MPU-9250 is a System in Package (SiP) which combines two chips: MPU-6500 which contains 3-axis gyroscope and 3-axis accelerometer and an AK8963 which is a 3-axis digital compass.
Kevin Wheeler has an extensive video describing how to use this library. The short code snippets in this README should also help you to get started. First is simple example with never ending loop.
import utime
from machine import I2C, Pin
from mpu9250 import MPU9250
i2c = I2C(scl=Pin(22), sda=Pin(21))
sensor = MPU9250(i2c)
print("MPU9250 id: " hex(sensor.whoami))
while True:
print(sensor.acceleration)
print(sensor.gyro)
print(sensor.magnetic)
print(sensor.temperature)
utime.sleep_ms(1000)
By default the library returns 3-tuple of X, Y, Z axis values for either acceleration, gyroscope and magnetometer ie compass. Default units are m/s^2
, rad/s
, uT
and °C
. It is possible to also get acceleration values in g
and gyro values deg/s
. See the example below. Note that both the MPU6500 and the AK8963 drivers are available as separate classes. MPU9250 is actually a composite of those two.
import utime
from machine import I2C, Pin
from mpu9250 import MPU9250
from mpu6500 import MPU6500, SF_G, SF_DEG_S
i2c = I2C(scl=Pin(22), sda=Pin(21))
mpu6500 = MPU6500(i2c, accel_sf=SF_G, gyro_sf=SF_DEG_S)
sensor = MPU9250(i2c, mpu6500=mpu6500)
print("MPU9250 id: " hex(sensor.whoami))
while True:
print(sensor.acceleration)
print(sensor.gyro)
print(sensor.magnetic)
print(sensor.temperature)
utime.sleep_ms(1000)
More realistic example usage with timer. If you get OSError: 26
or i2c driver install error
after soft reboot do a hard reboot.
import micropython
from machine import I2C, Pin, Timer
from mpu9250 import MPU9250
micropython.alloc_emergency_exception_buf(100)
i2c = I2C(scl=Pin(22), sda=Pin(21))
sensor = MPU9250(i2c)
def read_sensor(timer):
print(sensor.acceleration)
print(sensor.gyro)
print(sensor.magnetic)
print(sensor.temperature)
print("MPU9250 id: " hex(sensor.whoami))
timer_0 = Timer(0)
timer_0.init(period=1000, mode=Timer.PERIODIC, callback=read_sensor)
For real life applications you should almost always calibrate the magnetometer. The AK8963 driver supports both hard and soft iron correction. Calibration function takes two parameters: count
is the number of samples to collect and delay
is the delay in millisecods between the samples.
With the default values of 256
and 200
calibration takes aproximately one minute. While calibration function is running the sensor should be rotated multiple times around each axis.
NOTE! If using MPU9250 you will first need to open the I2C bypass access to AK8963. This is not needed when using a standalone AK8963 sensor.
from machine import I2C, Pin
from mpu9250 import MPU9250
from ak8963 import AK8963
i2c = I2C(scl=Pin(22), sda=Pin(21))
dummy = MPU9250(i2c) # this opens the bybass to access to the AK8963
ak8963 = AK8963(i2c)
offset, scale = ak8963.calibrate(count=256, delay=200)
sensor = MPU9250(i2c, ak8963=ak8963)
After finishing calibration the calibrate()
method also returns tuples for both hard iron offset
and soft iron scale
. To avoid calibrating after each startup it would make sense to strore these values in NVRAM or config file and pass them to the AK8963 constructor. Below example only illustrates how to use the constructor.
from machine import I2C, Pin
from mpu9250 import MPU9250
from ak8963 import AK8963
i2c = I2C(scl=Pin(22), sda=Pin(21))
dummy = MPU9250(i2c) # this opens the bybass to access to the AK8963
ak8963 = AK8963(
i2c,
offset=(-136.8931640625, -160.482421875, 59.02880859375),
scale=(1.18437220840483, 0.923895823933424, 0.931707933618979)
)
sensor = MPU9250(i2c, ak8963=ak8963)
TODO
The MIT License (MIT). Please see License File for more information.