-
Notifications
You must be signed in to change notification settings - Fork 898
/
utils.py
199 lines (163 loc) · 5.71 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
# Copyright © 2023-2024 Apple Inc.
import glob
import json
import logging
from pathlib import Path
from typing import Generator
import mlx.core as mx
import mlx.nn as nn
import models
import transformers
from huggingface_hub import snapshot_download
def fetch_from_hub(hf_path: str):
model_path = snapshot_download(
repo_id=hf_path,
allow_patterns=["*.json", "*.safetensors", "tokenizer.model"],
)
weight_files = glob.glob(f"{model_path}/*.safetensors")
if len(weight_files) == 0:
raise FileNotFoundError("No safetensors found in {}".format(model_path))
weights = {}
for wf in weight_files:
weights.update(mx.load(wf).items())
config = transformers.AutoConfig.from_pretrained(hf_path)
tokenizer = transformers.AutoTokenizer.from_pretrained(
hf_path,
)
return weights, config.to_dict(), tokenizer
def upload_to_hub(path: str, name: str, hf_path: str):
import os
from huggingface_hub import HfApi, ModelCard, logging
repo_id = f"mlx-community/{name}"
card = ModelCard.load(hf_path)
card.data.tags = ["mlx"] if card.data.tags is None else card.data.tags ["mlx"]
card.text = f"""
# {name}
This model was converted to MLX format from [`{hf_path}`]().
Refer to the [original model card](https://huggingface.co/{hf_path}) for more details on the model.
## Use with mlx
```bash
pip install mlx
git clone https://github.com/ml-explore/mlx-examples.git
cd mlx-examples/llms/hf_llm
python generate.py --model {repo_id} --prompt "My name is"
```
"""
card.save(os.path.join(path, "README.md"))
logging.set_verbosity_info()
api = HfApi()
api.create_repo(repo_id=repo_id, exist_ok=True)
api.upload_folder(
folder_path=path,
repo_id=repo_id,
repo_type="model",
multi_commits=True,
multi_commits_verbose=True,
)
def make_shards(weights: dict, max_file_size_gibibyte: int = 15):
max_file_size_bytes = max_file_size_gibibyte << 30
shards = []
shard, shard_size = {}, 0
for k, v in weights.items():
if shard_size v.nbytes > max_file_size_bytes:
shards.append(shard)
shard, shard_size = {}, 0
shard[k] = v
shard_size = v.nbytes
shards.append(shard)
return shards
def save_model(save_dir: str, weights, tokenizer, config):
save_dir = Path(save_dir)
save_dir.mkdir(parents=True, exist_ok=True)
shards = make_shards(weights, max_file_size_gibibyte=5)
shards_count = len(shards)
shard_file_format = (
"model-{:05d}-of-{:05d}.safetensors"
if shards_count > 1
else "model.safetensors"
)
total_size = sum(v.nbytes for v in weights.values())
index_data = {"metadata": {"total_size": total_size}, "weight_map": {}}
for i, shard in enumerate(shards):
shard_name = shard_file_format.format(i 1, shards_count)
mx.save_safetensors(
str(save_dir / shard_name), shard, metadata={"format": "mlx"}
)
for weight_name in shard.keys():
index_data["weight_map"][weight_name] = shard_name
del shard
tokenizer.save_pretrained(save_dir)
with open(save_dir / "config.json", "w") as fid:
json.dump(config, fid, indent=4)
index_data["weight_map"] = {
k: index_data["weight_map"][k] for k in sorted(index_data["weight_map"])
}
with open(save_dir / "model.safetensors.index.json", "w") as f:
json.dump(
index_data,
f,
indent=4,
)
def load(path_or_hf_repo: str, tokenizer_config={}):
# If the path exists, it will try to load model form it
# otherwise download and cache from the hf_repo and cache
model_path = Path(path_or_hf_repo)
if not model_path.exists():
model_path = Path(
snapshot_download(
repo_id=path_or_hf_repo,
allow_patterns=["*.json", "*.safetensors", "tokenizer.model"],
)
)
with open(model_path / "config.json", "r") as f:
config = json.loads(f.read())
quantization = config.get("quantization", None)
weight_files = glob.glob(str(model_path / "*.safetensors"))
if len(weight_files) == 0:
raise FileNotFoundError("No safetensors found in {}".format(model_path))
weights = {}
for wf in weight_files:
weights.update(mx.load(wf).items())
model_args = models.ModelArgs.from_dict(config)
model = models.Model(model_args)
if quantization is not None:
class_predicate = (
lambda p, m: isinstance(m, (nn.Linear, nn.Embedding))
and f"{p}.scales" in weights
)
nn.quantize(
model,
**quantization,
class_predicate=class_predicate,
)
model.load_weights(list(weights.items()))
mx.eval(model.parameters())
tokenizer = transformers.AutoTokenizer.from_pretrained(
model_path, **tokenizer_config
)
return model, tokenizer, config
def generate(
prompt: mx.array, model: nn.Module, temp: float = 0.0
) -> Generator[mx.array, None, None]:
"""
Generate text based on the given prompt and model.
Args:
prompt (mx.array): The input prompt.
model (nn.Module): The model to use for generation.
temp (float): The temperature for sampling. If temp is 0, use max sampling.
Yields:
mx.array: The generated text.
"""
def sample(logits: mx.array) -> mx.array:
return (
mx.argmax(logits, axis=-1)
if temp == 0
else mx.random.categorical(logits * (1 / temp))
)
y = prompt
cache = None
while True:
logits, cache = model(y[None], cache=cache)
logits = logits[:, -1, :]
y = sample(logits)
yield y