- Python 3.6.5
- Pytorch 1.2.0
To train model, first you need to run chargrid2d/dataloader_utils/generate_mask.py to generate data to train segmentation model from bounding box and text.
To use with any dataset, we need to do labeling corresponding class for each box in the image. The input data in json file should be a list of dictionary with keys: text
, class
, box
.
[
{
"text": "abc",
"class": "company_name",
"box": [x, y, w, h]
}
]
You can read the code in generate_masks.py
file, which will call this function:
def __convert_data_sroie(self, label_json):
std_out = []
for item in label_json:
for char in item['text']:
if char not in self.__corpus__:
self.__corpus__[char] = 1
else:
self.__corpus__[char] = 1
std_out.append({
'value': item['text'],
'formal_key': item['class'],
'key_type': 'value',
'location': item['box']
})
return std_out
You could do the processing by using this (which was commented out in the main function) in generate_mask.py
file:
mask_generator = MaskGenerator()
mask_generator.process(lbl_fol, img_fol, out_fol)
mask_generator.generate_mask('.')
Then you need to run train.py file to train the model.
python train.py
If you have any questions, please create an issue.