Skip to content

python实现基于贝叶斯的简单垃圾邮件分类

Notifications You must be signed in to change notification settings

tianyu1994/BayesSpam

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

BayesSpam

python实现基于贝叶斯的简单垃圾邮件分类 在400封邮件(正常邮件与垃圾邮件各一半)的测试集中测试结果为分类准确率95.15%,在仅仅统计词频计算概率的情况下,分类结果还是相当不错的。 1、准备工作 python3.4开发环境; 结巴分词工具:https://github.com/fxsjy/jieba

2、贝叶斯公式 我们要做的是计算在已知词向量$w=(w_1,w_2,...,w_n)$的条件下求包含该词向量邮件是否为垃圾邮件的概率,即求:

$P(s|w),w=(w_1,w_2,...,w_n)$ 其中,$s$表示分类为垃圾邮件 根据贝叶斯公式和全概率公式, $P(s|w_1,w_2,...,w_n)$ $=\frac {P(s,w_1,w_2,...,w_n)}{P(w_1,w_2,...,w_n)}$ $=\frac {P(w_1,w_2,...,w_n|s)P(s)}{P(w_1,w_2,...,w_n)}$ $=\frac {P(w_1,w_2,...,w_n|s)P(s)}{P(w_1,w_2,...,w_n|s)\cdot p(s) P(w_1,w_2,...,w_n|s^{'})\cdot p(s^{'})}\qquad\qquad...式1$ 根据朴素贝叶斯的条件独立假设,并设先验概率$P(s)=P(s^{'})=0.5$,上式可化为: $=\frac {\prod\limits_{j=1}^nP(w_j|s)}{\prod\limits_{j=1}^nP(w_j|s) \prod\limits_{j=1}^nP(w_j|s^{'})}$ 再利用贝叶斯$P(w_j|s)=\frac{P(s|w_j)\cdot P(w_j)}{P(s)}$,式子化为 $=\frac {\prod\limits_{j=1}^nP(s|w_j)}{\prod\limits_{j=1}^nP(s|w_j) \prod\limits_{j=1}^nP(s^{'}|w_j)}$ $=\frac {\prod\limits_{j=1}^nP(s|w_j)}{\prod\limits_{j=1}^nP(s|w_j) \prod\limits_{j=1}^n\left(1-P(s|w_j)\right)}\qquad\qquad...式2$ 至此,我们接下来会用式2来计算概率$P(s|w)$,为什么不用式1而用式2来计算概率,是因为通过式2可以将关于$s^{'}$的部分用$s$表示,方便计算。

3、实现步骤 具体实现的源码已经给出,这里简单说下思路,就是一个分词并记录词频的过程: (1)对训练集用结巴分词,并用停用表进行简单过滤,然后使用正则表达式过滤掉邮件中的非中文字符; (2)分别保存正常邮件与垃圾邮件中出现的词有多少邮件出现该词,得到两个词典。例如词"疯狂"在8000封正常邮件中出现了20次,在8000封垃圾邮件中出现了200次; (3)对测试集中的每一封邮件做同样的处理,并计算得到$P(s|w)$最高的15个词,在计算过程中,若该词只出现在垃圾邮件的词典中,则令$P(w|s^{'})=0.01$,反之亦然;若都未出现,则令$P(s|w)=0.4$。PS.这里做的几个假设基于前人做的一些研究工作得出的。 (4)对得到的每封邮件中重要的15个词利用式2计算概率,若概率$>$阈值$\alpha(一般设为0.9)$,则判为垃圾邮件,否则判为正常邮件。

About

python实现基于贝叶斯的简单垃圾邮件分类

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%