forked from microsoft/aici
-
Notifications
You must be signed in to change notification settings - Fork 0
/
phi.rs
233 lines (208 loc) · 6.55 KB
/
phi.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
use super::{
config::{CommonModelConfig, ModelConfig, ModelType, RllmModelConfig},
layer_norm, linear,
paged::BatchInfo,
varlen_attn, RotaryEmbedding,
};
use serde::Deserialize;
use std::rc::Rc;
use tch::{
nn::{self, Module, Path},
IndexOp, Tensor,
};
use super::tmodel::TModelInner;
/// MixFormer model.
/// https://huggingface.co/microsoft/phi-1_5
/// https://arxiv.org/abs/2309.05463
#[derive(Debug, Clone, PartialEq, Deserialize)]
pub struct PhiConfig {
pub(crate) vocab_size: usize,
pub(crate) n_positions: usize,
pub(crate) n_embd: usize,
pub(crate) n_layer: usize,
pub(crate) n_inner: Option<usize>,
pub(crate) n_head: usize,
pub(crate) rotary_dim: usize,
pub(crate) activation_function: String,
pub(crate) layer_norm_epsilon: f64,
pub(crate) tie_word_embeddings: bool,
pub(crate) torch_dtype: String,
}
impl RllmModelConfig for PhiConfig {
fn into_config(self, common: CommonModelConfig) -> ModelConfig {
let mut meta = common.meta.clone();
meta.vocab_size = self.vocab_size;
meta.tok_vocab_size = self.vocab_size;
meta.max_sequence_length = self.n_positions;
ModelConfig {
model_type: ModelType::Phi,
meta,
hidden_size: self.n_embd,
intermediate_size: self.n_inner.unwrap_or(4 * self.n_embd),
num_hidden_layers: self.n_layer,
num_attention_heads: self.n_head,
num_key_value_heads: self.n_head,
layer_norm_eps: self.layer_norm_epsilon,
rope_theta: 10000.0,
head_dim: self.n_embd / self.n_head,
rotary_dim: self.rotary_dim,
dtype: ModelConfig::dtype_from_str(common.dtype, &self.torch_dtype),
device: common.device,
profile_step_no: 0,
cache: Default::default(),
}
}
}
#[derive(Debug)]
#[allow(clippy::upper_case_acronyms)]
struct MLP {
fc1: nn::Linear,
fc2: nn::Linear,
}
impl MLP {
fn new(cfg: &ModelConfig, vb: Path) -> Self {
let n_inner = cfg.intermediate_size;
let fc1 = linear(cfg.hidden_size, n_inner, &vb / "fc1");
let fc2 = linear(n_inner, cfg.hidden_size, &vb / "fc2");
Self { fc1, fc2 }
}
}
impl Module for MLP {
fn forward(&self, xs: &Tensor) -> Tensor {
xs.apply(&self.fc1).gelu("tanh").apply(&self.fc2)
}
}
#[derive(Debug)]
struct CausalLMHead {
ln: nn::LayerNorm,
linear: nn::Linear,
}
impl CausalLMHead {
fn new(cfg: &ModelConfig, vb: Path) -> Self {
let ln = layer_norm(&vb / "ln", cfg);
let linear = linear(cfg.hidden_size, cfg.meta.vocab_size, &vb / "linear");
Self { ln, linear }
}
}
impl Module for CausalLMHead {
fn forward(&self, xs: &Tensor) -> Tensor {
let xs = self.ln.forward(xs);
let xs = self.linear.forward(&xs);
xs
}
}
#[derive(Debug)]
struct MHA {
wqkv: nn::Linear,
out_proj: nn::Linear,
rotary_emb: RotaryEmbedding,
config: Rc<ModelConfig>,
block_idx: usize,
}
impl MHA {
fn new(cfg: &Rc<ModelConfig>, block_idx: usize, vb: Path) -> Self {
let op_size = cfg.hidden_size;
let wqkv = linear(cfg.hidden_size, 3 * op_size, &vb / "Wqkv");
let out_proj = linear(op_size, cfg.hidden_size, &vb / "out_proj");
let rotary_emb = RotaryEmbedding::new(cfg);
Self {
wqkv,
out_proj,
rotary_emb,
config: cfg.clone(),
block_idx,
}
}
fn forward(&self, xs: &Tensor, batch_info: &mut BatchInfo) -> Tensor {
let (seq_len, _hidden_size) = xs.size2().unwrap();
let ((q, k), v) = {
let qkv = self
.wqkv
.forward(xs)
.reshape(&[seq_len, 3, -1, self.config.head_dim as i64]);
let mut qkv = qkv.chunk(3, 1);
let v = qkv.pop().unwrap();
(
self.rotary_emb
.forward(&batch_info.positions, &qkv[0], &qkv[1]),
v.squeeze_dim(1),
)
};
let y = varlen_attn(&self.config, q, k, v, batch_info, self.block_idx);
self.out_proj.forward(&y)
}
}
#[derive(Debug)]
struct ParallelBlock {
ln: nn::LayerNorm,
mixer: MHA,
mlp: MLP,
}
impl ParallelBlock {
fn new(cfg: &Rc<ModelConfig>, mut vb: Path, block_idx: usize) -> Self {
let ln = layer_norm(&vb / "ln", cfg);
let mixer = MHA::new(cfg, block_idx, &vb / "mixer");
let mlp = MLP::new(cfg, &vb / "mlp");
// this optimizes memory usage
vb.set_kind(cfg.dtype);
Self { ln, mixer, mlp }
}
fn forward(&self, xs: &Tensor, batch_info: &mut BatchInfo) -> Tensor {
let residual = xs;
let xs = xs.apply(&self.ln);
let attn_outputs = self.mixer.forward(&xs, batch_info);
let feed_forward_hidden_states = self.mlp.forward(&xs);
attn_outputs feed_forward_hidden_states residual
}
}
#[derive(Debug)]
pub struct MixFormerSequentialForCausalLM {
embedding: nn::Embedding,
blocks: Vec<ParallelBlock>,
head: CausalLMHead,
config: Rc<ModelConfig>,
}
impl MixFormerSequentialForCausalLM {
pub fn new(cfg: &Rc<ModelConfig>, vb0: Path) -> Self {
let vb = &vb0 / "transformer";
let embedding = nn::embedding(
&vb / "embd" / "wte",
cfg.meta.vocab_size as i64,
cfg.hidden_size as i64,
Default::default(),
);
let mut blocks = Vec::new();
for i in 0..cfg.num_hidden_layers {
let block = ParallelBlock::new(cfg, &vb / "h" / i, i);
blocks.push(block)
}
let head = CausalLMHead::new(cfg, &vb0 / "lm_head");
Self {
embedding,
blocks,
head,
config: cfg.clone(),
}
}
}
impl TModelInner for MixFormerSequentialForCausalLM {
fn forward(&self, batch_info: &mut BatchInfo) -> Tensor {
let mut xs = self.embedding.forward(&batch_info.tokens);
for block in self.blocks.iter() {
xs = block.forward(&xs, batch_info);
}
let r = self.head.forward(&xs);
// it should approximately match...
let tok_size = self.config.meta.tok_vocab_size as i64;
if r.size()[1] < tok_size || r.size()[1] > tok_size 1000 {
panic!(
"unexpected logits size: {:?} ({}/{})",
r.size(),
tok_size,
self.config.meta.vocab_size
);
}
let r = r.i((.., 0..tok_size));
batch_info.extract_positions(&r)
}
}