-
Notifications
You must be signed in to change notification settings - Fork 1
/
hotel.cpp
570 lines (419 loc) · 11.8 KB
/
hotel.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
//////////////////////////////////////////////////////////////////
// //
// PLINK (c) 2005-2006 Shaun Purcell //
// //
// This file is distributed under the GNU General Public //
// License, Version 2. Please see the file COPYING for more //
// details //
// //
//////////////////////////////////////////////////////////////////
#include <iostream>
#include <iomanip>
#include <map>
#include <vector>
#include <cmath>
#include "plink.h"
#include "sets.h"
#include "options.h"
#include "helper.h"
#include "stats.h"
#include "perm.h"
using namespace std;
// Helper function
void calcHotelSetMeanVariance(vector<CSNP*> &,
vector<double> &,
vector<double> &,
vector<vector<double> > &,
vector<Individual*>&,
int,int);
void Plink::perm_testHotel(Perm & perm)
{
if (!par::SNP_major)
Ind2SNP();
// Do not allow monomorphic alleles
if (par::min_af==0)
error("Cannot specify --maf 0 when using --T2; set --maf > 0");
// Do not allow completely missing SNPs
if (par::MAX_GENO_MISSING==1)
error("Cannot specify --geno 1 when using --T2; set --geno < 1");
// Are we using sets? If so, construct these now
if (!par::set_test)
error("You need to specify sets (--set option) with --T2");
// Do not allow quantitative traits
if (!par::bt)
error("Cannot specify --T2 with quantitative traits");
// Prune SET (0-sized sets, MAF==0 SNPs, etc)
pS->pruneSets(*this);
int ns = snpset.size();
///////////////////////////////////////////
// Count how many cases, how many controls
int caseN = 0;
int controlN = 0;
for (int i=0; i < n; i )
if (!sample[i]->missing)
if (sample[i]->aff)
caseN ;
else
controlN ;
if ( caseN == 0 ||
controlN == 0 )
error("No cases / no controls for T(2) test");
// Multi-collinearity SNP pruning
setFlags(true);
pS->pruneMC(*this,true,par::vif_threshold);
// Empirical p-values (1 per set)
perm.setTests(ns);
////////////////////////////////
// Set up permutation structure
// (we need to perform this step
// whether or not we also
// subsequently permute)
perm.setPermClusters(*this);
perm.originalOrder();
vector<double> original = calcHotel(true,
perm,
*pS,
caseN, controlN);
////////////////////////////
// If no permutation, then
// leave now
if (!par::permute) return;
//////////////////////
// Begin permutations
bool finished = false;
while(!finished)
{
// Store permuted results
vector<double> pr(ns);
if (par::perm_genedrop)
perm.geneDrop();
else
perm.permuteInCluster();
pr = calcHotel(false,
perm,
*pS,
caseN, controlN);
////////////////////////////////
// Standard permutation counting
finished = perm.update(pr,original);
} // next permutation
if (!par::silent)
cout << "\n\n";
////////////////////
// Display results
ofstream ASC;
string f;
if (par::adaptive_perm) f = par::output_file_name ".T2.perm";
else f = par::output_file_name ".T2.mperm";
ASC.open(f.c_str(),ios::out);
ASC.precision(4);
printLOG("Writing permutation T2 test results to [ " f " ] \n");
ASC << setw(12) << "SET" << " "
<< setw(4)<< "SIZE" << " "
<< setw(12) << "EMP1" << " ";
if (par::adaptive_perm)
ASC << setw(12)<< "NP" << " ";
else
ASC << setw(12)<< "EMP2" << " ";
ASC << "\n";
for (int s=0; s<snpset.size(); s )
{
ASC << setw(12) << setname[s] << " "
<< setw(4) << snpset[s].size() << " ";
ASC << setw(12) << perm.pvalue(s) << " ";
if (par::adaptive_perm)
ASC << setw(12) << perm.reps_done(s) << " ";
else
ASC << setw(12) << perm.max_pvalue(s) << " ";
ASC << "\n";
}
ASC.close();
}
vector<double> Plink::calcHotel(bool disp,
Perm & perm,
Set & S,
int ncase,
int ncontrol)
{
ofstream ASC;
if (disp)
{
string f = par::output_file_name ".T2";
ASC.open(f.c_str(),ios::out);
ASC.precision(4);
printLOG("Writing T2 test results to [ " f " ] \n");
ASC << setw(12) << "SET" << " "
<< setw(4)<< "SIZE" << " "
<< setw(12)<< "T2" << " "
<< setw(12) << "DF1" << " "
<< setw(12)<< "DF2" << " "
<< setw(12)<< "P_HOTEL" << "\n";
}
// Number of SETs
int ns = pS->snpset.size();
vector<double> T2(ns,0);
// Consider each SET
for (int s=0; s<ns; s )
{
// Adaptive permutation: skip possibly
if (par::adaptive_perm && !perm.snp_test[s]) continue;
// Consider each SNP, coded 1,0 and -1
// Use mean-substitution for missing alleles
int nss0 = snpset[s].size();
//////////////////////////////////////////////
// Create a vector of pointers for SNPs in set
int nss = 0;
vector<CSNP*> pSNP(0);
for (int j=0; j<nss0; j )
{
// include this SNP? (MC considerations)
if ( pS->cur[s][j] )
{
// Add to set list
pSNP.push_back( SNP[snpset[s][j]] );
// Increase the actual number of snps in set
nss ;
}
}
vector<double> mean2(nss,0); // Case mean
vector<double> mean1(nss,0); // Control mean
vector<vector<double> > pooled; // Covariance matrix
///////////////////////////////////////
// Calculate mean and variance (pooled)
// after imputing missing SNPs
calcHotelSetMeanVariance(pSNP,mean1,mean2,pooled,sample,ncase,ncontrol);
///////////////////////////////
// 2. Calculate test statistic
for (int j1=0; j1<nss; j1 )
for (int j2=j1; j2<nss; j2 )
{
pooled[j1][j2] /= (double)(ncase ncontrol-2);
pooled[j1][j2] *= 1/(double)ncase 1/(double)ncontrol;
if (j1!=j2)
pooled[j2][j1] = pooled[j1][j2];
}
// Get inverse of this matix
bool flag = true;
pooled = svd_inverse(pooled,flag);
// Calculate T2 statistic
vector<double> tmp(nss,0);
for (int j1=0; j1<nss; j1 )
for (int j2=0; j2<nss; j2 )
tmp[j1] = ( mean1[j2] - mean2[j2] ) * pooled[j1][j2];
double stat_t2 = 0;
for (int j1=0; j1<nss; j1 )
stat_t2 = tmp[j1] * ( mean1[j1] - mean2[j1] );
// T(2) is distributed as (n-1)p / (n-p) F(p,n-p)
// where n = number of individuals; p = number of variables
// For two-sample T(2), replace n with n1 n2-1
// Make statistic; test against F(nss, ncase ncontrol-1 - nss)
stat_t2 /=
(
(double)((ncase ncontrol-2)*nss)
/ (double)(ncase ncontrol-nss-1)
);
// Asymptotic p-value, use 1-p as test statistic
// for permutation
double T2p = pF(stat_t2,nss, ncase ncontrol-nss-1);
T2[s] = 1 - T2p;
// cout << "\nTest STAT = " << T2[s] << "\n";
if (disp)
{
ASC << setw(12) << setname[s] << " "
<< setw(4) << snpset[s].size() << " "
<< setw(12) << stat_t2<< " "
<< setw(12) << nss << " "
<< setw(12) << ncase ncontrol-nss-1 << " "
<< setw(12) << T2p << "\n";
}
}
return T2;
}
void calcHotelSetMeanVariance(vector<CSNP*> & pSNP,
vector<double> & mean1,
vector<double> & mean2,
vector<vector<double> > & pooled,
vector<Individual*> & sample,
int ncase,
int ncontrol)
{
int nss = mean1.size();
vector<double> mean(nss,0);
vector<int> cnt1(nss,0);
vector<int> cnt2(nss,0);
////////////////////////////
// Iterate over SNPs in SET
vector<CSNP*>::iterator ps = pSNP.begin();
int j=0;
while ( ps != pSNP.end() )
{
///////////////////////////
// Iterate over individuals
vector<Individual*>::iterator gperson = sample.begin();
vector<bool>::iterator i1 = (*ps)->one.begin();
vector<bool>::iterator i2 = (*ps)->two.begin();
int i=0;
while ( gperson != sample.end() )
{
// Permuted self
Individual * pperson = (*gperson)->pperson;
// Affected individuals
if ( ! pperson->missing )
{
if (pperson->aff)
{
if ( *i1 )
{
if ( *i2 ) // 11 homozygote
{
mean[j] ;
cnt2[j] ;
mean2[j] ;
}
}
else
{
cnt2[j] ;
if ( ! *i2 ) // 00 homozygote
{
mean[j]--;
mean2[j]--;
}
}
}
else
{
if ( *i1 )
{
if ( *i2 ) // 11 homozygote
{
mean[j] ;
cnt1[j] ;
mean1[j] ;
}
}
else
{
cnt1[j] ;
if ( ! *i2 ) // 00 homozygote
{
mean[j]--;
mean1[j]--;
}
}
}
}
// Next individual
gperson ;
i1 ;
i2 ;
i ;
}
// Next SNP in set
ps ;
j ;
}
// Having iterated over all individuals, we can now calculate the mean
// values, perform mean-substitution of missing data, and calculate the
// second order terms
cout.precision(8);
for (int j=0; j<nss; j )
{
mean[j] /= (double)(cnt1[j] cnt2[j]);
mean1[j] /= (double)cnt1[j];
mean2[j] /= (double)cnt2[j];
}
// Element of pooled covariance matrix S is
// S[x][y] = ( X[i] - mean1[i] ) ( X[j] - mean1[j] )
pooled.resize(nss);
for (int j=0; j<nss; j )
pooled[j].resize(nss,0);
/////////////////////////////////////
// Iterate over pairs of SNPs in SET
// First SNP
vector<CSNP*>::iterator ps1 = pSNP.begin();
int j1=0;
while ( ps1 != pSNP.end() )
{
// Second SNP
vector<CSNP*>::iterator ps2 = ps1;
int j2=j1;
while ( ps2 != pSNP.end() )
{
///////////////////////////
// Iterate over individuals
vector<Individual*>::iterator gperson = sample.begin();
vector<bool>::iterator i1_1 = (*ps1)->one.begin();
vector<bool>::iterator i2_1 = (*ps1)->two.begin();
vector<bool>::iterator i1_2 = (*ps2)->one.begin();
vector<bool>::iterator i2_2 = (*ps2)->two.begin();
while ( gperson != sample.end() )
{
// Permuted self
Individual * pperson = (*gperson)->pperson;
// Set both values to sample mean
double v1 = mean[j1];
double v2 = mean[j2];
// First SNP
if ( *i1_1 )
{
if ( *i2_1 ) // 11 homozygote
{
v1 = 1;
}
}
else
{
if ( ! *i2_1 ) // 00 homozygote
{
v1 = -1;
}
else
v1 = 0; // 01 heterozygote
}
// Second SNP
if ( *i1_2 )
{
if ( *i2_2 ) // 11 homozygote
{
v2 = 1;
}
}
else
{
if ( ! *i2_2 ) // 00 homozygote
{
v2 = -1;
}
else
v2 = 0; // 01 heterozygote
}
// Contribution to covariance term
if (! pperson->missing)
{
if (pperson->aff) // affecteds
pooled[j1][j2] = ( v1 - mean2[j1] ) * ( v2 - mean2[j2] );
else // unaffecteds
pooled[j1][j2] = ( v1 - mean1[j1] ) * ( v2 - mean1[j2] );
}
// Next individual
gperson ;
i1_1 ;
i2_1 ;
i1_2 ;
i2_2 ;
}
// Next second SNP
ps2 ;
j2 ;
}
// Next first SNP
ps1 ;
j1 ;
}
// Make matrix symmetric
for (int i=0; i<nss; i )
for (int j=i; j<nss; j )
pooled[j][i] = pooled[i][j];
return;
}