-
Notifications
You must be signed in to change notification settings - Fork 1
/
KalmanFilter.jl
294 lines (242 loc) · 10.1 KB
/
KalmanFilter.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
module KalmanFilter
using LinearAlgebra
export Kalman, fusion, predict, K, next
const Matrix = AbstractArray{T, N} where {N, T <: Real}
const Vector = AbstractArray{T, N} where {N, T <: Real}
"""
Represents the Kalman-Filter object.
# Arguments
- `A`: State transition matrix.
- `Q`: Process covariance. Belongs to the state transition matrix.
- `G`: Measurement mapping matrix. It maps the measurement `y` in the domain of the state `x̂`.
- `R`: Measurement covariance matrix. It shows the uncertianty of the measurement. It belongs to `G`.
- `x̂`: State vector. Holds the current state. It should be initialized with a good approximation of the initial state.
- `Σ`: Uncertianty of the state vector. It should also be initialized with a good approximation of the uncertianty of the initial state.
- `B`: Control signal matrix. It maps the control signal `u` in the domain of the state `x̂`.
# Examples
Here is a simple model for two dimensional movement:
```
julia> x_0 = zeros(6, 1)
6×1 Array{Float64,2}:
0.0
0.0
0.0
0.0
0.0
0.0
julia> Σ_0 = Matrix{Float64}(I, 6, 6) .* 1000
6×6 Array{Float64,2}:
1000.0 0.0 0.0 0.0 0.0 0.0
0.0 1000.0 0.0 0.0 0.0 0.0
0.0 0.0 1000.0 0.0 0.0 0.0
0.0 0.0 0.0 1000.0 0.0 0.0
0.0 0.0 0.0 0.0 1000.0 0.0
0.0 0.0 0.0 0.0 0.0 1000.0
julia> Δ_t = 0.1
0.1
julia> A = [1 0 Δ_t 0 0.5*Δ_t^2 0;
0 1 0 Δ_t 0 0.5*Δ_t^2;
0 0 1 0 Δ_t 0;
0 0 0 1 0 Δ_t;
0 0 0 0 1 0;
0 0 0 0 0 1]
6×6 Array{Float64,2}:
1.0 0.0 0.1 0.0 0.005 0.0
0.0 1.0 0.0 0.1 0.0 0.005
0.0 0.0 1.0 0.0 0.1 0.0
0.0 0.0 0.0 1.0 0.0 0.1
0.0 0.0 0.0 0.0 1.0 0.0
0.0 0.0 0.0 0.0 0.0 1.0
julia> G = [1 0 0 0 0 0;
0 1 0 0 0 0;
0 0 0 0 1 0;
0 0 0 0 0 1]
4×6 Array{Int64,2}:
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
julia> R = [2 0 0 0;
0 10 0 0;
0 0 0.4 0;
0 0 0 0.4]
4×4 Array{Float64,2}:
2.0 0.0 0.0 0.0
0.0 10.0 0.0 0.0
0.0 0.0 0.4 0.0
0.0 0.0 0.0 0.4
julia> Q = Matrix{Float64}(I, 6, 6) * 0.0001
6×6 Array{Float64,2}:
0.0001 0.0 0.0 0.0 0.0 0.0
0.0 0.0001 0.0 0.0 0.0 0.0
0.0 0.0 0.0001 0.0 0.0 0.0
0.0 0.0 0.0 0.0001 0.0 0.0
0.0 0.0 0.0 0.0 0.0001 0.0
0.0 0.0 0.0 0.0 0.0 0.0001
julia> Kalman(A, Q, G, R, x_0, Σ_0)
Kalman([1.0 0.0 … 0.005 0.0; 0.0 1.0 … 0.0 0.005; … ; 0.0 0.0 … 1.0 0.0; 0.0 0.0 … 0.0 1.0], [0.0001 0.0 … 0.0 0.0; 0.0 0.0001 … 0.0 0.0; … ; 0.0 0.0 … 0.0001 0.0; 0.0 0.0 … 0.0 0.0001], [1 0 … 0 0; 0 1 … 0 0; 0 0 … 1 0; 0 0 … 0 1], [2.0 0.0 0.0 0.0; 0.0 10.0 0.0 0.0; 0.0 0.0 0.4 0.0; 0.0 0.0 0.0 0.4], [0.0; 0.0; … ; 0.0; 0.0], [1000.0 0.0 … 0.0 0.0; 0.0 1000.0 … 0.0 0.0; … ; 0.0 0.0 … 1000.0 0.0; 0.0 0.0 … 0.0 1000.0], UniformScaling{Bool}true*I)
```
Other model with scalar values:
```
julia> A = 1
1
julia> Q = 0.9
0.9
julia> G = 1
1
julia> R = 0.8
0.8
julia> x_0 = 8
8
julia> Σ_0 = 1
1
julia> Kalman(A, Q, G, R, x_0, Σ_0)
Kalman(1, 0.9, 1, 0.8, 8, 1, 0)
```
See also: [`dimension_helper`](@ref), For the multi dimensional case: [`Kalman(A, Q, G, R, x̂, Σ, B)`](@ref), [`Kalman(A, Q, G, R, x̂, Σ)`](@ref) and [`Kalman(A, Q, G, R, x̂, Σ[, B = 0])`](@ref) for the scalar case.
"""
mutable struct Kalman
A # State transition
Q # Process covariance matrix
G # Measurement mapping
R # Measurement covariance matrix
x̂ # Current estimate mean
Σ # Current estimate uncertianty
B # Control signal mapping matrix
function Kalman(A::Matrix, Q::Matrix, G::Matrix, R::Matrix, x̂::Vector, Σ::Matrix, B::Matrix)
size(A)[1] == size(A)[2] || throw(DimensionMismatch("State transition matrix A should be n x n. Given $(size(A))"))
size(x̂)[1] == size(A)[1] && size(x̂)[2] == 1 || throw(DimensionMismatch("State Vector x̂ shoud be ($(size(A)[1]), 1). Given $(size(x̂))"))
size(Σ) == size(A) || throw(DimensionMismatch("State covariance matrix Σ should be n x n. Given $(size(Σ))"))
size(B)[1] == size(A)[1] || throw(DimensionMismatch("Control matrix B should be n x a. Given $(size(B))"))
size(G)[2] == size(A)[1] || throw(DimensionMismatch("Measurement matrix G should be (b, $(size(A)[1])). Given $(size(G))"))
size(Q) == size(A) || throw(DimensionMismatch("Process noise covariance matrix should be n x n. Given $(size(Q))"))
size(R)[1] == size(R)[2] ||throw(DimensionMismatch("Measurement noise covariance matrix should square. Given $(size(R))"))
size(R)[1] == size(G)[1] || throw(DimensionMismatch("Measurement noise covariance matrix should $(size(G)[1]) x $(size(G)[1]). Given $(size(R))"))
new(A, Q, G, R, x̂, Σ, B)
end
"""
Creates a Kalman-Filter object without control signal mapping matrix.
"""
Kalman(A::Matrix, Q::Matrix, G::Matrix, R::Matrix, x̂::Vector, Σ::Matrix) = Kalman(A, Q, G, R, x̂, Σ, zeros(size(A)))
"""
Creates a Kalman-Filter object with optional control signal mapping matrix `B` for the scalar case without dimension checking.
See also: [`Kalman`](@ref) for other constructors.
"""
Kalman(A::Real, Q::Real, G::Real, R::Real, x̂::Real, Σ::Real, B::Real = 0) = new(A, Q, G, R, x̂, Σ, B)
end
"""
dimension_helper(Kalman)
Helps to determine the dimension of the measurement vector `y` and the control signal `u` of the `Kalman` model.
# Examples
```
julia> dimension_helper(model)
(measurement = (6, 1), control_signal = (6, 1))
```
See also [`Kalman`](@ref)
"""
function dimension_helper(k::Kalman)
if isa(k.A, Matrix)
( measurement = (size(k.G)[1], 1), control_signal = (size(k.B)[1], 1) )
else
( measurement = (1, 1), control_signal = (1, 1) )
end
end
"""
K(Kalman)
Computes the Kalman Gain based on a model.
# Arguments
The only argument is a valid `Kalman` struct.
# Examples
```
julia> model = Kalman(A, Q, G, R, x_0, Σ_0, B)
Kalman([1.0 0.0 … 0.005 0.0; 0.0 1.0 … 0.0 0.005; … ; 0.0 0.0 … 1.0 0.0; 0.0 0.0 … 0.0 1.0], [0.0001 0.0 … 0.0 0.0; 0.0 0.0001 … 0.0 0.0; … ; 0.0 0.0 … 0.0001 0.0; 0.0 0.0 … 0.0 0.0001], [1 0 … 0 0; 0 1 … 0 0; 0 0 … 1 0; 0 0 … 0 1], [2.0 0.0 0.0 0.0; 0.0 10.0 0.0 0.0; 0.0 0.0 0.4 0.0; 0.0 0.0 0.0 0.4], [0.0; 0.0; … ; 0.0; 0.0], [1000.0 0.0 … 0.0 0.0; 0.0 1000.0 … 0.0 0.0; … ; 0.0 0.0 … 1000.0 0.0; 0.0 0.0 … 0.0 1000.0], [1.0 0.0 … 0.0 0.0; 0.0 1.0 … 0.0 0.0; … ; 0.0 0.0 … 1.0 0.0; 0.0 0.0 … 0.0 1.0])
julia> K(model)
6×4 Array{Float64,2}:
0.998004 0.0 0.0 0.0
0.0 0.990099 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.9996 0.0
0.0 0.0 0.0 0.9996
```
See also: [`Kalman`](@ref)
"""
function K(k::Kalman)
K(k.Σ, k.G, k.R)
end
"""
K(Σ, G, R)
Computes the Kalman Gain based the matrices.
# Arguments
- Σ: Current state covariance
- G: Measurement matrix
- R: Measurement covariance matrix
# Examples
```
julia> model = Kalman(A, Q, G, R, x_0, Σ_0, B)
Kalman([1.0 0.0 … 0.005 0.0; 0.0 1.0 … 0.0 0.005; … ; 0.0 0.0 … 1.0 0.0; 0.0 0.0 … 0.0 1.0], [0.0001 0.0 … 0.0 0.0; 0.0 0.0001 … 0.0 0.0; … ; 0.0 0.0 … 0.0001 0.0; 0.0 0.0 … 0.0 0.0001], [1 0 … 0 0; 0 1 … 0 0; 0 0 … 1 0; 0 0 … 0 1], [2.0 0.0 0.0 0.0; 0.0 10.0 0.0 0.0; 0.0 0.0 0.4 0.0; 0.0 0.0 0.0 0.4], [0.0; 0.0; … ; 0.0; 0.0], [1000.0 0.0 … 0.0 0.0; 0.0 1000.0 … 0.0 0.0; … ; 0.0 0.0 … 1000.0 0.0; 0.0 0.0 … 0.0 1000.0], [1.0 0.0 … 0.0 0.0; 0.0 1.0 … 0.0 0.0; … ; 0.0 0.0 … 1.0 0.0; 0.0 0.0 … 0.0 1.0])
julia> K(model.Σ, model.G, model.R)
6×4 Array{Float64,2}:
0.998004 0.0 0.0 0.0
0.0 0.990099 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.9996 0.0
0.0 0.0 0.0 0.9996
```
See also: [`Kalman`](@ref)
"""
function K(Σ, G, R)
Σ * transpose(G) * (G * Σ * transpose(G) R)^-1
end
"""
next(k::Kalman, y [, u])
Compute a complete Kalman Step. The dimension of the measurement vector `y` and control signal `u` must match with [`dimension_helper`](@ref)
# Examples
```
julia> model = Kalman(A, Q, G, R, x_0, Σ_0, B)
Kalman([1.0 0.0 … 0.005 0.0; 0.0 1.0 … 0.0 0.005; … ; 0.0 0.0 … 1.0 0.0; 0.0 0.0 … 0.0 1.0], [0.0001 0.0 … 0.0 0.0; 0.0 0.0001 … 0.0 0.0; … ; 0.0 0.0 … 0.0001 0.0; 0.0 0.0 … 0.0 0.0001], [1 0 … 0 0; 0 1 … 0 0; 0 0 … 1 0; 0 0 … 0 1], [2.0 0.0 0.0 0.0; 0.0 10.0 0.0 0.0; 0.0 0.0 0.4 0.0; 0.0 0.0 0.0 0.4], [0.0; 0.0; … ; 0.0; 0.0], [1000.0 0.0 … 0.0 0.0; 0.0 1000.0 … 0.0 0.0; … ; 0.0 0.0 … 1000.0 0.0; 0.0 0.0 … 0.0 1000.0], [1.0 0.0 … 0.0 0.0; 0.0 1.0 … 0.0 0.0; … ; 0.0 0.0 … 1.0 0.0; 0.0 0.0 … 0.0 1.0])
julia> next(model, [1 1 1 1 1 1]')
```
See also: [`dimension_helper`](@ref)
"""
function next(k::Kalman, y, u)
newInstance = deepcopy(k)
p = predict(newInstance, u).state
f = fusion(newInstance, y)
(model = newInstance, fusioned = f.state, predicted = p, gain = f.gain)
end
function next(k::Kalman, y)
newInstance = deepcopy(k)
p = predict(newInstance).state
f = fusion(newInstance, y)
(model = newInstance, fusioned = f.state, predicted = p, gain = f.gain)
end
"""
fusion(k::Kalman, y)
Compute the filtered distribution.
"""
function fusion(k::Kalman, y)
g = K(k.Σ, k.G, k.R)
k.x̂ = k.x̂ g * (y - k.G * k.x̂)
k.Σ = (I - g * k.G) * k.Σ * transpose(I - g * k.G) g * k.R * transpose(g)
(state=k.x̂, cov=k.Σ, gain=g)
end
"""
predict(k::Kalman[, u])
Predict next state based on the model.
"""
function predict(k::Kalman, u)
if size(u)[1] != dimension_helper(k).control_signal[1]
@warn "The dimension of the control_signal `u` or the signal mapping matrix `B` doesn't match."
end
k.x̂ = k.A * k.x̂ k.B * k.u
k.Σ = k.A * k.Σ * transpose(k.A) k.Q
(state=k.x̂, cov=k.Σ)
end
function predict(k::Kalman)
k.x̂ = k.A * k.x̂
k.Σ = k.A * k.Σ * transpose(k.A) k.Q
(state=k.x̂, cov=k.Σ)
end
end