-
Notifications
You must be signed in to change notification settings - Fork 182
/
Device.hpp
1489 lines (1322 loc) · 57.7 KB
/
Device.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
863
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
///
/// \file SoapySDR/Device.hpp
///
/// Interface definition for Soapy SDR devices.
///
/// \copyright
/// Copyright (c) 2014-2019 Josh Blum
/// Copyright (c) 2016-2016 Bastille Networks
/// 2021 Nicholas Corgan
/// SPDX-License-Identifier: BSL-1.0
///
#pragma once
#include <SoapySDR/Config.hpp>
#include <SoapySDR/Types.hpp>
#include <SoapySDR/Constants.h>
#include <SoapySDR/Errors.h>
#include <vector>
#include <string>
#include <complex>
#include <cstddef> //size_t
namespace SoapySDR
{
//! Forward declaration of stream handle for type safety
class Stream;
/*!
* Abstraction for an SDR transceiver device - configuration and streaming.
*/
class SOAPY_SDR_API Device
{
public:
//! virtual destructor for inheritance
virtual ~Device(void);
/*!
* Enumerate a list of available devices on the system.
* \param args device construction key/value argument filters
* \return a list of argument maps, each unique to a device
*/
static KwargsList enumerate(const Kwargs &args = Kwargs());
/*!
* Enumerate a list of available devices on the system.
* Markup format for args: "keyA=valA, keyB=valB".
* \param args a markup string of key/value argument filters
* \return a list of argument maps, each unique to a device
*/
static KwargsList enumerate(const std::string &args);
/*!
* Make a new Device object given device construction args.
* The device pointer will be stored in a table so subsequent calls
* with the same arguments will produce the same device.
* For every call to make, there should be a matched call to unmake.
*
* \param args device construction key/value argument map
* \return a pointer to a new Device object
*/
static Device *make(const Kwargs &args = Kwargs());
/*!
* Make a new Device object given device construction args.
* The device pointer will be stored in a table so subsequent calls
* with the same arguments will produce the same device.
* For every call to make, there should be a matched call to unmake.
*
* \param args a markup string of key/value arguments
* \return a pointer to a new Device object
*/
static Device *make(const std::string &args);
/*!
* Unmake or release a device object handle.
*
* \param device a pointer to a device object
*/
static void unmake(Device *device);
/*******************************************************************
* Parallel support
******************************************************************/
/*!
* Create a list of devices from a list of construction arguments.
* This is a convenience call to parallelize device construction,
* and is fundamentally a parallel for loop of make(Kwargs).
*
* \param argsList a list of device arguments per each device
* \return a list of device pointers per each specified argument
*/
static std::vector<Device *> make(const KwargsList &argsList);
/*!
* Create a list of devices from a list of construction arguments.
* This is a convenience call to parallelize device construction,
* and is fundamentally a parallel for loop of make(args).
*
* \param argsList a list of device arguments per each device
* \return a list of device pointers per each specified argument
*/
static std::vector<Device *> make(const std::vector<std::string> &argsList);
/*!
* Unmake or release a list of device handles.
* This is a convenience call to parallelize device destruction,
* and is fundamentally a parallel for loop of unmake(Device *).
*
* \param devices a list of pointers to device objects
*/
static void unmake(const std::vector<Device *> &devices);
/*******************************************************************
* Identification API
******************************************************************/
/*!
* A key that uniquely identifies the device driver.
* This key identifies the underlying implementation.
* Several variants of a product may share a driver.
*/
virtual std::string getDriverKey(void) const;
/*!
* A key that uniquely identifies the hardware.
* This key should be meaningful to the user
* to optimize for the underlying hardware.
*/
virtual std::string getHardwareKey(void) const;
/*!
* Query a dictionary of available device information.
* This dictionary can any number of values like
* vendor name, product name, revisions, serials...
* This information can be displayed to the user
* to help identify the instantiated device.
*/
virtual Kwargs getHardwareInfo(void) const;
/*******************************************************************
* Channels API
******************************************************************/
/*!
* Set the frontend mapping of available DSP units to RF frontends.
* This mapping controls channel mapping and channel availability.
* \param direction the channel direction RX or TX
* \param mapping a vendor-specific mapping string
*/
virtual void setFrontendMapping(const int direction, const std::string &mapping);
/*!
* Get the mapping configuration string.
* \param direction the channel direction RX or TX
* \return the vendor-specific mapping string
*/
virtual std::string getFrontendMapping(const int direction) const;
/*!
* Get a number of channels given the streaming direction
*/
virtual size_t getNumChannels(const int direction) const;
/*!
* Query a dictionary of available channel information.
* This dictionary can any number of values like
* decoder type, version, available functions...
* This information can be displayed to the user
* to help identify the instantiated channel.
* \param direction the channel direction RX or TX
* \param channel an available channel on the device
* \return channel information
*/
virtual Kwargs getChannelInfo(const int direction, const size_t channel) const;
/*!
* Find out if the specified channel is full or half duplex.
* \param direction the channel direction RX or TX
* \param channel an available channel on the device
* \return true for full duplex, false for half duplex
*/
virtual bool getFullDuplex(const int direction, const size_t channel) const;
/*******************************************************************
* Stream API
******************************************************************/
/*!
* Query a list of the available stream formats.
* \param direction the channel direction RX or TX
* \param channel an available channel on the device
* \return a list of allowed format strings. See setupStream() for the format syntax.
*/
virtual std::vector<std::string> getStreamFormats(const int direction, const size_t channel) const;
/*!
* Get the hardware's native stream format for this channel.
* This is the format used by the underlying transport layer,
* and the direct buffer access API calls (when available).
* \param direction the channel direction RX or TX
* \param channel an available channel on the device
* \param [out] fullScale the maximum possible value
* \return the native stream buffer format string
*/
virtual std::string getNativeStreamFormat(const int direction, const size_t channel, double &fullScale) const;
/*!
* Query the argument info description for stream args.
* \param direction the channel direction RX or TX
* \param channel an available channel on the device
* \return a list of argument info structures
*/
virtual ArgInfoList getStreamArgsInfo(const int direction, const size_t channel) const;
/*!
* Initialize a stream given a list of channels and stream arguments.
* The implementation may change switches or power-up components.
* All stream API calls should be usable with the new stream object
* after setupStream() is complete, regardless of the activity state.
*
* The API allows any number of simultaneous TX and RX streams, but many dual-channel
* devices are limited to one stream in each direction, using either one or both channels.
* This call will throw an exception if an unsupported combination is requested,
* or if a requested channel in this direction is already in use by another stream.
*
* When multiple channels are added to a stream, they are typically expected to have
* the same sample rate. See setSampleRate().
*
* \param direction the channel direction (`SOAPY_SDR_RX` or `SOAPY_SDR_TX`)
* \param format A string representing the desired buffer format in read/writeStream()
* \parblock
*
* The first character selects the number type:
* - "C" means complex
* - "F" means floating point
* - "S" means signed integer
* - "U" means unsigned integer
*
* The type character is followed by the number of bits per number (complex is 2x this size per sample)
*
* Example format strings:
* - "CF32" - complex float32 (8 bytes per element)
* - "CS16" - complex int16 (4 bytes per element)
* - "CS12" - complex int12 (3 bytes per element)
* - "CS4" - complex int4 (1 byte per element)
* - "S32" - int32 (4 bytes per element)
* - "U8" - uint8 (1 byte per element)
*
* \endparblock
* \param channels a list of channels or empty for automatic.
* \param args stream args or empty for defaults.
* \parblock
*
* Recommended keys to use in the args dictionary:
* - "WIRE" - format of the samples between device and host
* \endparblock
* \return an opaque pointer to a stream handle.
* \parblock
*
* The returned stream is not required to have internal locking, and may not be used
* concurrently from multiple threads.
* \endparblock
*/
virtual Stream *setupStream(
const int direction,
const std::string &format,
const std::vector<size_t> &channels = std::vector<size_t>(),
const Kwargs &args = Kwargs());
/*!
* Close an open stream created by setupStream
* The implementation may change switches or power-down components.
* \param stream the opaque pointer to a stream handle
*/
virtual void closeStream(Stream *stream);
/*!
* Get the stream's maximum transmission unit (MTU) in number of elements.
* The MTU specifies the maximum payload transfer in a stream operation.
* This value can be used as a stream buffer allocation size that can
* best optimize throughput given the underlying stream implementation.
*
* \param stream the opaque pointer to a stream handle
* \return the MTU in number of stream elements (never zero)
*/
virtual size_t getStreamMTU(Stream *stream) const;
/*!
* Activate a stream.
* Call activate to prepare a stream before using read/write().
* The implementation control switches or stimulate data flow.
*
* The timeNs is only valid when the flags have SOAPY_SDR_HAS_TIME.
* The numElems count can be used to request a finite burst size.
* The SOAPY_SDR_END_BURST flag can signal end on the finite burst.
* Not all implementations will support the full range of options.
* In this case, the implementation returns SOAPY_SDR_NOT_SUPPORTED.
*
* \param stream the opaque pointer to a stream handle
* \param flags optional flag indicators about the stream
* \param timeNs optional activation time in nanoseconds
* \param numElems optional element count for burst control
* \return 0 for success or error code on failure
*/
virtual int activateStream(
Stream *stream,
const int flags = 0,
const long long timeNs = 0,
const size_t numElems = 0);
/*!
* Deactivate a stream.
* Call deactivate when not using using read/write().
* The implementation control switches or halt data flow.
*
* The timeNs is only valid when the flags have SOAPY_SDR_HAS_TIME.
* Not all implementations will support the full range of options.
* In this case, the implementation returns SOAPY_SDR_NOT_SUPPORTED.
*
* \param stream the opaque pointer to a stream handle
* \param flags optional flag indicators about the stream
* \param timeNs optional deactivation time in nanoseconds
* \return 0 for success or error code on failure
*/
virtual int deactivateStream(
Stream *stream,
const int flags = 0,
const long long timeNs = 0);
/*!
* Read elements from a stream for reception.
* This is a multi-channel call, and buffs should be an array of void *,
* where each pointer will be filled with data from a different channel.
*
* **Client code compatibility:**
* The readStream() call should be well defined at all times,
* including prior to activation and after deactivation.
* When inactive, readStream() should implement the timeout
* specified by the caller and return SOAPY_SDR_TIMEOUT.
*
* \param stream the opaque pointer to a stream handle
* \param buffs an array of void* buffers num chans in size
* \param numElems the number of elements in each buffer
* \param flags optional flag indicators about the result
* \param timeNs the buffer's timestamp in nanoseconds
* \param timeoutUs the timeout in microseconds
* \return the number of elements read per buffer or error code
*/
virtual int readStream(
Stream *stream,
void * const *buffs,
const size_t numElems,
int &flags,
long long &timeNs,
const long timeoutUs = 100000);
/*!
* Write elements to a stream for transmission.
* This is a multi-channel call, and buffs should be an array of void *,
* where each pointer will be filled with data for a different channel.
*
* **Client code compatibility:**
* Client code relies on writeStream() for proper back-pressure.
* The writeStream() implementation must enforce the timeout
* such that the call blocks until space becomes available
* or timeout expiration.
*
* \param stream the opaque pointer to a stream handle
* \param buffs an array of void* buffers num chans in size
* \param numElems the number of elements in each buffer
* \param flags optional input flags and output flags
* \param timeNs the buffer's timestamp in nanoseconds
* \param timeoutUs the timeout in microseconds
* \return the number of elements written per buffer or error
*/
virtual int writeStream(
Stream *stream,
const void * const *buffs,
const size_t numElems,
int &flags,
const long long timeNs = 0,
const long timeoutUs = 100000);
/*!
* Readback status information about a stream.
* This call is typically used on a transmit stream
* to report time errors, underflows, and burst completion.
*
* **Client code compatibility:**
* Client code may continually poll readStreamStatus() in a loop.
* Implementations of readStreamStatus() should wait in the call
* for a status change event or until the timeout expiration.
* When stream status is not implemented on a particular stream,
* readStreamStatus() should return SOAPY_SDR_NOT_SUPPORTED.
* Client code may use this indication to disable a polling loop.
*
* \param stream the opaque pointer to a stream handle
* \param chanMask to which channels this status applies
* \param flags optional input flags and output flags
* \param timeNs the buffer's timestamp in nanoseconds
* \param timeoutUs the timeout in microseconds
* \return 0 for success or error code like timeout
*/
virtual int readStreamStatus(
Stream *stream,
size_t &chanMask,
int &flags,
long long &timeNs,
const long timeoutUs = 100000);
/*******************************************************************
* Direct buffer access API
******************************************************************/
/*!
* How many direct access buffers can the stream provide?
* This is the number of times the user can call acquire()
* on a stream without making subsequent calls to release().
* A return value of 0 means that direct access is not supported.
*
* \param stream the opaque pointer to a stream handle
* \return the number of direct access buffers or 0
*/
virtual size_t getNumDirectAccessBuffers(Stream *stream);
/*!
* Get the buffer addresses for a scatter/gather table entry.
* When the underlying DMA implementation uses scatter/gather
* then this call provides the user addresses for that table.
*
* Example: The caller may query the DMA memory addresses once
* after stream creation to pre-allocate a re-usable ring-buffer.
*
* \param stream the opaque pointer to a stream handle
* \param handle an index value between 0 and num direct buffers - 1
* \param buffs an array of void* buffers num chans in size
* \return 0 for success or error code when not supported
*/
virtual int getDirectAccessBufferAddrs(Stream *stream, const size_t handle, void **buffs);
/*!
* Acquire direct buffers from a receive stream.
* This call is part of the direct buffer access API.
*
* The buffs array will be filled with a stream pointer for each channel.
* Each pointer can be read up to the number of return value elements.
*
* The handle will be set by the implementation so that the caller
* may later release access to the buffers with releaseReadBuffer().
* Handle represents an index into the internal scatter/gather table
* such that handle is between 0 and num direct buffers - 1.
*
* \param stream the opaque pointer to a stream handle
* \param handle an index value used in the release() call
* \param buffs an array of void* buffers num chans in size
* \param flags optional flag indicators about the result
* \param timeNs the buffer's timestamp in nanoseconds
* \param timeoutUs the timeout in microseconds
* \return the number of elements read per buffer or error code
*/
virtual int acquireReadBuffer(
Stream *stream,
size_t &handle,
const void **buffs,
int &flags,
long long &timeNs,
const long timeoutUs = 100000);
/*!
* Release an acquired buffer back to the receive stream.
* This call is part of the direct buffer access API.
*
* \param stream the opaque pointer to a stream handle
* \param handle the opaque handle from the acquire() call
*/
virtual void releaseReadBuffer(
Stream *stream,
const size_t handle);
/*!
* Acquire direct buffers from a transmit stream.
* This call is part of the direct buffer access API.
*
* The buffs array will be filled with a stream pointer for each channel.
* Each pointer can be written up to the number of return value elements.
*
* The handle will be set by the implementation so that the caller
* may later release access to the buffers with releaseWriteBuffer().
* Handle represents an index into the internal scatter/gather table
* such that handle is between 0 and num direct buffers - 1.
*
* \param stream the opaque pointer to a stream handle
* \param handle an index value used in the release() call
* \param buffs an array of void* buffers num chans in size
* \param timeoutUs the timeout in microseconds
* \return the number of available elements per buffer or error
*/
virtual int acquireWriteBuffer(
Stream *stream,
size_t &handle,
void **buffs,
const long timeoutUs = 100000);
/*!
* Release an acquired buffer back to the transmit stream.
* This call is part of the direct buffer access API.
*
* Stream meta-data is provided as part of the release call,
* and not the acquire call so that the caller may acquire
* buffers without committing to the contents of the meta-data,
* which can be determined by the user as the buffers are filled.
*
* \param stream the opaque pointer to a stream handle
* \param handle the opaque handle from the acquire() call
* \param numElems the number of elements written to each buffer
* \param flags optional input flags and output flags
* \param timeNs the buffer's timestamp in nanoseconds
*/
virtual void releaseWriteBuffer(
Stream *stream,
const size_t handle,
const size_t numElems,
int &flags,
const long long timeNs = 0);
/*******************************************************************
* Antenna API
******************************************************************/
/*!
* Get a list of available antennas to select on a given chain.
* \param direction the channel direction RX or TX
* \param channel an available channel on the device
* \return a list of available antenna names
*/
virtual std::vector<std::string> listAntennas(const int direction, const size_t channel) const;
/*!
* Set the selected antenna on a chain.
* \param direction the channel direction RX or TX
* \param channel an available channel on the device
* \param name the name of an available antenna
*/
virtual void setAntenna(const int direction, const size_t channel, const std::string &name);
/*!
* Get the selected antenna on a chain.
* \param direction the channel direction RX or TX
* \param channel an available channel on the device
* \return the name of an available antenna
*/
virtual std::string getAntenna(const int direction, const size_t channel) const;
/*******************************************************************
* Frontend corrections API
******************************************************************/
/*!
* Does the device support automatic DC offset corrections?
* \param direction the channel direction RX or TX
* \param channel an available channel on the device
* \return true if automatic corrections are supported
*/
virtual bool hasDCOffsetMode(const int direction, const size_t channel) const;
/*!
* Set the automatic DC offset corrections mode.
* \param direction the channel direction RX or TX
* \param channel an available channel on the device
* \param automatic true for automatic offset correction
*/
virtual void setDCOffsetMode(const int direction, const size_t channel, const bool automatic);
/*!
* Get the automatic DC offset corrections mode.
* \param direction the channel direction RX or TX
* \param channel an available channel on the device
* \return true for automatic offset correction
*/
virtual bool getDCOffsetMode(const int direction, const size_t channel) const;
/*!
* Does the device support frontend DC offset correction?
* \param direction the channel direction RX or TX
* \param channel an available channel on the device
* \return true if DC offset corrections are supported
*/
virtual bool hasDCOffset(const int direction, const size_t channel) const;
/*!
* Set the frontend DC offset correction.
* \param direction the channel direction RX or TX
* \param channel an available channel on the device
* \param offset the relative correction (1.0 max)
*/
virtual void setDCOffset(const int direction, const size_t channel, const std::complex<double> &offset);
/*!
* Get the frontend DC offset correction.
* \param direction the channel direction RX or TX
* \param channel an available channel on the device
* \return the relative correction (1.0 max)
*/
virtual std::complex<double> getDCOffset(const int direction, const size_t channel) const;
/*!
* Does the device support frontend IQ balance correction?
* \param direction the channel direction RX or TX
* \param channel an available channel on the device
* \return true if IQ balance corrections are supported
*/
virtual bool hasIQBalance(const int direction, const size_t channel) const;
/*!
* Set the frontend IQ balance correction.
* \param direction the channel direction RX or TX
* \param channel an available channel on the device
* \param balance the relative correction (1.0 max)
*/
virtual void setIQBalance(const int direction, const size_t channel, const std::complex<double> &balance);
/*!
* Get the frontend IQ balance correction.
* \param direction the channel direction RX or TX
* \param channel an available channel on the device
* \return the relative correction (1.0 max)
*/
virtual std::complex<double> getIQBalance(const int direction, const size_t channel) const;
/*!
* Does the device support automatic frontend IQ balance correction?
* \param direction the channel direction RX or TX
* \param channel an available channel on the device
* \return true if IQ balance corrections are supported
*/
virtual bool hasIQBalanceMode(const int direction, const size_t channel) const;
/*!
* Set the automatic frontend IQ balance correction.
* \param direction the channel direction RX or TX
* \param channel an available channel on the device
* \param automatic true for automatic correction
*/
virtual void setIQBalanceMode(const int direction, const size_t channel, const bool automatic);
/*!
* Set the automatic IQ balance corrections mode.
* \param direction the channel direction RX or TX
* \param channel an available channel on the device
* \return true for automatic correction
*/
virtual bool getIQBalanceMode(const int direction, const size_t channel) const;
/*!
* Does the device support frontend frequency correction?
* \param direction the channel direction RX or TX
* \param channel an available channel on the device
* \return true if frequency corrections are supported
*/
virtual bool hasFrequencyCorrection(const int direction, const size_t channel) const;
/*!
* Fine tune the frontend frequency correction.
* \param direction the channel direction RX or TX
* \param channel an available channel on the device
* \param value the correction in PPM
*/
virtual void setFrequencyCorrection(const int direction, const size_t channel, const double value);
/*!
* Get the frontend frequency correction value.
* \param direction the channel direction RX or TX
* \param channel an available channel on the device
* \return the correction value in PPM
*/
virtual double getFrequencyCorrection(const int direction, const size_t channel) const;
/*******************************************************************
* Gain API
******************************************************************/
/*!
* List available amplification elements.
* Elements should be in order RF to baseband.
* \param direction the channel direction RX or TX
* \param channel an available channel
* \return a list of gain string names
*/
virtual std::vector<std::string> listGains(const int direction, const size_t channel) const;
/*!
* Does the device support automatic gain control?
* \param direction the channel direction RX or TX
* \param channel an available channel on the device
* \return true for automatic gain control
*/
virtual bool hasGainMode(const int direction, const size_t channel) const;
/*!
* Set the automatic gain mode on the chain.
* \param direction the channel direction RX or TX
* \param channel an available channel on the device
* \param automatic true for automatic gain setting
*/
virtual void setGainMode(const int direction, const size_t channel, const bool automatic);
/*!
* Get the automatic gain mode on the chain.
* \param direction the channel direction RX or TX
* \param channel an available channel on the device
* \return true for automatic gain setting
*/
virtual bool getGainMode(const int direction, const size_t channel) const;
/*!
* Set the overall amplification in a chain.
* The gain will be distributed automatically across available element.
* \param direction the channel direction RX or TX
* \param channel an available channel on the device
* \param value the new amplification value in dB
*/
virtual void setGain(const int direction, const size_t channel, const double value);
/*!
* Set the value of a amplification element in a chain.
* \param direction the channel direction RX or TX
* \param channel an available channel on the device
* \param name the name of an amplification element
* \param value the new amplification value in dB
*/
virtual void setGain(const int direction, const size_t channel, const std::string &name, const double value);
/*!
* Get the overall value of the gain elements in a chain.
* \param direction the channel direction RX or TX
* \param channel an available channel on the device
* \return the value of the gain in dB
*/
virtual double getGain(const int direction, const size_t channel) const;
/*!
* Get the value of an individual amplification element in a chain.
* \param direction the channel direction RX or TX
* \param channel an available channel on the device
* \param name the name of an amplification element
* \return the value of the gain in dB
*/
virtual double getGain(const int direction, const size_t channel, const std::string &name) const;
/*!
* Get the overall range of possible gain values.
* \param direction the channel direction RX or TX
* \param channel an available channel on the device
* \return a list of gain ranges in dB
*/
virtual Range getGainRange(const int direction, const size_t channel) const;
/*!
* Get the range of possible gain values for a specific element.
* \param direction the channel direction RX or TX
* \param channel an available channel on the device
* \param name the name of an amplification element
* \return a list of gain ranges in dB
*/
virtual Range getGainRange(const int direction, const size_t channel, const std::string &name) const;
/*******************************************************************
* Frequency API
******************************************************************/
/*!
* Set the center frequency of the chain.
* - For RX, this specifies the down-conversion frequency.
* - For TX, this specifies the up-conversion frequency.
*
* The default implementation of setFrequency() will tune the "RF"
* component as close as possible to the requested center frequency.
* Tuning inaccuracies will be compensated for with the "BB" component.
*
* The args can be used to augment the tuning algorithm.
* - Use "OFFSET" to specify an "RF" tuning offset,
* usually with the intention of moving the LO out of the passband.
* The offset will be compensated for using the "BB" component.
* - Use the name of a component for the key and a frequency in Hz
* as the value (any format) to enforce a specific frequency.
* The other components will be tuned with compensation
* to achieve the specified overall frequency.
* - Use the name of a component for the key and the value "IGNORE"
* so that the tuning algorithm will avoid altering the component.
* - Vendor specific implementations can also use the same args to augment
* tuning in other ways such as specifying fractional vs integer N tuning.
*
* \param direction the channel direction RX or TX
* \param channel an available channel on the device
* \param frequency the center frequency in Hz
* \param args optional tuner arguments
*/
virtual void setFrequency(const int direction, const size_t channel, const double frequency, const Kwargs &args = Kwargs());
/*!
* Tune the center frequency of the specified element.
* - For RX, this specifies the down-conversion frequency.
* - For TX, this specifies the up-conversion frequency.
*
* Recommended names used to represent tunable components:
* - "CORR" - freq error correction in PPM
* - "RF" - frequency of the RF frontend
* - "BB" - frequency of the baseband DSP
*
* \param direction the channel direction RX or TX
* \param channel an available channel on the device
* \param name the name of a tunable element
* \param frequency the center frequency in Hz
* \param args optional tuner arguments
*/
virtual void setFrequency(const int direction, const size_t channel, const std::string &name, const double frequency, const Kwargs &args = Kwargs());
/*!
* Get the overall center frequency of the chain.
* - For RX, this specifies the down-conversion frequency.
* - For TX, this specifies the up-conversion frequency.
* \param direction the channel direction RX or TX
* \param channel an available channel on the device
* \return the center frequency in Hz
*/
virtual double getFrequency(const int direction, const size_t channel) const;
/*!
* Get the frequency of a tunable element in the chain.
* \param direction the channel direction RX or TX
* \param channel an available channel on the device
* \param name the name of a tunable element
* \return the tunable element's frequency in Hz
*/
virtual double getFrequency(const int direction, const size_t channel, const std::string &name) const;
/*!
* List available tunable elements in the chain.
* Elements should be in order RF to baseband.
* \param direction the channel direction RX or TX
* \param channel an available channel
* \return a list of tunable elements by name
*/
virtual std::vector<std::string> listFrequencies(const int direction, const size_t channel) const;
/*!
* Get the range of overall frequency values.
* \param direction the channel direction RX or TX
* \param channel an available channel on the device
* \return a list of frequency ranges in Hz
*/
virtual RangeList getFrequencyRange(const int direction, const size_t channel) const;
/*!
* Get the range of tunable values for the specified element.
* \param direction the channel direction RX or TX
* \param channel an available channel on the device
* \param name the name of a tunable element
* \return a list of frequency ranges in Hz
*/
virtual RangeList getFrequencyRange(const int direction, const size_t channel, const std::string &name) const;
/*!
* Query the argument info description for tune args.
* \param direction the channel direction RX or TX
* \param channel an available channel on the device
* \return a list of argument info structures
*/
virtual ArgInfoList getFrequencyArgsInfo(const int direction, const size_t channel) const;
/*******************************************************************
* Sample Rate API
******************************************************************/
/*!
* Set the baseband sample rate of the chain.
* \param direction the channel direction RX or TX
* \param channel an available channel on the device
* \param rate the sample rate in samples per second
*/
virtual void setSampleRate(const int direction, const size_t channel, const double rate);
/*!
* Get the baseband sample rate of the chain.
* \param direction the channel direction RX or TX
* \param channel an available channel on the device
* \return the sample rate in samples per second
*/
virtual double getSampleRate(const int direction, const size_t channel) const;
/*!
* Get the range of possible baseband sample rates.
* \deprecated replaced by getSampleRateRange()
* \param direction the channel direction RX or TX
* \param channel an available channel on the device
* \return a list of possible rates in samples per second
*/
virtual std::vector<double> listSampleRates(const int direction, const size_t channel) const;
/*!
* Get the range of possible baseband sample rates.
* \param direction the channel direction RX or TX
* \param channel an available channel on the device
* \return a list of sample rate ranges in samples per second
*/
virtual RangeList getSampleRateRange(const int direction, const size_t channel) const;
/*******************************************************************
* Bandwidth API
******************************************************************/
/*!
* Set the baseband filter width of the chain.
* \param direction the channel direction RX or TX
* \param channel an available channel on the device
* \param bw the baseband filter width in Hz
*/
virtual void setBandwidth(const int direction, const size_t channel, const double bw);
/*!
* Get the baseband filter width of the chain.
* \param direction the channel direction RX or TX
* \param channel an available channel on the device
* \return the baseband filter width in Hz
*/
virtual double getBandwidth(const int direction, const size_t channel) const;
/*!
* Get the range of possible baseband filter widths.
* \deprecated replaced by getBandwidthRange()
* \param direction the channel direction RX or TX
* \param channel an available channel on the device
* \return a list of possible bandwidths in Hz
*/
virtual std::vector<double> listBandwidths(const int direction, const size_t channel) const;
/*!
* Get the range of possible baseband filter widths.
* \param direction the channel direction RX or TX
* \param channel an available channel on the device
* \return a list of bandwidth ranges in Hz
*/
virtual RangeList getBandwidthRange(const int direction, const size_t channel) const;
/*******************************************************************
* Clocking API
******************************************************************/
/*!
* Set the master clock rate of the device.
* \param rate the clock rate in Hz
*/
virtual void setMasterClockRate(const double rate);
/*!
* Get the master clock rate of the device.
* \return the clock rate in Hz
*/
virtual double getMasterClockRate(void) const;
/*!
* Get the range of available master clock rates.
* \return a list of clock rate ranges in Hz
*/
virtual RangeList getMasterClockRates(void) const;
/*!
* Set the reference clock rate of the device.
* \param rate the clock rate in Hz
*/
virtual void setReferenceClockRate(const double rate);
/*!
* Get the reference clock rate of the device.
* \return the clock rate in Hz
*/
virtual double getReferenceClockRate(void) const;
/*!
* Get the range of available reference clock rates.
* \return a list of clock rate ranges in Hz
*/
virtual RangeList getReferenceClockRates(void) const;
/*!
* Get the list of available clock sources.
* \return a list of clock source names
*/
virtual std::vector<std::string> listClockSources(void) const;
/*!
* Set the clock source on the device
* \param source the name of a clock source
*/
virtual void setClockSource(const std::string &source);
/*!