Engine for ML/Data tracking, visualization, explainability, drift detection, and dashboards for Polyaxon.
pip install traceml
If you would like to use the tracking features, you need to install polyaxon
as well:
pip install polyaxon traceml
Coming soon
You can enable the offline mode to track runs without an API:
export POLYAXON_OFFLINE="true"
Or passing the offline flag
from traceml import tracking
tracking.init(..., is_offline=True, ...)
import random
import traceml as tracking
tracking.init(
is_offline=True,
project='quick-start',
name="my-new-run",
description="trying TraceML",
tags=["examples"],
artifacts_path="path/to/artifacts/repo"
)
# Tracking some data refs
tracking.log_data_ref(content=X_train, name='x_train')
tracking.log_data_ref(content=y_train, name='y_train')
# Tracking inputs
tracking.log_inputs(
batch_size=64,
dropout=0.2,
learning_rate=0.001,
optimizer="Adam"
)
def get_loss(step):
result = 10 / (step 1)
noise = (random.random() - 0.5) * 0.5 * result
return result noise
# Track metrics
for step in range(100):
loss = get_loss(step)
tracking.log_metrics(
loss=loss,
accuracy=(100 - loss) / 100.0,
)
# Track some one time results
tracking.log_outputs(validation_score=0.66)
# Optionally manually stop the tracking process
tracking.stop()
You can use TraceML's callback to automatically save all metrics and collect outputs and models, you can also track additional information using the logging methods:
from traceml import tracking
from traceml.integrations.keras import Callback
tracking.init(
is_offline=True,
project='tracking-project',
name="keras-run",
description="trying TraceML & Keras",
tags=["examples"],
artifacts_path="path/to/artifacts/repo"
)
tracking.log_inputs(
batch_size=64,
dropout=0.2,
learning_rate=0.001,
optimizer="Adam"
)
tracking.log_data_ref(content=x_train, name='x_train')
tracking.log_data_ref(content=y_train, name='y_train')
tracking.log_data_ref(content=x_test, name='x_test')
tracking.log_data_ref(content=y_test, name='y_test')
# ...
model.fit(
x_train,
y_train,
validation_data=(X_test, y_test),
epochs=epochs,
batch_size=100,
callbacks=[Callback()],
)
You can log metrics, inputs, and outputs of Pytorch experiments using the tracking module:
from traceml import tracking
tracking.init(
is_offline=True,
project='tracking-project',
name="pytorch-run",
description="trying TraceML & PyTorch",
tags=["examples"],
artifacts_path="path/to/artifacts/repo"
)
tracking.log_inputs(
batch_size=64,
dropout=0.2,
learning_rate=0.001,
optimizer="Adam"
)
# Metrics
for batch_idx, (data, target) in enumerate(train_loader):
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
tracking.log_metrics(loss=loss)
asset_path = tracking.get_outputs_path('model.ckpt')
torch.save(model.state_dict(), asset_path)
# log model
tracking.log_artifact_ref(asset_path, framework="pytorch", ...)
You can log metrics, outputs, and models of Tensorflow experiments and distributed Tensorflow experiments using the tracking module:
from traceml import tracking
from traceml.integrations.tensorflow import Callback
tracking.init(
is_offline=True,
project='tracking-project',
name="tf-run",
description="trying TraceML & Tensorflow",
tags=["examples"],
artifacts_path="path/to/artifacts/repo"
)
tracking.log_inputs(
batch_size=64,
dropout=0.2,
learning_rate=0.001,
optimizer="Adam"
)
# log model
estimator.train(hooks=[Callback(log_image=True, log_histo=True, log_tensor=True)])
You can log metrics, outputs, and models of Fastai experiments using the tracking module:
from traceml import tracking
from traceml.integrations.fastai import Callback
tracking.init(
is_offline=True,
project='tracking-project',
name="fastai-run",
description="trying TraceML & Fastai",
tags=["examples"],
artifacts_path="path/to/artifacts/repo"
)
# Log model metrics
learn.fit(..., cbs=[Callback()])
You can log metrics, outputs, and models of Pytorch Lightning experiments using the tracking module:
from traceml import tracking
from traceml.integrations.pytorch_lightning import Callback
tracking.init(
is_offline=True,
project='tracking-project',
name="pytorch-lightning-run",
description="trying TraceML & Lightning",
tags=["examples"],
artifacts_path="path/to/artifacts/repo"
)
...
trainer = pl.Trainer(
gpus=0,
progress_bar_refresh_rate=20,
max_epochs=2,
logger=Callback(),
)
You can log metrics, outputs, and models of HuggingFace experiments using the tracking module:
from traceml import tracking
from traceml.integrations.hugging_face import Callback
tracking.init(
is_offline=True,
project='tracking-project',
name="hg-run",
description="trying TraceML & HuggingFace",
tags=["examples"],
artifacts_path="path/to/artifacts/repo"
)
...
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset if training_args.do_train else None,
eval_dataset=eval_dataset if training_args.do_eval else None,
callbacks=[Callback],
# ...
)
import altair as alt
import matplotlib.pyplot as plt
import numpy as np
import plotly.express as px
from bokeh.plotting import figure
from vega_datasets import data
from traceml import tracking
def plot_mpl_figure(step):
np.random.seed(19680801)
data = np.random.randn(2, 100)
figure, axs = plt.subplots(2, 2, figsize=(5, 5))
axs[0, 0].hist(data[0])
axs[1, 0].scatter(data[0], data[1])
axs[0, 1].plot(data[0], data[1])
axs[1, 1].hist2d(data[0], data[1])
tracking.log_mpl_image(figure, 'mpl_image', step=step)
def log_bokeh(step):
factors = ["a", "b", "c", "d", "e", "f", "g", "h"]
x = [50, 40, 65, 10, 25, 37, 80, 60]
dot = figure(title="Categorical Dot Plot", tools="", toolbar_location=None,
y_range=factors, x_range=[0, 100])
dot.segment(0, factors, x, factors, line_width=2, line_color="green", )
dot.circle(x, factors, size=15, fill_color="orange", line_color="green", line_width=3, )
factors = ["foo 123", "bar:0.2", "baz-10"]
x = ["foo 123", "foo 123", "foo 123", "bar:0.2", "bar:0.2", "bar:0.2", "baz-10", "baz-10",
"baz-10"]
y = ["foo 123", "bar:0.2", "baz-10", "foo 123", "bar:0.2", "baz-10", "foo 123", "bar:0.2",
"baz-10"]
colors = [
"#0B486B", "#79BD9A", "#CFF09E",
"#79BD9A", "#0B486B", "#79BD9A",
"#CFF09E", "#79BD9A", "#0B486B"
]
hm = figure(title="Categorical Heatmap", tools="hover", toolbar_location=None,
x_range=factors, y_range=factors)
hm.rect(x, y, color=colors, width=1, height=1)
tracking.log_bokeh_chart(name='confusion-bokeh', figure=hm, step=step)
def log_altair(step):
source = data.cars()
brush = alt.selection(type='interval')
points = alt.Chart(source).mark_point().encode(
x='Horsepower:Q',
y='Miles_per_Gallon:Q',
color=alt.condition(brush, 'Origin:N', alt.value('lightgray'))
).add_selection(
brush
)
bars = alt.Chart(source).mark_bar().encode(
y='Origin:N',
color='Origin:N',
x='count(Origin):Q'
).transform_filter(
brush
)
chart = points & bars
tracking.log_altair_chart(name='altair_chart', figure=chart, step=step)
def log_plotly(step):
df = px.data.tips()
fig = px.density_heatmap(df, x="total_bill", y="tip", facet_row="sex", facet_col="smoker")
tracking.log_plotly_chart(name="2d-hist", figure=fig, step=step)
plot_mpl_figure(100)
log_bokeh(100)
log_altair(100)
log_plotly(100)
An extension to pandas dataframes describe function.
The module contains DataFrameSummary
object that extend describe()
with:
- properties
- dfs.columns_stats: counts, uniques, missing, missing_perc, and type per column
- dsf.columns_types: a count of the types of columns
- dfs[column]: more in depth summary of the column
- function
- summary(): extends the
describe()
function with the values withcolumns_stats
- summary(): extends the
The DataFrameSummary
expect a pandas DataFrame
to summarise.
from traceml.summary.df import DataFrameSummary
dfs = DataFrameSummary(df)
getting the columns types
dfs.columns_types
numeric 9
bool 3
categorical 2
unique 1
date 1
constant 1
dtype: int64
getting the columns stats
dfs.columns_stats
A B C D E
counts 5802 5794 5781 5781 4617
uniques 5802 3 5771 128 121
missing 0 8 21 21 1185
missing_perc 0% 0.14% 0.36% 0.36% 20.42%
types unique categorical numeric numeric numeric
getting a single column summary, e.g. numerical column
# we can also access the column using numbers A[1]
dfs['A']
std 0.2827146
max 1.072792
min 0
variance 0.07992753
mean 0.5548516
5% 0.1603367
25% 0.3199776
50% 0.4968588
75% 0.8274732
95% 1.011255
iqr 0.5074956
kurtosis -1.208469
skewness 0.2679559
sum 3207.597
mad 0.2459508
cv 0.5095319
zeros_num 11
zeros_perc 0,1%
deviating_of_mean 21
deviating_of_mean_perc 0.36%
deviating_of_median 21
deviating_of_median_perc 0.36%
top_correlations {u'D': 0.702240243124, u'E': -0.663}
counts 5781
uniques 5771
missing 21
missing_perc 0.36%
types numeric
Name: A, dtype: object
- Add summary analysis between columns, i.e.
dfs[[1, 2]]
- Add summary visualization with matplotlib.
- Add summary visualization with plotly.
- Add summary visualization with altair.
- Add predefined profiling.
- Add possibility to persist summary and link to a specific version.
- Integrate with quality libraries.