forked from tidwall/btree
-
Notifications
You must be signed in to change notification settings - Fork 0
/
btreeg.go
1391 lines (1295 loc) · 31.3 KB
/
btreeg.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
863
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2020 Joshua J Baker. All rights reserved.
// Use of this source code is governed by an MIT-style
// license that can be found in the LICENSE file.
package btree
import "sync"
type BTreeG[T any] struct {
isoid uint64
mu *sync.RWMutex
root *node[T]
count int
locks bool
copyItems bool
isoCopyItems bool
less func(a, b T) bool
empty T
max int
min int
}
type node[T any] struct {
isoid uint64
count int
items []T
children *[]*node[T]
}
// PathHint is a utility type used with the *Hint() functions. Hints provide
// faster operations for clustered keys.
type PathHint struct {
used [8]bool
path [8]uint8
}
// Options for passing to New when creating a new BTree.
type Options struct {
// Degree is used to define how many items and children each internal node
// can contain before it must branch. For example, a degree of 2 will
// create a 2-3-4 tree, where each node may contains 1-3 items and
// 2-4 children. See https://en.wikipedia.org/wiki/2–3–4_tree.
// Default is 32
Degree int
// NoLocks will disable locking. Otherwide a sync.RWMutex is used to
// ensure all operations are safe across multiple goroutines.
NoLocks bool
}
// New returns a new BTree
func NewBTreeG[T any](less func(a, b T) bool) *BTreeG[T] {
return NewBTreeGOptions(less, Options{})
}
func NewBTreeGOptions[T any](less func(a, b T) bool, opts Options) *BTreeG[T] {
tr := new(BTreeG[T])
tr.isoid = newIsoID()
tr.mu = new(sync.RWMutex)
tr.locks = !opts.NoLocks
tr.less = less
tr.init(opts.Degree)
return tr
}
func (tr *BTreeG[T]) init(degree int) {
if tr.min != 0 {
return
}
tr.min, tr.max = degreeToMinMax(degree)
_, tr.copyItems = ((interface{})(tr.empty)).(copier[T])
if !tr.copyItems {
_, tr.isoCopyItems = ((interface{})(tr.empty)).(isoCopier[T])
}
}
// Less is a convenience function that performs a comparison of two items
// using the same "less" function provided to New.
func (tr *BTreeG[T]) Less(a, b T) bool {
return tr.less(a, b)
}
func (tr *BTreeG[T]) newNode(leaf bool) *node[T] {
n := &node[T]{isoid: tr.isoid}
if !leaf {
n.children = new([]*node[T])
}
return n
}
// leaf returns true if the node is a leaf.
func (n *node[T]) leaf() bool {
return n.children == nil
}
func (tr *BTreeG[T]) bsearch(n *node[T], key T) (index int, found bool) {
low, high := 0, len(n.items)
for low < high {
h := (low high) / 2
if !tr.less(key, n.items[h]) {
low = h 1
} else {
high = h
}
}
if low > 0 && !tr.less(n.items[low-1], key) {
return low - 1, true
}
return low, false
}
func (tr *BTreeG[T]) find(n *node[T], key T, hint *PathHint, depth int,
) (index int, found bool) {
if hint == nil {
return tr.bsearch(n, key)
}
return tr.hintsearch(n, key, hint, depth)
}
func (tr *BTreeG[T]) hintsearch(n *node[T], key T, hint *PathHint, depth int,
) (index int, found bool) {
// Best case finds the exact match, updates the hint and returns.
// Worst case, updates the low and high bounds to binary search between.
low := 0
high := len(n.items) - 1
if depth < 8 && hint.used[depth] {
index = int(hint.path[depth])
if index >= len(n.items) {
// tail item
if tr.Less(n.items[len(n.items)-1], key) {
index = len(n.items)
goto path_match
}
index = len(n.items) - 1
}
if tr.Less(key, n.items[index]) {
if index == 0 || tr.Less(n.items[index-1], key) {
goto path_match
}
high = index - 1
} else if tr.Less(n.items[index], key) {
low = index 1
} else {
found = true
goto path_match
}
}
// Do a binary search between low and high
// keep on going until low > high, where the guarantee on low is that
// key >= items[low - 1]
for low <= high {
mid := low ((high 1)-low)/2
// if key >= n.items[mid], low = mid 1
// which implies that key >= everything below low
if !tr.Less(key, n.items[mid]) {
low = mid 1
} else {
high = mid - 1
}
}
// if low > 0, n.items[low - 1] >= key,
// we have from before that key >= n.items[low - 1]
// therefore key = n.items[low - 1],
// and we have found the entry for key.
// Otherwise we must keep searching for the key in index `low`.
if low > 0 && !tr.Less(n.items[low-1], key) {
index = low - 1
found = true
} else {
index = low
found = false
}
path_match:
if depth < 8 {
hint.used[depth] = true
var pathIndex uint8
if n.leaf() && found {
pathIndex = uint8(index 1)
} else {
pathIndex = uint8(index)
}
if pathIndex != hint.path[depth] {
hint.path[depth] = pathIndex
for i := depth 1; i < 8; i {
hint.used[i] = false
}
}
}
return index, found
}
// SetHint sets or replace a value for a key using a path hint
func (tr *BTreeG[T]) SetHint(item T, hint *PathHint) (prev T, replaced bool) {
if tr.locks {
tr.mu.Lock()
prev, replaced = tr.setHint(item, hint)
tr.mu.Unlock()
} else {
prev, replaced = tr.setHint(item, hint)
}
return prev, replaced
}
func (tr *BTreeG[T]) setHint(item T, hint *PathHint) (prev T, replaced bool) {
if tr.root == nil {
tr.init(0)
tr.root = tr.newNode(true)
tr.root.items = append([]T{}, item)
tr.root.count = 1
tr.count = 1
return tr.empty, false
}
prev, replaced, split := tr.nodeSet(&tr.root, item, hint, 0)
if split {
left := tr.isoLoad(&tr.root, true)
right, median := tr.nodeSplit(left)
tr.root = tr.newNode(false)
*tr.root.children = make([]*node[T], 0, tr.max 1)
*tr.root.children = append([]*node[T]{}, left, right)
tr.root.items = append([]T{}, median)
tr.root.updateCount()
return tr.setHint(item, hint)
}
if replaced {
return prev, true
}
tr.count
return tr.empty, false
}
// Set or replace a value for a key
func (tr *BTreeG[T]) Set(item T) (T, bool) {
return tr.SetHint(item, nil)
}
func (tr *BTreeG[T]) nodeSplit(n *node[T]) (right *node[T], median T) {
i := tr.max / 2
median = n.items[i]
// right node
right = tr.newNode(n.leaf())
right.items = n.items[i 1:]
if !n.leaf() {
*right.children = (*n.children)[i 1:]
}
right.updateCount()
// left node
n.items[i] = tr.empty
n.items = n.items[:i:i]
if !n.leaf() {
*n.children = (*n.children)[: i 1 : i 1]
}
n.updateCount()
return right, median
}
func (n *node[T]) updateCount() {
n.count = len(n.items)
if !n.leaf() {
for i := 0; i < len(*n.children); i {
n.count = (*n.children)[i].count
}
}
}
// Copy the node for safe isolation.
func (tr *BTreeG[T]) copy(n *node[T]) *node[T] {
n2 := new(node[T])
n2.isoid = tr.isoid
n2.count = n.count
n2.items = make([]T, len(n.items), cap(n.items))
copy(n2.items, n.items)
if tr.copyItems {
for i := 0; i < len(n2.items); i {
n2.items[i] = ((interface{})(n2.items[i])).(copier[T]).Copy()
}
} else if tr.isoCopyItems {
for i := 0; i < len(n2.items); i {
n2.items[i] = ((interface{})(n2.items[i])).(isoCopier[T]).IsoCopy()
}
}
if !n.leaf() {
n2.children = new([]*node[T])
*n2.children = make([]*node[T], len(*n.children), tr.max 1)
copy(*n2.children, *n.children)
}
return n2
}
// isoLoad loads the provided node and, if needed, performs a copy-on-write.
func (tr *BTreeG[T]) isoLoad(cn **node[T], mut bool) *node[T] {
if mut && (*cn).isoid != tr.isoid {
*cn = tr.copy(*cn)
}
return *cn
}
func (tr *BTreeG[T]) nodeSet(cn **node[T], item T,
hint *PathHint, depth int,
) (prev T, replaced bool, split bool) {
if (*cn).isoid != tr.isoid {
*cn = tr.copy(*cn)
}
n := *cn
var i int
var found bool
if hint == nil {
i, found = tr.bsearch(n, item)
} else {
i, found = tr.hintsearch(n, item, hint, depth)
}
if found {
prev = n.items[i]
n.items[i] = item
return prev, true, false
}
if n.leaf() {
if len(n.items) == tr.max {
return tr.empty, false, true
}
n.items = append(n.items, tr.empty)
copy(n.items[i 1:], n.items[i:])
n.items[i] = item
n.count
return tr.empty, false, false
}
prev, replaced, split = tr.nodeSet(&(*n.children)[i], item, hint, depth 1)
if split {
if len(n.items) == tr.max {
return tr.empty, false, true
}
right, median := tr.nodeSplit((*n.children)[i])
*n.children = append(*n.children, nil)
copy((*n.children)[i 1:], (*n.children)[i:])
(*n.children)[i 1] = right
n.items = append(n.items, tr.empty)
copy(n.items[i 1:], n.items[i:])
n.items[i] = median
return tr.nodeSet(&n, item, hint, depth)
}
if !replaced {
n.count
}
return prev, replaced, false
}
func (tr *BTreeG[T]) Scan(iter func(item T) bool) {
tr.scan(iter, false)
}
func (tr *BTreeG[T]) ScanMut(iter func(item T) bool) {
tr.scan(iter, true)
}
func (tr *BTreeG[T]) scan(iter func(item T) bool, mut bool) {
if tr.lock(mut) {
defer tr.unlock(mut)
}
if tr.root == nil {
return
}
tr.nodeScan(&tr.root, iter, mut)
}
func (tr *BTreeG[T]) nodeScan(cn **node[T], iter func(item T) bool, mut bool,
) bool {
n := tr.isoLoad(cn, mut)
if n.leaf() {
for i := 0; i < len(n.items); i {
if !iter(n.items[i]) {
return false
}
}
return true
}
for i := 0; i < len(n.items); i {
if !tr.nodeScan(&(*n.children)[i], iter, mut) {
return false
}
if !iter(n.items[i]) {
return false
}
}
return tr.nodeScan(&(*n.children)[len(*n.children)-1], iter, mut)
}
// Get a value for key
func (tr *BTreeG[T]) Get(key T) (T, bool) {
return tr.getHint(key, nil, false)
}
func (tr *BTreeG[T]) GetMut(key T) (T, bool) {
return tr.getHint(key, nil, true)
}
// GetHint gets a value for key using a path hint
func (tr *BTreeG[T]) GetHint(key T, hint *PathHint) (value T, ok bool) {
return tr.getHint(key, hint, false)
}
func (tr *BTreeG[T]) GetHintMut(key T, hint *PathHint) (value T, ok bool) {
return tr.getHint(key, hint, true)
}
// GetHint gets a value for key using a path hint
func (tr *BTreeG[T]) getHint(key T, hint *PathHint, mut bool) (T, bool) {
if tr.lock(mut) {
defer tr.unlock(mut)
}
if tr.root == nil {
return tr.empty, false
}
n := tr.isoLoad(&tr.root, mut)
depth := 0
for {
i, found := tr.find(n, key, hint, depth)
if found {
return n.items[i], true
}
if n.children == nil {
return tr.empty, false
}
n = tr.isoLoad(&(*n.children)[i], mut)
depth
}
}
// Len returns the number of items in the tree
func (tr *BTreeG[T]) Len() int {
return tr.count
}
// Delete a value for a key and returns the deleted value.
// Returns false if there was no value by that key found.
func (tr *BTreeG[T]) Delete(key T) (T, bool) {
return tr.DeleteHint(key, nil)
}
// DeleteHint deletes a value for a key using a path hint and returns the
// deleted value.
// Returns false if there was no value by that key found.
func (tr *BTreeG[T]) DeleteHint(key T, hint *PathHint) (T, bool) {
if tr.lock(true) {
defer tr.unlock(true)
}
return tr.deleteHint(key, hint)
}
func (tr *BTreeG[T]) deleteHint(key T, hint *PathHint) (T, bool) {
if tr.root == nil {
return tr.empty, false
}
prev, deleted := tr.delete(&tr.root, false, key, hint, 0)
if !deleted {
return tr.empty, false
}
if len(tr.root.items) == 0 && !tr.root.leaf() {
tr.root = (*tr.root.children)[0]
}
tr.count--
if tr.count == 0 {
tr.root = nil
}
return prev, true
}
func (tr *BTreeG[T]) delete(cn **node[T], max bool, key T,
hint *PathHint, depth int,
) (T, bool) {
n := tr.isoLoad(cn, true)
var i int
var found bool
if max {
i, found = len(n.items)-1, true
} else {
i, found = tr.find(n, key, hint, depth)
}
if n.leaf() {
if found {
// found the items at the leaf, remove it and return.
prev := n.items[i]
copy(n.items[i:], n.items[i 1:])
n.items[len(n.items)-1] = tr.empty
n.items = n.items[:len(n.items)-1]
n.count--
return prev, true
}
return tr.empty, false
}
var prev T
var deleted bool
if found {
if max {
i
prev, deleted = tr.delete(&(*n.children)[i], true, tr.empty, nil, 0)
} else {
prev = n.items[i]
maxItem, _ := tr.delete(&(*n.children)[i], true, tr.empty, nil, 0)
deleted = true
n.items[i] = maxItem
}
} else {
prev, deleted = tr.delete(&(*n.children)[i], max, key, hint, depth 1)
}
if !deleted {
return tr.empty, false
}
n.count--
if len((*n.children)[i].items) < tr.min {
tr.nodeRebalance(n, i)
}
return prev, true
}
// nodeRebalance rebalances the child nodes following a delete operation.
// Provide the index of the child node with the number of items that fell
// below minItems.
func (tr *BTreeG[T]) nodeRebalance(n *node[T], i int) {
if i == len(n.items) {
i--
}
// ensure copy-on-write
left := tr.isoLoad(&(*n.children)[i], true)
right := tr.isoLoad(&(*n.children)[i 1], true)
if len(left.items) len(right.items) < tr.max {
// Merges the left and right children nodes together as a single node
// that includes (left,item,right), and places the contents into the
// existing left node. Delete the right node altogether and move the
// following items and child nodes to the left by one slot.
// merge (left,item,right)
left.items = append(left.items, n.items[i])
left.items = append(left.items, right.items...)
if !left.leaf() {
*left.children = append(*left.children, *right.children...)
}
left.count = right.count 1
// move the items over one slot
copy(n.items[i:], n.items[i 1:])
n.items[len(n.items)-1] = tr.empty
n.items = n.items[:len(n.items)-1]
// move the children over one slot
copy((*n.children)[i 1:], (*n.children)[i 2:])
(*n.children)[len(*n.children)-1] = nil
(*n.children) = (*n.children)[:len(*n.children)-1]
} else if len(left.items) > len(right.items) {
// move left -> right over one slot
// Move the item of the parent node at index into the right-node first
// slot, and move the left-node last item into the previously moved
// parent item slot.
right.items = append(right.items, tr.empty)
copy(right.items[1:], right.items)
right.items[0] = n.items[i]
right.count
n.items[i] = left.items[len(left.items)-1]
left.items[len(left.items)-1] = tr.empty
left.items = left.items[:len(left.items)-1]
left.count--
if !left.leaf() {
// move the left-node last child into the right-node first slot
*right.children = append(*right.children, nil)
copy((*right.children)[1:], *right.children)
(*right.children)[0] = (*left.children)[len(*left.children)-1]
(*left.children)[len(*left.children)-1] = nil
(*left.children) = (*left.children)[:len(*left.children)-1]
left.count -= (*right.children)[0].count
right.count = (*right.children)[0].count
}
} else {
// move left <- right over one slot
// Same as above but the other direction
left.items = append(left.items, n.items[i])
left.count
n.items[i] = right.items[0]
copy(right.items, right.items[1:])
right.items[len(right.items)-1] = tr.empty
right.items = right.items[:len(right.items)-1]
right.count--
if !left.leaf() {
*left.children = append(*left.children, (*right.children)[0])
copy(*right.children, (*right.children)[1:])
(*right.children)[len(*right.children)-1] = nil
*right.children = (*right.children)[:len(*right.children)-1]
left.count = (*left.children)[len(*left.children)-1].count
right.count -= (*left.children)[len(*left.children)-1].count
}
}
}
// Ascend the tree within the range [pivot, last]
// Pass nil for pivot to scan all item in ascending order
// Return false to stop iterating
func (tr *BTreeG[T]) Ascend(pivot T, iter func(item T) bool) {
tr.ascend(pivot, iter, false)
}
func (tr *BTreeG[T]) AscendMut(pivot T, iter func(item T) bool) {
tr.ascend(pivot, iter, true)
}
func (tr *BTreeG[T]) ascend(pivot T, iter func(item T) bool, mut bool) {
if tr.lock(mut) {
defer tr.unlock(mut)
}
if tr.root == nil {
return
}
tr.nodeAscend(&tr.root, pivot, nil, 0, iter, mut)
}
// The return value of this function determines whether we should keep iterating
// upon this functions return.
func (tr *BTreeG[T]) nodeAscend(cn **node[T], pivot T, hint *PathHint,
depth int, iter func(item T) bool, mut bool,
) bool {
n := tr.isoLoad(cn, mut)
i, found := tr.find(n, pivot, hint, depth)
if !found {
if !n.leaf() {
if !tr.nodeAscend(&(*n.children)[i], pivot, hint, depth 1, iter,
mut) {
return false
}
}
}
// We are either in the case that
// - node is found, we should iterate through it starting at `i`,
// the index it was located at.
// - node is not found, and TODO: fill in.
for ; i < len(n.items); i {
if !iter(n.items[i]) {
return false
}
if !n.leaf() {
if !tr.nodeScan(&(*n.children)[i 1], iter, mut) {
return false
}
}
}
return true
}
func (tr *BTreeG[T]) Reverse(iter func(item T) bool) {
tr.reverse(iter, false)
}
func (tr *BTreeG[T]) ReverseMut(iter func(item T) bool) {
tr.reverse(iter, true)
}
func (tr *BTreeG[T]) reverse(iter func(item T) bool, mut bool) {
if tr.lock(mut) {
defer tr.unlock(mut)
}
if tr.root == nil {
return
}
tr.nodeReverse(&tr.root, iter, mut)
}
func (tr *BTreeG[T]) nodeReverse(cn **node[T], iter func(item T) bool, mut bool,
) bool {
n := tr.isoLoad(cn, mut)
if n.leaf() {
for i := len(n.items) - 1; i >= 0; i-- {
if !iter(n.items[i]) {
return false
}
}
return true
}
if !tr.nodeReverse(&(*n.children)[len(*n.children)-1], iter, mut) {
return false
}
for i := len(n.items) - 1; i >= 0; i-- {
if !iter(n.items[i]) {
return false
}
if !tr.nodeReverse(&(*n.children)[i], iter, mut) {
return false
}
}
return true
}
// Descend the tree within the range [pivot, first]
// Pass nil for pivot to scan all item in descending order
// Return false to stop iterating
func (tr *BTreeG[T]) Descend(pivot T, iter func(item T) bool) {
tr.descend(pivot, iter, false)
}
func (tr *BTreeG[T]) DescendMut(pivot T, iter func(item T) bool) {
tr.descend(pivot, iter, true)
}
func (tr *BTreeG[T]) descend(pivot T, iter func(item T) bool, mut bool) {
if tr.lock(mut) {
defer tr.unlock(mut)
}
if tr.root == nil {
return
}
tr.nodeDescend(&tr.root, pivot, nil, 0, iter, mut)
}
func (tr *BTreeG[T]) nodeDescend(cn **node[T], pivot T, hint *PathHint,
depth int, iter func(item T) bool, mut bool,
) bool {
n := tr.isoLoad(cn, mut)
i, found := tr.find(n, pivot, hint, depth)
if !found {
if !n.leaf() {
if !tr.nodeDescend(&(*n.children)[i], pivot, hint, depth 1, iter,
mut) {
return false
}
}
i--
}
for ; i >= 0; i-- {
if !iter(n.items[i]) {
return false
}
if !n.leaf() {
if !tr.nodeReverse(&(*n.children)[i], iter, mut) {
return false
}
}
}
return true
}
// Load is for bulk loading pre-sorted items
func (tr *BTreeG[T]) Load(item T) (T, bool) {
if tr.lock(true) {
defer tr.unlock(true)
}
if tr.root == nil {
return tr.setHint(item, nil)
}
n := tr.isoLoad(&tr.root, true)
for {
n.count // optimistically update counts
if n.leaf() {
if len(n.items) < tr.max {
if tr.Less(n.items[len(n.items)-1], item) {
n.items = append(n.items, item)
tr.count
return tr.empty, false
}
}
break
}
n = tr.isoLoad(&(*n.children)[len(*n.children)-1], true)
}
// revert the counts
n = tr.root
for {
n.count--
if n.leaf() {
break
}
n = (*n.children)[len(*n.children)-1]
}
return tr.setHint(item, nil)
}
// Min returns the minimum item in tree.
// Returns nil if the treex has no items.
func (tr *BTreeG[T]) Min() (T, bool) {
return tr.minMut(false)
}
func (tr *BTreeG[T]) MinMut() (T, bool) {
return tr.minMut(true)
}
func (tr *BTreeG[T]) minMut(mut bool) (T, bool) {
if tr.lock(mut) {
defer tr.unlock(mut)
}
if tr.root == nil {
return tr.empty, false
}
n := tr.isoLoad(&tr.root, mut)
for {
if n.leaf() {
return n.items[0], true
}
n = tr.isoLoad(&(*n.children)[0], mut)
}
}
// Max returns the maximum item in tree.
// Returns nil if the tree has no items.
func (tr *BTreeG[T]) Max() (T, bool) {
return tr.maxMut(false)
}
func (tr *BTreeG[T]) MaxMut() (T, bool) {
return tr.maxMut(true)
}
func (tr *BTreeG[T]) maxMut(mut bool) (T, bool) {
if tr.lock(mut) {
defer tr.unlock(mut)
}
if tr.root == nil {
return tr.empty, false
}
n := tr.isoLoad(&tr.root, mut)
for {
if n.leaf() {
return n.items[len(n.items)-1], true
}
n = tr.isoLoad(&(*n.children)[len(*n.children)-1], mut)
}
}
// PopMin removes the minimum item in tree and returns it.
// Returns nil if the tree has no items.
func (tr *BTreeG[T]) PopMin() (T, bool) {
if tr.lock(true) {
defer tr.unlock(true)
}
if tr.root == nil {
return tr.empty, false
}
n := tr.isoLoad(&tr.root, true)
var item T
for {
n.count-- // optimistically update counts
if n.leaf() {
item = n.items[0]
if len(n.items) == tr.min {
break
}
copy(n.items[:], n.items[1:])
n.items[len(n.items)-1] = tr.empty
n.items = n.items[:len(n.items)-1]
tr.count--
if tr.count == 0 {
tr.root = nil
}
return item, true
}
n = tr.isoLoad(&(*n.children)[0], true)
}
// revert the counts
n = tr.root
for {
n.count
if n.leaf() {
break
}
n = (*n.children)[0]
}
return tr.deleteHint(item, nil)
}
// PopMax removes the maximum item in tree and returns it.
// Returns nil if the tree has no items.
func (tr *BTreeG[T]) PopMax() (T, bool) {
if tr.lock(true) {
defer tr.unlock(true)
}
if tr.root == nil {
return tr.empty, false
}
n := tr.isoLoad(&tr.root, true)
var item T
for {
n.count-- // optimistically update counts
if n.leaf() {
item = n.items[len(n.items)-1]
if len(n.items) == tr.min {
break
}
n.items[len(n.items)-1] = tr.empty
n.items = n.items[:len(n.items)-1]
tr.count--
if tr.count == 0 {
tr.root = nil
}
return item, true
}
n = tr.isoLoad(&(*n.children)[len(*n.children)-1], true)
}
// revert the counts
n = tr.root
for {
n.count
if n.leaf() {
break
}
n = (*n.children)[len(*n.children)-1]
}
return tr.deleteHint(item, nil)
}
// GetAt returns the value at index.
// Return nil if the tree is empty or the index is out of bounds.
func (tr *BTreeG[T]) GetAt(index int) (T, bool) {
return tr.getAt(index, false)
}
func (tr *BTreeG[T]) GetAtMut(index int) (T, bool) {
return tr.getAt(index, true)
}
func (tr *BTreeG[T]) getAt(index int, mut bool) (T, bool) {
if tr.lock(mut) {
defer tr.unlock(mut)
}
if tr.root == nil || index < 0 || index >= tr.count {
return tr.empty, false
}
n := tr.isoLoad(&tr.root, mut)
for {
if n.leaf() {
return n.items[index], true
}
i := 0
for ; i < len(n.items); i {
if index < (*n.children)[i].count {
break
} else if index == (*n.children)[i].count {
return n.items[i], true
}
index -= (*n.children)[i].count 1
}
n = tr.isoLoad(&(*n.children)[i], mut)
}
}
// DeleteAt deletes the item at index.
// Return nil if the tree is empty or the index is out of bounds.
func (tr *BTreeG[T]) DeleteAt(index int) (T, bool) {
if tr.lock(true) {
defer tr.unlock(true)
}
if tr.root == nil || index < 0 || index >= tr.count {
return tr.empty, false
}
var pathbuf [8]uint8 // track the path
path := pathbuf[:0]
var item T
n := tr.isoLoad(&tr.root, true)
outer:
for {
n.count-- // optimistically update counts
if n.leaf() {
// the index is the item position
item = n.items[index]
if len(n.items) == tr.min {
path = append(path, uint8(index))
break outer
}
copy(n.items[index:], n.items[index 1:])
n.items[len(n.items)-1] = tr.empty
n.items = n.items[:len(n.items)-1]
tr.count--
if tr.count == 0 {
tr.root = nil
}
return item, true
}
i := 0
for ; i < len(n.items); i {
if index < (*n.children)[i].count {
break
} else if index == (*n.children)[i].count {
item = n.items[i]
path = append(path, uint8(i))
break outer
}
index -= (*n.children)[i].count 1
}
path = append(path, uint8(i))
n = tr.isoLoad(&(*n.children)[i], true)
}
// revert the counts
var hint PathHint
n = tr.root
for i := 0; i < len(path); i {
if i < len(hint.path) {
hint.path[i] = uint8(path[i])
hint.used[i] = true
}
n.count
if !n.leaf() {
n = (*n.children)[uint8(path[i])]
}
}
return tr.deleteHint(item, &hint)
}