This repository is the official implementation of TraceNet
To install requirements:
pip install -r requirements.txt
- SST-5 dataset , or from here to down sentence-level SST-5 dataset
- Download Yelp-5 dataset, and then sample data by sample_yelp_data.py file.
- glove.840B.300d is needed to generate sst5.hdf5 file and yelp5.hdf5 file. Since glove.840B.300d is about 5GB, we recommend you use SST5.glove.to.TraceNet under dataset/SST_5, which is extracted from the former according to SST-5 vocabulary.
- SentiWordNet_3.0.0.txt is need for evaluation on attacks.
- The source code of CNN, LSTM, BiLSTM we modified is from here
- The source code of Gumble Tree LSTM we modified is from here
To train the model(s) in the paper, run this command (SST-5 dataset for example). Note that, each command and coresponded results are included in log.sst5 file:
run CNN (rand, static, nonstatic, multichannel), LSTM, BiLSTM, under CNN_LSTM dir: first generate sst5.hdf5:
python sst_process.py
and then:python main.py --dataset ../dataset/SST_5/sst5.hdf5 --model_type KIMCNN --embedding_type rand --num_classes 5 --batch_size 50 --max_sent 49 --num_epochs 20 --n_hidden 300
run GT-LSTM rand :
python train.py --task sst-5 --word-dim 300 --hidden-dim 300 --clf-hidden-dim 1024 --clf-num-layers 1 --dropout 0.5 --batch-size 64 --max_seq_length 49 --max-epoch 20 --pretrained False --save-dir save/ --device cuda
run Bert, XLNet, Roberta bert:
python run_sentiment_classifier.py --do_train --do_eval --output_dir sst_bert_5307/ --model_type bert --model_name_or_path ../bert_base_en --per_gpu_eval_batch_size 1000 --task_name sst-5 --data_dir ../dataset/SST_5/ --num_train_epochs 10.0 --dropout_prob 0.0 --output_feature 0 --num_hubo_layers 3 --method null --seq_select_prob 0.0 --per_gpu_train_batch_size 32 --max_seq_length 128 --learning_rate 5e-5 --seed 1
xlnet:
python run_sentiment_classifier.py --do_train --do_eval --output_dir sst_xlnet_5533/ --overwrite_output_dir --model_type xlnet --model_name_or_path ../xlnet_base_cased --per_gpu_eval_batch_size 1000 --task_name sst-5 --data_dir ../dataset/SST_5/ --num_train_epochs 10.0 --dropout_prob 0.0 --output_feature 0 --num_hubo_layers 3 --method null --seq_select_prob 0.0 --per_gpu_train_batch_size 16 --max_seq_length 64 --learning_rate 2e-5 --seed 1
roberta:
python run_sentiment_classifier.py --do_train --do_eval --output_dir sst_roberta/ --model_type roberta --model_name_or_path roberta-base --do_lower_case --per_gpu_eval_batch_size 512 --task_name sst-5 --data_dir ../dataset/sst5/ --num_train_epochs 10.0 --logging_steps 300 --dropout_prob 0.0 --output_feature 0 --num_hubo_layers 3 --method null --seq_select_prob 0.0 --per_gpu_train_batch_size 16 --max_seq_length 128 --learning_rate 2e-5 --seed 42
roberta-MR:
python run_sentiment_classifier.py --do_train --do_eval --output_dir mr_roberta/ --model_type roberta --model_name_or_path roberta-base --do_lower_case --per_gpu_eval_batch_size 512 --task_name mr-2 --data_dir ../dataset/mr/ --num_train_epochs 10.0 --logging_steps 300 --dropout_prob 0.0 --output_feature 0 --num_hubo_layers 3 --method null --seq_select_prob 0.0 --per_gpu_train_batch_size 16 --max_seq_length 128 --learning_rate 2e-5 --seed 42
roberta-sst2:
python run_sentiment_classifier.py --do_train --do_eval --output_dir sst2_roberta/ --model_type roberta --model_name_or_path roberta-base --do_lower_case --per_gpu_eval_batch_size 512 --task_name sst-2 --data_dir ../dataset/sst2/ --num_train_epochs 10.0 --logging_steps 300 --dropout_prob 0.0 --output_feature 0 --num_hubo_layers 3 --method null --seq_select_prob 0.0 --per_gpu_train_batch_size 16 --max_seq_length 128 --learning_rate 2e-5 --seed 42
roberta-yelp:
python run_sentiment_classifier.py --do_train --do_eval --output_dir yelp_roberta/ --model_type roberta --model_name_or_path roberta-base --do_lower_case --per_gpu_eval_batch_size 1024 --task_name yelp-5 --data_dir ../dataset/yelp5/ --num_train_epochs 10.0 --logging_steps 300 --dropout_prob 0.1 --output_feature 0 --num_hubo_layers 3 --method null --seq_select_prob 0.0 --per_gpu_train_batch_size 64 --max_seq_length 256 --learning_rate 2e-5 --seed 42
roberta-laptop:
python run_sentiment_classifier.py --do_train --do_eval --output_dir laptop_roberta/ --model_type roberta --model_name_or_path roberta-base --do_lower_case --per_gpu_eval_batch_size 512 --task_name laptop --data_dir ../dataset/laptop/ --num_train_epochs 5.0 --logging_steps 50 --dropout_prob 0.0 --output_feature 0 --num_hubo_layers 3 --method null --seq_select_prob 0.0 --per_gpu_train_batch_size 16 --max_seq_length 128 --learning_rate 2e-5 --seed 42
roberta-restaurants:
python run_sentiment_classifier.py --do_train --do_eval --output_dir restaurants_roberta/ --model_type roberta --model_name_or_path roberta-base --do_lower_case --per_gpu_eval_batch_size 512 --task_name restaurants --data_dir ../dataset/restaurants/ --num_train_epochs 5.0 --logging_steps 50 --dropout_prob 0.0 --output_feature 0 --num_hubo_layers 3 --method null --seq_select_prob 0.0 --per_gpu_train_batch_size 16 --max_seq_length 128 --learning_rate 2e-5 --seed 42
run TraceNet XLNet/roberta/glove TraceNet X:
python run_sentiment_classifier.py --model_type xlnet_tracenet --model_name_or_path ../xlnet_base_cased --do_train --do_eval --output_hidden_states --output_item_weights --per_gpu_eval_batch_size 500 --overwrite_output_dir --output_dir sst_xlnetTraceNet_5642/ --task_name sst-5 --data_dir ../dataset/SST_5/ --num_hubo_layers 3 --method 'mean' --proactive_masking --seq_select_prob 0.2 --dropout_prob 0.3 --output_feature 128 --per_gpu_train_batch_size 16 --max_seq_length 64 --learning_rate 2e-5 --num_train_epochs 10.0 --seed 1
TraceNet R:
python run_sentiment_classifier.py --model_type roberta_tracenet --model_name_or_path roberta-base --do_lower_case --do_train --do_eval --output_hidden_states --output_item_weights --per_gpu_eval_batch_size 512 --output_dir sst_robertaTraceNet/ --task_name sst-5 --data_dir ../dataset/sst5/ --num_hubo_layers 3 --method mean --proactive_masking --seq_select_prob 0.3 --dropout_prob 0.1 --output_feature 512 --per_gpu_train_batch_size 16 --max_seq_length 128 --weight_decay 0.0 --adam_epsilon 1e-6 --learning_rate 2e-5 --num_train_epochs 10.0 --logging_steps 300 --seed 42
TraceNet R mr:
python run_sentiment_classifier.py --model_type roberta_tracenet --model_name_or_path roberta-base --do_lower_case --do_train --do_eval --output_hidden_states --output_item_weights --per_gpu_eval_batch_size 512 --output_dir mr_robertaTraceNet/ --task_name mr-2 --data_dir ../dataset/mr/ --num_hubo_layers 3 --method mean --proactive_masking --seq_select_prob 0.3 --dropout_prob 0.1 --output_feature 512 --per_gpu_train_batch_size 16 --max_seq_length 128 --weight_decay 0.0 --adam_epsilon 1e-6 --learning_rate 2e-5 --num_train_epochs 10.0 --logging_steps 300 --seed 42
TraceNet R sst2:
python run_sentiment_classifier.py --model_type roberta_tracenet --model_name_or_path roberta-base --do_lower_case --do_train --do_eval --output_hidden_states --output_item_weights --per_gpu_eval_batch_size 512 --output_dir sst2_robertaTraceNet/ --task_name sst-2 --data_dir ../dataset/sst2/ --num_hubo_layers 3 --method mean --proactive_masking --seq_select_prob 0.3 --dropout_prob 0.1 --output_feature 512 --per_gpu_train_batch_size 16 --max_seq_length 128 --weight_decay 0.0 --adam_epsilon 1e-6 --learning_rate 2e-5 --num_train_epochs 10.0 --logging_steps 300 --seed 42
TraceNet R yelp:
python run_sentiment_classifier.py --model_type roberta_tracenet --model_name_or_path roberta-base --do_lower_case --do_train --do_eval --output_hidden_states --output_item_weights --per_gpu_eval_batch_size 512 --output_dir yelp_robertaTraceNet/ --task_name yelp-5 --data_dir ../dataset/yelp5/ --num_hubo_layers 3 --method mean --proactive_masking --seq_select_prob 0.3 --dropout_prob 0.1 --output_feature 512 --per_gpu_train_batch_size 64 --max_seq_length 256 --weight_decay 0.0 --adam_epsilon 1e-6 --learning_rate 2e-5 --num_train_epochs 10.0 --logging_steps 300 --seed 42
TraceNet R laptop:
python run_sentiment_classifier.py --model_type roberta_tracenet --model_name_or_path roberta-base --do_lower_case --do_train --do_eval --output_hidden_states --output_item_weights --per_gpu_eval_batch_size 256 --output_dir laptop_robertaTraceNet/ --task_name laptop --data_dir ../dataset/laptop/ --num_hubo_layers 3 --method mean --proactive_masking --seq_select_prob 0.3 --dropout_prob 0.1 --output_feature 512 --per_gpu_train_batch_size 16 --max_seq_length 128 --weight_decay 0.0 --adam_epsilon 1e-6 --learning_rate 2e-5 --num_train_epochs 5.0 --logging_steps 50 --seed 42
TraceNet R restaurants:
python run_sentiment_classifier.py --model_type roberta_tracenet --model_name_or_path roberta-base --do_lower_case --do_train --do_eval --output_hidden_states --output_item_weights --per_gpu_eval_batch_size 256 --output_dir restaurants_robertaTraceNet/ --task_name restaurants --data_dir ../dataset/restaurants/ --num_hubo_layers 3 --method mean --proactive_masking --seq_select_prob 0.3 --dropout_prob 0.1 --output_feature 768 --per_gpu_train_batch_size 16 --max_seq_length 128 --weight_decay 0.0 --adam_epsilon 1e-6 --learning_rate 2e-5 --num_train_epochs 5.0 --logging_steps 50 --seed 42
TraceNet G:
python run_gpt_input.py --output_hidden_states --output_item_weights --per_gpu_eval_batch_size 16 --per_gpu_train_batch_size 16 --max_seq_length 49 --learning_rate 0.001 --output_feature 50 --dropout_prob 0.2 --num_train_epochs 10 --task sst-5 --weight_decay 0.2 --proactive_masking --seq_select_prob 0.05 --seed 42
To evaluate TraceNet-X (attacks) on SST-5, run:
generate attacks data from sst test set:
python create_GA_test_sst.py
and thenpython inference.py --output_dir sst_xlnet_5533/ --task_name sst-5 --data_dir ../dataset/SST_5/against/ --do_eval --per_gpu_eval_batch_size 1000 --model_type xlnet --model_name_or_path ../xlnet_base_cased --max_seq_length 64 --dropout_prob 0.0 --output_feature 0 --against --overwrite_cache
orpython inference.py --output_dir sst_xlnetTraceNet_5642/ --task_name sst-5 --data_dir ../dataset/SST_5/against/ --do_eval --per_gpu_eval_batch_size 1000 --model_type xlnet_tracenet --model_name_or_path ../xlnet_base_cased --max_seq_length 64 --dropout_prob 0.0 --output_feature 128 --against --overwrite_cache
orpython inference.py --output_dir sst_roberta_5669/ --task_name sst-5 --data_dir ../dataset/SST_5/against/ --do_eval --per_gpu_eval_batch_size 1000 --model_type roberta --model_name_or_path ../roberta_base_en --max_seq_length 128 --dropout_prob 0.0 --output_feature 0 --against --overwrite_cache
orpython inference.py --output_dir sst_robertaTraceNet_5787/ --task_name sst-5 --data_dir ../dataset/SST_5/against/ --do_eval --per_gpu_eval_batch_size 1000 --model_type roberta_tracenet --model_name_or_path ../roberta_base_en --max_seq_length 128 --dropout_prob 0.0 --output_feature 512 --against --overwrite_cache
- The transformer based pretrained language models we use are Bert (base, uncased), XLNet (base, cased) and RoBerta (base). With Transformers, you can download it by set
model.from_pretrained('bert-base-uncased')
,model.from_pretrained('xlnet-base-cased')
andmodel.from_pretrained('roberta-base')
, respectively. - For models trained by our methods and finetuned on SST-5 dataset, you can download from here to inferece.
The following is the performance of baselines and TraceNet on SST-5 test set, for detailed parameters and results output, please refer to log.sst5 file:
model | KIMCNN rand | KIMCNN static | KIMCNN nonstatic | KIMCNN mulch | LSTM | BiLSTM | GT-LSTM(rand) | GT-LSTM(glove) |
---|---|---|---|---|---|---|---|---|
reimplement results | 40.1 | 44.6 | 44.5 | 43.1 | 44.7 | 43.5 | 39.38 | 47.6 |
reported results | 45 | 45.5 | 48 | 47.4 | 46.4(1.1) | 49.1(1.0) | None | None |
model | Bert | XLNet | Roberta | TraceNet-X | TraceNet-R | TraceNet-G |
---|---|---|---|---|---|---|
reimplement results | 53.07 | 55.33 | 56.69 | 56.42 | 57.87 | 45.90 |
The results leaderboards of SST-5 dataset on Papers with Code leaderboards is here. |