Skip to content

SCOUP is a probabilistic model to analyze single-cell expression data during differentiation

Notifications You must be signed in to change notification settings

hmatsu1226/SCOUP

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SCOUP

SCOUP : a probabilistic model based on the Ornstein-Uhlenbeck process to analyze single-cell expression data during differentiation.

Reference

https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-016-1109-3

Requirements

The following two libraries are necessary for pseudo-time estimation based on the shortest path on the PCA space. ** This pseudo-time is only used for initialing SCOUP, and hence, pseudo-time estimates from other methods or experimental time can be substituted for initialization.**

  • LAPACK
  • BLAS

How to build

git clone https://github.com/hmatsu1226/SCOUP
cd SCOUP
make

Or download from "Download ZIP" button and unzip it.

Running SP

Estimate pseudo-time based on shortest path on the PCA space.

Usage
./sp <Input_file1> <Input_file2> <Output_file1> <Output_file2> <G> <C> <D>
  • Input_file1 : G x C matrix of expression data
  • Input_file2 : Initial distribution data
  • Output_file1 : Pseudo-time estimates
  • Output_file2 : Coordinates of PCA
  • G : The number of genes
  • C : The number of cells
  • D : The number of PCA dimensions
Format of Input_file1

The Input_file1 is the G x C matrix of expression data (separated with 'TAB'). Each row corresponds to each gene, and each column corresponds to each cell.

Example of Input_file1
0.33	-4.95	-1.37	-4.07	...
5.01	4.45	3.82	3.02	...
.
.
.
Format of Input_file2

The Input_file2 contains the mean and variance of the initial normal distribution.

  • Col1 : Index of a gene (0-origin)
  • Col2 : Mean of the initial distribution for a gene
  • Col3 : Variance of the initial distribution for a gene
Example of Input_file2
0	0.0	1.7
1	1.0	2.3
2	-2.0	5.9
Format of Output_file1

The Output_file1 contains the pseudo-time estimates.

  • Col1 : Index of a cell (0-origin)
  • Col2 : Pseudo-time of a cell
Example of Output_file1
0	0.826988
1	0.102140
2	0.758120
Format of Output_file2

The Output_file2 contains the coordinates of PCA.

  • Col1 : Index of a cell (0-origin)
  • Col2 - Col(D 1) : Coordinates of a cell

This file contain (C 1) lines and the last line corresponds to the root cell defined by the mean of the initial distribution.

Example of Output_file2
0	3.04	0.42	
1	-21.21	-1.52	
2	5.76	0.48

Running SCOUP

Estimate the parameters of Mixute Ornstein-Uhlenbeck process.

Usage
./scoup <Options> <Input_file1> <Input_file2> <Input_file3> <Output_file1> <Output_file2> <Output_file3> <G> <C>
  • Input_file1 : G x C matrix of expression data
  • Input_file2 : Initial distribution data
  • Input_file3 : Initial pseudo-time data
  • Output_file1 : Optimized parameters related to genes and lineages
  • Output_file2 : Optimized parameters related to cells
  • Output_file3 : Log-likelihood
  • G : The number of genes
  • C : The number of cells
Options
  • -k INT : The number of lineages (default is 1)
  • -m INT : Upper bound of EM iteration (without pseudo-time optimization). The detailed explanation is described in the supplementary text. (default is 1,000)
  • -M INT : Upper bound of EM iteration (including pseudo-time optimization) (default is 10,000).
  • -a DOUBLE : Lower bound of alpha (default is 0.1)
  • -A DOUBLE : Upper bound of alpha (default is 100)
  • -t DOUBLE : Lower bound of pseudo-time (default is 0.001)
  • -T DOUBLE : Upper bound of pseudo-time (default is 2.0)
  • -s DOUBLE : Lower bound of sigma squared (default is 0.1)
Example of running SCOUP
./scoup -k 2 data/data.txt data/init.txt out/time_sp.txt out/gpara.txt out/cpara.txt out/ll.txt 500 100
Format of Input_file1

This is the expression data matrix data and is the same data as the Input_file1 of SP.

Format of Input_file2

This is initial distribution and is the same data as the Input_file2 of SP.

Format of Input_file3

This is the pseudo-time for initialization and is the same as the Output_file1 of SP.

Format of Output_file1

The Output_file1 contains the optimized parameters related to genes and lineages.

  • First line
    • Col1 and Col2 : Space
    • Col3 - Col(K 2) : The probability of each lineage (pi_k)
  • After first line
    • Col1 : alpha_g
    • Col2 : sigma_g^2
    • Col3 - Col(K 1) : theta_{gk}
Example of Output_file1
 	 	0.509804 	0.490196
0.501610	2.528400	-6.338714 	-2.273163
0.309094	13.046904	3.545862 	0.337260
0.223226	4.212808	-4.443503 	9.629989
2.707472	14.221109	3.959898 	-2.353994
4.361342	34.646044	1.392565 	0.789397
Format of Output_file2
  • Col1 : Pseudo-time of a cell
  • Col2 - Col(K) : Responsibility for each lineage
Example of Output_file2
0.941979	0.990196	0.009804	
2.000000	0.990196	0.009804	
2.000000	0.990196	0.009804	
1.102146	0.990196	0.009804	
0.839387	0.990196	0.009804
Format of Output_file3

The log-likelihood

Exapmle of Output_file3

Running SCOUP from the middle of the activity

Re-estimate parameters from the middle of the activity.

Usage
./scoup_resume <Options> <Input_file1> <Input_file2> <Input_file3> <Input_file4> <Output_file1> <Output_file2> <Output_file3> <G> <C>
  • Input_file1 : G x C matrix of expression data
  • Input_file2 : Initial distribution data
  • Input_file3 : ** Semi-optimized gene and lineage parameters (Output_file1 of scoup) **
  • Input_file4 : ** Semi-optimized cell parameters (Output_file2 of scoup) **
  • Output_file1 : Optimized parameters related to genes and lineages
  • Output_file2 : Optimized parameters related to cells
  • Output_file3 : Log-likelihood
  • G : The number of genes
  • C : The number of cells
Options

It is the same as the Options of "scoup".

Example of running SCOUP
./scoup_resume -k 2 -e 0.0001 data/data.txt data/init.txt out/gpara.txt out/cpara.txt out/gpara_2.txt out/cpara_2.txt out/ll_2.txt 500 100
Format of Input_file1

This is the same as the Input_file1 of "scoup".

Format of Input_file2

This is the same as the Input_file2 of "scoup".

Format of Input_file3

This is the parameters related to genes and lineages and is the same as the Output_file1 of SCOUP.

Format of Input_file4

This is the parameters related to cells and is the same as the Output_file2 of "scoup".

Format of Output_file1, 2, 3

These file are the same as the output files of SCOUP.

Running Correlation analysis

Calculate the correlation between genes after standardization.

Usage
./cor <Options> <Input_file1> <Input_file2> <Input_file3> <Input_file4> <Output_file1> <Output_file2> <G> <C>
  • Input_file1 : G x C matrix of expression data
  • Input_file2 : Initial distribution data
  • Input_file3 : Optimized gene and lineage parameters (Output_file1 of scoup)
  • Input_file4 : Optimized cell parameters (Output_file2 of scoup)
  • Output_file1 : Standardized expression matrix
  • Output_file2 : G x G correlation matrix
  • G : The number of genes
  • C : The number of cells
Options
Example of running Correlation analysis
./cor data/data.txt data/init.txt out/gpara.txt out/cpara.txt out/nexp.txt out/cor.txt 500 100
Format of Output_file1

The Output_file1 contains the standardized expression data.

Format of Output_file2

The Output_file2 contains the correlation for the standardized expression data.

License

Copyright (c) 2015 Hirotaka Matsumoto Released under the MIT license

About

SCOUP is a probabilistic model to analyze single-cell expression data during differentiation

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published