Skip to content

Commit

Permalink
add slope estimation to example.py
Browse files Browse the repository at this point in the history
  • Loading branch information
kvos committed Oct 8, 2024
1 parent 9f41ed0 commit b1e9a40
Show file tree
Hide file tree
Showing 3 changed files with 143 additions and 25 deletions.
3 changes: 2 additions & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 20,7 @@ CoastSat is an open-source software toolkit written in Python that enables users
<summary><strong>Latest updates</strong></summary>

:arrow_forward: *(2024/10/02)*
CoastSat v3.0: integration with [FES2022 global tide model](https://www.aviso.altimetry.fr/en/data/products/auxiliary-products/global-tide-fes/release-fes22.html) to perform tidal correction within CoastSat.
CoastSat v3.0: integration with [FES2022 global tide model](https://www.aviso.altimetry.fr/en/data/products/auxiliary-products/global-tide-fes/release-fes22.html) to perform **tidal correction** and **beach slope estimation** within CoastSat.

:arrow_forward: *(2024/08/29)*
CoastSat v2.7: reverse compatibility for file downloads (pre v2.6) and removed Collection 1 (deprecated, throws an error)
Expand Down Expand Up @@ -67,6 67,7 @@ The toolbox has the following functionalities:
3. intersection of the 2D shorelines with user-defined shore-normal transects.
4. tidal correction using tide/water levels and an estimate of the beach slope.
5. post-processing of the shoreline time-series, despiking and seasonal averaging.
6. Beach slope estimation using satellite-derived shorelines and predicted tides
</details>

### Table of Contents
Expand Down
157 changes: 138 additions & 19 deletions example.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 21,7 @@
from datetime import datetime, timedelta
import pytz
from pyproj import CRS
from coastsat import SDS_download, SDS_preprocess, SDS_shoreline, SDS_tools, SDS_transects
from coastsat import SDS_download, SDS_preprocess, SDS_shoreline, SDS_tools, SDS_transects, SDS_slope

# region of interest (longitude, latitude in WGS84)
polygon = [[[151.301454, -33.700754],
Expand Down Expand Up @@ -246,7 246,7 @@
df.to_csv(fn, sep=',')
print('Time-series of the shoreline change along the transects saved as:\n%s'%fn)

#%% 4. Tidal correction
#%% 5. Tidal correction

# For this example, we can use the FES2022 global tide model to predict tides at our beach for all the image times.
# To setup FES2022, follow the instructions at https://github.com/kvos/CoastSat/blob/master/doc/FES2022_setup
Expand All @@ -259,8 259,6 @@
handlers = pyfes.load_config(config)
ocean_tide = handlers['tide']
load_tide = handlers['radial']
# load coastsat module to estimate slopes
from coastsat import SDS_slopes

# get polygon centroid
centroid = np.mean(polygon[0], axis=0)
Expand All @@ -270,10 268,10 @@
date_range = [pytz.utc.localize(datetime(2024,1,1)),
pytz.utc.localize(datetime(2025,1,1))]
timestep = 900 # seconds
dates_ts, tides_ts = SDS_slopes.compute_tide(centroid, date_range, timestep, ocean_tide, load_tide)
dates_ts, tides_ts = SDS_slope.compute_tide(centroid, date_range, timestep, ocean_tide, load_tide)
# get tide levels corresponding to the time of image acquisition
dates_sat = output['dates']
tides_sat = SDS_slopes.compute_tide_dates(centroid, output['dates'], ocean_tide, load_tide)
tides_sat = SDS_slope.compute_tide_dates(centroid, output['dates'], ocean_tide, load_tide)

# If you have measure tide levels you can also use those instead.
# When using your own file make sure that the dates are in UTC time, as the CoastSat shorelines are also in UTC
Expand Down Expand Up @@ -330,8 328,9 @@
ax.text(0.5,0.95, key, bbox=dict(boxstyle="square", ec='k',fc='w'), ha='center',
va='top', transform=ax.transAxes, fontsize=14)
ax.legend()
fig.savefig(os.path.join(filepath,'%s_timeseries_corrected.jpg'%sitename),dpi=200)

#%% 5. Time-series post-processing
#%% 6. Time-series post-processing

# load mapped shorelines from 1984 (mapped with the previous code)
filename_output = os.path.join(os.getcwd(),'examples','NARRA_output.pkl')
Expand All @@ -356,14 355,14 @@
va='center', ha='right', bbox=dict(boxstyle="square", ec='k',fc='w'))

# load long time-series (1984-2021)
filepath = os.path.join(os.getcwd(),'examples','NARRA_time_series_tidally_corrected.csv')
df = pd.read_csv(filepath, parse_dates=['dates'])
filepath_ts = os.path.join(os.getcwd(),'examples','NARRA_time_series_tidally_corrected.csv')
df = pd.read_csv(filepath_ts, parse_dates=['dates'])
dates = [_.to_pydatetime() for _ in df['dates']]
cross_distance = dict([])
for key in transects.keys():
cross_distance[key] = np.array(df[key])

#%% 5.1 Remove outliers
#%% 6.1 Remove outliers

# plot Otsu thresholds for the mapped shorelines
fig,ax = plt.subplots(1,1,figsize=[12,5],tight_layout=True)
Expand All @@ -374,7 373,7 @@
ax.set(title='Otsu thresholds on MNDWI for the %d shorelines mapped'%len(output['shorelines']),
ylim=[-0.6,0.2],ylabel='otsu threshold')
ax.legend(loc='upper left')
fig.savefig(os.path.join(inputs['filepath'], inputs['sitename'], 'otsu_threhsolds.jpg'))
fig.savefig(os.path.join(inputs['filepath'], inputs['sitename'], '%s_otsu_threhsolds.jpg'%sitename), dpi=200)

# remove outliers in the time-series (despiking)
settings_outliers = {'otsu_threshold': [-.5,0], # min and max intensity threshold use for contouring the shoreline
Expand All @@ -383,8 382,11 @@
}
cross_distance = SDS_transects.reject_outliers(cross_distance,output,settings_outliers)

#%% 5.2 Seasonal averaging
#%% 6.2 Seasonal averaging

fp_seasonal = os.path.join(filepath,'jpg_files','seasonal_timeseries')
if not os.path.exists(fp_seasonal): os.makedirs(fp_seasonal)
print('Outputs will be saved in %s'%fp_seasonal)
# compute seasonal averages along each transect
season_colors = {'DJF':'C3', 'MAM':'C1', 'JJA':'C2', 'SON':'C0'}
for key in cross_distance.keys():
Expand All @@ -408,9 410,13 @@
ax.plot(dict_seas[seas]['dates'], dict_seas[seas]['chainages'],
'o', mec='k', color=season_colors[seas], label=seas,ms=5)
ax.legend(loc='lower left',ncol=6,markerscale=1.5,frameon=True,edgecolor='k',columnspacing=1)
fig.savefig(os.path.join(fp_seasonal,'%s_timeseries_seasonal.jpg'%sitename), dpi=200)

#%% 6.3 Monthly averaging

#%% 5.3 Monthly averaging

fp_monthly = os.path.join(filepath,'jpg_files','seasonal_timeseries')
if not os.path.exists(fp_seasonal): os.makedirs(fp_monthly)
print('Outputs will be saved in %s'%fp_monthly)
# compute monthly averages along each transect
month_colors = plt.get_cmap('tab20')
for key in cross_distance.keys():
Expand All @@ -434,13 440,126 @@
ax.plot(dict_month[month]['dates'], dict_month[month]['chainages'],
'o', mec='k', color=month_colors(k), label=month,ms=5)
ax.legend(loc='lower left',ncol=7,markerscale=1.5,frameon=True,edgecolor='k',columnspacing=1)
fig.savefig(os.path.join(fp_monthly,'%s_timeseries_monthly.jpg'%sitename), dpi=200)

#%% 7. Beach slope estimation

# This section uses the same long-term time-series of shoreline change to demonstrate how to estimate the beach-face slope.
# For a more detailed tutorial visit https://github.com/kvos/CoastSat.slope

# create folder to save outputs from slope estimation
fp_slopes = os.path.join(filepath,'slope_estimation')
if not os.path.exists(fp_slopes):
os.makedirs(fp_slopes)
print('Outputs will be saved in %s'%fp_slopes)

# load mapped shorelines from 1984 using Landsat 5, 7 and 8
filename_output = os.path.join(os.getcwd(),'examples','NARRA_output.pkl')
with open(filename_output, 'rb') as f:
output = pickle.load(f)
# remove duplicates (images taken on the same date by the same satellite)
output = SDS_tools.remove_duplicates(output)
# remove inaccurate georeferencing (set threshold to 10 m)
output = SDS_tools.remove_inaccurate_georef(output, 10)
# compute intersections
settings_transects = { # parameters for computing intersections
'along_dist': 25, # along-shore distance to use for computing the intersection
'min_points': 3, # minimum number of shoreline points to calculate an intersection
'max_std': 15, # max std for points around transect
'max_range': 30, # max range for points around transect
'min_chainage': -100, # largest negative value along transect (landwards of transect origin)
'multiple_inter': 'auto', # mode for removing outliers ('auto', 'nan', 'max')
'auto_prc': 0.1, # percentage of the time that multiple intersects are present to use the max
}
cross_distance = SDS_transects.compute_intersection_QC(output, transects, settings_transects)
# remove outliers in the time-series (coastal despiking)
settings_outliers = {'max_cross_change': 40, # maximum cross-shore change observable between consecutive timesteps
'otsu_threshold': [-.5,0], # min and max intensity threshold use for contouring the shoreline
'plot_fig': False, # whether to plot the intermediate steps
}
cross_distance = SDS_transects.reject_outliers(cross_distance,output,settings_outliers)

# plot time-series
SDS_slope.plot_cross_distance(output['dates'],cross_distance)

# slope estimation settings
days_in_year = 365.2425
seconds_in_day = 24*3600
settings_slope = {'slope_min': 0.035, # minimum slope to trial
'slope_max': 0.2, # maximum slope to trial
'delta_slope': 0.005, # slope increment
'n0': 50, # parameter for Nyquist criterium in Lomb-Scargle transforms
'freq_cutoff': 1./(seconds_in_day*30), # 1 month frequency
'delta_f': 100*1e-10, # deltaf for identifying peak tidal frequency band
'prc_conf': 0.05, # percentage above minimum to define confidence bands in energy curve
'plot_fig': True, # whether to plot the intermediary products during analysis
}
# range of slopes to test for
beach_slopes = SDS_slope.range_slopes(settings_slope['slope_min'], settings_slope['slope_max'], settings_slope['delta_slope'])

# range of dates over which to perform the analysis (2 Landsat satellites)
settings_slope['date_range'] = [1999,2022]
# re-write in datetime objects (same as shoreline in UTC)
settings_slope['date_range'] = [pytz.utc.localize(datetime(settings_slope['date_range'][0],5,1)),
pytz.utc.localize(datetime(settings_slope['date_range'][1],1,1))]
# clip the time-series between 1999 and 2022 as we need at least 2 Landsat satellites
idx_dates = [np.logical_and(_>settings_slope['date_range'][0],_<settings_slope['date_range'][1]) for _ in output['dates']]
dates_sat = [output['dates'][_] for _ in np.where(idx_dates)[0]]
for key in cross_distance.keys():
cross_distance[key] = cross_distance[key][idx_dates]

# plot timestep
SDS_slope.plot_timestep(dates_sat)
plt.gcf().savefig(os.path.join(fp_slopes,'0_timestep_distribution.jpg'),dpi=200)

# select sampling period [days]
settings_slope['n_days'] = 8

# get polygon centroid
centroid = np.mean(polygon[0], axis=0)
print(centroid)
# get tides time-series (15 minutes timestep)
date_range = [dates_sat[0], dates_sat[-1]]
timestep = 900 # seconds
dates_ts, tides_ts = SDS_slope.compute_tide(centroid, date_range, timestep, ocean_tide, load_tide)
# get tide levels corresponding to the time of image acquisition
tides_sat = SDS_slope.compute_tide_dates(centroid, dates_sat, ocean_tide, load_tide)
# plot the subsampled tide data
fig, ax = plt.subplots(1,1,figsize=(15,4), tight_layout=True)
ax.grid(which='major', linestyle=':', color='0.5')
ax.plot(dates_ts, tides_ts, '-', color='0.6', label='all time-series')
ax.plot(dates_sat, tides_sat, '-o', color='k', ms=5, mfc='w',lw=1, label='image acquisition')
ax.set(ylabel='tide level [m]',xlim=[dates_sat[0],dates_sat[-1]], title='Tide levels at the time of image acquisition');
ax.legend()
fig.savefig(os.path.join(fp_slopes,'0_tide_timeseries.jpg'),dpi=200)

#%% 6. Validation against survey data
# find peak tidal frequency
settings_slope['freqs_max'] = SDS_slope.find_tide_peak(dates_sat,tides_sat,settings_slope)
plt.gcf().savefig(os.path.join(fp_slopes,'1_tides_power_spectrum.jpg'),dpi=200)

# estimate beach-face slopes along the transects
slope_est, cis = dict([]), dict([])
for key in cross_distance.keys():
# remove NaNs
idx_nan = np.isnan(cross_distance[key])
dates = [dates_sat[_] for _ in np.where(~idx_nan)[0]]
tide = tides_sat[~idx_nan]
composite = cross_distance[key][~idx_nan]
# apply tidal correction
tsall = SDS_slope.tide_correct(composite,tide,beach_slopes)
# estimate beach slope
slope_est[key],cis[key] = SDS_slope.integrate_power_spectrum(dates,tsall,settings_slope, key)
plt.gcf().savefig(os.path.join(fp_slopes,'2_energy_curve_%s.jpg'%key),dpi=200)
# plot spectrums
SDS_slope.plot_spectrum_all(dates,composite,tsall,settings_slope,slope_est[key])
plt.gcf().savefig(os.path.join(fp_slopes,'3_slope_spectrum_%s.jpg'%key),dpi=200)
print('Beach slope at transect %s: %.3f (%.4f - %.4f)'%(key, slope_est[key], cis[key][0], cis[key][1]))

#%% 8. Validation against survey data
# In this section we provide a comparison against in situ data at Narrabeen.
# See the Jupyter Notebook for information on hopw to downlaod the Narrabeen data from http://narrabeen.wrl.unsw.edu.au/

# 6.1. Read and preprocess downloaded csv file Narrabeen_Profiles.csv
# read the csv file
# read and preprocess downloaded csv file Narrabeen_Profiles.csv
fp_datasets = os.path.join(os.getcwd(),'examples','Narrabeen_Profiles.csv')
df = pd.read_csv(fp_datasets)
pf_names = list(np.unique(df['Profile ID']))
Expand Down Expand Up @@ -485,7 604,7 @@
with open(os.path.join(os.getcwd(), 'examples', 'Narrabeen_ts_07m.pkl'), 'wb') as f:
pickle.dump(topo_profiles, f)

#%% 6.2. Compare time-series along each transect
#%% 8.1. Compare time-series along each transect
# load survey data
with open(os.path.join(os.getcwd(), 'examples', 'Narrabeen_ts_07m.pkl'), 'rb') as f:
gt = pickle.load(f)
Expand Down Expand Up @@ -622,7 741,7 @@
# save plot
fig.savefig(os.path.join(os.getcwd(),'examples','comparison_transect_%s.jpg'%key), dpi=150)

#%% 6.3. Comparison for all transects
#%% 8.2. Comparison for all transects

# calculate statistics for all transects together
chain_error = chain_sat_all - chain_sur_all
Expand Down
8 changes: 3 additions & 5 deletions example_jupyter.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -1340,7 1340,7 @@
}
],
"source": [
"fp_seasonal - os.path.join(filepath,'jpg_files','seasonal_timeseries')\n",
"fp_seasonal = os.path.join(filepath,'jpg_files','seasonal_timeseries')\n",
"if not os.path.exists(fp_seasonal): os.makedirs(fp_seasonal)\n",
"print('Outputs will be saved in %s'%fp_seasonal)\n",
"season_colors = {'DJF':'C3', 'MAM':'C1', 'JJA':'C2', 'SON':'C0'}\n",
Expand Down Expand Up @@ -1374,9 1374,7 @@
},
{
"cell_type": "markdown",
"metadata": {
"jp-MarkdownHeadingCollapsed": true
},
"metadata": {},
"source": [
"### Monthly averages\n",
"\n",
Expand Down Expand Up @@ -1442,7 1440,7 @@
}
],
"source": [
"fp_monthly - os.path.join(filepath,'jpg_files','seasonal_timeseries')\n",
"fp_monthly = os.path.join(filepath,'jpg_files','monthly_timeseries')\n",
"if not os.path.exists(fp_seasonal): os.makedirs(fp_monthly)\n",
"print('Outputs will be saved in %s'%fp_monthly)\n",
"month_colors = plt.get_cmap('tab20')\n",
Expand Down

0 comments on commit b1e9a40

Please sign in to comment.