-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathdist_mnist_mon_session_dataset.py
247 lines (211 loc) · 9.61 KB
/
dist_mnist_mon_session_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
# -*- coding: utf-8 -*-
import os
print(os.path.abspath(__file__))
import sys
import time
import traceback
import tensorflow as tf
flags = tf.app.flags
flags.DEFINE_string("data_dir", "./", "Directory for storing mnist data")
flags.DEFINE_string("train_tfrecords", './raw_data/train.tfrecords',
"Path for the train tfrecords file")
flags.DEFINE_string("model_dir", "./dist_mon_dataset", "Directory for storing "
"model data")
flags.DEFINE_integer("task_index", None,
"Worker task index, should be >= 0. task_index=0 is "
"the master worker task the performs the variable "
"initialization ")
flags.DEFINE_integer("num_gpus", 2,
"Total number of gpus for each machine."
"If you don't use GPU, please set it to '0'")
flags.DEFINE_integer("total_step", 10, "total steps of training.")
flags.DEFINE_integer("replicas_to_aggregate", None,
"Number of replicas to aggregate before parameter update"
"is applied (For sync_replicas mode only; default: "
"num_workers)")
flags.DEFINE_string("ps_hosts", "localhost:2222",
"Comma-separated list of hostname:port pairs")
flags.DEFINE_string("worker_hosts", "localhost:2223,localhost:2224",
"Comma-separated list of hostname:port pairs")
flags.DEFINE_string("job_name", None, "job name: worker or ps")
FLAGS = flags.FLAGS
tf.logging.set_verbosity(tf.logging.DEBUG)
# assert tf.__version__ == '1.1.0', (
# 'This code requires TensorFlow v1.1, You have:%s' % tf.__version__)
IMAGE_PIXELS = 28
def generate_parse_fn(batch_size):
def read_examples(examples):
features = {}
features['label'] = tf.FixedLenFeature([], tf.int64)
features['image_raw'] = tf.FixedLenFeature([], tf.string)
features = tf.parse_example(examples, features)
images = tf.decode_raw(features['image_raw'], tf.uint8)
images.set_shape([batch_size, 784])
images = tf.cast(images, tf.float32) * (1. / 255) - 0.5
labels = features['label']
one_hot_labels = tf.to_float(tf.one_hot(labels, 10, 1, 0))
return images, one_hot_labels
return read_examples
def input_fn(file_names, batch_size, epoch=None):
_parse_fn = generate_parse_fn(batch_size)
files = tf.data.Dataset.list_files(file_names)
# number_of_cpu is the value of worker.vcore in xml file
dataset = files.apply(tf.contrib.data.parallel_interleave(
tf.data.TFRecordDataset,
cycle_length=4 * 2))
# prefetch will buffer the previos op and improve the performance
dataset = dataset.prefetch(buffer_size=batch_size)
# times: user defined
dataset = dataset.shuffle(buffer_size=batch_size * 4)
# buffer the shuffle op and improve the perfromance
dataset = dataset.prefetch(buffer_size=batch_size)
dataset = dataset.repeat(epoch)
dataset = dataset.batch(batch_size)
dataset = dataset.map(_parse_fn, num_parallel_calls=4)
iterator = dataset.make_one_shot_iterator()
return iterator.get_next()
def get_loss_acc(train_images, train_labels, reuse_variables=None):
with tf.variable_scope(tf.get_variable_scope(), reuse=reuse_variables):
y_ = inference(train_images)
print(train_labels.shape)
y = tf.to_float(train_labels)
# print(y.shape)
y.set_shape([128, 10])
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
labels=y, logits=y_))
correct_prediction = tf.equal(tf.argmax(y_, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
return loss, accuracy
def get_weight_variable(shape):
weights = tf.get_variable("weights", shape,
initializer=tf.truncated_normal_initializer(
stddev=0.1))
return weights
def inference(train_images):
with tf.variable_scope('layer1'):
w = get_weight_variable([784, 10])
b = tf.get_variable("biases", [10],
initializer=tf.constant_initializer(0.0))
# x = tf.reshape(train_images, [-1, 784])
y = tf.matmul(train_images, w) b
print('ddddd%s' % y.shape)
return y
def train(global_step):
with tf.variable_scope(tf.get_variable_scope()):
train_images, train_labels = input_fn(
FLAGS.train_tfrecords, 128)
loss, acc = get_loss_acc(train_images, train_labels)
opt = tf.train.GradientDescentOptimizer(0.5)
train_op = opt.minimize(loss, global_step=global_step)
return train_op, loss, acc
class _QueueHook(tf.train.SessionRunHook):
def __init__(self, enqueue_op):
self.op = enqueue_op
def end(self, session):
session.run(self.op)
tf.logging.info('kill_ps_enqueue_op done....')
class Training(object):
def __init__(self):
# distribution check
if FLAGS.job_name is None or FLAGS.job_name == "":
raise ValueError("Must specify an explicit `job_name`")
if FLAGS.task_index is None or FLAGS.task_index == "":
raise ValueError("Must specify an explicit `task_index`")
if FLAGS.train_tfrecords is None:
raise ValueError("Must specify an explicit `train_tfrecords`")
# if FLAGS.test_tfrecords is None:
# raise ValueError("Must specify an explicit `test_tfrecords`")
print("job name = %s" % FLAGS.job_name)
print("task index = %d" % FLAGS.task_index)
ps_spec = FLAGS.ps_hosts.split(",")
worker_spec = FLAGS.worker_hosts.split(",")
self.num_workers = len(worker_spec)
self.cluster = tf.train.ClusterSpec({
"ps": ps_spec,
"worker": worker_spec})
self.kill_ps_queue = self.create_done_queue(self.num_workers)
self.server = tf.train.Server(self.cluster, job_name=FLAGS.job_name,
task_index=FLAGS.task_index)
self.is_chief = (FLAGS.task_index == 0)
self.worker_device = "/job:worker/task:%d" % FLAGS.task_index
self.sess = None
def create_done_queue(self, num_workers):
with tf.device("/job:ps/task:0"):
return tf.FIFOQueue(num_workers, tf.int32,
shared_name="done_queue0")
def create_session(self):
sess_config = tf.ConfigProto(allow_soft_placement=True,
device_filters=["/job:ps",
"/job:worker/task:%d" % FLAGS.task_index],
log_device_placement=False)
sess_config.gpu_options.allow_growth = True
hooks = [tf.train.StopAtStepHook(num_steps=FLAGS.total_step),
_QueueHook(self.kill_ps_queue.enqueue(1))]
self.sess = tf.train.MonitoredTrainingSession(
master=self.server.target,
is_chief=self.is_chief,
checkpoint_dir=FLAGS.model_dir,
scaffold=None,
hooks=hooks,
chief_only_hooks=None,
save_checkpoint_secs=30,
save_summaries_steps=100,
# save_summaries_secs=USE_DEFAULT,
config=sess_config,
stop_grace_period_secs=120,
log_step_count_steps=10,
max_wait_secs=7200
)
return self.sess
def create_session_wrapper(self, times=10):
if times == 0:
tf.logging.error('creating the session is out of times.')
sys.exit(0)
try:
return self.create_session()
except Exception as e:
tf.logging.info(e)
tf.logging.info('retry creating session:%s' % times)
try:
if self.sess is not None:
self.sess.close()
else:
tf.logging.info('close session: sess is None!')
except Exception as e:
exc_info = traceback.format_exc(sys.exc_info())
msg = 'creating session exception:%s\n%s' % (e, exc_info)
tf.logging.warn(msg)
return self.create_session_wrapper(times - 1)
def do(self):
if FLAGS.job_name == "ps":
with tf.Session(self.server.target) as sess:
for i in range(self.num_workers):
sess.run(self.kill_ps_queue.dequeue())
return
with tf.device(tf.train.replica_device_setter(
worker_device=self.worker_device,
ps_device="/job:ps/cpu:0",
cluster=self.cluster)):
global_step = tf.train.get_or_create_global_step()
train_op, loss, acc = train(global_step)
if self.is_chief:
print("Worker %d: Initializing session..." % FLAGS.task_index)
else:
print("Worker %d: Waiting for session to be initialized..." %
FLAGS.task_index)
b_time = time.time()
self.create_session_wrapper()
while not self.sess.should_stop():
with self.sess as sess:
time.sleep(1)
print('=======================================')
_, loss_val, acc_val, step = sess.run([train_op, loss, acc,
global_step])
print('global_step:%s, cost_time:%s, loss:%s, acc:%s' % (
step, time.time() - b_time, loss_val, acc_val))
print('Done!!')
def main(_):
training = Training()
training.do()
if __name__ == '__main__':
tf.app.run(main=main)