Skip to content

qlibs/mph

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 

Repository files navigation

// Overview / Examples / API / FAQ

MPH: [Minimal] Static perfect hash library

https://en.wikipedia.org/wiki/Perfect_hash_function

MIT Licence Version Build Try it online

Use case

A static perfect hash function maps a set of keys known in advance to a set of values with no collisions.

Features

Requirements

Overview

Hello world (https://godbolt.org/z/dzd6o3Pxo)

enum class color { red, green, blue };

constexpr auto colors = std::array{
  std::pair{"red"sv, color::red},
  std::pair{"green"sv, color::green},
  std::pair{"blue"sv, color::blue},
};

static_assert(color::green == mph::lookup<colors>("green"));
static_assert(color::red   == mph::lookup<colors>("red"));
static_assert(color::blue  == mph::lookup<colors>("blue"));

std::print("{}", mph::lookup<colors>("green"sv)); // prints 1

mph::lookup assumes only valid input and returns mapped value direclty.

static_assert(not mph::find<colors>("unknown"));
static_assert(mph::find<colors>("green"));
static_assert(mph::find<colors>("red"));
static_assert(mph::find<colors>("blue"));

std::print("{}", *mph::find<colors>("green"sv)); // prints 1

mph::find doesnt assume valid input and returns optional of mapped value.


Performance (https://godbolt.org/z/rqYj9a1cr)

int lookup(int id) {
  static constexpr std::array ids{
    std::pair{54u, 91u},
    std::pair{64u, 324u},
    std::pair{91u, 234u},
  };
  return mph::lookup<ids>(id);
}
lookup: // g   -DNDEBUG -std=c  20 -O3
  imull   $1275516394, �i, �x
  shrl    $23, �x
  movl    $24029728, �x
  shrxl   �x, �x, �x
  andl    $511, �x
  retq

Performance (https://godbolt.org/z/vv6W4nGfb)

int lookup(int id) {
  static constexpr std::array ids{
    std::pair{54u, 91u},
    std::pair{324u, 54u},
    std::pair{64u, 324u},
    std::pair{234u, 64u},
    std::pair{91u, 234u},
  };
  return mph::lookup<ids>(id);
}
lookup: // g   -DNDEBUG -std=c  20 -O3
  andl    $7, �i
  leaq    lookup(%rip), %rax
  movl    (%rax,%rdi,4), �x
  retq

lookup:
 .long   324
 .long   0
 .long   64
 .long   234
 .long   54
 .long   0
 .long   91

Performance (https://godbolt.org/z/qMzxKK4sd)

int find(int id) {
  static constexpr std::array ids{
    std::pair{27629, 1},
    std::pair{6280, 2},
    // 1..128 pairs...
    std::pair{33691, 128},
  };
  return *mph::find<ids>(id);
}
find: // g   -DNDEBUG -std=c  20 -O3 -mbmi2 -mavx512f
  vpbroadcastd    �i, %zmm0
  shll            $4, �i
  movzbl          %dil, �x
  leaq            find
  vpcmpeqd        (%rdx,%rcx,4), %zmm0, %k0
  kmovw           %k0, %esi
  kortestw        %k0, %k0
  rep             bsfq %rax, %rax
  movl            $64, �x
  addl            �x, �x
  xorl            �x, �x
  testw           %si, %si
  cmovnel         1024(%rdx,%rcx,4), �x
  vzeroupper
  retq

find:
  ... // see godbolt

Performance (https://godbolt.org/z/KaKzf7Pax)

int find(std::span<const char, 8> str) {
  static constexpr auto symbols = std::array{
    std::pair{"AMZN    "sv, 1},
    std::pair{"AAPL    "sv, 2},
    std::pair{"GOOGL   "sv, 3},
    std::pair{"META    "sv, 4},
    std::pair{"MSFT    "sv, 5},
    std::pair{"NVDA    "sv, 6},
    std::pair{"TSLA    "sv, 7},
  };
  return *mph::find<symbols>(str);
}
find: // g   -DNDEBUG -std=c  20 -O3 -mbmi2
  movq    8(%rsi), %rax
  movl    $1031, �x
  leaq    find(%rip), %rdx
  xorl    %esi, %esi
  movq    (%rax), %rax
  pextq   %rcx, %rax, %rcx
  shll    $4, �x
  cmpq    (%rcx,%rdx), %rax
  movzbl  8(%rcx,%rdx), �x
  cmovnel %esi, �x
  retq

find:
  ... // see godbolt

Performance (https://godbolt.org/z/fdMPsYWjE)

int find(std::string_view str) {
  using std::literals::operator""sv;
  // values assigned from 0..N-1
  static constexpr std::array symbols{
    "BTC "sv, "ETH "sv, "BNB "sv,
    "SOL "sv, "XRP "sv, "DOGE"sv,
    "TON "sv, "ADA "sv, "SHIB"sv,
    "AVAX"sv, "LINK"sv, "BCH "sv,
  };
  return *mph::find<symbols>(str);
}
find: // g   -DNDEBUG -std=c  20 -O3 -mbmi2
  shll    $3, �i
  bzhil   �i, (%rsi), �x
  movl    $789, �x
  pextl   �x, �x, �x
  leaq    find(%rip), %rdx
  xorl    %esi, %esi
  cmpl    (%rdx,%rcx,8), �x
  movzbl  4(%rdx,%rcx,8), �x
  cmovnel %esi, �x
  retq

find:
  ... // see godbolt

Examples


clang -std=c 20 -O3 -DNDEBUG -mbmi2 benchmark.cpp

| ns/op |           op/s | err% |total | benchmark
|------:|---------------:|-----:|-----:|:----------
| 12.25 |  81,602,449.70 | 0.3% | 0.15 | `random_strings_5_len_4.std.map`
|  5.56 | 179,750,906.50 | 0.2% | 0.07 | `random_strings_5_len_4.std.unordered_map`
|  9.17 | 109,096,850.98 | 0.2% | 0.11 | `random_strings_5_len_4.boost.unordered_map`
| 13.48 |  74,210,250.54 | 0.3% | 0.16 | `random_strings_5_len_4.boost.flat_map`
|  7.70 | 129,942,965.18 | 0.3% | 0.09 | `random_strings_5_len_4.gperf`
|  1.61 | 621,532,188.81 | 0.1% | 0.02 | `random_strings_5_len_4.mph`
| 14.66 |  68,218,086.71 | 0.8% | 0.18 | `random_strings_5_len_8.std.map`
| 13.45 |  74,365,239.56 | 0.2% | 0.16 | `random_strings_5_len_8.std.unordered_map`
|  9.68 | 103,355,605.09 | 0.2% | 0.12 | `random_strings_5_len_8.boost.unordered_map`
| 16.00 |  62,517,180.19 | 0.4% | 0.19 | `random_strings_5_len_8.boost.flat_map`
|  7.70 | 129,809,356.36 | 0.3% | 0.09 | `random_strings_5_len_8.gperf`
|  1.58 | 633,084,194.24 | 0.1% | 0.02 | `random_strings_5_len_8.mph`
| 17.21 |  58,109,576.87 | 0.3% | 0.21 | `random_strings_6_len_2_5.std.map`
| 15.28 |  65,461,167.99 | 0.2% | 0.18 | `random_strings_6_len_2_5.std.unordered_map`
| 12.21 |  81,931,391.20 | 0.4% | 0.15 | `random_strings_6_len_2_5.boost.unordered_map`
| 17.15 |  58,323,741.08 | 0.5% | 0.21 | `random_strings_6_len_2_5.boost.flat_map`
|  7.94 | 125,883,197.55 | 0.5% | 0.09 | `random_strings_6_len_2_5.gperf`
|  6.05 | 165,239,616.00 | 0.5% | 0.07 | `random_strings_6_len_2_5.mph`
| 31.61 |  31,631,402.94 | 0.2% | 0.38 | `random_strings_100_len_8.std.map`
| 15.32 |  65,280,863.09 | 0.2% | 0.18 | `random_strings_100_len_8.std.unordered_map`
| 17.13 |  58,383,850.20 | 0.3% | 0.20 | `random_strings_100_len_8.boost.unordered_map`
| 31.42 |  31,822,519.67 | 0.2% | 0.38 | `random_strings_100_len_8.boost.flat_map`
|  8.04 | 124,397,773.85 | 0.2% | 0.10 | `random_strings_100_len_8.gperf`
|  1.58 | 632,813,481.73 | 0.1% | 0.02 | `random_strings_100_len_8.mph`
| 32.62 |  30,656,015.03 | 0.3% | 0.39 | `random_strings_100_len_1_8.std.map`
| 19.34 |  51,697,107.73 | 0.5% | 0.23 | `random_strings_100_len_1_8.std.unordered_map`
| 19.51 |  51,254,525.17 | 0.3% | 0.23 | `random_strings_100_len_1_8.boost.unordered_map`
| 33.58 |  29,780,574.17 | 0.6% | 0.40 | `random_strings_100_len_1_8.boost.flat_map`
| 13.06 |  76,577,037.07 | 0.7% | 0.16 | `random_strings_100_len_1_8.gperf`
|  6.02 | 166,100,665.07 | 0.2% | 0.07 | `random_strings_100_len_1_8.mph`
|  1.28 | 778,723,795.75 | 0.1% | 0.02 | `random_uints_5.mph`

g -std=c 20 -O3 -DNDEBUG -mbmi2 benchmark.cpp

| ns/op |           op/s | err% |total | benchmark
|------:|---------------:|-----:|-----:|:----------
| 12.28 |  81,460,330.38 | 0.9% | 0.15 | `random_strings_5_len_4.std.map`
|  5.29 | 188,967,241.90 | 0.3% | 0.06 | `random_strings_5_len_4.std.unordered_map`
|  9.69 | 103,163,192.67 | 0.2% | 0.12 | `random_strings_5_len_4.boost.unordered_map`
| 13.56 |  73,756,333.08 | 0.4% | 0.16 | `random_strings_5_len_4.boost.flat_map`
|  7.69 | 130,055,662.66 | 0.6% | 0.09 | `random_strings_5_len_4.gperf`
|  1.39 | 718,910,252.82 | 0.1% | 0.02 | `random_strings_5_len_4.mph`
| 14.26 |  70,103,007.82 | 2.4% | 0.17 | `random_strings_5_len_8.std.map`
| 13.36 |  74,871,047.51 | 0.4% | 0.16 | `random_strings_5_len_8.std.unordered_map`
|  9.82 | 101,802,074.00 | 0.3% | 0.12 | `random_strings_5_len_8.boost.unordered_map`
| 15.97 |  62,621,571.95 | 0.3% | 0.19 | `random_strings_5_len_8.boost.flat_map`
|  7.92 | 126,265,206.30 | 0.3% | 0.09 | `random_strings_5_len_8.gperf`
|  1.40 | 713,596,376.62 | 0.4% | 0.02 | `random_strings_5_len_8.mph`
| 15.98 |  62,576,142.34 | 0.5% | 0.19 | `random_strings_6_len_2_5.std.map`
| 17.56 |  56,957,868.12 | 0.5% | 0.21 | `random_strings_6_len_2_5.std.unordered_map`
| 11.68 |  85,637,378.45 | 0.3% | 0.14 | `random_strings_6_len_2_5.boost.unordered_map`
| 17.25 |  57,965,732.68 | 0.6% | 0.21 | `random_strings_6_len_2_5.boost.flat_map`
|  9.13 | 109,580,632.48 | 0.7% | 0.11 | `random_strings_6_len_2_5.gperf`
|  7.17 | 139,563,745.72 | 0.4% | 0.09 | `random_strings_6_len_2_5.mph`
| 30.20 |  33,117,522.76 | 0.7% | 0.36 | `random_strings_100_len_8.std.map`
| 15.01 |  66,627,962.89 | 0.4% | 0.18 | `random_strings_100_len_8.std.unordered_map`
| 16.79 |  59,559,414.60 | 0.6% | 0.20 | `random_strings_100_len_8.boost.unordered_map`
| 31.36 |  31,884,629.57 | 0.8% | 0.38 | `random_strings_100_len_8.boost.flat_map`
|  7.75 | 128,973,947.61 | 0.7% | 0.09 | `random_strings_100_len_8.gperf`
|  1.50 | 667,041,673.54 | 0.1% | 0.02 | `random_strings_100_len_8.mph`
| 30.92 |  32,340,612.08 | 0.4% | 0.37 | `random_strings_100_len_1_8.std.map`
| 25.35 |  39,450,222.09 | 0.4% | 0.30 | `random_strings_100_len_1_8.std.unordered_map`
| 19.76 |  50,609,820.90 | 0.2% | 0.24 | `random_strings_100_len_1_8.boost.unordered_map`
| 32.39 |  30,878,018.77 | 0.6% | 0.39 | `random_strings_100_len_1_8.boost.flat_map`
| 11.20 |  89,270,687.92 | 0.2% | 0.13 | `random_strings_100_len_1_8.gperf`
|  7.17 | 139,471,159.67 | 0.5% | 0.09 | `random_strings_100_len_1_8.mph`
|  1.93 | 519,047,110.39 | 0.3% | 0.02 | `random_uints_5.mph`

Benchmark Benchmark


API

namespace mph {
/**
 * Static [minimal] perfect hash lookup function
 * @tparam entries constexpr array of keys or key/value pairs
 */
template<const auto& entries>
inline constexpr auto lookup = [](const auto& key) {
  if constexpr(constexpr lookup$magic_lut<entries> lookup{}; lookup) {
    return lookup(key);
  } else {
    return lookup$pext<entries>(key);
  }
};

/**
 * Static perfect hash find function
 * @tparam entries constexpr array of keys or key/value pairs
 */
template<const auto& entries>
inline constexpr auto find =
  []<u8 probability = 50u>(const auto& key, const auto& unknown = {}) -> optional {
    if constexpr (entries.size() == 0u) {
      return unknown;
    } else if constexpr (entries.size() <= 64u) {
      return find$pext<entries>.operator()<probability>(key, unknown);
    } else {
      constexpr auto bucket_size = simd_size_v<key_type, simd_abi::native<key_type>>;
      return find$simd<entries, bucket_size>.operator()<probability>(key, unknown);
    }
  };
} // namespace mph

FAQ

  • Trade-offs?

    mph supports different types of key/value pairs and thousands of key/value pairs, but not millions - (see benchmarks).

    • All keys have to fit into uint128_t, that includes strings.

    • If the above criteria are not satisfied mph will SFINAE away lookup function.

    • In such case different backup policy should be used instead (which can be also used as customization point for user-defined lookup implementation), for example:

      template<const auto& entries> requires (entries.size() > 1'000'000)
      inline constexpr auto mph::find =
          [](const auto& key, const auto& unknown = {}) -> optional { ... }
  • How mph is working under the hood?

    mph takes advantage of knowing the key/value pairs at compile-time as well as the specific hardware instructions. The following is a pseudo code of the lookup algorithm for minimal perfect hash table.

    def lookup$magic_lut[entries: array](key : any, max_attempts = 100'000):
      # 0. magic and lut for entries [compile-time]
      nbits = sizeof(u32) * CHAR_BIT - countl_zero(max(entries.second))
      mask = (1u << nbits) - 1u;
      shift = sizeof(u32) * CHAR_BIT - nbits;
      lut = {};
      while max_attempts--:
        magic = rand()
        for k, v in entries:
          lut |= v << (k * magic >> shift);
    
        for k, v in entries:
          if (lut >> (k * magic >> shift) & mask) != v:
            lut = {}
            break
    
      assert magic != 0 and lut != 0 and shift != 0 and mask != 0
    
      # 1. lookup [run-time]
      return (lut >> ((key * magic) >> shift)) & mask;

    The following is a pseudo code of the find algorithm for perfect hash table.

    # word: 00101011
    # mask: 11100001
    #    &: 000____1
    # pext: ____0001 # intel/intrinsics-guide/index.html#text=pext
    def pext(a : uN, mask : uN):
      dst, m, k = ([], 0, 0)
    
      while m < nbits(a):
        if mask[m] == 1:
          dst.append(a[m])
          k  = 1
        m  = 1
    
      return uN(dst)
    def find$pext[entries: array](key : any, unknown: any):
      # 0. find mask which uniquely identifies all keys [compile-time]
      mask = 0b111111...
    
      for i in range(nbits(mask)):
        masked = []
        mask.unset(i)
    
        for k, v in entries:
          masked.append(k & mask)
    
        if not unique(masked):
          mask.set(i)
    
      assert unique(masked)
      assert mask != ~mask{}
    
      # 1. create lookup table [compile-time]
      lookup = array(typeof(entries[0]), 2**popcount(mask))
      for k, v in entries:
        lookup[pext(k, mask)] = (k, v)
    
      # 2. lookup [run-time] # if key is a string convert to integral first (memcpy)
      k, v = lookup[pext(key, mask)]
    
      if k == key: # cmove
        return v
      else:
        return unknown
    def find$simd[entries: array](key : any, unknown: any):
      # 0. find mask which uniquely identifies all keys [compile-time]
      mask = 0b111111...
      bucket_size = simd_size_v<entries[0].first, native>
    
      for i in range(nbits(mask)):
        masked = []
        mask.unset(i)
    
        for k, v in entries:
          masked.append(k & mask)
    
        if not unique(masked, bucket_size):
          mask.set(i)
    
      assert unique(masked, bucket_size)
      assert mask != ~mask{}
    
      # 1. create lookup table [compile-time]
      keys   = array(typeof(entries[0].first), bucket_size * 2**popcount(mask))
      values = array(typeof(entries[0].second), bucket_size * 2**popcount(mask))
      for k, v in entries:
        slot = pext(k, mask)
        while (keys[slot]) slot  ;
        keys[slot] = k
        values[slot] = v
    
      # 2. lookup [run-time] # if key is a string convert to integral first (memcpy)
      index = bucket_size * pext(key, mask)
      match = k == keys[&index] # simd element-wise comparison
    
      if any_of(match):
        return values[index   find_first_set(match)]
      else:
        return unknown

    More information

  • How to tweak lookup/find performance for my data/use case?

    Always measure!

    • [bmi2 (Intel Haswell , AMD Zen3 )] hardware instruction acceleration is faster than software emulation. (AMD Zen2 pext takes 18 cycles, is worth disabling hardware accelerated version)
    • For integral keys, use u32 or u64.
    • For strings, consider aligning the input data and passing it with compile-time size via span, array.
    • If all strings length is less than 4 that will be more optimized than if all string length will be less than 8 and 16. That will make the lookup table smaller and getting the value will have one instruction less.
    • Experiment with different probability values to optimize lookups. Especially benefitial if its known that input keys are always coming from predefined entries (probability = 100) as it will avoid the comparison.
    • Consider passing cache size alignment (hardware_destructive_interference_size - usually 64u) to the lookup/find. That will align the underlying lookup table.
  • How to fix compilation error constexpr evaluation hit maximum step limit?

    The following options can be used to increase the limits, however, compilation-times should be monitored.

    gcc:   -fconstexpr-ops-limit=N
    clang: -fconstexpr-steps=N
    
  • Is support for bmi2 instructions required?

    mph works on platforms without bmi2 instructions which can be emulated with some limitations (*).

    // bmi2
    mov     ecx, 789
    pext    ecx, eax, ecx

    intel.com/pext / uops.info/pext

    // no bmi2
    mov     ecx, eax
    and     ecx, 789
    imul    ecx, ecx, 57
    shr     ecx, 2
    and     ecx, 248

    https://stackoverflow.com/questions/14547087/extracting-bits-with-a-single-multiplication (*)

  • How to disable cmov generation?

    Set probability value to something else than 50u (default) - it means that the input data is predictable in some way and jmp will be generated instead. Additionaly the following compiler options can be used.

    clang: -mllvm -x86-cmov-converter=false
    
  • How to disable running tests at compile-time?

    When -DNTEST is defined static_asserts tests wont be executed upon inclusion. Note: Use with caution as disabling tests means that there are no gurantees upon inclusion that given compiler/env combination works as expected.

  • How to integrate with CMake.FetchContent?

    include(FetchContent)
    
    FetchContent_Declare(
      qlibs.mph
      GIT_REPOSITORY https://github.com/qlibs/mph
      GIT_TAG v5.0.3
    )
    
    FetchContent_MakeAvailable(qlibs.mph)
    
    target_link_libraries(${PROJECT_NAME} PUBLIC qlibs.mph);
    
  • Similar projects?

    gperf, frozen, nbperf, cmph, perfecthash, lemonhash, pthash, shockhash, burr, hash-prospector

  • Acknowledgments

    https://lemire.me/blog, http://0x80.pl, https://easyperf.net, https://www.jabperf.com, https://johnnysswlab.com, pefect-hashing, gperf, cmph, smasher, minimal perfect hashing, hash functions