forked from kohya-ss/sd-scripts
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sdxl_merge_lora.py
513 lines (428 loc) · 20.4 KB
/
sdxl_merge_lora.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
import itertools
import math
import argparse
import os
import time
import concurrent.futures
import torch
from safetensors.torch import load_file, save_file
from tqdm import tqdm
from library import sai_model_spec, sdxl_model_util, train_util
import library.model_util as model_util
import lora
import oft
from svd_merge_lora import format_lbws, get_lbw_block_index, LAYER26
from library.utils import setup_logging
setup_logging()
import logging
logger = logging.getLogger(__name__)
def load_state_dict(file_name, dtype):
if os.path.splitext(file_name)[1] == ".safetensors":
sd = load_file(file_name)
metadata = train_util.load_metadata_from_safetensors(file_name)
else:
sd = torch.load(file_name, map_location="cpu")
metadata = {}
for key in list(sd.keys()):
if type(sd[key]) == torch.Tensor:
sd[key] = sd[key].to(dtype)
return sd, metadata
def save_to_file(file_name, model, metadata):
if os.path.splitext(file_name)[1] == ".safetensors":
save_file(model, file_name, metadata=metadata)
else:
torch.save(model, file_name)
def detect_method_from_training_model(models, dtype):
for model in models:
# TODO It is better to use key names to detect the method
lora_sd, _ = load_state_dict(model, dtype)
for key in tqdm(lora_sd.keys()):
if "lora_up" in key or "lora_down" in key:
return "LoRA"
elif "oft_blocks" in key:
return "OFT"
def merge_to_sd_model(text_encoder1, text_encoder2, unet, models, ratios, lbws, merge_dtype):
text_encoder1.to(merge_dtype)
text_encoder2.to(merge_dtype)
unet.to(merge_dtype)
# detect the method: OFT or LoRA_module
method = detect_method_from_training_model(models, merge_dtype)
logger.info(f"method:{method}")
if lbws:
lbws, _, LBW_TARGET_IDX = format_lbws(lbws)
else:
LBW_TARGET_IDX = []
# create module map
name_to_module = {}
for i, root_module in enumerate([text_encoder1, text_encoder2, unet]):
if method == "LoRA":
if i <= 1:
if i == 0:
prefix = lora.LoRANetwork.LORA_PREFIX_TEXT_ENCODER1
else:
prefix = lora.LoRANetwork.LORA_PREFIX_TEXT_ENCODER2
target_replace_modules = lora.LoRANetwork.TEXT_ENCODER_TARGET_REPLACE_MODULE
else:
prefix = lora.LoRANetwork.LORA_PREFIX_UNET
target_replace_modules = (
lora.LoRANetwork.UNET_TARGET_REPLACE_MODULE lora.LoRANetwork.UNET_TARGET_REPLACE_MODULE_CONV2D_3X3
)
elif method == "OFT":
prefix = oft.OFTNetwork.OFT_PREFIX_UNET
# ALL_LINEAR includes ATTN_ONLY, so we don't need to specify ATTN_ONLY
target_replace_modules = (
oft.OFTNetwork.UNET_TARGET_REPLACE_MODULE_ALL_LINEAR oft.OFTNetwork.UNET_TARGET_REPLACE_MODULE_CONV2D_3X3
)
for name, module in root_module.named_modules():
if module.__class__.__name__ in target_replace_modules:
for child_name, child_module in module.named_modules():
if child_module.__class__.__name__ == "Linear" or child_module.__class__.__name__ == "Conv2d":
lora_name = prefix "." name "." child_name
lora_name = lora_name.replace(".", "_")
name_to_module[lora_name] = child_module
for model, ratio, lbw in itertools.zip_longest(models, ratios, lbws):
logger.info(f"loading: {model}")
lora_sd, _ = load_state_dict(model, merge_dtype)
logger.info(f"merging...")
if lbw:
lbw_weights = [1] * 26
for index, value in zip(LBW_TARGET_IDX, lbw):
lbw_weights[index] = value
logger.info(f"lbw: {dict(zip(LAYER26.keys(), lbw_weights))}")
if method == "LoRA":
for key in tqdm(lora_sd.keys()):
if "lora_down" in key:
up_key = key.replace("lora_down", "lora_up")
alpha_key = key[: key.index("lora_down")] "alpha"
# find original module for this lora
module_name = ".".join(key.split(".")[:-2]) # remove trailing ".lora_down.weight"
if module_name not in name_to_module:
logger.info(f"no module found for LoRA weight: {key}")
continue
module = name_to_module[module_name]
# logger.info(f"apply {key} to {module}")
down_weight = lora_sd[key]
up_weight = lora_sd[up_key]
dim = down_weight.size()[0]
alpha = lora_sd.get(alpha_key, dim)
scale = alpha / dim
if lbw:
index = get_lbw_block_index(key, True)
is_lbw_target = index in LBW_TARGET_IDX
if is_lbw_target:
scale *= lbw_weights[index] # keyがlbwの対象であれば、lbwの重みを掛ける
# W <- W U * D
weight = module.weight
# logger.info(module_name, down_weight.size(), up_weight.size())
if len(weight.size()) == 2:
# linear
weight = weight ratio * (up_weight @ down_weight) * scale
elif down_weight.size()[2:4] == (1, 1):
# conv2d 1x1
weight = (
weight
ratio
* (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3)
* scale
)
else:
# conv2d 3x3
conved = torch.nn.functional.conv2d(down_weight.permute(1, 0, 2, 3), up_weight).permute(1, 0, 2, 3)
# logger.info(conved.size(), weight.size(), module.stride, module.padding)
weight = weight ratio * conved * scale
module.weight = torch.nn.Parameter(weight)
elif method == "OFT":
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
for key in tqdm(lora_sd.keys()):
if "oft_blocks" in key:
oft_blocks = lora_sd[key]
dim = oft_blocks.shape[0]
break
for key in tqdm(lora_sd.keys()):
if "alpha" in key:
oft_blocks = lora_sd[key]
alpha = oft_blocks.item()
break
def merge_to(key):
if "alpha" in key:
return
# find original module for this OFT
module_name = ".".join(key.split(".")[:-1])
if module_name not in name_to_module:
logger.info(f"no module found for OFT weight: {key}")
return
module = name_to_module[module_name]
# logger.info(f"apply {key} to {module}")
oft_blocks = lora_sd[key]
if isinstance(module, torch.nn.Linear):
out_dim = module.out_features
elif isinstance(module, torch.nn.Conv2d):
out_dim = module.out_channels
num_blocks = dim
block_size = out_dim // dim
constraint = (0 if alpha is None else alpha) * out_dim
multiplier = 1
if lbw:
index = get_lbw_block_index(key, False)
is_lbw_target = index in LBW_TARGET_IDX
if is_lbw_target:
multiplier *= lbw_weights[index]
block_Q = oft_blocks - oft_blocks.transpose(1, 2)
norm_Q = torch.norm(block_Q.flatten())
new_norm_Q = torch.clamp(norm_Q, max=constraint)
block_Q = block_Q * ((new_norm_Q 1e-8) / (norm_Q 1e-8))
I = torch.eye(block_size, device=oft_blocks.device).unsqueeze(0).repeat(num_blocks, 1, 1)
block_R = torch.matmul(I block_Q, (I - block_Q).inverse())
block_R_weighted = multiplier * block_R (1 - multiplier) * I
R = torch.block_diag(*block_R_weighted)
# get org weight
org_sd = module.state_dict()
org_weight = org_sd["weight"].to(device)
R = R.to(org_weight.device, dtype=org_weight.dtype)
if org_weight.dim() == 4:
weight = torch.einsum("oihw, op -> pihw", org_weight, R)
else:
weight = torch.einsum("oi, op -> pi", org_weight, R)
weight = weight.contiguous() # Make Tensor contiguous; required due to ThreadPoolExecutor
module.weight = torch.nn.Parameter(weight)
# TODO multi-threading may cause OOM on CPU if cpu_count is too high and RAM is not enough
max_workers = 1 if device.type != "cpu" else None # avoid OOM on GPU
with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor:
list(tqdm(executor.map(merge_to, lora_sd.keys()), total=len(lora_sd.keys())))
def merge_lora_models(models, ratios, lbws, merge_dtype, concat=False, shuffle=False):
base_alphas = {} # alpha for merged model
base_dims = {}
# detect the method: OFT or LoRA_module
method = detect_method_from_training_model(models, merge_dtype)
if method == "OFT":
raise ValueError(
"OFT model is not supported for merging OFT models. / OFTモデルはOFTモデル同士のマージには対応していません"
)
if lbws:
lbws, _, LBW_TARGET_IDX = format_lbws(lbws)
else:
LBW_TARGET_IDX = []
merged_sd = {}
v2 = None
base_model = None
for model, ratio, lbw in itertools.zip_longest(models, ratios, lbws):
logger.info(f"loading: {model}")
lora_sd, lora_metadata = load_state_dict(model, merge_dtype)
if lbw:
lbw_weights = [1] * 26
for index, value in zip(LBW_TARGET_IDX, lbw):
lbw_weights[index] = value
logger.info(f"lbw: {dict(zip(LAYER26.keys(), lbw_weights))}")
if lora_metadata is not None:
if v2 is None:
v2 = lora_metadata.get(train_util.SS_METADATA_KEY_V2, None) # returns string, SDXLはv2がないのでFalseのはず
if base_model is None:
base_model = lora_metadata.get(train_util.SS_METADATA_KEY_BASE_MODEL_VERSION, None)
# get alpha and dim
alphas = {} # alpha for current model
dims = {} # dims for current model
for key in lora_sd.keys():
if "alpha" in key:
lora_module_name = key[: key.rfind(".alpha")]
alpha = float(lora_sd[key].detach().numpy())
alphas[lora_module_name] = alpha
if lora_module_name not in base_alphas:
base_alphas[lora_module_name] = alpha
elif "lora_down" in key:
lora_module_name = key[: key.rfind(".lora_down")]
dim = lora_sd[key].size()[0]
dims[lora_module_name] = dim
if lora_module_name not in base_dims:
base_dims[lora_module_name] = dim
for lora_module_name in dims.keys():
if lora_module_name not in alphas:
alpha = dims[lora_module_name]
alphas[lora_module_name] = alpha
if lora_module_name not in base_alphas:
base_alphas[lora_module_name] = alpha
logger.info(f"dim: {list(set(dims.values()))}, alpha: {list(set(alphas.values()))}")
# merge
logger.info(f"merging...")
for key in tqdm(lora_sd.keys()):
if "alpha" in key:
continue
if "lora_up" in key and concat:
concat_dim = 1
elif "lora_down" in key and concat:
concat_dim = 0
else:
concat_dim = None
lora_module_name = key[: key.rfind(".lora_")]
base_alpha = base_alphas[lora_module_name]
alpha = alphas[lora_module_name]
scale = math.sqrt(alpha / base_alpha) * ratio
scale = abs(scale) if "lora_up" in key else scale # マイナスの重みに対応する。
if lbw:
index = get_lbw_block_index(key, True)
is_lbw_target = index in LBW_TARGET_IDX
if is_lbw_target:
scale *= lbw_weights[index] # keyがlbwの対象であれば、lbwの重みを掛ける
if key in merged_sd:
assert (
merged_sd[key].size() == lora_sd[key].size() or concat_dim is not None
), f"weights shape mismatch merging v1 and v2, different dims? / 重みのサイズが合いません。v1とv2、または次元数の異なるモデルはマージできません"
if concat_dim is not None:
merged_sd[key] = torch.cat([merged_sd[key], lora_sd[key] * scale], dim=concat_dim)
else:
merged_sd[key] = merged_sd[key] lora_sd[key] * scale
else:
merged_sd[key] = lora_sd[key] * scale
# set alpha to sd
for lora_module_name, alpha in base_alphas.items():
key = lora_module_name ".alpha"
merged_sd[key] = torch.tensor(alpha)
if shuffle:
key_down = lora_module_name ".lora_down.weight"
key_up = lora_module_name ".lora_up.weight"
dim = merged_sd[key_down].shape[0]
perm = torch.randperm(dim)
merged_sd[key_down] = merged_sd[key_down][perm]
merged_sd[key_up] = merged_sd[key_up][:, perm]
logger.info("merged model")
logger.info(f"dim: {list(set(base_dims.values()))}, alpha: {list(set(base_alphas.values()))}")
# check all dims are same
dims_list = list(set(base_dims.values()))
alphas_list = list(set(base_alphas.values()))
all_same_dims = True
all_same_alphas = True
for dims in dims_list:
if dims != dims_list[0]:
all_same_dims = False
break
for alphas in alphas_list:
if alphas != alphas_list[0]:
all_same_alphas = False
break
# build minimum metadata
dims = f"{dims_list[0]}" if all_same_dims else "Dynamic"
alphas = f"{alphas_list[0]}" if all_same_alphas else "Dynamic"
metadata = train_util.build_minimum_network_metadata(v2, base_model, "networks.lora", dims, alphas, None)
return merged_sd, metadata
def merge(args):
assert len(args.models) == len(
args.ratios
), f"number of models must be equal to number of ratios / モデルの数と重みの数は合わせてください"
if args.lbws:
assert len(args.models) == len(
args.lbws
), f"number of models must be equal to number of ratios / モデルの数と層別適用率の数は合わせてください"
else:
args.lbws = [] # zip_longestで扱えるようにlbws未使用時には空のリストにしておく
def str_to_dtype(p):
if p == "float":
return torch.float
if p == "fp16":
return torch.float16
if p == "bf16":
return torch.bfloat16
return None
merge_dtype = str_to_dtype(args.precision)
save_dtype = str_to_dtype(args.save_precision)
if save_dtype is None:
save_dtype = merge_dtype
if args.sd_model is not None:
logger.info(f"loading SD model: {args.sd_model}")
(
text_model1,
text_model2,
vae,
unet,
logit_scale,
ckpt_info,
) = sdxl_model_util.load_models_from_sdxl_checkpoint(sdxl_model_util.MODEL_VERSION_SDXL_BASE_V1_0, args.sd_model, "cpu")
merge_to_sd_model(text_model1, text_model2, unet, args.models, args.ratios, args.lbws, merge_dtype)
if args.no_metadata:
sai_metadata = None
else:
merged_from = sai_model_spec.build_merged_from([args.sd_model] args.models)
title = os.path.splitext(os.path.basename(args.save_to))[0]
sai_metadata = sai_model_spec.build_metadata(
None, False, False, True, False, False, time.time(), title=title, merged_from=merged_from
)
logger.info(f"saving SD model to: {args.save_to}")
sdxl_model_util.save_stable_diffusion_checkpoint(
args.save_to, text_model1, text_model2, unet, 0, 0, ckpt_info, vae, logit_scale, sai_metadata, save_dtype
)
else:
state_dict, metadata = merge_lora_models(args.models, args.ratios, args.lbws, merge_dtype, args.concat, args.shuffle)
# cast to save_dtype before calculating hashes
for key in list(state_dict.keys()):
value = state_dict[key]
if type(value) == torch.Tensor and value.dtype.is_floating_point and value.dtype != save_dtype:
state_dict[key] = value.to(save_dtype)
logger.info(f"calculating hashes and creating metadata...")
model_hash, legacy_hash = train_util.precalculate_safetensors_hashes(state_dict, metadata)
metadata["sshs_model_hash"] = model_hash
metadata["sshs_legacy_hash"] = legacy_hash
if not args.no_metadata:
merged_from = sai_model_spec.build_merged_from(args.models)
title = os.path.splitext(os.path.basename(args.save_to))[0]
sai_metadata = sai_model_spec.build_metadata(
state_dict, False, False, True, True, False, time.time(), title=title, merged_from=merged_from
)
metadata.update(sai_metadata)
logger.info(f"saving model to: {args.save_to}")
save_to_file(args.save_to, state_dict, metadata)
def setup_parser() -> argparse.ArgumentParser:
parser = argparse.ArgumentParser()
parser.add_argument(
"--save_precision",
type=str,
default=None,
choices=[None, "float", "fp16", "bf16"],
help="precision in saving, same to merging if omitted / 保存時に精度を変更して保存する、省略時はマージ時の精度と同じ",
)
parser.add_argument(
"--precision",
type=str,
default="float",
choices=["float", "fp16", "bf16"],
help="precision in merging (float is recommended) / マージの計算時の精度(floatを推奨)",
)
parser.add_argument(
"--sd_model",
type=str,
default=None,
help="Stable Diffusion model to load: ckpt or safetensors file, merge LoRA models if omitted / 読み込むモデル、ckptまたはsafetensors。省略時はLoRAモデル同士をマージする",
)
parser.add_argument(
"--save_to",
type=str,
default=None,
help="destination file name: ckpt or safetensors file / 保存先のファイル名、ckptまたはsafetensors",
)
parser.add_argument(
"--models",
type=str,
nargs="*",
help="LoRA models to merge: ckpt or safetensors file / マージするLoRAモデル、ckptまたはsafetensors",
)
parser.add_argument("--ratios", type=float, nargs="*", help="ratios for each model / それぞれのLoRAモデルの比率")
parser.add_argument("--lbws", type=str, nargs="*", help="lbw for each model / それぞれのLoRAモデルの層別適用率")
parser.add_argument(
"--no_metadata",
action="store_true",
help="do not save sai modelspec metadata (minimum ss_metadata for LoRA is saved) / "
"sai modelspecのメタデータを保存しない(LoRAの最低限のss_metadataは保存される)",
)
parser.add_argument(
"--concat",
action="store_true",
help="concat lora instead of merge (The dim(rank) of the output LoRA is the sum of the input dims) / "
"マージの代わりに結合する(LoRAのdim(rank)は入力dimの合計になる)",
)
parser.add_argument(
"--shuffle",
action="store_true",
help="shuffle lora weight./ " "LoRAの重みをシャッフルする",
)
return parser
if __name__ == "__main__":
parser = setup_parser()
args = parser.parse_args()
merge(args)