forked from areslp/matlab
-
Notifications
You must be signed in to change notification settings - Fork 0
/
l1_graph.m
63 lines (49 loc) · 1.18 KB
/
l1_graph.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
function [Z] = l1_graph( X, lambda)
features=X;
for i=1:size(features,2)
features(:,i)= features(:,i)/norm(features(:,i));
end
f_dim=size(features,1);
num=size(features,2);
f=fopen('spmatrix.txt','w');
for i=1:num
X=[features(:,1:i-1) features(:,i 1:num)];
B=[X];
xi=features(:,i);
% alpha=LassoNonNegativeSquared(B,xi,lambda);
% [alpha, nIter, timeSteps, errorSteps] = SolveDALM(B, xi, 'lambda',lambda, 'stoppingcriterion',1);
opt.rho=lambda;
opt.nonneg=1;
opt.tol=1e-3;
alpha=yall1(B,xi,opt);
%remove the non-zero alpha on I
assert(length(alpha)==num-1);
alpha=alpha(1:num-1);
% if length(find(alpha~=0))==0
% fprintf(1,'alpha is 0, i is %d\n',i);
% displayPatches(B);
% dot_result=l1_debug(xi,B)
% pause;
% end
[r,c,v]=find(alpha);
for ii=1:length(r)
row=i;
col=r(ii);
if col<i
else
col=col 1;
end
% col=c(ii); all 1
val=abs(v(ii));
fprintf(f,'%d %d %f\n',row,col,val);
end
end
fclose(f);
load spmatrix.txt
% spmatrix
A=spconvert(spmatrix);
num=length(A);
if size(A,1)~=size(A,2)
A(num,num)=0;
end
Z=A;