-
Notifications
You must be signed in to change notification settings - Fork 52
/
seg_lesion.py
661 lines (554 loc) · 29.2 KB
/
seg_lesion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
863
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
"""
Original code from OSVOS (https://github.com/scaelles/OSVOS-TensorFlow)
Sergi Caelles ([email protected])
Modified code for liver and lesion segmentation:
Miriam Bellver ([email protected])
"""
import tensorflow as tf
import numpy as np
from tensorflow.contrib.layers.python.layers import utils
import sys
from datetime import datetime
import os
import scipy.misc
from PIL import Image
slim = tf.contrib.slim
import scipy.io
import timeit
DTYPE = tf.float32
def seg_lesion_arg_scope(weight_decay=0.0002):
"""Defines the arg scope.
Args:
weight_decay: The l2 regularization coefficient.
Returns:
An arg_scope.
"""
with slim.arg_scope([slim.conv2d, slim.convolution2d_transpose],
activation_fn=tf.nn.relu,
weights_initializer=tf.random_normal_initializer(stddev=0.001),
weights_regularizer=slim.l2_regularizer(weight_decay),
biases_initializer=tf.zeros_initializer,
biases_regularizer=None,
padding='SAME') as arg_sc:
return arg_sc
def crop_features(feature, out_size):
"""Crop the center of a feature map
Args:
feature: Feature map to crop
out_size: Size of the output feature map
Returns:
Tensor that performs the cropping
"""
up_size = tf.shape(feature)
ini_w = tf.div(tf.subtract(up_size[1], out_size[1]), 2)
ini_h = tf.div(tf.subtract(up_size[2], out_size[2]), 2)
slice_input = tf.slice(feature, (0, ini_w, ini_h, 0), (-1, out_size[1], out_size[2], -1))
return tf.reshape(slice_input, [int(feature.get_shape()[0]), out_size[1], out_size[2], int(feature.get_shape()[3])])
def _weight_variable(name, shape):
return tf.get_variable(name, shape, DTYPE, tf.truncated_normal_initializer(stddev=0.1))
def _bias_variable(name, shape):
return tf.get_variable(name, shape, DTYPE, tf.constant_initializer(0.1, dtype=DTYPE))
def seg_lesion(inputs, number_slices=1, volume=False, scope='seg_lesion'):
"""Defines the network
Args:
inputs: Tensorflow placeholder that contains the input image
scope: Scope name for the network
Returns:
net: Output Tensor of the network
end_points: Dictionary with all Tensors of the network
"""
im_size = tf.shape(inputs)
with tf.variable_scope(scope, 'seg_lesion', [inputs]) as sc:
end_points_collection = sc.name '_end_points'
# Collect outputs of all intermediate layers.
with slim.arg_scope([slim.conv2d, slim.max_pool2d],
padding='SAME',
outputs_collections=end_points_collection):
net = slim.repeat(inputs, 2, slim.conv2d, 64, [3, 3], scope='conv1')
net = slim.max_pool2d(net, [2, 2], scope='pool1')
net_2 = slim.repeat(net, 2, slim.conv2d, 128, [3, 3], scope='conv2')
net = slim.max_pool2d(net_2, [2, 2], scope='pool2')
net_3 = slim.repeat(net, 3, slim.conv2d, 256, [3, 3], scope='conv3')
net = slim.max_pool2d(net_3, [2, 2], scope='pool3')
net_4 = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], scope='conv4')
net = slim.max_pool2d(net_4, [2, 2], scope='pool4')
net_5 = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], scope='conv5')
# Get side outputs of the network
with slim.arg_scope([slim.conv2d],
activation_fn=None):
side_2 = slim.conv2d(net_2, 16, [3, 3], scope='conv2_2_16')
side_3 = slim.conv2d(net_3, 16, [3, 3], scope='conv3_3_16')
side_4 = slim.conv2d(net_4, 16, [3, 3], scope='conv4_3_16')
side_5 = slim.conv2d(net_5, 16, [3, 3], scope='conv5_3_16')
# Supervise side outputs
side_2_s = slim.conv2d(side_2, number_slices, [1, 1], scope='score-dsn_2')
side_3_s = slim.conv2d(side_3, number_slices, [1, 1], scope='score-dsn_3')
side_4_s = slim.conv2d(side_4, number_slices, [1, 1], scope='score-dsn_4')
side_5_s = slim.conv2d(side_5, number_slices, [1, 1], scope='score-dsn_5')
with slim.arg_scope([slim.convolution2d_transpose],
activation_fn=None, biases_initializer=None, padding='VALID',
outputs_collections=end_points_collection, trainable=False):
side_2_s = slim.convolution2d_transpose(side_2_s, number_slices, 4, 2, scope='score-dsn_2-up')
side_2_s = crop_features(side_2_s, im_size)
utils.collect_named_outputs(end_points_collection, 'seg_lesion/score-dsn_2-cr', side_2_s)
side_3_s = slim.convolution2d_transpose(side_3_s, number_slices, 8, 4, scope='score-dsn_3-up')
side_3_s = crop_features(side_3_s, im_size)
utils.collect_named_outputs(end_points_collection, 'seg_lesion/score-dsn_3-cr', side_3_s)
side_4_s = slim.convolution2d_transpose(side_4_s, number_slices, 16, 8, scope='score-dsn_4-up')
side_4_s = crop_features(side_4_s, im_size)
utils.collect_named_outputs(end_points_collection, 'seg_lesion/score-dsn_4-cr', side_4_s)
side_5_s = slim.convolution2d_transpose(side_5_s, number_slices, 32, 16, scope='score-dsn_5-up')
side_5_s = crop_features(side_5_s, im_size)
utils.collect_named_outputs(end_points_collection, 'seg_lesion/score-dsn_5-cr', side_5_s)
# Main output
side_2_f = slim.convolution2d_transpose(side_2, 16, 4, 2, scope='score-multi2-up')
side_2_f = crop_features(side_2_f, im_size)
utils.collect_named_outputs(end_points_collection, 'seg_lesion/side-multi2-cr', side_2_f)
side_3_f = slim.convolution2d_transpose(side_3, 16, 8, 4, scope='score-multi3-up')
side_3_f = crop_features(side_3_f, im_size)
utils.collect_named_outputs(end_points_collection, 'seg_lesion/side-multi3-cr', side_3_f)
side_4_f = slim.convolution2d_transpose(side_4, 16, 16, 8, scope='score-multi4-up')
side_4_f = crop_features(side_4_f, im_size)
utils.collect_named_outputs(end_points_collection, 'seg_lesion/side-multi4-cr', side_4_f)
side_5_f = slim.convolution2d_transpose(side_5, 16, 32, 16, scope='score-multi5-up')
side_5_f = crop_features(side_5_f, im_size)
utils.collect_named_outputs(end_points_collection, 'seg_lesion/side-multi5-cr', side_5_f)
concat_side = tf.concat([side_2_f, side_3_f, side_4_f, side_5_f], 3)
net = slim.conv2d(concat_side, number_slices, [1, 1], scope='upscore-fuse')
end_points = slim.utils.convert_collection_to_dict(end_points_collection)
return net, end_points
def upsample_filt(size):
factor = (size 1) // 2
if size % 2 == 1:
center = factor - 1
else:
center = factor - 0.5
og = np.ogrid[:size, :size]
return (1 - abs(og[0] - center) / factor) * \
(1 - abs(og[1] - center) / factor)
# set parameters s.t. deconvolutional layers compute bilinear interpolation
# N.B. this is for deconvolution without groups
def interp_surgery(variables):
interp_tensors = []
for v in variables:
if '-up' in v.name:
h, w, k, m = v.get_shape()
tmp = np.zeros((m, k, h, w))
if m != k:
print 'input output channels need to be the same'
raise
if h != w:
print 'filters need to be square'
raise
up_filter = upsample_filt(int(h))
tmp[range(m), range(k), :, :] = up_filter
interp_tensors.append(tf.assign(v, tmp.transpose((2, 3, 1, 0)), validate_shape=True, use_locking=True))
return interp_tensors
def preprocess_img(image, number_slices):
"""Preprocess the image to adapt it to network requirements
Args:
Image we want to input the network (W,H,3) numpy array
Returns:
Image ready to input the network (1,W,H,3)
"""
images = [[] for i in range(np.array(image).shape[0])]
if number_slices > 2:
for j in range(np.array(image).shape[0]):
if type(image) is not np.ndarray:
for i in range(number_slices):
images[j].append(np.array(scipy.io.loadmat(image[0][i])['section'], dtype=np.float32))
else:
img = image
else:
for j in range(np.array(image).shape[0]):
for i in range(3):
images[j].append(np.array(scipy.io.loadmat(image[0][0])['section'], dtype=np.float32))
in_ = np.array(images[0])
in_ = in_.transpose((1,2,0))
in_ = np.expand_dims(in_, axis=0)
return in_
def preprocess_labels(label, number_slices):
"""Preprocess the labels to adapt them to the loss computation requirements
Args:
Label corresponding to the input image (W,H) numpy array
Returns:
Label ready to compute the loss (1,W,H,1)
"""
labels = [[] for i in range(np.array(label).shape[0])]
for j in range(np.array(label).shape[0]):
if type(label) is not np.ndarray:
for i in range(number_slices):
labels[j].append(np.array(Image.open(label[0][i]), dtype=np.uint8))
label = np.array(labels[0])
label = label.transpose((1,2,0))
max_mask = np.max(label) * 0.5
label = np.greater(label, max_mask)
label = np.expand_dims(label, axis=0)
return label
def load_vgg_imagenet(ckpt_path, number_slices):
"""Initialize the network parameters from the VGG-16 pre-trained model provided by TF-SLIM
Args:
Path to the checkpoint
Returns:
Function that takes a session and initializes the network
"""
reader = tf.train.NewCheckpointReader(ckpt_path)
var_to_shape_map = reader.get_variable_to_shape_map()
vars_corresp = dict()
for v in var_to_shape_map:
if "conv" in v:
if not "conv1/conv1_1/weights" in v or number_slices<4:
vars_corresp[v] = slim.get_model_variables(v.replace("vgg_16", "seg_lesion"))[0]
init_fn = slim.assign_from_checkpoint_fn(
ckpt_path,
vars_corresp)
return init_fn
def class_balanced_cross_entropy_loss(output, label, results_liver):
"""Define the class balanced cross entropy loss to train the network
Args:
output: Output of the network
label: Ground truth label
Returns:
Tensor that evaluates the loss
"""
labels = tf.cast(tf.greater(label, 0.5), tf.float32)
output_gt_zero = tf.cast(tf.greater_equal(output, 0), tf.float32)
loss_val = tf.multiply(output, (labels - output_gt_zero)) - tf.log(
1 tf.exp(output - 2 * tf.multiply(output, output_gt_zero)))
loss_pos = tf.reduce_sum(-tf.multiply(results_liver, tf.multiply(labels, loss_val)))
loss_neg = tf.reduce_sum(-tf.multiply(results_liver, tf.multiply(1.0 - labels, loss_val)))
final_loss = 0.1018*loss_neg 0.8982*loss_pos
return final_loss
def dice_coef_theoretical(y_pred, y_true):
"""Define the dice coefficient
Args:
y_pred: Prediction
y_true: Ground truth Label
Returns:
Dice coefficient
"""
y_true_f = tf.cast(tf.reshape(y_true, [-1]), tf.float32)
y_pred_f = tf.nn.sigmoid(y_pred)
y_pred_f = tf.cast(tf.greater(y_pred_f, 0.5), tf.float32)
y_pred_f = tf.cast(tf.reshape(y_pred_f, [-1]), tf.float32)
intersection = tf.reduce_sum(y_true_f * y_pred_f)
union = tf.reduce_sum(y_true_f) tf.reduce_sum(y_pred_f)
dice = (2. * intersection) / (union 0.00001)
if (tf.reduce_sum(y_pred) == 0) and (tf.reduce_sum(y_true) == 0) :
dice = 1
return dice
def preprocess_results(label, number_slices):
"""Preprocess the labels to adapt them to the loss computation requirements
Args:
Label corresponding to the input image (W,H) numpy array
Returns:
Label ready to compute the loss (1,W,H,1)
"""
labels = [[] for i in range(np.array(label).shape[0])]
for j in range(np.array(label).shape[0]):
if type(label) is not np.ndarray:
for i in range(number_slices):
labels[j].append(np.array(Image.open(label[0][i]), dtype=np.uint8))
# label = np.array(labels[0])
label = np.array(labels[0])
label = label.transpose((1,2,0))
# label = label[:, :, ::-1]
label = label/255.0
label = np.expand_dims(label, axis=0)
return label
def parameter_lr():
"""Specify the learning rate for every parameter
Args:
Returns:
Dictionary with the learning rate for every parameter
"""
vars_corresp = dict()
vars_corresp['seg_lesion/conv1/conv1_1/weights'] = 1
vars_corresp['seg_lesion/conv1/conv1_1/biases'] = 2
vars_corresp['seg_lesion/conv1/conv1_2/weights'] = 1
vars_corresp['seg_lesion/conv1/conv1_2/biases'] = 2
vars_corresp['seg_lesion/conv2/conv2_1/weights'] = 1
vars_corresp['seg_lesion/conv2/conv2_1/biases'] = 2
vars_corresp['seg_lesion/conv2/conv2_2/weights'] = 1
vars_corresp['seg_lesion/conv2/conv2_2/biases'] = 2
vars_corresp['seg_lesion/conv3/conv3_1/weights'] = 1
vars_corresp['seg_lesion/conv3/conv3_1/biases'] = 2
vars_corresp['seg_lesion/conv3/conv3_2/weights'] = 1
vars_corresp['seg_lesion/conv3/conv3_2/biases'] = 2
vars_corresp['seg_lesion/conv3/conv3_3/weights'] = 1
vars_corresp['seg_lesion/conv3/conv3_3/biases'] = 2
vars_corresp['seg_lesion/conv4/conv4_1/weights'] = 1
vars_corresp['seg_lesion/conv4/conv4_1/biases'] = 2
vars_corresp['seg_lesion/conv4/conv4_2/weights'] = 1
vars_corresp['seg_lesion/conv4/conv4_2/biases'] = 2
vars_corresp['seg_lesion/conv4/conv4_3/weights'] = 1
vars_corresp['seg_lesion/conv4/conv4_3/biases'] = 2
vars_corresp['seg_lesion/conv5/conv5_1/weights'] = 1
vars_corresp['seg_lesion/conv5/conv5_1/biases'] = 2
vars_corresp['seg_lesion/conv5/conv5_2/weights'] = 1
vars_corresp['seg_lesion/conv5/conv5_2/biases'] = 2
vars_corresp['seg_lesion/conv5/conv5_3/weights'] = 1
vars_corresp['seg_lesion/conv5/conv5_3/biases'] = 2
vars_corresp['seg_lesion/conv2_2_16/weights'] = 1
vars_corresp['seg_lesion/conv2_2_16/biases'] = 2
vars_corresp['seg_lesion/conv3_3_16/weights'] = 1
vars_corresp['seg_lesion/conv3_3_16/biases'] = 2
vars_corresp['seg_lesion/conv4_3_16/weights'] = 1
vars_corresp['seg_lesion/conv4_3_16/biases'] = 2
vars_corresp['seg_lesion/conv5_3_16/weights'] = 1
vars_corresp['seg_lesion/conv5_3_16/biases'] = 2
vars_corresp['seg_lesion/score-dsn_2/weights'] = 0.1
vars_corresp['seg_lesion/score-dsn_2/biases'] = 0.2
vars_corresp['seg_lesion/score-dsn_3/weights'] = 0.1
vars_corresp['seg_lesion/score-dsn_3/biases'] = 0.2
vars_corresp['seg_lesion/score-dsn_4/weights'] = 0.1
vars_corresp['seg_lesion/score-dsn_4/biases'] = 0.2
vars_corresp['seg_lesion/score-dsn_5/weights'] = 0.1
vars_corresp['seg_lesion/score-dsn_5/biases'] = 0.2
vars_corresp['seg_lesion/upscore-fuse/weights'] = 0.01
vars_corresp['seg_lesion/upscore-fuse/biases'] = 0.02
return vars_corresp
def _train(dataset, initial_ckpt, supervison, learning_rate, logs_path, max_training_iters, save_step, display_step,
global_step, number_slices=1, volume=False, iter_mean_grad=1, batch_size=1, task_id=1, loss=1, momentum=0.9, resume_training=False, config=None, finetune=1):
"""Train network
Args:
dataset: Reference to a Dataset object instance
initial_ckpt: Path to the checkpoint to initialize the network (May be parent network or pre-trained Imagenet)
supervison: Level of the side outputs supervision: 1-Strong 2-Weak 3-No supervision
learning_rate: Value for the learning rate. It can be number or an instance to a learning rate object.
logs_path: Path to store the checkpoints
max_training_iters: Number of training iterations
save_step: A checkpoint will be created every save_steps
display_step: Information of the training will be displayed every display_steps
global_step: Reference to a Variable that keeps track of the training steps
iter_mean_grad: Number of gradient computations that are average before updating the weights
batch_size:
momentum: Value of the momentum parameter for the Momentum optimizer
resume_training: Boolean to try to restore from a previous checkpoint (True) or not (False)
config: Reference to a Configuration object used in the creation of a Session
finetune: Use to select to select type of training, 0 for the parent network and 1 for finetunning
Returns:
"""
model_name = os.path.join(logs_path, "seg_lesion.ckpt")
if config is None:
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
# config.log_device_placement = True
config.allow_soft_placement = True
tf.logging.set_verbosity(tf.logging.INFO)
input_depth = 3
if number_slices > 3:
input_depth = number_slices
# Prepare the input data
input_image = tf.placeholder(tf.float32, [batch_size, None, None, input_depth])
input_liver_results = tf.placeholder(tf.float32, [batch_size, None, None, number_slices])
input_label = tf.placeholder(tf.float32, [batch_size, None, None, number_slices])
beta = tf.placeholder(tf.float32, [batch_size])
gamma = tf.placeholder(tf.float32, [batch_size])
# Create the network
with slim.arg_scope(seg_lesion_arg_scope()):
net, end_points = seg_lesion(input_image, number_slices, volume)
# Initialize weights from pre-trained model
if finetune == 0:
init_weights = load_vgg_imagenet(initial_ckpt, number_slices)
# Define loss
with tf.name_scope('losses'):
dsn_2_loss = class_balanced_cross_entropy_loss(end_points['seg_lesion/score-dsn_2-cr'], input_label, input_liver_results)
tf.summary.scalar('losses/dsn_2_loss', dsn_2_loss)
dsn_3_loss = class_balanced_cross_entropy_loss(end_points['seg_lesion/score-dsn_3-cr'], input_label, input_liver_results)
tf.summary.scalar('losses/dsn_3_loss', dsn_3_loss)
dsn_4_loss = class_balanced_cross_entropy_loss(end_points['seg_lesion/score-dsn_4-cr'], input_label, input_liver_results)
tf.summary.scalar('losses/dsn_4_loss', dsn_4_loss)
dsn_5_loss = class_balanced_cross_entropy_loss(end_points['seg_lesion/score-dsn_5-cr'], input_label, input_liver_results)
tf.summary.scalar('losses/dsn_5_loss', dsn_5_loss)
main_loss = class_balanced_cross_entropy_loss(net, input_label, input_liver_results)
tf.summary.scalar('losses/main_loss', main_loss)
if supervison == 1:
output_loss = dsn_2_loss dsn_3_loss dsn_4_loss dsn_5_loss main_loss
elif supervison == 2:
output_loss = 0.5*dsn_2_loss 0.5*dsn_3_loss 0.5*dsn_4_loss 0.5*dsn_5_loss main_loss
elif supervison == 3:
output_loss = main_loss
else:
sys.exit('Incorrect supervision id, select 1 for supervision of the side outputs, 2 for weak supervision '
'of the side outputs and 3 for no supervision of the side outputs')
total_loss = output_loss tf.add_n(tf.losses.get_regularization_losses())
tf.summary.scalar('losses/total_loss', total_loss)
# Define optimization method
with tf.name_scope('optimization'):
tf.summary.scalar('learning_rate', learning_rate)
optimizer = tf.train.MomentumOptimizer(learning_rate, momentum)
grads_and_vars = optimizer.compute_gradients(total_loss)
with tf.name_scope('grad_accumulator'):
grad_accumulator = []
for ind in range(0, len(grads_and_vars)):
if grads_and_vars[ind][0] is not None:
grad_accumulator.append(tf.ConditionalAccumulator(grads_and_vars[0][0].dtype))
with tf.name_scope('apply_gradient'):
layer_lr = parameter_lr()
grad_accumulator_ops = []
for ind in range(0, len(grad_accumulator)):
if grads_and_vars[ind][0] is not None:
var_name = str(grads_and_vars[ind][1].name).split(':')[0]
var_grad = grads_and_vars[ind][0]
grad_accumulator_ops.append(grad_accumulator[ind].apply_grad(var_grad*layer_lr[var_name],
local_step=global_step))
with tf.name_scope('take_gradients'):
mean_grads_and_vars = []
for ind in range(0, len(grad_accumulator)):
if grads_and_vars[ind][0] is not None:
mean_grads_and_vars.append((grad_accumulator[ind].take_grad(iter_mean_grad), grads_and_vars[ind][1]))
apply_gradient_op = optimizer.apply_gradients(mean_grads_and_vars, global_step=global_step)
# Log training info
with tf.name_scope('metrics'):
dice_coef_op = dice_coef_theoretical(net, input_label)
tf.summary.scalar('metrics/dice_coeff', dice_coef_op)
merged_summary_op = tf.summary.merge_all()
# Initialize variables
init = tf.global_variables_initializer()
with tf.Session(config=config) as sess:
print 'Init variable'
sess.run(init)
# op to write logs to Tensorboard
summary_writer = tf.summary.FileWriter(logs_path '/train', graph=tf.get_default_graph())
test_writer = tf.summary.FileWriter(logs_path '/test')
# Create saver to manage checkpoints
saver = tf.train.Saver(max_to_keep=None)
last_ckpt_path = tf.train.latest_checkpoint(logs_path)
if last_ckpt_path is not None and resume_training:
# Load last checkpoint
print('Initializing from previous checkpoint...')
saver.restore(sess, last_ckpt_path)
step = global_step.eval() 1
else:
# Load pre-trained model
if finetune == 0:
print('Initializing from pre-trained imagenet model...')
init_weights(sess)
else:
print('Initializing from pre-trained model...')
# init_weights(sess)
var_list = []
for var in tf.global_variables():
var_type = var.name.split('/')[-1]
if 'weights' in var_type or 'bias' in var_type:
var_list.append(var)
saver_res = tf.train.Saver(var_list=var_list)
saver_res.restore(sess, initial_ckpt)
step = 1
sess.run(interp_surgery(tf.global_variables()))
print('Weights initialized')
print 'Start training'
while step < max_training_iters 1:
# Average the gradient
for iter_steps in range(0, iter_mean_grad):
batch_image, batch_label, batch_label_liver, batch_results_liver = dataset.next_batch(batch_size, 'train')
batch_image_val, batch_label_val, batch_label_liver_val, batch_results_liver_val = dataset.next_batch(batch_size, 'val')
image = preprocess_img(batch_image, number_slices)
val_image = preprocess_img(batch_image_val, number_slices)
liver_results = preprocess_results(batch_results_liver, number_slices)
liver_results_val = preprocess_results(batch_results_liver_val, number_slices)
if task_id == 2:
batch_label = batch_label_liver
batch_label_val = batch_label_liver_val
label = preprocess_labels(batch_label, number_slices)
label_val = preprocess_labels(batch_label_val, number_slices)
run_res = sess.run([total_loss, merged_summary_op, dice_coef_op] grad_accumulator_ops, feed_dict={input_image: image, input_label: label, input_liver_results: liver_results})
batch_loss = run_res[0]
summary = run_res[1]
train_dice_coef = run_res[2]
if step % display_step == 0:
val_run_res = sess.run([total_loss, merged_summary_op, dice_coef_op], feed_dict={input_image: val_image, input_label: label_val, input_liver_results: liver_results_val})
val_batch_loss = val_run_res[0]
val_summary = val_run_res[1]
val_dice_coef = val_run_res[2]
# Apply the gradients
sess.run(apply_gradient_op)
# Save summary reports
summary_writer.add_summary(summary, step)
if step % display_step == 0:
test_writer.add_summary(val_summary, step)
# Display training status
if step % display_step == 0:
print >> sys.stderr, "{} Iter {}: Training Loss = {:.4f}".format(datetime.now(), step, batch_loss)
print >> sys.stderr, "{} Iter {}: Validation Loss = {:.4f}".format(datetime.now(), step, val_batch_loss)
print >> sys.stderr, "{} Iter {}: Training Dice = {:.4f}".format(datetime.now(), step, train_dice_coef)
print >> sys.stderr, "{} Iter {}: Validation dice = {:.4f}".format(datetime.now(), step, val_dice_coef)
# Save a checkpoint
if step % save_step == 0:
save_path = saver.save(sess, model_name, global_step=global_step)
print "Model saved in file: %s" % save_path
step = 1
if (step-1) % save_step != 0:
save_path = saver.save(sess, model_name, global_step=global_step)
print "Model saved in file: %s" % save_path
print('Finished training.')
def train_seg(dataset, initial_ckpt, supervison, learning_rate, logs_path, max_training_iters, save_step,
display_step, global_step, number_slices=1, volume=False, iter_mean_grad=1, batch_size=1, task_id=1,
loss=1, momentum=0.9, resume_training=False, config=None):
"""Train parent network
Args:
See _train()
Returns:
"""
_train(dataset, initial_ckpt, supervison, learning_rate, logs_path, max_training_iters, save_step, display_step,
global_step, number_slices, volume, iter_mean_grad, batch_size, task_id, loss, momentum, resume_training,
config, finetune=0)
def test(dataset, checkpoint_path, result_path, number_slices=1, volume=False, config=None):
"""Test one sequence
Args:
dataset: Reference to a Dataset object instance
checkpoint_path: Path of the checkpoint to use for the evaluation
result_path: Path to save the output images
config: Reference to a Configuration object used in the creation of a Session
Returns:
net:
"""
if config is None:
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
# config.log_device_placement = True
config.allow_soft_placement = True
tf.logging.set_verbosity(tf.logging.INFO)
# Input data
batch_size = 1
number_of_slices = number_slices
depth_input = number_of_slices
if number_of_slices < 3:
depth_input = 3
input_image = tf.placeholder(tf.float32, [batch_size, None, None, depth_input])
# Create the cnn
with slim.arg_scope(seg_lesion_arg_scope()):
net, end_points = seg_lesion(input_image, number_slices, volume)
probabilities = tf.nn.sigmoid(net)
global_step = tf.Variable(0, name='global_step', trainable=False)
# Create a saver to load the network
saver = tf.train.Saver([v for v in tf.global_variables() if '-up' not in v.name and '-cr' not in v.name])
total_time = 0
with tf.Session(config=config) as sess:
sess.run(tf.global_variables_initializer())
sess.run(interp_surgery(tf.global_variables()))
saver.restore(sess, checkpoint_path)
if not os.path.exists(result_path):
os.makedirs(result_path)
for frame in range(0, dataset.get_test_size()):
img, curr_img = dataset.next_batch(batch_size, 'test')
curr_ct_scan = curr_img[0][0].split('/')[-2]
curr_frames = []
if 1:
for i in range(number_of_slices):
curr_frames.append([curr_img[0][i].split('/')[-1].split('.')[0] '.png'])
if not os.path.exists(os.path.join(result_path, curr_ct_scan)):
os.makedirs(os.path.join(result_path, curr_ct_scan))
image = preprocess_img(curr_img, number_slices)
res = sess.run(probabilities, feed_dict={input_image: image})
res_np = res.astype(np.float32)[0, :, :, number_of_slices/2]
aux_var = curr_frames[number_of_slices/2][0]
scipy.misc.imsave(os.path.join(result_path, curr_ct_scan, aux_var), res_np)
print 'Saving ' os.path.join(result_path, curr_ct_scan, aux_var)
for i in range(number_of_slices):
aux_var = curr_frames[i][0]
if not os.path.exists(os.path.join(result_path, curr_ct_scan, aux_var)):
res_np = res.astype(np.float32)[0, :, :, i]
scipy.misc.imsave(os.path.join(result_path, curr_ct_scan, aux_var), res_np)
print 'Saving ' os.path.join(result_path, curr_ct_scan, aux_var)