Skip to content

kevingo/from-nlp-to-bert

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

21 Commits
 
 
 
 
 
 

Repository files navigation

From NLP to Bert

In this repositoy, I will make some notes on the introductory from NLP to Bert.

Agenda

  • Introduction to NLP
    • Tradition NLP (WordNet / one-hot encoding)
    • lexical analysis
    • Syntactic analysis
    • Semantic analysis
  • Basic NLP
    • tf-idf
    • bag-of-word (BoW)
    • n-gram language model
    • limitation of BoW and n-gram language model
  • Deep NLP
    • Word2Vec
    • RNN
    • Sequence-to-sequence
    • Attention Model
    • Transformer (self-attention)
      • Transformer is a seq-to-seq model with self-attention layer
      • 用來改良 RNN 不容易平行化的缺點
      • 基本上原本用 RNN 的架構,都可以換成 self-attention 的 layer 來取代
      • 在 self-attention 的原本機制中,沒有位置 (position) 的資訊
        • 引入 positional encoding 機制:每一個 input vector 都會 append 上一個位置資訊的 vector,接著做 self-attention
  • Bert
    • Bert introduction
      • Encoder of transformer
    • 訓練 Bert 的方法
      • Approach 1:Masked LM
      • Approach 2:Next sentence prediction
    • Bert on our work
  • Conclusion

Resources

About

The comprehensive introduction about NLP to Bert

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published