-
Notifications
You must be signed in to change notification settings - Fork 70
/
par_octasphere.h
577 lines (520 loc) · 21.1 KB
/
par_octasphere.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
// OCTASPHERE :: https://prideout.net/blog/octasphere
// Tiny malloc-free library that generates triangle meshes for spheres, rounded boxes, and capsules.
//
// This library proffers the following functions:
//
// - par_octasphere_get_counts
// - par_octasphere_populate
//
// Usage example:
//
// /* Specify a 100x100x20 rounded box. */
// const par_octasphere_config cfg = {
// .corner_radius = 5,
// .width = 100,
// .height = 100,
// .depth = 20,
// .num_subdivisions = 3,
// };
//
// /* Allocate memory for the mesh and opt-out of normals. */
// uint32_t num_indices;
// uint32_t num_vertices;
// par_octasphere_get_counts(&cfg, &num_indices, &num_vertices);
// par_octasphere_mesh mesh = {
// .positions = malloc(sizeof(float) * 3 * num_vertices),
// .normals = NULL,
// .texcoords = malloc(sizeof(float) * 2 * num_vertices),
// .indices = malloc(sizeof(uint16_t) * num_indices),
// };
//
// /* Generate vertex coordinates, UV's, and triangle indices. */
// par_octasphere_populate(&cfg, &mesh);
//
// To generate a sphere: set width, height, and depth to 0 in your configuration.
// To generate a capsule shape: set only two of these dimensions to 0.
//
// Distributed under the MIT License, see bottom of file.
#ifndef PAR_OCTASPHERE_H
#define PAR_OCTASPHERE_H
#include <stdbool.h>
#include <stdint.h>
#ifdef __cplusplus
extern "C" {
#endif
#define PAR_OCTASPHERE_MAX_SUBDIVISIONS 5
typedef enum {
PAR_OCTASPHERE_UV_LATLONG,
} par_octasphere_uv_mode;
typedef enum {
PAR_OCTASPHERE_NORMALS_SMOOTH,
} par_octasphere_normals_mode;
typedef struct {
float corner_radius;
float width;
float height;
float depth;
int num_subdivisions;
par_octasphere_uv_mode uv_mode;
par_octasphere_normals_mode normals_mode;
} par_octasphere_config;
typedef struct {
float* positions;
float* normals;
float* texcoords;
uint16_t* indices;
uint32_t num_indices;
uint32_t num_vertices;
} par_octasphere_mesh;
// Computes the maximum possible number of indices and vertices for the given octasphere config.
void par_octasphere_get_counts(const par_octasphere_config* config, uint32_t* num_indices,
uint32_t* num_vertices);
// Populates a pre-allocated mesh structure with indices and vertices.
void par_octasphere_populate(const par_octasphere_config* config, par_octasphere_mesh* mesh);
#ifdef __cplusplus
}
#endif
// -----------------------------------------------------------------------------
// END PUBLIC API
// -----------------------------------------------------------------------------
#ifdef PAR_OCTASPHERE_IMPLEMENTATION
#include <assert.h>
#include <math.h>
#include <memory.h> // for memcpy
#define PARO_PI (3.14159265359)
#define PARO_MIN(a, b) (a > b ? b : a)
#define PARO_MAX(a, b) (a > b ? a : b)
#define PARO_CLAMP(v, lo, hi) PARO_MAX(lo, PARO_MIN(hi, v))
#define PARO_MAX_BOUNDARY_LENGTH ((1 << PAR_OCTASPHERE_MAX_SUBDIVISIONS) 1)
#ifndef PARO_CONSTANT_TOPOLOGY
#define PARO_CONSTANT_TOPOLOGY 1
#endif
static uint16_t* paro_write_quad(uint16_t* dst, uint16_t a, uint16_t b, uint16_t c, uint16_t d) {
*dst = a;
*dst = b;
*dst = c;
*dst = c;
*dst = d;
*dst = a;
return dst;
}
static void paro_write_ui3(uint16_t* dst, int index, uint16_t a, uint16_t b, uint16_t c) {
dst[index * 3 0] = a;
dst[index * 3 1] = b;
dst[index * 3 2] = c;
}
static float* paro_write_f3(float* dst, const float src[3]) {
dst[0] = src[0];
dst[1] = src[1];
dst[2] = src[2];
return dst 3;
}
static void paro_copy(float dst[3], const float src[3]) {
dst[0] = src[0];
dst[1] = src[1];
dst[2] = src[2];
}
static float paro_dot(const float a[3], const float b[3]) {
return a[0] * b[0] a[1] * b[1] a[2] * b[2];
}
static void paro_add(float result[3], float const a[3], float const b[3]) {
result[0] = a[0] b[0];
result[1] = a[1] b[1];
result[2] = a[2] b[2];
}
static void paro_normalize(float v[3]) {
float lsqr = sqrt(v[0] * v[0] v[1] * v[1] v[2] * v[2]);
if (lsqr > 0) {
v[0] /= lsqr;
v[1] /= lsqr;
v[2] /= lsqr;
}
}
static void paro_cross(float result[3], float const a[3], float const b[3]) {
float x = (a[1] * b[2]) - (a[2] * b[1]);
float y = (a[2] * b[0]) - (a[0] * b[2]);
float z = (a[0] * b[1]) - (a[1] * b[0]);
result[0] = x;
result[1] = y;
result[2] = z;
}
static void paro_scale(float dst[3], float v) {
dst[0] *= v;
dst[1] *= v;
dst[2] *= v;
}
static void paro_scaled(float dst[3], const float src[3], float v) {
dst[0] = src[0] * v;
dst[1] = src[1] * v;
dst[2] = src[2] * v;
}
static void paro_quat_from_rotation(float quat[4], const float axis[3], float radians) {
paro_copy(quat, axis);
paro_normalize(quat);
paro_scale(quat, sin(0.5 * radians));
quat[3] = cos(0.5 * radians);
}
static void paro_quat_from_eulers(float quat[4], const float eulers[3]) {
const float roll = eulers[0];
const float pitch = eulers[1];
const float yaw = eulers[2];
const float halfRoll = roll * 0.5;
const float sR = sin(halfRoll);
const float cR = cos(halfRoll);
const float halfPitch = pitch * 0.5;
const float sP = sin(halfPitch);
const float cP = cos(halfPitch);
const float halfYaw = yaw * 0.5;
const float sY = sin(halfYaw);
const float cY = cos(halfYaw);
quat[0] = (sR * cP * cY) (cR * sP * sY);
quat[1] = (cR * sP * cY) - (sR * cP * sY);
quat[2] = (cR * cP * sY) (sR * sP * cY);
quat[3] = (cR * cP * cY) - (sR * sP * sY);
}
static void paro_quat_rotate_vector(float dst[3], const float quat[4], const float src[3]) {
float t[3];
paro_cross(t, quat, src);
paro_scale(t, 2.0);
float p[3];
paro_cross(p, quat, t);
paro_scaled(dst, t, quat[3]);
paro_add(dst, dst, src);
paro_add(dst, dst, p);
}
static float* paro_write_geodesic(float* dst, const float point_a[3], const float point_b[3],
int num_segments) {
dst = paro_write_f3(dst, point_a);
if (num_segments == 0) {
return dst;
}
const float angle_between_endpoints = acos(paro_dot(point_a, point_b));
const float dtheta = angle_between_endpoints / num_segments;
float rotation_axis[3], quat[4];
paro_cross(rotation_axis, point_a, point_b);
paro_normalize(rotation_axis);
for (int point_index = 1; point_index < num_segments; point_index , dst = 3) {
paro_quat_from_rotation(quat, rotation_axis, dtheta * point_index);
paro_quat_rotate_vector(dst, quat, point_a);
}
return paro_write_f3(dst, point_b);
}
void paro_add_quads(const par_octasphere_config* config, par_octasphere_mesh* mesh) {
const int ndivisions = PARO_CLAMP(config->num_subdivisions, 0, PAR_OCTASPHERE_MAX_SUBDIVISIONS);
const int n = (1 << ndivisions) 1;
const int verts_per_patch = n * (n 1) / 2;
const float r2 = config->corner_radius * 2;
const float w = PARO_MAX(config->width, r2);
const float h = PARO_MAX(config->height, r2);
const float d = PARO_MAX(config->depth, r2);
const float tx = (w - r2) / 2, ty = (h - r2) / 2, tz = (d - r2) / 2;
// Find the vertex indices along each of the patch's 3 edges.
uint16_t boundaries[3][PARO_MAX_BOUNDARY_LENGTH];
int a = 0, b = 0, c = 0, row;
uint16_t j0 = 0;
for (int col_index = 0; col_index < n - 1; col_index ) {
int col_height = n - 1 - col_index;
uint16_t j1 = j0 1;
boundaries[0][a ] = j0;
for (row = 0; row < col_height - 1; row ) {
if (col_height == n - 1) {
boundaries[2][c ] = j0 row;
}
}
if (col_height == n - 1) {
boundaries[2][c ] = j0 row;
boundaries[2][c ] = j1 row;
}
boundaries[1][b ] = j1 row;
j0 = col_height 1;
}
boundaries[0][a] = boundaries[1][b] = j0 row;
// If there is no rounding (i.e. this is a plain box), then clobber the existing indices.
if (!PARO_CONSTANT_TOPOLOGY && config->corner_radius == 0) {
mesh->num_indices = 0;
}
uint16_t* write_ptr = mesh->indices mesh->num_indices;
const uint16_t* begin_ptr = write_ptr;
if (PARO_CONSTANT_TOPOLOGY || config->corner_radius > 0) {
// Go around the top half.
for (int patch = 0; patch < 4; patch ) {
if (!PARO_CONSTANT_TOPOLOGY && (patch % 2) == 0 && tz == 0) continue;
if (!PARO_CONSTANT_TOPOLOGY && (patch % 2) == 1 && tx == 0) continue;
const int next_patch = (patch 1) % 4;
const uint16_t* boundary_a = boundaries[1];
const uint16_t* boundary_b = boundaries[0];
const uint16_t offset_a = verts_per_patch * patch;
const uint16_t offset_b = verts_per_patch * next_patch;
for (int i = 0; i < n - 1; i ) {
const uint16_t a = boundary_a[i] offset_a;
const uint16_t b = boundary_b[i] offset_b;
const uint16_t c = boundary_a[i 1] offset_a;
const uint16_t d = boundary_b[i 1] offset_b;
write_ptr = paro_write_quad(write_ptr, a, b, d, c);
}
}
// Go around the bottom half.
for (int patch = 4; patch < 8; patch ) {
if (!PARO_CONSTANT_TOPOLOGY && (patch % 2) == 0 && tx == 0) continue;
if (!PARO_CONSTANT_TOPOLOGY && (patch % 2) == 1 && tz == 0) continue;
const int next_patch = 4 (patch 1) % 4;
const uint16_t* boundary_a = boundaries[0];
const uint16_t* boundary_b = boundaries[2];
const uint16_t offset_a = verts_per_patch * patch;
const uint16_t offset_b = verts_per_patch * next_patch;
for (int i = 0; i < n - 1; i ) {
const uint16_t a = boundary_a[i] offset_a;
const uint16_t b = boundary_b[i] offset_b;
const uint16_t c = boundary_a[i 1] offset_a;
const uint16_t d = boundary_b[i 1] offset_b;
write_ptr = paro_write_quad(write_ptr, d, b, a, c);
}
}
// Connect the top and bottom halves.
if (PARO_CONSTANT_TOPOLOGY || ty > 0) {
for (int patch = 0; patch < 4; patch ) {
const int next_patch = 4 (4 - patch) % 4;
const uint16_t* boundary_a = boundaries[2];
const uint16_t* boundary_b = boundaries[1];
const uint16_t offset_a = verts_per_patch * patch;
const uint16_t offset_b = verts_per_patch * next_patch;
for (int i = 0; i < n - 1; i ) {
const uint16_t a = boundary_a[i] offset_a;
const uint16_t b = boundary_b[n - 1 - i] offset_b;
const uint16_t c = boundary_a[i 1] offset_a;
const uint16_t d = boundary_b[n - 1 - i - 1] offset_b;
write_ptr = paro_write_quad(write_ptr, a, b, d, c);
}
}
}
}
// Fill in the top and bottom holes.
if (PARO_CONSTANT_TOPOLOGY || tx > 0 || ty > 0) {
uint16_t a, b, c, d;
a = boundaries[0][n - 1];
b = a verts_per_patch;
c = b verts_per_patch;
d = c verts_per_patch;
write_ptr = paro_write_quad(write_ptr, a, b, c, d);
a = boundaries[2][0] verts_per_patch * 4;
b = a verts_per_patch;
c = b verts_per_patch;
d = c verts_per_patch;
write_ptr = paro_write_quad(write_ptr, a, b, c, d);
}
// Fill in the side holes.
if (PARO_CONSTANT_TOPOLOGY || ty > 0) {
const int sides[4][2] = {{7, 0}, {1, 2}, {3, 4}, {5, 6}};
for (int side = 0; side < 4; side ) {
int patch_index, patch, next_patch;
uint16_t *boundary_a, *boundary_b;
uint16_t offset_a, offset_b;
uint16_t a, b;
patch_index = sides[side][0];
patch = patch_index / 2;
next_patch = 4 (4 - patch) % 4;
offset_a = verts_per_patch * patch;
offset_b = verts_per_patch * next_patch;
boundary_a = boundaries[2];
boundary_b = boundaries[1];
if (patch_index % 2 == 0) {
a = boundary_a[0] offset_a;
b = boundary_b[n - 1] offset_b;
} else {
a = boundary_a[n - 1] offset_a;
b = boundary_b[0] offset_b;
}
uint16_t c, d;
patch_index = sides[side][1];
patch = patch_index / 2;
next_patch = 4 (4 - patch) % 4;
offset_a = verts_per_patch * patch;
offset_b = verts_per_patch * next_patch;
boundary_a = boundaries[2];
boundary_b = boundaries[1];
if (patch_index % 2 == 0) {
c = boundary_a[0] offset_a;
d = boundary_b[n - 1] offset_b;
} else {
c = boundary_a[n - 1] offset_a;
d = boundary_b[0] offset_b;
}
write_ptr = paro_write_quad(write_ptr, a, b, d, c);
}
}
mesh->num_indices = write_ptr - begin_ptr;
#ifndef NDEBUG
uint32_t expected_indices;
uint32_t expected_vertices;
par_octasphere_get_counts(config, &expected_indices, &expected_vertices);
assert(mesh->num_indices <= expected_indices);
#endif
}
void par_octasphere_get_counts(const par_octasphere_config* config, uint32_t* num_indices,
uint32_t* num_vertices) {
const int ndivisions = PARO_CLAMP(config->num_subdivisions, 0, PAR_OCTASPHERE_MAX_SUBDIVISIONS);
const int n = (1 << ndivisions) 1;
const int verts_per_patch = n * (n 1) / 2;
const float r2 = config->corner_radius * 2;
const float w = PARO_MAX(config->width, r2);
const float h = PARO_MAX(config->height, r2);
const float d = PARO_MAX(config->depth, r2);
const float tx = (w - r2) / 2, ty = (h - r2) / 2, tz = (d - r2) / 2;
const int triangles_per_patch = (n - 2) * (n - 1) n - 1;
// If this is a sphere, return early.
if (tx == 0 && ty == 0 && tz == 0) {
*num_indices = triangles_per_patch * 8 * 3;
*num_vertices = verts_per_patch * 8;
return;
}
// This is a cuboid, so account for the maximum number of possible quads.
// - 4*(n-1) quads between the 4 top patches.
// - 4*(n-1) quads between the 4 bottom patches.
// - 4*(n-1) quads between the top and bottom patches.
// - 6 quads to fill "holes" in each cuboid face.
const int num_connection_quads = (4 4 4) * (n - 1) 6;
*num_indices = (triangles_per_patch * 8 num_connection_quads * 2) * 3;
*num_vertices = verts_per_patch * 8;
}
void par_octasphere_populate(const par_octasphere_config* config, par_octasphere_mesh* mesh) {
const int ndivisions = PARO_CLAMP(config->num_subdivisions, 0, PAR_OCTASPHERE_MAX_SUBDIVISIONS);
const int n = (1 << ndivisions) 1;
const int verts_per_patch = n * (n 1) / 2;
const float r2 = config->corner_radius * 2;
const float w = PARO_MAX(config->width, r2);
const float h = PARO_MAX(config->height, r2);
const float d = PARO_MAX(config->depth, r2);
const float tx = (w - r2) / 2, ty = (h - r2) / 2, tz = (d - r2) / 2;
const int triangles_per_patch = (n - 2) * (n - 1) n - 1;
const int total_vertices = verts_per_patch * 8;
// START TESSELLATION OF SINGLE PATCH (one-eighth of the octasphere)
float* write_ptr = mesh->positions;
for (int i = 0; i < n; i ) {
const float theta = PARO_PI * 0.5 * i / (n - 1);
const float point_a[] = {0, sinf(theta), cosf(theta)};
const float point_b[] = {cosf(theta), sinf(theta), 0};
const int num_segments = n - 1 - i;
write_ptr = paro_write_geodesic(write_ptr, point_a, point_b, num_segments);
}
int f = 0, j0 = 0;
uint16_t* faces = mesh->indices;
for (int col_index = 0; col_index < n - 1; col_index ) {
const int col_height = n - 1 - col_index;
const int j1 = j0 1;
const int j2 = j0 col_height 1;
const int j3 = j0 col_height 2;
for (int row = 0; row < col_height - 1; row ) {
paro_write_ui3(faces, f , j0 row, j1 row, j2 row);
paro_write_ui3(faces, f , j2 row, j1 row, j3 row);
}
const int row = col_height - 1;
paro_write_ui3(faces, f , j0 row, j1 row, j2 row);
j0 = j2;
}
// END TESSELLATION OF SINGLE PATCH
// START 8-WAY CLONE OF PATCH
// clang-format off
float euler_angles[8][3] = {
{0, 0, 0}, {0, 1, 0}, {0, 2, 0}, {0, 3, 0},
{1, 0, 0}, {1, 0, 1}, {1, 0, 2}, {1, 0, 3},
};
// clang-format on
for (int octant = 1; octant < 8; octant ) {
paro_scale(euler_angles[octant], PARO_PI * 0.5);
float quat[4];
paro_quat_from_eulers(quat, euler_angles[octant]);
float* dst = mesh->positions octant * verts_per_patch * 3;
const float* src = mesh->positions;
for (int vindex = 0; vindex < verts_per_patch; vindex , dst = 3, src = 3) {
paro_quat_rotate_vector(dst, quat, src);
}
}
for (int octant = 1; octant < 8; octant ) {
const int indices_per_patch = triangles_per_patch * 3;
uint16_t* dst = mesh->indices octant * indices_per_patch;
const uint16_t* src = mesh->indices;
const uint16_t offset = verts_per_patch * octant;
for (int iindex = 0; iindex < indices_per_patch; iindex) {
dst[iindex] = src[iindex] offset;
}
}
// END 8-WAY CLONE OF PATCH
if (mesh->texcoords && config->uv_mode == PAR_OCTASPHERE_UV_LATLONG) {
for (int i = 0; i < total_vertices; i ) {
const int octant = i / verts_per_patch;
const int relative_index = i % verts_per_patch;
float* uv = mesh->texcoords i * 2;
const float* xyz = mesh->positions i * 3;
const float x = xyz[0], y = xyz[1], z = xyz[2];
const float phi = -atan2(z, x);
const float theta = acos(y);
uv[0] = 0.5 * (phi / PARO_PI 1.0);
uv[1] = theta / PARO_PI;
// Special case for the north pole.
if (octant < 4 && relative_index == verts_per_patch - 1) {
uv[0] = fmod(0.375 0.25 * octant, 1.0);
uv[1] = 0;
}
// Special case for the south pole.
if (octant >= 4 && relative_index == 0) {
uv[0] = 0.375 - 0.25 * (octant - 4);
uv[0] = uv[0] uv[0] < 0 ? 1.0 : 0.0;
uv[1] = 1.0;
}
// Adjust the prime meridian for proper wrapping.
if ((octant == 2 || octant == 6) && uv[0] < 0.5) {
uv[0] = 1.0;
}
}
}
if (mesh->normals && config->normals_mode == PAR_OCTASPHERE_NORMALS_SMOOTH) {
memcpy(mesh->normals, mesh->positions, sizeof(float) * 3 * total_vertices);
}
if (config->corner_radius != 1.0) {
for (int i = 0; i < total_vertices; i ) {
float* xyz = mesh->positions i * 3;
xyz[0] *= config->corner_radius;
xyz[1] *= config->corner_radius;
xyz[2] *= config->corner_radius;
}
}
mesh->num_indices = triangles_per_patch * 8 * 3;
mesh->num_vertices = total_vertices;
if (tx == 0 && ty == 0 && tz == 0) {
return;
}
for (int i = 0; i < total_vertices; i ) {
float* xyz = mesh->positions i * 3;
const int octant = i / verts_per_patch;
const float sx = (octant < 2 || octant == 4 || octant == 7) ? 1 : -1;
const float sy = octant < 4 ? 1 : -1;
const float sz = (octant == 0 || octant == 3 || octant == 4 || octant == 5) ? 1 : -1;
xyz[0] = tx * sx;
xyz[1] = ty * sy;
xyz[2] = tz * sz;
}
paro_add_quads(config, mesh);
}
#endif // PAR_OCTASPHERE_IMPLEMENTATION
#endif // PAR_OCTASPHERE_H
// par_octasphere is distributed under the MIT license:
//
// Copyright (c) 2019 Philip Rideout
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.