-
Notifications
You must be signed in to change notification settings - Fork 16
/
impl.rs
369 lines (325 loc) · 11.4 KB
/
impl.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
use crate::internals::hashmap::cursor::CursorReadOps;
use crate::internals::hashmap::cursor::{CursorRead, CursorWrite, SuperBlock};
use crate::internals::hashmap::iter::*;
use std::borrow::Borrow;
use crate::internals::lincowcell::LinCowCellCapable;
use std::fmt::Debug;
use std::hash::Hash;
use std::iter::FromIterator;
/// A concurrently readable map based on a modified B Tree structured with fast
/// parallel hashed key lookup.
///
/// This structure can be used in locations where you would otherwise us
/// `RwLock<HashMap>` or `Mutex<HashMap>`.
///
/// This is a concurrently readable structure, meaning it has transactional
/// properties. Writers are serialised (one after the other), and readers
/// can exist in parallel with stable views of the structure at a point
/// in time.
///
/// This is achieved through the use of COW or MVCC. As a write occurs
/// subsets of the tree are cloned into the writer thread and then committed
/// later. This may cause memory usage to increase in exchange for a gain
/// in concurrent behaviour.
///
/// Transactions can be rolled-back (aborted) without penalty by dropping
/// the `HashMapWriteTxn` without calling `commit()`.
pub struct HashMap<K, V>
where
K: Hash Eq Clone Debug Sync Send 'static,
V: Clone Sync Send 'static,
{
inner: LinCowCell<SuperBlock<K, V>, CursorRead<K, V>, CursorWrite<K, V>>,
}
unsafe impl<K: Hash Eq Clone Debug Sync Send 'static, V: Clone Sync Send 'static>
Send for HashMap<K, V>
{
}
unsafe impl<K: Hash Eq Clone Debug Sync Send 'static, V: Clone Sync Send 'static>
Sync for HashMap<K, V>
{
}
/// An active read transaction over a `HashMap`. The data in this tree
/// is guaranteed to not change and will remain consistent for the life
/// of this transaction.
pub struct HashMapReadTxn<'a, K, V>
where
K: Hash Eq Clone Debug Sync Send 'static,
V: Clone Sync Send 'static,
{
inner: LinCowCellReadTxn<'a, SuperBlock<K, V>, CursorRead<K, V>, CursorWrite<K, V>>,
}
/// An active write transaction for a `HashMap`. The data in this tree
/// may be modified exclusively through this transaction without affecting
/// readers. The write may be rolledback/aborted by dropping this guard
/// without calling `commit()`. Once `commit()` is called, readers will be
/// able to access and perceive changes in new transactions.
pub struct HashMapWriteTxn<'a, K, V>
where
K: Hash Eq Clone Debug Sync Send 'static,
V: Clone Sync Send 'static,
{
inner: LinCowCellWriteTxn<'a, SuperBlock<K, V>, CursorRead<K, V>, CursorWrite<K, V>>,
}
enum SnapshotType<'a, K, V>
where
K: Hash Eq Clone Debug Sync Send 'static,
V: Clone Sync Send 'static,
{
R(&'a CursorRead<K, V>),
W(&'a CursorWrite<K, V>),
}
/// A point-in-time snapshot of the tree from within a read OR write. This is
/// useful for building other transactional types on top of this structure, as
/// you need a way to downcast both HashMapReadTxn or HashMapWriteTxn to
/// a singular reader type for a number of get_inner() style patterns.
///
/// This snapshot IS safe within the read thread due to the nature of the
/// implementation borrowing the inner tree to prevent mutations within the
/// same thread while the read snapshot is open.
pub struct HashMapReadSnapshot<'a, K, V>
where
K: Hash Eq Clone Debug Sync Send 'static,
V: Clone Sync Send 'static,
{
inner: SnapshotType<'a, K, V>,
}
impl<K: Hash Eq Clone Debug Sync Send 'static, V: Clone Sync Send 'static> Default
for HashMap<K, V>
{
fn default() -> Self {
Self::new()
}
}
impl<K: Hash Eq Clone Debug Sync Send 'static, V: Clone Sync Send 'static>
FromIterator<(K, V)> for HashMap<K, V>
{
fn from_iter<I: IntoIterator<Item = (K, V)>>(iter: I) -> Self {
let mut new_sblock = unsafe { SuperBlock::new() };
let prev = new_sblock.create_reader();
let mut cursor = new_sblock.create_writer();
cursor.extend(iter);
let _ = new_sblock.pre_commit(cursor, &prev);
HashMap {
inner: LinCowCell::new(new_sblock),
}
}
}
impl<K: Hash Eq Clone Debug Sync Send 'static, V: Clone Sync Send 'static>
Extend<(K, V)> for HashMapWriteTxn<'_, K, V>
{
fn extend<I: IntoIterator<Item = (K, V)>>(&mut self, iter: I) {
self.inner.as_mut().extend(iter);
}
}
impl<K: Hash Eq Clone Debug Sync Send 'static, V: Clone Sync Send 'static>
HashMapWriteTxn<'_, K, V>
{
/*
pub(crate) fn prehash<Q>(&self, k: &Q) -> u64
where
K: Borrow<Q>,
Q: Hash Eq ?Sized,
{
self.inner.as_ref().hash_key(k)
}
*/
pub(crate) fn get_prehashed<Q>(&self, k: &Q, k_hash: u64) -> Option<&V>
where
K: Borrow<Q>,
Q: Hash Eq ?Sized,
{
self.inner.as_ref().search(k_hash, k)
}
/// Retrieve a value from the map. If the value exists, a reference is returned
/// as `Some(&V)`, otherwise if not present `None` is returned.
pub fn get<Q>(&self, k: &Q) -> Option<&V>
where
K: Borrow<Q>,
Q: Hash Eq ?Sized,
{
let k_hash = self.inner.as_ref().hash_key(k);
self.get_prehashed(k, k_hash)
}
/// Assert if a key exists in the map.
pub fn contains_key<Q>(&self, k: &Q) -> bool
where
K: Borrow<Q>,
Q: Hash Eq ?Sized,
{
self.get(k).is_some()
}
/// returns the current number of k:v pairs in the tree
pub fn len(&self) -> usize {
self.inner.as_ref().len()
}
/// Determine if the set is currently empty
pub fn is_empty(&self) -> bool {
self.inner.as_ref().len() == 0
}
/// Iterator over `(&K, &V)` of the set
pub fn iter(&self) -> Iter<K, V> {
self.inner.as_ref().kv_iter()
}
/// Iterator over &K
pub fn values(&self) -> ValueIter<K, V> {
self.inner.as_ref().v_iter()
}
/// Iterator over &V
pub fn keys(&self) -> KeyIter<K, V> {
self.inner.as_ref().k_iter()
}
/// Reset this map to an empty state. As this is within the transaction this
/// change only takes effect once committed. Once cleared, you can begin adding
/// new writes and changes, again, that will only be visible once committed.
pub fn clear(&mut self) {
self.inner.as_mut().clear()
}
/// Insert or update a value by key. If the value previously existed it is returned
/// as `Some(V)`. If the value did not previously exist this returns `None`.
pub fn insert(&mut self, k: K, v: V) -> Option<V> {
// Hash the key.
let k_hash = self.inner.as_ref().hash_key(&k);
self.inner.as_mut().insert(k_hash, k, v)
}
/// Remove a key if it exists in the tree. If the value exists, we return it as `Some(V)`,
/// and if it did not exist, we return `None`
pub fn remove(&mut self, k: &K) -> Option<V> {
let k_hash = self.inner.as_ref().hash_key(k);
self.inner.as_mut().remove(k_hash, k)
}
/// Get a mutable reference to a value in the tree. This is correctly, and
/// safely cloned before you attempt to mutate the value, isolating it from
/// other transactions.
pub fn get_mut(&mut self, k: &K) -> Option<&mut V> {
let k_hash = self.inner.as_ref().hash_key(k);
self.inner.as_mut().get_mut_ref(k_hash, k)
}
/// Create a read-snapshot of the current map. This does NOT guarantee the map may
/// not be mutated during the read, so you MUST guarantee that no functions of the
/// write txn are called while this snapshot is active.
pub fn to_snapshot(&self) -> HashMapReadSnapshot<K, V> {
HashMapReadSnapshot {
inner: SnapshotType::W(self.inner.as_ref()),
}
}
}
impl<K: Hash Eq Clone Debug Sync Send 'static, V: Clone Sync Send 'static>
HashMapReadTxn<'_, K, V>
{
pub(crate) fn get_prehashed<Q>(&self, k: &Q, k_hash: u64) -> Option<&V>
where
K: Borrow<Q>,
Q: Hash Eq ?Sized,
{
self.inner.search(k_hash, k)
}
/// Retrieve a value from the tree. If the value exists, a reference is returned
/// as `Some(&V)`, otherwise if not present `None` is returned.
pub fn get<Q>(&self, k: &Q) -> Option<&V>
where
K: Borrow<Q>,
Q: Hash Eq ?Sized,
{
let k_hash = self.inner.as_ref().hash_key(k);
self.get_prehashed(k, k_hash)
}
/// Assert if a key exists in the tree.
pub fn contains_key<Q>(&self, k: &Q) -> bool
where
K: Borrow<Q>,
Q: Hash Eq ?Sized,
{
self.get(k).is_some()
}
/// Returns the current number of k:v pairs in the tree
pub fn len(&self) -> usize {
self.inner.as_ref().len()
}
/// Determine if the set is currently empty
pub fn is_empty(&self) -> bool {
self.inner.as_ref().len() == 0
}
/// Iterator over `(&K, &V)` of the set
pub fn iter(&self) -> Iter<K, V> {
self.inner.as_ref().kv_iter()
}
/// Iterator over &K
pub fn values(&self) -> ValueIter<K, V> {
self.inner.as_ref().v_iter()
}
/// Iterator over &V
pub fn keys(&self) -> KeyIter<K, V> {
self.inner.as_ref().k_iter()
}
/// Create a read-snapshot of the current tree.
/// As this is the read variant, it IS safe, and guaranteed the tree will not change.
pub fn to_snapshot(&self) -> HashMapReadSnapshot<K, V> {
HashMapReadSnapshot {
inner: SnapshotType::R(self.inner.as_ref()),
}
}
}
impl<K: Hash Eq Clone Debug Sync Send 'static, V: Clone Sync Send 'static>
HashMapReadSnapshot<'_, K, V>
{
/// Retrieve a value from the tree. If the value exists, a reference is returned
/// as `Some(&V)`, otherwise if not present `None` is returned.
pub fn get<Q>(&self, k: &Q) -> Option<&V>
where
K: Borrow<Q>,
Q: Hash Eq ?Sized,
{
match self.inner {
SnapshotType::R(inner) => {
let k_hash = inner.hash_key(k);
inner.search(k_hash, k)
}
SnapshotType::W(inner) => {
let k_hash = inner.hash_key(k);
inner.search(k_hash, k)
}
}
}
/// Assert if a key exists in the tree.
pub fn contains_key<Q>(&self, k: &Q) -> bool
where
K: Borrow<Q>,
Q: Hash Eq ?Sized,
{
self.get(k).is_some()
}
/// Returns the current number of k:v pairs in the tree
pub fn len(&self) -> usize {
match self.inner {
SnapshotType::R(inner) => inner.len(),
SnapshotType::W(inner) => inner.len(),
}
}
/// Determine if the set is currently empty
pub fn is_empty(&self) -> bool {
self.len() == 0
}
// (adv) range
/// Iterator over `(&K, &V)` of the set
pub fn iter(&self) -> Iter<K, V> {
match self.inner {
SnapshotType::R(inner) => inner.kv_iter(),
SnapshotType::W(inner) => inner.kv_iter(),
}
}
/// Iterator over &K
pub fn values(&self) -> ValueIter<K, V> {
match self.inner {
SnapshotType::R(inner) => inner.v_iter(),
SnapshotType::W(inner) => inner.v_iter(),
}
}
/// Iterator over &V
pub fn keys(&self) -> KeyIter<K, V> {
match self.inner {
SnapshotType::R(inner) => inner.k_iter(),
SnapshotType::W(inner) => inner.k_iter(),
}
}
}