ormb can be used to pull models in Seldon Core. First, we need to deploy Seldon Core on Kubernetes.
In this tutorial, we use SavedModel-fashion as an example, to illustrate the feature.
In this tutorial, we use demo.goharbor.io as the remote registry. First, you need to register an account in demo.goharbor.io. We use ormbtest
as username, ORMBtest12345
as password here.
Harbor Registration
Then, we should create a new project tensorflow
in Harbor.
https://demo.goharbor.io/harbor/projects
After that, the model can be pushed to the remote registry under tensorflow
project.
# Login to demo.goharbor.io
$ ormb login demo.goharbor.io -u ormbtest -p ORMBtest12345
WARNING! Using --password via the CLI is insecure. Use --password-stdin.
Login succeeded
# Save the model to local cache.
$ ormb save ./examples/SavedModel-fashion demo.goharbor.io/tensorflow/fashion_model:v1
ref: demo.goharbor.io/tensorflow/fashion_model:v1
digest: 13eb538942a70c699637cfa1bb9c7d72cd8430af50a992055b7bfd3220042e94
size: 162.1 KiB
format: SavedModel
v1: saved
# Push the model to demo.goharbor.io
$ ormb push demo.goharbor.io/tensorflow/fashion_model:v1
ref: demo.goharbor.io/tensorflow/fashion_model:v1
digest: 13eb538942a70c699637cfa1bb9c7d72cd8430af50a992055b7bfd3220042e94
size: 162.1 KiB
format: SavedModel
v1: pushed to remote (1 layer, 162.1 KiB total)
Then we can get the model in the Harbor UI.
Harbor Project UI
We need to deploy Seldon Core on Kubernetes.
If you are using Helm Chart to deploy Seldon Core, there are some changes need to be done in helm-charts/seldon-core-operator/values.yaml#L80 and helm-charts/seldon-core-operator/values.yaml#L137
storageInitializer:
cpuLimit: "1"
cpuRequest: 100m
- image: gcr.io/kfserving/storage-initializer:0.2.2
image: clvoss/clever-ormb-storage-initializer:v0.0.2
memoryLimit: 1Gi
memoryRequest: 100Mi
...
credentials:
gcs:
gcsCredentialFileName: gcloud-application-credentials.json
s3:
- s3AccessKeyIDName: awsAccessKeyID
- s3SecretAccessKeyName: awsSecretAccessKey
s3AccessKeyIDName: ORMB_USERNAME
s3SecretAccessKeyName: ORMB_PASSWORD
If you are using the guide in Seldon Core Development Documentation to deploy the operator, you need to update operator/config/manager/configmap.yaml#L14 and operator/config/manager/configmap.yaml#L65
credentials: |-
{
"gcs" : {
"gcsCredentialFileName": "gcloud-application-credentials.json"
},
"s3" : {
- "s3AccessKeyIDName": "awsAccessKeyID",
- "s3SecretAccessKeyName": "awsSecretAccessKey"
"s3AccessKeyIDName": "ORMB_USERNAME",
"s3SecretAccessKeyName": "ORMB_PASSWORD"
}
}
...
storageInitializer: |-
{
- "image" : "gcr.io/kfserving/storage-initializer:0.2.2",
"image" : "clvoss/clever-ormb-storage-initializer:v0.0.2",
"memoryRequest": "100Mi",
"memoryLimit": "1Gi",
"cpuRequest": "100m",
"cpuLimit": "1"
}
Then we can create the SeldonDeployment now.
apiVersion: machinelearning.seldon.io/v1alpha2
kind: SeldonDeployment
metadata:
name: tfserving
spec:
name: mnist
protocol: tensorflow
predictors:
- graph:
children: []
implementation: TENSORFLOW_SERVER
modelUri: demo.goharbor.io/tensorflow/fashion_model:v1
serviceAccountName: ormb
name: mnist-model
parameters:
- name: signature_name
type: STRING
value: predict_images
- name: model_name
type: STRING
value: mnist-model
name: default
replicas: 1
---
apiVersion: v1
kind: Secret
metadata:
name: ormb
type: Opaque
data:
# base64 formatted username `ormbtest`
ORMB_USERNAME: b3JtYnRlc3Q=
# base64 formatted password `ORMBtest12345`
ORMB_PASSWORD: T1JNQnRlc3QxMjM0NQ==
---
apiVersion: v1
kind: ServiceAccount
metadata:
name: ormb
secrets:
- name: ormb
We can get the pod like this.
$ kubectl get pods
NAME READY STATUS RESTARTS AGE
tfserving-default-0-mnist-model-85df66ccd4-spd4d 2/2 Running 0 149m
$ kubectl get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 4h14m
tfserving-default ClusterIP 10.103.195.134 <none> 8000/TCP,5001/TCP 173m
tfserving-default-mnist-model ClusterIP 10.99.150.123 <none> 9500/TCP 173m
Then we can port-forward tfserving-default
to port 8080 in the host.
kubectl port-forward service/tfserving-default 8000:8000
use the code in examples/SavedModel-fashion/training-serving.ipynb to test it.
import tensorflow as tf
from tensorflow import keras
# Helper libraries
import numpy as np
import matplotlib.pyplot as plt
import os
import subprocess
fashion_mnist = keras.datasets.fashion_mnist
(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()
# scale the values to 0.0 to 1.0
train_images = train_images / 255.0
test_images = test_images / 255.0
# reshape for feeding into the model
train_images = train_images.reshape(train_images.shape[0], 28, 28, 1)
test_images = test_images.reshape(test_images.shape[0], 28, 28, 1)
class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']
print('\ntrain_images.shape: {}, of {}'.format(train_images.shape, train_images.dtype))
print('test_images.shape: {}, of {}'.format(test_images.shape, test_images.dtype))
def show(idx, title):
plt.figure()
plt.imshow(test_images[idx].reshape(28,28))
plt.axis('off')
plt.title('\n\n{}'.format(title), fontdict={'size': 16})
import json
data = json.dumps({"signature_name": "serving_default", "instances": test_images[0:3].tolist()})
import requests
headers = {"content-type": "application/json"}
json_response = requests.post('http://localhost:8000/v1/models/mnist-model/:predict', data=data, headers=headers)
predictions = json.loads(json_response.text)['predictions']
show(0, 'The model thought this was a {} (class {}), and it was actually a {} (class {})'.format(
class_names[np.argmax(predictions[0])], np.argmax(predictions[0]), class_names[test_labels[0]], test_labels[0]))