to have a similar number of trainable params as in DyRep
if self.model == 'gat':
self.K_heads = 4
self.layers = 3
# self.W_alpha = nn.Linear(in_features=n_hidden, out_features=n_hidden)
self.alpha = nn.ModuleList([nn.ModuleList([
nn.Linear(in_features=(n_hidden // self.K_heads) * 2, out_features=1) for head in range(self.K_heads)])
for layer in range(self.layers)])
self.W_h = nn.ModuleList([nn.ModuleList([
nn.Linear(in_features=n_hidden, out_features=n_hidden // self.K_heads) for head in range(self.K_heads)])
for layer in range(self.layers)]) # to have a similar number of trainable params as in DyRep
else:
self.W_h = nn.Linear(in_features=n_hidden n_in, out_features=n_hidden)
self.W_struct = nn.Linear(n_hidden * self.n_assoc_types, n_hidden)
self.W_rec = nn.Linear(n_hidden n_in, n_hidden)
self.W_t = nn.Linear(4, n_hidden) # 4 because we want separate parameters for days, hours, minutes, seconds; otherwise (if we just use seconds) it can be a huge number confusing the network
# Initialize parameters of the intensity rate (edge) prediction functions
# See https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/linear.py
n_types = 2 # associative and communicative
d1 = self.n_hidden (0)
d2 = self.n_hidden (0)
if self.bilinear:
self.omega = nn.ModuleList([nn.Bilinear(d1, d1, 1), nn.Bilinear(d2, d2, 1)])
else:
# d = 2 * self.n_hidden n_in
d1 = self.n_hidden
d2 = self.n_hidden
self.omega = nn.ModuleList([nn.Linear(d1, 1), nn.Linear(d2, 1)])
self.psi = nn.Parameter(0.5 * torch.ones(n_types))
# print('omega', self.omega)
self.train_enc = False
if encoder is not None:
if encoder.lower() == 'mlp':
self.encoder = MLPEncoder(n_in=self.n_hidden, n_hid=self.n_hidden,
n_out=self.n_assoc_types int(sparse), bilinear=bilinear_enc, n_stages=2,
sym=sym, bnorm=True)
self.train_enc = True
elif encoder.lower() == 'mlp1':
self.encoder = MLPEncoder(n_in=self.n_hidden, n_hid=self.n_hidden,
n_out=self.n_assoc_types int(sparse), bilinear=bilinear_enc, n_stages=1,
sym=sym, bnorm=True)
self.train_enc = True
elif encoder.lower() == 'linear':
self.encoder = LinearEncoder(n_in=self.n_hidden,
n_out=self.n_assoc_types int(sparse))
self.train_enc = True
elif encoder.lower() == 'rand':
self.encoder = None
else:
raise NotImplementedError(encoder)
self.init_weights()
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Linear) or isinstance(m, nn.Bilinear):
# print('before Xavier', m.weight.data.shape, m.weight.data.min(), m.weight.data.max())
nn.init.xavier_normal_(m.weight.data)
# print('after Xavier', m.weight.data.shape, m.weight.data.min(), m.weight.data.max())
def generate_S_from_A(self):
if self.model == 'dyrep':
S = self.A.new(self.N_nodes, self.N_nodes, self.n_assoc_types).fill_(0)
for rel in range(self.n_assoc_types):
D = torch.sum(self.A[:, :, rel], dim=1).float()
for v in torch.nonzero(D):
u = torch.nonzero(self.A[v, :, rel].squeeze())
S[v, u, rel] = 1. / D[v]
self.S = S
# Check that values in each row of S add up to 1
for rel in range(self.n_assoc_types):
S = self.S[:, :, rel]
assert torch.sum(S[self.A[:, :, rel] == 0]) < 1e-5, torch.sum(S[self.A[:, :, rel] == 0]) # check that S_uv is zero when A_uv is zero
elif self.model == 'gcn':
A_hat = self.A.view(self.N_nodes, self.N_nodes) #.view(self.N_nodes, self.N_nodes) torch.eye(self.N_nodes).to(self.device)
assert torch.all(A_hat[np.diag_indices(self.N_nodes)] == 1), A_hat[np.diag_indices(self.N_nodes)]
D_hat = (torch.sum(A_hat, 0) 1e-5) ** (-0.5)
self.S = D_hat.view(self.N_nodes, 1) * A_hat * D_hat.view(1, self.N_nodes)
else:
# S is computed for each batch on the fly
assert self.model == 'gat', self.model
def initialize(self, node_embeddings, A_initial, keepS=False):
if self.verbose:
print('initialize model''s node embeddings and adjacency matrices for %d nodes' % self.N_nodes)
# Initial embeddings
if node_embeddings is not None:
z = np.pad(node_embeddings, ((0, 0), (0, self.n_hidden - node_embeddings.shape[1])), 'constant')
z = torch.from_numpy(z).float().to(self.device)
if A_initial is None or self.latent_graph:
if self.verbose:
print('initial random prediction of A')
A = torch.zeros(self.N_nodes, self.N_nodes, self.n_assoc_types int(self.sparse), device=self.device)
for i in range(self.N_nodes):
for j in range(i 1, self.N_nodes):
if self.sparse:
if self.n_assoc_types == 1:
pvals = [0.95, 0.05]
elif self.n_assoc_types == 2:
pvals = [0.9, 0.05, 0.05]
elif self.n_assoc_types == 3:
pvals = [0.91, 0.03, 0.03, 0.03]
elif self.n_assoc_types == 4:
pvals = [0.9, 0.025, 0.025, 0.025, 0.025]
else:
raise NotImplementedError(self.n_assoc_types)
ind = np.nonzero(np.random.multinomial(1, pvals))[0][0]
else:
ind = np.random.randint(0, self.n_assoc_types, size=1)
A[i, j, ind] = 1
A[j, i, ind] = 1
assert torch.sum(torch.isnan(A)) == 0, (torch.sum(torch.isnan(A)), A)
if self.sparse:
A = A[:, :, 1:]
else:
if self.verbose:
print('A_initial', A_initial.shape)
A = torch.from_numpy(A_initial).float().to(self.device)
if len(A.shape) == 2:
A = A.unsqueeze(2)
# make these variables part of the model
# if self.model == 'dyrep':
self.register_buffer('z', z)
# else:
# self.z = nn.Embedding(z.shape[0], z.shape[1]).to(self.device)
# self.z.weight.data = z.data
self.register_buffer('A', A)
if self.model != 'dyrep':
self.A = self.A.view(self.N_nodes, self.N_nodes)
self.A[np.diag_indices(self.N_nodes)] = 1 # add self-loops
if not keepS:
self.generate_S_from_A()
self.Lambda_dict = torch.zeros(5000, device=self.device)
self.time_keys = []
self.t_p = 0 # global counter of iterations
def check_S(self):
for rel in range(self.n_assoc_types):
rows = torch.nonzero(torch.sum(self.A[:, :, rel], dim=1).float())
# check that the sum in all rows equal 1
assert torch.all(torch.abs(torch.sum(self.S[:, :, rel], dim=1)[rows] - 1) < 1e-1), torch.abs(torch.sum(self.S[:, :, rel], dim=1)[rows] - 1)
def g_fn(self, z_cat, k, edge_type=None, z2=None):
if self.bilinear:
B = 1 if len(z_cat.shape) == 1 else z_cat.shape[0]
if z2 is not None:
z_cat = z_cat.view(B, self.n_hidden)
z2 = z2.view(B, self.n_hidden)
else:
raise NotImplementedError('')
g = z_cat.new(len(z_cat), 1).fill_(0)
idx = k <= 0
if torch.sum(idx) > 0:
if edge_type is not None:
z_cat1 = torch.cat((z_cat[idx], edge_type.view(B, -1)[idx, :self.n_assoc_types]), dim=1)
z21 = torch.cat((z2[idx], edge_type.view(B, -1)[idx, :self.n_assoc_types]), dim=1)
else:
z_cat1 = z_cat[idx]
z21 = z2[idx]
g[idx] = self.omega[0](z_cat1, z21)
idx = k > 0
if torch.sum(idx) > 0:
if edge_type is not None:
z_cat1 = torch.cat((z_cat[idx], edge_type.view(B, -1)[idx, self.n_assoc_types:]), dim=1)
z21 = torch.cat((z2[idx], edge_type.view(B, -1)[idx, self.n_assoc_types:]), dim=1)
else:
z_cat1 = z_cat[idx]
z21 = z2[idx]
g[idx] = self.omega[1](z_cat1, z21)
else:
if z2 is not None:
z_cat = torch.cat((z_cat, z2), dim=1)
else:
raise NotImplementedError('')
g = z_cat.new(len(z_cat), 1).fill_(0)
idx = k <= 0
if torch.sum(idx) > 0:
if edge_type is not None:
z_cat1 = torch.cat((z_cat[idx], edge_type[idx, :self.n_assoc_types]), dim=1)
else:
z_cat1 = z_cat[idx]
g[idx] = self.omega[0](z_cat1)
idx = k > 0
if torch.sum(idx) > 0:
if edge_type is not None:
z_cat1 = torch.cat((z_cat[idx], edge_type[idx, self.n_assoc_types:]), dim=1)
else:
z_cat1 = z_cat[idx]
g[idx] = self.omega[1](z_cat1)
g = g.flatten()
return g
def intensity_rate_lambda(self, z_u, z_v, k):
z_u = z_u.view(-1, self.n_hidden).contiguous()
z_v = z_v.view(-1, self.n_hidden).contiguous()
edge_type = None
g = 0.5 * (self.g_fn(z_u, (k > 0).long(), edge_type=edge_type, z2=z_v)
self.g_fn(z_v, (k > 0).long(), edge_type=edge_type, z2=z_u)) # make it symmetric, because most events are symmetric
psi = self.psi[(k > 0).long()]
g_psi = torch.clamp(g / (psi 1e-7), -75, 75) # to prevent overflow
Lambda = psi * (torch.log(1 torch.exp(-g_psi)) g_psi)
return Lambda
def update_node_embed(self, prev_embed, node1, node2, time_delta_uv, k):
# self.z contains all node embeddings of previous time \bar{t}
# self.S also corresponds to previous time stamp, because it's not updated yet based on this event
node_embed = prev_embed
# compute embeddings for all nodes using the GCN layer, but will be using only nodes u, v
# it's just not convenient to compute embeddings only for nodes u and v
# fix that in the future to save computation time
node_degree = {} # we need degrees to update S
z_new = prev_embed.clone() # to allow in place changes while keeping gradients
h_u_struct = prev_embed.new(2, self.n_hidden, self.n_assoc_types).fill_(0)
for c, (v, u, delta_t) in enumerate(zip([node1, node2], [node2, node1], time_delta_uv)): # i is the other node involved in the event
node_degree[u] = np.zeros(self.n_assoc_types)
for rel in range(self.n_assoc_types):
if self.latent_graph:
Neighb_u = self.S[u, :, rel] > 1e-7
else:
Neighb_u = self.A[u, :, rel] > 0 # when update embedding for node v, we need neighbors of u and vice versa!
N_neighb = torch.sum(Neighb_u).item() # number of neighbors for node u
node_degree[u][rel] = N_neighb
if N_neighb > 0: # node has no neighbors
h_prev_i = self.W_h(node_embed[Neighb_u]).view(N_neighb, self.n_hidden)
# attention over neighbors
q_ui = torch.exp(self.S[u, Neighb_u, rel]).view(N_neighb, 1)
q_ui = q_ui / (torch.sum(q_ui) 1e-7)
h_u_struct[c, :, rel] = torch.max(torch.sigmoid(q_ui * h_prev_i), dim=0)[0].view(1, self.n_hidden)
h1 = self.W_struct(h_u_struct.view(2, self.n_hidden * self.n_assoc_types))
h2 = self.W_rec(node_embed[[node1, node2], :].view(2, -1))
h3 = self.W_t(time_delta_uv.float()).view(2, self.n_hidden)
z_new[[node1, node2], :] = torch.sigmoid(h1 h2 h3)
return node_degree, z_new
def update_S_A(self, u, v, k, node_degree, lambda_uv_t):
if self.latent_graph:
raise ValueError('invalid mode')
if k <= 0 and not self.latent_graph: # Association event
# do not update in case of latent graph
self.A[u, v, np.abs(k)] = self.A[v, u, np.abs(k)] = 1 # 0 for CloseFriends, k = -1 for the second relation, so it's abs(k) matrix in self.A
A = self.A
indices = torch.arange(self.N_nodes, device=self.device)
for rel in range(self.n_assoc_types):
if k > 0 and A[u, v, rel] == 0: # Communication event, no Association exists
continue # do not update S and A
else:
for j, i in zip([u, v], [v, u]):
# i is the "other node involved in the event"
try:
degree = node_degree[j]
except:
print(list(node_degree.keys()))
raise
y = self.S[j, :, rel]
# assert torch.sum(torch.isnan(y)) == 0, ('b', j, degree[rel], node_degree_global[rel][j.item()], y)
b = 0 if degree[rel] == 0 else 1. / (float(degree[rel]) 1e-7)
if k > 0 and A[u, v, rel] > 0: # Communication event, Association exists
y[i] = b lambda_uv_t
elif k <= 0 and A[u, v, rel] > 0: # Association event
if self.node_degree_global[rel][j] == 0:
b_prime = 0
else:
b_prime = 1. / (float(self.node_degree_global[rel][j]) 1e-7)
x = b_prime - b
y[i] = b lambda_uv_t
w = (y != 0) & (indices != int(i))
y[w] = y[w] - x
y /= (torch.sum(y) 1e-7) # normalize
self.S[j, :, rel] = y
return
def cond_density(self, time_bar, time_cur, u, v):
N = self.N_nodes
s = self.Lambda_dict.new(2, N).fill_(0)
Lambda_sum = torch.cumsum(self.Lambda_dict.flip(0), 0).flip(0) / len(self.Lambda_dict)
time_keys_min = self.time_keys[0]
time_keys_max = self.time_keys[-1]
indices = []
l_indices = []
t_bar_min = torch.min(time_bar[[u, v]]).item()
if t_bar_min < time_keys_min:
start_ind_min = 0
elif t_bar_min > time_keys_max:
# it means t_bar will always be larger, so there is no history for these nodes
return s
else:
start_ind_min = self.time_keys.index(int(t_bar_min))
max_pairs = torch.max(torch.cat((time_bar[[u, v]].view(1, 2).expand(N, -1).t().contiguous().view(2 * N, 1),
time_bar.repeat(2, 1)), dim=1), dim=1)[0].view(2, N).long().data.cpu().numpy() # 2,N
# compute cond density for all pairs of u and some i, then of v and some i
c1, c2 = 0, 0
for c, j in enumerate([u, v]): # range(i 1, N):
for i in range(N):
if i == j:
continue
# most recent timestamp of either u or v
t_bar = max_pairs[c, i]
c2 = 1
if t_bar < time_keys_min:
start_ind = 0 # it means t_bar is beyond the history we kept, so use maximum period saved
elif t_bar > time_keys_max:
continue # it means t_bar is current event, so there is no history for this pair of nodes
else:
# t_bar is somewhere in between time_keys_min and time_keys_min
start_ind = self.time_keys.index(t_bar, start_ind_min)
indices.append((c, i))
l_indices.append(start_ind)
indices = np.array(indices)
l_indices = np.array(l_indices)
s[indices[:, 0], indices[:, 1]] = Lambda_sum[l_indices]
return s
def edges2matrix(self, x, idx, N):
edges = x.new(N * N, x.shape[1]).fill_(0)
edges[idx] = x
edges = edges.view(N, N, -1)
return edges
def generate_S(self, prev_embed, u, v, train_enc=False):
N = self.N_nodes
edges = torch.Tensor([[u, v]]).long()
if not train_enc:
# do not keep any gradients
with torch.no_grad():
logits, idx = self.encoder(prev_embed, edges=edges)
logits = logits.detach() # not backpropgenerate_S
else:
logits, idx = self.encoder(prev_embed, edges=edges)
N = 2
logits = logits.view(1, N * N, self.n_assoc_types int(self.sparse)) # N,N,N_assoc # nn.functional.sigmoid
if self.training or train_enc or self.soft_attn:
hard = False
else:
hard = True # hard at test time
edges = gumbel_softmax(logits, tau=0.5, hard=hard)
if train_enc:
prob = my_softmax(logits, -1)
if self.sparse:
if self.n_assoc_types == 1:
log_prior = torch.FloatTensor(np.log(np.array([0.95, 0.05]))).to(self.device)
# log_prior = torch.FloatTensor(np.log(np.array([0.9, 0.1]))).to(device)
elif self.n_assoc_types == 2:
log_prior = torch.FloatTensor(np.log(np.array([0.9, 0.05, 0.05]))).to(self.device)
# log_prior = torch.FloatTensor(np.log(np.array([0.8, 0.1, 0.1]))).to(device)
elif self.n_assoc_types == 3:
log_prior = torch.FloatTensor(np.log(np.array([0.91, 0.03, 0.03, 0.03]))).to(self.device)
# log_prior = torch.FloatTensor(np.log(np.array([0.7, 0.1, 0.1, 0.1]))).to(device)
elif self.n_assoc_types == 4:
log_prior = torch.FloatTensor(np.log(np.array([0.9, 0.025, 0.025, 0.025, 0.025]))).to(self.device)
else:
raise NotImplementedError(self.n_assoc_types)
log_prior = torch.unsqueeze(log_prior, 0)
log_prior = torch.unsqueeze(log_prior, 0)
loss_kl = kl_categorical(prob, log_prior, N)
else:
loss_kl = kl_categorical_uniform(prob, N, self.n_assoc_types) # we want all edge types to have uniform probs
if torch.isnan(loss_kl):
print(loss_kl, self.S.min(), self.S.max())
print(prob)
raise ValueError()
reg = [loss_kl]
else:
reg = []
device = edges.get_device() if edges.is_cuda else 'cpu'
I_neg = 1 - torch.eye(N, device=device).unsqueeze(2)
edges = edges.view(N, N, -1) * I_neg
logits = nn.functional.softmax(logits, dim=-1).view(N, N, -1).detach()
logits = logits * I_neg
if self.sparse:
edges = edges[:, :, 1:]
logits = logits[:, :, 1:]
return edges, logits, reg
def forward(self, data):
u, v, time_delta_uv, event_types, time_bar, time_cur = data[:6]
B = len(u)
assert len(event_types) == B, (len(event_types), B)
N = self.N_nodes
A_pred, Surv = None, None
if not self.training:
A_pred = self.A.new(B, N, N).fill_(0)
if self.exp:
Surv = self.A.new(B, N, N).fill_(0) # survival term
if self.opt:
embeddings1, embeddings2, node_degrees = [], [], []
embeddings_non1, embeddings_non2 = [], []
else:
lambda_uv_t, lambda_uv_t_non_events = [], []
assert torch.min(time_delta_uv) >= 0, ('events must be in chronological order', torch.min(time_delta_uv))
time_mn = torch.from_numpy(np.array([0, 0, 0, 0])).float().to(self.device).view(1, 1, 4)
time_sd = torch.from_numpy(np.array([50, 7, 15, 15])).float().to(self.device).view(1, 1, 4)
time_delta_uv = (time_delta_uv - time_mn) / time_sd
reg = []
S_batch = []
if self.latent_graph:
if self.encoder is not None and self.t_p == 0:
if self.verbose:
print('!!!generate S!!!')
self.S = self.S / (torch.sum(self.S, dim=1, keepdim=True) 1e-7)
self.logits = self.S
self.A = self.S
S_batch = [self.S.data.cpu().numpy()]
z_all = []
u_all = u.data.cpu().numpy()
v_all = v.data.cpu().numpy()
update_attn = not self.latent_graph # always update if not latent
if self.model == 'gcn':
for layer in range(len(self.W_h)):
self.z = torch.mm(self.S, self.W_h[layer](self.z)) # update node embeddings. We want these updates to be predictive of the future
if layer < len(self.W_h) - 1:
self.z = F.relu(self.z)
# self.z = self.W_h(self.z)
# print(self.z.min().item(), self.z.max().item())
if self.bilinear:
self.z = 0.5 * torch.tanh(self.z) # to prevent overflow and nans
# self.z.data.clamp_(-1, 1)
elif self.model == 'gat':
assert torch.all(self.A[np.diag_indices(self.N_nodes)] == 1), self.A[np.diag_indices(self.N_nodes)]
rows, cols = torch.nonzero(self.A).split([1, 1], dim=1)
for layer in range(len(self.W_h)):
z_cat = []
for head in range(self.K_heads):
z_prime = self.W_h[layer][head](self.z)
# print(layer, z_prime.shape)
h = torch.cat((z_prime[rows].view(len(rows), -1), z_prime[cols].view(len(cols), -1)), dim=1)
self.S = torch.zeros(self.N_nodes, self.N_nodes).to(self.device)
self.S[rows, cols] = F.leaky_relu(self.alpha[layer][head](h).view(-1, 1), negative_slope=0.2)
for r in range(self.N_nodes):
neighbors = torch.nonzero(self.A[r]).view(-1)
self.S[r, neighbors] = F.softmax(self.S[r, neighbors] 1) # 1 for numerical stability
# print(r, self.S[r, c].sum(), self.S[r, c])
# Alternative to softmax
# A_hat = self.A.view(self.N_nodes, self.N_nodes) torch.eye(self.N_nodes).to(self.device)
# D_hat = (torch.sum(A_hat, 0) 1e-5) ** (-0.5)
# self.S = D_hat.view(self.N_nodes, 1) * A_hat * D_hat.view(1, self.N_nodes)
z_head = torch.mm(self.S, z_prime)
if layer < len(self.W_h) - 1:
z_head = F.relu(z_head)
z_cat.append(z_head)
self.z = torch.cat(z_cat, dim=1)
# if self.bilinear:
# self.z.data.clamp_(-2, 2)
self.z = 0.5 * torch.tanh(self.z) # to prevent overflow and nans
# self.z = torch.sigmoid(self.z)
elif self.model != 'dyrep':
raise NotImplementedError(self.model)
for it, k in enumerate(event_types):
# k = 0: association event (rare)
# k = 1,2,3: communication event (frequent)
u_it, v_it = u_all[it], v_all[it]
z_prev = self.z if it == 0 else z_all[it - 1]
# 1. Compute intensity rate lambda based on node embeddings at previous time step (Eq. 1)
if self.opt:
# store node embeddings, compute lambda and S,A later based on the entire batch
embeddings1.append(z_prev[u_it])
embeddings2.append(z_prev[v_it])
else:
# accumulate intensity rate of events for this batch based on new embeddings
lambda_uv_t.append(self.intensity_rate_lambda(z_prev[u_it], z_prev[v_it], torch.zeros(1).long() k))
# 2. Update node embeddings
if self.model == 'dyrep':
node_degree, z_new = self.update_node_embed(z_prev, u_it, v_it, time_delta_uv[it], k) # / 3600.) # hours
if self.opt:
node_degrees.append(node_degree)
# 3. Update S and A
if not self.opt and update_attn:
# we can update S and A based on current pair of nodes even during test time,
# because S, A are not used in further steps for this iteration
self.update_S_A(u_it, v_it, k.item(), node_degree, lambda_uv_t[it]) #
# update most recent degrees of nodes used to update S
if not self.latent_graph:
assert self.node_degree_global is not None
for j in [u_it, v_it]:
for rel in range(self.n_assoc_types):
self.node_degree_global[rel][j] = node_degree[j][rel]
else:
if k <= 0: # Association event
self.A[u, v] = self.A[v, u] = 1
self.generate_S_from_A()
z_new = self.z
# Non events loss
# this is not important for test time, but we still compute these losses for debugging purposes
# get random nodes except for u_it, v_it
uv_others = self.rnd.choice(np.delete(np.arange(N), [u_it, v_it]),
size=self.N_surv_samples * 2, replace=False)
# assert len(np.unique(uv_others)) == len(uv_others), ('nodes must be unique', uv_others)
for q in range(self.N_surv_samples):
assert u_it != uv_others[q], (u_it, uv_others[q])
assert v_it != uv_others[self.N_surv_samples q], (v_it, uv_others[self.N_surv_samples q])
if self.opt:
embeddings_non1.extend([z_prev[u_it], z_prev[uv_others[self.N_surv_samples q]]])
embeddings_non2.extend([z_prev[uv_others[q]], z_prev[v_it]])
else:
for k_ in range(2):
lambda_uv_t_non_events.append(
self.intensity_rate_lambda(z_prev[u_it],
z_prev[uv_others[q]], torch.zeros(1).long() k_))
lambda_uv_t_non_events.append(
self.intensity_rate_lambda(z_prev[uv_others[self.N_surv_samples q]],
z_prev[v_it],
torch.zeros(1).long() k_))
# compute conditional density for all possible pairs
# here it's important NOT to use any information that the event between nodes u,v has happened
# so, we use node embeddings of the previous time step: z_prev
if self.exp or not self.training:
with torch.no_grad():
z_cat = torch.cat((z_prev[u_it].detach().unsqueeze(0).expand(N, -1),
z_prev[v_it].detach().unsqueeze(0).expand(N, -1)), dim=0)
Lambda = self.intensity_rate_lambda(z_cat, z_prev.detach().repeat(2, 1),
torch.zeros(len(z_cat)).long() k).detach()
if not self.training:
A_pred[it, u_it, :] = Lambda[:N]
A_pred[it, v_it, :] = Lambda[N:]
assert torch.sum(torch.isnan(A_pred[it])) == 0, (it, torch.sum(torch.isnan(A_pred[it])))
if self.exp:
# Compute the survival term (See page 3 in the paper)
# we only need to compute the term for rows u_it and v_it in our matrix s to save time
# because we will compute rank only for nodes u_it and v_it
s1 = self.cond_density(time_bar[it], time_cur[it], u_it, v_it)
Surv[it, [u_it, v_it], :] = s1
if self.exp:
time_key = int(time_cur[it].item())
idx = np.delete(np.arange(N), [u_it, v_it]) # nonevents for node u
idx = np.concatenate((idx, idx N)) # concat with nonevents for node v
if len(self.time_keys) >= len(self.Lambda_dict):
# shift in time (remove the oldest record)
time_keys = np.array(self.time_keys)
time_keys[:-1] = time_keys[1:]
self.time_keys = list(time_keys[:-1]) # remove last
self.Lambda_dict[:-1] = self.Lambda_dict.clone()[1:]
self.Lambda_dict[-1] = 0
self.Lambda_dict[len(self.time_keys)] = Lambda[idx].sum().detach() # total intensity of non events for the current time step
self.time_keys.append(time_key)
# Once we made predictions for the training and test sample, we can update node embeddings
z_all.append(z_new)
# update S
if self.generate:
if self.encoder is not None:
S_tmp, logits_tmp, reg2 = self.generate_S(z_new, u_it, v_it, train_enc=self.training and self.train_enc)
if self.training:
reg = reg reg2
self.S = self.S.clone()
self.S[u_it, v_it] = S_tmp[0, 1]
self.S[v_it, u_it] = S_tmp[1, 0]
self.S = self.S / (torch.sum(self.S, dim=1, keepdim=True) 1e-7)
self.logits[u_it, v_it] = logits_tmp[0, 1]
self.logits[v_it, u_it] = logits_tmp[1, 0]
self.A = self.S
S_batch.append(self.S.data.cpu().numpy())
self.t_p = 1
self.z = z_new # update node embeddings
# Batch update
if self.opt:
lambda_uv_t = self.intensity_rate_lambda(torch.stack(embeddings1, dim=0),
torch.stack(embeddings2, dim=0), event_types)
non_events = len(embeddings_non1)
n_types = 2
lambda_uv_t_non_events = torch.zeros(non_events * n_types, device=self.device)
embeddings_non1 = torch.stack(embeddings_non1, dim=0)
embeddings_non2 = torch.stack(embeddings_non2, dim=0)
idx = None
empty_t = torch.zeros(non_events, dtype=torch.long)
types_lst = torch.arange(n_types)
for k in types_lst:
if idx is None:
idx = np.arange(non_events)
else:
idx = non_events
lambda_uv_t_non_events[idx] = self.intensity_rate_lambda(embeddings_non1, embeddings_non2, empty_t k)
if update_attn and self.model == 'dyrep':
# update only once per batch
for it, k in enumerate(event_types):
u_it, v_it = u_all[it], v_all[it]
self.update_S_A(u_it, v_it, k.item(), node_degrees[it], lambda_uv_t[it].item())
else:
lambda_uv_t = torch.cat(lambda_uv_t)
lambda_uv_t_non_events = torch.cat(lambda_uv_t_non_events)
if len(S_batch) > 0:
S_batch = np.stack(S_batch)
if len(reg) > 1:
reg = [torch.stack(reg).mean()]
return lambda_uv_t, lambda_uv_t_non_events / self.N_surv_samples, [A_pred, Surv], S_batch, reg