-
Notifications
You must be signed in to change notification settings - Fork 131
/
Copy pathREADME.TXT
39 lines (26 loc) · 1.26 KB
/
README.TXT
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
# m.model is a BPE (not unigram lm!) model from the sentence piece library
# Note: for unigram lm model see <BlingFire>/ldbsrc/xlnet and <BlingFire>/ldbsrc/xlnet _nonorm examples
# export the model:
spm_export_vocab --model m.model --output spiece.model.exportvocab.txt --output_format txt
# produce pos.dict.utf8 file and tagset.txt:
cat spiece.model.exportvocab.txt | awk 'BEGIN {FS="\t"} NF == 2 { if (NR > 1) { print $1 "\tWORD_ID_" NR-1 "\t" ($2 == 0 ? "-0.00001" : $2); } print "WORD_ID_" NR " " NR > "tagset.txt"; }' > pos.dict.utf8
# zip it:
zip pos.dict.utf8.zip pos.dict.utf8
# build as usual
make -f Makefile.gnu lang=bpe_example all
# test parity between m.model and bpe_example.bin :
> cat input.utf8 | python ../scripts/test_bling_with_offsets.py -m bpe_example.bin -p m.model -u 3 -k 1 | awk '/ERROR/' | wc -l
3881
> wc -l input.utf8
2052515 input.utf8
99.8% parity
Now let's measure performance and compare it to the sentencepiece library:
> time -p cat input.utf8 | python ../scripts/test_bling.py -m bpe_example.bin -s 1
real 125.22
user 124.99
sys 1.74
> time -p cat input.utf8 | python ../scripts/test_sp.py -m m.model -s 1
real 262.10
user 261.50
sys 1.68
As you can see Bling Fire BPE (optimized) runs ~2x faster than the sentence piece library.