-
Notifications
You must be signed in to change notification settings - Fork 151
/
Copy pathrun_pretraining.py
357 lines (331 loc) · 19.5 KB
/
run_pretraining.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
import torch
import json
import time
import numpy as np
from pathlib import Path
from argparse import ArgumentParser
from collections import namedtuple
from tempfile import TemporaryDirectory
from tools.common import logger, init_logger
from torch.utils.data import DataLoader, Dataset, RandomSampler
from torch.utils.data.distributed import DistributedSampler
from tools.common import AverageMeter
from metrics.custom_metrics import LMAccuracy
from torch.nn import CrossEntropyLoss
from model.modeling_albert import AlbertForPreTraining, AlbertConfig
from model.file_utils import CONFIG_NAME
from model.tokenization_bert import BertTokenizer
from callback.optimization.adamw import AdamW
from callback.lr_scheduler import get_linear_schedule_with_warmup
from tools.common import seed_everything
InputFeatures = namedtuple("InputFeatures", "input_ids input_mask segment_ids lm_label_ids is_next")
def convert_example_to_features(example, tokenizer, max_seq_length):
tokens = example["tokens"]
segment_ids = example["segment_ids"]
is_random_next = example["is_random_next"]
masked_lm_positions = example["masked_lm_positions"]
masked_lm_labels = example["masked_lm_labels"]
assert len(tokens) == len(segment_ids) <= max_seq_length # The preprocessed data should be already truncated
input_ids = tokenizer.convert_tokens_to_ids(tokens)
masked_label_ids = tokenizer.convert_tokens_to_ids(masked_lm_labels)
input_array = np.zeros(max_seq_length, dtype=np.int)
input_array[:len(input_ids)] = input_ids
mask_array = np.zeros(max_seq_length, dtype=np.bool)
mask_array[:len(input_ids)] = 1
segment_array = np.zeros(max_seq_length, dtype=np.bool)
segment_array[:len(segment_ids)] = segment_ids
lm_label_array = np.full(max_seq_length, dtype=np.int, fill_value=-1)
lm_label_array[masked_lm_positions] = masked_label_ids
features = InputFeatures(input_ids=input_array,
input_mask=mask_array,
segment_ids=segment_array,
lm_label_ids=lm_label_array,
is_next=is_random_next)
return features
class PregeneratedDataset(Dataset):
def __init__(self, training_path, file_id, tokenizer, data_name, reduce_memory=False):
self.tokenizer = tokenizer
self.file_id = file_id
data_file = training_path / f"{data_name}_file_{self.file_id}.json"
metrics_file = training_path / f"{data_name}_file_{self.file_id}_metrics.json"
assert data_file.is_file() and metrics_file.is_file()
metrics = json.loads(metrics_file.read_text())
num_samples = metrics['num_training_examples']
seq_len = metrics['max_seq_len']
self.temp_dir = None
self.working_dir = None
if reduce_memory:
self.temp_dir = TemporaryDirectory()
self.working_dir = Path(self.temp_dir.name)
input_ids = np.memmap(filename=self.working_dir / 'input_ids.memmap',
mode='w ', dtype=np.int32, shape=(num_samples, seq_len))
input_masks = np.memmap(filename=self.working_dir / 'input_masks.memmap',
shape=(num_samples, seq_len), mode='w ', dtype=np.bool)
segment_ids = np.memmap(filename=self.working_dir / 'segment_ids.memmap',
shape=(num_samples, seq_len), mode='w ', dtype=np.bool)
lm_label_ids = np.memmap(filename=self.working_dir / 'lm_label_ids.memmap',
shape=(num_samples, seq_len), mode='w ', dtype=np.int32)
lm_label_ids[:] = -1
is_nexts = np.memmap(filename=self.working_dir / 'is_nexts.memmap',
shape=(num_samples,), mode='w ', dtype=np.bool)
else:
input_ids = np.zeros(shape=(num_samples, seq_len), dtype=np.int32)
input_masks = np.zeros(shape=(num_samples, seq_len), dtype=np.bool)
segment_ids = np.zeros(shape=(num_samples, seq_len), dtype=np.bool)
lm_label_ids = np.full(shape=(num_samples, seq_len), dtype=np.int32, fill_value=-1)
is_nexts = np.zeros(shape=(num_samples,), dtype=np.bool)
logger.info(f"Loading training examples for {str(data_file)}")
with data_file.open() as f:
for i, line in enumerate(f):
line = line.strip()
example = json.loads(line)
features = convert_example_to_features(example, tokenizer, seq_len)
input_ids[i] = features.input_ids
segment_ids[i] = features.segment_ids
input_masks[i] = features.input_mask
lm_label_ids[i] = features.lm_label_ids
is_nexts[i] = features.is_next
assert i == num_samples - 1 # Assert that the sample count metric was true
logger.info("Loading complete!")
self.num_samples = num_samples
self.seq_len = seq_len
self.input_ids = input_ids
self.input_masks = input_masks
self.segment_ids = segment_ids
self.lm_label_ids = lm_label_ids
self.is_nexts = is_nexts
def __len__(self):
return self.num_samples
def __getitem__(self, item):
return (torch.tensor(self.input_ids[item].astype(np.int64)),
torch.tensor(self.input_masks[item].astype(np.int64)),
torch.tensor(self.segment_ids[item].astype(np.int64)),
torch.tensor(self.lm_label_ids[item].astype(np.int64)),
torch.tensor(self.is_nexts[item].astype(np.int64)))
def main():
parser = ArgumentParser()
## Required parameters
parser.add_argument("--data_dir", default=None, type=str, required=True,
help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
parser.add_argument("--config_path", default=None, type=str, required=True)
parser.add_argument("--vocab_path",default=None,type=str,required=True)
parser.add_argument("--output_dir", default=None, type=str, required=True,
help="The output directory where the model predictions and checkpoints will be written.")
parser.add_argument("--model_path", default='', type=str)
parser.add_argument('--data_name', default='albert', type=str)
parser.add_argument("--file_num", type=int, default=10,
help="Number of dynamic masking to pregenerate (with different masks)")
parser.add_argument("--reduce_memory", action="store_true",
help="Store training data as on-disc memmaps to massively reduce memory usage")
parser.add_argument("--epochs", type=int, default=4,
help="Number of epochs to train for")
parser.add_argument("--do_lower_case", action='store_true',
help="Set this flag if you are using an uncased model.")
parser.add_argument('--num_eval_steps', default=1000)
parser.add_argument('--num_save_steps', default=2000)
parser.add_argument("--local_rank", type=int, default=-1,
help="local_rank for distributed training on gpus")
parser.add_argument("--weight_decay", default=0.01, type=float,
help="Weight deay if we apply some.")
parser.add_argument("--no_cuda", action='store_true',
help="Whether not to use CUDA when available")
parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument("--train_batch_size", default=16, type=int,
help="Total batch size for training.")
parser.add_argument('--loss_scale', type=float, default=0,
help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
"0 (default value): dynamic loss scaling.\n"
"Positive power of 2: static loss scaling value.\n")
parser.add_argument("--warmup_proportion", default=0.1, type=float,
help="Linear warmup over warmup_steps.")
parser.add_argument("--adam_epsilon", default=1e-8, type=float,
help="Epsilon for Adam optimizer.")
parser.add_argument('--max_grad_norm', default=1.0, type=float)
parser.add_argument("--learning_rate", default=0.000176, type=float,
help="The initial learning rate for Adam.")
parser.add_argument('--seed', type=int, default=42,
help="random seed for initialization")
parser.add_argument('--fp16_opt_level', type=str, default='O2',
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html")
parser.add_argument('--fp16', action='store_true',
help="Whether to use 16-bit float precision instead of 32-bit")
args = parser.parse_args()
args.data_dir = Path(args.data_dir)
args.output_dir = Path(args.output_dir)
pregenerated_data = args.data_dir / "corpus/train"
init_logger(log_file=str(args.output_dir/ "train_albert_model.log"))
assert pregenerated_data.is_dir(), \
"--pregenerated_data should point to the folder of files made by prepare_lm_data_mask.py!"
samples_per_epoch = 0
for i in range(args.file_num):
data_file = pregenerated_data / f"{args.data_name}_file_{i}.json"
metrics_file = pregenerated_data / f"{args.data_name}_file_{i}_metrics.json"
if data_file.is_file() and metrics_file.is_file():
metrics = json.loads(metrics_file.read_text())
samples_per_epoch = metrics['num_training_examples']
else:
if i == 0:
exit("No training data was found!")
print(f"Warning! There are fewer epochs of pregenerated data ({i}) than training epochs ({args.epochs}).")
print("This script will loop over the available data, but training diversity may be negatively impacted.")
break
logger.info(f"samples_per_epoch: {samples_per_epoch}")
if args.local_rank == -1 or args.no_cuda:
device = torch.device(f"cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = torch.cuda.device_count()
else:
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
args.n_gpu = 1
# Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.distributed.init_process_group(backend='nccl')
logger.info(
f"device: {device} , distributed training: {bool(args.local_rank != -1)}, 16-bits training: {args.fp16}")
if args.gradient_accumulation_steps < 1:
raise ValueError(
f"Invalid gradient_accumulation_steps parameter: {args.gradient_accumulation_steps}, should be >= 1")
args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps
seed_everything(args.seed)
tokenizer = BertTokenizer.from_pretrained(args.vocab_path, do_lower_case=args.do_lower_case)
total_train_examples = samples_per_epoch * args.epochs
num_train_optimization_steps = int(
total_train_examples / args.train_batch_size / args.gradient_accumulation_steps)
if args.local_rank != -1:
num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size()
args.warmup_steps = int(num_train_optimization_steps * args.warmup_proportion)
bert_config = AlbertConfig.from_pretrained(args.config_path)
model = AlbertForPreTraining(config=bert_config)
if args.model_path:
model = AlbertForPreTraining.from_pretrained(args.model_path)
model.to(device)
# Prepare optimizer
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = AdamW(params=optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=num_train_optimization_steps)
# optimizer = Lamb(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
if args.model_path:
optimizer.load_state_dict(torch.load(args.model_path "/optimizer.bin"))
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
if args.n_gpu > 1:
model = torch.nn.DataParallel(model)
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
output_device=args.local_rank)
global_step = 0
mask_metric = LMAccuracy()
sop_metric = LMAccuracy()
tr_mask_acc = AverageMeter()
tr_sop_acc = AverageMeter()
tr_loss = AverageMeter()
tr_mask_loss = AverageMeter()
tr_sop_loss = AverageMeter()
loss_fct = CrossEntropyLoss(ignore_index=-1)
train_logs = {}
logger.info("***** Running training *****")
logger.info(f" Num examples = {total_train_examples}")
logger.info(f" Batch size = {args.train_batch_size}")
logger.info(f" Num steps = {num_train_optimization_steps}")
logger.info(f" warmup_steps = {args.warmup_steps}")
start_time = time.time()
seed_everything(args.seed) # Added here for reproducibility
for epoch in range(args.epochs):
for idx in range(args.file_num):
epoch_dataset = PregeneratedDataset(file_id=idx, training_path=pregenerated_data, tokenizer=tokenizer,
reduce_memory=args.reduce_memory, data_name=args.data_name)
if args.local_rank == -1:
train_sampler = RandomSampler(epoch_dataset)
else:
train_sampler = DistributedSampler(epoch_dataset)
train_dataloader = DataLoader(epoch_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
model.train()
nb_tr_examples, nb_tr_steps = 0, 0
for step, batch in enumerate(train_dataloader):
batch = tuple(t.to(device) for t in batch)
input_ids, input_mask, segment_ids, lm_label_ids, is_next = batch
outputs = model(input_ids=input_ids, token_type_ids=segment_ids, attention_mask=input_mask)
prediction_scores = outputs[0]
seq_relationship_score = outputs[1]
masked_lm_loss = loss_fct(prediction_scores.view(-1, bert_config.vocab_size), lm_label_ids.view(-1))
next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), is_next.view(-1))
loss = masked_lm_loss next_sentence_loss
mask_metric(logits=prediction_scores.view(-1, bert_config.vocab_size), target=lm_label_ids.view(-1))
sop_metric(logits=seq_relationship_score.view(-1, 2), target=is_next.view(-1))
if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu.
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
if args.fp16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
nb_tr_steps = 1
tr_mask_acc.update(mask_metric.value(), n=input_ids.size(0))
tr_sop_acc.update(sop_metric.value(), n=input_ids.size(0))
tr_loss.update(loss.item(), n=1)
tr_mask_loss.update(masked_lm_loss.item(), n=1)
tr_sop_loss.update(next_sentence_loss.item(), n=1)
if (step 1) % args.gradient_accumulation_steps == 0:
if args.fp16:
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
else:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
scheduler.step()
optimizer.step()
optimizer.zero_grad()
global_step = 1
if global_step % args.num_eval_steps == 0:
now = time.time()
eta = now - start_time
if eta > 3600:
eta_format = ('%d:d:d' % (eta // 3600, (eta % 3600) // 60, eta % 60))
elif eta > 60:
eta_format = '%d:d' % (eta // 60, eta % 60)
else:
eta_format = '%ds' % eta
train_logs['loss'] = tr_loss.avg
train_logs['mask_acc'] = tr_mask_acc.avg
train_logs['sop_acc'] = tr_sop_acc.avg
train_logs['mask_loss'] = tr_mask_loss.avg
train_logs['sop_loss'] = tr_sop_loss.avg
show_info = f'[Training]:[{epoch}/{args.epochs}]{global_step}/{num_train_optimization_steps} ' \
f'- ETA: {eta_format}' "-".join(
[f' {key}: {value:.4f} ' for key, value in train_logs.items()])
logger.info(show_info)
tr_mask_acc.reset()
tr_sop_acc.reset()
tr_loss.reset()
tr_mask_loss.reset()
tr_sop_loss.reset()
start_time = now
if global_step % args.num_save_steps == 0:
if args.local_rank in [-1, 0] and args.num_save_steps > 0:
# Save model checkpoint
output_dir = args.output_dir / f'lm-checkpoint-{global_step}'
if not output_dir.exists():
output_dir.mkdir()
# save model
model_to_save = model.module if hasattr(model,
'module') else model # Take care of distributed/parallel training
model_to_save.save_pretrained(str(output_dir))
torch.save(args, str(output_dir / 'training_args.bin'))
logger.info("Saving model checkpoint to %s", output_dir)
torch.save(optimizer.state_dict(), str(output_dir / "optimizer.bin"))
# save config
output_config_file = output_dir / CONFIG_NAME
with open(str(output_config_file), 'w') as f:
f.write(model_to_save.config.to_json_string())
# save vocab
tokenizer.save_vocabulary(output_dir)