-
Notifications
You must be signed in to change notification settings - Fork 2
Machine Learning Learning Path
- Youtube: 3b1b videos on Neural Networks, Calculus and Linear Algebra
- Coursera: Andrew Ng's Machine Learning course
- Book: Deep Learning with Python by Francois Chollet
- Book: Reinforcement Learning: An Introduction, by Richard S. Sutton and Andrew G. Barto
- Free Course
See also: https://github.com/louisfb01/start-machine-learning-in-2020
Python libraries to be familiar with:
- Sckit-learn
- xgboost
- catboost
- lightgbm
- hyperopt
- Tensorflow
- PyTorch
- Keras
- HuggingFace: https://huggingface.co/
- OpenAI Gym
- MLFlow: https://mlflow.org/
- Apache Airflow: https://airflow.apache.org/
- Kubeflow: https://www.kubeflow.org/
Video Lectures for Machine Learning
-
Cornell CS4780: https://www.youtube.com/playlist?list=PLl8OlHZGYOQ7bkVbuRthEsaLr7bONzbXS
-
Stanford CS 229: https://www.youtube.com/playlist?list=PLoROMvodv4rNH7qL6-efu_q2_bPuy0adh
-
IIT Madras: https://www.youtube.com/playlist?list=PL1xHD4vteKYVpaIiy295pg6_SY5qznc77
-
IISc Bangalore(Rigorous Math): https://www.youtube.com/playlist?list=PLbMVogVj5nJSlpmy0ni_5-RgbseafOViy
-
Applied Machine Learning Cornell CS5787: https://www.youtube.com/playlist?list=PL2UML_KCiC0UlY7iCQDSiGDMovaupqc83
-
Caltech's Machine Learning Course (CS 156 by Professor Yaser Abu-Mostafa): https://www.youtube.com/playlist?list=PL41qI9AD63BMXtmes0upOcPA5psKqVkgS
-
StatQuest (Best resource for revision and visualization): https://www.youtube.com/user/joshstarmer?app=desktop
Part 1: https://youtube.com/playlist?list=PLyqSpQzTE6M9gCgajvQbc68Hk_JKGBAYT
Part 2: https://www.youtube.com/playlist?list=PLyqSpQzTE6M-_1jAqrFCsgCcuTYm_2urp
Course link for slides and references: http://www.cse.iitm.ac.in/~miteshk/CS7015_2018.html
-
Neural Networks by Hinton: https://www.youtube.com/playlist?list=PLiPvV5TNogxKKwvKb1RKwkq2hm7ZvpHz0
-
NYU DL (Taught by Prof Alfredo Canziani and Prof Yann Lecun): https://www.youtube.com/playlist?list=PLLHTzKZzVU9e6xUfG10TkTWApKSZCzuBI
- Michigan University: https://youtube.com/playlist?list=PL5-TkQAfAZFbzxjBHtzdVCWE0Zbhomg7r
(This Michigan university course is the updated version of Stanford’s CS231n CV course and includes all the content covered by that as well)
- Advanced Deep Learning for Computer Vision by TU Munich: https://www.youtube.com/playlist?list=PLog3nOPCjKBnjhuHMIXu4ISE4Z4f2jm39
-
Stanford CS 224n: https://youtube.com/playlist?list=PLoROMvodv4rOhcuXMZkNm7j3fVwBBY42z
-
Natural Language Understanding Stanford CS 224u: https://www.youtube.com/playlist?list=PLoROMvodv4rObpMCir6rNNUlFAn56Js20
-
Deep Learning for NLP at Oxford with Deep Mind 2017: https://www.youtube.com/playlist?list=PL613dYIGMXoZBtZhbyiBqb0QtgK6oJbpm
-
NLP CMU 11-411/11-611: https://www.youtube.com/playlist?list=PL4YhK0pT0ZhXteJ2OTzg4vgySjxTU_QUs
-
CMU CS11-737 Multilingual Natural Language Processing: https://www.youtube.com/playlist?list=PL8PYTP1V4I8CHhppU6n1Q9-04m96D9gt5
-
IIT Madras: https://youtube.com/playlist?list=PLEAYkSg4uSQ0Hkv_1LHlJtC_wqwVu6RQX
-
Stanford CS234: https://www.youtube.com/playlist?list=PLoROMvodv4rOSOPzutgyCTapiGlY2Nd8u
-
UC Berkeley CS 285: https://youtube.com/playlist?list=PL_iWQOsE6TfURIIhCrlt-wj9ByIVpbfGc
-
CS224W: Machine Learning with Graphs: https://www.youtube.com/playlist?list=PLoROMvodv4rPLKxIpqhjhPgdQy7imNkDn
-
Stanford CS330: Multi-Task and Meta-Learning: https://www.youtube.com/playlist?list=PLoROMvodv4rMC6zfYmnD7UG3LVvwaITY5
-
Explainable AI: https://www.youtube.com/playlist?list=PLV8yxwGOxvvovp-j6ztxhF3QcKXT6vORU
-
Explainable AI in Industry: https://www.youtube.com/playlist?list=PL9ekywqME2Aj8OmKoBUaYEH7Xzi-YCRBy
-
Linear algebra(MIT): https://www.youtube.com/playlist?list=PLE7DDD91010BC51F8
-
Optimization (IIT Kanpur): https://www.youtube.com/playlist?list=PLbMVogVj5nJRRbofh3Qm3P6_NVyevDGD_
-
Multivariable Calculus(MIT): https://www.youtube.com/playlist?list=PL4C4C8A7D06566F38
-
Probability and Statistics(Harvard): https://www.youtube.com/playlist?list=PL2SOU6wwxB0uwwH80KTQ6ht66KWxbzTIo
- https://atcold.github.io/pytorch-Deep-Learning/
- dive into deep learning
- https://www.deeplearningbook.org/
- Andrew Ng's courses
- http://neuralnetworksanddeeplearning.com
- aladdin persson
- abhishek thakur
- venelin valkov
- https://www.fast.ai/
- https://github.com/ahkarami/Great-Deep-Learning-Books
- https://www.oreilly.com/library/view/programming-pytorch-for/9781492045342/
- https://github.com/changwookjun/StudyBook
If you want to explore deep learning and need a platform to help you do it - this tutorial is exactly for you.
In this tutorial you will learn:
- Getting around in Google Colab
- Installing python libraries in Colab
- Downloading large datasets in Colab
- Training a Deep learning model in Colab
- Using TensorBoard in Colab