Skip to content

Commit

Permalink
Implemented Square Digits problem
Browse files Browse the repository at this point in the history
  • Loading branch information
thelmuth committed Jan 30, 2021
1 parent 3e2a57e commit 55f75e9
Showing 1 changed file with 168 additions and 0 deletions.
168 changes: 168 additions & 0 deletions src/clojush/problems/software/benchmarks_v2/square_digits.clj
Original file line number Diff line number Diff line change
@@ -0,0 1,168 @@
;; square_digits.clj
;;
;; Tom Helmuth, [email protected]
;;
;; Problem inspired by: https://www.codewars.com/kata/546e2562b03326a88e000020

(ns clojush.problems.software.benchmarks-v2.square-digits
(:use clojush.pushgp.pushgp
[clojush pushstate interpreter random util globals]
clojush.instructions.tag)
(:require [clojure.math.numeric-tower :as nt]))

; Atom generators
(def atom-generators
(make-proportional-atom-generators
(concat
(registered-for-stacks [:string :char :integer :boolean :exec])
(list (tag-instruction-erc [:string :char :integer :boolean :exec] 1000) ; tags
(tagged-instruction-erc 1000)))
(list 'in1) ; inputs
(list 0
1
2
(fn [] (- (lrand-int 201) 100)) ;Integer ERC
"") ; constants
{:proportion-inputs 0.15
:proportion-constants 0.05}))

(def hard-coded-inputs
(list 0 1 2 3 4 5 7 9 10 12 16 24 35 46 57 68 79 80 92 98
100 185 231 372 408 794
321012
987654
999999
1000000))

;; A list of data domains. Each domain is a vector containing
;; a "set" of inputs and two integers representing how many cases from the set
;; should be used as training and testing cases respectively. Each "set" of
;; inputs is either a list or a function that, when called, will create a
;; random element of the set.
(def data-domains
[[hard-coded-inputs 30 0] ; fixed integers
[(fn []
(first (filter #(not (some #{%} hard-coded-inputs))
(repeatedly #(lrand-int 999999))))) 170 2000] ; random integers, besides those in hard-coded inputs
])

(defn digits
"Gets list of digits of integer"
[x]
(if (zero? x)
'(0)
(loop [x x
result '()]
(if (zero? x)
result
(recur (quot x 10)
(conj result (mod x 10)))))))

(defn solve-square-digits
"Solves the problem given the input."
[input]
(apply str
(map #(* % %)
(digits input))))

; Helper function for error function
(defn test-cases
"Takes a sequence of inputs and gives IO test cases of the form
[[input1 input2] output]."
[inputs]
(map (fn [in]
(vector in
(solve-square-digits in)))
(sort inputs)))

(defn make-error-function-from-cases
"Creates and returns the error function based on the train/test cases."
[train-cases test-cases]
(fn the-actual-error-function
([individual]
(the-actual-error-function individual :train))
([individual data-cases] ;; data-cases should be :train or :test
(the-actual-error-function individual data-cases false))
([individual data-cases print-outputs]
(let [behavior (atom '())
errors (doall
(for [[input1 correct-output] (case data-cases
:train train-cases
:test test-cases
[])]
(let [final-state (run-push (:program individual)
(->> (make-push-state)
(push-item input1 :input)))
result (top-item :string final-state)]
(when print-outputs
(println (format "Correct output: %s\nProgram output: %s\n\n" correct-output (str result))))
; Record the behavior
(swap! behavior conj result)
; Error is Levenshtein distance
(if (string? result)
(levenshtein-distance correct-output result)
1000000) ; penalty for no return value
)))]
(if (= data-cases :train)
(assoc individual :behaviors @behavior :errors errors)
(assoc individual :test-errors errors))))))

(defn get-train-and-test
"Returns the train and test cases."
[data-domains]
(map test-cases
(test-and-train-data-from-domains data-domains)))

; Define train and test cases
(def train-and-test-cases
(get-train-and-test data-domains))

(defn initial-report
[argmap]
(println "Train and test cases:")
(doseq [[i case] (map vector (range) (first train-and-test-cases))]
(println (format "Train Case: = | Input/Output: %s" i (str case))))
(doseq [[i case] (map vector (range) (second train-and-test-cases))]
(println (format "Test Case: = | Input/Output: %s" i (str case))))
(println ";;******************************"))

(defn custom-report
"Custom generational report."
[best population generation error-function report-simplifications]
(let [best-test-errors (:test-errors (error-function best :test))
best-total-test-error (apply ' best-test-errors)]
(println ";;******************************")
(printf ";; -*- Find Pair problem report - generation %s\n" generation) (flush)
(println "Test total error for best:" best-total-test-error)
(println (format "Test mean error for best: %.5f" (double (/ best-total-test-error (count best-test-errors)))))
(when (zero? (:total-error best))
(doseq [[i error] (map vector
(range)
best-test-errors)]
(println (format "Test Case = | Error: %s" i (str error)))))
(println ";;------------------------------")
(println "Outputs of best individual on training cases:")
(error-function best :train true)
(println ";;******************************"))) ;; To do validation, could have this function return an altered best individual
;; with total-error > 0 if it had error of zero on train but not on validation
;; set. Would need a third category of data cases, or a defined split of training cases.


; Define the argmap
(def argmap
{:error-function (make-error-function-from-cases (first train-and-test-cases)
(second train-and-test-cases))
:atom-generators atom-generators
:max-points 2000
:max-genome-size-in-initial-program 250
:evalpush-limit 2000
:population-size 1000
:max-generations 300
:parent-selection :lexicase
:genetic-operator-probabilities {:uniform-addition-and-deletion 1.0}
:uniform-addition-and-deletion-rate 0.09
:problem-specific-report custom-report
:problem-specific-initial-report initial-report
:report-simplifications 0
:final-report-simplifications 5000
:max-error 1000000})

0 comments on commit 55f75e9

Please sign in to comment.