Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add Conditional Dropout options #159

Merged
merged 1 commit into from
Feb 7, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Add dropout options
  • Loading branch information
forestsource committed Feb 6, 2023
commit 7db98baa863f3268812f91563d316694f3e24729
7 changes: 7 additions & 0 deletions fine_tune.py
Original file line number Diff line number Diff line change
Expand Up @@ -171,6 171,10 @@ def fn_recursive_set_mem_eff(module: torch.nn.Module):
args.max_train_steps = args.max_train_epochs * len(train_dataloader)
print(f"override steps. steps for {args.max_train_epochs} epochs is / 指定エポックまでのステップ数: {args.max_train_steps}")

# 学習データのdropout率を設定する
train_dataset.dropout_rate = args.dropout_rate
train_dataset.dropout_every_n_epochs = args.dropout_every_n_epochs

# lr schedulerを用意する
lr_scheduler = diffusers.optimization.get_scheduler(
args.lr_scheduler, optimizer, num_warmup_steps=args.lr_warmup_steps, num_training_steps=args.max_train_steps * args.gradient_accumulation_steps)
Expand Down Expand Up @@ -226,6 230,9 @@ def fn_recursive_set_mem_eff(module: torch.nn.Module):

for epoch in range(num_train_epochs):
print(f"epoch {epoch 1}/{num_train_epochs}")

train_dataset.epoch_current = epoch 1

for m in training_models:
m.train()

Expand Down
20 changes: 19 additions & 1 deletion library/train_util.py
Original file line number Diff line number Diff line change
Expand Up @@ -223,6 223,10 @@ def __init__(self, tokenizer, max_token_length, shuffle_caption, shuffle_keep_to

self.tokenizer_max_length = self.tokenizer.model_max_length if max_token_length is None else max_token_length 2

self.epoch_current:int = int(0)
self.dropout_rate:float = 0
self.dropout_every_n_epochs:int = 0

# augmentation
flip_p = 0.5 if flip_aug else 0.0
if color_aug:
Expand Down Expand Up @@ -598,7 602,17 @@ def __getitem__(self, index):
images.append(image)
latents_list.append(latents)

caption = self.process_caption(image_info.caption)
# dropoutの決定
is_drop_out = False
if self.dropout_rate > 0 and self.dropout_rate < random.random() :
is_drop_out = True
if self.dropout_every_n_epochs > 0 and self.epoch_current % self.dropout_every_n_epochs == 0 :
is_drop_out = True

if is_drop_out:
caption = ""
else:
caption = self.process_caption(image_info.caption)
captions.append(caption)
if not self.token_padding_disabled: # this option might be omitted in future
input_ids_list.append(self.get_input_ids(caption))
Expand Down Expand Up @@ -1407,6 1421,10 @@ def add_dataset_arguments(parser: argparse.ArgumentParser, support_dreambooth: b
help="steps of resolution for buckets, divisible by 8 is recommended / bucketの解像度の単位、8で割り切れる値を推奨します")
parser.add_argument("--bucket_no_upscale", action="store_true",
help="make bucket for each image without upscaling / 画像を拡大せずbucketを作成します")
parser.add_argument("--dropout_rate", type=float, default=0,
help="Rate out dropout caption(0.0~1.0) / captionをdropoutする割合")
parser.add_argument("--dropout_every_n_epochs", type=int, default=0,
help="Dropout all captions every N epochs / captionを指定エポックごとにdropoutする")

if support_dreambooth:
# DreamBooth dataset
Expand Down
6 changes: 6 additions & 0 deletions train_db.py
Original file line number Diff line number Diff line change
Expand Up @@ -136,6 136,10 @@ def train(args):
train_dataloader = torch.utils.data.DataLoader(
train_dataset, batch_size=1, shuffle=False, collate_fn=collate_fn, num_workers=n_workers, persistent_workers=args.persistent_data_loader_workers)

# 学習データのdropout率を設定する
train_dataset.dropout_rate = args.dropout_rate
train_dataset.dropout_every_n_epochs = args.dropout_every_n_epochs

# 学習ステップ数を計算する
if args.max_train_epochs is not None:
args.max_train_steps = args.max_train_epochs * len(train_dataloader)
Expand Down Expand Up @@ -204,6 208,8 @@ def train(args):
for epoch in range(num_train_epochs):
print(f"epoch {epoch 1}/{num_train_epochs}")

train_dataset.epoch_current = epoch 1

# 指定したステップ数までText Encoderを学習する:epoch最初の状態
unet.train()
# train==True is required to enable gradient_checkpointing
Expand Down
15 changes: 11 additions & 4 deletions train_network.py
Original file line number Diff line number Diff line change
Expand Up @@ -120,16 120,16 @@ def train(args):
print("Use DreamBooth method.")
train_dataset = DreamBoothDataset(args.train_batch_size, args.train_data_dir, args.reg_data_dir,
tokenizer, args.max_token_length, args.caption_extension, args.shuffle_caption, args.keep_tokens,
args.resolution, args.enable_bucket, args.min_bucket_reso, args.max_bucket_reso,
args.bucket_reso_steps, args.bucket_no_upscale,
args.prior_loss_weight, args.flip_aug, args.color_aug, args.face_crop_aug_range,
args.resolution, args.enable_bucket, args.min_bucket_reso, args.max_bucket_reso,
args.bucket_reso_steps, args.bucket_no_upscale,
args.prior_loss_weight, args.flip_aug, args.color_aug, args.face_crop_aug_range,
args.random_crop, args.debug_dataset)
else:
print("Train with captions.")
train_dataset = FineTuningDataset(args.in_json, args.train_batch_size, args.train_data_dir,
tokenizer, args.max_token_length, args.shuffle_caption, args.keep_tokens,
args.resolution, args.enable_bucket, args.min_bucket_reso, args.max_bucket_reso,
args.bucket_reso_steps, args.bucket_no_upscale,
args.bucket_reso_steps, args.bucket_no_upscale,
args.flip_aug, args.color_aug, args.face_crop_aug_range, args.random_crop,
args.dataset_repeats, args.debug_dataset)
train_dataset.make_buckets()
Expand Down Expand Up @@ -219,6 219,10 @@ def train(args):
train_dataloader = torch.utils.data.DataLoader(
train_dataset, batch_size=1, shuffle=False, collate_fn=collate_fn, num_workers=n_workers, persistent_workers=args.persistent_data_loader_workers)

# 学習データのdropout率を設定する
train_dataset.dropout_rate = args.dropout_rate
train_dataset.dropout_every_n_epochs = args.dropout_every_n_epochs

# 学習ステップ数を計算する
if args.max_train_epochs is not None:
args.max_train_steps = args.max_train_epochs * len(train_dataloader)
Expand Down Expand Up @@ -376,6 380,9 @@ def train(args):

for epoch in range(num_train_epochs):
print(f"epoch {epoch 1}/{num_train_epochs}")

train_dataset.epoch_current = epoch 1

metadata["ss_epoch"] = str(epoch 1)

network.on_epoch_start(text_encoder, unet)
Expand Down