This repository includes code and documentation for fine-tuning models on new datasets and evaluating model performance.
To set up the environment, run the following command in the terminal:
conda create --name myenv python=3.8
conda activate myenv
pip install -r requirements.txt
To download the dataset, please visit https://drive.google.com/file/d/1jjuI7Me9VFhpMHp2QP5gHKU5NPkzCQZk/view?usp=sharing, and follow the commands below.
pip install gdown
gdown https://drive.google.com/uc?id=1jjuI7Me9VFhpMHp2QP5gHKU5NPkzCQZk
unzip hw1_data.zip -d ./datasets
cd datasets
mkdir images labels labels/train labels/valid
mv ./hw1_dataset/test ./hw1_dataset/train ./hw1_dataset/valid images
rm -r hw1_dataset
python3 transfer.py
modify train and val path to absolute path in your computer.
To run YOLO, please follow the instructions below.
pip install ultralytics
cd yolo
python3 train.py
The results will stored in the 'run' folder