Skip to content

IEEE TNNLS 2023: A Shadow Imaging Bilinear Model and Three-branch Residual Network for Shadow Removal

Notifications You must be signed in to change notification settings

nachifur/TBRNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

TBRNet

1. Resources

国内资源链接(密码:e2ww)

1.1 Dataset

1.2 Results

Visual comparison results of penumbra removal results on the SRD dataset - (Powered by MulimgViewer)

1.3 Model Weight File for Test

1.4 Evaluation Code

  1. MAE (i.e., RMSE in paper). Hieu Le reuploaded the evaluation code. Before that, everyone can obtain this code from Jifeng Wang via email. Currently, the MATLAB code is used in most state-of-the-art works for shadow removal.

  2. PSNR SSIM. zhu_aaai2022

2. Environments

ubuntu18.04 cuda10.2 pytorch1.7.1

  1. create environments
conda env create -f install.yaml
  1. activate environments
conda activate TBRNet

3. Data Processing

For example, generate the dataset list of ISTD:

  1. Download:
    cp -r ISTD_Dataset_arg/train_B ISTD_Dataset_arg/train_B_ISTD
    cp -r ISTD_Dataset_arg/train_B SRD_Dataset_arg/train_B_ISTD
    
    cp vgg19-dcbb9e9d.pth ISTD_Dataset_arg/
    cp vgg19-dcbb9e9d.pth SRD_Dataset_arg/
    
  2. The data folders should be:
    ISTD_Dataset_arg
        * train
            - train_A # ISTD shadow image
            - train_B # ISTD shadow mask
            - train_C # ISTD shadowfree image
            - shadow_free # USR shadowfree images
            - synC # Syn. shadow
            - train_B_ISTD # ISTD shadow mask
        * test
            - test_A # ISTD shadow image
            - test_B # ISTD shadow mask
            - test_C # ISTD shadowfree image
        * vgg19-dcbb9e9d.pth
    
    SRD_Dataset_arg
        * train #  renaming the original `Train` folder in `SRD`.
            - train_A # SRD shadow image, renaming the original `shadow` folder in `SRD`.
            - train_B # SRD shadow mask
            - train_C # SRD shadowfree image, renaming the original `shadow_free` folder in `SRD`.
            - shadow_free # USR shadowfree images
            - synC # Syn. shadow
            - train_B_ISTD # ISTD shadow mask
        * test #  renaming the original `test_data` folder in `SRD`.
            - train_A # SRD shadow image, renaming the original `shadow` folder in `SRD`.
            - train_B # SRD shadow mask
            - train_C # SRD shadowfree image, renaming the original `shadow_free` folder in `SRD`.
        * vgg19-dcbb9e9d.pth 
    
  3. Edit generate_flist_istd.py: (Replace path)
ISTD_path = "/Your_data_storage_path/ISTD_Dataset_arg"
  1. Generate Datasets List. (Already contains ISTD DA.)
conda activate TBRNet
cd script/
python generate_flist_istd.py
  1. Edit config_ISTD.yml: (Replace path)
DATA_ROOT: /Your_data_storage_path/ISTD_Dataset_arg

4. Training Test Evaluation

4.1 Training Test Evaluation

For example, training test evaluation on ISTD dataset.

cp config/config_ISTD.yml config.yml 
cp config/run_ISTD.py run.py
conda activate TBRNet
python run.py

4.2 Only Test and Evaluation

For example, test evaluation on ISTD dataset.

  1. Download weight file(TBRNet_ISTD.pth) to pre_train_model/ISTD
  2. Copy file
cp config/config_ISTD.yml config.yml 
cp config/run_ISTD.py run.py
mkdir -p checkpoints/ISTD/
cp config.yml checkpoints/ISTD/config.yml
cp pre_train_model/ISTD/TBRNet_ISTD.pth  checkpoints/ISTD/ShadowRemoval.pth
  1. Edit run.py. Comment the training code.
    # # pre_train (no data augmentation)
    # MODE = 0
    # print('\nmode-' str(MODE) ': start pre_training(data augmentation)...\n')
    # for i in range(1):
    #     skip_train = init_config(checkpoints_path, MODE=MODE,
    #                             EVAL_INTERVAL_EPOCH=1, EPOCH=[90,i])
    #     if not skip_train:
    #         main(MODE, config_path)
    # src_path = Path('./pre_train_model') / \
    #     config["SUBJECT_WORD"]/(config["MODEL_NAME"] '_pre_da.pth')
    # copypth(dest_path, src_path)

    # # train
    # MODE = 2
    # print('\nmode-' str(MODE) ': start training...\n')
    # for i in range(1):
    #     skip_train = init_config(checkpoints_path, MODE=MODE,
    #                             EVAL_INTERVAL_EPOCH=0.1, EPOCH=[60,i])
    #     if not skip_train:
    #         main(MODE, config_path)
    # src_path = Path('./pre_train_model') / \
    #     config["SUBJECT_WORD"]/(config["MODEL_NAME"] '_final.pth')
    # copypth(dest_path, src_path)
  1. Run
conda activate TBRNet
python run.py

4.3 Show Results

After evaluation, execute the following code to display the final RMSE.

python show_eval_result.py

Output:

running rmse-shadow: xxx, rmse-non-shadow: xxx, rmse-all: xxx # ISRD

This is the evaluation result of python pytorch, which is only used during training. To get the evaluation results in the paper, you need to run the matlab code.

5. Acknowledgements

Part of the code is based upon:

6. Citation

If you find our work useful in your research, please consider citing:

@ARTICLE{liu2023shadow,
  author={Liu, Jiawei and Wang, Qiang and Fan, Huijie and Tian, Jiandong and Tang, Yandong},
  journal={IEEE Transactions on Neural Networks and Learning Systems}, 
  title={A Shadow Imaging Bilinear Model and Three-Branch Residual Network for Shadow Removal}, 
  year={2023},
  volume={},
  number={},
  pages={1-15},
  doi={10.1109/TNNLS.2023.3290078}
}

7. Contact

Please contact Jiawei Liu if there is any question ([email protected]).

About

IEEE TNNLS 2023: A Shadow Imaging Bilinear Model and Three-branch Residual Network for Shadow Removal

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages