Skip to content
/ c4core Public
forked from biojppm/c4core

C utilities

License

MIT, Unknown licenses found

Licenses found

MIT
LICENSE.txt
Unknown
LICENSE-BOOST.txt
Notifications You must be signed in to change notification settings

seaube/c4core

 
 

Repository files navigation

c4core - C core utilities

MIT Licensed ci Codecov

c4core is a library of low-level C utilities, written with low-latency projects in mind.

Some of the utilities provided by c4core have already equivalent functionality in the C standard, but they are provided as the existing C equivalent may be insufficient (eg, std::string_view), inefficient (eg, std::string), heavy (eg streams), or plainly unusable on some platforms/projects, (eg exceptions); some other utilities have equivalent under consideration for C standardisation; and yet some other utilities have (to my knowledge) no equivalent under consideration. Be that as it may, I've been using these utilities in this or similar forms for some years now, and I've found them incredibly useful in my projects. I'm packing these as a separate library, as all of my projects use it.

c4core is extensively unit-tested in Linux, Windows and MacOS. The tests cover x64, x86, arm, wasm (emscripten), aarch64, ppc64le and s390x architectures, and include analysing c4core with:

  • valgrind
  • clang-tidy
  • clang sanitizers:
    • memory
    • address
    • undefined behavior
    • thread
  • LGTM.com

c4core also works in bare-metal, as well as in RISC-V, and in LoongArch, but at the moment it's not easy to add automated tests to the CI, so for now these are not in the list of official architectures.

Obtaining c4core

c4core uses git submodules. It is best to clone c4core with the --recursive option:

# using --recursive makes sure git submodules are also cloned at the same time
git clone --recursive https://github.com/biojppm/c4core

If you ommit the --recursive option, then after cloning you will have to make git checkout the current version of the submodules, using git submodule init followed by git submodule update.

Using c4core in your project

c4core can be built with cmake, or can be used header only. It can also be obtained through some package managers.

CMake

The recommended way to use c4core is by making it part of your project by using add_subdirectory(${path_to_c4core_root}) in your CMakeLists.txt. Doing this is not intrusive to your cmake project because c4core is fast to build, also prefixes every cmake variable with C4CORE_. But more importantly, this will enable you to compile c4core with the exact same compile settings used by your project.

Here's a very quick complete example of setting up your project to use c4core as a cmake subproject:

project(foo)

add_subdirectory(c4core)

add_library(foo foo.cpp)
target_link_libraries(foo PUBLIC c4core) # that's it!

Note above that the call to target_link_libraries() is using PUBLIC linking. This is required to make sure the include directories from c4core are transitively used by clients of foo.

Header-only

If you prefer to pick a single header to get you quickly going, there is an amalgamation tool which generates this header:

[user@host c4core]$ python tools/amalgamate.py -h
usage: amalgamate.py [-h] [--fastfloat | --no-fastfloat] [--stl | --no-stl] [output]

positional arguments:
  output          output file. defaults to stdout

options:
  -h, --help      show this help message and exit
  --fastfloat     enable fastfloat library. this is the default.
  --no-fastfloat  enable fastfloat library. the default is --fastfloat.
  --stl           enable stl interop. this is the default.
  --no-stl        enable stl interop. the default is --stl.

Package managers

c4core is available through the following package managers:

Quick tour

All of the utilities in this library are under the namespace c4; any exposed macros use the prefix C4_: eg C4_ASSERT().

See partial documentation in rapidyaml's doxygen docs.

Writeable string views: c4::substr and c4::csubstr

Here: #include <c4/substr.hpp>.

There is a useful quickstart sample in rapidyaml's doxygen docs.

charconv: Value <-> character interoperation

Here: #include <c4/charconv.hpp>

// TODO: elaborate on the topics:

c4::digits_dec(), c4::read_dec(), c4::write_dec()
c4::digits_hex(), c4::read_hex(), c4::write_hex()
c4::digits_oct(), c4::read_oct(), c4::write_oct()
c4::digits_bin(), c4::read_bin(), c4::write_bin()

c4::utoa(), c4::atou()
c4::itoa(), c4::atoi()
c4::ftoa(), c4::atof()
c4::dtoa(), c4::atod()
c4::xtoa(), c4::atox()

c4::to_chars(), c4::from_chars()
c4::to_chars_sub()
c4::to_chars_first()

The charconv funcions above are very fast; even faster than C 's fastest facility std::from_chars(), std::to_chars(). For continuous benchmark results, browse through c4core's github CI benchmark runs. For example, a benchmark run on Linux/g 11.2 shows that:

  • c4::to_chars() can be expected to be roughly...
    • ~40% to 2x faster than std::to_chars()
    • ~10x-30x faster than sprintf()
    • ~50x-100x faster than a naive stringstream::operator<<() followed by stringstream::str()
  • c4::from_chars() can be expected to be roughly...
    • ~10%-30% faster than std::from_chars()
    • ~10x faster than scanf()
    • ~30x-50x faster than a naive stringstream::str() followed by stringstream::operator>>()

Here are the results:

Write throughput Read throughput
write uint8_t MB/s read uint8_t MB/s
c4::to_chars<u8> 526.86 c4::from_chars<u8> 163.06
std::to_chars<u8> 379.03 std::from_chars<u8> 154.85
std::sprintf<u8> 20.49 std::scanf<u8> 15.75
std::stringstream<u8> 3.82 std::stringstream<u8> 3.83
write int8_t MB/s read int8_t MB/s
c4::to_chars<i8> 599.98 c4::from_chars<i8> 184.20
std::to_chars<i8> 246.32 std::from_chars<i8> 156.40
std::sprintf<i8> 19.15 std::scanf<i8> 16.44
std::stringstream<i8> 3.83 std::stringstream<i8> 3.89
write uint16_t MB/s read uint16_t MB/s
c4::to_chars<u16> 486.40 c4::from_chars<u16> 349.48
std::to_chars<u16> 454.24 std::from_chars<u16> 319.13
std::sprintf<u16> 38.74 std::scanf<u16> 28.12
std::stringstream<u16> 7.08 std::stringstream<u16> 6.73
write int16_t MB/s read int16_t MB/s
c4::to_chars<i16> 507.44 c4::from_chars<i16> 282.95
std::to_chars<i16> 297.49 std::from_chars<i16> 186.18
std::sprintf<i16> 39.03 std::scanf<i16> 28.45
std::stringstream<i16> 6.98 std::stringstream<i16> 6.49
write uint32_t MB/s read uint32_t MB/s
c4::to_chars<u32> 730.12 c4::from_chars<u32> 463.95
std::to_chars<u32> 514.76 std::from_chars<u32> 329.42
std::sprintf<u32> 71.19 std::scanf<u32> 44.97
std::stringstream<u32> 14.05 std::stringstream<u32> 12.57
write int32_t MB/s read int32_t MB/s
c4::to_chars<i32> 618.76 c4::from_chars<i32> 345.53
std::to_chars<i32> 394.72 std::from_chars<i32> 224.46
std::sprintf<i32> 71.14 std::scanf<i32> 43.49
std::stringstream<i32> 13.91 std::stringstream<i32> 12.03
write uint64_t MB/s read uint64_t MB/s
c4::to_chars<u64> 1118.87 c4::from_chars<u64> 928.49
std::to_chars<u64> 886.58 std::from_chars<u64> 759.03
std::sprintf<u64> 140.96 std::scanf<u64> 91.60
std::stringstream<u64> 28.01 std::stringstream<u64> 25.00
write int64_t MB/s read int64_t MB/s
c4::to_chars<i64> 1198.78 c4::from_chars<i64> 713.76
std::to_chars<i64> 882.17 std::from_chars<i64> 646.18
std::sprintf<i64> 138.79 std::scanf<i64> 90.07
std::stringstream<i64> 27.62 std::stringstream<i64> 25.12

Or here are plots for g 12.1 and VS2019 (from the same computer):

Linux gxx12.1 Windows VS2019
atox-u32-linux atox-u32-windows
atox-i32-linux atox-i32-windows
atox-u64-linux atox-u64-windows
atox-i64-linux atox-i64-windows
atof-double-linux atof-double-windows
atof-float-linux atof-float-windows
xtoa-u32-linux xtoa-u32-windows
xtoa-i32-linux xtoa-i32-windows
xtoa-u64-linux xtoa-u64-windows
xtoa-i64-linux xtoa-i64-windows

String formatting and parsing

// TODO: elaborate on the topics:

c4::cat(), c4::uncat()
c4::catsep(), c4::uncatsep()
c4::format(), c4::unformat()

c4::catrs()
c4::catseprs()
c4::formatrs()

// formatting:
c4::fmt::overflow_checked
c4::fmt::real
c4::fmt::boolalpha
c4::fmt::dec
c4::fmt::hex
c4::fmt::oct
c4::fmt::bin
c4::fmt::zpad
c4::fmt::right
c4::fmt::left
c4::fmt::raw, c4::fmt::craw
c4::fmt::base64, c4::fmt::cbase64

c4::span and c4::blob

Enums and enum symbols

#include <c4/enum.hpp>

// TODO: elaborate on the topics:

c4::e2str(), c4::str2e()

Bitmasks and bitmask symbols

#include <c4/bitmask.hpp>

// TODO: elaborate on the topics:

c4::bm2str(), c4::str2bm()

Base64 encoding / decoding

#include <c4/base64.hpp>

Fuzzy float comparison

Multi-platform / multi-compiler utilities

// TODO: elaborate on the topics:
#include <c4/error.hpp>

C4_RESTRICT, $, c$, $$, c$$
#include <c4/restrict.hpp>
#include <c4/unrestrict.hpp>

#include <c4/windows_push.hpp>
#include <c4/windows_pop.hpp>

C4_UNREACHABLE()

c4::type_name()

// portable attributes
C4_LIKELY()/C4_UNLIKELY()
C4_ALWAYS_INLINE
C4_CONST
C4_PURE
C4_HOT
C4_COLD

Runtime assertions and error handling

// TODO: elaborate on the topics:

error callback

C4_ASSERT()
C4_XASSERT()
C4_CHECK()

C4_ERROR()
C4_NOT_IMPLEMENTED()

Memory allocation

// TODO: elaborate on the topics:

c4::aalloc(), c4::afree() // aligned allocation

c4::MemoryResource // global and scope

c4::Allocator

Mass initialization/construction/destruction

// TODO: elaborate on the topics:

c4::make_room()/c4::destroy_room()
c4::construct()/c4::construct_n()
c4::destroy()/c4::destroy_n()
c4::copy_construct()/c4::copy_construct_n()
c4::copy_assign()/c4::copy_assign_n()
c4::move_construct()/c4::move_construct_n()
c4::move_assign()/c4::move_assign_n()

About

C utilities

Resources

License

MIT, Unknown licenses found

Licenses found

MIT
LICENSE.txt
Unknown
LICENSE-BOOST.txt

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C 87.0%
  • Pascal 10.3%
  • CMake 1.2%
  • Python 1.1%
  • Starlark 0.4%