Skip to content
This repository has been archived by the owner on Jan 26, 2021. It is now read-only.
/ LightLDA Public archive

Scalable, fast, and lightweight system for large-scale topic modeling

License

Notifications You must be signed in to change notification settings

microsoft/LightLDA

Repository files navigation

LightLDA

LightLDA is a distributed system for large scale topic modeling. It implements a distributed sampler that enables very large data sizes and models. LightLDA improves sampling throughput and convergence speed via a fast O(1) metropolis-Hastings algorithm, and allows small cluster to tackle very large data and model sizes through model scheduling and data parallelism architecture. LightLDA is implemented with C for performance consideration.

We have sucessfully trained big topic models (with trillions of parameters) on big data (Top 10% PageRank values of Bing indexed page, containing billions of documents) in Microsoft. For more technical details, please refer to our WWW'15 paper.

For documents, please view our website http://www.dmtk.io.

Why LightLDA

The highlight features of LightLDA are

  • Scalable: LightLDA can train models with trillions of parameters on big data with billions of documents, a scale previous implementations cann't handle.
  • Fast: The sampler can sample millions of tokens per second per multi-core node.
  • Lightweight: Such big tasks can be trained with as few as tens of machines.

Quick Start

Run $ sh build.sh to build lightlda. Run $ sh example/nytimes.sh for a simple example.

Reference

Please cite LightLDA if it helps in your research:

@inproceedings{yuan2015lightlda,
  title={LightLDA: Big Topic Models on Modest Computer Clusters},
  author={Yuan, Jinhui and Gao, Fei and Ho, Qirong and Dai, Wei and Wei, Jinliang and Zheng, Xun and Xing, Eric Po and Liu, Tie-Yan and Ma, Wei-Ying},
  booktitle={Proceedings of the 24th International Conference on World Wide Web},
  pages={1351--1361},
  year={2015},
  organization={International World Wide Web Conferences Steering Committee}
}

Microsoft Open Source Code of Conduct

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

About

Scalable, fast, and lightweight system for large-scale topic modeling

Resources

License

Code of conduct

Security policy

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published